OAK RIDGE NATIONAL LABORATORY
operated by

UNION CARBIDE CORPORATION
for the

. U.S. ATOMIC ENERGY COMMISSION

/

4

ORNL- TM~ 557 .~

/6

RESTRAINED THERMAL BOWING OF BEAMS
ACCOMPANIED BY CREEP - WITH APPLICATION
TO THE EXPERIMENTAL GAS-COOQOLED

- REACTOR FUEL ELEMENTS

J. M. Corum
W. A. Shaw

NOTICE

This documont contains information of a preliminary nature and was prepared
prlmorlly for internal use at the Oak Ridge National Laboratory. It is subject
to revision or correction and therefore does not represent a final report. The
information is not to be abstrocted, reprinted or otherwise given public dis-
semination without the approval of the ORNL patent branch, Legal and Infor-
mation Control Deportmem



LEGAL NOTICE

This report was prepared as on account of Government sponsored work. Neither the United States,

nor the Commission, nar any person acting on behalf of the Commission:

A. Mokes any warronty or representation, expressed or implied, with respect to the accuracy,
completeness, or usefulness of the information contained in this report, or that the use of
any information, apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of
any information, apparatus, method, or process disclosed in this report.

As used in the above, ‘‘person acting on behalf of the Commission’ includes any employee or

contractor of the Commission, or employee of such contractor, to the extent that such employee

or contractor of the Commission, or employee of such contractor prepares, disseminotes, or
provides access to, any information pursuant to his employment or contract with the Commission,

or his employment with such contractor,




CONTENTS

CINTRODUCTION + v+ o v b v v e v e e n s o e e s s
CUNOMENCLATURE . & « o « & v & o v v v e s e e e e v
THEORETICAL CONSIDERATIONS « « « « ¢ o o +'s o« v o o o &

APPLICATION TO THE EXPERIMENTAL GAS-COOLED REACTOR FUEL
ELEMENTS e 0 v v . s e . ’* s B e e s e e o..' . . 9

"CONCLUSIONS  + + o v v o v v v v n s vie a s o v e s s
APPENDIX A — RECTANGULAR AND SANDWICH-TYFE FUEL ELEMENTS .

APPENDIX B ~— EFFECT OF UNEQUAL PROPERTIES DUE TO WIDELY-
VARYING TEWERATURES R ] . ", . . LI } . . LI} ¢ a . . .

APPENDIX C — EXPERIMENTAL VERIFICATION . . . . . P
) REFERENCES [ n "' L N -. L I ) .‘y’ + .
' FIwRES * L] '. [ ] ‘. -0 ‘l L I 9 -0 L] L) L] L .I' Dll . o L] Q ] *

JUN 10 1963

. 4 '.E
IRV, RSN IS
(1]



k-

' ABSTRACT

An anélytical proccdure is formulated for predicting the lateral
deformation of a long slender beam when the material is subjected to
creep conditions. The beam has simply-suppofted;ends,‘is restrained at
the midpoint, and is loaded by & temperature differential wheréin the
temperature is a linear f@nction of the thickness:. The creep strains
- are predidted by employing a constant-stress creep law consisting of a
SeCOQdafy or steady creep term only. Both the restraining force at
the midpoint and the deflection profiles for the beam may be obtained
as functions of time using the anslytical method presented.

The analysis is applied to the Experimental Gas-Cooled Reactor
fuel elements for several mean temperatures and temperature differentials,
and, in every case, the limiting maximum deflection of a fuel rod is
e/5.13, where e is the meximum deflection without & restraint at the
midpoint. This is significant becausé) although an infinite time is
required for a rod to reach its maximum deflectioﬁ, this deflection will
be closely approached during the projected fuel element residence time

in the higher temperature regions of the reector.
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INTRODUCTION

’ Experimental and analytical studies have indicated that surface
temperature variations will exist around the circumference.of the rods
in the fuel elements of the Experimental Gas-Cooled Reactor (EGCR)

- being bullt by the Atomic Energy Commission at Oek Ridge, Tennessee.

'These~temperature'variations will cause the long cylindrical fuel rods
"‘tO'bow. In order to liﬁit the amount of deformation, spacefs are
”attached to the rods at the midpoints.

It is the purpose of this report to describe the theoretical
development and the application of an analytical model for predicting
_the high temperature behavior of a centrally restrained beam when the
material is subjected to creep conditions. The analysis makes use of a
constant-stress creep law consisting of a secondary or steady creep
term only. An iteration procedure is used to obtain both the decay of
the restraining force at the midpoint and the deflection profile of
the beam as a function of time. |

The procedure formulated is applied to the EGCR fuel rods to obtain
the decay of the restraining forces at the midpoints and to obtailn
deflection curves for the elements with the.paésage of timeo It is
tacitly assumed that the deflection of eaéh rod is dictated only by the
cladding Behavioro Mean temperatures of 1200, 1300, 1400, lSOO, and
1600°F are considered with teﬁperature differentials (linear with diameter)
of'25, 50, and"lOOQF for each. The results are presented graphically.

The theoretical considerations are developed in a general ménner
80 that the principles presented are applicable to a vafiety of different
situations. The equations necessary to prédict the high temperature
behavior of both rectangular and sandwich-type fgel elements are given
in Appendix A. ' _

In the analysis presented; use is made -of only one set of material
constants, these being the constants correspdnding to the mesn tempera-

ture of the element. Actually, since the temperature'Qgries across the ;‘
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element, the temperature dependent material constants will also very
. across the element? ‘A discussion of the errors introduced through the
use of éonstant material properties is given in Appendix B. The
equations derived there may be used to predict both creep and elastic
deflections of beams made of materials having unequal material properties
in tension and in compression.

