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Abstract

On the assumption that a Lockhart-Martinelli type of correlation is

a.pplicable, an analytical approach to the interpretation of pressure drop

data on condensing flow in tapered tubes is developed with particular

reference to the condensation of potassium in a radiant condenser of a

type that may be attractive for space power plants. It appears that in

stability can be encountered in such condensers only through the intro

duction of excess liquid inventory at reduced power or by design of the

condenser for insufficient pressure drop at design power.





Condensing Flow in Finned, Tapered Tubes

The purpose of this study is the development of an analytical ap

proach to the interpretation of experimental data on the two-phase pres

sure drop characteristic of condensing flow in the tapered tubes of a

radiant condenser. The study is particularly concerned with the behav

ior of condensing potassium at rather low pressure (1.5 psia), and it

assumes that a Lockhart-Martinelli type of correlation is applicable —

an assumption that must be established experimentally.

The Lockhart-Martinelli''" correlation of two--phase, two-component

flow utilizes the ratio of the actual pressure gradient to the pressure

gradient of the gas phase flowing alone (virtual gas pressure gradient)

as an empirically determined function of a two-phase flow modulus which,

in turn, is a function of the virtual liquid and gas pressure gradient

ratios. The mathematical form is as follows:

Az/

vsvs
and

f = f (X) (3)
Since (AP/Az) can be calculated from the Fanning friction factor for the

pertinent flow conditions, the actual, two-phase pressure drop can be de-
2

termined from an empirical correlation of 0 with X.

This treatment has been applied to condensing mercury flow in cylin-
2

drical. tubes by Baroczy and Sanders by means of an empirical correlation
2

of 0 vs X for noncondensing flow of mercury and nitrogen. An improve

ment was obtained in the correlation by including the gas phase turbulent
2

Reynolds number as an empirical variable. In other words, 0 is a func

tion of both X and N_ :
Rg



f = f(X ,NR ) (4)
g

The present study is an extension of the Baroczy and Sanders treat

ment to the condensing flow of potassium in finned, tapered tubes that

appear to be attractive for heat sinks in satellite power plants.

Basic Conditions

Throughout the study it is assumed that the physical properties of

both liquid and vapor remain constant, except for the vapor density. It

is further assumed that the temperature of the radiative surface is con

stant over the condensing portion of the tube, which is not strictly true

as the tube surface is necessarily hotter than the tips of the fins. How

ever, the fin efficiency is factored into the equations via a reduction

in the value of the actual external surface to an "effective" heat trans

fer surface at which the heat flux is considered constant.

The temperature drop from the condensing vapor to the radiating

surface is considered negligible, except as it is factored into the fin

efficiency term.

Geometrical Considerations

Since the volume reduction on condensation is several orders of

magnitude, a saving in structural weight can be obtained by the use of

tapered condenser tubes, and a prime consideration is the maximum ac

ceptable vapor entrance velocity. If the vapor is of fairxy high quali

ty, the entrance losses at a properly faired tee connecting the tube to

the manifold are very small for velocities as high as Mach 0.25; an& "the

total condensing pressure drop through the tube will be in the neighbor

hood of 20$> of the inlet pressure for good design. Increasing the en

trance Mach number significantly beyond 0.25 results in a very rapid rise

in condensing pressure drop and consequent extreme decrease of absolute

pressure on the liquid leaving the condenser. For this reason, the en

trance velocity was fixed at Mach 0.25 for the cases considered.

The inlet diameter is fixed by the condensing pressure, the entrance

Mach number, and the weight flow desired. For a known radiative heat

flux, coolant flow, and condensing pressure the tube length is fixed for

a given fin size, and the entire tube geometry is thus determined.



Three cases for condensing potassium at 1500°R (1.5 psia) are con

sidered in this study, in which fin height and tube diameter are the in

dependently varied parameters. For liquid exit velocities of the order

of 1 ft/sec a diameter reduction factor, D /DT, of h was chosen. Since

the tube length is determined by heat transfer considerations, the tube

taper differs in each case.

As shown in Fig. 1, the tube wall was arbitrarily fixed at 0.050 in.

and the fin thickness at 0.010 in. No attempt has been made to optimize

either the tube wall or fin thickness.

