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Abstract

A method is described for obtaining an approximate solution to

the equations describing a nucleon-meson cascade by using the angular

dependence of the secondary particle production kernels as a perturba

tion. The usefulness of the method lies in the fact that in a slab

geometry the equations which must be solved numerically are essentially

the same as those which are used in the straight-ahead approximation

and have been solved previously.
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I. Introduction

In a series of recent reports the equations which describe a

nucleon-meson cascade have been solved numerically in the straight-ahead ap

proximation. In this report a method is described for treating the angular

dependence of the secondary particle production kernels as a perturbation.

The usefulness of the method lies in the fact that in a slab geometry (the

only geometry considered in this report) the angles enter only parametrical-

ly in the first-order equations. For any specific values of the angles the

equations which must be solved numerically are essentially the same as those

which are used in the straight-ahead approximation.

In Section II the perturbation method is described and the first-

order equations in the case of an infinite beam incident normally on a slab

are given. In Section III the case of an infinite beam incident isotrop

ically on a slab is discussed. In Section IV the case of a very narrow beam

incident normally on a slab is considered and expressions for the lateral

structure functions of the cascade are given. In Section V the equations

governing the muon component of the cascade are given. In the Appendix

the perturbation series in all orders is discussed. In particular, it is

shown that for the case of an infinite beam incident either normally or

isotropically on a slab the equation for the nth order flux is of the same

form as the equation for the first-order flux. Thus, if a code exists

which will solve the first-order equations, one can in principle by repeated

use of this code obtain an exact solution.

1. R. G. Alsmiller, Jr., F. S. Alsmiller, and J. E. Murphy, Nucleon-Meson
Cascade Calculations: Transverse Shielding for a k^-Gev Electron
Accelerator (Parts I, II, and III), ORNL-5289T1962), ORNL-3365 (1962),
and ORNL-3412 (1963).

2. R. G. Alsmiller, Jr. and J. E. Murphy, Nucleon-Meson Cascade Calcula
tions : The Star Density Produced by a 2U-Gev Proton Beam in Heavy
Concrete, ORNL-3367 (1963)^

3. R. G. Alsmiller, Jr. and J. E. Murphy, Nucleon-Meson Cascade Calcula
tions: Shielding Against an 800-Mev Proton Beam, ORNL-3406 (1963).

k. R. G. Alsmiller, Jr. and J. E. Murphy, Space Vehicle Shielding Studies;
Calculations of the Attenuation of a Model Solar Flare and Mono-
energetic Proton Beams by Aluminum Slab Shields, ORNL-3317 (I963).



II. Infinite Beam Normally Incident on a Slab

The discussion which will be given below can easily be carried

through for an arbitrary number of cascade components. However, in order

to avoid unnecessary complexity, we shall restrict it to the consideration

of neutrons, protons, charged pions, and muons.* Furthermore, since we

shall assume that muons do not interact with nuclei, the muon equations

are much simpler than those for the other components and will be treated

in Section V.

Under these conditions the Boltzmann transport equations for the

nucleon-meson cascade may be written

Eg

Ba a>a(R,E,3) =^ J J^(ESE^'-iJ) Qp(E') *p(R,E',J?') dO' dE', (2.1)
P E fi'

where

Ba=3.V+Qa(E) +QqD(E) -|rSa(E), (2.2)

a,P = subscripts which here and throughout this report take

values N, P, it , and it" corresponding to neutrons,

protons, positive pions, and negative pions, respec

tively,

$ (R,E,fl) = angular flux per unit energy range of particles of

type a,

R = position vector,

E = kinetic energy,

Q, = unit vector in the direction of the momentum,

Q = macroscopic cross section for the nonelastic collision

of a particle of type a in the medium being considered,

*The neutral pion decays very rapidly into two photons. These pions are
not included here because we do not include photons.
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Q = probability per unit distance for the decay of the

ath kind of particle,

S = energy loss per unit distance of a particle of type

a in the medium being considered,

F (E'.E.^'.^) = the number of particles of type a per unit energy range

per unit solid angle produced at energy E and direction

H when a particle of type P with energy E' and direction

Tlx undergoes a nonelastic collision,

E0 = maximum kinetic energy of any particle considered.

To facilitate the application of boundary conditions, we use the

fact that the primary flux, i.e., the flux of incident particles which have

undergone neither nuclear collision nor decay, can be obtained analytically,

and we separate the total flux into primary and secondary components. Let

B 0. (R.E.I!) = 0, (2-3)
a ia ' ' '

ShQ

BaV^)= I / /VE,'E^'-3) VE'}
p E ft'

where

X *.p(R,E',fr) +<&sp(R>',3') d^' dE', (2.U)

$a(R,E,n) =$.a(R,E,H) + 3>sa(R,E,?I), (2.5)

$. (R,E,?2) = angular flux per unit energy range of primary

particles of type a,

$ (R,E,H) = angular flux per unit energy range of secondary
sa ' '

particles of type a.



h

The integral terms containing the secondary fluxes in Eq. {2.k) are

the terms which make the equation difficult to solve. For high-energy cas

cades the situation is simplified considerably by virtue of the fact that

the secondary particles are preferentially emitted in the forward direction.

