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ABSTRACT 

An analytical procedure is formulated for predicting the lateral 

deformation of a long slender beam when the material is subjected to 

creep conditions. The beam has simply-supportedehds, is restrained at 

the midpoint, and.is loaded by a temperature differential wherein the 

temperature is a linear function of the thickness. The creep strains 

.. are p;red1cted by employing a constant-stress creep law consisting of a 

8ecoDda~ or steady creep term only. Both the restraining force at 

the midpoint and the deflection profiles for the beam may be obtained 

as functions of time using the analytical method presented. 

The analysis is applied to the Experimental Gas-Cooled Reactor 

fuel elements for several mean temperatures and temperature differentials, 

and, in every case, the limiting maximum deflection of a fuel rod is 

e/5·13, where e is the maximum deflection without a restraint at the 

midpoint. This is significant because, although an infinite time is 

required for a rod to reach its maximum deflection, this deflection will 

be closely approached during the projected fuel element residence time 

in the higher temperature regions of the reactor. 
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INTRODUCTION 

Experimental and analytical studies have ind'icated that surface 

temperature variations.will exist around the circumference of the rods 

in the fuel elements of the Experimental Gas-Cooled Reactor (EGCR) 

. being built by the Atomic Energy Commission at Oak Ridge, Tennessee. 

These temperature variations will cause the long cylindrical fuel rods 

to. bow. In o;rder to limit the amount of deformation, spacer~ are 

attached to the rods at the midpoints. 

It is the purpose of this report to describe the theoretical 

development and the application of an analytical model for predicting 

.the high temperature behavior of a centrally restraiped beam when the 

material is subjected to creep conditions. The analysis makes uae of a 

constant-stress creep law consisting of' a secondary or steady creep 

term only- An iteration procedure is used to. obtain both the decay of 

the restraining force at the midpoint and the deflection profile of 

the beam as a·function of timeo 

The procedure formulated is applied to the EGCR fuel rods to o~tain 

the decay of the restraining forces at the midpoints and to obta~n 

deflection curves for the elements with the. passage of time. It ia 

tacitly as.sumed that the deflection of each rod .is dictated only. by the 

cladding behavior. Mean temperatures of. 1200, 1;00" 1400, 1500, and 

l6000F arecons.idered with temperature differentials (linear with diameter) 

of 25, 50, andlOO~ for each. The results are presented graphically-

The theoretical considerations are developed in a general manner 

so that the principles presented are applicable to a variety Of different 

situations. The equations necessary to predict the high temperature 

behavior of both rectangular and sandwich-type fuel elements are given 

in Appendix A. 

In the analysis presented, use is made of only one set of material 

constants, these being the constants corresponding to the mean tempera

ture of the element. Actually, since the temperature varies across the 



element, the temperature dependent material constants will also vary 

. across the element. A discussion of the errors introduced through the 

use of constant material properties is given in AppendixB. The 

equations derived there ~ay be used to predict both creep and elastic 

deflections. of beams made of materials having unequal material properties 

in tension and in compression. 

Experiments were performed on Plex~glas beams at room temperature 

to check the theoretical an_lysis. .A d,scription of the tests and the 

results obtained therefrom are given in Append1x C. Comparison of the 

experimental and theoretical results reveals that, at least qua11tatively, 

the Plexiglas experiments verity the ~thematic.l model. 

" 
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NOMENCLATURE 

Plate thickness of sandwich-type element 

Cross-sectional area ofa beam 

Width of rectangular or sandwich-type element 

Constants in creep law 

Inside diameter of cylindr1calfuel rod cladding 

, Outside diameter of, cylindric'al fuel rod cladding 

, "Constant replacing EI in elastic beam equation when properties 
" in tension and compression are' not equal 

Deflect1on"at x = L/2, of initial stress-free thermally bowed 
beam' ' 

MOdulus of elasticity 

Depth of a beam or element 

Moment of inertia of'beam cross section 

1* Characteristic of beamge6metry and the appropriate creep 
constants " 

, IS.;K2 Constants in temperature function 

L Length of a beam 

" , ' 

m Distance from neutral axis to the outer fibers of a cross section 

M Bending moment at any point along a beam, 

P Concentrated force 

Ri Inside radius of cylindrical fuel rod'cladding 

R 
o 

T 

w 

Outside radius of cylindrical fuel rod cladding 

, Temperature 

Total ,lateral deflection of a beam measured from the x axis 

w,' Lateral deflection of a beem due to creep alone 

w" Lateral deflection ofa beam due to elastic def~rmat1on alone 

Wo Initial deflection of a restrained beam measured from the x axis 

x,Yiz, Rectangular coordinates' 
, , 

y: Distance to a fiber measured from the neutral axis of a beam 
cross section . . 

a Linear coefficient of thermal expansion 
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* Symbol denoting P/21 B 

r x:y1 r yz I,r zx Shearing strain components in rectangular coordinates 

Ex' Ey/Cz Unit elongations or strains in x, y, and z directions 

p R~dius of curvature of a deflected beam 

c 

k 

t 

" Normal component of ,stress 

Time in hours 

Subscriptdenotlng compression 

Subscript denoting terms of ~ series 

Subscript denoting tension 

• 

i 



• 

• 

• 

-9-

THEORETICAL CONSIDERATIONS 

In Order to predict the behavior of a long slender,fuel rod which 

is supported at the end points, restrained at the midpoint, and subjected 

·to a temperature differential linear across the thickness, one must have 

expressions which describe the initial elastic behavior of the rod as 

well as the subsequent creep behavior. Thus, the problem becomes one of 

deriving the necessary equations and formulating a procedure for their 

use. In the following analysis the problem has been generalized to the 

case of an arbitrary beam subjected to the above conditions. 

