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Abstract

On the assumption that a Lockhart-Martinelli type of ccrrelation is
applicable, an analytical approach to the interpretation of pressure drop
i J data on condensing flow in tapered tubes is developed with particular
! reference to the condensation of potassium in a radiant condenser of a
i type that may be attractive for space power plants. It appears that in-
| stability can be encountered in such condensers only through the intro-

duction of excess liquid inventory at reduced power or by design oif the

condenser for insufficient pressure drop at design power.







Condensing Flow in Finned, Tapered Tubes

The purpose of this study is the development of an analytical ap-
proach to the interpretation of experimental data cn the two-phase pres-
sure drop characteristic of condensing flow in the tapered tubes of a
radiant condenser. The study is particularly ccuncerned with the behav-
ior of condensing pctassium at rather low pressure (1.5 psia), and it
assumes that a Lockhart-Martinelli type of correlation is applicable —
an assumption that must be established experimentally.

The Lockharthartinellil correlaticn of two-phase, two-component
flow utilizes the ratio of the actual pressure gradient to the pressure
gradient of the gas phase flowing alone (virtual gas pressure gradient)
as an empirically determined function of a two-phase flow modulus which,
in turn, is a function of the virtual liquid and gas pressure gradient

ratios. The mathemstical form is as follows:

4op
£ - ‘A_Z TP
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Oz
8

and

i

= £ (x) (3)
Since (AP/Az)g can be calculated from the Farning friction factor for the
pertinent flow corditicns, the actual, two-phase pressure drop can be de-
termired from an empirical correlation of ¢2 witl X.

This treatment has been applied to condensing mercury flow in cylin-
drical tubes by Baroczy and Sander52 by means of an empirical correlation
of ¢2 vs X for noncondensing flow ¢f mercury and rnitrogen. An improve-
ment was obtained in the correlation by including the gas phaase turbulent
Reynolds rnumber as an empirical variable. In cther words, ¢2 is a func-

tion of both X and N, :
Rg




o= (X, N ) (1)
24

The present study is an extension of the Baroczy and Sanders treat-
ment to the condensing flow of potassium in finned, tapered tubes that

appear to be attractive for heat sinks in satellite power plants.

Basic Conditions

Throughout the study it is assumed that the physical properties of
both liquid and vapor remain constant, except for the vapor density. It
is further assumed that the temperature of the radiative surface is con-
stant over the condensing portion of the tube, which is not strictly true
as the tube surface is necessarily hotter than the tips of the fins. How-
ever, the fin efficiency is factored into the equations via a reduction
in the value of the actual external surface to an "effective' heat trans-
fer surface at which the heat flux is considered constant.

The temperature drop from the condensing vapor to the radiating
surface is considered negligible, except as it is factored into the fin

efficiency term.

Geometrical Considerations

Since the volume reduction on condensation is several orders of
magnitude, a saving in structural weight can be obtained by the use of

5

tapered condenser tubes,” and a prime consideration is the maximum ac-
ceptable vapor entrance velocity. If the vapor is of fairly high quali-
ty, the entrance losses at a properly faired tee connecting the tube to
the manifold are very small for velocities as high as Mach 0.25, and the
total ccndensing pressure drop through the tube will be in the neighbor-
hcod of 20% of the inlet pressure for good design. Increasing the en-
trance Mach number significantly beyond 0.25 results in a very rapid rise
in condensing pressure drop and consequent extreme decrease of absolute
pressure on the liquid leaving the condenser. For this reason, the en-
trance velocity was fixed at Mach 0.25 for the cases considered.

The inlet diameter is fixed by the condensing pressure, the entrance
Mach number, and the weight flow desired. For a known radiative heat

flux, coolant flow and condensing pressure the tube length is fixed for

a given fin size, and the entire tube geometry is thus determined.




Three cases for condensing potassium at 1500°R (1.5 psia) are con-
sidered in this study, in which fin height and tube diameter are the in-
dependently varied parameters. For liquid exit velocities of the order
of 1 ft/sec a diameter reduction factor, DO/DL’ of 4 was chcsen. Since
the tube length is determined by heat transfer considerations, the tube
taper differs in each case.