At high energies Fag may to a reasonable approximation be written

FJE',E,3'.3) -^R(E',E) 5("'^ ~1} +GJE',E,H'.a),
apv > > ' - ^ap' > ' _ apv

(2.6)

where

gap(E',E) =J Fap(E',E,^'.fi) dH, (2.7)
A

A = a small region of solid angle centered about the unit

vector u' which covers the forward peak in F „,
^ ap'

G R(E',E,n'«u) = a correction term which is to make Eq. (2.6) approxi

mately correct.

It is clear that there exists a G^p which will make Eq. (2.6) exact. How

ever, since Fag is not in general singular when U' «U = 1, this exact Gq.o

would contain a singularity and would be inconvenient for further calcula

tion.* In what follows G^g is to be thought of as a function which is equal

to Fqq outside of the region A and is negligibly small but continuous

inside A.

In the straight-ahead approximation Gag is taken to be zero. In

this report we assume Gqr to be nonzero but sufficiently small that the

terms containing Gag may be treated as small perturbations.

*See the discussion following Eq. (2.l8) and see also the appendix.



Using Eq. (2.6), Eq. (2.k) may be written*

Eo

Ba »J*>*& - I / %p(E''E) QP(E'} V^E'^} dE'
P E

Eo

+^ T fGa[3(E',E,lf'.3) Qp(E') »sp(«,E',n») dfl' dE'
P E A'

Eo

+V f fFap(E',E,l5'.3) Qp(E') $.p(lt,E',fl') da' dE'. (2.8)
P E fl1

Here, the angular distribution of the first-generation secondaries, i.e.,

the secondaries produced by primaries, is treated accurately and completely;

the small-angle production of secondaries from secondaries is treated as

being straight ahead, and the remaining wide-angle production of secondaries

by secondaries is included in the term containing Gag.

Since the term containing Gag is to be considered a small perturba

tion, we may introduce into this term a zeroth approximation $sa. To

obtain this we shall assume that GaB may be put equal to zero everywhere

and define the zeroth approximation ^a through the equation**

E° r 1BayR,E,3) =^ J ga6(E',E) Qp(E') $p(R*,E',j£) +$.p(R,E,3)J dE'.
P E

(2.9)

*Here and throughout this report we used the general theorem

f(3) = rf(jj.) 8(3'.3-D dIK
fl. 2*

**The use of g^g in this equation is to a certain extent arbitrary. See
the appendix.



We then write the equation for the first approximation to the angular flux,

aA1J as,
sa > '

Eo

Ba$sa)(^E^} =Z / sap(E'^) VE'} ^ftE',3) dE' +s^ (%E,Ti),
(2.10)

P E

where

Eo

s^l}(R,E,fl) = Y, J J Gap^SEjH'.H) Qp(E') fp(R,E',fl') dfl' dE'
3 E fl

Eq

+Y J JFap(E^E^'*^ Qp(E,) $iB(^E'^') da' m'- (2-1]-)
E fl'

We now wish to apply this general perturbation theory to the specific

case of an infinite beam incident on a slab. Taking the z axis to be

normal to the slab, it is clear from symmetry considerations that the fluxes

do not depend on x and y. Therefore, we have

Ba= wil+Qa(E) +WE) -5ESa' (2,12)

where w = cosine of the angle between the unit vector j! and the z axis,
and Eq. (2.3) may be solved immediately to yield



E
-a l (E') + q _(e')

S (E')
a

S E E
a a

>. (z.E) = <K (0,E ) tttett- eia ' ±a ' a s (E)

Ea(Z,E)
dE'

S (E')
= z.

dE'

(2.Ill)

where <t>. (0,E) = arbitrary functions which must be specified as boundary

conditions. Using Eq. (2.13) in Eq. (2.9), f may be written

t (R,E,3) =Mr (z,E) 5(" "1} , (2.15)

where

^ +^(E) +^(E) -̂ Sa(E) yz,E)

^ J ga(3(E*,E) Qp(E') tg(z,E') +*ip(z,E dE'. (2.16)

P E

Equation (2.l6) is, of course, just the straight-ahead equation which has

previously been solved numerically. Since g^g(E',E) omits in each colli

sion the secondaries produced at wide angles with respect to the direction

of the initiating particle, \|/a is to be regarded as an estimate of the angu

lar flux integrated over a small angular region about the z axis.

Using Eqs. (2.13) and (2.15), "the equation for the first approxima

tion to the angular flux becomes



w 5- + Q (E) + Q JE) -§^ S
az a aD dE a

$(l)(z,E,to)
sa ' '

£>0

Y f gap(E,'E) s(E,)
P E

>^(z,E',w) dE' + s^(z,E,w),
sp ' ' a ' ' '

where

s^(z,E,to) =
a

P E

G (E',E,w)
ap ' '

Q (E') t (z,E") dE'

Er

P E

F (E',E,w)
ap ' '

(E1) 0). (z,E') dE'.
V IB '

(2.17)

:2.i8)

It is to be noted that Eq. (2.17) is very similar to the equation which is

used in the straight-ahead approximation. The whole point of the discus

sion is that the angles enter only parametrically in Eq. (2.17), so each

value of oj may be treated separately using very nearly the same IBM code

which was used previously.