Unless all parts ·of a body are allowed to expand freely,. a nOD- . 

uniform temperature distribution in the body will cause thermal stresseS. 

Consequently, in the case of a beam which is unrestrained, a·,tem:pe,rature 

difference between opposite sides will deform the eleme'nt. ,Stresses 

mayor may not exist, depending on the manner in which the temperature 

is distributed across the unit. It may be shown that an unrestrained 

body subjected to a temperature distribution linear in rectangular 

space· coordinates will not possess thermal stresses Jl] 1 ' 

Consider a beam with the te!DPerature linearly distributed across 

its 'thickness. The deformation, that is, bowing, of the beam will be 

the same regardless of whether the temperature is constant or linearly 

distributed along the length provided the difference across the element 

is the same. For zero stresses and a temperature distribution 

, 

Hooke's law gives 

€ =l! = f:. =aKx+aKy x l' ~ 1 . 2 

r =r =r "0 xy yz zx 

~umbersin brackets refer to references given at the end of this 
report. 

. .. 
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The first term on the right band side of the first of Eqs. (2) corre

sponds to a uniform extension of the beam with no rotation of, the cross 

sections. The second 'term implies rotation of the cross sections such 

that plane sections remain plane as shown in Fig. 1. This rotation of 

the cross sections results in the bowing of the beam. When plane 

sections remain plane, the curvature of the center line of the beam is, 

from Fig. 2, 

or 

1:. = a::K 
p, 2 

Since the curvature is constant with length, the configuration will be 

an arc of a. circle. If the temperf:lture differential existing between 

opposite sides of the beam is designated by Nf, Eq. (1) yields 

or " 

l:{r 
K =-2' h 

, (4) , 

where h is the total thickness of the beam. Substituting Eq. (4) in 

Eq. (3) gives 

1 at{r -=-p h 

Using elementary beam theory, this becomes 

(6) 

• 
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Integrating and applying the boundary conditions 

1) w :: 0 at x :: 0 

2) dW/dx :: 0 at x :: L/2 
yield,s 

as the equation for the deflection of an unrestrai~ed beam subjected to 

a temperature differential linear across the thickness. 

Designating the maximum deflection" which occurs at x= L/2, as e, 
the followipg expression is obtatned from Eq. (7). 

O'.liTL 
2 

e:: 8h 

Using this expression" Eq. (6) can be rewritten as 

(8) 

The preceeding equations completely define the behavior of an. 

unrestrained beam subjected to a temperature difference linear acro~s 

the diameter. However" in the problem under consideration the beam is 

not unrestrained but has a restraining force applied at the midpoint. 

Suppose that some mode of restraint is now applied at the midpoint of 
. . 

the initially unrestrained- deformed beam so that zero deflection is 

obtained at that location. The elastic deflection as a function of 

length is again given by beam theory. Since the total deflection 1s 

the sum of the component from the temperature distribution, Eq. (7), 
and the component due to ,the external force system, the total curvature, 

d2W/dx2" is also a sum of the components. In this case, 

. d2w M 8e 
~ = EI;= ~ ~ 
dx ,. L 

(10) . 



where the second term is taken from Eq.(9). Referring to Fig. 3, the 

diffe~ential equation of .the elastic curve with a concentrated load 

applied at the midpoint is 

d2w p Be 
x~ L/2 ~=WIx -- , 

dx L2 

(11) 
2 d w p. 

(L - x) 
Be x _. L/2 

dx2 = WI -~ 
, 

Since the system is symmetrical about the midpoint, only the first of 

Eqs. (11) need be considered. Integrating and applying the boundary 

conditions 

1) w = 0 at x = 0 

2} dW/dx = 0 at x = L/2 
yields 

Px (4 2 2) 4ex 
w = 4SEI x - 3L . - L 2 (x - L) , x 6: L/2 (12) . 

The magnitude of the force, P , required to give zero deflection at o 
the midpOint is, from Eq. (12), 

48Er 
Po=--e 

L3 

Equation (12), with Po substituted for P, represents the initial thermal 

bowing ofa beam restrained at the midpoint,.provided the temperature 

difference is suddenly applie~. 

At sufficiently high temperatures the stresses in the restrained 

beam and consequently the force necessary to maintain zero deflection 

at the midpoint will be decreased due to creep of the material. The 

stress state of any arbitrary cross section is such that the creep defor

mation will bring about a change in the curvature of the beam. The 

• 

.. 

'It. 

or 

• 



• 

.. 

• 

-

" 

• 

• 

configuration and position of the center line of the beam after some 

period of time will depend upon the integrated effect over the entire 

length. 

