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Phase Motion of Ions in Isochronous Cyclotrons

F. M. Russell'"

Oak Ridge National Laboratory

Abstract

The motion in phase of ions in isochronous cyclotrons possessing

non-radial accelerating gaps is examined and it is shown that under

certain conditions a quasi-phase-stable state is possible. By differen

tially modulating the gap voltage with radius in adjacent gaps and slightly

perturbing the magnetic field it is possible to focus ions upon a chosen phase

angle. The major advantages associated with such a scheme are the

reductions in sensitivity of the phase of ions to errors in the magnetic

field and to gap voltage variations. The possibility of controlling the

phases of ions by using extra electrodes also is examined; it is shown

that large phase compression could be achieved under certain conditions.

1. Introduction

An attempt is made in this paper to examine the effect of non-

radial accelerating gaps upon the motion in phase of ions in a cyclotron

with an isochronous magnetic field. In conventional cyclotrons, the

phase of the orbiting ions relative to that of the accelerating gap voltage

varies as a result of the relativistic increase in mass of ions with

increasing energy and also from the requirement for axial stability of

ion motion, namely, a decreasing magnetic field strength with increas

ing radius . However, by introducing azimuthal variations in the

strength of the magnetic field, it is possible to eliminate the phase

Visiting scientist, Electronuclear Division, from Rutherford High

Energy Laboratory, Harwell.



2
changes associated with conventional cyclotrons . The phase of an

ion in an isochronous cyclotron ought, therefore, to remain unchanged

during the process of acceleration.

A design study for a large isochronous cyclotron undertaken at
3

Oak Ridge calls for the use of cavities instead of the more usual

180°-dee arrangement for the accelerating electrode system. Owing
4

to the unusual design of the magnet for the proposed machine, the

accelerating gaps formed by these cavities would be non-radial. The

circulating ions would then experience a radial force during each

crossing of the accelerating gaps caused by the radial component of

the electric field in the gaps. Further, the magnitude and direction

of this force would be dependent on the phase of the ions at each gap

crossing.

It will be shown that in the special case where the voltage across

the accelerating gap is independent of radius or there is no differential

variation of the gap voltage in adjacent (in azimuth) gaps, then the

radial electric forces produce no net effect upon the phases of the ions.

The more general case in which the gap voltage varies with the radius

is then examined, and it is shown that some measure of control over

the phase of the ions can be achieved. In conclusion, some possible

practical applications of this effect are examined in relation to large

isochronous cyclotrons.

2. The Non-Radial Gap

Let the gap vary in position according to the law

e = G(P) , (i)

where G is a function only of p . From Fig. 1, the radial component

of the electric field in the gap is

V
g

r S
sin cr , (2)



where:

tan cr =
d9

(3)

Because the gap is spiraled, the effective width of the gap is greater

than the actual width, in the ratio 1: 1/cos cr; fringe field effects are

neglected.
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Fig. 1. Coordinates describing the gap spiral and angle cr.

The radial impulses experienced by a circulating ion can be

Fourier analyzed to give a term, F , independent of the azimuth, and

a series of harmonic driving terms, D , where n is the harmonic

number. If there are N gaps equally distributed around the machine,

then the magnitude of the first force term is

and from Eq. (3),

NeV

~2?
g

Pr0
tan cr ,

NeV
g

sir r.

de

cTp"

(4)

(5)

The magnitudes of the harmonic driving force terms are given by

D
NA 2 sin (natr)

n irn
cos n (D „t (6)



where:

and

eV

A = o g sin o- , (7)

a = , 1 , (8)
2tt p r„ cos cr

n = Nm, m = 1, 2, . . . (9)

The angular frequency uu0 is defined as c/rQ, that is, the cyclotron
angular frequency.