As shown in Fig. 1, the tube wall was arbitrarily fixed at 0.050 in.
and the fin thickness at 0.010 in. No attempt has been made to optimize

either the tube wall or fin thickness.

Heat Transfer and Tube Length

For a space temperature approaching zero, the radiative heat flux

is:

L

§—=V€UT (5)
r
h

where 7Y represents the view factor. The view factor depends, of course,
on the tube diameter and spacing. However, it normaily wiil lie between
values of 0.8 and 0.9 for the model shown in Fig. 1.

The fin efficiency for rectangular fins is:

e - = (6)

For radiative heat transfer a fictitious coefficient is determined from

the heat fluxand fin absolute temperature:

(7)

If a copper fin thinly clad with, say, oxidized aiuminum bronze is
used, the efficiency becomes:

tanh 6.9ly (8)

¢ = .91y

for a view factor of 0.8, an emissivity of 0.86, and a radiating temper-

ature of 1500°R.
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Fig. 1. Model Used for Heat Transfer and Fluid Flow Calculations.




For any given entrance fin height, Vo2 the reduction in fin effi-
ciency that occurs as y increases along the length of the tube to i, can

be considered linear. The efficiency at any point z therefore becomes:

g, = & (1 -nx) (9)
The tube outside diameter also varies linearly with z and can be expressed
as:

0, = £ (1-8x) (10)

The fin span, s, is constant and equal to (gg + 2 yo). From Fig. 1 the

differential effective heat transfer surface is:
aa, = [2(s - 192) g+ D, ] dz (11)
Substituting Eys. 9 and 10 into Eg. 1l yields:

dA

dlzz = 2t (1 - nk) [s - 90 (1 -pk)] + m% (1 - Bx) (12)
or
B gy o+ x8) ¢ (2808 - by - 7Pl - [28 OB K (15)
) | . 2 2 51
by = L &uﬁoyo ok )+ <E’o‘906 " BTN - 5906) <75 oo —I (1)

since

dz = L dx

The heat radiated by the entire tube is related to the heat transfer sur-

face through Eq. 5:
L
Qp = YeoT A, (15)

and AhL is the value of Ahz when K = 1:

Ap = L [ngyo (2 -7) + n.@o <1 - %) +Qogos <1 - %nﬂl (16)

The minimum tube length is determined by the limiting inlet vapor velocity
for a given fluid and condensing pressure. The inlet vaper weight flow in

terms involving the vapor velocity is:

= Vgo (3600) pg Ao

W
g0




6

2
W = 2820 D v 1
g o g Vg (17)

and the heat flow is:
Q = HW (18)

From Egs. 15 through 18 the tube length can be expressed as:

HW

go

yeaT I 2§ I (2 -n) + n@ \\l - — + PP <l - = n>J

L = (19)

The sonic velocity in potassium vapor at 1500°R is about 1600 ft/sec,
so that Eq. 19 takes the following form:

574 D_°
L (20)

M=0.25 }?%%(2-n)+n%<l-%>+%ﬁﬁ(l-%n)

From Eq. 20 the tube lengths were calculated for the following three

cases.

Case 1 g 111
Po, psia 1.5 1.5 1.5
B 0.643 0,643 0.682
£, in. 0.700 0.700 1.100
B;, in. 0.250 0.250 0.350
D>, in. 0.600 0.600 1.000
Dy, in. 0.150 0.150 0.250
Yys in. 0.600 0 1.000
yy, in. 0.825 0.225 1.375
o 0.750 0.750 0.750
£ 0.96 1.00 0.90
n 0.0%31 0 0.067
Vg lb/hr 9.64 9.64 26.8
L,°ft 4.10 8.85 T.44

Cases I and II shuw the effect of fin height on tube length; Cases

II and III show the improvement in condensing capacity obtained by in-

creasing both inlet diameter and fin height for nearly the same tube

length.