In the analysis of. beams, Bernoulli's hypothesis that plane sections 

remain plane is assumed to hold at all times, its validity can be extended 

to pure bending under creep conditions .[2J The ~ypotheais when applied to . 

a beem subject to creep implies that a transitional strefls state 18 

required for a shift from the linear distribution which occurs when the 

beam is first deflected (elastically) to some stable stress distribution 

where the creep rate for a given fiber is proportional to its distance 

from the neutral axis. Provided the temperature difference is sud4enly 

applied~ the stress and strai~ distribution at the Instant of appl~~ 

cation are given by linear elastic theory. .That is, sufficient tt.e 

has not elapsed to allow the material to creepoTh1s initial linear 

stress distribution.will give a nonlinear creep 'strain distribution. 

This ·can be illustrated as follows~ Consider a constant~stress creep 

law of the form 

• n 
E :: (..2:) 

B 
(14) 

. 
which consists of a secondary or steady=creep term only. Herel € denotes 

differentiation with respect to time, r ~ and B arid n are the sOecalled 

creep constants for a specif1ed material at a given temperature. For a 

constant stress and a small time increment, AL 1 Eq. (14) gives 

n 
~6 = (~) AT 

From elastic beam theory, the initial stress distribution is 

, 
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where y denotes the distance from the neutral axis to the fibers under 

consideration. Therefore, using Eq. (15), 

Since AE is nonlinear in y, plane sections will not remain plane due 

to creep alone. Instead, as creep progresses, the cross sections will 

deform to some curved line CD as shown in Fig. 4. This violates 

Bernoulli's hypothesis regarding plane sections remaining plane. The 

usual explanation is that the fibers also undergo elastic increments of 
, ' 

strain during this transitional stage so that plane sections remain' 

PlaneliJ Thus, a fiber at a distance y from the neutral axis must'have 

an elastic increment of stress to make the section plane. In analyzing 

a beam this additional increment of stress requires an elastic adjustment 

of the total stress state so that the internal resisting moment will 

remain equal to the applied moment. 

Keeping the above considerations in mind and following the creep :, 
, " 

behav~or with time, several effects may be observed. The load carried by 

the inith} .. ly hi,hly stressed fibers is decreased wbile,' the lower 

stressed innerf1bers take up more of the load. After a certain time 

interval,the stresses reach a stable distribution and the creep ;rate Of. 

any fiber becomes only a function of the distance from the ,neutral axis. 

That is, the change in total strain, which has been hyPothesized as 

linear in y, is due to creep alone. At this stable condition, the stress 

state is, in general, nonlinear as shown in Fig. 5. 
The transitional stage, allowing all fibers to attain a minimum 

creep rate, may be neglected if the time required is ahort'relative to 

the interval of the stable condition under scrutiny. This is, usually done 

in the literature without so stating (see Ref. 4),. and good agreement 

has been found between experimental data and solutions based on the stable 

creep stress supposition. Consequently, the transitional stage is neg

lected in deriving the equation describing the creep'deflection of a beam. 

.. 

.. 

.. 
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The above description of the creep phenomenon utilizes a constant

stress creep law to determine strains occurring during ·transitional or 

variable stress states because, as yet, no satisfactory creep law has 

been formulated for variable stress conditions •. However, the convergence 

to the stable state can be arrived at by considering time increments 

sufficiently small so that the variation of stress over each time interval 

is negligible relative to the total value. 

The creep law previously chosen has been shown to give good agree~ 

ment with experimental results from tests on type 304 stainless steel. 

Considering a small time interval tfX, Eq. (15) gives the. change in 

strain due to a given stress acting over the time in.tervalo Referring 

to Fig. 6, and assuming the creep properties to be equal in tension 

and in compression, Bernoulli's hypothesis that plane sections remain 

plane yields 

ax as -=-dx p y 

or 

.6.6 = yip . (16) 

. . . 

SubstitutingEq. (16) into Eq. (15) and solving for 0" yields 

Two conditions of equilibrium are available.> Since it is assumed that 

the material properties are the same in tension and compression, the 

first equilibrium condition states that the neutral axis passes through 

the centroid of each cross section. The second condition states that 

the applied ~ment must equal the.resisting moment; therefore, 

M = J dydA 
A· 



or using Ego -(17), 

Integrating j 

* 1 lIn 
M = BI (-) 

Pll"r , 

where 

(18) 

(20) 

Substituting Eqo (17) into Eqo (19), the following expression 1sobta1ned 

for the stress distribution across .. beam during creep. 

, lIn My 
(f = * , (21) 

I 

Note the similarity between Eq. (21) and the corresponding equation, 

, 

for the elastic case. 

Using Ego (21) in Eg. (15) yields 

M,n 
!1E = (it) y t:.t: (22) 

I B 

Substituting Eqo (22) into Ego (16) gives 

., 

• 

• 

.. 
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This is the creep equation defining the change in curvature, which occurs 

during the time interval 6~, due to a momentM(x) which is constant 

over the time interval. This equation for the creep case correapondsto 

M 
LIp - EI 

for the elastic caseo 

In the particular case under conSideration, where zero deflection 

at the midpoint is maintained by • concentrated force, P, 

P M=-x 2 
, x '- L/2 

Therefore,Eq. (23) becomes 

, 

where' 

P 
~ -...,.-

2I B 

(24) 

(25) 

Performing two successive quadratures on Eq. (24) subject to the boWKl&r7 

conditions 

1) WI III 0 at x • 0 
d I 

2); • 0 at x III L/2 , 

the following equation i8 obtained for the creep deflection which occur. 

at any point (0 £;; x ~ L/2) during the time interval ,61;'. 