The effect of the force term F upon an orbiting ion can be repre

sented by a change in the strength of the magre tic field, averaged over

the equilibrium orbit. For simplicity, a smooth magnetic field

approximation is used here; the effect of the D terms upon the orbits

is considered in Appendix I. The basic equation for an isochronous

cyclotron,

<E0 + T>
B. ev = —- , (10)

r

combined with Eq. (5),gives

*b_ _ NeVg JL , (11,
£. 2^p(E0+T) dp

ISO u

where AB is the equivalent change in the magnetic field produced by the

radial electric force term. By the use of the isochronism condition

relating total energy to B. , Eq. (11) can be rewritten as

Afi _NeVg (l d6\^ - tse-0 |t ^ • (12)
From this expression the magnitude of the radial term can easily be

found for a given spiral law. For example, for the particular spiral
3 2law 9 = p and with a maximum energy gain of 1 MeV/turn,

AB/Bn is approximately 3. 3 x 10



3. The Isophase Curve

Consider the instantaneous positions occupied by an ion after

successive time intervals equal to the cyclotron period. The locus of

these points is called here the "isophase curve". If the condition of

isochronism is to be maintained, then the isophase curve must either

delineate the curve of the gap or be related to that curve by a constant

phase angle.

Let the magnetic field be designed for isochronism so that the

isophase curve is purely radial. The effect of any radial electric force

is to change the period of rotation of the ions and, so, to distort isophase

curve from the initial radial line.
A

For an ion of given momentum the product B p is constant and so
a

the change in p caused by the equivalent magnetic field change AB is

found from

A

>°\l A.
— ( P +

which gives, neglecting second order terms,

-±JL- = - (1- p2)3'2 ^ • d4)
P B0

Hence, the shift in phase per turn caused by the radial electric force is

217^0 NeVg . , 2. 3/2 1 d9 ,1c->__±JL_ = _^_J_ (1 - p , ?TpcosTl (15)

•where Y is the phase of the ion relative to the gap voltage.

Now, each turn the ion will gain energy to the amount AT, where

AT = NeV cos Y , (16)
g

and, since the rate of change of p with energy for an isochronous

cyclotron is given by

4_P_ = t1 - P ) , (17)^T P EQ v '



it follows that the increase in p per turn is

(1 - p2) 3/2A p = v „ ^J NeV„ cos Y
P E

0

(18)

From Fig. 2, in which the line AA' represents a part of the gap

curve and 0 represents the machine center, the change in phase angle

per turn required to make the ion cross the gap without suffering any

phase shift relative to the gap voltage is

-A 9 A p
,J0

(19)

Substitution for A p from Eq. (18) results in an expression which is

identical to that given in Eq. (15). Hence, the radial electric force

produced by the gap exactly compensates for the phase shift required
5

per turn to maintain the condition of isochronism . The isophase

curve is identical, therefore, with the gap curve except for the possi

bility of a constant angular displacement.
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Fig. 2. Diagram illustrating the change in angle in azimuth A
the gap as the orbit radius is increased.

of



4. Non-Uniform Gap Voltages

In the preceding section the isophase and gap curves were shown

to be similar. However, if the amplitude of the gap voltage is caused

to vary with radius, then the curves can become dissimilar. In Fig. 3

two spiral gaps are indicated by the curves OA and OB. Let the volt

age amplitude in gap OA decrease with increasing radius and in gap

OB increase with radius. In addition, let the voltages in the two gaps

be in phase. An ion rotating in the manner indicated would experience

accelerations at both gaps. At small radii, the major part of the

acceleration would occur at the OA gap, but at large radii the conditions

would be reversed and the gap OB would contribute most to the energy

gain.

UNCLASSIFIED
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Fig. 3. Schematic diagram showing how the isophase curve OC is
formed from two neighboring gaps OA and OB.

The isophase points would thus lie along some such curve as OC;

by appropriately modulating the gap voltages in radius the curve could

be made radial, as shown at OD. In this manner, it is possible to

have a radial isophase curve yet retain the radial electric forces acting



upon an ion crossing the gap. From Fig. 4, A,( p) and A2( p) represent
the amplitudes of the gap voltages at some given value of p
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*' = (<t> + 6)

z\p)

Fig. 4. Coordinates and explanation of symbols used in producing
a radial isophase curve.

To maintain a radial isophase curve, the gap voltages must satisfy

the condition (20)

A2^ P' _ sin Q(1+tan Y' tan9) - cos Q(tan Y' -tanO),
a^TpT = "(tan Y ' - tan 9)

and to keep the maximum energy gain per turn independent of p ,

A, ( p ) must satisfy (21)

r A2( p> i
Ai( p) = vg Lcos(9+ f) + a (P)cos(9+ Y + Q* •

Let the voltages in adjacent gaps be modulated in the preceding

way to give radial isophase lines. Further, let the magnitude of the

gap voltages be such that the maximum energy gain per turn is eV M and

independent of p , where M is the number of matched gap pairs (M =N/2).