Heat Transfer and Tube Length

For a space temperature approaching zero, the radiative heat flux

is:

f- = ye0- Tr4 (5)
h

where y represents the view factor. The view factor depends, of course,

on the tube diameter and spacing. However, it normally will lie between

values of 0.8 and 0.9 for the model shown in Fig. I.
4

The fin efficiency for rectangular fins is:

I = *-^2_ (6)

kb

For radiative heat transfer a fictitious coefficient is determined from

the heat flux and fin absolute temperature:

-e - A T u;
h r

If a copper fin thinly clad with, say, oxidized aluminum bronze is

used, the efficiency becomes:

tanh 6-9iy
6.9iy

(8)

for a view factor of 0.8, an emissivity of 0.86, and a radiating temper

ature of 1500°R.
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Fie. 1. Model Used for Heat Transfer and Fluid Flow Calculations.



For any given entrance fin height, y , the reduction in fin effi

ciency that occurs as y increases along the length of the tube to y can

be considered linear. The efficiency at any point z therefore becomes:

gz = iQ (1 -T)<) (9)

The tube outside diameter also varies linearly with z and can be expressed

as :

9z = Qo (1 -p <) do)

The fin span, s, is constant and equal to (& + 2 y ). From Fig. 1 the

differential effective heat transfer surface is:

dAhz = [2 (s - 6>%) tz + JtDz] dz (11)

Substituting E^s. 9 and- 10 into Eq. 11 yields:

dA,

or

dA

hz 2g (1 - tik) [s - 9 (1 - pic)] + roP (l - pic) (12)
dz o ' o o

hZ [ht,Y + *£J + [26 fip - U£ y n - «PB]K - [26 £r|p] K2dz o o o o o o o' or o o - (vO

=L[(46rtyrt +*£)* +fi^P -2|̂ n -|^p) K2 -| I^tiPk5]A^ = L I (46. y + jt£ )< + 6 B p - 2| y tj - 3 V3 K "7 s,A
liz | o o o V ° ° o o 2 o / * 300

since

dz = L d<

The heat radiated by the entire tube is related to the heat transfer sur

face through Eq. 5-

QT = r eo- Tk AhL (15)
and A, T is the value of A, when < = 1:A^ is the value of A,

L[26 v (2 - t,) +«0 (l - |) +^JB (1 - I n)! (16)AhL = L\2^o C2 - tj; + «^o ^1 - |j +^060P {1 3

The minimum tube length is determined by the limiting inlet vapor velocity

for a given fluid and condensing pressure. The inlet vapor weight flow in

terms involving the vapor velocity is:

W = v (36OO) p A
go go *g o



W = 2820 D p v

and the heat flow is:

Q = H W

From Eqs. 15 through l8 the tube length can be expressed as:

H W

go
L = -

ft; + «& (1 - %) +yeaT* I2^ (2 -t, )+*$o (^1 -*) +9^ [± - fryj

(17)

(18)

(19)

The sonic velocity in potassium vapor at 1500°R' is about 1600 ft/sec,

so that Eq. 19 takes the following form:

2

M=0

^Do

•25 " [26oyo (2-r,) +«Po(kl-|)+^oft0p^-f ^
(20)

From Eq. 20 the tube lengths were calculated for the following three

cases:

Case

Po, psi

P

^' in.

?L' in.

D , in.

T^O

\> in.

V
in.

yL> in.

a

6
0

i1

00
, lb

L, ft

II III

1.5 1.5 1-5
0.643 0,643 0.682

0.700 0.700 1.100

0.250 0.250 0.350
0.600 0.600 1.000

0.150 0.150 0.250

0.600 0 1.000

0.825 0.225 1-375
0.750 0.750 0.750
O.96 1.00 0.90

0.031 0 0.067
9.64 9.64 26.8

4.10 8.85 7-44

Cases I and II shuw the effect of fin height on tube length; Cases

II and III show the improvement in condensing capacity obtained by in

creasing both inlet diameter and fin height for nearly the same tube

length.