Experiments were performed on Plexjglas beams at room temberature
to check the theoretical analygis. 4A doséription of the tests and the
results obtained therefrom are given in Appendix C. Comparison of the
experimental and theoretical results rngals that, at least quﬁlitéti#ely,
the Plexiglas experiments verify the mgthematical model.
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HOMGRCLATURE

Plate thickness of sandwich-type element
Cross=sectional area of & beam '

Width of rectangular or seandwich-type element _‘

Constants in creep law

Inside diameter of cylindrical fuel rod cladding

_ Outside diasmeter of cylindrical fuel rod cladding

h.'1Constant replacing EI in elastic beam equation when properties
" . in tension and compression are not equal

ﬁDeflection, at x = L/2, of initial stress-free thermally bowed

beam

. Modulus of elasticity

- Depth of & beam or element

Moment of inertia of'beam cross section

Characteristic of beam geometry and the appropriate creep
constants .

Constants in temperature function

Length ofva.beam ’

Distance from neutral axis to the outer fibers of a cross section
Bending moment at any point .along a beam

Concentrated force

.- Inside radius of cylindrical fuel rod cladding

Outside radius of cylindrical fuel rod cledding

d-Temperature Co
- Total lateral deflection of a beam measured from the x axis

Lateral deflection of a beem due to creep alone o

Lateral deflection of a beam due to elastic deformation alone
Initial deflection of a restrained beam messured from the X exis
Rectanguler coordinates - A |

Distence to a fiber measured from the neutral axis of a beam

~ cross section

Linear coefficient‘of thermal expansion
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Symbol denoting P/2I B -
Shearing strain components in rectangular coordinates
Unit elongations or strains in x, y, and z directions

Radius of curvatu;e of a deflected beam

-~ Normal component of stress

Time in hours
Subscript denoting compression
Subscript denoting terms of a series

Subscript denoting tension

L ¢



| THEORETICAL CONSIDERATIONS

In order to predict,the behavior of a lqng slenderxfuel rod which
is supported at the end'points, restrained at the midpoint, and subjected -
‘to a temperature differential linear across the thickness, one must have
expressions which describe the initial elastic behavior of the rod as
well as the subsequent creeﬁ behavior. Thus, the problem becomes one of
deriving the necessary equations and formulat;ng a procedure for their
use. In the following analysis the problem has been generalized to the
case of an arbitrary beam subjected to the above conditions.

Unless all parts of a body are allowed to expand freely, a non-'_' _
: ﬁniform temperature distribution in the body will cause thermal st:eseeﬁ.5
Consequently;, in the case of a beam which is unrestrained; eﬁtempE?aﬂure
difference between opposite sides will deform the elemehﬁQ ,Sﬁressee
mey or may not eﬁist, depending on the manner in which‘the‘temperature
is distributed across the-unifo It mey be’shown»thaf an unrestrained
body subjected tovavtemperature distribution linear in rectangular
space'coordinates‘will not possess thermal s‘t:ressesol:Il _ |

Consider a beam with the temperature linearly distributed across
its thickness. The_deformation,'that is, bowing, of the beam will be
the same regardless of whether the temperature is constant or linearly
.distributed along the length provided the difference across the element
is the same. For zero stresses and & temperature distribution.

T = Kx.+ Ky - , N | | (1)

Hooke's law gives
?x = ﬁy = EE =_°le +~°K2y

Yay = Yy © Tix_= ° -

(2)

lNumbers in brackets refer to references given at the end of this
report. ,
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The first term on the right.hand side of the first of Egs. (2) corre-

sponds to a uniform extension of the'beéﬁ with no rotation of the cross
sections. The second term implies rotation of the cross sections such
that plane sections remain plane as shown in Fig. 1. This rotation of
‘the cross secﬁions results in the bowing of the beam. When plane -
sections remain plane, the curvature of thé center line of thevbeam is,
from Fig. 2,' - . ‘

QEA; 0K2ydx

P Y

or

p QKE o . o o .(3)

~ -Since the curvature is constant‘ﬁith length, the configuration will be
an arc of a circle. If the temperature differential existing between
opposite sides of the beam is designated by AT, Eq. (1) yields

AT = [le + Ke(h/e)] - [le - ,Kg(_h/2-)]
'> 0r" | |

T2 TR

where h is the total thickness of the beem. Substituting Eq. (4) in
Eq. (3) gives ‘ :

Using elementary beam theory, this becomes

d"w . AT : .‘ ' : (6)
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iIntégrating and applying the boundary conditions
- 1) w=0atx =0 V

A 2) dw/dx = 0 at x = L/2

. yields '

w= 28 (e - x®) | | S

as the equation for the deflection of én unrestrained beam subjected to
a temperature differential linear across the thickhessu
Designating the maximum deflection, which occurs at x = L/2 as e,

the follow1ng expression is obtained from Eq. (7)
oATL? ' ' v . '
e = . o (8)

Using this expression, Eq. (6) can be rewritten as

d°w _  8e : s
SE=-= . | . | (?)

