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J, R. Flanury ,  J. H, Coode, 14. J .  Bradley, J. 127. U l l x m n n ,  
I,. M. Ferris, and G ,  C. Wall 

Tknree head.-erd processes f o r  recovering uranium axid 
plutonium from uranium and plutonium carbide reactor  fuels 
i .~erc investigated using specimens i r rad ia ted  t o  bwnups of 
up t o  20,000 mdlmetric ton ,  
of the f u e l  s~alu-bions produced was examined i n  batch shake- 
out tests. 
was the best method tested,  although direct  dissolu%ion i n  
boixirg 13 M (GO$) IBKI 
organic impzrities i n  &e resulting solution i s  a s 0  poten- 
t i a l l y  useful, Hydrolysis with l i qu id  water at 80 Lo 1_00"C 
is not feasible since the irradiated @&-bides of uranium 
and plutonium a re  passive. 

Solvent extxaction behavior 

~ e a c t i o n  w i t h  s t e m  (pyrohyeolysis)  at 7 5 0 " ~  

follm~ii  by o x i k t i o n  sf r e s i d u d  

Irradiated WaliUnn ~n~nocarbide OZ" the mixed WaiUm- 

plutonium carbide could be Mssolved directly in GO$ m03, 
but about 44% of the carbide carbon ramined  i n  solution, 
primarily as organic acids that interfered w i t h  solvent 
extraction. The organic i t i e s  were largely eliminated 
by oxidative degradation. I n  soJ_vent extraction t e s t s  of 
the t r ea t ed  solutions, rec~very was nearly quantitative,  
but up to 0~4% of the pIxtmxi.um w a s  retained by the solvent 
af'ter stripping. The plu%onfum re ten t ion  was attributed t o  
residual. organic impurities, 
separate$ from gross f i s s i o n  products by a Pacta]: of 

Uranium and plutonium were 

3.4 x 10 



1. INTRODUCTION 

%%e cazbides of uranium, thorium, and p lu tonlm a re  a t t r a c t i v e  f u e l  

materials f o r  power reactors.  For example, the  Consumer’s F’ublic Power 

Iieactor at H a l l a m ,  Nebraska, will use uranium monocarbide. The fuel,  

with sodium as a bonding agent, w i l l  be sealed i n  s ta in less  s t e e l  tubes 

l 5 - n  long and 0.952 i n .  i n  outer d i  eter,’ The rnanocwbide used i n  

these f u e l  elements will be s l igh t ly  less  tlim-ax,. stoichiometric ( s l igh t  

excess of urmlum) i n  order t o  prevent reaction with the  s ta in less  s tee l  

cladding. Since carbides represent a new c lass  of fuels,  it i s  neces- 

sary t o  develop methods for  recovering the fuel values from spent elements, 

and some o f  that work i s  being done a% Oak Ridge National Laboratory. 

This report i s  concerned with the  study of methods f o r  providing 

n i t r i c  a c i d  solutions of f u e l  values tha t  can be sent d i r ec t ly  t o  

solvent extraction for t h e  recovery of purif ied fuel. Aqueous systems 

were i n v e s t i g a ~ e d - - . p y r s ~ ~ s i s ,  hydrolysis, and dissolution i n  n i t r i c  

mid. I r rad ia ted  uranium monoesbide and mix tures  of uranium agld plutonium 

monoca;r%ides were used, and the  work w a s  done with prototype f u e l  specimens 

i n  order t o  tes t  the variables under actual. conditions. Much of the  work 

grew out of basic  studies of unirradiated uranim carbides,  whose reac- 

t i ons  with water, n i t r i c  acid, and. sodium hydroxide are reported else- 

where. 2-6 

These laboratory s-t;udies (1- t o  20O-g s l e s  per batch) were done 

in Pyrex equipment. Only one process i s  recommended-the one based on 

the use of flawing s t e m  at  750°C a d  atmospheric pressure t o  produce U02 

(or oxides of other fuel values) which can subsequently be dissolved i n  

n i t r i c  acid. 

The processes will be discussed i n  t h e i r  order of preference: pyro- 
hydrolysis, d i rect  dissolution of the carbide i n  n i t r i c  acid, and hydrolysis 

at 80 t o  1 0 0 ° C .  

head-end process for producing a f e e d  solution sui table  for l?arex solvent 

extraction, data and evaluations on solvent extraction perfo 

Also,  since the objective w a s  t o  develop a sa t i s fac tory  

included. 



2,1 Process Flowsheet 

1 n i  f, i a1 hat -cell evalulzt i on of t h e  hydroly s i s -di s s okut ion proc e s s 

( Sec 4.2) reveded  t h a t  high-purity neutron-irradlaled uranium monocarbide 

i s  n e a r l y  i n e r t  to water at &I to ~ O C P C . ~ ' ~  9ke "passivity" of i r rad ia ted  

uranium monocarbide prompted the development of the pyrohydrolysis process 

to conlrerZE t h e  monoearbide t o  uranium dioxide. The process is designed t o  

eliminate t he  carbon as volatile cwbora oxides before dissolution of the  

vlrsriim dioxide residue, 

uranium manoearbide i n  n i t r i c  acid generates soluble organic acids, dele- 

terious Lo solvent extraction, that are extremely difficult %O destroy or 

The alternat,ive process of d i r ec t  dissolution of 

remove (Sec 3. ) e 

The proposed pyrohydrolysis process, as applied Lo the  Consmers 

Publie Power reactor fuel., is s h ~ w n  i n  Pig,  I, T h i s  resetor  is fueled 

with bundles of ~ L a i n X e s s  steel-clad, sodfm-bonded l-n;yl?ostaichi 

uranium monoearbide rods X5-n long nnd 0.952 in, in outer awneter  

 able le I..>. After disassembly of f;txuctmr&l hardware, eight-rod b u n a e s  

of spent f u e l  would be fed through a, hydraulic shew7 a d  chopped into 

E-in, sections. Since ursrxr5.m monocarbide i s  quite brittle, considerable 

shat ter ing m d  powdering i s  expected, 

fe r red  t o  the pyrahydrokysis uni t  and steamed at l o w  temperatare first to 

eonlrest sodium to a di1ut;e caustic so lu t ion  which is discarded Lo waste. 

%?le chopped fuel is then trans- 

m e  reactor i s  t hen  purged with an i n e r t  gas (nitrogen) LO eliminate 

air s ince  the  pyroh~droly~i~ seacti.011~ generate hydrogen a d  3 hydrogen- 

oxygen elcpZoslori must be avoided, With the reactor temperature at 750"C, 
steam is fed downflow into tihe reactor at 8 rate of 20 b/min for 4 hr to 
convert the  uranium monocarbide t o  uranium dioxide (0.035 C), with at- 

tendant volatilization of hydrogen, carbon dioxide, and carbon monoxide e 

About 3.7 moles of hydrogen are discharged t o  off-gas per mole of uranium 

monoearbide eanswned. 

Dissolution of" the oxide product proceeds rapidly in 6.5 14 HN03 at; 

10S"C; however, 4 hr is ca9lowed for c o q l e t e  dissolut ion since the  oxide 

must be leached from %he s t a in l e s s  s tee l  shel ls .  Sufficient dissolverit 

I 
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UNCLASSIFIED 
ORNL DWG. 6 4 ~ 5 8 2  

Pu VALENCE 
AD J U S T ME N T 

OFF-GAS 
.- 

___ 

CORE -_.- DISSOLVENT 
STEAM 

CONDENSATE 

CHOPPED SS-CLAD 
BUSTION __ D I S S  OLUTl ON UC FUEL __ 

4 hr at 105*C 
-..- 

4 hr at 750°C 
55 -90 kg 
UC 1050 kg 

SOLVENT EXTRACTION SS StlELLS ___..-.-__I__ 

UO2(NO3)2 1.36 M - TO 
WASTE 3 M  H N O 3  3 - -. . . 