Under this condition it is impossible to maintain the condition of isoch

ronism independently of the phase of an ion (relative to the gap voltage).

However, by suitably perturbing the originally isochronous magnetic

field so as to satisfy the equation

B = (B. - cos Y AB) , (22)
S ISO s

the condition of isochronism is restored for ions having the phase

angle Y relative to the gap voltage. Ions having phase angles other

than ^ would experience phase shifts each turn,
s

The rate of change of phase per turn for an ion having instantaneous

phase angle Y is found from Eqs. (14) and (22), giving

d Y _ 2ir (1 - p 2) 3/2 AB (cos Ys - cos Y ) . (23)
3p"

0

If the cavities are operated on the m'th harmonic of the cyclotron

frequency, then the rate of change of phase is simply m times greater.

Hence, by using Eqs. (12), (16), and (17), Eq. (23) can be written in the

form

(cos Ya - cos Y ) -, de

so that

•V I s
-I— = m [cTp- L cos Y <^

cos Y d ¥

s

From Eq. (1) it follows that

I( y) = f ,cos * Uf . = mf(^-) dpM T ' J (cos Y rcos Y) J d p H

(24)

(25)

(26)

{I( Y2, Y8) - K V ^s)}= m {G( p2) -G(Pl)} .

The general form of the left-hand integral, I( Y), is shown in

Fig. 5 for several values of Y .
The type of phase motion governed by Eq. (26) is illustrated for

a typical spiral law in Fig. 6.
In general, ions with phases other than Yg are focused towards

the phase angle (- I ^ I), except for a critically unstable point at
phase angle (+ | Y j ). It is apparent that the phase motion is not
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/ ty/) o
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Fig. 5. Curves showing the variation of the function I(t)i) with angle
i|f for two values of tjj .

oscillatory in nature, the phase angle (- | Y | ) acting as a limiting
stable angle.

5. Spread in Energy

A direct result of the quasi-phase-stability here described is a

spread in energy of ions having common orbit radius. The limits on

this energy spread are given by

E( Y) = E( 1 g) +AB (cos Yg . cos Y)^E (27)
p const '

where E( Yg) is the total energy of an ion with phase angle Y at the
appropriate value of p . Hence, from Eq. (11), the maximum energy
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p 0.5
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DIRECTION OF

PHASE MOTION

Fig. 6. The upper series of curves show the phase history of ions
started with arbitrarily chosen phase angles as they are
accelerated and subjected to phase focusing. The lower
diagram indicates the directions of phase motions for ions
of different initial phase angle.

range is

AE =

T(2EQ 3 T) NeV

(E0 + T)

which can be written in the alternative form

NeV

AE =
TT

d9

P"d^

TT

1 d9

P "d~p"
(28)

(29)

It is apparent, however, from Fig. 6 that the convergence of the phases

towards the limit Y would cause the total energy spread to be reduced
5

progressively as p increases. If the useful ions at a given value of p
are confined within the phase range ( Y, <Y , + | Y I ), then the

J. S o

total spread in energy is simply

NeV
de

Hp- (1 cos Yx) . (30)
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In the event that the forces causing this spread in energy are made

zero, the energy spread would result in an increase in the amplitude of

the radial betatron oscillations. The maximum increase in amplitude
is given by

SP *p (1. pV/2^ \ -^d-co. I,) . (3D
which, in most practical cases, is a negligible increase.

6. Curvature of Isophase Line

If the maximum energy gain per turn is held constant, then the

maximum strength of the radial electric force also is constant and is

independent of the curvature of the isophase curve. However, the
A

magnitude of the magnetic field perturbation J B which is necessary

to maintain isochronism at a given value of Y (when the radial electric

force is present) is dependent on the curvature of the isophase line.

