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ABSTRACT 

An electron beam monochromator i s  under development u t i l i z i n g  

a time -of - f l igh t  ve loc i ty  se lec t ion  technique. 

pulser  supplies nanosecond gat ing pulses to the  negatively biased g r i d  

of an e lec t ron  gun. 

filament i n t o  a d r i f t  tube aligned with the e a r t h ' s  magnetic f i e l d .  

The electrons i n  t h e i r  passage through the  dr i f t  tube 0.83 meters i n  

length spread out i n  energy with the  more energet ic  g e t t i n g  t o  an 

aperture  f i r s t .  Velocity se lec t ion  w i l l  be achieved by gating the  

e lec t ron  beam i n  f r o n t  of the aperture by e i t h e r  e l e c t r o s t a t i c  or 

magnetic methods. Electrons able t o  pass through the aperture should 

be monoenergetic within 0.01 eV, and these monoenergetic e lectrons 

can then be used i n  invest igat ions of e lec t ronic  energy leve ls  i n  

s o l i d s .  Charac te r i s t ics  of the system have been obtained using 

a f l a t  co l lec tor  a t  the aperture posi t ion.  Pulses amplified by a 

t r a n s i s t o r i z e d  pulse amplifier a r e  delivered t o  a sampling oscil loscope 

and displayed on a chart  recorder.  With electrons of energies of 

2 t o  15 eV, pulse shapes and a r r i v a l  times indicate  energy spread 

of the order of 0.6 eV, as expected from the  thermal energy of 

emission from the  filament source. The square of the rec iproca l  

of the a r r i v a l  time is  a l i n e a r  function of e lectron energy. 

An avalanche t r a n s i s t o r  

Electrons a r e  accelerated from a negatively biased 
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I. INTRODUCTION 

Electron sources, such as the  hot  cathode of an e lec t ron  gun, 

have an inherent energy spread which must be reduced t o  obtain the  

monoenergetic e l ec t ron  beam necessary f o r  s tud ies  of the  energy 

l eve l s  i n  so l id s  and gases which a r e  l e s s  than 1 eV. Various e lec t ron  

o p t i c a l  methods have been used t o  ge t  the  desired monoenergetic beam, 

but  these beams s t i l l  have energy spreads of 0.05 t o  0.1 e V  which 

i s  too wide f o r  many inves t iga t ions .  To diminish the  Maxwellian 

thermal energy spread of the  e lec t ron  beam seve ra l  methods have been 

used. Magnetic analyzers have been used t o  reduce the  energy spread 

1- t o  the  order of 0 .5  eV, i n  work by Lawrence, and t o  the  order of 

0.15 eV, i n  work reported by Nottingham.2 

by Fox e t .  al.3-5 has been termed the  r e t a rd ing  p o t e n t i a l  difference 

(RPD) method. 

VR, i n  f ron t  of t he  fi lament t o  r e j e c t  t he  low energy e lec t rons .  

decreasing V 

i n  t h e i r  study of ion iza t ion  cross sec t ions)  i s  caused by the  

e lec t rons  monoenergetic t o  within t h i s  change i n  the  r e t a rd ing  

po ten t i a l .  AV i s  usua l ly  of  t he  order of 0 .1  eV. 

Another method developed 

This method uses an electrode with a re ta rd ing  po ten t i a l ,  

By 

by a small  AVR, the  difference i n  e f f e c t  ( ion current  R 

R 

'E. P.  Lawrence, Phys. Rev. 28, - 947 (1926). 

%. B. Nottingham, Phys. Rev. - 55 203 (1939). 

'R. E .  Fox, W. M .  Hickam, T .  Kjeldaas, Jr., and D. J.  Grove, 
Phys. Rev. 84, - 859 (1951). 

R .  E. Fox, W .  M.  Hickam, and T. Kjeldaas, Jr., Phys. Rev. 89, 55'3 (1-953). 4 

'Re E .  Fox, W. M .  Hickam, D. J.  Grove, and T.  Kjeldaas, Jr., Rev. 
Sc i .  I n s t .  26, - 1101 (1955). 



Application of the  RPD method has been made a l s o  t o  t h e  

6 measurement of molecular d i ssoc ia t ive  energies where the  appearance 

p o t e n t i a l  ( the  zero ion current  p o t e n t i a l )  may be obtained with much 

higher precis ion than was possible by former methods. 

claimed an e f f e c t i v e  e lec t ron  beam energy spread of 0.06 eV. 

the RPD method of the  same laboratory,  Schulz' s t a t e d  t h a t  there  was 

4 Fox e t .  a l .  

Using 

an i n i t i a l  spread i n  energy when the  electrodes were f r e s h l y  gold 

p la ted  of 0 . 1  eV but t h a t  the energy spread increased t o  about 

0.5 eV a f t e r  using the system t o  measure the  exc i ta t ion  of H20 ions 

f o r  about 50 hours. 

t o  measure cross sect ions f o r  the capture of slow e lec t rons .  To 

8 Use was made of t h e  RPD method by Buchel'nikova 

eliminate t h e  e f f e c t  of t h e  cathode drop on e lec t ron  energies,  

Buchel'nikova heated t h e  filament with pulses and ex t rac ted  electrons 

during the  t i m e  when the  current  through the  fi lament w a s  o f f .  The 

energy spread of t h e  uncorrected e lec t ron  beam, according t o  

Buchel'nikova, was  1 eV and, a f t e r  applying the  RPD method, the width 

w a s  reduced t o  0.2 t o  0.3 eV. Noting the  disagreement of the  reported 

e lec t ron  beam energy spreads by d i f f e r e n t  experiments using the  

RPD method it i s  f e l t  t h a t  the  0.06 eV spread reported by Fox e t .  a l .  

might be open t o  question. 