(26) 
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Remembering that in the actual problem the moment distribution con

'tlnuelly changes with time, an,approximate solution to the time dependent, 

behavior of the beam is obtained in the following manner. The moment 

"distribution and, therefore, the, stresses and, creep rates are' assumed to 

remain constant for a small' time' interval. These condi tiQn,s ,will give 

a new configuration wh1chmay, or may not, violate geometrical restrictions. 

Ifa vi61ationexists, the geometry is "adjusted" using elastic theory. 

A n'ew moment distribution differing from the original function is then 

, obtained acc~rding to the dictates of the new loading. Repeating this 
, , 

procedure by t~ing additional small, time intervals, the complete behavior 

',of the beam, as a function of time, may be predicted. This same reasoning, 

regarding adjustment of the geometry of the structure 'to a ~equired . .' . 

configuration by elastic theory, bas been used in discussing relief of 

t~ermal stresses in infinitely long: cylinders by creep f.5J " 
The adjustment and iteration procedure for the problem considered 

herein consists of the following detailed steps: Calculate the initial 

force Po necessary to maintain zero deflection at the midpoint of the 

b~am by Eq. ( 13) .,', Choose a small time, interval, 41:1, and by the, use of 

'Eq. (~6) and the appropriate cr~epconstants, calculate the creep 

deflection WI due to force Po actlng for time A~l' When this,deflection 

is added to the ~n1tial elastic deflection, a new configuration for the 

center line of the element is obtained which violates the geometrical 

condition of zero deflection at the midpoint. Therefore, the ,beam i~ 
restored to its initial pOSition at the midpoint by elastic 'beam theory. 

ThiSf! done by calculating the increment of fo~ce ~Pl necessary to , 

~lastically restore the beam to its original position ~tthe midpoint. 
'. . . . 

This increment ,of force which is of OPPOSite sign to P iathen U8~ in 
" " " '0 . ,', 

the elastic deflection equation for the beam, and the deflection obtained 

therefrom is added to the deflection which violated the geometry. The 

beaindeflection at the midpoint is now zero, but the deflection at other' 

points'is nQt necessarily'equal to the initial deflection at those,points. 

, At this time, the fo~ce Po is no longer acting on the beam; instead, a 

.. 

• 

! 

• 
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new force Pl which is equal to Po plus APl is acting at the midpoint. 

A new smalltime increment, 61."2' is arbitrarily chosen;> and the entire 

. procedure is repeated. 

The procedure can'best be visualized by referring to Fig. 7 which 

depicts the assUmed behavior of a beam during an arbitrary time interval, 

li't'i" Since the deflection at any point other than the midpoint will 
. .-

not neteesarily return to its. original value when the midpoint 1s broU«ht 

. back to. zero, the curvatur.e and deflection of the beam will change due 

to creep of the material. Referring to Fig. 7 again, the Poaition,w
i 

of 

the element after time 

is given by 

1 (28) 

. I 

where wi _l is the total deflection at time 't' '" A1:'i' Wi iethe creep 
. . " deflection due to force Pi - l acting for a time interval A~i' and IWi i8 

the elastic deflection due to the increment of force APi' 'which 1s • 

negative quantity. The initial deflection Wo is given, in terms of e, 

by Eq. (12) with Eq. (13) defining P. Therefore, 

I x 61. L/2 . (29) 

Using the. values Pi=l and A~i in Eqs. (25) and (26), an expression for 
I " Wi is obtained. Finally, Wi i.given by elementary beaa theory as 

1 x " L/2 (30) 



-20~ 

Setting the derivative of Eq. (29) equal to zero, it is seen that the 

initially restrained beam h~sa maximum'deflection of 2e/27 at x equal 

L/6; however, it should not be assumed that after some arbitrary time 
. . 
the maximum deflection will remain at this location. 

Equations (25) through (30) can be applied to any case where a 

beam subjected to a temperature dltferential, linear with thickness, 1s 

simply~supported at the ends and fixed at the midpoint. The problem of 

computing the deflections as a function of x arid time ,is rather inv91ved. 

However, the task is greatly simplifed by chOOSing several locations 

along the beam and calculat1ns the time dependent deflections at these 

points. In this manner a family of curves may be plotted showing the 

position of a beam,at the end of each time interval. 

• 

• 

• 
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APPLICATION TO THE EXPERIMENTAL GAS-COOLED 
REACTOR FUEL ELEMENTS 

The Experimental Gas-Cooled ·Reactor (EGCR) is a combined experl-
,. 

mental and power demonstration reactor which is being built by the 

AtOmic Energy Commission at Oak Ridge, Tennessee. It is fueled with 

enriched uranium dioxide pellets clad in type 304 stainless steel tubea. 

A fuel assembly consists of a cluster of seven cylindrical stainless 

steel tubes (containing the enriched U02 pellets) spaced and supported 

within a cylindrical graphite sleeve. A stack of six assemblies plus 

one dummy each at the top and bottom fill a fuel channel in the graphite 

core of the reactor. A drawing of tpe EGCR fuel assembly is shown in 

Fig. 8. 
Each fuel rod is 27.5 in. long. The stainless steel cladding has 

an outside diameter of 0.75 in. with a wallthicls:ness of 0.020 in. 