Let the equation to the isophase curve be

e = p ( P) , (32)
and let the magnetic field be isochronous. From Eqs. (18) and (19)

the required change of phase per turn necessary to fit the isophase curve
is

The actual phase change per turn produced by the radial electric force

is given by Eq. (15) and so the residual phase change per turn is
(34)

Y• = (i . p2)3/2 NeVg cos Yff-L dp( P)) A dG( p)
r p ' e0 lip d p ; tp" ~d^

If the isophase and gap curves are identical, then Y1 is zero
r

and corresponds to the situation in which the gap voltage is independent

of radius. Perturbation of the magnetic field to the extent <S B( p )
introduces an additional phase shift per turn and the phase equation



becomes

= (1
2.3/2

P '

13

:ir
Sb( p )

A-

Bn

NeV

+ „ g cos Y
E0 | *&**-) - (t ^) ]}• <35>

This is the generalized form of Eq. (23). Let Y' be zero for a
given value of Y, say Y, then Eq. (35) becomes

(36)

Y

NeV

L |(.0 LVp

where the magnetic field correction term is

_ (1 „ 2,3/2 ^g_ l(l_ dG (p)\ . A dP(P))l(cos Y_cosY),
-Up) En LAp dp 7 Vp dp Jy a

«?B( p)
A

B,

+

NeV
i

2ttEa
V T/l dG( p )\ (I dP( p)

(37)

Equation (36) indicates how the shape of the isophase curve affects
Y ' ; as the isophase curve is bent away from the gap, against the

direction of ion rotation, the magnitude of the phase focusing term

increases.

7. Field Imperfections

The effect upon the phase equation of the mean magnetic field

departing from the desired dependence upon p can be found by including

in Eq. (36) the appropriate Y' term produced by the field error b ( p).

Including the possibility of harmonic operation, Eq. (36) then becomes

NeV

m(l- PV/2

x (cos Y cos Y ) +

E0

2irb( p)

B
0

i dG(P ) J dP ( p) "J
LPdP ~pdp J

(38)
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which can be written in the form

NeV_. r "1
(39)

t iM 1NCV |

*' = m (1 - p ) __i. LG' ( p ) - P' ( p)J (cos Y' - cos ¥),
E0

where

Eo r i -icos Ygl = Cos f +i*L£i _^L_ [G,( P)-P.(P)]
B0 8 J (40)

The effect of the mean field error, therefore, is to change the effective
value of the limiting phase angle from

corresponding to Eq. (26) now becomes

value of the limiting phase angle from Y to Y' . The expression
s s

{«*; . *2, - k i>, V} =
/ >) (41)m \C[ P2) + P( Px) - G( P̂ - P( P2) j .

Eqs. (40) and (41) can be used to determine the maximum permissible
mean field error, of constant sign, that could be tolerated in any given
case.

It is of interest to compare the phase histories of ions subject to
a constant field error in a cyclotron under normal conditions and under

conditions giving phase focusing.

Shown in Fig. 7 are curves for ions starting at different phases and

subject to a constant field error of B^/IO in a machine with the gap
and isophase curves coincident. The corresponding curves under
conditions of phase focusing are shown in Fig. 8. The possibility of
phase bunching at the center of a cyclotron, here omitted, can readily be
included. Consider only those ions with starting phases lying between
± 30°; it is apparent that with phase control the ions are considerably less
distributed in phase at large radii than when such control is absent.



4.0

0.5

15

UNCLASSIFIED

ORNL-DWG 63-3032

^
-^N

^
-90 -60 -30 0

*l> (deg)
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Fig. 7. Phase history of ions subject to a uniform field error in an
otherwise perfect magnetic field.
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|\ /
^

0.5
\ /

\
\\

-90 -60 -30 0 30

\f/ (deg)

60 90

Fig. 8. Phase history of ions subject to both a uniform field error
and phase focusing in an otherwise perfect field.

8. Random Errors

In practice the actual magnetic field used in an isochronous

cyclotron will show deviations from the ideal field. Obviously, in

general it is not possible to predict either the magnitude or sign of such

errors. Further, there are other factors which can cause changes in

the phase of an ion, such as a jitter in the phase of the accelerating
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voltages (perhaps caused by vibration of the accelerating electrode

structures), scattering of the beam by residual gas in the vacuum

chamber, and space charge forces. Whatever the cause, however,

the effect can be represented as actual or equivalent magnetic field

errors. The analysis given in Appendix II, although very approximate,

offers some insight into the effects to be expected.

It is shown that for ions starting with zero phase angle, the

probable phase angle at the orbit radius ( Prn) is given by

i vi mTrEo . A. r~—2T|sinY|= V |AB|pjA(PZ) , (42)
NeV B„

g o

A

where AB is the average amplitude of the magnetic field errors extending
2

over the interval A( p ). This expression indicates that as the magnetic

field error interval is decreased, so also is the magnitude of the probable

phase change. Further, the magnitude of the probable phase change

increases linearly with P .