'J. F. Burns, K-1147, Oak Ridge Gaseous Diffusion Plant ,  Oak Ridge, 

' G .  J. Schulz, J. Chem. Phys . -, 33 1661 (1960) . 
8 

Tennessee, (1954). 

I. S.  Buchel'nikova, JETP (USSR) 35, 783 (1959). - 
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A method w a s  devised by Schulz' i n  which an e l e c t r o s t a t i c  

analyzer was  used t o  obtain a beam of e lectrons with an energy spread 

of about 0.06 eV.  

e l e c t r o s t a t i c  analyzer f o r  energy select ion,  t raversed a sample of 

nitrogen gas, and was then analyzed f o r  energy losses  by a second 

e l e c t r o s t a t i c  analyzer similar t o  t h e  f i rs t .  Another e lec t ron  

o p t i c a l  method w a s  used by Boersch e t .a l .  

chromator w a s  used t o  s e l e c t  a monoenergetic e lectron beam and another 

lens monochromator t o  analyze the  e lec t ron  beam which w a s  then 

detected photographically. Boersch s t a t e d  t h a t  he w a s  able t o  reduce 

the electron energy spread t o  0.05 eV. 

The beam of e lectrons passed through the first 

10 i n  which a lens mono- 

In  recent  research'' on low energy electron sca t te r ing ,  using 

space-charge l imited emission from a Pierce t f l e  e lectron gun, the  

energy spread of t h e  e lectron beam w a s  0.35 eV. 

The present study used a t ime-of-f l ight  technique t o  study the  

spread i n  energy of the thermionically emitted electrons.  A pulse 

of lo-' seconds duration is  delivered t o  the  g r i d  of an electron 

gun allowing electrons to enter  a d r i f t  tube. The pulse of electrons 

r e t a i n s  the  thermal energy d i s t r i b u t i o n  with the maximum number of 

e lectrons having a energy equal t o  the accelerat ing p o t e n t i a l .  A s  

the  e lec t ron  bunch d r i f t s  down the  d r i f t  tube, the  electrons spread 

'G. H. Schulz, Phys. Rev. 125 -9 229 (1-962). 

1-0 

lb. H .  Neynaber, L .  L.  Marino, E .  W. Rothe, and S .  M .  T r u j i l l o ,  

H. Boersch, J .  Geiger, and H.  Hellwig, Phys. Rev. Le t te rs ,  3, 63 (1962). 

Phys. Rev. 129, - 2069 (1963). 
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. 

out i n  energy with the more energetic e lectrons g e t t i n g  ahead of 

the slower ones. For a spec i f ied  d r i f t  distance the  t ime-of-f l ight  

i s  a c h a r a c t e r i s t i c  of the  electron energy. It i s  proposed t o  

a c t i v a t e  an e l e c t r o s t a t i c  or magnetic gate a t  the far end aS: t h e  d r i f t  

tube t o  allow a group of monoenergetic e lectrons t o  emerge where 

they may be used f o r  e lectron energy l o s s  s tud ies .  

Electrons with an energy of 3 eV t r a v e l  with a v e l o c i t y  of 

6 about 10 

distance of a meter. I f  pulses a t  the  g r i d  and the  gate of 2 x 

seconds duration a r e  used, then the  indeterminancy i n  time should 

produce an indeterminancy i n  the electron energy of but 0.01 eV.  

meters/second and hence take one microsecond t o  d r i f t  a 
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11. APPARATUS 

A .  Dr i f t  Tube 

The d r i f t  

magnetic f i e l d  

tube (seen i n  Fig. 1) i s  aligned with the  e a r t h ' s  

with the electron gun mounted on a. flange a t  the bottom 

of the tube and the  co l lec tor  on a flange a t  the  center .  

tube i s  made from two sect ions of copper tubing 1.02 meters long 

with an inside diameter of 10.2 em. Each sect ion has ports  on the 

ends and two addi t iona l  por t s  i n  the s ides .  Vacuum pumps are  attached t o  

a horizontal  sect ion of copper tubing which is  connected t o  the 

d r i f t  tube a t  the  lower s ide  port  i n  the upper sect ion.  This connection 

i s  s l o t t e d  s o  t h a t  the d r i f t  tube can be ro ta ted  around a horizontal  

axis t o  a i d  i n  a l igning the d r i f t  tube with the e a r t h ' s  magnetic 

f i e l d .  

the  e n t i r e  apparatus and i t s  wooden frame which r e s t s  on castors .  