Friction Pressure Drop

For cor densation the ratio of 1 iquid to vapor

Wi Wi + w
c T So c

W
g

W

go
- W

c
W - W

go C

However,

W
c

W

go

=

and so,

W
g

1
i

X

r
, i

_\z\

(Ref. 2)

(21)

The virtual gas mass velocity (i.e., the velocity of the gas phase flow

ing alone) is:
A

The average normalized heat transfer surface, A. /i , is shown

plotted against the normalized tube length, k, in Fig. 2 for the three

cases. The individual curves for the three cases differ negligibly, so

that only a sing

The equation is:

3
that only a single relation is used in which the < term is neglected.

A. ?
7=2. = i.ii K_ 0.10 k (23)

Substitution of Eq. 23 in Eq. 21 yields:

W.
k _ r.
Wg l-X (1 - 1.11 K+ 0.10 K2)

(24)

Since

the gas mass velocity divided by the inlet weight flow is:

n

S2- = g—^ g[1 "1'11 K+0-1° <2] (26)
g jt D (l - Ok)
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Equations 24 and 26 are plotted in Fig. 3 for the three cases. The square

root of W ./W is given, as this quantity is more useful in subsequent cal-
x, g

culations. It is interesting that the vapor virtual mass velocities in

crease during passage through the tube in all three cases before decreas

ing to zero at the outlet.

The vapor phase virtual pressure gradient depends on the flow regime,

i.e., viscous or turbulent, and the regime will change during passage

through the tube. The pressure gradient is conventionally expressed in

terms of the Fanning friction factor:

C 2
(&) = 2-Z—-&- (27)
H Dz gc Pg

The gradient is expressed here as a difference ratio rather than as a

derivative because experimental data are actually obtained as differences.

2 5
For turbulent flow the friction factor may be expressed as:

f - ^ (28)
N
Rg

and for viscous flow:

f = ii-

Thus the turbulent vapor phase pressure gradient becomes;

c 2f£P\ = 0.092 g 1
{AzJ , D g p ,T 0.2\ /gt z&c Hg NRg

and the viscous vapor phase pressure gradient is:

2
32 G

e^AP
\&z.J D g 'p ND
v /gv z Dc g Rg

(29)

(30)

(31)

The corresponding liquid virtual pressure gradient equations are

identical to Eqs. 30 and 31 with substitution of the appropriate values

for the liquid in place of the vapor values. Thus the flow moduli for

the various combinations of flow regimes are obtained by substituting

these equations in Eq. 2. The results are shown below, where the double

subscripts refer to liquid and gas flow regimes in that order.
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where

11

X
vv

w\-i

K
i w

0.5

0.5

K =

X
vt

18.7 K !ii°'5r
W

g-1 -%

0.4

0.5

X
tv

= 0.0532 K
,0.4

[n :

0.4

X
tt

K
£\

0.5 K
R

I Nv'- Rg

(32)

(33)

(34)

(35)

(36)

The Reynolds numbers for the vapor and liquid virtual flows are shown

in Fig. 4 vs tube position for the three cases. The transition from tur

bulent to viscous flow is, in fact, not clearly defined, and it extends

approximately over the range of Reynolds numbers from 1000 to 2000. Thus,

clearly marked flow regimes exist only for vapor and liquid Reynolds num

bers lying above and below the transition range. It therefore becomes

necessary to assume that a given regime, initially well defined, continues

to exist until the Reynolds numbers change sufficiently to define another

regime clearly. On this basis Fig. 4 indicates that, for Cases I and II,

the viscous liquid-turbulent vapor regime exists for about 90 to 95% of

the tube length, whereupon the regime changes to turbulent liquid-viscous

vapor. In Case III the viscous liquid-turbulent vapor regime changes to

turbulent liquid-turbulent vapor at about 85 to 90% of the tube length,

dropping to turbulent liquid-viscous vapor at some position beyond 95%

of the tube length. These conclusions are illustrated in Fig. 5.

There is no way to determine theoretically how the actual, two-phase

flow will match the model, but the model does provide a logical, basis for

analyzing experimental data in which the mismatch between model and real

ity is implicitly taken account of in a Lockhart-Martinelli type of cor

relation.
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Fig. <4. Vapor and Liquid Reynolds Numbers vs Tube Position for Con
densing Potassium in Finned, Tapered Tubes at 1500°R (1040°F).
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Fig. 5. Distribution of Flow Regimes in the Condensing Tube Based
on Single Component Flow.
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The single-phase flow moduli corresponding to the regimes illus

trated in Fig. 5 are plotted in Figs. 6 and 7 for inlet vapor qualities

of 1.0 and 0.8 respectively. The X regime is omitted because the

pressure drop in the last few per cent of the tube is negligible.