The rods are supported within the graphite sleeve.by stainless steel 

spiders ~tthe top and bottom. In order to limit the lateral UX)vement 

of the rods, spacers are attached to each rod at the midpoint as shown 

in Fig. 8. 
Experimental and analytical studies have indicated that surface 

temperature variations will exist around the circUlllf'erence of the fuel 

rods. These differences result primarily from variations in the local 

heat transfer coefficients caused by unsymmetrical flow of the helium 

coolant through. the assembly and from nonsymmetrical heat generation with .. 

in each unit. Taking the telillperature gradient to be linear across a 

rod~ the end restraints to be simple supports, and assuming that the rod 

deflection is dictated only by the cladding behavior, the problem of 

predicting the creep behavior with time reduces to that of the simply

supported beam restrained at the midpoint as previously discussed. 

The properties of the.cladding material (type ;04 stainless steel) 

are given in Table 1 for the temperatures shown. Using Eqs. (25) through 

(30), the iteration procedure was programmed for calculation on the 



Table 1 .• Properties of ,Type 304 Stainless Steel 

Mean Temperature b l/n ' 
c!(lfF) E(psi) Bb[(hr) 1b/ln.2] (OF) n 

1200 {1.78 x 10=.6 21.0 x 10 6 6.0 7;.2 x 10; 

1300 8 =6 11.9 x 10 
' 6 

20.0 x 10 6.0 44.4 x 103 

1400 
" 6 

12.18 x 10- 19.0 x 10 6 6.0 29.; x 10' 
38 -6 6 6.0 2L,3x.103 1500 12. x 10 18.0 x 10 
8 =6 '6 

15.0 x·10' 1600 12.5 x 10 17.0 x 10 5.8 

aLoea1 (at temperature) coefficient of thermal expansion. 
b ' 
From relaxation tests performed by ORNL Metallurgy Division. 

IBM-704 digital computer. For the symmetrical cladding cross 'sectIon, 

Eq. (20) may be written 

* I = 2 J 
n+l 

y n dA 

Arr 

where ~'denotes the area of the top half of the cross section. This 

expression becomes 

* I =.4 

After expanding the square root terms by the oinominal theorem, simpli

fying, and intearating, the following expression is obtained. 

1* = - 4nQ [- 1; 2n. + k!: "k. 1+2(~+1)n 1 

:t! 

• 
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where 

_ 2k-3 
~ - 2k 0 ~-l' k> 0 

and 

3n+1 2n+1 
Q m (0.375) p_ (0.355) n 

. 
, , 

-23~ , 

a = - 1 
0' 

, 

Using this expression,for 1*, calculations were made to obtain the decay 

of the restrain1ng'foree$ .t the midpoints and to obtain defleetion 

profiles for th~ rods .6 a function of time. 

Figures 9 throush 13 are plots of the restraining force neeessary 

to maintain zero defleetion at the midpoint of a rod as a function of 

time. Mean temperatures of 1200, 1300, 1400, 1500 ,and 16bo°F ,were con-
o ' 

sidered, with temperature differentials of 25, 50, and 100 F for each. 

Figures 14 through 28 are plots depict~ng the position of a rod , 

with time as a parameter. Mean temperatures of 1200, 1300, 1400, 1500, 

and, l6000 F were again considered with temperature differentials of 25, 

50, and 1009F for each. Only one palf of the length of the rod 1s 

represented because of syDlll.etry.' The curves label~d "ipitia:\. elastic 

curve at 0 time" show the positiqn of the rod immediately after the 

'temperature gr~ient is applied but before any cre~,has taken plaee. 

,~e remaining curves are the positions of the 'rod after thede8isnated 

time periods have elapsed. The curves labeled "00 time" are the li.itial . 

positions the rods, maY be expected to reach. When these,profiles are 

reached, the stresses are completely decayed. ,The initial elastic curve 

has a maximum deflection of e/13.5 which occurs at x =,4.58 in. However, 

as ti~ passes, thelll!lXimum. deflection moves toward the quarter position 

Of ,the rod. 

The spacing between e":ch rod in the cl\lster is initially 0.250' in., 

and the spacing between the outer rods and the graphite support sleeve 

is initially 0.125io. Observirlgthemaxim~ deflections reached in 



Figs, 14 through 28, it is seen that these deflections are small compared 

to the clearances between adjoining rods and between the graphite sleeve 

and the outer rods. 

In order to compare the deflection rates for the curves plotted in 

Figs. 14 through 28, the . maximum deflection at time, -r , was divided by 

the maximum deflection at ~equal infinity to obtain a dimensionless 

parameter. Figure 29 shows the results of these calculations; here,· 

wmax/Wmax is plotted as a function of time for each of the cases 
-r=<x> 

shown in Figs. 14 through 28. As ~ approaches infinity, the curves. 

approach a value of one by definitiQn, and at ~ equal zero the curves 

converge toward a common value of~O.38. Thus, the limitins deflection 

appears, in every case, to be a constant multiple of .the .exl.um, initial 

deflection. Since the maximum, initial deflection is e/l'~5, it ~y be· 

concluded that any restrained rod will have a limiting maximum deflection 

of e/5.13" This is'very significant because from Fig. 29 it _y'be seen 

that, although an infinite time is required for a rod to reach its maxi-

'mum deflection, this deflection is closely approached during the projected 

residence time' of the elements in the higher temperature regions of the 

reactor. 