-90 kg 3.09 x 10 l i ters 

Fig .  1. Pyrohydrolysis Process for Uranium Carbide Reactor Fuel. 
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UC assemblies: 8 rods i n  c i r c d s r  array about a cent 
tube 

Active section: 13.25-ft by Oe872-in,-diam rod 
of hypastoichiometric uc (4.4 - b.&$ C> 

3O-miZ radial m m U h l S  f i l l ed  w i t h  Ha, plus 2-in. 
Sayer of Na above upper end of act ive section, 

304. stainzhess s-beel cladding, 10 m i l s  th ick  

20 kg UC per element 

Fuel element 
composition: T s t d  YY (before burnup) I9sl2 @ 

35 enrichment 3.7 t o  4.9$ 
Carbon 0.88 kg 
Sodium 47.95 Cii 
Stainless s t  ee l  0073 &3 

Personal e o m n i c a t i o n  with Keith Magnus, Atomics Internat ional .  a 

i s  used t o  produce a Purex feed solution, 1.36 M UO,(NO 1 
containing u t race of residual carbon. This sohution, after plutonium 

vaZence adjustment t o  the ( I V )  state with n i t r i t e ,  m y  be sen t  through 
8 

u canventional Purex plant 

from f i s s i o n  products by solvent ex%raction with 

and 3 N tIN0 
L 3 2  - 3' 

f o r  recovery and separation of the fuel values 

t r i b u t y l  phosphste e 

2.2 Process Demonstration w i t h  I r rad ia ted  Carbide Fuels 

Five hot-cell experiments on pyrohydsolysis were conducted with 4- 
t o  7-g single pieces of stoichiometric uraitun monocarbide (4.876 C >  irradiated 

from $500 t o  16,000 Nwd/metric ton (Pig. 2a). The specimens were placed 

1x1 .a porcelain boat positioned horizonally in 8 Vyear -tube enclosed by 

an electr ic  furnace (Fig, 2 c )  and eslposed to steam at atmospheric pres- 

sure at TOO t o  8 0 0 " ~  f a r  up to 5 hr. Air could not be excluded from the  

reactor i n  t h i s  s e r i e s  of experiments; consequently, greater than 9% of 

l e  w a s  eonvested t o  the higher oxide, U308* The condensed steam 



&COP9 OlOHd-1NOIO 
a313 issvir>Nn 

9 
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from the  off-gas contained from 1.1$ (700°C) t o  4% (800°C) of the  t o t a l  

cesium a c t i v i t y  and 5.776 and 0.36% of t h e  ruthenium and zirconium, res- 

pectively.  Cesium w a s  the  pr inc ipa l  f i s s ion  product volat i l ized.  

The oxide product w a s  dissolved i n  n i t r i c  acid i n  30 min producing 

a solution, 1.36 M U02(N0 ) 
carbonaceous residue. The residual  carbon content of the  oxide could not 

be determined due t o  lack of spec ia l  ana ly t ica l  f a c i l i t i e s .  

extract ion performance w a s  highly sa t i s fac tory  with t h i s  solution. In  

standard batch extract ion and s t r ipping t e s t s  (Sec 2.3.2), 99.99% of the  

uranium and plutonium w a s  recovered. 

sec were observed which are n o m 1  f o r  t he  Purex system. 

and 3 M HNO containing a small (unweighable) 
3 2  - 3' - 

Purex solvent 

Phase coalescence times of 20 t o  30 
8 

The pyrohydrolysis process w a s  fur ther  evaluated i n  a ser ies  of hot- 

c e l l  runs i n  small-scale equipment i n  which a i r  w a s  excluded (Fig. 3 ) .  

This equipment duplicated t h a t  used i n  laboratory studies (Sec 2.3). 

i r rad ia ted  uranium monocarbide ( 4 . e  C )  reacted with steam at TOO t o  750°C 

t o  produce a free-flowing uranium oxide residue and a dry off-gas of' nearly 

iden t i ca l  volume and composition t o  t h a t  obtained with unirradiated uranium 

monocarbide. Apparently, t he  reaction of i r rad ia ted  uranium monocarbide 

with high temperature steam proceeds stepwise, as postulated f o r  unir- 

radiated monocarbide (Sec 2.3) 

radiated t o  7500 Mwd/metric ton, w a s  reacted w i t h  steam at  atmospheric 

pressure at 700 t o  750°C f o r  2 t o  3 hr. 

purged with helium t o  eliminate air. 

complete i n  one hour, which agrees closely with the  overal l  r a t e  obtained 

with unirradiated monocarbide (Fig. 4). 

r a t e  of reaction w a s  the  same; however, at the  lower temperature the  r a t e  

diminished s l i g h t l y  as the  reaction approached completion. After condensa- 

t i o n  of the  steam, the  dry off-gas contained hydrogen, 83 vol $, carbon 

dioxide, ll$, and carbon monoxide, 646, compared with 80% hydrogen, 16% 
carbon dioxide, and 4% carbon monoxide found i n  the  off-gas from 750°C 

pyrohydrolysis of t he  unirradiated monocarbide. 

The 

Stoichiometric uranium monocarbide, ir- 

Before each run, the  system w a s  

At 750"C, the  overal l  reaction w a s  

A t  720" and 750"C, the i n i t i a l  
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The uranium dioxide composited from seven experiments contained 0.25% 

residual  carbon ( 3 rng C per gram of i102), cornpared with 0.03s carbon 

found i n  the  oxide from laboratory studies with the  unirradiated mono- 

carbide (Sec 2.3). The determination of res idual  carbon i n  t he  highly 

radioactive oxide samples may be inaccurate since only gram amounts of 

oxide Were available f o r  analysis.  The composite steam condensate con- 

ta ined 0.48% of the  cesium, 0.04% of the  ruthenium, and 0.06% of the  

zirconium i n  the  i r rad ia ted  specimens, considerably l e s s  than the  mounts 

vo la t i l i zed  i n  the  experiments containing air. 

off-gas samples was at the background leve l ,  

* 

The ac t iv i ty  i n  the  dry 

The pyrohydrolysis process was a l so  successfully demonstrated with 

2@$ PUC--~@ UC specimens i r rad ia ted  up t o  20,000 Mwd/metric ton. 

these runs, a paper f i l t e r  w a s  inser ted immediately downstream from the  

steam condenser. 

wi th  stearn at 750°C for 2 hr. About 0.74$ of the  cesium i n  the  f u e l  

sample appeared i n  the  steam condensate and 0.074 w a s  trapped on the  

f i l t e r .  

ground leve l ,  

cesium w a s  found on the  f i l t e r ,  

In 

One-gram samples of the  mixed carbide fuel were reacted 

Again, the a c t i v i t y  i n  the f i l t e r e d  off-gas w a s  at  the back- 

I n  a run w i t h  a 900-Mwd/metric ton sample, 0.1% of the  

A sample of t he  mixed carbide (20,000 Msfd/metric ton) was burned 

i n  a stream of oxygen f o r  2 h r  at 800°C. 

36% of the  cesium and 2$ of the ruthenium. 

gas from pyrohydrolysis contains much l e s s  radioact ivi ty  (background 

leve l )  than t h a t  produced by d i r ec t  oxidation at about the  same tem- 

perature. 

In  t h i s  case, the f i l t e r  trapped 

Thus, the  noncondensable off-  

me mixed oxides when dissolved i n  n i t r i c  acid produced solutions 

t h a t  performed adequately i n  ba%ch solvent extraction. 

99.98% of the  uranium and 99.93% of the  plutonium was obtained. 

tamination from f iss ion  product gamma a c t i v i t y  was about LO . 
Recovery of 

Decon- 
4 

* 
By cmbustion-C02 absorption. 



Flowsheet Developlur3m-f; Studies 

the pyrohydralysis process, primary objectives 

were (1) t o  establish the  conditions f o r  quant i ta t ive  conversion of 

uranium monocarbide t o  uranium oxide at reassnabhe t e  

reaction rate, m d  (2) Lo determine the  volume and composition of the 

gaseous products, 

Experiments were conducted i n  smll gyrex equipment using a ve r t i -  

cdiy mounted quar t z  tube reactor enclosed by a resis tance hea%er furiiace 

(Fig. 3 ) .  
reactor and vaporized before it contacted the  approximate 5-g ch 

si" uranfim monocarbide. 

gas, and t he  d ry  gas voltime was me'cered and s 

each run, the system WMS swept w i t h  helium. 