The drift 

Rotation about a v e r t i c a l  axis i s  accomplished by r o t a t i n g  

The lower sect ion of the tube contains the electron gun mounted 

on the bottom flange. The co l lec tor  and i t s  associated gr ids  and 

sh ie lds  a r e  mounted a t  the other end of t h i s  sect ion in a s i d e  p o r t  

t y p i c a l l y  0.82 meters away. 

has i n  it an IRC f i t t i n g  t o  connect the pulser  t o  the  g r i d  of the 

electron gun. The upper sect ion of the d r i f t  tube w i l l  be used 

l a t e r  f o r  analysis  of the energies of e lectrons which have passed 

through gaseous or s o l i d  absorbers. 

A p l a t e  on the s i d e  of the d r i f t  tube 

Copper was  se lec ted  f o r  the  tube because of i t s  a v a i l a b i l i t y ,  

i t s  good e l e c t r i c a l  conductivity, i t s  good high vacuum c h a r a c t e r i s t i c s  

and the f a c t  t h a t  it i s  nonmagnetic. Collection of e lectrons on the  
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w a l l s  of the dr i f t  tube grossly a f f e c t s  the paths of low energy 

electrons i n  the  tube.  Since metal l ic  oxides a r e  generally poor 

conductors, the inside of the tube w a s  p la ted  with gold. The gold 

p l a t i n g  maintains good e l e c t r i c a l  conductivity inside the  d r i f t  

tube.  The contact po ten t ia l s  changed slowly as the  tungsten fi lament 

evaporated t o  the  tube and electrodes of the g u n .  

The s e l e c t i o n  of the  cor rec t  tube diameter depended on severa l  

f a c t o r s .  To be able t o  recycle  the  vacuum system i n  as shor t  a time 

as possible,  the diameter had t o  be la rge  enough s o  t h a t  there  were 

no constr ic t ions s u f f i c i e n t  t o  se r ious ly  l i m i t  the  flow of gases. 

Another very important consideration w a s  t h a t  the tube had t o  be 

la rge  enough t o  diminish the e f f e c t s  of space charge within the  tube.  

The maximum current  allowed i n  space charge flow12 is  

-6 v3/* (E)* amperes, I = 38.5 x 10 L m 

I is  the  maximum current down a tube of diameter D, length L, with 

an electron energy V. It w a s  necessary t o  operate with a negl igible  

space charge in te rac t ion  in  order t o  prevent energy t r a n s f e r  from 

electron t o  e lectron i n  the d r i f t  tube. There is  an addi t iona l  

energy spread i f  the  electrons s p i r a l  i n  the  e a r t h ' s  magnetic f i e l d .  

The s p i r a l i n g  can be l imited by including e lec t ron  b a f f l e s  along 

t h e  dr i f t  tube but these b a f f l e s  were not necessary i n  the  tube used 

here with one exception. A s i n g l e  e lec t ron  b a f f l e  w a s  included 

m 

l2J. R.  Pierce,  Theory and Design of Electron Beams, (D.  Van Nostrand 
Company Inc . Mew York, 1-954) page 151. 
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about 7 cm from the  end of t he  e lec t ron  gun t o  e s t a b l i s h  a f i e l d  

f r e e  region i n  the d r i f t  tube, and help prevent s t r a y  e lec t rons  

from d r i f t i n g  around the  electrodes and down the  d r i f t  tube.  F ina l ly ,  

t he  tube had t o  be of such a s i z e  as t o  allow ease i n  i n s e r t i n g  

the  component p a r t s  i n t o  t h e i r  proper pos i t ions .  I n  l i n e  with these 

considerat ions a tube with an ins ide  diameter of 10.2 cm w a s  chosen. 

A somewhat l a rge r  diameter tube with annular e lec t ron  ba f f l e s  might 

prove advantageous t o  reduce e lec t ron  s c a t t e r i n g  off  t he  w a l l s  of t he  

tube.  

B. Vacuum System 

The normal vacuum operating region of t he  e lec t ron  gun mono- 

chromator was of the  order of T o r r .  To obtain t h i s  high vacuum 

a MCF o i l  d i f fus ion  pump with a pumping speed of 300 l i t e r s / sec  w a s  

used with a 15 l i t e r s / s e c  Welch DuoSeal  forepump. 

cold t r a p  w a s  used t o  remove condensable vapors from the  system and 

t o  prevent o i l  from di f fus ing  i n t o  the  d r i f t  tube.  The d r i f t  tube 

was covered with heater  tape and asbestos t o  bake out t he  adsorbed 

gases on the  chamber w a l l s .  The system w a s  outgassed by heat ing it 

t o  about 300°C f o r  t h e  15 hour over-night per iod and then allowing 

it t o  cool  down again t o  room temperature. 

t he  system a r e  Viton O-rings and are not  a f f ec t ed  by t h i s  bake out  

temperature. 

A l i q u i d  ni t rogen 

The vacuum s e a l s  i n  

A B i rd -Alpe r t  type V I C  ion iza t ion  gauge i n  the  hor izonta l  

region of t he  vacuum system (seen i n  Fig. 1) was  used t o  measure the  

vacuum. With the  la rge  diameter tubing and few bends i n  the  system, 
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the  system came t o  equilibriwn quickly, and t h e  gauge provided a good 

measure of the  vacuum i n  the d r i f t  space and electron gun region. 