Friction Pressure Drop

For condensation the ratio of liquid to wvapor flow rates is:

W W +W W. . -W + W
c €o

L _ £ _ T c
= = W"T"W; = oW (Ref. 2)
g €5 &,
However,
V_JE.__A_h_Z
W T A’
g, hL
and so,
W
Z 1
£ =1 (21)
wg 4 Ahz
X 1l - —
o\ Ay

The virtual gas mass velocity (i.e., the velocity of the gas phase flow-

G = ng <1 - ﬂﬁi (22)

g A1/

The average normalized heat transfer surface, AhZ/AhL’ is shown

ing alone) is:

=

plotted against the normalized tube length, k, in Fig. 2 for the three
cases. The individual curves for the three cases differ negligibly, so

5

that only a single relation is used in which the k” term is neglected.

The equation is:

Ahz 2

=2 - 1.11 k - 0.10 « (23)
Anr,

Substitution of Eq. 2% in Eq. 21 yields:

W
WL = [ L o, 11 (24)
g x (1= 1.11 « + 0.10 ) i
Since
2
A, = 3D, = EDOQ (1 - ax) (25)

the gas mass velocity divided by the inlet weight flow is:

G, L o
- [1 -1.11 k+ 0.10 «] (26)
W 2 2
D (1 - ax)
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Equations 24 and 26 are plotted in Fig. 3 for the three cases. The square
root of wﬂ/wg is given, as this quantity 1s more useful iIn subsequent cal-
culations. It is interesting that the vapor virtual mass velocities in-
crease during passage through the tube in all three cases before decreas-
ing to zero at the outlet.

The vapor phase virtual pressure gradient depends on the flow regime,
i.e., viscous or turbulent, and the regime will change during passage
through the tube. The pressure gradient is conventionally expressed in
terms of the Fanning friction factor:

/ G
) R s (27)
g

D, &e pg

The gradient is expressed here as a difference ratio rather than as a

derivative because experimental data are actually obtained as differences.

For turbulent flow the friction factor may be expressed as:E’D
N 0.2
&Rg
and for viscous flow:
16
ro= 5 (29)
Rg
Thus the turbulent vapor phase pressure gradient becomes:
G 2
N 0 0.092 g 1 (30)
&A;) ‘ - D, 8 P, g 0.2
g g Re
and the viscous vapor phase pressure gradient is:
2
G (51)
\Az gv D, &, pg NRg

The corresponding liquid virtual pressure gradient equations are
identical to Egs. 30 and 31 with substitution of the appropriate values
for the liquid in place of the vapor values. Thus the flow moduli for
the various combinations of flow regimes are obtained by substituting

these equations in Eq. 2. The results are shown below, where the double

subscripts refer to liquid and gas flow regimes in that order.
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0.5
W
X = K(—ﬁ (32)
vV LWgJ
where |
oK 0.5
K - [pg “ﬂi (%3)
-4 g-
0.5
W 0.4
) 2| L
X, = 18.71{[-@—' [N } (3k)
gl -"Rg
0.5
W
_ Mgl 0.k
Xy = 0'0552K3[.E‘i [NRﬁ] (35)
0.4
0.5 N
W R
_ 4] 4
Xtt = K|['W—gi !'.E} (56)

The Reynolds numbers for the vapor and liquid virtual flows are shown
in Fig. 4 vs tube position for the three cases. The transition from tur-
bulent to viscous flocw 1s, in fact, not clearly defined, and it extends
approximately over the range of Reynolds numbers from 1000 to 2000.l Thus,
clearly marked flow regimes exist only for vapcr and liquid Reynolds num-
bers lying above and below the transition range. It therefore becomes
necessary to assume that a given regime, initially well defined, continues
to exist until the Reynolds numbers change sufficlently to define another
regime clearly. On this basis Fig. 4 indicates that, for Cases I and ITI,
the viscous liquid-turbulent vapor regime exists for about 90 to 95% of
the tube length, whereupon the regime changes to turbulent liguid-viscous
vapor. In Case III the viscous liquid-turbulent vapor regime changes to
turbulent liquid-turbulent vapor at about 85 to 90% cf the tube length,
dropping to turbulent liquid-viscous vapor at some position beyond 95%
of the tube length. These conclusions are illustrated ir Fig. 5.