Water vas pumped a,% a conLrolled rake i n t o  the top of the  

Excess water Y ~ K X I -  was condensed from the  sff- 

S c o u t i ~ g  experiments shajhved that arc-melted and c a s t  u r m i m  mono- 

carbide reacted very slmly with s t e  at l c O 8 ' ~  atmospheric pressure, 

but, at  7OO"C, the  moiiocarbide was rsnaplete1.y conver ted to  oxide i n  3 t o  

5 hr, 
containing from 0.OW to 0 .0~6$  residual carbon. Further experiments 

vere conducted a t  650 t o  750°C w i t h  a i r  excluded from the reactor and 

at.t;e~:d;zm-f; off-gas systea. 

reaction 1s r i ck  in hydrogen, the p o s s i b i l i t y  of a, hydrogen-oxygen ex- 

'3'8 A i r  was not excluded from the reactor, ,mid the product was 

Since the  off-gas from the pyrohyd.rolysis 

p i ~ ~ i ~ n  mst be &voided. 

2.3.1. Conversisla of uc to h Stem.  a t  650 t o  7 5 0 " ~  

Reaction rates oC uranium monoearbide w i t h  superheated s t e m  as a 

function of temperature are sham as the p l o t s  of dry  off-gas volume vs 

% h e  (Fig, 4). 
or about 3 hr at 700°C. 

The reaction is pmrxticwlly complete i n  an hour at 7 T Q ° C ,  
At 65s"e, 'the reactrim i s  still incomplete afier 

ented ul-mimi rnonocabi.de were used to 

sirnullate the fuel after chopping and t o  provide a uniform bed of ma.teria3. 

in t he  reactor to avoid channeling, "he high-purity uranium monocarbide 

(4,68$ carbon by analysis) was prepared by Atomics In te rna t iona l  by nre- 

cas-bing i n  graphite molds. 



With a i r  excluded, the  oxide product from the  reaction i s  a granular, 

free-flowing dark-brown powder (Fig. 2b), w i t h  an oxygen-to-uranium r a t i o  

of 2.03 and containing 0.03% residual  carbon. 

by x-ray d i f f rac t ion  as UQ2, with a t r a c e  of U 0 

This product w a s  ident i f ied  

3 8' 
About 425 cc of noncondensible (dry) off-gas i s  evolved at STP per 

gram of uranium monocasbide consumed, compared with 93 cc of off-gas 

evolved per gram of the  monocarbide hydrolyzed at 8 0 ° C .  Using the aslalysis 

of the  gaseous products from a run at 750°C (Table 2), the  overal l  reaction 

of one mole of uranium monocarbide (4.68$ C )  with 3.7 moles of water yields  

uranium dioxide plus 3.7 moles of hydrogen, 0.68 moles of carbon dioxide, 

and 0.1 mole of carbon monoxide. 

During the  f i rs t  half  of the  reaction at 750°C (Table 2) the gas i s  

r i ch  i n  hydrogen (86 vol 4 ) .  A s  the  reaction proceeds, t he  proportion of 

hydrogen decreases t o  73.1 vol  $I. Also ,  as  the  reaction proceeds, carbon 

dioxide increases from 2.4 t o  25.5 vol $J, and carbon monoxide diminishes 

from 6 vol  $I t o  none. This suggests t h a t  the reaction proceeds i n  two 

stages. A r e l a t ive ly  fast reaction occurs first: 

uc + W 2 O  -> uo2 + c + w2 p 

and then the  f r e e  carbon i s  converted t o  oxides at  slower ra tes:  

c -I- 2H20 C02 + 2H2 0 

This theory i s  supported by the  r e s u l t s  of a run at 750°C which w a s  

stopped when only a t h i r d  o f  t he  t o t a l  yield of ofT-gas had been evolved, 

The product from t h i s  run contained 1.05 w t  '$ of f r ee  carbon and 0.93 
w t  $ of combined carbon (carbide) . 

A t  650°c, the  gas composition w a s  constant throughout t he  reaction, 

indicating t h a t  at t h i s  temperature, reaction (1) proceeds at about the  

same r a t e  as reactions (2a) and (2b). 



The solution (containing carbon) and a control  so lu t ion  af the  s m e  

u.rmyS n i t r a t e - n i t r i c  acid concentration prepared from lsbortgt;a-Py TI 

were both tes ted 'oy solvent extraction with 

The i i r a~ ly l  n i t r a t e  was extracted from each soluti.on using six aliquots 

of ~ O # J  "J3P i n  Adi&*me, t hen  st.~*ipped f x * ~ m  the  salvelit f r c ~ ~  the f i rs t  ex- 

traction with five al iguots  of 0.0% M HNO U r a n i u m  recovery was nearly 

qu.mtit&ive (bet ter  than 99.99"b) in both experiments. 

of the  solution derived by pv-diydre?lysis9 phase-caaJ.escenee t b c  avercaged 

tributyl.  phssph~te (Table 3 ) .  

- 3' 
Khrring extraction 



Table 3. Typical Batch Solvent-Extraction Test Conditions 
Simulating the  Purex Process 

Relative 
Volume St  ream Compos it i on 

Feed stage aqueous 
(Feed plus Scrub) 1.05 - M U02(N0 ) 2.6 - M HN03 5 

3 2' 
Scrub 

Solvent 

S t r i p  

3 ,M HN03 2 

30 vol  '$ t r i b u t y l  phosphate i n  LO 
Adalrane, pre-equilibrated with 
2.6 M HNO - 3  

- 3  
0.01 M NNO 20 

Extraction: Six 2-min equi l ibrat ions o f  "feed stage aqueous" w i t h  
f resh  al iquots  of solvent at  25'C. 

Six t o  eight 2-min equi l ibrat ions of "1st-stage solvent" 
from extraction with f resh  al iquots  of scrub at  25'C. 

Five 2-min equi l ibrat ions of "1st- stage solvent " w i t h .  
f resh  al iquots  OF s t r l p  at  25OC. 

Scrubbing: 

Stripping: 

50 see, about twice t h a t  of the control; however, no s ignif icant  dif- 

ference between the s e t t l i n g  times was observed during stripping, 

increased s e t t l i n g  time i s  a t t r i bu ted  t o  the  t race  of f ine ly  divided 

carbon suspended i n  the  solution derived from pyrohydrolysis. 

the  extraction, d i s t r ibu t ion  of the carbon w a s  random, and, upon. se t t l ing ,  

it accumulated at  the  interface.  

tinuous countercurrent extraction equipment (mixer-sett lers or  pulsed 

columns) to es tab l i sh  whether t he  residual  carbon m y  pose an engineering 

problem. Plutonium can a l s o  be extracted fromthese solutions (See 2.2). 

The 

During 

Further study i s  required using con- 

2.4 Evaluation of the  Fy-rohydrolysis Process 

A promising new dissolution process (pyrohydrolysis) w a s  develaped 

and was successfully applied t o  uranium monocarbide, plutonium carbide, 

and 20% plutonium carbidc--80$ uranium carbide prototype fuels.  Highly 

i r radiated,  reactor-grade uranium monocarbide reacts  with excess steam 

at  a. pract ical ,  controlled r a t e  at 750°C and atmospheric- pressure (air 

excluded) producing free-flowing uranium dioxide (O.O3$ residual  carbon), 



. 1.5; 

with t h e  evolution of hydrogen and the carbon oxides. 

n i t r i c  acid solution obtained by dissol.\ring t h e  ur.:miajm dioxide i n  n i t r i c  

The uranyl nitrate- 

acid i s  processed d i  j-e<%I.y by c ~ n v e ~ & . l o n d  solvent a t r a c t i u n .  

3 .  .% Process FPawsheet 

An ~Xterna t ive  process w a s  developed based. on direct dissnl.utian of 

uranium manocarbide i n  nitric acid (Fig. 5). Uranium monocarbide dissolves 

r ap id ly  and completely i n  strong n i t r i c  acid, proclucing carbon d.ioxi.de (56% of 

.the carbide carbon) and. so~.u'ole 0rganj.c acids.  

seriously interfere with the recovery of w ~ m i w i - u  ma plutonium by solvent 

m e s e  organic impurities 



d
 

T
 



r 

extract ion,  

t o  canrpletely degrade the mixture of organic impurit ies t o  carbon dioxide. 