=

The preceeding equations completely'define the behavior of an
unresfrained beam subjected to a temperature difference linear across
the diameter. However; in the problem under consideration the'beam is
not unrestrained but has a restraining force applied at the midpoint.

' Suppose that some mode of restraint is now applied at the midpoint of
the initielly unrestraine&'defo:med bedm so that zero deflectiqn is
.obtained at that location. The elastic deflection as a function of..
length is again given by beam theory. Since the total deflection ié
the sum of the component from the temperature distribution; qu (71,

and the ‘component due to ‘the external force system, the total curvature,

4 w/dx is also a sum of the components. In this case,

2

oy
=

s a o o (10)

o
rol®

adk .
EI,

H

dx
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vhere the second term is teken from Eq. (9). Referring to Fig. 3, the
differential equation of the elastic curve with a concentrated load
epplied at the midpoint is ' ‘

dw P 8e’ R
—s ST X - &, x o L/2
dx2 .2EI :L2
- (11)
dw P 8e
—2='2—ET(L=X)-'_2 » XQL/E
dx L

Since thé system isAsyhmetricai about the midpoint, only the first of
Eqs. (11) need be considered.. Integrating and applyingithé boundary
conditions ‘ ' '
1) w=0atx=0
2) dw/dx = 0 at x = L/2
yields '

2 (x-1) , xelf2 . (1)

w=1;§Ex—I(hx2-3L2)-
18

The magnitude of the force, Po’ required to give zero defiection it
the midpoint is, from Eq. (12), o

P =——c¢e . : | >'. : o f(13’

Equafidn (12), with P_ substituted for P, represents the initial théxmal
bowing of a beam restrained at the midpoint; . provided the temperature
difference is suddenly epplied.’ '

At sufficiently high temperatures the stresses in the restrained
beam and consequently the force necessary to maintain zero deflection
at the midpoint will be decreased due to creep of the material. The
stress state of any arbitrary cross sectlon is such that the creep defor-

mation will bring about a change in the curvature of the beam. The



configaration and position of the center line of the beam after some
period of time will depend upon the integrated effect over the entire
length. ‘

In the analysis of beams; Bernoulli's hypothesis that plane sections
remain plane is assumed to hold at all times; its validity can be extended

'to pure bending under creep conditionso2 The hypothesis when applied to

& beam subject to creep implies that a transitional stress state is
required for a shift from the linear distribution which occurs when the
beam-1s first deflected (elastically) to some stable stress distribution

where the creep rate for a given fiber is proportional to its distance

lhfrom the neutral axis. Provided the temperature difference is suddenly

applied, the stress and straiq,distribution at the instant of appli-

‘cation are giveﬁ.by linear elastic theory. That is, sufficient time

has not elapsed to allow the material to creep. - This initial linear

stress distribution will give a nonlinesr creep strain distribution.

This can be illustrated as followss Consider a constant-stress creep

law of the form

€= (<) - - (1k)
which consists of a secondary or steady-creep tefm only. Here, é denotes
differentiation with respect to time, T ;, and B and n are the so-called

creep constants for a specified material at a given teinperature° For a

constant stress and s small time increment, AT, qu (14) gives

n _ . :
46 = (%) AT . , . : L (15)
From elastic beam theory, the initial stress distribution is

=My
=3
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where y denotes the distance from the neutral axis to the fibers under
consideration. Therefore, using Eq (15),
n |
4€==(§E» y &T .

Sinee At is nonlinear in y, plane sections will not remain plane due
to creep alone. .Inetead, as creep progresses, the cross sections will
deform to some curved line CD as shown in Fig. h. This violates '
Bernoulli's hypothesis regarding plane sections remaining plane. The
usual explanation is that the fibers also undergo elastic increments of
strain during this transitional stege so that plane sections remaln
plane 5 Thus a fiber at a distance y from the neutral axis must have
an elastic increment of stress to make the section plane. In analyzing
a beam this additional increment of stress requires an elastic adJustment
of the total stress state so that the internal resiating moment will
remain equal to the applied moment . ] _

Keeping the above considerations in mind and following the creep
behavior with time, several effects may be observed. The load carried by
the 1nitially highly stressed fibers is decreased while the lower
stressed inner.fibers take up more of the load. After a certain time
interval, the stresses reach a stable distribution and the creep rate of
any fiber becomes only a function of the distance from the neutral axis.
That is, the change in total strein, which has been hypothesized as
linear in y, is due to creep alone. At this stable condition, the stress
state i1s, in general, nonlinear as shown in Fig. 5.

The transitional stage; allowing all fibers to attain a minimum
creep rate, may be neglected if the time required is short relative to
the interval of the stable condition under scrutiny. Thie islusually done
in the literature without so stating (see Ref. 4), and good agreement
has been found between experimental date and solutions based on the stable
creep stress supposition. Consequently, the transitional stage is neg- A

lected in deriving the eQuation describing the oreep'deflection_of a_beam;
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- The above description of the creep phenomenon'utilizes a constant-
stress creep law to determine strains occurring during'transitional or
variable stress states because, as yet, no satisfactory creep lawAhas
been formulated for variasble stress conditions. Hdwever, the convergence
to the stable state can be arrived at by considering time increments
sufficiently small so that the variation of stress over each time interval
is negligible relative to the total value. ‘