There is no way to determine theoretically how the actual, two-phase
flow will match the model, but the model does provide a logical basis for
analyzing experimental data in which the mismatch between model and real-

ity 1s implicitly taken account of in a Lockhart-Martinelli type of cor-

relation.
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The single-phase flow modulil corresponding to the regimes illus-
trated in Fig. 5 are plotted in Figs. 6 and 7 for inlet vapor qualities
of 1.0 and 0.8 respectively. The Xtv regime is omitted because the
pressure drop in the last few per cent of the tube is negligible.

The vapor phase virtual pressure gradients for the three cases are
plotted against tube position in Figs. 8 and 9 (lower curves). In all
cases the gradient rises rather steeply to a peak occurring about 80%
down the tube. This peak appears to be characteristic of condensing
flow in tapered tubes with high inlet vapor velocity. On passing the
peak the gradient falls rapidly and eventually passes into the viscous
vapor flow regine.

In order to calculate the actual, two-phase friction pressure drop,
an empirical correlation of ¢2 vs X 1s required. Such data for potas-
sium are not currently available, but the fair success of Baroczy and
Sanders2 in applying their nitrogen-mercury flow correlation to condens-
ing steam flow suggests that a similar application to condensing potas-
sium might not be too greatly in error, at least for preliminary design
considerations. The correlation is shown in Fig. 10. Using this cor-
relation, the calculated two-phase friction pressure drops for the three
cases are shown in Figs. 8 and 9 (upper curves). In Fig. 9 the transi-
tion from viscous liquid-turbulent vapor to both phases turbulent is
indicated by the cross-hatched areas. The corresponding transition for
Fig. 8 occurs about 95% down the tube where the gradient drops too rapid-
ly for the change in slope to be apparent. >

Momentum Pressure Recovery

Accompanying the condensing process is a change in momentum which
results in a pressure recovery, thus offsetting the friction drop to
2
some extent.

The momentum equation for an open system is as follows:6
n = —
Fo= =0, -7) (37)

where m is the mass flow through the system and the V’s are the exit

and entering velocities. In present nomenclature the equation becomes:
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F = (-v_) (38)

since the ligquid velocity is negligible compared to the vapor. To ob-
tain the pressure recovery, divide both sides by the cross-sectional

area:
2

AP = e V= = (39)

Since one cannot assume that the liguid entrainment in entering vapors
of low guality will necessarily flow at the same high velocity as the
vapor, a more conservative approach is to neglect the entrainment momen-
tum entirely by letting Xo = 1. The calculated pressure recovery will
then be low.2

The momentum pressure gradient is obtained by differentiating Eq.

390 expressed in general terms:

d 1d(w\2127 1d(G2
Fen - 25 &) - s8] (o)
2G /d G_ ., G 2 d p N
G - (S0 ()
g

A = A
Z o]
W o= W_ (1 -«)
gO
and W
W %
dz L
'wg2 [ d p
a _ o 2,1 g>"|
dz (Asz) - A 2 (1 - x) I L * P (1 -«) < dz /l (42)
o & Pg g -

It is not apparent that the variation in pg with z can be neglected




21

since the condensing pressure drop is a significant fraction of the inlet

pressure. If it is neglected, however,

2
a " e wgo -2 AR
iz (&P ) = ————— (1 -«) = —— {1 -«x) (43)
A g p_ L
o ®c g

. R . 2 . ,
which is the Baroczy and Sanders equation. On integraticn from O to «,

this equation yields:

mz

APmL

= x (2 - «) (4k)

If one supposes that pg varies linearly with z, Eq. 42 can be inte-

grated by parts. Let

Py = Pgo (1= wx)
a B /l-K wK(l-K)W
5 (a2 ) 2\ w‘> [2 g (45)
and

AP

mz 2 e L ]

= - = (1 - wk)+ = (K + = 4o (1 - wx)

APmL w W W J

1
€l

p 1 1
- -F!i(l - (JOK) - m -2 4n (l - UJK);
S T n (1 - wk)
22 "Ik |
1| : - 1
- =1(3-2wk) fn (1L - wk) -2 (1 ~ wk) + 2] (46)
A ]