9. Gap Voltage Variations

It is apparent from Eq. (22) that the angle Y , together with the
A S

value of AB as given by Eq. (11) determine the magnitude of the mag-

netic field correction term <5B( p). Conversely, for a given ^B( n )

the product (cos Y AB) is constant and, since AB is directly proportional

to the gap voltage, it follows that the energy gain per turn is constant for

ions with phase angle Y . Consequently, the convergence of the phases

towards the limit Y will mitigate the effect of gap voltage variations

upon the circulating ions.

10. The Gap Spiral

It is apparent from Eq. (40) that the magnitude of the magnetic

field error (which can be compensated for by the radial electric forces)

is strongly dependent on the angles that the gap and the isophase curves

make with the path of an ion. Since there are limits set by practical
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considerations on the permissible overall spiralling of the gap and

isophase curves, it is of interest to examine the effect of increasing

locally the rate of spiralling, yet retaining constant overall spiral

angle. The gap curves shown in Fig. 9 illustrate how the localized

rate of spiralling can be increased without changing the overall spiral

angle. Also indicated is the isophase curve for the particular case

where the gap voltages are modulated linearly with p , starting at

p / 2. From Eq. (39) the change AI in the integral I( Y , Y) can

be found as p passes through the region of increased rate of spiralling.

The associated change in phase of an ion can then be found from a plot

of I against Y for given Y •

UNCLASSIFIED
ORNL-DWG 63-3034

•ACCELERATING

GAPS

Fig. 9. Diagram illustrating how the gap spiral could be localized
to small ranges in radii. Also shown is a typical isophase
curve and the location of the pole-face correction coils.
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Such a procedure of localization exhibits certain advantages. First,

•where the entire magnetic field is made isochronous initially, it is only

necessary to perturb the field over limited ranges of p to obtain the

conditions giving phase focusing, which could be achieved readily by the

use of pole-face windings. Secondly, any major field errors in the

vicinity of such pole-face windings could be corrected so as to permit

maximum control over the phases of the ions.

A plot of the phase history of an ion for several different starting
4

phases is shown in Fig. 7 for a constant field error of Bq/10 , and in
3

Fig. 10 for an error of Bn/5xl0 . To illustrate the effect of localized

phase focusing, the corresponding curves are given in Figs. 11 and 12

for two regions of phase focusing, with AI( Y , Y ) equal to 1.0 at the

0.5
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Bo
=2 x40~4

-90 -60 -30 0 30 60 90

ii (deg)

Fig. 10. Phase history of ions subject to a uniform field error.

4.0

0.5
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Fig. 11. Phase history of ions subject to both a uniform field error
and localized phase focusing.
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\r(A/=4.0
0.5

VsT
-30°

n

-90 -60 -30 0

\/< (deg)

30 60 90

Fig. 12, Phase history of ions subject to both a uniform field error
and localized phase focusing. The field error in this case
is twice that of the preceding example.
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Fig. 13. Phase history showing dispersion of ions as a result of
random field errors.
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Fig. 14, Phase history where random errors are present and phase
focusing is applied.
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smaller radii and to 1. 5 at the larger radii. It is seen that with phase

focusing more ions are successfully accelerated to the full energy.

Similar results are found in the case of random errors. For

example, in Fig. 13 is shown the dispersion of ions in phase according

to Eq. (42). The effect of the phase control in this case, with the

same values of AI as in the preceding example, is shown in Fig. 14.

From these curves it is seen that considerably larger random errors

can be tolerated when control is exercised over the phases.

11. Radial Stability

Independently of whether or not advantage is taken of the phase

focusing properties obtainable in a machine using spiralled acceleration

gaps, there are always harmonic driving forces which might cause

difficulty in maintaining the radial stability of the beam. The ratio of the

equivalent harmonic error in the magnetic field to the mean isochronous

field, as found from Eqs. (6) and (10), is

77 *2NA sin(naTr) rn -vl - p
f = - cos (nuuAt) cos Y . (43)n pEQnTr 0

Thus, if sin(nair) «1, then the amplitudes of the first few harmonic terms

are approximately equal and given by

f = !^JL (l dG(Pl) ^TT^ cos Y. (44)
n ttE0 V. P d p /

In accelerating systems which have symmetry about the machine

axis only terms of even harmonic number are produced. The effect of

these harmonic driving terms upon the amplitudes of the betatron is most

pronounced when v > the ratio of radial betatron to cyclotron frequencies,

has a value close or equal to that corresponding to a major resonance.