The maximum bowing deflection for an unrestrained tube who.. len~ 
1s one half that of the EGCR cladding is ~/4. Hence, the 11m1t1nl, 

deflection under creep conditions approaches that which would occur if 
the center of the rod acted as a plastic hinge. 

.. 
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CONCLUSIONS 

The theoretical analysis was formulated in terms of an arbitrary 

,beam simply supported at the end points, restrained at the midpoint, 

and subjected to a temperature differential linear across the thickne •• o 

The creep equations were derived for a generalized loading so that the 

analysis presented may be extended, either in part ~~ in whole, to. 
, I 

variety of'probleme involving creep of' beams unde~ various condition •• 

Re~arding the application to the EGCR fuel elements, the most 

significant result is that in ,every cal:'e the limiting maximum. deflection 

which a fuel rod may be expected to reach is given by 

Ymax = e/5.13 

Here, e is tihe maxim1+Dl deflection qf an unrestrained rod ~ubjected" to 

the same temperature differential and is given by 

It is sigDificant to note that the limiting deflect10nunder creep eon~ 

ditione approach~s that which would occur if the mi~~ointof the rod 

acted as a plastic hinge. tnthat case, the maximum deflection i. 

given by e/4. Although an infinite amount of ttm. 1~ required for a 

rod to ,reach itsmaxim~ deflection, this deflection!. closely approached 

,during the projected residence time of the elements j,n the higher 'tempera-

ture regions of the reactor. Thus, for any given temperature differential, 

the maximum deflection of the rod may be immediately predicted. 
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RECTANGULAR AND SANDWICH-TYPE FUEL ELE~ 

The Dovin. and creep behavior of several types of fuel elements 

may be examined using the ,rocedure and equati(!)ns presented. As two 
. , 

examples, other t~an the cyliDdrical EacR fuel rods, 801i_ fectangular 

element. and s&ndwlch ... type elementa will briefly be coneidered •. 

. In the case of a solid element with a rect~gular cross section 

* of height h and width b, I becomes 

20+1 -* 2bn I n 
I =: 2ir+I (h 2) '. 0 

(Al) 

The following differential equation defining tae creep ieflection 

occurrinc during til!le A'7: 11 o.tained by cemblninc Eqli' (Al;)and (2,). 

d WI == (20+1) M (2/h)2o+l ~1:' :2 [ ]n ' 
.dx2 . 2bnJ· . 

(A2) 

In this equation the symbol M denotes the moment distribution for 01' 

transverse loading. If the eletD.8nt i. restrained at the m14point by 

. a force P, the "'nt will be 

Px M =-2, I x 'f;; L/2 

Considerins a sandwloh"!ty.pe element and referring to'Fig- Al, the 
'* . 

following expreuion is obtained tfl)r I • 

. 2rl+l 20+1] _. --
r*e :~l h/2l D... • (h/2 " a) n (A4) . 
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Substituting Eq. (A4) into Eq. (23), the following differential equation 

defining the creep deflection occurring during time 61ri8 obtained. 

d
2
w' = ! .. (2n+l) M 

d 2 2n+l 

x 2bBn [(h/2)-n-- = (h/2 
~+ll·}n /),:1: 

... a) . 

The symbol M denotes the moment distribu~ion for any transvereeloading. 

. . 
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APPENDIX B 

EFFECT OF UNEQUAL PROPERTIES DUE TO WIDELY 
VARYING TEMPERATURES ' 

By referring to Table lon page 22" which gives the properties of 

type ;04 stainless steel, it is seen that both the elastic propertiei 

and the creep properties are significantly temperature dependent. The 

theoretical analysis previouSly described made uSe of pnly one set of 

material constants, these being the constants corresponding to the mean 

temperature. Actually, the temperature and" consequently, the material 

prop~rt1es vary acrOBS the element. Thus, it is desirable to predict 

the error introduced by using m~an temperature properties, especially 

when' large temperature di:f'ferent1abexist. By comparing thecurvatute 

expressions for both c~.ep and elastic deformation when unequal proper~ , 

tiel are employed to those f0r constant properties, a measure of t~e '" 

error may be,obtained~ In view Qf this end, it is necessary to deriv. 

the equations definins the curvatures tor both elastic and creep '" 

deflections,when the prop.rtie. are not assumed constant. 

The previoUs analysi. may be extendedte the case w~ere 11 material 

has unequal properties in tension and'in cO!lllPression by f'ollowins ,. 

method similar to that eet forth in Ref'erence [6]. Vaing this type ot 

, an.1ysis, an approximation to the problem of widely varying temperatures 

may be obtained by assuminl that ,all fiiers intension are at one .. an 

temperature and 'that all fibers in compre.sion are at a different mean 

temperature. For example, if the temperature on, 'one ,side of a fuel 

element is 15500F; the temperature in the middle'1s 14500F, and the ,: ' ': " ' , ' ° ': ' 
temperature on the opposite side is l350F, one could use tbe properties 

• '" • f . 

at 15000F for the material in compreSSion and those at l4000F for the 

material in tensiono 

Keeping this observation in mind, the necessary equations will be 

derived us,ing properties with the subscript t denoting tension and the 



subscript c denoting compression. In this discussion, the equations 

describing the change in curvature due to creep will be derived first. 