- The creep law previously chosen has been shown to give good sgree-
ment with experimental results from tests on t&pe 30h étainless steel.
Considering a small time interval AU, Eq. (15) gives the change in
étrain dué to a given stress acting over the time interval. Referring
to Fig.‘6, and assuming the creep properties to be equal in tension
and in compression, Bernoﬁlli's hypothesis that plane sectibns remein

plane yields

dx _ A€

b =y &
or
A€ =y/p . ) | | 'A  (16)

Substituting Eq. (16) into Eq. (15) end solving for o ylelds

= L . ,
o (pM) : . (17)
Two conditions of equilibrium are available. Since it is:gssumed that
the material properties are the same in tension and compreSsion, the
first equilibrium condition statees that the neutral axis passes throughﬁ
the centroid of each cross section. The second condition states that

thé applied moment must equal the-resisting moment; therefore,

M ='_/'dydA
A
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or using Eq. (;7),

n+l . .

f 1 l/n - _ (18) .
M= AB(pA_T) Iyl dA. . Q1
Integrating;

1/n
- pri( L : :

M = BI .(pm, | (19)_
where
. g n+l . _ ) : .
. * ——— - .
I = _[|y| 7oA . ‘ _ (20)

A ' . ‘

Substituting Eq. (17) into Eq. (19), the following expression is obtained

for the stress distribution across a besm during creep.

l/n : .
o= | | (21)
I s

Note the similarity between Eq. (21) and the corresponding equation,

-

for the elastic case.
Using Eq. (21) in Eq. (15) yields

M D . L
A€ = (—;—) y AT . : (22)_‘:
IB .

. Substituting Eq. (22) into Eq. (16) gives
’ n . 2 1
¢ M
1/p = (=) AT =~ au
. IB dx

. (23)



This is the creep equation defining the change in curvature, which occurs
during the time interval AT, due to a momentjM(x) which is constent

over the time interval. This equatioﬂ for the creep case corresponds to
M
l/pfﬁ

for the elastic case. , _ .
In the particular case under consideration, where zero deflection

at the midpoint is maintained by’a concentrated force, P,

M=Zx , xgL/2 .

Therefore, Eq. (23) becomes

2 1

i -farx” o (24)
dx ‘ '
wﬁeré

21 B ' '

Performing two successive quadratures on Eq. (24) subject to the boundary
conditions - S ‘
1) w =0atx=0
1
2)%:—--0atx=L/2 ,
the following equetion is obtained for the creeb deflection which occurs
et any point (0 . x o L/2) during the time interval .AT.

W' .%ﬁl [5%-2- - (n/2)*% x:|‘, | ‘ (26)
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A Remembering that in the aetuei problem the,moment distribution con-:
"tinually changes with time, angapproximate'solution to the time dependent

behavior of the beam is obtaine&'in the following manner. The moment

- .distribution and, therefore, the_stresses and creep rates are assumed to

remain constant for a.small'tineointervale These conditions will éi?ev

8 new configuration which may, or may not, violate geometrical‘reétrictions.
t_if'a violation exists, the'geometry-is "ad justed" using elastic theorys

. A nev moment distribution,differing from the original function is then.
obtained according to the dictates of the new loading. Repeating this
procedﬁre'by taking additional'smal;;time intervals, the complete behavior

- of the beam, as a function of time,; may be predicted.' This same reasoning,

‘regarding ad Justment of the geometry of the structure to a required
cqnfiguration by elastic theory, has been used in discussing relief of
thermal stresses in infinitely long'cylinders by_creepli] | '
.- The ad justment and iteratioh procedure for the problem considered
herein consists of the folloﬁing detailed steps: Calculate the initial
force P necessary to maintain zero .deflection at the midpoint of the
bea.m by Eq. (13). Choose a small time interval, AT, and by the use of

"Eq. (26) and the appropriate creep ¢onstants, calculate the creep

" deflection w' due to force P ~acting for time ATi When this deflection

- 18 added to the initial elastic deflection, & new configuration for the

.center line of the element is obtained which violates the geometrical

condition of zero deflection at the midpoint. 'Therefore,'the_begm is

restored to its initial position at the midpoint by elastio’beam‘theory,

This- is done by calculating the increment of force AP necessary to
elastically restore the beam to its original position at the midpoint.

This increment -of force which is of opposite sign to P is. then used: in
the elastic deflection equation for the beam, and the deflection obtained
therefrom is sdded to the deflection which violated the geometry The

beam deflection at the midpoint is now zero, but the deflectlon at other

points is not necessarily equal to the initial deflection at those points.

. At this time; the force Po is no longer acting on the beam; instead;‘&

i}
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"new force P1 which is equal'to Po plus APl is acting at the midpoint.

A new smell time increment; AT

o) is arbitrarily chosen, and the entire

. procedure is repeatgd.' .

The procedure cén'best be visualized by referring to Fig. 7 which
depicts the assumed behavior of a beam during an arbiffary‘time interval,
Aiuf'_Since the deflection at any point other than the midpoint will
. not neééﬂsarily return to its original velue when the midpoint is brought
',back td;zero, the curvature and deflection of the beam will chenge due
to creep of the materiasl. Referring to Fig. 7 again, the position.wi of

the element after time

. i . )
T = LAT | o | o (21)
_ k .

k=0 '
is given by

: ] 1" . ) '
LR A A A ’ | o - (28)
where LAY is the'fotal deflection at time 7 - Ati, wi’ is the creep

 deflection due to force Pial
the elastic deflection due to the increment of force APi,‘which is a
negative quantity. The initisl deflection v, is given, in terms of e,
by Eq. (12) with Eq. (13) defining P. Therefore, ’

‘acting for a time interval AT&,’and(wi" is

L be 2 ’
v, = ;% x° - ;% x° + % X x ¢ L/2 (29)

4.1 8nd av; in Egs. (25) and (26), an expression for

' is obtained. Finaelly, wi"

Using the values P

w is given by elementary beam theory as

i

' AP‘i 3 2 . ' ' s
v ey (=38, xgn2 . (30)
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Setting the derivative of Eg. (29) equal to zéro, it is seen that the
ihitially restrairied beam has a maximum deflection of 2e/27 at x equal
L/6; however, it should not be assumed that after some arbitrary time
the maximuﬁ deflection will reméin at this location. .