Note also that if Gap is defined in such a manner that Eq. (2.6) is

satisfied exactly, then the source term, Eq. (2.18), contains a term which

is proportional to 6(l - to) and this means that $ contains a part which
so

is singular. Since such a singularity is unphysical, it seems preferable

to define Ga„ as being a nonsingular function which makes Eq. (2.6) only

approximately correct. It must be understood that once the perturbation

is replaced by f as in Eq. (2.10), thereapproximation is made, i.e.,

is no longer any very clear

the best approximation for $

is no longer any very clear way of deciding what form of Ga6 will lead to
.#

sa

*See the appendix.
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It is still necessary to consider the boundary conditions which

must be used in solving Eqs. (2.l6) and Eqs. (2.17). Since the initial

values of the fluxes have been incorporated in the primary solution, the

boundary conditions on the secondary flux are that no particles enter

the slab from the region outside of the slab, i.e.,

(0,E,u) = 0, 0 < w < 1,
sa

?sa(i,E,to) = 0, -1 < co < 0, (2.19)

where Z = thickness of the slab. These boundary conditions are, of course,

to be applied to both the zeroth-order and the first-order flux.

In the case of the zeroth-order flux, § . the boundary conditions

are satisfied by using

ta(0,E) = 0.

In the case of the first-order flux, these boundary conditions may

be used directly in solving Eq. (2.17) and may be satisfied exactly. That

is, for each value of to the equation is solved using Eq. (2.19) as an

initial value on $ . In the case when to < 0, it is necessary to make the
sa '

substitution

z' = & - z (2.20)

and solve the equation with z' going from zero to £ since it is only at

z' = 0 that the initial values are known.

III. Infinite Beam Isotropically Incident on a Slab

In this section we apply the perturbation theory of the previous

section to the case of an infinite beam isotropically incident on a slab.

Taking the z axis to be normal to the slab, it is again clear from

symmetry considerations that the fluxes do not depend on x and y. For

this case the primary flux equation may be solved to yield
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ia
(R,E,3) = i- 4> (R,E),

2it ia
(3-D

where

R = z/to, (3-2)

to has the same meaning as before and <t>. is the function defined by Eq.
ia ^

(2.1U).

Using Eq. (3«l) in conjunction with Eq. (2.9)> the zeroth approxi

mation to the flux may be written

if (S.E.TJ) = J- i|r (R.E),
-a ' ' 2n a ' '

where i[r (R,E) satisfies the equation

I* +S,(E) +WE) "h Sa ta(R,E)

Er

(E',E) Qp(E'; ilrp(R,E') + *.p(R,E')
E

!3.3)

dE'.

(3A)

Equation (j.k) is, of course, exactly the same as Eq. (2.17).

Using Eqs. (j>.l) and (3«3)> "the equation for the first approxima

tion to the secondary flux may be written

wh +^(E) +WE) "5e sa(E) ^}(Z,E,to)

Er

gap(E',E) Qp(E') $^}(z,E',to) dE' +s^l}(z,E,w), (3-5)

p E
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where

s^ J(z,E,to)

En fl 2 it

ap

E o o

E0 « 2 it

P E o o

E',E,to'to -x/l - to^Vl - w'2tcos(<i>'

*p {ZF >E'
Qa(E') dto' dE'

2rt

E',E,to'to -a/i - u^Vl - to'2'cos(<

(EI) "ipVo' - E', d(J dE,
2n

d(<t>' - <D)

d(t" - 4>)

(3.6)

Equation (3«5) is, of course, exactly the same as Eq. (2.17). The signi

ficant difference between the cases of an infinite beam incident normally

and isotropically on a slab lies in form of the source terms, Eqs. (2.l8)

and (3.6). While in Eq. (2.18) the angle integrations could be carried

out analytically, this is not the case in Eq. (3.6). Thus the computation

required to obtain 0 with isotropic incidence is somewhat more lengthy

than with normal incidence.

Since we are again considering a slab geometry, the boundary condi-

n $ are those
sa

zeroth order by using

tions on $ are those given in Eq. (2.19). They may be satisfied in

*a(0,E) = 0

and may be applied directly and exactly in first order, it being understood

that when to < 0 the transformation given in Eq. (2.20) must be employed.
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IV. Narrow Beam Normally Incident on a Slab

The case of a very narrow beam normally incident on a slab is both

more interesting and more difficult than the cases treated previously in

that we must consider the lateral spread as well as the longitudinal develop

ment of the cascade.

Let the z axis be normal to the slab and let the beam of particles

be incident at the origin of coordinates. It is convenient to use cylin

drical coordinates in position space and spherical coordinates in velocity

space, so we let

—>

r, z, <t> = cylindrical coordinates of R,

w <t> = spherical coordinates of the unit vector Q,

where, as before, to = cosine of the angle between the unit vector fl and the

z axis.

Using this notation, Eq. (2.3) for the primaries may be solved to

yield

$.a(R,E,H) =*±a(z,E) 5((^ 1} 5(rsin<i>r) S(r cos*^ (k.l)

where <t>. is again given by Eq. (2.lU).