If the pressure drop across the tube (and hence the change in vapor dens-
ity) does not exceed about 50% ot the inlet pressure, the difference in

the normalized pressure recovery from that calculated with constant dens-
ity at inlet conditions is almost negligible. The twc values are plotted

against Kk in Fig. 11. Consequently, the density derivative term in Eq.
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42 is dropped for the calculations of Cases I and III. Although the dens-
ity derivative 1s not negligible for Case II, the total pressure drop is
well over half of the inlet pressure, and the entire two-phase correlation
is of questionable application. For this reason, the condensing pressure
drops are calculated for only Cases I and III.

The pressure recovery at z is, of course, the difference hetween

that on total condensation and that remaining as the vapor stream momentum:

/ g 7z,
Asz = APmL - <;_§__—_——i> (47)
A, 8, P

From Egqs. 22, 23, and 25 the normalized pressure recovery becomes:

2
APz [1 ~1.11 « + 0.10 7] (48)
AP - B 1-0.7T5«

for the cases considered.
Equations L4 and 48 are plotted vs X in Fig. 12. Iz the tapered
tubes considered, it is apparent that the rate of momentum recovery is

considerably distorted from that of a cylindrical tube.

Over-All Condensing Pressure Drop

The over-all, or net, pressure drop during condensing flow AP ) is
the difference between the two-phase friction drov (ALTP) and the momen-
tum recovery (APm). Al]l three of these quantities are plotted vs k in
Pig. 13 for Cases I and III. The two cases are nearly indistinguishable,

so that one set of curves suffices for both.

Parallel Flow Stability

Since a space radiator of any practical size must contain many ta-
pered tubes in parallel, it is conceivable that unstable conditicns might
exist whereby the flow through one tube (or group of tubes ) could be
blocked by the higher flow in others brought about by random flow per-
turbations.

Since the condensing pressure drop, APC, is a difference between

the friction drop, AP plus entrance and exit losses), and the momen-

TP (
tum pressure recovery, APm, instability will arise whenever the rate of
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change of APC with respect to inlet mass flow, dAPc/dng, is negative.
A "metastable" condition could arise even when the rate of change is
positive if APm exceeds APTP, resulting in a higher condensate manifold
pressure than inlet manifold pressure. However, large flow perturba-
tions would be required to bring about instability in this case.

An analysis of this instability problem has been undertaken by
7

Kunz, Ornstein, Wyde, and Hooper for condensing flow in cylindrical
tubes at constant heat flux. In order to render the mathematics more
tractable they assumed that the friction pressure drop was always equal
to the product of the vapor pressure gradient at the inlet, (AP/Az)g,
and the condensation length, A. This assumption could produce signif-
icant error, as they have pointed out. However, their further analysis
indicates that the assumption probably does not introduce serious error,
insofar as cylindrical tubes are concerned. The final proof, of course,
will be that obtained experimentally.

In the case of condensing flow in tapered tubes one would not ex-
pect the friction pressure drop necessarily to be equal to (AP/Az)g A
in view of the wide range of the friction pressure gradient along the
tube (see Figs. 8 and 9). Without this assumption, however, there is
no simple way to extend the analysis in general terms, and comparison
is made only by examination of specific examples. To do this the gen-
eral equations for heat transfer surface, ratio of liquid-to-vapor flow,
Reynolds numbers, single-phase flow moduli, pressure gradient, etc.,
previously expressed in terms of the normalized tube length, & , must be
restated in terms of a new parameter, ¥, which is the inlet vapor flow
normalized with respect to design inlet vapor flow, (wgo/wgo)’ since
the tube dimensions are now fixed.