The vapor phase virtual pressure gradients for the three cases are

plotted against tube position in Figs. 8 and 9 (lower curves). In all

cases the gradient rises rather steeply to a peak occurring about 80%

down the tube. This peak appears to be characteristic of condensing

flow in tapered tubes with high inlet vapor velocity. On passing the

peak the gradient falls rapidly and eventually passes into the viscous

vapor flow regime.

In order to calculate the actual, two-phase friction pressure drop,
2

an empirical correlation of 0 vs X is required. Such data for potas

sium are not currently available, but the fair success of Baroczy and
2

Sanders in applying their nitrogen-mercury flow correlation to condens

ing steam flow suggests that a similar application to condensing potas

sium might not be too greatly in error, at least for preliminary design

considerations. The correlation is shuwn in Fig. 10. Using this cor

relation, the calculated two-phase friction pressure drops for the three

cases are shown in Figs. 8 and 9 (upper curves). In Fig. 9 "the transi

tion from viscous liquid-turbulent vapor to both phases turbulent is

indicated by the cross-hatched areas. The corresponding transition for

Fig. 8 occurs about 95% down the tube where the gradient drops too rapid

ly for the change in slope to be apparent.

Momentum Pressure Recovery

Accompanying the condensing process is a change in momentum which

results in a pressure recovery, thus offsetting the friction drop to

some extent.

The momentum equation for an open system is as follows:

F = r (Ve - V (37)
where m is the mass flow through the system and the V;s are the exit

and entering velocities. In present nomenclature the equation becomes:
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W

F = 2_ (_ v )
xo sc go

(38)

since the liquid velocity is negligible compared to the vapor. To ob

tain the pressure recovery, divide both sides by the cross-sectional

area: „

AP
mL

W

A x „
o o c o

V

W

A x g p
O O &C K£

(39)

Since one cannot assume that the liquid entrainment in entering vapors

of low quality will necessarily flow at the same high velocity as the

vapor, a more conservative approach is to neglect the entrainment momen

tum entirely by letting x = 1. The calculated pressure recovery will
2 °

then be low.

The momentum pressure gradient is obtained by differentiating Eq.

39 expressed in general terms:

•L (ap )= ±- <L Ifjt) (l_fn
dz v mz' g dz \\p J \kJ

-2G /d G1_ (Ap ) = I_I ( g_\ ._£
dz x mz 1p V dz J 2 \ dz

'- g v 7 P

G

1 d
-G

gc dz j_pr

d p ,
g

In cylindrical tubes with uniform condensation rate,

and

2- (AP ) =
dz mz

A = A
z o

W = W (l -k)
So

dW

dz

2

W

W

(i-O ifri+^d-(1 - k)
A g p
o Bc *g

dz

It is not apparent that the variation in p with z can be neglected

(h0)

(M)

(h2)
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since the condensing pressure drop is a significant fraction of the inlet

pressure. If it is neglected, however,

J~(AP )
dz mz

2 W

(1 - <) =
A g p L
o °c "g

2 AP
mL

(1 - O (^3)

which is the Baroczy and Sanders equation. On integration from 0 to tc,

this equation yields:

z^P
mz

AP T " K
mL

(2 - k) (H)

If one supposes that p varies linearly with z, Eq. 42 can be inte-

grated by parts. Let

p = p (l - to <)
g go '

and

die mz'
= AP

1

mL Vl - wk
\o _ "K U ~ Ol

1 - W K (^5)

AP
mz

AP
mL

2 2-in (l - cok) + -
to v ' CO

k + - in (1
CO v

cok)

-if
CO j 1 - COK

+ in (l - cok)

U(l2 l(i " wk) " rr-^ 2 in (l - cok)
CO

jc_ [~(£k __
2 [ 2 1

CO '-

u

COK
+ 2 in (l - cok)

. (3 - 2cok) in (1 - cok) - 2 (l - cok) + 2j (1+6)
CO •- J

If the pressure drop across the tube (and hence the change in vapor dens

ity) does not exceed about 30$ of the inlet pressure, the difference in

the normalized pressure recovery from that calculated with constant dens

ity at inlet conditions is almost negligible. The two values are plotted

against k in Fig. 11. Consequently, the density derivative term in Eq.
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42 is dropped for the calculations of Cases I and III. Although the dens

ity derivative is not negligible for Case II, the total pressure drop is

well over half of the inlet pressure, and the entire two-phase correlation

is of questionable application. For this reason, the condensing pressure

drops are calculated for only Cases I~and III.