The process r e l i e s  on strong oxidizing conditions t o  degrFa.de the  b i lk  af 

these impurit ies and thereby minimize t h e i r  effects .  

No s ing le  method or combination of techniques has been found 

The uranium monocarbide core can be dissolved i n  4 h r  a t  90 t o  120’6 

with a 3209 excess of 60% HNO. The resulting solution, 0,47 M i n  U02(N0 ) 
and 11 M i n  HNO 

excess n i t r i c  acid i s  recovered by d i s t i l l a t i o n  and recycled as dissolverit, 

L i t t l e  degradation BCCUSS during d i s t i l l a t i o n ,  and the  organic impurities 

remain with the pot residue. The residue i s  d i lu ted  t o  provide a solut ion 

1.36 M i n  U02(N0 

promote fur ther  degradationenfit Least 

i n  the  product af’ter the oxidation s tep but the products which are dele- 

te r ious  t o  solvent extract ion have been mostly eliminated. After feed 

c l a r i f i c a t i o n  and plutonium-valence adjuctment to t he  (IT) state w i t h  

n i t r i t e ,  t he  solut ion would be sent through the  standard Pusex process 

f o r  recovery of the  f u e l  vd,ues. 

3 2  - s* 
i s  refluxed 6 hr t o  degrade the  organic impurities. The 

3’ - 

and 3 M i n  mi0 and reflured 2 hr with 0.2 M KMnOs to 

5% of the or ig ina l  carbon remains 
L 3 - 3 2  - 

3.2  Process Demonstration with I r rad ia ted  Garbide Fuels 

Hot-cell t es t s  of t he  proposed process were conducted with uranium 

monocarbide (4.8 t o  5.Q$ C )  i r rad ia ted  t o  6000 Mwd/metric ton.  

t i o n  of 50-g samples i n  a 300% excess of: 15.8 M EINO, and 6 hr of reflux 

produced solids-free,  dark-red solu%ions. (In one run, however, a small 

(unweighable) mount of black so l ids  w a s  detected a f t e r  20 hr  of refluxing. 

The black so l ids  

i n  the  f u e l  sample.) 

Dissolu- 

- 3  

re tained less than O,Ol$ of the  uranium and plutonium 

The excess ac id  w a s  removed by d i s t i l l a t i o n ,  The condensate (13 M 

The pot 

3 M i n  

- 
KN0 ) contained about 17$ of the  ruthenium i n  t he  f u e l  sample. 

residue w a s  adjusted t o  provide a solution 1.36 M i n  UO (NO ) 
MMO 

manganese dioxide, t he  solut ion had the  charac te r i s t ic  yellow color of 

uranyl n i t r a t e .  The solut ion w a s  treated w i t h  0.1 M N d 0 2  f o r  l h r  t o  

s t a b i l i z e  plutonium i n  the  (IV) state, then subjected t o  extraction, scmb- 

bing, and st r ipping under sirmilated Purex conditions (Table 3 ) .  

3 

3, 

3 2 3 2 ’  - 
and 0.2 - M i n  KM”04 and refluxed for  2 hr .  A f t e r  f i l t e r i n g  off t he  
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After extraction, only 0.00@$1 of the  uranium and O.Ol$ of the  

plutonium remained i n  t h e  aqueous phase, which indicates  t h a t  oxalic acid, 

a known 0rgani.c impurity and aqueous-soluble Complexes o f  plUtOnil*m (IV) 
(Sec 3.3), had been destroyed. 

recovered. 

solvent. Phase-separation time (20 t o  30 sec) appeared nonnal. for the 

Purex system, as did the  separation f ac to r  (uranium and plutonium from 
4 

gross gamm a c t i v i t y )  of 3.4 x 1-0 . 

Upon stripping, 99.9vp of the  uranium w a s  

Flutoniim recovery was not so cannplete; 0.155 w a s  held by the  

Samples of i r r ad ia t ed  plutonium carbide (1000 l&d/metric ton)  and 

80% uranium carbide--20$ plutonium carbide (20,000 Mwdlmetrie ton) were 

successfully processed according t o  .the proposed flowsheet. 

of the samples i n  a n  excess of 13.2 M EN0 

solids-free,  green-black solutions.  During d i s t i l l a t i o n ,  from 0.08 t o  

0.565 of the ruthenium was vo la t i l i zed  and w a s  col.lected i n  t h e  I1 M IENO 

condensate. 

Dissolution 

and 6 h r  of refluxing produced 
- 3  

- 3  
Ruthenium w a s  t he  pr inc ipa l  f i s s i o n  product vo la t i l i zed .  

After treatment with permanganate, t he  feed solut ion contained from 

25 t o  32% o f  t he  carbon or ig ina l ly  present i n  the  carbide specimens, 

This res idua l  carbon had no adverse e f f ec t s  on extract ion of the  feed 

solutions.  

F~(N0~)~--4.5 M IINO reduced the  pluLonium loss t o  0.004$. However, 

after stripping, 0.4% o f  t he  plutonium w a s  re ta ined i n  the solvent. 

some of t h e  organic products may be extracted i n t o  t h e  solvent where they 

complex and r e t a in  plutonium. 

For example, batch extraction of a feed solution, 0.13 _. M 

- 3' 
Thus, 

3.3 Flawsheet Development Studies 

Samples of the  monocarbide ( 4 . q  C )  were dissolved i n  a 3 2 6  excess 

of 13 M KNO 
acid addition. A red-brawn, sol ids- free solut ion w a s  produced, and it 

i n  4 hr; t h e  vigorous reaction w a s  regulated by controlled 
- 3  

was 0.47 M i n  U02(N0 ) 
8.5 moles. per mole of urmiiun monocarbide dissolved. 

561$ of t he  carbide was convel-ted t o  carbon dioxide, and -the reminder t o  

n i t  ri c acid- soluble, high -male culm- -weight osgmi e compounds cotit a i  ning 

carboxyl and n i t r o  g:roips, which impart a red-brom coloration t o  the 

and 11 M i n  HNQ Nitric ac id  consumption w a s  3" - 3 2  - 
During dissolution, 



uranyl n i t r a t e .  

3.0% t o  m e l l i t i c  acid, and 29% t o  organic compounds as yet unidentified.  

About 5% of the  carbide carbon i s  couverted to oxalic acid, 
12 

The organic impurit ies were p a r t i a l l y  degraded by 6 hr of reflux- 

i n  t h e  excess Ib M HNO After ref]-ux, the solut ion wab orange-yellow, 

and the content of organic impurit ies had been reduced Prom 44 t o  2576 of 

t h e  o r ig ina l  carbide carbon, as indicated by carbon analysis, During 

disti Z1xZ'tio~i, 110 Tux%lner degradation was detected, 

- 3"  

After  treatment of thc  diliated pot residue with O " 2  I M KlvInOl+ and 2 lsr 

of refluxing, fallowed by removal of the manganese dioxide, t he  solution 

re tained only 5% of t h e  original carbon as organic impurit ies.  

t i o r i  performed adequately i n  t h e  standard Purex extraction-strlpping 

This soPu- 

%est. (Table 

c o d e s  cenee 

s t r lpping.  

3)  * 
times averaged 40 sec during extract ion and 15 see during 

U r a n i u m  recovery was grea ter  t h a n  99*99$ and phase- 

and Heath at, Dounreay13 have investigated Lhe dissolut ion of 

uranium monocarbide ii: n i t r i c  acid and proposed t h a t  concentrated uranyl 

n i t m k o  i n  6 M IINO t r i b u t y l  phosphate, 
- 3  

leaving moc;t of the organic impurit ies in t he  acid fission product waste. 

Tests were conducted here t o  examine the  f e a s i b i l i t y  of" t h i s  procedure 

modified t o  include extended reflux i n  6.7 M HNO 

m y  be e&,ractt?d d i r e c t l y  w i t h  

t o  destroy oxalic acid.  
- 3  

The uranium monocarbide (4.8111, C )  was dissolved i n  13 M 1€NO3, pro- 

and 6.7 t o  8.1 M - 2 3 2  - 
- 

ducing stable solut ions t h a t  were 1.05 M i n  UO ( N O  

i n  HNO 

Nl'aO 
3 

at 2'5°C within 24 hr, occasionally accompanied by uranyl n i t r a t e  c rys ta l s .  