C . Electron G u n  C i r c u i t  

The electron gun c i r c u i t  i s  shown i n  Fig. 2. A storage b a t t e r y  

w a s  used as a fi lament power supply because of i t s  s t a b i l i t y  and low 

impedance. 

t o  the filament, i . e . ,  the  t o t a l  emission current .  A >On potentiometer 

across the filament i s  included i n  the c i r c u i t  s o  t h a t  the acce lera t ing  

poten t ia l ,  as read on the  voltmeter Vp, can be with reference t o  the  

port ion of the  filament which l i e s  geometrically j u s t  behind the 

hole i n  the gr id .  The accelerat ing p o t e n t i a l v  i s  var ied by using 

a potentiometer across p a r t  or a l l  of an 18 v o l t  ba t te ry .  

ammeter 

i . e .  the current  from the  filament t o  ground. The b ias  t o  the g r i d  i s  

measured by a potentiometer across an accurate 2 kn portion of 

a 1-2 kn voltage d iv ider .  A capac i tor - res i s tor  combination i n  the g r i d  

supply c i r c u i t  suppl ies  proper impedance matching t o  the ?On impedance 

of the pulser .  The capacitance between g r i d  and ground is  about 11 pf 

and a t  1,000 megacycles the capaci t ive reactance i s  only about 14.5n. 

Much of the capacitance of the  g r i d  i s  t o  the anode, and, by put t ing  the 

anode 500 off ground, the impedance of the  g r i d  t o  ground w a s  increased. 

This ?On r e s i s t o r  was event ia l ly  omitted however because no improvement 

i n  the pulse shape a t  the plane co l lec tor  w a s  noted. 

The milliammeter &, records the  current  t h a t  re turns  

P' 

The micro- 

ind ica tes  the  emission current  minus the gr id  current ,  I E m  -'G, 

The amplitude of the  pulse from the  pulser  i s  7 v o l t s  but by 

using a 5x or ]-Ox at tenuator  the output e lec t ron  pulse w a s  much 

. 
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I 

cleaner .  

driven with a 2 or 20 nsec wide, pos i t ive  pulse of e i t h e r  1 . 4  o r  0.7 

v o l t s  amplitude. Later work used the  f u l l  7 v o l t  pulse with the  g r i d  

negatively biased such t h a t  it w a s  momentarily a t  ground p o t e n t i a l  

during the appl icat ion of the  pulse.  

The data shown i n  t h i s  repor t  were taken with the  g r i d  

D. Electron G u n  

The general  form of the electron gun assembly i s  shown i n  Fig.  3. 

The assembly w a s  mounted on a p l a t e  t h a t  was posit ioned f o r  operation 

a t  the bottom of the  d r i f t  tube. The gun assembly and p l a t e  could be 

removed t o  provide ease i n  changing the filament, cleaning the 

electrodes,  e t c .  The filament power leads were brought out through 

kovars i n  the  p l a t e  t o  the  ex terna l  b a t t e r y  supply. 

The anode and g r i d  were made i n  a similar manner with an outside 

diameter of 2.5 em, a c i r c u l a r  opening of 1.6 mm and a radius of 

curvature of 2 .3  em. The g r i d  w a s  made from nonmagnetic s t a i n l e s s  

s t e e l  because of i t s  a b i l i t y  t o  withstand high temperatures without 

in jury  or excessive out-gassing, and the anode was  made from brass .  

The diameter of the  electrodes w a s  chosen t o  prevent excessive leakage 

of emission current  out the s i d e s .  The hole s i z e  i n  the electrodes 

w a s  made s m a l l  t o  have a minimum e l e c t r o s t a t i c  f i e l d  leakage through 

the  holes .  The back-to-back, symmetrical, curved shape arrangement 

was chosen t o  allow a minimum capacitance between the  two electrodes,  

with the equipotent ia l  surfaces near ly  p a r a l l e l  i n  the accelerat ing 

region. 

th ree  equally spaced ceramic s tandoffs .  

The spacing between the  two electrodes w a s  maintained by 

The g r i d  was held i n  place 

. 
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SCALE - INCHES 

ELECTRON GUN ASSEMBLY 

UNCLASSIFIED 
0 RNL-  LR-DWG 7 8 9 6 4 - R l  

. !  

Fig.  3. Cross Sect ional  Drawing of the  Electron G u n .  



by three  s m a l l  b o l t s  s i l v e r  soldered t o  the underside of the gr id  

which were attached t o  the  filament support insu la tor  by ceramic 

insu la tors .  

t o  provide a minimum indeterrninancy i n  the  accelerat ion distance.  