The pressure recovery at z is, of course, the difference between

that on total condensation and that remaining as the vapor stream momentum:

-W 2

AP = AP _-f—= - ) (47)
mz mL V . 2 /

A g p /
z c gz

From Eqs. 22, 23, and 2? the normalized pressure recovery becomes:

2
AP

mZ = 1 -
AP _

mL

1.11 K + 0.10 K2"
0-75 k

for the cases considered.

Equations 44 and 48 are plotted vs < in Fig. 12. In the tapered

tubes considered, it is apparent that the rate of momentum recovery is

considerably distorted from that of a cylindrical tube.

Over-All Condensing Pressure Drop

The over-all, or net, pressure drop during condensing flow (AP ) is

the difference between the two-phase friction drop (A?m_) and the momen

tum recovery (AP ). All three of these quantities are plotted vs k in

Fig. 13 for Cases I and III. The two cases are nearly indistinguishable,

so that one set of curves suffices for both.

Parallel Flow Stability

Since a space radiator of any practical size must contain many ta

pered tubes in parallel, it is conceivable that unstable conditions might

exist whereby the flow through one tube (or group of tubes) could be

blocked by the higher flow in others brought about by random flow per

turbations.

Since the condensing pressure drop, AP , is a difference between

the friction drop, AP (plus entrance and exit losses), and the momen

tum pressure recovery, AP , instability will arise whenever the rate of
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Fig. 13. Condensing Potassium in Finned, Tapered Tubes at 1500°R
(104-0°F). Cases I and III, x = 1.0.
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change of AP with respect to inlet mass flow, dAP /dw , is negative.

A "metastable" condition could arise even when the rate of change is

positive if AP exceeds APm_,, resulting in a higher condensate manifold
m TP & &

pressure than inlet manifold pressure. However, large flow perturba

tions would be required to bring about instability in this case.

An analysis of this instability problem has been undertaken by
7

Kunz, Ornstein, Wyde, and Hooper for condensing flow in cylindrical

tubes at constant heat flux. In order to render the mathematics more

tractable they assumed that the friction pressure drop was always equal

to the product of the vapor pressure gradient at the inlet, (AP/Az) ,

and the condensation length, A. This assumption could produce signif

icant error, as they have pointed out. However, their further analysis

indicates that the assumption probably does not introduce serious error,

insofar as cylindrical tubes are concerned. The final proof, of course,

will be that obtained experimentally.

In the case of condensing flow in tapered tubes one would not ex

pect the friction pressure drop necessarily to be equal to (AP/Az) A,

in view of the wide range of the friction pressure gradient along the

tube (see Figs. 8 and 9)- Without this assumption, however, there is

no simple way to extend the analysis in general terms, and comparison

is made only by examination of specific examples. To do this the gen

eral equations for heat transfer surface, ratio of liquid-to-vapor flow,

Reynolds numbers, single-phase flow moduli, pressure gradient, etc.,

previously expressed in terms of the normalized tube length, < , must be

restated in terms of a new parameter, \|r, which is the inlet vapor flow

normalized with respect to design inlet vapor flow, (w /W ), since

the tube dimensions are now fixed.