Of particular importance is the v = 1 resonance, occurring at the

center of a cyclotron. An approximate expression for the maximum

fractional increase in amplitude of radial oscillation caused by a second



21

harmonic error term at the center of a cyclotron is

**. ~ (e4^^.!) (45)

where Ap is the number of rf cycles spent by an ion in the vicinity of the

V =1 resonance. In an isochronous cyclotron, the effective value

of Ap is about ->JEn/NeV . From this equation and the strength of
f , given by Eq. (44), the increase in the amplitude of oscillation occur

ring after Ap cycles can be found. In practice, the increase in

amplitude is quite small; for the machine discussed in reference (3)

the radial amplitudes are increased by less than 10%.

At the v =2 resonance, however, the increase in the radial
r 4

amplitude can be large. An approximate expression for the increase

in amplitude at an integral imperfection resonance is

Ja = tt p rQf VAp/n . (46)

3
For the previous example, with p = 0.9 and Ap = 10 , the maximum

increase in amplitude is about 17 cm; this effectively excludes the

possibility of using a two-gap system in a machine in which v approaches

2. In a symmetrical four-gap system, however, the increase in the

amplitude of oscillation caused by the fourth harmonic at v -2 would

be small.

12. Practical Applications

The relative merits of using the afore-mentioned principles in

large isochronous cyclotrons are now discussed briefly. If the isophase

curve is only partially straightened, then excessive loss of ions at

large radii as a result of random phase shifts would be prevented. In

consequence, it is probable that the background radiation intensity would

be decreased and, in particular, the rate of increase in activity of the

machine components would be considerably reduced.
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Since at least four gaps are imperative at large radii if the v = 2

resonance is approached, little complication in the rf system would

result from introducing radial amplitude modulation; in fact, this might

ease the design of the accelerating system.

In cases where large reverse spiralling of the isophase curve is

possible, considerable relaxation in the mean magnetic field tolerances

could be achieved while the above-mentioned advantages are retained.

The major disadvantages are that limited pole-face windings

would be necessary to adjust the mean field over one or two ranges in

radii and that a small spread in energy would occur at the extraction

radius.

An attractive possibility is the inclusion into a 'good' isochronous

cyclotron (that is, one in which there is little slip or spread in phase)

of some phase control at the high energy end, thereby stabilizing the

system against small errors or drifts in the magnetic field and against

variations in amplitude of the rf voltage at the gaps.

The various geometric arrangements of accelerating gaps which

could provide phase control are illustrated now by application to the
4

previously mentioned eight-sector machine . In Figs. 15, 16, and 17,

corresponding to operation at the first, second, and third harmonic of

Fig. 15. Geometric arrangement of gaps to yield phase focusing when
f = f . Gap voltage amplitude is indicated by thickness of
gap curve. The isophase curves are also indicated.
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Fig. 16. Geometric arrangement of gaps to yield phase focusing when
f = 2f .

o

UNCLASSIFIED
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Fig. 17. Geometric arrangement of gaps to yield phase focusing when
f = 3f .

o

the cyclotron frequency, the radial modulation of the spiral gap voltages

is indicated by variation of the width of the lines representing the gaps.

It is assumed in all cases shown that there must be no second harmonic

error driving terms at maximum radius ( V ~" 2). In each figure the

instantaneous directions of the gap electric fields are indicated by arrows
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and typical isophase curves are indicated by broken lines. Possible
distributions of ions are also shown but, for simplicity of presentation,

it is assumed that the error forces acting upon the ions produce only a

dispersion in phase, increasing with the orbital radius.
The use of localized phase control to reduce the spread in phase

of ions is shown schematically in Fig. 18. For clarity, the ion

distribution without phase control is shown displaced in phase by about

90°.

Fig. 18. Diagram showing geometric arrangement of gaps to give
localized phase focusing when f = 2f , The isophase curve
is also indicated. The distribution of ions in phase when
subjected to random field error is illustrated, also the
reduction in phase spread when localized phase focusing is
applied.

1 3. Phase Control by Additional Electrodes

It is of interest to apply the preceding theory to a special case in
which electrodes are so arranged as to emphasize the effects here

examined. Assume that electrodes are used to produce a radial elec

tric field over a length L and radial distance S and that there are N

such systems symmetrically placed in azimuth, as indicated in Fig. 19.