The g r i d  t o  anode spacing w a s  2.6 mm and w a s  kept small 

The anode w a s  grounded through three ,  1700 Vamistor r e s i s t o r s  i n  

p a r a l l e l ,  t o  increase the g r i d  t o  ground impedance. An insu la t ing  

s h i e l d  of s t a i n l e s s  s t e e l  f o i l  w a s  put over the  filament support 

insu la tor  t o  prevent the  insu la tor  from col lec t ing  charge and t o  

shie1.d it from the electron beam. This f o i l  w a s  grounded through 

t h e  screws t h a t  hold the insu la tor  t o  the  b a r r e l  of the gun. The 

filament supports were made of s t a i n l e s s  s t e e l  and screwed i n t o  the 

l a v i t e  filament support insu la tor .  Axial holes were d r i l l e d  i n  the 

ends and f i t t e d  with s e t  screws on the top and bottom t o  maintain 

good e l e c t r i c a l  contact with the  filament and filament power leads 

respect ively.  

other and from the  b a r r e l  of the  electron gun by ceramic beads. The 

ceramic insu la t ion  allowed the  leads t o  be f l e x i b l e  and did not ou t -  

gas as leads got hot .  

coaxial  cable type RG58A/V t o  a coaxial  kovar connection i n  the  

p l a t e  on the s ide  of the  d r i f t  tube.  To minimize inductance, a 

l e a f  spr ing attached t o  the  vacuum s ide  of the  kovar made contact 

with the underside of t h e  g r i d  when the  gun had been posit ioned 

The filament power leads were insulated from each 

The pulse from the  pulser w a s  car r ied  by a 

as desired.  

The cathode w a s  a .Ol?" hai rp in  tungsten filament heated with 

current  of from 13 t o  18 amperes furnished by a 12  v o l t  storage 

ba t te ry .  The spread i n  energy of the  emitted electrons by voltage 
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drop along the  filament w a s  reduced by having most of the  emission 

from the  t i p  of the fi lament.  This w a s  done by f i l i n g  down the 

t i p  t o  make it h o t t e r  than the  r e s t  of the fi lament,  by providing a 

good heat s ink  f o r  the ends of the  filament i n t o  the s t a i n l e s s  s t e e l  

holders,  and by bending the filament back sharply from the  t i p .  

Tungsten w a s  chosen over other emit ters  s ince it required Less 

care i n  operation, and other emit ters  produced no more emission. 

The .Ol5" s i z e  of tungsten wire w a s  chosen s ince it had a longer 

l i f e  than the smaller wires and s t i l l  had a s u f f i c i e n t  res i s tance  t o  

allow proper heat ing with reasonable currents .  Several  d i f f e r e n t  

filament shapes were t r i e d  but the currents  emitted were about the  

same for each shape and, s ince the  hairpin was  the  e a s i e s t  t o  make, 

t h i s  type w a s  used. 

The filament w a s  posit ioned about 1 .6  mm from the bottom of 

t h e  g r i d  f o r  maximum current and maximum cont ro l  of the emission from 

the  filament by the  gr id .  The filament w a s  operated a t  an emission 

temperature of about 2500 K t o  3000 K as measured with an o p t i c a l  pyrometer. 0 0 

E .  Avalanche Transis tor  Pulser 

The pulse used t o  gate the electron gun w a s  supplied by a Type 

111 Tektronix Pretr igger  Pulse Generator. This pulse generator uses 

an avalanche t r a n s i s t o r  i n  the output s tage t o  obtain a very narrow 

pulse with a s h o r t  r i s e  time. 

. 

t 

The avalanche t r a n s i s t o r  i s  used extensively i n  fast c i r c u i t r y  

because of i t s  very f a s t  c h a r a c t e r i s t i c  r i s e  time. The b ias  across 

the  junction of t h e  t r a n s i s t o r  supplies a s u f f i c i e n t l y  high e l e c t r i c  



f i e l d  s o  t h a t  minority c a r r i e r s  have enough energy t o  c r ea t e  e lec t ron  

hole pa i r s .  A s  t he  voltage reaches a c e r t a i n  value,  known as the  

breakdown voltage,  t he  e lec t rons  and holes c rea t e  addi t iona l  p a i r s  

and they i n  turn  multiply,  e t c .  so  t h a t  the mul t ip l ica t ion  becomes 

e s s e n t i a l l y  i n f i n i t e .  

with a r i s e  time of l e s s  than a nanosecond. The current  from such 

a t r a n s i s t o r  i s  l imi ted  pr imari ly  by the  ex te rna l  c i r c u i t  r e s i s t ance .  

The avalanche current  increases very r ap id ly  

13 

In  the  pulse generator,  a p re t r igge r  pulse is  used t o  i n i t i a t e  

an i n t e r n a l  f a s t  ramp and t r i g g e r  t he  sweep of a cathode ray  

oscil loscope. The avalanche t r a n s i s t o r  s tage i s  t r iggered  by a 

comparator s tage  a t  some point  on the  f a s t  ramp. Varying the  point  

on the  f a s t  ramp where the  comparator i s  t r iggered  causes a similar 

va r i a t ion  i n  the  delay time between the  pre t r igger  pulse and the  

output pulse .  

sho r t  of t h e  breakdown voltage and when t h e  pos i t i ve  pulse from t h e  

comparator i s  supplied i n  addi t ion t o  the  b i a s ,  t he  t r a n s i s t o r  avalanches. 