. Eguatiohs (25) through (30) can be epplied to eny case where i»
beam subjected to a temperature differential, linear with thicknees, is
simply-supported at the ends and.fixed at the midpoint. The problen of -
computing the deflections as a function of x and time is rather involved;
However, the task is greatly simplifed by choosing several locations
alohg the beam and calculating the time dependent deflectioné at these
points. ‘In this manner a family of curves may be plotted showing the

position of a beam at the end of each time interval.
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APPLICATION TO THE EXPERIMENTAL GAS-COOLED
REACTOR FUEL ELEMENTS

The Experimental Gas-Cooled Reactor (EGCR) is a combinsd experi-
mental and pover demdhstration reactor.which is being built by the
Atomic Energy Commission at Oak Ridge, Tennessee. It is fueled with
enriched uranium dioxide pellets clad in type 304 stainless steel tubes.
A fuel assembly consists of a cluster of seven cylindrical stainless '

steel tubes (containing the enriched UO pelleté)'spaced and supported

within a cylindrical graphite sleeve. i stack of six assemblies plus

one dummy each at the top and bottom fill a fuel channel in the graphité'
core of the reactor. A drawing of the EGCR fuel assembly is shown in
Fig. 8. .

Each fuel rod is 27.5 iho long. The stainless steel cladding has
an outside diameter of 0.75 in. with a wall thickness of 0.020 in.

The rods are supported within the graphite sleeve by stainless steel
spiders at the top and bottom. In order to limit the lateral movement
of the rods, spacers are attached to each rod at the midpoint as shown
in Fig. 8. ;

Experimental and analytical studies have indicated that surface
temperature variations will exist around the circumference of the fuel
rods. These differencesg result priﬁarily from variations in the local .
heat transfer coefficients caused by unsymmetrical flow of the helium
coolant through the assembly and from nonsymmetrical heat generation vitho
in each unit. Taking the tempersture gradient to be linesr across a .
rod,; the end restraints to be simple Suppofts, and assuming that the red
deflection is dictated only by the cladding behavior, the problem.of

-predictlng the creep behav1or with time reduces to that of the simply-

supported beam restrained at the midpoint as prev1ously discussed
The properties of the cladding material (type 304 stainless steel)
are given in Teble 1 for the temperatures shown. Using Egs. (25) through

(30), the iteration procedure was programmed for calculation on the
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Table 1. Properties of Type 304 Stainless Steel

1/n

Mean fgggerat“re o®(1/°F) B(psi) n° B°[(mr) 1v/in.?]
1200 11.78 x 1o°6 21.0 x 106 6.0 73.2 x 107
1300 11.98 x 10 20.0 x 16® 6.0 Wk x 107
1400 12.18 x 10 19.0 x 10® 6.0 293 x 10°
1500 12.38 x 107 18.0 x 106 6.0  2l.3 x 10°
1600 12.58 x 1076 17.0 x 108 5.8 ©°15.0 xf103

8local (at témperature) coefficient of thermal expansion.

bFrom,relaxation tests performed by ORNL Metallurgy Division.

IBM-T04 digital computer. For the symmetrical claddingAcroééfsecfion,
Eq. (20) may be written ' ' .

: n+l
I =2 Yy dA
AT :

where AT'denotes the area of the tdp half of the cross section. This

expression becomes

) R : - R .
* ° EE; L : nnl 2 2/2
I=% /vy (R =) a-4%1 vy " (B " -¥) a .
0 0 '

After expanding the square root terms by the ‘binominal theorem, simpliu
fying, and integrating; the following expression is obtained°

* 1_ > 1
I =-5nq [’ T+a * L % T+ n‘]



- Where

8, = ———2 By k_> o ; @& =-1 |,

and L
Q = (0.375) " -(0.35) " .

USing this expressien for I*, calculatiens were made to obtain the decay
of the restraining forces at the midpoints and to obtain deflection
profiles for the rods as a function of time. '

Figures 9 through 13 are plots of the restraining force necessary
‘ to maintain.zero deflection at the midpoint of" a'rod as & function of
time. Mean temperatures of 1200, 1300, 1400, 1500, and 1600°F were con-
sidered, with temperature differentials of 25, 50, and lOQoF for each.
v, Figures 14 through-28 are plots depicting the position of a rod
with time as a parameter. Mean temperatures of 1200, 1300, 1400, 1500,
‘and'16000F were again considered with temperature differentials of 25,
50, and 100°F for each. Only ome half of the length of the rod is
represented because of symmetryy The curves labeied "initisl,elestic
curve at O time":show the position of the rod immediately after theA
temperature gradient is applied but before any creep has ‘taken place°
'The remaining curves are the positions of the rod after the designated
time periods have elapsed. The curves labeled "co time" are the limiting
"positions tﬁe.reds.mey'beiexpected to reaeh° When these profiles are
~ _reached, the stresses are completely decayed. . The initial elastic curve
has a maximum deflection of e/l} 5 which occurs at x =-4.58 in. However,
- as time passes, the- maximum deflection moves toward the quarter position
of the rod. ' '