A11 solut ions received 4 hr of refluxing before storage. 

Other solut ions more d i l u t e  in uranyl n i t r a t e  and 5.7 M i n  3' - 
( o r  l ess )  wcre metastable; p rec ip i t a t ion  of uranyl oxalate occurred 

The stable solution, l * O 5  M i n  U02(NQ ) and 6.7 M i n  HNO contain- 
3" - 3 2  - 

ing plutonium (IT), was refluxed f o r  27 hr and per iodical ly  t e s t e d  by 

batch ex t rac t ion  and s t r ipp ing  (Table 4.). 
oxalate formed during dissolut ion limits the ex t rac t ion  of plutonium ( I V )  

but has no s igni f icant  e f f ec t  on uranium extract ion.  A constant plutonium 

extract ion loss of O.35$ was experienced with solut ion previously refluxed 

up t a  27 hr.  Although phase-coalescence time w a s  s a t i s f ac to ry  during 

Thc r e s u l t s  suggest t'nat t h e  
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Table 4. Effects of Organic Impurities in UC-Derived Feed Solutions 
on the  Extracti-an and Stripping of Uranyl. Nitrate and Plutonaus 

Nitrate Under Modified Purex Conditions 

Conditions: Feed Solution: 1.05 UO,(~03)2 6.7 M mo3, 1.1.8 x lo7 Pu(TV) 
counts m i n - h l - i ;  solction'  treated as indi-  
cated. 

Solvent: 30 vol $ t r i b u t y l  phosphate i n  Addcane, pre- 
equi l ibrated with 6.7 - M HN03. 

Aqueous Strip: 0.01 M XNO - 3'  
Extractant: Seven ('2 min) equi l ibra t ions  at 25°C; solvent/ 

feed volume: 2/1 

Strip: Seven ( 2  min) equi l ibrat ions at 2 5 O ~ ;  st r ip/  
salverit volume: 2 / 1  

Feed Sol-ution Refluxed: 

0 hr 4 hr 16 hr 27 hr 

EXTRACT'ION 

~ o n c .  o f  uran im i n  aqueous,mg/ml 

Ext. 5 
6 
7 

0.038 0.235 0.005 
0.013 0.002 0.003 
0.003 0.0001 0.002 

m k - 1  
4 4 4 

E x t .  5 5.9 x lo4  5.3 x lo4 4.3 x lo1, 
Plutonium i n  aqueous, counts min 

6 6.5 x IO4 4.5 x lol+ 4.1 x lo)+ 
7 4.7 x 1.0 4.7 x 10 4.2 x 10 

Coalescence time, sec ave. 30 ave. 35 ave. 20 
Observations --- --- -e- 

STRIP 

uranium i n  solvent, 

S t r i p  5 
6 
7 

0.053 0 " 019 0.004 

0.003 0.004 0.004 
0.003 0.005 0.007 

plutonium in solvent, counts min-1m1-1 
14 

4 
8.3 x lo3 6.9 x 10 6 . 3  x 10:; 

5.2 x lorc I..._ 
3 6 5.5 x 10- 

7 3.9 x 10 2.5 x 10 5.9 x 10 

Coalescence time, see 30 to 70 40 to 120 40 to 75 

S t r i p  5 

O b  seivat ions soxvent Semistable Solvent 
retains emulsions colored 

color 
YCllhCrW 

-1___ 

0 e 003 
0.002 
0.001 

I+ 4.4 x lo4 

4.0 x 10 

ave. 20 

4.0 x lo1, 

_I- 

o. 018 
0.001 
0.081 

3 
3 

1.4 x 10 

3 
1.7 x 10 
1.3 x 10 

40 t o  60 

Solvent 
colored 



extraction, it increased as the  s t r ipping progressed. Plutonium str ipping 

lo s s  wa3 e r ra t i c ,  ranging from O.O* for solution refluxed 16 hr t o  1% f o r  

solution refluxed 2'7 hr .  I n  a12 t e s t s ,  t he  or ig ina l ly  water-white solvent; 

retained a f a i n t  yellow color after stripping. 

I n  t h i s  processin@; scheme, the d is t r ibu t ion  of carbon compounds w a s  

e s t i m t e d  by carbon analysis. Mber dissolution, 43% of the monocarbide 

carbon remains i n  the  solution, mostly as highly colored organic impurities. 

A f t e s  24 hr of refluxing i n  6.7 M IENO 

organic impurities. 

soPvcnt Rfter stripping. The balance, 26.75, i s  discarded with the aqueous 

waste from elctractioii. 

28% remains as par t i a l ly  degraded - 3' 
Finally,  le3$ i s  extracted a d  largely remains i n  the  

The r e s u l t s  suggest tha t ,  without subs tan t ia l  degradation of organic 

impurities, plutonium recovery may be l imited i n  solvent extraction, and 

troublesome emulsions may build up, pa r t i cu la r ly  i n  the st r ipping contactor, 

Also, the organic impurities, about 3 t o  5 g/liter, w i l l  eventually pass 

on t o  the  ac id  fission product waste evaporators and nay pose special  

problems i n  waste management. 

3 . 3 . 1  Oxidative Degradation of Qrganic I q u r i t i e s  

Oxidative degradation of the organic compounds i s  exceedingly d i f f i c u l t  

using treatments and chemical reagents considered safe f o r  radiochemical 

processes. 

t ion; however, extra  equipment i s  needed f o r  d i s t i l l i n g  the excess acid arid 

backcycle t o  dissolution. Degradation w a s  attempted by t r ea t ing  the  dis- 

solved f u e l  solution with various oxidizing agent.;. Permanganate w a s  t he  

best of those tes ted .  

Extended refluxing i n  strong n i t r i c  ac id  slowly promotes degrada- 

The superior i ty  of pennanganatx over cer ic  ion a s  an oxidant f o r  

destroying the  organic impurit ies i s  shown i n  Table 5.  ALiquots of the  

d i lu ted  s t i l l  residue, 1.54 M i n  UO,(NO ) and 4.9 mg of 

carbon per  m l ,  uere t r ea t ed  with 0.02 t o  0.2 M C e ( N H  ) (NO ) - and other 

a l iquots  with 0.02 to 0.2 - M KM"04, refluxed 2 hr,  and analyzed f o r  total 

carbon, With 0.2 M KMnO a f ivefold reduction i n  carbon compounds w a s  

achieved; with 0.2 M cer ic  ion only one-fifth of t he  orgarlic i.mpurities 

w a s  e l i m i r i a t  ed 

3.3 ,M i n  IINO 
3 2' 3' - 

# 4 2  3 6 '  

4 - 
- 



22 

Table 5.  

Conditions: 

Oxidative Degradation of Residual Organic Impurit ies i n  

Aliquoks of t he  d i lu ted  s t i l l  residue, 1.54 M U02(NO3)2, 3 . 3  M 
KNO , and res idua l  organic impurities, t reazed with KMnOb or"" 
Ce(&4)2(N03)6 as indicated, and refluxed. 2 hr. 

UC-Derived Peed Solution Using Permanganate and Ceric Ion 

Residual organic impurit ies determined by t o t a l  carbon analysis  

0.02 4.89 0.0 4-89 
0.02 4.14 0.02 4*80 
0 ~ 0 5  k .02 0.05 3.18 

0.1 4.02 0.1 2.22 

0.2 3.81. 0.2 1.02 

3.4 Evaluation of  the  Direct N i t r i c  Acid Dissolution Process 

Uranium monocarbide and other metal l ic  carbide reactor  fuels  may he 

dissolved i n  n i t r i c  ac id  t o  y ie ld  aqueous solutions f o r  subsequent proc- 

essing by conventional solvent extract ion with t r i b u t y l  phosphate e A 

chemical. f lovsheet (Sec  3.1) w a s  developed and t e s t ed  wiLh i r r ad ia t ed  

sanrples of UC, *%C, and a@'$ PUC--80$ UC. Upon dissolution of uranium 

monocarbide i n  strong nz t r i c  acid, about 44% of t he  carbide carbon i s  con- 

verted t o  soluble o r g a i c  acids  and the reminder  t o  carbon dioxide. 

mixture of organic acids, deleter ious t o  solvent extraction, i s  eliminated 

by gradual oxidative degradation (extended reflux of the  f u e l  solution in 

strong n i t r i c  acid, d i s t i l l a t i o n  of t he  excess acid, and -i;reatmen-t wit 'fi 

permanganate). 

and n o m 1  decontamiricltion from f i s s ion  products, was demonstrated by 

solvent extract ion of  feed solut ions thus produced from uranium mono- 

carbide i r r ad ia t ed  t o  6000 Mcad/metric ton. 

with other carbide f u e l  types i r rad ia ted  up to 20,000 Mwd/rnet;ric ton. 