Using Eq. (^.l) in Eq. (2.9), the zeroth-order flux, if , may be

written

fa(R,E,fl) =ta(z,E) S(ui2~ 1} 6(r sin$r) 5(r cos*r), (k.2)

where if (z,E) satisfies Eq. (2.l6). Since we are again considering a slab

geometry, the boundary condition of if (z,E) is, from Eq. (2.19),

*a(0,E) = 0. (1+.3)

Introducing Eqs. (U.l) and (U.2) into Eq. (2.10), the equation for

the first approximation to the angular flux may be written
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Er

Ba*sa)(*>E^ = ,(!)/ .(l)gap(E',E) Qp(E') $^J(R,E«,i!)dE' +s^1J (R,E,fi),

where

Ba =w Sz"+ (1 ' w2)2 COST1 37 +(1 " ^ sinTl 55" +VE)
r

+WE) -Se sa(E)

•n = * - * ,
1 to r'

(^)

(U.5)

s^(R,E,^) = 5(r sin* )6(r cos* ) Gap(E',E,to) IE') ifp(z,E') dE'
P E

E0

+) J Fap(E',E,to) Qp(E') *ip(z,E') dE'f . (U.6)
P E

Because of the three derivatives which occur in B , Eq. (h.k) is

still not in a form suitable for numerical computation. To reduce the equa

tion to a more suitable form, we introduce*

5(r cos* ) S(r sin* ) = 5 (-—-—^- )S(r cosfl

*To prove this relation note that

r s im)
cos* /

to

r simr) - r
cos* ~ cos*

w to

sin* cos* - cos* sin*
wr tor

and that S(r cos* ) requires that

r cos* = 0.
r

(h.7)
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and the ansatz

(1 -to2)2 $y(R,E,fl) =+
Xa(r,z,E,to)

ia cosl
to

r sinrA
cos* / ^VJ- ^ ^'-""•^je(± r cosfl (^.8)

where

O(x) = 1 if x > 0,

= 0 if x < 0,

and the plus and minus sign is to be used to keep the flux positive and non

zero: i.e., the positive sign is used when cos* ,cos* is greater than zero
' r' to

and the negative sign is used when cos* .cos* is less than zero.* Sub-
v' to

stituting the ansatz into the equation, we find

a
UHI Vr>z>E>w) + (1 - w2) yr,z,E,to) + C^(E) + 0^ (E Xry(r,z,E,to)

a

a_
dE

Sry(E) X (r,z,E,w)
ax ' a

P E

X

gap(E',E) Qp(E') Xp(r,z,E',to) dE

&(+r cos* )
— r

cos<l
u

c (t sinri
5 [ 2—vcos*

to

+| Xa(r,z,E,to) -Y J Gap(E',E,to) Qp(E') tp(z,E') dE'
P E

FaB(E',E,to) Q (E') *,p(z,E') dE'h (1 - to2)
Lap Pv

P E

X
r smT]

cos<
to

) 5(r cos* ) = 0. (^.9)

*Note that S(r sinr]/cos*w) requires *w = *r everywhere except possibly
at r = 0.



15

Equation (U.9) can have a solution only if the bracketed terms are separate

ly zero, so we have*

a1 2 SW5z" Xa(r;z;E;w) +<! -(j2)2 ^ Xa(r,z,E,to) + ^(E) +^(E) Xa(r,z,E,to)

Er

d_
dE

Sa(E) Xa(r,z,E,to) 5aB(E',E) ^(E) Xa(r,z,E',co) dE',

Xa(0,E,to) =

P E

Er

Gafi(E',E,to) Qp(E') i|fp(z,E') dE'
p E

E0

+ ) J FaR(E',E,to) Qp(E') *.R(z,E') dE'.
P E

(^.10)

(4.1l)

Equation (4.10) is now a homogeneous equation subject to the boundary condi

tion expressed in Eq. (4.11).

If we introduce the variables p and zQ defined by

z - z0 = pto,

r = p(l

Eq. (4.10) and (4.11) may be written

- w2) ,

5p ^a(p>Z°>E>w) +_^(E) +̂ (E)J^a(p,z0,E,U) =̂

%p(E',E) QR(E')|/a(p,z0,E',to) dE',
P E

(4.12)

Sa(E)^a(p,z0,E,to)

>.13)

*Since the coefficient of 5(r sinri/cos*^) 5(r cos* ) contains the factor

1 - to ) , the case u = 1 is included in the following discussion only

in the sense that one may take the limit as oj approaches one.
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Er

^a(0,zo,E,to) =Y f Gag(E';E» VE') tB(z0,E') dE'
/ P EP E

Eo

+Y J Fap(E''E'w) Qp(E,) VZ°'E,) ^ (1+,lU)
P E

where

^a(p,z0,E,w) = Xa(r,z,E,to). (4.15)

Equation (4.13) is "the usual straight-ahead equation subject to the

boundary conditions expressed by Eq. (4.13). The quantities z0 and to occur

as parameters in the equation, so each value of these variables may be

treated separately and the flux, $ , obtained by repeatedly solving

Eq. (4.13).

In terms of X^we must have

Xa(r,0,E,w) = 0, 0 < to < 1,

X (r,i,E,to) = 0, -1 < w < 0,
a

and using the transformation given in Eqs. (4.12) and (4.13) we must have

(p,z0,E,to) =0, £ > z0 > 0. (4.16)
a

Thus for z0 between 0 and £ the calculation is unrestricted and for all other

values of z0 the flux*?/ is zero.

1?)Assuming that $ is an adequate approximation to the particle flux,

one may, of course, calculate a variety of quantities which are of interest.