The spacing between each rod in the cluster is initially 0.250 in.,
&and the spacing between the outer rods and the graphite support sleeve
- 18 initially 0.125 in. Observirng the maximum deflections reached in
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Figs. 1k through 28, it isAséen that these deflections are small compared
to the clearances between adjdining rods and betweeh the graphite sleeve
and the outer rods. _

In order to compare the deflection rates for the curves plotted in
Figs. 1k through 28, the maximum deflection at time, T , was divided by
- the maximum deflection at T‘equai infinity to obtain a dimedeionless
parameter. Figure 29 shows the results of these calculations; here,
ﬁmﬁx/wmﬂxt=oo is plotted as a function of time fo; each of the cases
shown in Figs. 14 through 28. As T approaches infinity, the curves
approach a value of:one by definition, and at v equal zero the curves
converge toward a common value of ~0.38. Thus, the limiting deflection
appears; in every case, to be a constant multiple of,the maximum, initial
deflection. Since the maximum, initial deflection is e/13.5, it may be-
concluded that any restrained rod will have a limiting'maxinum.deflection
of e/Sol3° ‘This is'very significant because from Fig. 29 it Iny'be'seen
that, although an infinite time is required for a rod toAfeach 1te maxi-
‘mum deflection, this deflection is closely approached during'the projected
residence time of the ‘elements in the higher temperature regionn of the :
reactor. N

The maximum bowing deflection for an unrestrained tube whose length'
is one half that of the EGCR clédding is e/lk. Hence, the limiting
, deflection under creep ccnditions approachee that which would occur if
the center of the rod acted as a plastic hinge.



CONCLUSIONS

The theoretical analysis was formulated in terms of an arbitrary
been eimply Bupported at the end points, restrained at the midpoint,
and subjected to a temperature differential linear across the thickness.
The creep equations were derived for a generalized loading so that the
analys‘s presented may be extended, either in part or in whole, tos
variety of problems involving creep of beams under various conditions.
Regarding the applicetion to the EGCR fuel elements; the most
éignificant result is that in every case the limiting maximum deflection
which a fuel rod may be expected to reach is given by

Youy = €/5:13 -+

Here, e is the maximum deflection qf an unrestrained rod subjected to
the same temperature differential and is given by »
5
QATL
e=‘ ’ﬁ"’_ °
o]

It is significent to note that the limiting deflection'under creep con-
"ditions approaches that which would occur if the midpointAof the rod
- acted as a plastic hinge. In that case, the maximum deflection is

‘given by e/k. Although an‘infinite amount of time is required for a
" rod to .reach its maximum deflection, this deflection is closely approached

" during the proJected residence time of the elements in the higher ‘tempera-

ture regions of the reactor. Thus, for any given temperature differential,
the maximum deflection of the rod may be immediately predicted. '






APPENDIX A
RECTANGULAR AND SANDWICH-TYPE FUEL ELEMENTS

The bowing and creep Behavior of several types of fuel elements
may'be examined using the procedure and equations presented. As two
- examples, other thaﬂ the cylindricel EGCR fuel rods, solid rectangular
‘elements and sandwichntype elements will briefl& be COnaidefed°-

. In the cese of a solid ‘alement with e rectangular crose section
of height h and width b, I becomes

R+l

¥ _ 2bn n
I bret SR+l (h/a) t o . . S ) (Al)

The following differential equation defining the creeﬁ deflection
occurring during time AT is obtained by combining Egs. (Al) and (23).

2 g ' . -
,er [(2253 M] (/)™ ot o (a2)

In this equation the symbol M denotes the moment distribution for'qhy‘
transverse loeding. If the element 1s restrained at the midpoint by

. a force P, the moment will be

M=32"-f_ , xelf2 . o (a3)
Considering a sandwiahotype element and referring to Fig. Al, the

following’ exprelaion is obtained for I o

an+l en+l

A LR RO o m
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Substituting Eq. (A4) into Eq. (23), the following differential eQuétion
defining the creep deflection occurring during time AT is obtained.

. n .
2 on+l ‘ T on+l AT , :

2bBn [(h/2) noo. (h/e -a) ™ ]

The symbol M denotes the moment distribution for any transverse loading.



. APPENDIX B

EFFECT OF UNEQUAL PROPERTIES DUE TO WIDELY
~ VARYING TEMPERATURES

By referring to Table 1 on page 22, which gives the properties of
type 30& stainless steel, it 15 seen that both the-elasticlpropertiea
and the creep properties,ere significantly temperature dependentc The
theoretical analysis previouely deacribed made use of only one set of
material constents, these being the constants corresponding to the mean
tentperature. Actually, the temperature and, consequently, the material
properties vary across the element. Thus, it 1is desiruble to predict
the error introduced by using mean temperature properties, especially
vhen large temperature differentiels exist. By comparing the curvature
expreesions for both creep and elastic deformation when unequal properé.t
ties pre employed to those for constant properties; a measure of.the'
error ‘may be obtained, In view of this end, 1t is neceasary to. derive _
the equations defining the curvatures for both elastic and creep ‘
deflections when the properties are not sssumed constant.