'lhe 

Nearly quant i ta t ive  recovery of uraniuln and plutonium, 

S imi l a r  results were real ized 

The major disadvantage o f  t he  d i r e c t  n i t r i c  acid dissolut ion process 

Oxidative degradation of t h e  i s  t h e  generation of comglex organic acids.  

organic acid mixture i s  slaw and incomple1;e when oxidation techniques corn- 



p a t i b l e  with radiochemical processing axe used. 

be clevoted %a other physical or chemical methods to rejec.i; the  organic 

acids from the  f u e l  solu-~ion or t o  prevent t h e i r  formation dur ing  dis- 

s 0 3 a t  i on * 

Further study might well 

Previous invest igat ion of the  hydrolysis reactions of uranium carbides 

provided t h e  basis f o r  development of t he  h y d r o l y s i s - d i s s o l i o n  process 

for uranium a ~ n o c a r b i d e ~ ~ ~  (Fig. 6 )  a 

uranium monocarbide t o  water at 80 t o  100°C precludes the  u s e  of t h i s  

pracess 011 spent reactor  fuel, it has potent ia l  application in recovery 

of urax?im from unirradis ted uranium carbide scrap. The process i s  at- 

t r a c t i v e  because hydrolysis proceeds at low temperatares with nearly 

quant i ta t ive conversion of t h e  carbide carbon t o  vo1Srl;iPe hydrocarbons. 

Although the passivi ty  of i r rad ia ted  

If -mirradiated,  s t a in l e s s - s t eu l - e l~d ,  sodium-bonded uranium mono- 

carbide i s  processed, the f u e l  rods must be sectioned til expose the core. 

Size reduction of t he  fue l  has l i t t ,Se  e f f ec t  on the hydrolysis rate sirlee 

massive uranium monoearbide dis integrates  as hyc1roPy:;is proceeds e It has 

been proposed' th&t t h e  sodium reservoir  at t h e  end of ea,& fucl rod 

(Hallam reactor)  be punctured and that most of t he  148 g of sodim be 

drained out before shearing. 

procedure, the probabi l i ty  of a violent sodium-water reaction i s  grea t ly  

reduced, 

t h e  small amount of caustic formed, a 0,007 - M solution of NaOR, would riot 

a f f e c t  the hydrolysis reaction. 

Assuming 9076 retnoval of sodium by t h i s  

With 20 moles of water supplied per  mole of monocarbide hydrolyzed, 

Massive, unirradiated uranium manocarbide i s  hydrolyzed i n  about 

8 hr i n  a twentyfold excess of water at  9O"C, forming a s h r r y  of hydrous 

uranium dioxide. The gaseous products from t he  renct,ion include: 86 vol 

$ methane, 11 vol % hydrogen, plus s m a l l  quanLities of t h e  higher hydro- 

carbons. If dicarbide impurity i s  present i n  the  fuel ,  nonvolatile carbon 

compounds a r e  also formed. 



UNCLASSIFiED 
O R N L  3WG. 63-553 

OFF-GAS OFF-GAS 

10,600 l i fers Nitrogen Oxides 
84,500 l ifers H2 

CH4 83,000 
C2Hg 1,960 
C3H8 580 

KMn04 20.5 kg 
'100 liters 

WASH 

1122 l i ters 

CHOPPED SS-CLAD 
HYDROLYSIS UC FUEL 

SS -90 kg 
tic 1050 kg 
(5.1% C or less) 

HN03 - 3  M- - 
3330 liters 

SOLIDS TO WASTE 

M n 0 2  11.3 kg 

TO 
WASTE 

-90 kg 

Fig. 6. Hyarolysis-Dissolution Process for Unirradiated Uranium Monocarbide. 



Dissolution of the hydrous uranium dioxide i s  acwmplished i n  2 hr 

The nonvolati1.c carbon compimds, stcmin(;  from at 105°C with 605 Ill10 

the  hydrolysis of' dicasbide (;&en present 1, are p a r t i a l l y  dissolved in 

n i t r i c  acid, leaving a residue of wax-like so l ids .  'The nitric tzcid- 

soluble and insoluble organic residues, 

promote severe emulsifi clition i n  the subsequent so1v1~ii-t extra,et iori 

step. 

ing OS t he  uranyl- n i t r a t e - n i t r i c  acid solution with 0.04 M K 3 h O  

by centrifugation t o  rermvc the  m;ineanetje dioxide p rec ip i t a t e  Lhat forms e 

The feed solut jon rimy then  be processed to reclaim u - m i u n i  by so l .~ent  

extract ion with t r i b u t y l  plros?hatc e 

3 $  

unless removcd or destroyed, 

They are oxidatively degraded 'to innocuous forms by a 2-hr refPux- 

followed 4 - 

4.2 Process Evaluation with I r rad ia ted  Carbide Fuel:; 

I n  hot -ce l l  t e s t s  of the proposed process, uranium monocarbide 

specimens i r r ad ia t ed  from 600 to 16,000 Nwd/metric t o n  were subjected -to 

hydrolysis with water at BO'G, 

monocarbide w i t h .  water  at !80"C was unlike that of unirradiated monocar5ide 

(Table 6). 

t on  required 22 h r  fo r  complete hydrolysis, In contrast  t o  t h e  6 hr re- 
quired f o r  unirradiated samples. Also, a small inciear,e i n  t o t a l  ol'f-gas 

volrme was observed, with illcreased hydrogen and diminished methane prs-  

duction. 

gaseous products. 

6 
m e  rcaet ion of ne~-~t~run- i r r izd is ted  uranlim 

Stoichiometric uranium monocarbide i r r ad ia t ed  to 600 Evlwci/metric 

Only 86$$ of t h e  original carbide carbon w a s  fowid. i n  t h e  

A t  i r r ad ia t ion  levels of 5700 Mwd,/rnetric ton and greater, uranium 

carbide w a s  v i r t u a l l y  "passive" i n  mte r  at 80 t o  100°C. 

hyper s t  oichiometri c uranium monocarbide i r r ad ia t ed  t o  6500 blwd/metric 

ton was about 6@$ hydrolyzed after t w o  weeks of contact with water at  

8 0 " ~ .  Stoichiometric uranium carbide prepared and irradeiated t o  5700 
Mwd/metric t o n  at  Oak Ridge National Laboratory 

hydrolyzed i n  23 hr .  

refluxed i n  w a t e r  f o r  29 hr  without any apparent physical  change (Fig. 

2a) I) 

For example, 

10 
was l e s s  than 1% 

Four i n t a c t  pe l l e t s  of t h i s  same material  were 
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Table 6. Effect  of Neutron-Irradiation Level on the  Hydrolysis of 
Uranium Monocarbide i n  Water at 80°C 

UC, Spec imen Garb nn Reaction Off-gas Off-gns Composition 
Mwd metric ton Time ( c c / g  UC - -  (4) 

of Uranium ($) Source (h r )  a t  STP) K2 CH4 (2% 

0 4.8 OWL e; 90 8.5 88 2.3 

600 4.8 ORNL 22 96 28 67 3 00 

5,700 4.8 ORDL 23" < l  Insuff ic ient  volume 
f o r  analysis 

6,500 4.8 A I  336" 61 

16, ooo 4.3 NDA 21 

7,500 4.5 A I  23a 40 

< l  
a 

~ 

a Experiment hal ted because of slaw reaction. 