Let the amplitude of the voltage applied to these electrodes be V and

let the frequency of the signal be h times that of the main rf.
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Fig. 19. Possible location of electrodes around machine to produce
radial forces on the ions.

In the case of a 'good' isochronous cyclotron in which there is

no differential modulation of the main rf voltage with radius, Eq. (23)

is modified in the present case to

d Y

dp

2 3/2 NceVc L-2rrm(l- /)5I sin(h Y) £°£ ± (47)

Here, the signal on the phasing electrode is n7 2 out of phase with

respect to the desired phase of the circulating beam. Hence, an ion

of the correct phase experiences no net radial force from the phasing

electrodes.

The corresponding expression to Eq. (25) is now

Rhm =
'cos Y d Y

sin(h Y )
L V N

m c c

V N

(48)

The trigonometric function can be evaluated in any chosen case but for

present purposes it is useful to examine the general nature of the solution.



Substituting |6 for h Y , then

Rh( V -
l

h

26

sin(p)

If the range of integration is restricted to qf + tt/2, then

In |sin((6)| <hRh(Y) < In |tan(tf/2)|
h=l increasing h

-4

Hence, to a first approximation,

h=

(49)

(50)

{• In j tan(^_/2) In |tan(^1/2)|| -hmhm

N
c
LV

N SV N
g

L V N
c c

hm
r

o
V N

g

P2" Pi) (51)

(52)

A plot of In |sin(^) | and In | tan($/2) | is given in Fig. 20 as a
function of the angle <j> . Examination of Eq. (52) and the curves in

Fig. 20 indicates that the range of phase focusing in this case is

principally over the interval (+ir/ 2h) to (-Tr/2h). Within this range

there are definite advantages in operating at moderate values of h,

UNCLASSIFIED
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In |tan 7 / \ \ln tan <72|

' An |sin cr|\ \

-90 -60 -30 0

(deg)

30 60 90

Fig. 20. Curves showing the limiting values of the function
[h R, ( Y) ] with ^ as the variable.
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mainly in that for larger h ions are focused more strongly upon

Y =0. Although this effect is attended by a reduction in the range

of usefulness, it is probable that a large range of coverage is not

necessary in practice. An attractive feature of this scheme is that

ions are focused on an angle which is determined by the relative

phasing of the voltages V and V , and thus is subject to choice.

The application of this scheme to a 'good' isochronous cyclotron

would stabilize the system against moderate magnetic and electric

field changes, improve the efficiency of extraction, and make possible

shorter bursts of particles for time-of-flight experiments. In principle,

a tenfold or more decrease in the phase spread could be achieved. For

example, if m = 3, h = 4, L/r = 0. 2, V N /V N = 1, and Y = 0, then
o c c g s

all ions within the range +15° to -15° would be focused to within +1. 5°

of Y .
s

As shown in Section 5, an energy spread is introduced into the

beam at the onset of phase compression. During the phase compression,

however, the magnitude of the energy spread is diminished and rapidly

becomes of negligible importance.

It is worth noting that in this application no correction is necessary

in the main magnetic field, phase compression being available directly

on excitation of the necessary electrodes. In practice it is probable

that cavities would be used so as to localize the electric fields and to

minimize power losses. To assist in the latter point large values of

h would be an advantage.

Finally, it may be noted that by reversing the phase of the signal

on the electrodes a dispersion of the phases of the ions could be achieved.

Appendix I: The Mean Orbit

An approximate expression is found for the change in mean orbit

radius caused by the radial electric impulses arising at the accelerating

gaps. Let the geometry of a given orbit be as shown in Fig. 21 where

(rfj +£2) = ^ . (1.1)
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Fig, 21. Construction for determining the change in orbit length as a
result of a radial force term.

Here, N is the number of gaps and S times B is the equivalent magnetic

field error of the radial force.

Assuming for the moment that B is independent of the radius,

then the period of rotation in the presence of the field error is

/ N^ S
t = *0 ( l ~ (2ir+<f) ) '

where tn is the period when the field error is zero. The value of

<P 1 is given by
s (i + S )

and a by

It follows that

4, = -S-
1 cos a r.