The previous analysis may be extended to the case where a materiel
has unequal properties in tension and in compression by following a.
method similar to that set forth in Reference [6] Using this type of
: analyeis 5 an approximtion to the problem of widely varying temperatures
nay be.obtained by sssuming that 21l fibers in tension are at_one mean

temperature and that all fibers in,QOmpreesion'are et a different mean
'temperatureo' For example, if the temperature on‘one side of a fuel
element is 1550 F, the temperature in the middle is lh50 F, and the
temperature on the opposite side is 1350 'F, one could use the properties
‘at 1500°F for the material in compression and thoee at 14oo® F for the .
material in tension. . ’

Keeping this observation in mind, the necessary equatiOne will be
derived using properties with the subscript t denoting: tension and the



subscript ¢ denoting'compression. .in this discussion; the equations
~describing the chenge in curvature due to creep will be derived first.
The assumption that plane sections remain plane will agein be made}' The
geffeet of unequal creep properties displaces the neutral axis to a '

ﬁdsition not passing through the eentroid of the cross section.’ Thus,

"Tfﬁ,the'problem becomes one of finding not only the curvature, 1/p, but also
'“z“the,positibn of the neutral axis as & function of the resisting moment

and'the:time interval AT. Equation (15) may be written. separately for

‘the material in tension and for the material in compression eas follows.

: o, nfj o n, : - _
ae, = (g) AT, A€ =(§) AT (B1) -

Referring to Fig° Bl, the following relationships similar to those of
Eq. (16) may be written.
Yy : N

Ae = o A€ = c

S 5 = - -5-’ (B2).

Combining Eqs. (Bl) and (B2) and solving for o, and o;,'one obtains.

l/nt | ' l/nc

(———) , and o

To have equilibrium, the applied moment must equal the resisting moment"

therefore,
n, +l ‘ | _ ' ~n¢+l'
f N l/nt n, f - N l/nc n_ : A )
M= A'%(Eﬁ) (¥) u+-A R:%n‘ (y) dA . @U
t - c '

Integrating, this becomes

L . 1/n .. 1/n
- * 1 t T ¥ Ly'e 5 (B
M= BtIt (pAT) + BcIc (pAt . o (BS)
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where

. n M n
,It*=f (v)) © aa , I l (v)) © an . (B6)

The neutral axis is defined by the condition of equilibrium stating

that the resultant stress on the cross section is zero, or

f%dA+[°EdA=O . (B7)
At .

A
c

Substiﬁgting Egs. (B3) into Eq. (B7) and integrating,; the following

relation is obtained.

1/n 1/n ;
B.Z,  (==) Cppt L) ° (B8]
2 Gawd = BE G B8
In this equation,
' 1/n f 1/n. '
* ‘ t o * ¢
Zt = [ (yt) dA and »ZC = A (yc) dA ° (39)

t ' c

Equetions (B5) and (B8) may be solved simultaneously to obtain expressions

for m, or m, and the curvature; l/p, in terms of the resisting moment,
M; and -the time increment, AT . The symbol m refers to the distances
from the neutral axis to the extreme fibers. By the above procedure one

obtains expfessions of the form

1/p=f[M(x)',A”c] : - o - (B1O)

and

my = é'[M(x),IAt] : | : _. - (B11)



Equation (BlO) represents the expression describing the change'in’curva-.
tureé due to creep, which occurs during the time interval AZfo B

| :Tbe elestic relationships may.be obtained in & manner similar to

the one followed for the creep equations. -From statics,'the applied moment
must equal the resisting ‘oment or, '
L%?’t“*{cyc%uﬂd.o. - o '.(312).

Using Hooke 8 law along with the geometry of the deformed beam; this

. expression may be written as follows.

. M-:-Ef yzd_A+-9-f y2-d.A o . - (B13)
- P Tt P c. . S :
: A A : C o
t c :
The stress resultent for any cross section is zero; hence,,

A f ytdA+Ec[ychn'0 . ‘ (B1k)
- 'At Ac '

Equations (B13) and (Blh), describing the’ elastic behavior, correspond

to Egs. (BS) and (B8) for the creep behavior. For elastic deflections

where no creep has teken place, Eq..(Blh) yields n value of m, which" is
& constant. This value may be substituted into Eq. ' (Bl}) to give an.

expression of the form
l/p = M/D o A - . (Bls) .

The constsnt D replaces EI in the conventional formula.
' The problem of predicting the error introduced by using constant
elasticsand'creep properties is made difficult by the fact that the

variables involved are not separable. These variables influence -the

e



behavior of the elemenﬁ in.such“a wvay that the deflection can bé either
_more or less than for the case of constant propertles depending on the
relative increase or decrease in the property values across the element.
Thus, for the particular case of type 304 stalnless steel,lthe effect is
best demonstrated by taking a specific exampleu ' »
Using the cross section and temperature distributlon shown in
Fig. B2, the fibers in tension may be assumed to be at a mean tempert-
ture of 1300 F, whlle those in compression are at a mean temperature of
iBOOOFo' The nean ten@erature of the element is lhOO F. Using the
material properties as givem in Teble 1 on page 22, Eq. (B14), for the
;elaatic case, yields. m, = 0.97 and m, = 1.03. vSubstituting these values
into Eq- (Bl}) gives ' '