When the  avalanche t r a n s i s t o r  conducts, the  co l l ec to r  coaxia l  charge l i n e  

dumps i t s  s to red  energy i n t o  the  output c i r c u i t .  

is r e f l e c t e d  i n  phase from the  open end of t he  charge l i n e .  

r e f l e c t e d  pulse reaches the  co l l ec to r ,  the  vol tage drops s u f f i c i e n t l y  

s o  t h a t  the  t r a n s i s t o r  no longer conducts and the  pulse is  terminated. 

The avalanche t r a n s i s t o r  co l l ec to r  b ias  i s  s e t  just 

A negative pulse  

As  t h i s  

l3S. L. Mi l le r  and J. J. Ebers, Be l l  System Tech. 2, 883 (1955). 

. 
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The pulse r i s e  time i s  0.5 nsec or l e s s ,  and the  width of the  

pulse can be var ied from 2 nsec when only the  i n t e r n a l  charge l i n e  i s  

used--to 142 nsec using an addi t iona l  ex terna l  charge l i n e .  

r e p e t i t i o n  r a t e  can be continuousl-y var ied from 10 cps t o  about 100 

kc m a x i m u m .  For pulse widths grea te r  than 20 nsec the  r e p e t i t i o n  

r a t e  must be reduced t o  allow the charge l i n e  t o  have s u f f i c i e n t  

time t o  recharge and t o  keep from exceeding the  t r a n s i s t o r  d i ss ipa t ion  

r a t i n g  . 

The 

The pre t r igger  pulse w a s  used t o  t r i g g e r  the scope 30 t o  230 nsec 

before the  output pulse s o  t h a t  the leading edge of t h e  output pulse 

could be observed. 

The amplitude of the pulse output w a s  about 7 v o l t s  pos i t ive ,  

with negative p o l a r i t y  opt ional  by using a.n inver t ing  transformer. 

Impedance matching of the  5On t r i g g e r  generator impedance t o  the 

g r i d  w a s  very important t o  avoid d i s t o r t i o n  of the  pulse waveform. 

impedance match and waveform were s u b s t a n t i a l l y  improved by reducing 

the pulser  output amplitude with a 5x or lox a t tenuator .  

of e lec t ron  gun w a s  pulsed with the  pos i t ive  1 . 4  or 0.7 v o l t  amplitude 

pulse t h a t  w a s  e i t h e r  2 or 20 nsec wide. 

The 

The g r i d  

. 

F . Wide Bandwidth Pulse Amplifier 

The s i g n a l  from the  electron c o l l e c t o r  w a s  amplffied before 

scope display by a t r a n s i s t o r i z e d  pulse amplif ier .  The amplif ier  
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was developed by C . W. W i l l i a m s  and J .  H.  Nei ler  I4-l5 with some 

s l i g h t  modifications made t o  b e t t e r  s a t i s f y  the  spec i f i c  needs of 

t he  experiment. Two cascaded sec t ions  of t he  amplif ier  are designed 

f o r  maximum bandwidth, and a r e  followed by an output emi t te r  follower, 

. Each sec t ion  has an emi t te r  follower serving as a vol tage source &7 
f o r  the  fee6back cascade, and uses th ree  t r a n s i s t o r s  t o  form a s ing le -  

s tage  amplif ier  with high input and output impedance, very good 

frequency response, and feedback fo r  l i n e a r i t y  and gain s t a b i l i t y .  

Each sec t ion  has the  following cha rac t e r i s t i c s :  

time = 2.8 nsec and l i n e a r  amplif icat ion o f  e i t h e r  pos i t ive  o r  

negative pulses up t o  0.5 v o l t s  output. 

gain = 26 db, r i s e  

The two s tage  amplif ier  ( see  Fig. 4) had the  following charac te r -  

i s t i c s :  

impedance = 480Q, and decay time of 8 nsec. 

t he  output pulse from t h e  pulse generator i s  shown a t  t he  input of 

the  amplif ier  and a t  t h e  output.  

t he  input t o  the  amplif ier  is 0.6 nsec and the  decay time i s  2 nsec.  

A t  t h e  output of the amplif ier ,  t h e  r i s e  time i s  9 nsec and the  decay 

time 8 nsec. 

amplif icat ion = 430X, input  capacitance = 4.7 pf ,  input 

I n  Fig.  5 t h e  t r a c e  of 

The r i s e  time o f  t he  pulse  a t  

G. Cathode Ray Oscilloscope 

The cathode r ay  oscil loscope used t o  measure the d r i f t  time of 

t he  e lec t rons  w a s  a Tektronix Type 661 Oscilloscope with a Type 5 T l  

14  C .  W. W i l l i a m s  and J. H. Nei ler ,  IRE Trans. Nuclear Sc i .  NS-9, 1, 
(1962) ' 

' 5 ~ .  W .  w i l l i a m s ,  p r iva t e  communication. 
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Timing Unit and a Type 4Sl Dual-Trace Sampling Unit. 

of such a uni t  i s  0.35 nsec with an input impedance of ?On. 

sweep speeds can be var ied from 1 nsec/cm t o  100 nsec/cm with 

f u r t h e r  amplification possible  by using t h e  hor izonta l  sweep magnifier. 