The asswiIption that plane sections r.emain plane will again be ma4e. The 

'ef·fect of unequal creep properties displaces the neutral axis to a 

position not passing through the centroid of the cross section.' Thus, 

'.' '" ,the problem becomes one of finding not only the curvature, IIp, but also 

<the, 'Po~ition of the neutral axis as a fUnction of the reSisting moment 

and th~,time interval f).?:. Equation (15) may be written, separately tor 
, , 

the materie.l.in tension arid for the material in compression as follows. 

0" nc 
Ate = (t> ' 1:11: (Bl) , 

c 

Referring to Fig. Bl, the following relationships simi~ar to those of 

Eq. (16) may be written. 

Yt 
=-p (B2) 

Combining Eqs.(Bl) and (B2) and solving for O"t and O"'c' one obtains 

lInt 

. O"t = Bt (~1:')' and 0'" = B c. c 
{:e}} 

To have equilibrium, the applied moment must equal the reSisting moment; 

therefore, 

M= 

, llnc 
'1 

(PAt,) 

Integrating, this becomes 

n+l ,c 
n 

(y) c dA. 
. 

(BIt) 

, (B5) 

• 

.' 
II 
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where 

nt+l n +1 
c 

J. nt 
.. 

.J n 
* (Yt ) * (Yc ) c (B6) . It == dA , I == dA . 

At 
c A c 

The neutral Bxis is defined by the condition of equilibrium stating 

that the resultant stress on the cross section is zero; or 

Substit~ting Egs, (B3) into Eq. (B7) and integrating j the following 

relation is obtained. 

lin 
1 c 

= B Z * (-) c c pD.1:' 

In this equation, 

* Z = t 
and (B9) 

Equations (B5) and (B8) may be solved simultaneously to obtain expressions 

for mt or mc and the curvature, l/PI in terms of the resisting moment , 

M, and the time. increment, 1ST:. The symbol m refers to the distances 

from the neutral axis to the extreme fibers. By the above procedure one 

obtains expressions of the form 

(BIO) 

and 
.. 

IDt = gf M( x), l\"t'] (Bll) 
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Equation (B10) represents the expression describing the change in curv.-, 

ture" ,due to creep, which occurs dutingthe, time interval /jr. 
,The elastic relationships may be obtained in a manner similar to 

the'one'fo1'lowed, for the creep equationso 'From statics, the applied JIIOment 

muSt equal the resistingiDOment ,or" 

J Yt "t CIA + J y' a' a.A III M 
A ' A c c , 

t 'c ," 

. ' (B12) 

Using Hooke's law along with the geometry ,of the deformed beam, this 

expression may be 'written as follows. 

"~J 2 E J' 2 M '= - Y dA + ~ y' dA 
',' , P A' t PAc, ' " 

t ' c 

The stress resultant for anycr68s section i8 zero; hence, , 

f Yc dA DO 

A 
c 

, (B13) 

(:814) 

Equations (B13) and (B14)" describing the,' elastic behavior, correspond' 

to Eqs. (B5) and (BS) for th~ creep behav:i;or.' ,For elastlcdeflections 
. " , 

where, no creep has taken 'place, Eq., (1114) yields _ value of m
t

, which',is 

a constant. This value may be substituted into Eq~ '(B13) to give 'an , 

eXpression of the form 

IIp = MID (B15) 

,The constant D replaces EI in the conventional formula. 

The problem of predicting the error introduced by'using constant 

elastic ,and creep properties is made di~ficult by the fact that the 

variables involved are not separable. These Variables influence the 

'. 

• 
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behavior of the element .in such a way that the deflection can be either 

more or less than for the case of constant properties depending on the 
" '. . 

relative increase or decrease 1n the property values across the element. 

Thus, for the particular case of type 304 stainless steel:" the effect is 

best 'demonstrated by taking a specific example. 

Using the cross seetionand temperature distribution shown ill 

Fig. B2, the'fibers in tension may be assumed to be at a mean tempera

ture ofl3Q6°F" 'while those in compression are at a me~n tempe~ature of 

l5000 F. The mean tetlQ)era ture of the element is i4oooF. Uatn, the 

material properties. as.civel1 in Table 1 on pace 22" Eq~ (B14h tor the 

elae·tic case, yields ~. = 0.97 and me = 1.03. Substituting the.e value. 

'into Eq.(:B13) gives 

; - M 
lp = 6 

- 12.64 x .10 . 

Using the conventional formula and the value-e)f E at l40o~, one obtain. 

M 
lip a: '6 

'12.67 x 10 

The error introduced into the .constant by using the value of E·at the. 

mean temperature of the beam is only O.l~. - This. error is well withim 

the ranie of accuracy which on,e would exPect in repQrted values·.:r E~ .: 

Equations (:85) 

and .c ... 1.30.· 

. " 

and (Be), describ1ns the creep iehavi.r, y1e14 .• t .. ·.0070 

Then, the curvature is given by 

Using Eq. (2J) and the creep properties at l4000Fj one obtains 



The error introduced into the constant by using the creep constants 

corresponding to the mean temPerature of the beam is 4.55~.This error 

is again within the range of accuracy which one would expect in the 

material comstants. 