Samples of i r rad ia ted  8@p uranium carbide--20$ plutonium carbide were 

exposed t o  water at 8 0 " ~ .  After 26 h r  of contact, 69$0 of the cesium, 0.4% 

of the ruthenium, and 0.005$ of t h e  plutonium were leached from a specimen 

israd.iated t o  800 Mwd/me.t;ric ton. Limited hydrolysis produced 44 cc (STP) 

of off-gas per gram of mixed carbide, as compared t o  74.4 cc of of'f-gas 

per gram of mixed carbide estimated if all. of t h e  uranium nonocarbide had 

hydrolyzed. Another specimen i r rad ia ted  t o  20,000 Mwd/metric ton produced 

about 14 cc of off-gas per gram during 6 hr of contact with w a t e r  at 80"c; 

6% of t h e  cesium w a s  found i n  t h e  water. 

4.3 Flowsheet Development Studies 

Unirradiated stoichiometric uranium monocarbide (nominal 4.876 C )  when 

hydrolyzed with water u t  25 t o  99°C produced hydrous uranium dioxide and 

93 cc (STP) of off-gas per gram of uranium monocarbide, 

o f  86 vol. % methane, 11% hydrogen pl.us small quant i t ies  of tine higher 

hydrocarbons. All of the carbide carbon w a s  found i n  the gaseous products. 

Uranium metal as an impurity i n  iiranium monocarbide also hydrolyzes t o  

produce two moles of hydrogen per mole of metal, while uranium dicarbide 

impurity yields  C2- t o  Cg-hydrocnrbons and some nonvolatile waxes .4 When 

t h e  hydrous uranium dioxide i s  dissolved i n  n i t r i c  acid, these waxes yield 

The gas consisted 

2-4 



both sokdble and insoluble organic species which c a u ~ e  emulsions i n  sub- 

s e ~ u e n t  solvent extract  ion. 

lc.3.1 ~ d r o l y s i 8 - D i s a o ~ ~ ~ t i o n  of Impure Uranium C a r b i d e  

S a q k s ,  20 j,o 60 g, of unirradiated uranium monoearbide containing 

dicurbide impurity ( 5 . 2 4  C, compared with t h e  atoichtometric 4.&b) were 

hydrolyzed i n  water i n  2 t o  I+ hr at 50"c, forming a black s lu r ry  of uranium 

dioxide. 

The uranium dioxide was dissolved i n  boi l ing 4 M HNO 

an orange-red solution. After 1.5 h r  of refluxing, the  solution, 0.5 - M 
In TJO,(NO. ) arid 3 M 13 E X 0  c 3 2  - 
equival.-nt to 0.3 Wt; $ of She uranium monocarbide. 

of hj gh-mo?-Lecular-.treight organic compounds, dissolved veadi1.y i n  acetone 

though not i n  2-dodeeane. 'They retained only O.O03$ of the  uranium i n  the 

fuel specimen. Infrared spectrographic examination indicated ttn unidenti- 

f i e d  complex rnix%ure o f  organic aejds and esters, 

About 92'$ of the  carbon w a s  converted t o  vola- t i le  hydrocarbons. 

i n  3Q mixi,  producing 
- 3  

contained free-settljng yellov-brown so l id s ,  

The solids, a mixtwc 
3 

11.3.2 Extraction and St r ipp ing  T e s t s  with Tributyl  __. Phosphate 

Partions of the f i l tered arid unf i l te red  solutions were t e s t e d  by 

batch solvent extraction; 15 vol  $ 
used as  solvent with a d i l u t e  feed solukLon, 0.5 M in U9,(NOe 1 
in HIWq (Table 7). After  extraction, t h e  unf i l te red  solution retained 

0.077 mg of uranium per m l ,  compared with t h e  0.001 mg of uranium per  m l  

re ta ined i n  a control solution prepared from pure uranyl n i t r a t e .  Semi- 

s t ab le  emlsions pers i s ted  throughout t he  extraction, and phase separa- 

tion time increased from 30 t o  45 see as extract ion progressed. 

f i l t e r e d  feed retained 0.025 rrg of uranium per ml a f t e r  extraction; haw- 

ever, phase settling t i m e  decreased from 35 t o  10 see during e.rtraction. 

Stripping w a s  characterized by absence of emulsions, average s e t t l i n g  

t i m e s  of 10 sec, and negligible re tent ion of uranium by t h e  solvent. Ap- 

parently, removal of t h e  organic so l id s  i s  beneficial;  and further i m -  

proved solvent extract ion may be gained by eliminating the soluble 

organic impurities. 

t r i b u t y l  phosphate i n  Ad&ane was 

and 3 
3 2  - 

3 

The 
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Table 7. Solvent E x t r a c t i o n  of Urmyl Nitrate-Nitric Acid Solutions 
Derived From Hydrolysis--Nitric Acid Dissolution of Uranium Monocarbide 

Conditions: Aqueous Feed: 120 rag TJ/mL, 3 M HNQ - 3  
Solvent: 15 vol  $ tributyl phosphate i n  Adakme 

Aqueous S t r ip :  0.01 M KFIO 
- 3  

Extractian: Six (2 min) equi l ibrat ions a t  25OC; solvent/ 
feed volume: 2/1 

S t r ip :  Five (2 min) equi l ibrat ions a t  25'C; s t r i p /  
solvent volume: 2/1 

Feed Solution 

Solution, Clar i f ied 2-h? Reflux, 
Peed 0.04 M i n  KMn04; 

Cont rola IJnfil t  ered Feed F t 11; e red 

Extract ion 

UTaniIXri in aqueous, ag/rnl 

E x t .  6 0.001 0 0 077 0.025 0 .  oo)+ 

Coalescence t l m e ,  see ave. 15 ave. 45 m e .  25 ave. 20 

Emulsions N o  Semistable Slight, No 

St r i p  

~ra~lium i n  solvent, m g / m ~ .  

S t r i p  5 0.0001 0.012 0. OOOZ 0.001 

Coalescence time, sec ave. 10 nve. 15  ave. 12 ave. 12 

Fhuls i on s BO No NO No 

?Feed solution of ident ica l  composition prepared from laboratory reagents. 

4.3.3 Oxidative Degradation of Organic Impurities 

Since organic compounds w i l l  be formed i n  proportion t o  t h e  dicarbide 

impurity i n  uranium monocarbide, a suitxble method f o r  -t;heir removal was 

sought. Oxidative degradation by re f luxing  i n  3 M HI10 was t o o  s l o w .  
- 3  

However, making t h e  unf i l te red  solution 0.04 - M i n  KE-ln04 (2  h r  of refluxing) 

and f i l t e r i n g  

ference from organtc. impurities. 

Lo remove amigetnese di0xid.e e f fec t ive ly  eliminated the  i n t e r -  

A reddish t inge t o  the  yellow uranyl 



n i t r a t e  solut ion indicated t h e  presence of t r a c e  impuriLies 

and s t r ipping tes ts  were free of emulsions, and codescence t i m e  averaged 

15 sec. 

respect ively (Table 7) e 

Extraction 

U r a n i u m  ex t rac t ion  a d  stripping lasses w e r e  0.004 and O.OO@, 

The manganese dioxide was washed with water and methanol t o  remove 

urauyl  n i t r a t e  and organic residue The washed p rec ip i t a t e  re ta ined 

0,05$ o f  the uranium i.n the fuel sample. 

tats, t h e  methanol leach, and t h e  f i l t e r e d  solut ion indicated t h a t  the 

organic residue w 8 s  EL mixture of p a r t l y  n i t ra ted ,  saturated d i p h a t i c s  

and unsaturated o le f ins .  

Infrared spectra of the precipi-  

The presence of carboxyl groups w a s  not detected. 