Of particular interest in the present case will be the lateral structure

function of the cascade.
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We shall define the lateral structure function of primary particles

of type a, L. . as*
; ia;

2rt

L.a(r,z,E) =J J r*.a(R,E,3) dfl d*r (4.17)
o fl

and the lateral structure function of secondary particles of type a (in first

approximation), L , as*

2*

i/^Cr.z.E) = / /rO^dLE.ft) dfl d* . (4.l8)sa ^ ' ' ' J J sa v ' ' ' r v '
o fl

Using Eqs. (4.1) and (4.8) we have

L.a(r,z,E) = *.a(z,E) 6(r), (4.19)

arc tan
z-£

L^(r,z,E) = 2it0(r) / X(r,z,E,cos0) d0. (4.20)

arc tan —
z

The limits in Eq. (4.20) come from the transformation given in Eq. (4.12).

Since 'T/q has a nonzero value only when zQ is between 0 and £, the flux Xq.

will have a value only when

0 < z - r ctnS < £. (4.21)

Strictly speaking, because of the ©function in Eq. (4.20) we must
(!)/take the limit as r approaches zero to obtain L (0,z,E). However, from

Eq. (4.11) it follows that

*Note that in defining L^a and L^ we have included an r factor to avoid a
singularity in the functions and have carried out the integration over d* .
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Er

L^}(0,z,E) =2rt J \^Y J GaR(E',E,cos0) QR(E') ifR(z,E') dE'
o p E

Eq

+} | FaB(E',E,cos6) Qp(E') *iR(z,E') dE'jd0, (4.22)
P E

and thus the value of the lateral structure function on the axis of the cas

cade may be obtained from a knowledge of if and *.R«

V. Muon Components of the Cascade

The muons could easily have been included in the previous discussion;

however, they constitute such a special case that they are best treated

separately.

The very special nature of the muon equations arises from the fact

that we may neglect the muon interaction with nuclei. Once a muon is

formed -- by pion decay -- it has no further effect on the cascade.

The transport equations for the primary and secondary muon fluxes may

be written

B $. (R\E,H) = 0, (5.1)

B $ (R\E,!t) = s (r\e,H), (5.2)

where

d

V^V+(WE) "5e Ve)' (5'5)
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Eo(E)

s^+(R,E,fl) =J J F^(E',E,fl'fi) QrtD(E') *jt+(R>,E,,flN) dfl' dE',
~ Ei(E) ft'

F (E',E,^'.H) =
uit

1 fm \

2^V 1_
2it

5

—

fl'.It - k(E',E)

y
u2 E'(E' + 2m c2)

it

k(E',E)
E + m c2

M.

Ve(E + 2m c2)
v u

r E' + m c"
it

Ve'(E' + 2m c2)

m

Ui
m

^ yE'(E' + 2m c2)

m r

E2(E) = — 1Ui(E + m c2) + U2 E(E + 2m c2)
^ m I u ^ |i

m

Ei(E) = — 1Ui(E + m c2) - U2 E(E + 2m c2)

m c

U2 =
U*

m c

m c

m c
it

(5-4)*

(5.5)

*The form of F^ and the quantities Ei and E2 are obtained by assuming that
the muons are emitted isotropically in the rest frame of the pion and then
transforming into the laboratory system by Lorentz transformation. See
B. Rossi, High Energy Particles, Prentice-Hall, Inc., New Jersey (1956),
P 191.
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3>. (R,E,fl) = angular flux per unit energy range of primary muons with plus

and minus charge, respectively,

$ (R,E,A) = angular flux per unit energy range of secondary muons with

plus and minus charge, respectively,

$ (R,E,A) = angular flux per unit energy range of pions with plus and

minus charge, respectively,

Q = probability per unit distance for the decay of the muon,

S = energy loss per unit distance of the muon,

m c2 = rest energy of pion,

m c2 = rest energy of muon,

U* = total energy of the muon in the rest frame of the pion.

The primary muon flux can, of course, be obtained without reference

to the other portions of the cascade and is therefore of very little

interest here. Throughout the remainder of the discussion we shall assume

that there are no initial muons so

S>. (R,E,H) = 0.

If the pion flux is known, Eq. (5«2) is a special case of Eq. (2.10).

It is in principle possible to use the first-order pion flux obtained in the

previous sections in Eq. (5«4) and to calculate the muon flux from Eq.

(5.2). However, it is rather pointless to treat the muons more exactly

than we have treated the pions. It seems consistent with the previous dis

cussion to treat the muons from primary pions exactly but to treat the

muons from secondary pions as being emitted in the direction of the decay-
(1)

ing pion. To this end, we introduce a first-order muon flux, $ ,
to * ' ' s\x±'

through the equation

B «^(3,E,H) = s^(R\E,flY (5.6)
u su+ ' ' H±

where



(l) /-» ->NS^/(R,E,fl)
Ep(E)

Ei(e) n«
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F (E'E.fl*'•&) Q _(E') «. (R,E',f!) aft1 dE'
Hit ' ' ^itD iit+ ' '

E2(E)

+ / / F (E',E,fl'-lt)
(ait

Ei(E) ft'
k=l

WE,) $sit+(^E'̂ ) dn' ^

and F (E',E,ft'.ft)| means that k is to be put equal to 1 in Eq. (5-5)

For the case of an infinite beam normally incident on a slab we use

the results of Section II in Eqs. (5-6) and (5*7) to obtain

to v- $(l)(z,E,to) + Q_(E) $(l)(z,E,w)

S (E) $V(z,E,to)
u V-±

=s^(z,E,to), (5.8)

(1^ p ^8H± (z'E'u) =
E2(E)

Ei(E)

f (E',E,to) Q _(E') *. (z,E') dE'
uir ' ' ^itD iit+ '

Eg(E)

Ei(E)

g (E') Q_(E') ^'(z.E'.w) dE',
buit ' itD sk+v > > ' >

1 f it

Hit
(E1) =

2 Vm

Up

•v/E'(E' + 2m c2)

(5-9)

(5-10)

Equations (5«8) and (5«9) are of the same form as Eqs. (2.17) and (2.l8)

so the first-order muon flux may be obtained in the same manner as the

other particle fluxes. The boundary conditions on the secondary muons are
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the same as on the other secondary particles, Eq. (2.19), and may, of

course, be satisfied exactly as before.