The scope uses a s t a i r c a s e  sweep generator t o  obtain an incremental 

sampling of a r e p e t i t i v e  input pulse.  By taking successive samples 

the scope i s  able  t o  reconstruct the input s igna l .  

The r ise time 

The 

The oscil loscope w a s  used as a timing device t o  measure the  d r i f t  

The t r a c e  of the  output pulse from the t r i g g e r  time of the  e lec t rons .  

generator w a s  used as a time reference on the scope and then the  

difference i n  time between the  t r a c e  of the  generator pulse and 

the  t r a c e  of current  from the c o l l e c t o r  w a s  the  t ime-of-f l ight  (minus, 

of course, the  delay time i n  the amplif ier  and cables ) .  

By using a synchronous motor t o  drive the  manual hor izonta l  scan 

of the scope a t  a constant speed and by del iver ing the v e r t i c a l  output 

s i g n a l  from the scope t o  a char t  recorder, reproduction cf the  scope 

t r a c e  w a s  obtained. The E o f f s e t  cont ro l  on the scope w a s  adjusted t o  

properly pos i t ion  the  t r a c e  on the char t  recorder.  A f i d u c i a l  mark 

w a s  included on the  recorder t r a c e  by depressing a push button switch 

as the horizontal  sweep crossed each em mark on the scope face.  The 

recorder averaged the v e r t i c a l  t r a c e  on the  scope f o r  each posi t ion 

of the hor izonta l  drive thus grea t ly  reducing the random noise.  The 

scope sweep speed w a s  usual ly  s e t  a t  100 nsec/cm and the s e n s i t i v i t y  

s e t  a t  2, 5 or 10 mv/cm. 
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I .  

111. THEORY 

A .  Thermionic Emission 

Electrons a re  emitted with various amounts of energy from a 

hot fi lament.  This thermally induced spread i n  the  energy of the  

e lec t rons  i s  one of t he  inherent problems i n  obtaining a monoenergetic 

e lec t ron  beam. 

The Richards on -Dushman e quat ion, 

e @  - -  
2 kT J = A T e  

0 

gives the  current  densi ty  i n  amp/m2 for e lec t rons  emitted i n  the  

forward d i rec t ion  from a hot planar cathode. The work function of 

the  cathode mater ia l  i s  denoted by @, k is Boltzmann's constant,  T 

i s  the  absolute temperature and A i s  a constant.  Theoret ical ly  
0 

2 4mek 

h3 
A =  

0 (3) 

where m and e a r e  the  mass and charge respec t ive ly  of an e lec t ron  and h 

i s  Planck's constant . l6  Additional terms have been added t o  t he  

Richardson-Dushman equation t o  ind ica te  the  va r i a t ion  of @ with the  

t e m p e r a t ~ r e , ~ ~  for e lec t rons  emitted t o  a cy l ind r i ca l  anode and for 

18 emission i n  the  presence of an e l e c t r i c  f i e l d  ( the  Schottky e f f e c t ) .  

l 6 G .  P. Harnwell and J .  J. Livingood, Experimental Atomic Physics, 

17R.  L .  Sproull ,  M n  (John Wiley 

(McGraw-Hill, New York, 1933) pp 195-373. 

and Sons, New York, 1956) pp 369-373. 
70 
IV G. P. Harnwell and J. J .  Livingood, op. - -  c i t .  p 201-203. 
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The electrons have an i n i t i a l  energy described by a Maxwellian 

d i s t r i b u t i o n .  The emitted current  densi ty  t h a t  can overcome a 

re ta rd ing  p o t e n t i a l  Vr, i s  given by 

- -  
kT J = Joe r (4) 

with J the  t o t a l  emitted current  density.19 For a temperature of 
0 

3,OOOOK the  energy spread of the ha l f  of the electrons i n  t h e  center  

of tk Maxwellian d is t r ibu t ion ,  i . e .  between Jr/Jo = 1/4 and J /Jo 

= 3/4, i s  0.28 eV. 

the normal component of emission is  given by 1/2 kT 

temperature of 300OoK the energy is  .13 eV. 

r 

The average energy of the  electrons associated with 

20 and for a 

B. Space Charge Limited Emission 

For a cathode-plate p o t e n t i a l  of the order of a few v o l t s  not  a l l  

of the  electrons emitted by the  cathode a re  co l lec ted  by t h e  p l a t e .  

Around the cathode many of the electrons form an e lec t ron  cloud t h a t  

presents a p o t e n t i a l  h i l l  t o  the emitted electrons.  Many of the 

electrons t h a t  a r e  emitted i n t o  the negative space charge cloud a r e  

unable t o  surmount the h i l l  and re turn  t o  t h e  cathode. The current  from 

space charge l imi ted  emission var ies  as the  three-halves power of the  

p o t e n t i a l  applied with the value of the  constant depending on the 

geometrical- arrangement of the electrodes.  

l9K. R. Spangenberg , Fundamentals of Electron Devices , (McGraw-Hill, 
New York, 1.937) p 142. 

! . ’  I 

I 

. 