Choosing initial, or design, conditions (P, Tc’ Wgo’ Q/A) for con-
densation over the entire tube length, L, the reduced inlet flow at the

same Q/A and P establishes the following conditions:
Yo o, L tm
wgo AhL

From Eq. 21:
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From Eq. 22:
% _ }_.(l _pe
Wg AZ A-h>\
@]
G -
£ = 4 (1_- = (1.11 « - G.10 KE)1
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&, J’(DO (L - o)™ - ’

For specific comparison, the tube design and initial conditions

(21-A)

(23-A)

(24-4)

(26-A)

of

Case 1 were chosen and a lot of G W ves K for different ratios of
’ g g
& s}

reduced flow (with design value of Q/AhX = 5060 Btu/hr°ft” external

sur-

face) is shown in Fig. 1. Along with the plot 1s a curve showing the

normalized condensing length (the value of k ) corresponding to the re-

duced flow ratic, ¥. Por cylindrical tubes, where Q/L is constant, the

reduced flow ratio equals the normalized condensing lengili, as shown
the dotted line. he deviation of the solid curve from the dotted 1

shows the effect of the tube taper.

by

ine

Simiiarly, the liquid-to-vapor weight flow ratios for inlet vapocr

qualities of 1.0 and 0.8 at different reduced flows are shown in Fig
15 vs k. Figures 1k and 15 are analogous to Fig. 3.

The single-phase vapor and liguid Reynolas numbers are shcwn 1in
Fig. 16 as functions of x and ¥. The vapor Reynolds rumbers are con
t inuous functions of x for each value of ¥, drcpping to zero when k

equals the normalized condensation length, A/L. The liquid Reynolds
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numbers, however, lie in a continuous, single curve over the condensation
length (for any given vapor inlet quality, xo), breaking away from that
curve for values of k greater than A/L, for in this region the tube is
flowing full of liguid. Figure 16 is analogous to Fig. k.

The only flow modulus that need be considered for reduced inlet
flow is the viscous-liquid, turbulent-vapor flow, th, it is shown in
Fig. 17 as a function of «k, ¥, and X, corresponding to the th regime
of Figs. 6 and 7.

From Eg. 30 the values of (AP/Az)g were calculated vs k for selected
values of ¥, over the range cf k up %o the point where NRg dropped down
to 1000, or slightly short of where K = A/L.. Using the Lockhart-Martinelll
correlation shown in Fig. 10, the two-phase pressure gradient was esti-
mated over the same range of x and the twc-phase pressure drop, APTP,
obtained by summation. The all-liguid pressure drop in that part of the
tube beyond condeasation is negligible.

The momentum pressure recovery was calculated directly froem Eq. 39,

recognizing that the inlet vapor weight flcw depends on ¥

2
- W

= (39-2)
A

X
o o & pgo

The difference between APTP and APm is shown as APC irn Fig. 18 as
a function of ¥ for inlet vapor qualities of X, = 1.0 aad X, = 0.8.
The curve for X, = 0.8 1is rather extreme in that the velocity of the
entering entrainment was assumed to be equal to the vapor velocity. The
true curve lies much closer to that shown for X, = 1.0. It is immedi-
ately apparent that there are twe values of ialet vapor ficw (less than
the chosen design flow) at whick the condensing pressure drop is zero.
The first value is obviously zero flow, and the second value occurs at
about 75 and 90% of the design inlet vapor flow for inlet vapcor quali-
ties of 1.0 and 0.8 respectively. In their stability analysis, Kuaz,
et al., used this flow (where APTP = APm) as the datum for determining
the relative flow at which the condensing pressure drcp is minimum, and

at this latter flow there is a net pressure increase from inlet to out-

let of the tube. For cylindrical tubes this minimum oczurs at a flow
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between 62 and 66% of that at which the net drop is zero (the datum
flow) for an inlet vapor quality of 1.0.8 As may be estimated from
Fig. 18, the corresponding minima for the Case I tapered tube are at

about 70 to 75% of the datum flow, or 50 and 70% of design flow for

|
inlet vapor qualities of 1.0 and 0.8 respectively. Also, for cylindri-
cal tubes the momentum pressure recovery is 1.4 times the frictional
Pressure drop at the minimum, whereas the value applicable to Fig. 18
(xo = 1.0) is 1.5. The difference is probably not significant. The
corresponding ratio for the case where X, = 0.8 is unrealistically
high (%.0) because of the assumption that the entering liquid entrain-
ment velocity equaled that of the wvapor.