Choosing initial, or design, conditions (P, T , W , q/a) for con-
c go

densation over the entire tube length, L, the reduced inlet flow at the

same q/A and P establishes the following conditions:

g° i nA /„N
W = * = A~ (A)
go niL

From Eq. 21:



From Eq. 23:

From Eq. 22:
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x ( 1
o

hz\

^ =i(1.11 K- 0.10 K2)

1___ = r
UI l-r (i-ii < - °-10 <2)
oi t '

w

G

4

— = ±-(l-^
w A V A, ,

s- z nA-
Do

rtD 2 (1 -OK )2
o

i - 7 (1.11 K
I t

(21-A)

(23-A)

„ i (24-A)

(22-A)

,10 K2) (26-A)

For specific comparison, the tube design and initial conditions of

Case I were chosen, and a plot of G/w „ vs k for different ratios of
&~' - 2reduced flow (with design value of Q./\x = 5960 Btu/kr-ft- external sur

face) is shown in Fig. 14. Along with the plot is a curve showing the

normalized condensing length (the value of k) corresponding to the re

duced flow ratio, i- For cylindrical tubes, where Q/L is constant, the

reduced flow ratio equals the normalized condensing length, as shown by

the dotted line. The deviation of the solid curve from the dotted line

shows the effect of the tube taper.

Similarly, the liquid-to-vapor weight flow ratios for inlet vapor

qualities of 1.0 and 0.8 at different reduced flows are shown in Fig.

15 vs k. Figures 14 and 15 are analogous to Fig. 3.

The single-phase vapor and liquid Reynolds numbers are shewn in

Fig. 16 as functions of < and i. The vapor Reynolds numbers are con

tinuous functions of k for each value of i, dropping to zero when k

equals the normalized condensation length, A/L. The liquid Reynolds
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Fig. 14. Ratio of Vapor Mass Velocity to Vapor Inlet Weight Flow vs
Tube Position for Condensing Flow in Tapered Tubes at Constant Heat Flux.
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numbers, however, lie in a continuous, single curve over the condensation

length (for any given vapor inlet quality, x ), breaking away from that

curve for values of k greater than A/L, for in this region the tube is

flowing full of liquid. Figure 16 is analogous to Fig. k»
The only flow modulus that need be considered for reduced inlet

flow is the viscous-liquid, turbulent-vapor flow, X . It is shewn in

Fig. 17 as a function of k, ty, and x , corresponding to the X^t regime

of Figs. 6 and 7-

From Eq. 30 the values of (AP/Az) were calculated vs k for selected

values of t; over the range of k up to the point where N dropped down,

to 1000, or slightly short of where k = A/L. Using the Lockhart-Martinelli

correlation shown in Fig. 10, the two-phase pressure gradient was esti

mated over the same range of < and the two-phase pressure drop, A?Tp,

obtained by summation. The all-liquid pressure drop in that part of the

tube beyond condensation is negligible.

The momentum pressure recovery was calculated directly from Eq. 39,

recognizing that, the inlet vapor weight flew depends on \|;:

AP =
m

- w

go

„ 2
A x g

o o c
P

go

(39-A)

The difference between APmT. and AP is shown as A? in Fig. l8 as
iir m c

a function of t for inlet vapor qualities of x = 1.0 and xq = 0.8.
The curve for x =0.8 is rather extreme in that the velocity of the

o

entering entrainment was assumed to be equal to the vapor velocity. The

true curve lies much closer to that shown for x = 1..0. It is immedi

ately apparent that there are two values of inlet vapor flow (less than

the chosen design flow) at which the condensing pressure drop is zero.

The first value is obviously zero flow, and the second value occurs at

about 75 and 90/o of the design inlet vapor flow for inlet vapor quali

ties of 1.0 and 0.8 respectively. In their stability analysis, Kunz,

et al., used this flow (where AP = APffi) as the datum for determining
the relative flow at which the condensing pressure drop is minimum, and

at this latter flow there is a net pressure increase from inlet to out

let of the tube. For cylindrical tubes this minimum occurs at a flow
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between 62 and 66% of that at which the net drop is zero (the datum
o

flow) for an inlet vapor quality of 1.0. As may be estimated from

Fig. 18, the corresponding minima for the Case I tapered tube are at

about 70 to 1% of the datum flow, or 50 and 70% of design flow for

inlet vapor qualities of 1.0 and 0.8 respectively. Also, for cylindri

cal tubes the momentum pressure recovery is l.k times the frictional

pressure drop at the minimum, whereas the value applicable to Fig. l8

(x = 1.0) is 1.5. The difference is probably not significant. The

corresponding ratio for the case where x = 0.8 is unrealistically

high (3-0) because of the assumption that the entering liquid entrain

ment velocity equaled that of the vapor.