1/p = .____li_;_75 :
- 12,6k x 10

Using the conventional formuls end the value of E at lhOOOF, one 6btginn

o m—t

12,67 x 10
The error introduced into the.éonstant by using the velue of E-ct[the.f:f.
mean temperatufe of the beem is only 0.19%. This error is well with;nb‘i
. the renge of acnuracy which one would expect in reported valués'df~ﬁl¥;nfj-
Equations (Bs) and (8), describing the creep behnvior, yield » = 0o 70 3
and m = 1 30. Then, the curvature is given by "

M§ AT

1l/p = .
373 x 102

Using Eq¢5025) and the creep properties at lhOOoF; one obtains.
W At
390 x 10

1/p = 5 .
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The efror_introduced into the conétantAby using the creep constants

~ corresponding to the mean témﬁerﬁture of the beam is 4.55%. iThis error
is again'ﬁithin the range of aécuracy which one would exﬁect in the
material comstants. } ﬁ

) In additidn to the elastic and creep constanﬁs, ﬁhe éoefficient

of thermal'expansion, &, also varies across the element. Assume that
there exists & large linear temperature differential across the element.
Since o is approximately a linear function of temperature; the extension
of fibers acroés the element is a quedratic function of-the poslition,

and thus; thefmal gtresses will be set up. However, referfing to the
~values of Q in Table 1, the variation over the temperatufg range shown

| in Fig. B2 is small. Taking the value of lEOOOF as the”meqn value, the
maximum varistion from this mean is 3.29%. Thus, the ektenlioﬁ'of

fibers across the beam will vary only slightly froﬁ & linear distribution.
| The deformation of the beam is directly proportional to thé curva=
.ture{ Therefore, from the above observations; one may conclude that in
Acalculating the behavior of &n element made of type 304 stainless dtéelA
the eirdr introduced by using constant material propeities, pérrespending
to the mean temperature of the element, is small even for the large

' temperature differential considered.



* APPENDIX C
'EXPERIMENTAL VERIFICATION

During the course-of the theoretical work, itlbecame desirable to
verify, experimentally, the behavior of & fuel rod as predicted by the
mathematical model. The “oreep propertiea Plexiglas (and Lucite)
have been investigated‘at room temperatur I and good agreement has been

established between experimental and theoretical results making use of '
creep properties as determined for a creep law of the general form
.given'by Eq. (14).° fhere'are .two basic differences between the creep
behavior of Plexiglas at room temperature and type 30k stainless steel

at elevated temperatures,. First, Plexiglas exhibits ‘@ noticeable primary
stage of creep while type 30k stainless steel does not, and, second, _
the creep properties of Plexigles are different in tension and in conov '
pressiono The high primary creep rate of Plexiglas enables one to
obtain, in & few hours at room temperature, results which ere qualie
.tatively commensurate to the behavior of a fuel element’ at an elevated
temperature. '
_ - As long as a rod remains essentially straight the time dependent
behavior does not depend on the initial stress-free configuration, that'
is, the equations describing the elastic and creep behavior are based
only on changes in curvatureo Thus, as long as the assumption from '
‘-elementary beam theory that the length of the arc of the deflected curve
is approximately equal to its chord length is not violated, the conditions '
for the rod may be duplicated simply by applying a concentrated load at i
the midpoint of a straight beam 80 that a constant center deflection is.
maintalned:  If this forca is applied ‘to the upper side of the beam,'
| the fibers on that side are in compression while those on the opposite
_side are in tension. Hence, any ensuing creep deformation will allow :
the elements between the ends and the. midpoint of the beem to move tovards -
,-their initial stressufree positions along a path perpendicular to the ' '
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'

neutral axis, as shown in Fig. Cln";ff , .
Several Plexiglas beams 22 in. long, 1/2 in. high, and 1 in. wide

were testedol The testing fixture was devised to allow for variation in

the maximum deflection from test to test, and a means was pro?ided-to

mount diel geges at various points elong the length of the beam. The

testing fixture is shown in Fig. C2. The dial-gage readings were corrected

to obtain the actual mevement of.the bean perpendicular to the neutral

axis. _ ‘ . o .

Assuming that the initial elastic curve was a strnight line, Fig. C3

represents the experimentally obtained growth curves for a nnximun initial

deflection;, e, of 3 in. Figure CL shows the displacement curves for the

cylindricael EGCR rod af,lGOQOF'with a temperature difference across the

 rod of 50°F. These curves are elso shown with an initial streight line

 elastic curve in order that they might be cempared directly with those

in Fig. C3. A comparison of the theoretically and experimzntally obtained

curves reveals that, at least qunlitatively, the Plexiglus experiment

verifies the mathematical model.
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Fig. 21. Deflection of EGCR Fuel Rod Versus Distance Along Cladding
for a Mean Temperature of 1400°F and a Diametrical Temperature Difference
of 50°F.
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Fig. 22. Deflection of EGCR Fuel Rod Versus Distance Along Cladding
for a Mean Temperature of 1400°F and a Diametrical Temperature Difference
of 100°F.
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Fig. 25. Deflection of EGCR Fuel Rod Versus Distance Along Cladciing
for a Mean Temperature of 1500°F and a Diametrical Temperature Difference
of 100°F.
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Fig. 26. Deflection of EGCR Fuel Rod Versus Distance Along Cladding
for a Mean Temperature of 1600°F and a Diametrical Temperature Difference
of 25°F.
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