For the case of an infinite beam incident isotropically on a slab,

we have from Section III and Eqs. (5-6) and (5«7)

wI? Oz'E'w) +WE> *[&>*><*)

s(l)(z,E,to)

d

d"E
S (E) <T ;(z,E,w)

U^ ' \x± y ' ' '
J1) (z,E,to), (5-11)

Ep(E

Ei(E) ft'

F (E'.E.ft'.ft) Q (E>) *. I~ ,E'
uir > ' ' xD ' iit+ \to' '

Eg(E)

g (E') QJE') <£>^(z,E',to) dE'
&uir ; ^itD sit+ > '

Ei(E)

dft' dE'

(5.12)

For the case of a narrow beam incident normally on a slab, Eq. (5«7)

becomes

s^}(R,E,ft) S(r cos* ) 5(r sin* )
r r

Ep(E)

Ei(E)

F (E'.E.u) Q _ *. (z,E') dE'
uit ' ' ' ItD iit+ '

(+1) &(T s^) £>(+r cos* ) Ep(e)
,COS<

C0S<1
to

Ei(E)

g^(E') QJtD(E') Xjt+(r,z,E',to) dE',

:5-13)

and introducing as before the ansatz
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* <!>,*.*, , Wr'z<E<u)(l - to2) ^ ;(R,E,ft) = + -~ , 5(r sinri/cos*w) S(+r cos*r),
— w

(5-14)

we obtain

w5£V(r'z'E'w) +(WE) Vr'z'E'w) -seVe) v(r'z'E'w)

r
Ei(E)

r
Ei(E)

V(E'} Q«D(E'} \±^>z>®,u) dE', (5.15)

X(0,z,E,to) = / F^(E',E,to) QrtD(E') »ijt+(z,E') dE'. (5.16)

Equations (5.15) and (5.I6) are now completely equivalent to Eqs. (4.10)

and (4.1l) and may be treated in the same manner as these equations were

treated.

The lateral structure function for the secondary muons may be

written

r
arc tan

z-£

L^(r,z,E) =2itc3(r) / X (r, z,E,cos0) d6, (5-17)
SM-+ J M-+

with

it Ep(E)

arc tan —
z

It 2&\Z>)

L^(0,z,E) =2, J [ J F^(E',E,to) Q^E') «ljt±(z,E') dE'j d6.
o EX(E) (5.18)
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Appendix

In the body of this paper the discussion was carried through only to

first order. For thick slabs such as those of interest in high-energy ac

celerator shielding, the first-order computation is quite lengthy and a

higher order computation is probably not feasible. However, for the case of

an infinite beam incident, either normally or isotropically, on a thin slab

it may be possible to carry the computation to higher than first order with

out involving excessive computing time. In this appendix we indicate how

for the infinite beam cases the computation may be carried out to all

orders.

By adding and subtracting terms Eq. (2.4) may be put in the fo rm

Er

B^ « (R,E,ft) =
a sCC ' ' "ap

(E',E)
5(?I'.ft

2 it
,(E') $ Q(R,E',ft') dft' dE'
5 SP

where

sa(R,E,ft*) =

P E

E ft'

Er

+ sa(R,E,ft),

FaR(E',E,3'.3) - %p(E'>E) 5(ft'.ft* - 1)
2 it

<2> (R,Ef,ft*') dft' dE'

GaR(E',E,ft*'.ft) Qp(E') fR(R,E,It') dft' dE'
P E ft'

GaR(E',E,ft'-ft) QR(E') if (R,E,ft') dft' dE'
E ft'

Eo

+ > J J FaR(E',E,?l'.ft) QR(E') $iR(R,E,ft) dft' dE'
P E ft'

(A.l)

(A.2)
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The quantity if which has been introduced in Eq. (A.2) is defined through

the equation

b«Vw>= I ./ /•W',.'>a(3'l'1)
E ft'

QD(E') f (R,E',ft') + 4± (R,E',ft') dft' dE'

where h „ is a function which is to be defined.
ap

(A.3)

•Xk)
Now let us introduce successive approximations to the flux, 0 ,

through the equations

oo

(A.4)

K=l

Er

Ba$ia}^E^=I / %P(E'<E) ,U) -> "^\QR(E') *^(R,E',ft') dE' + S(^(R,E,ft),

s^R^ft)

P E

Er

oo

sa(R,E,f!) =Y 4^(^E^^
K=l

GaR(E',E,3'.ft*) (E') if (R,E',lt') dft' dE'

P E ft'

Er

(A.5)

(A.6)

V F fp (E^E^'-ft) QR(E') $.R(R,E',ft*') dE' dft', (A.7)
E ft'
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s^2)fR>,ft) =Y J /Fap(E''E^'^) Qp(E) $sp)(^E^} da' dE'
p E ft'

Er

Y f %p(E'>E) QP(E<) ^(^E^It) dE'
P E

Eq

P E ft'

Gap(E',E,Tt'.ft*) Qp(E') ^(R*,E',l!') dft' dE',

(A.8)

Eq

s^}(R,E,H) =Y J J ^(E'jEjH'.ft) QR(E') f^_l)(R,E',ft') dft« dE'
E ft'

Er

^B(E',E) QR(E') 0^-l)(R,E',H) dE' K>3. (A.
P E

With these definitions Eq. (A.4) is an exact solution to Eq. (A.l) provided

that the series converges. It is clear that the first-order equations are

the same as those introduced in Section II.