1 -

(En + T)
2 ^0

NeV tan cr

2tt p2 (Eq + T)

(1.2)

(1. 3)

(1.4)

(1.5)
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Let B' be the mean field strength corresponding to the period t and

remembering that B is a function of p in an isochronous cyclotron, then

l0 B'

and so, to a good approximation,

B' -B. ATJ NeV
iso =* AB

~W B. ~ 2ir(En +T) ~~2
iso v 0 p

But by Eq. (3), this expression is identical with that given in

Eq. (11) indicating that the oscillatory components of the radial forces

produce little change in the mean orbit radius.

Biso (1.6)

iso =« AB g tan cr n 7\

Appendix II: Random Errors

In general, ions will be subject to phase shifts caused by machine

imperfections which may vary in time. Slight differences will occur in

the magnetic field, for example, each time the magnet is re-energized

and changes in the magnet energizing currents will always occur, with

attendant phase movements. Mechanical vibration of the rf accelerating

electrodes could also produce phase errors. Consequently, the phase

history of an ion as it is accelerated to full energy will change in time

in a -way determined by the sum of the various machine errors.

Let the actual or equivalent magnetic field errors have an average
2 2amplitude of AB and extend over intervals in ( p ) equal to A( p ).

The change in phase produced by one such field error in the interval
2

A( p ) is found from Eq. (3. 4) in Appendix 3. If it is assummed that
2

the signs of the field errors in successive A( p ) intervals vary in a

random way, the probability that an ion has suffered a given phase
2 2change after transversing [ p / A( p ) ] intervals can be found. By

restricting the analysis to zero initial phase angle, the probability that
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the sine of the phase angle has a given value after M intervals is given

by

n! (R - n)'. 2

where: 2
PR = 77-V • <2-2)

sin Y ._, _.
n = =- , and (2. 3)

CA( p)

mTrEn |AB|
C = ^—7— . (2.4)

NeVg BQ

If the number of intervals is large, Eq. (38) takes the form

PR<n> =̂ 1 e"^ • (2"5)
Differentiation of Eq. (2. 5) shows that the probability of n taking a

particular value is a maximum when

R = n2 (2. 6)

From Eqs. (2. 2), (2. 3), and (2.4) this can be rewritten as

i rn-rrE A . i ~-i
I sin Y|= 2_ |AB |pWA(p^) . (2.7)

NeV Bn
g o

Appendix III: Field Perturbations

The change in phase of an ion caused by a constant mean field

error AB is found readily in the case of an isochronous cyclotron. From

Eq. (14) the phase change per turn is

drf _ ,„. cfp _ , n 2.3/2 AB ., u

^0

and from Eqs. (l6)and(17), with e = Y,

d</> _ 7 AB 0 p (o ?s
cTp" _ v~£~ NeV cosY ' { 'BQ g
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Integrating and including the possibility of operation on the m'th

harmonic so that Y = m<^ , gives

irABEnm _
sin Y = _ U— p . (3. 3)

B0 NeVg
2

Differentiation with respect to ( p ) then gives

•i, . ,„. mirE„ AB

^2^ = V- • (3.4)
d( p") NeYB,

2
where AB is assumed constant over the interval considered in ( p ).

Appendix IV: Magnetic Fields Associated with RF Cavities

The voltage modulation with radius necessary to produce phase

control introduces time dependent rf magnetic fields within the

accelerating gaps. These fields can act upon the ions to either assist

or oppose the radial forces caused by the cavity electric fields. With

reference to Fig. 22, if the gap is also a line of symmetry of the cavity,

then the only field components are

and

where

E = (A J (kr)+BN (kr)) (C cos v 4 + D sin v P) (4.1)
z V V

1 dE
H<t> = "JT J«>e—§/- • <4-2>

k = w i u e = 4JL . (4. 3)

Hence, the amplitude of the magnetic field component is

X SEz
H4 = 2ir(377) ST- ' oersteds- (4-4)

For the cavity arrangement in Fig. 22, the rf magnetic fields

act so as to increase the effective rate of rise or fall of the electric

fields, thereby enhancing the departure of the isophase curve from the

gap curve. Another effect of including the rf magnetic fields is that
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the isophase curve is no longer phase invariant but moves slightly in

space as the phase of an ion varies relative to the rf voltage.

Fig. 22.

UNCLASSIFIED
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\dE/*t>°\

Fields and coordinates used in describing a radio-frequency
cavity resonator.
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