It is not possible to draw general comparisons quantitatively be

tween condensing flow in cylindrical tubes and that in tapered tubes

without having plotted curves such as Fig. 18 for a fairly wide varie

ty of design conditions. However, it does appear that the pressure

drop minima occur at higher relative flows in tapered tubes than in

cylindrical ones for the same heat fluxes and condensing pressures.

In the curves of Fig. 18, the extremely steep slopes between

ty = 0.8 and 1.0 indicate extreme stability in this operating region

because a small drop in flow brings about a steep pressure rise, tend

ing to hold the flow steady. On the other hand, operation at t values

less than about 0-7 could lead to instability. This unstable region

can be reached, however, only by setting the operating point of the

condenser at this value of f. As long as the condenser operating point

exceeds a \|r value of 0.8 the condensate manifold pressure will always

be lower than the inlet pressure, and back flow cannot occur, except

perhaps momentarily during severe transients. For a properly designed

space radiator-condenser, instability cannot occur from operation at

fractional power because the condensing temperature must necessarily

drop below the full-power value essentially as Stefan's law. Although

the drop may be small the reduction in condensing pressure is large

for liquid metals with the result that p drops rapidly and AP rises
& J- X

accordingly. Thus, power changes slow enough to allow the heat flux

to keep close to the steady-state value cannot bring about instability.
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In conclusion, it appears that instability can be encountered only

by operating the system with too low an effective L/D of the condenser
9

tubes for the existing condensing conditions and working fluid. This

situation can in fact arise in only two ways in a Rankine space power

system: (l) through the introduction of excess liquid inventory at

reduced power, and (2) by the design of the radiator-condenser for

insufficient AP at design power in the first place.





37

Table of Nomenclature

2
A cross-sectional flow area, ft

2
A, heat transfer area, ft
h '

D tube inside diameter, ft

fy' tube outside diameter, ft

F force due to momentum change, lbf

G mass velocity, lbm/hr-ft

H latent heat of vaporization, Btu/lbm

K Lockhart-Martinelli flow modulus coefficient

L tube length, ft

M Mach number

BL Reynolds number

2
P pressure, lbf/ft

Q heat flow, Btu/hr

T temperature, °R

V velocity, ft/hr

W weight flow (design conditions), lbm/hr

w reduced weight flow, lbm/hr

X Lockhart-Martinelli flow modulus

b fin thickness, ft

f Fanning friction factor

Jc

8 2
mass-force conversion coefficient, 4.18 X 10 lbm-ft/lbf.hr

o

h gas film heat transfer coefficient, Btu/hr-ft •°F

h equivalent heat transfer coefficient at radiating surface,

S Btu/hr-ft2-°F
o

k thermal conductivity, Btu/hr-ft •°F/ft

s fin span, ft

v velocity, ft/sec

x vapor quality

y fin height, ft

z distance along tube from inlet, ft

a Stefan-Boltzmann constant, 0.171 X 10" Btu/hr-ft -T

a internal tube reduction ratio, (D - Dt)/D
' v o w1 o

f3 external tube reduction ratio, {&^ - P^ )//Q
y view factor



e emissivity

CO

| fin efficiency

k normalized tube length, z/L

ij/ normalized reduced inlet weight flow, w /w
, go' go

p density, lbm/ft^

u viscosity, lbm/ft'hr

A condensation length, ft

0 Lockhart-Martinelli two-phase flow modulus

T) fin efficiency ratio, (| - £T )/|

Subscripts

0 inlet

h heat transfer

z variable, function of z

L outlet

g gas phase

1 liquid phase

m momentum

r radiation

TP two phase

c condensing

v viscous

t turbulent

A function of A

x external

38

density reduction ratio, (p - p.)/p
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Notes

Physical Properties of Potassium at lj?00°R

H = 887 Btu/lbm

u_ = 0.04l8 lbm/ft-hr

= 3.6 X10"5 lbm/ft5
v

P

p = kk lbm/fV
Xj

\i = 0.399 lbm/ft-hr
Ju

Psat = L5psia
Copper

Conductivity of copper 200 Btu/hr-ft2-°F/ft
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