Note that the particles produced by if have been included in the first-

order source term and subtracted from the second-order source term. The

reason for doing this is, of course, to make the first order as accurate

as possible.

In a slab geometry the boundary conditions given in Eq. (2.19)

apply and are to be applied in each order. Except for the presence of the

(2) J2)
source term, s the equation for Q is a homogeneous equation subject

to zero boundary conditions so the second-order flux will be small (or
(2)

zero) provided that s is small (or zero). Therefore, we should like to
(2)

choose the functions g , h , and G so as to make sj. as small as

possible.
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(2)
It follows immediately from Eq. (A.8) that s will be zero if

$^(R,E,ft) =$a(R,E,ft) (A.10)

and if

GaR(E',E,ft'.ft) =FaR(E',E,ft'.H) -̂ R(E',E) ^ ^ l} . (A.ll)

Equation (A.10) is just the statement that the first-order flux is exact

if the straight-ahead approximation is exact. Since this is not the case,

the best one can hope for is that

J $^}(R,E,ft') dft' =J yR,E,fi') dft', (A.12)
Ax Ax

where Ax = some suitably defined solid angle.

Equation (A.12) is not a way of choosing if but rather is a crude

test which can be applied to determine the validity of the first approxi

mation after it has been obtained. The only arbitrariness we have in

choosing if is through the choice of hR. On the basis of (A.12) it seems
reasonable to choose

WE'>E) =%p(E'>E)> (A-15)

as we have done in the body of the paper, but it must be understood that

there is considerable arbitrariness in this choice.

Equation (A.ll) could be used as a definition of G R. However, as

we have stated earlier, this choice is so inconvenient from a computational

point of view it seems preferable to use the definition given in the body

of the paper.



28

It is clear that there is, in general, no way of deciding what

choice of the functions g , h , and G will lead to the best first ap

proximation. If the computation is carried out to a sufficiently high

order, it is to be expected that the results will be independent of the

exact choice made for these functions, but it is clear that the best one

can hope for is that the first-order result be approximately independent

of the choice made for these functions.

Let us now consider Eqs. (A.4) to (A.9) for the case of an infinite

beam incident either normally or isotropically on a slab. By introducing

the appropriate form of the primary solution and utilizing Eqs. (2.12),

one finds that Eq. (A.4) in all orders is of the form of Eqs. (2.10) and

(3.5); i.e., it is of the form of the first-order equations. Therefore,

the same code which will give a numerical solution to the first-order

equations may be used to obtain a solution in any orders. In principle,

then, an exact solution can be obtained by an iteration procedure. The

boundary conditions, Eq. (2.19), can, of course, be satisfied exactly in

each order.

After the iteration is complete and the exact pion flux has been

obtained, the muon flux may be obtained directly from Eqs. (5-2) and (5«4)



29

ORNL-3467

UC-34 - Physics
TID-4500 (20th ed.)

INTERNAL DISTRIBUTION

1. Biology Library 67. C.
2-3. Central Research Library 68. J.
4. Reactor Division Library 69. M.

5-6. ORNL - Y-12 Technical Library 70. J.
Document Reference Section 71. J.

7-56. Laboratory Records Department 72. J.
57. Laboratory Records, ORNL R.C. 73. A.
58. F. S. Alsmiller 74. C.

59-63. R. G. Alsmiller, Jr. 75. R.
64. E. P. Blizard 76. P.

65. A. A. Grau 77. R.

66. W. H. Jordan 78. T.

E. Larson

Neufeld

J. Skinner

A. Swartout

E. Turner

W. Wachter

M. Weinberg

D. Zerby
A. Charpie (consultant)
F. Gast (consultant)
F. Taschek (consultant)
J. Thompson (consultant)

EXTERNAL DISTRIBUTION

79-80. Bendix Systems Division, Ann Arbor, Michigan (l copy each to
0. L. Tiffany and Keith More)

81. Herman J. Schaefer, U.S. Naval School of Aviation, Pensacola,
Florida

82-83. Advance Research Corporation, Lafayette, Indiana (l copy each
to E. C. Smith and W. M. Schofield)

84-85. NASA, Washington, D.C. (l copy each to J. W. Keller and Lt. Col.
Joseph Conner)

86. E. 0. Berdahl, Scientific Advisor (Systems), TDX1A, Wright-
Patterson Air Force Base, Ohio

87-92. WADC, Dayton, Ohio (l copy each to Capt. R. F. Cooper, C. A.
Dempsey, Maj. James F. Dinwiddie, T. J. McGuire, L. Pittman,
and J. Speakman)

93. Harry Schulte, Bellcomm, Inc., 1737 L Street, Washington, D.C.
94. Robert V. Glowczwski, McDonnell Aircraft, St. Louis, Missouri
95. Dr. R. A. Glass, Lockheed Missiles and Space Company, Dept.