In addition to the elastic and creep constants» the coefficient 

of thermal expansion~ 0, also varies across the element. Assume that 

there exists a large linear temperature differential across the element. 

Since 0 is approximately a linear f.unction of temperature, the extension 

of fibers across the element is a quadratic function of the position, 

and thus, thermal stresses will be set UPq However, referring ~o the· 

values of 0 in Table 1, the variation over the temperature range shown 
o .. 

in Fig. B2 is small. Taking the value of 1200 F as the mean value ~ the 

maximum variation from this mean is 3.2~. Thus, the extenliC!>n of 

fibers across the beam will vary onl~ slightly from a linear distribution. 

The deformation of the beam is directly proportional to the curva

ture. Therefore, from the above observations~ one may conclude that in 

calculating the behavior of ·an element made of type· .304stalnless steel· . . 
the error introduced by using constant material properties, correspolDdinS 

to the mean temperature of the element, is small even for the large 

temperature differential considered. 

.. 
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APPENDIX C 

EXPERIMENTAL VERIFICATION 

During the course of the theoretical work, it became deBira1tle to 

ver1fy,experimentally, the,behavior ofa fuel rod, as predicted by ,the 

mathematical mOdel. The"creep propertiea ef Plexiglas (and Lucite) 

have been investigated at roo~ temp~raturJPi and good agreement has beeD ' 

established between exper~meatal and theoretical results making use of 

creep properties as determined for a creep law of the general form 

given 'by Eq. (14).' There are ,two basic dif;-erences between the creep 

behavior of Plexiglas at'room temperature and type 304 stainless steel 

at elevated temperatures. First" Plexiglas exhibits a noticeable primary 

stage of cr~ep while type 304 stRinless steel does qot, and, second, 

the creep properties of Plexiglas are different in tension and in co.= 

pression. The high primary creep rate of Plexiglas ~nables one to 

obtaill , ':tn a- few, houri at room temperature,- result:s wl;lich are quali .. ' 

, tatively co'mmensurate, to the behavior of a fuel'element' at an elevated 

temperatUre. 

As long as a rod remains essentially straight the time dePendent 

behavior ,does not depend on the :l,nitial stress-free configuration, :th.t 

ia,the equations describing the e.1asticand,creep behavior are based' . ", '" 

only on changes in curvature. Thus, as long as the ,assumption from,' 

"element~y beam theory that the length of the arc of the deflected curve, 

isapprOJtimatelyeQ.ual to its chord length is not'violated, the conditions 

for the rod may be duplicated Bimply by applying a concentrated load .t 
the midpoint of a straight be~ sq that a constant center, deflection ii, 

maintained.' If th1sforce is ,applied to the uppe;r Side of the beam, 

,the fibers on that side are in compression w1llle thos'e on, the opposite 

side are in tension. !lence, any ensu1ng cre~, deformation will allow, 

the ele~nts between the end. and the,midpoint of the beam to move towards 

,their ~nitial stress-free positions ,along a path perpendicular to the, 



neutral axis" as shown in Fig. Cl., 

Several Plexiglas beams 22, inc long, 1/2 in. ,high, and 1 in. wide 

were tested. The testing fixture was devised to allow,tor variation in 

the maximum deflection from te.tto test, and a means was provided to 

mount dial gages at various points along the length of the beam. The 

testing fixture is shown in Fig. 02. The dial'gage readings were, corrected 

to obtain the actuallJl8vement of the be .. perpendicular to the neutral 

axis. 
Assum1n,g that the initial elastic curve was a straipt line, iig. C3 

represents the experimentally obtained growth curves for it. lUXim.uia initial 

deflection, e, of 3 in. Figure c4 shows the dis?lacement curVes f~r the 
, 0 ' 

cylindrical EGCR rod at 1609 F with a temperature difference across the 

rod of 500,. These curves are also sheWn with an initial straight line 

elastic curve in order that they misht be cempared directly'withthoae 

in Fig. C,. A comparison of the theoreticallY,and eXperimentally obtained 

curves reveals that,at least qualitatively, tbe Plexiglas experiment 

verifies the mathematical model. 
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Fig. 17. Deflection of EGCR Fuel Rod Versus Distance Along Cladding 
for a Mean Temperature of 1300°F and a Diametrical Temperature Difference 
of 2.5°F. 
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Fig. 21. Deflection of EGCR Fuel Rod Versus Distance Along Cladding 
for a Mean Temperature of l400°F and a Diametrical Temperature Difference 
of .50°F. 
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Fig. 23. Deflection of BGeR Fuel Rod Versus Distance Along Cladding 
for a Mean Temperature of l500°F and a Diametrical Temperature Difference 
of 25°F. 
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Fig. 24. Deflection of BGeR Fuel Rod Versus Distance Plong Cladding 
for a Mean Temperature of l500°F and a Diametrical Temperature Difference 
of 50°F. 
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Fig. 25. Deflection of EGCR Fuel Rod Versus Distance Along Cladding 
for a Mean Temperature of l500°F and a Diametrical Temperature Difference 
of 100°F. 
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Fig. 27. Deflection of EGCR Fuel Rod Versus Distance Along Cladding 
for a Mean Temperature of 1600°F and a Diametrical Temperature Difference 
of 50°F. 
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