The solut ions derived f r a m  urs~~nium earbide (4.8 Lo S.O$ C) contained 

no organic solids; however, t h e  presence of soluble organic compounds was 

indicated by t h e  reddish color of' the solution.  wing t h e  solution 0.05 M 

i n  Ce(li114)2(N03)6 and refluxing f o r  2 hr a l s o  produced acceptable feed 

solut ion 

- 

4.3.4 O p t i m a .  Conditions f o r  Hydrolysis-Dissolution t o  Produce Purex Feed 

39 
To produce a PUPCX feed solution, 1.26 M i n  U02(N0. ) and 3 - M in HNO 

3 2  - 
from uranium earbide, hydrolysis was conducted with a minimmi excess of 

water su f f i c i en t  t o  cover the chopped fuel load. Uranium monocarbide 

(4.8 t o  5.2% C )  w a s  hydrolyzed with H20/UC mole r a t i o s  from I1 t o  20, 

Dissolution of the uranium dioxide s l u r r i e s  i n  boi l ing n i t r i c  a c i d  pro- 

duced h r e x  feed solutioris t h a t  were up t o  1~68 M in U02(N0 ) 
i n  WrJO which, after permanganate treatment, remained stable during 

storage f o r  2 months at 25"C1 

per mole of uranium dioxide dissolved. 

and 3 - PI 
I 3 2 

3j 
Ni t r i c  acid consumption w a s  2.89 moles 

4.3.5 Process Demonstration with Plutonium Tracer 

%?he proposed hydrolysis-dissoriition process (Fig* 5) was successfully 

t e s t ed  batchwkse with anirradiated uranium carbide (5.2$ C )  m d  plutonium(1V) 

t r a c e r ,  '17ne dark-red solutfon containing yellow so l ids  w a s  t r ea t ed  with 

0.04 M XMnO The rtlangariese dioxide w a s  separated 4 
and washed with 3 M HNO Before washing, %he p rec ip i t a t e  re ta ined 0-03 

and. refluxed for 2 hr, - 
- 3' 



and 0.6$ of the  uranium and plutonium or ig ina l ly  i n  t h e  f u e l  sample. 

peated washing reduced these losses  t o  0.028 md O,l3%, respectively. 

Re- 

The c l a r i f i e d  S G l u t i O n  w a s  t rea ted  with 0.1 - 14 NaN02 t o  s t a b i l i z e  

plutonium i n  the te t ravalent  s t a t e ,  and the  solution w a s  processed batch 

countercurrcntly through the Purex first  cycle of solvent extract ion 

('Table 8). Solvent extraction performance was sa t i s fac tory  across t h e  

first cycle, and no emulsions were observed. Uranium recovery w a s  nearly 

quantait3tive, more than 99.% with four extraction stages, four back-ex- 

t r a c t i o n  stages, and seven s t r i p  stages.  

seventh extract ion stage, 

0.0265. 

product stream, 

Plutoriium loss  was 0.05% a% the 

A s imi l a t ed  eighth stage reduced t h i s  loss t o  

After seven p a r t i t i o n  stages, no pl,.utoniun wits l.ost t o  t he  uranium 

Table 8. Conditions Employed i n  Batch Countercurrent Simulation of 
Standard h r e x  Process 

Stream Relative 
i n  out Volume C o q  o s i t i o n  

-._- ,-.- 
Ext r a e t  ion-Scmb : AF 3 3.1 M IXrr03, 280 mg U/ml, 3.8 x lo6 Pu 

cOlll?ts min-lml-1, 0.1 - M N ~ Q ~  

7 ext. stages 
4 scrub stage:: AS 2 3 mo3 
4 thro@put s 

Ax 9" 30% TBP i.n Addcane (n-dodecane) - 
Par t  i t  ion: AP 9.5 3% TBP, g.18 M HNQ3, 86 U [ d ,  

1.1 x 10 m counts ruin-J-rn1- 

3 part stages 
4 back e,rt. stages RS 2.5 3076 TBP 
4 throughputs 

1.25 0.1 M HNO 0.02 - M Fe(NI12S03)2 - 3' 
BX 

S t r i p  : BU 12 0.02 M HNO 69 mg U/ml  - 3' 
0.01 M ISNO. 

- 3  
9 s tages LX 18 
4 throughputs 

a Solvent r e l a t i v e  volume reduced 10% t o  compensate f o r  below- standard 
uranium concentration of feed. 



The results indicate  t h a t  impure urani.um monocarbide (up to 5.2$ C )  

ean be processed in a &rex plant  i f  permanganate i s  used to eliminate 

soluble wnd insoluble organic impurities. 

end treztxaent has been used i n  &rex plants  t o  secure extra decontamination 

of usan~um and plutonium from the fission pr0d.ucts (ruthenium, zirconium> 

and n2obi.u) a d  provide Peed C ~ ~ ~ f i C ~ k i Q n  before solvent; extraction. 

A similar permanganate k e d -  

4 I 4 Evaluat ion of the Hydrolysis-Di ssolut ion Process 

Laboratory-scale developnent studies established that; the hydrolysis- 

loyed to convert unisrsdiated 

uranium carbide do uranyl n i l r a l e - n i t r i c  acid solut ion from which the uranium 

can be recovered by established ex-traction technology. H~perstoichiome-tric 

uranium monocarbide is completely hyckolyzed with water zt &I Lo 100°C t o  

hydrous uranium dioxbcie, with nearly q w t i a t i v e  conversion of the carbide 

-to gaseous hydrocarbons. 

produces a, feed solut ion requiring only minor treatmen% b e f ~ r e  ~ P v e n t  ex- 

t rac t ion .  WydroLjysis-dissolution can be conducted in a single stainless 

steel reaction vessel  without fear of excessive carrosiolil, 

Dissolution of the  oxide residue i n  n i t r i c  acid 

If a technique were discovered -to eliminate the  pass iv i ty  of i r rad ia ted  

uranium and plutonium carbides t o  hydrolysis i n  water at 8U"C, hydrolysis- 

&issolution would be the preferred aqueous head-end process f o r  carbide 

fue l .  

hot-cell invest igat ion of t he  passivity pkenomomn. mis study should have 

as objectives the u n d e r s t a d i q  o f  the mechanism af ga.;s.ivity and the deve- 

lopment of methods t o  ac t iva t e  the hydrolysis of irradiated carbide fuels. 

The many &t rac t ive  features  of t h i s  process should stimulate ikadher 

5. coNcLusIoNs 

Three aqueous ( l i ~ ~ o h t i ~ ~  processes were developed f o r  fue l s  con- 

ta in ing  uranium and plutonium monocarbide using both mi r r ad ia t ed  and ir- 

radiztted (up to 20,000 ma,ht.tric ton)  f u e l  samples. 

that : 

1% w a s  concluded 

1. Pyrohydrobysis i s  an effective, p rac t i ca l  head-end process for  

converting irradiated uranium and plutonium monocarhide t o  aqueous solutions 



from which t h e  fuel values ma.y be recovered by establ ished (solvent CX- 

t r ac t ion )  technology. 

e f fec ts .  With fu r the r  development effort ,  it m y  have po ten t i a l  agplica- 

t i o n  t o  t h e  graphite-based fuels, for  example, pyrolyt ic  carbon-coated 

uranium-thorium carbides 

The process i s  insens i t ive  t o  irradiation-induced 

2. The otherwise promising hydrolysis-dissolution process cannot. be 

applied t o  the highly irradiated carbide fuels o w i n g  t o  irradiation-induced 

"passivity"of the n&aZLic carbides -toward hydrolysis in water at 80 t o  100'C. 

Althaugh t h e  "passivity" phenomenon w a s  well  established by t e s t s  with 

samples of i r rad ia ted  carbide fliels, t he  mechanism of irradiation-induced 

nonreactivity i s  not understood. If a means w e r e  discovered t o  promote 

the low tcmnperature hydrolysis of t h e  i r r ad ia t ed  carbides, t h i s  process 

would be considered superior since it minimizes radiochemical engineering 

problems e 

3. I r rad ia ted  carbide fuels  can be converted t o  aqueous solutions 

by dl .ssohtion i n  n i t r i c  acid. However, before the  fuel values can be 

recovered and decontaminated with negl igible  loss and without emulsion 

d i f f i c u l t i e s  by conventional (TBP) solvent extraction, the so lu t ions  

must f irst  be freed of soluble organic acids  generated during dissolution. 

Since a comp1etel.y effect ive method of eliminating the organic ac id  i m -  

purities remains t o  be developed f o r  t h e  d i r ec t  n i t r i c  ac id  dissolution 

process, it i s  considered a less desirable  a l t e rna t ive  t o  pyrohydrolysls. 
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