52-10, Palo Alto, California
96. Dr. Glenn A. Whan, University of New Mexico, Albuquerque, New

Mexico

97. K. D. George, Reactor Requirements Office, Picatinny Arsenal,
Dover, N.J.

98. Fred L. Keller, Aerospace Corporation, El Segundo, California
99. D. H. Robey, General Dynamics/Astronautics, San Diego, California

100. Wright H. Langham, Los Alamos Scientific Laboratory, Los Alamos,
New Mexico

101-104. NASA, Langley Field, Virginia (l copy each to L. F. Vosteen,
W. C. Hulton, T. Foelsche, and J. E. Duberg)

105. David Langford, Pratt and Whitney Aircraft, East Hartford 8,
Connecticut

106-109. NASA, Manned Space Craft Center, Houston, Texas (l copy each to
R. H. Steelle, C. Warren, W. L. Gill, and L. N. McMillion)



30

110-111. NASA, Huntsville, Alabama (l copy each to R. Shelton and H. E.
Stern)

112-115. North American Aviation, Downey, California (l copy each to
K. R. Pinckney, G. E. Laubach, L. Clark, and M. R. Kinsler)

116. E. R. Beever, Space and Information Systems Division, North
American Aviation, Inc., Dept. 190-23, Downey, California

117. J. P. T. Pearman, National Academy of Sciences, Washington, D.C.
118. D. W. Drawbaugh, Westinghouse Electric Company, Pittsburgh,

Pennsylvania
119-120. USAF Aerospace Medical Center, Brooks Air Force Base, Texas

(l copy each to Lt. Col. Ralph G. Allen, Jr., and Col. John
E. Pickering)

121. Charles Hill, Lockheed Aircraft Company, Marietta, Georgia
122. E. M. Finkelman, Grummon Aircraft, Bethpage, New York
123. P. Mittleman, United Nuclear Corporation, White Plains, New York
124. R. Aronson, Technical Research Group, Syossett, New York
125. Richard Madey, Republic Aviation Corporation, Farmingdale, Long

Island, New York
126-127. Lewis Research Center, Cleveland, Ohio (l copy each to I. M.

Karp and R. I. Hildebrand)
128-130. Boeing Aircraft Company, Seattle, Washington (l copy each to

D. L. Dye, M. Pearson, and J. C. Noyes)
131-132. Jet Propulsion Laboratory, Pasadena, California (l copy each to

R. V. Meghreblian and D. F. Spencer)
133-137. University of California, Berkeley, California (l copy each to

R. Wallace, W. Patterson, C. Sondhaus, C. Tobias, and B. J. Moyer)
138. R. B. Curtis, University of Indiana, Bloomington, Indiana
139. S. P. Shen, New York University, New York, New York
140. Dr. L. Jackson Laslett, Chief, High Energy Physics Branch, U.S.

Atomic Energy Commission Division of Research, Washington, D.C.
141-142. Goddard Space Flight Center, Greenbelt, Maryland (l copy each

to F. McDonald and W. N. Hess)
143-148. General Dynamics, Fort Worth, Texas (l copy each to R. French,

N. Schaeffer, C. F. Johnson, T. W. Deveries, T. J. Rock, and
S. Dominey)

149. M. J. Berger, National Bureau of Standards, Washington, D.C.
150. John P. Neissel, General Engineering Laboratory, General

Electric Company, Schenectady 5, New York
151. S. Krasner, Office of Naval Research, Washington, D.C.
152. E. V. Vaughan, Atomics International, Canoga Park, California

153-155. The Martin Company, Baltimore, Maryland (l copy each to S.
Russak, A. J. Beck, and E. Divita)

156-158. Northrup Space Laboratory, Los Angeles, California (l copy each
to M. C. Chapman, R. E. Fortney, and S. H. Levine)

159. W. Steigelmann, Franklin Institute, Philadelphia 3, Pennsylvania
160. Capt. W. A. Anders, USAF, AFSWC (SWVPF), Kirtland AFB, New

Mexico

161. Miguel Awschalom, Princeton-Pennsylvania Accelerator, Princeton,
New Jersey

162-166. Stanford Linear Accelerator Center, Stanford, California (l copy
each to K. G. Dedrick, H. DeStaebler, Jr., R. F. Mozley, W. K. H.
Panofsky, and J. Ballam)

167. E. A. Cosbie, Argonne National Laboratory, Argonne, Illinois



/;
168. M. Stanley Livingston, Cambridge Electron Accelerator, Cambridge

38, Massachusetts
169. R. L. Childers, University of Tennessee, Knoxville, Tennessee
170. Aaron Galonsky, Midwestern Universities, Madison 5, Wisconsin

171-172. Brookhaven National Laboratory, Upton, Long Island, New York
(l copy each to F. P. Cowan and S. J. Lindenbaum)

173. H. B. Knowles, Yale University, Sloane Laboratory, New Haven,
Connecticut

174. Dr. M. Ferentz, Department of Physics, St. John's University,
Jamiea 32, New York

175. Research and Development Division, AEC, 0R0
176-812. Given distribution as shown in TID-4500 (20th ed.) under Physics

category (75 copies — OTS)


	image0001
	image0002
	image0003