It 1s not possible to draw general comparisons quantitatively be-
tween condensing flow in cylindrical tubes and that in tapered tubes
without having plotted curves such as Fig. 18 for a fairly wide varie-
ty of design conditions. However, it does appear that the pressure
drop minima occur at higher relative flows in tapered tubes than in
cylindrical ones for the same heat fluxes and condensing pressures.

In the curves of Fig. 18, the extremely steep slopes between

¥ = 0.8 and 1.0 indicate extreme stability in this operating region
because a small drop in flow brings about a steep pressure rise, tend-
ing to hold the flow steady. On the other hand, operation at ¥ values
less than about 0.7 could lead to instability. This unstable region
can be reached, however, only by setting the operating point of the
ccndenser at this value of y. As long as the condenser operating point

exceeds a ¥ value of 0.8 the condensate manifold pressure will always

be lower than the inlet pressure, and back flow cannot occur, except
perhaps momentarily during severe transients. For a properly designed
space radiator-condenser, instability cannot occur from operation at
fractional power because the condensing temperature must necessarily
drop below the full-power value essentially as Stefan’s law. Although
the drop may be small the reduction in condensing pressure is large
for liquid metals with the result that pg drops rapidly and APTP rises
accordingly. Thus, power changes slow enough to allow the heat flux

to keep close to the steady-state value cannot bring about instability.
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In conclusion, it appears that instability can be encountered only
by operating the system with too low an effective L/D of the condenser
tubes for the existing condensing conditions and working fluid.9 This
situation can in fact arise in only two ways in a Rankine space power
system: (1) through the introduction of excess liquid inventory at
reduced power, and (2) by the design of the radiator-condenser for

insufficient APC at design power in the first place.
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cross-sectional flow area, ft
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| heat transfer area, ft2

‘ tube inside diameter, ft

| tube outside diameter, ft

force due to momentum change, 1bf

mass velocity, lbm/hr-ft2

latent heat of vaporization, Btu/lbm
Lockhart~Martinelli flow modulus coefficient
tube length, ft

Mach number

Reynolds number

pressure, lbf/ft2

heat flow, Btu/hr

temperature, °R

velocity, ft/hr

weight flow (design conditions), lbm/hr

=] fu
g 2o O 52 - 0@ @1‘?5 )

reduced weight flow, lbm/hr
Lockhart-Martinelli flow modulus
fin thickness, ft

Fanning friction factor

mass-force conversion coefficient, 4.18 X 108 lbm-ft/lbf.hr2

(e

gas film heat transfer coefficient, Btu/hr-ft2-°F

oo Mm@ M T

equivalent heat transfer ccefficient at radiating surface,
Btu/hr - £t°.°F

thermal conductivity, Btu/hr-ft2-°F/ft

-
by
¢

0

fin span, ft
velocity, ft/sec

<

vapor quality
fin height, ft

< ®

zZ distance along tube from inlet, ft
- 2
Stefan~Boltzmann constant, 0.171 X 10 8 Btu/hr-ft -TL'L

internal tube reduction ratio, (DO - DL)/DO

external tube reduction ratio, (ﬁg - ﬁi)/d%

o
a
B
Y

view factor
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emissivity

density reduction ratio, (pO - pL)/pO

fin efficiency

normalized tube length, z/L

normalized reduced inlet weight flow, w O/W
density, lbm/ft5 ®
viscosity, lbm/ft hr

go

condensation length, ft
Lockhart-Martinelli two-phase flow modulus

fin efficiency ratio, (go - §L)/§O

Subscripts

e} 8 = M  nm 5 O

& g

»

inlet

heat transfer
variable, function of =z
outlet

gas phase
liguid phase
momentum
radiation

two phase
condensing
viscous
turbulent
function of A

external
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Notes

Physical Properties of Potassium at 1500°R

H = 887 Btu/lbm

1 = 0.0418 1bm/ft-hr
V -

o, ~ 3.6 x 107 lbm/ft°
e, = Lk 1bm/ft0

My, = 0.399 lbm/ft-hr
sat = 1.5 psia

Copper

Conductivity of copper 200 Btu/hr'ft2-°F/ft
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