‘OK. T. Compton and I. Langmuir , Rev. Mod. Phys . 123 (1930) . - 
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The well  known Child-Langmuir l a w  gives the  re la t ionship  between 

the  current and applied p o t e n t i a l  for space charge l imited plane 

p a r a l l e l  e lectrodes.  

electrodes i s  

The Poisson's equation f o r  plane p a r a l l e l  

where 8 0 i s  the permi t t iv i ty  of f r e e  space. From Newtonian mechanics 

(6) 
2 Ve = 1/2 mv 

The current  densi ty  J i s  given by 

J = Pv (7) 
where P is  the  charge density.  

i n t o  Poisson's equation and the  l a t t e r  in tegra ted  twice t o  y i e l d  

Eqs. (6) and (7) may be subs t i tu ted  

t h e  Child-Langmuir l a w  

The in tegra t ion  constants a r e  s e t  equal t o  zero s ince the p o t e n t i a l  

21 and the p o t e n t i a l  gradient a r e  both taken t o  be zero a t  the cathode. 

Poisson's equation i n  c y l i n d r i c a l  coordinates for an i n f i n i t e  

c y l i n d r i c a l  cathode and a coaxial  p l a t e  i s  given by 

- d% + 
dr2 

2h. R.  Spangenberg, 0 ~ .  c s .  

P - - -  _ - -  1 dV 
r d r  c 

0 

454 -455. 

(9) 
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By using a method similar t o  t h a t  used with the p a r a l l e l  e lectrodes 

t h e  current  per meter length of filament i s  given by 

where r 

shown only i f  r > 10 r where r i s  the  cathode rad ius .  

i s  the radius  of the  p l a t e .  The equation i s  v a l i d  as 
P 

P C C 

It may be seen t h a t  the current  i s  again proport ional  t o  the  

voltage t o  the three  halves power. 

similar re la t ionships  hold i f  a f i c t i t i o u s  voltage22 i s  taken as 

defined by Equation 11: 

For th ree  element e lec t ron  tubes 

V + DVa 
g 

l i - D  V =  

where V 

factor" .  The l a t t e r  i s  defined as the  r a t i o  of the g r i d  voltage 

required t o  reduce the emission t o  zero ( b 4 
and the  anode voltage, and i s  a measure of the  extent  t o  which t h e  

e l e c t r i c  f i e l d  due t o  the anode penetrates the g r i d  aper ture  t o  the  

cathode. 

and V 
g a 

a r e  the g r i d  and anode voltages and D i s  the  "penetration 

or the  black out vol tage) ,  g 

Dva b 4  = 
g 

For a value of  V 

V = 0, I = 0 a l s o .  A s  the  g r i d  becomes l e s s  negative, V and I increase.  

This behavior is observed q u a l i t a t i v e l y  for negative g r i d  voltage 

equal t o  -DVa, the  tube cu ts  off. That is ,  when 
g 

22W. Schottky, Arch. Electrotech E, 1 and 299 Chapter IX(l919.) 



25 

i n  the electron gun employed here, but it is  s t rongly modified 

as pos i t ive  g r i d  voltages by electron co l lec t ion  by the g r i d  (see 

Section IVA). 

It is  i n t e r e s t i n g  t o  note t h a t  the  electrons a r e  emitted i n t o  

a cone of semi-ver t ical  angle 0 given by 

where 0 i s  the  angle noted f o r  V = 0. 
0 g 

C .  Electron Motion i n  a Magnetic F ie ld  

Electrons a r e  emitted from the  electron gun i n t o  a cone coaxial  

with the  dr i f t  tube and the  e a r t h ' s  magnetic f i e l d .  

takes a s p i r a l  path around the e a r t h ' s  f i e l d  and i s  refocussed on the  

axis a f t e r  one complete revolution. 

Each e lec t ron  

The angular frequency of t h i s  

motion may be obtained by equating the  c e n t r i p e t a l  accelerat ion and 

t h e  magnetic force 

mv 
r = Bev - 

which yields  an angular frequency, the  cyclotron frequency of 

Be 
m 

w = -  

The period of t h i s  motion 7 i s  then 

2 m  
eB 

T = -  

which has value of about TOO nsec i n  the e a r t h ' s  f i e l d  of about 

0.5 gauss. The ax ia l  ve loc i ty  of e lectrons of energy eV i s  very 

near ly  

v a J? 
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i f  v2 << v2 . n a 
Now the axial distance s the  electrons t r a v e l  during one r o t a t i o n  i n  

the magnetic f i e l d  is  given by 

s = v T  a 

or from Equations (16) and (17) 

It; is  noted from Equation (19) t h a t  the f o c a l  length s var ies  as 

the  square root  of the energy. Electrons w i l l  a l s o  be focused i f  they 

a r e  allowed t o  t r a v e l  axial  distances consis t ing of an i n t e g r a l  multiple 

23 of f o c a l  lengths. 

D. Scat te r ing  of Electrons by Residual Gas 

I n  determining the  probabi l i ty  t h a t  an e lec t ron  w i l l  co l l ide  

with a gas molecule during i ts  t r a j e c t o r y ,  the  gas molecule can be 

considered as a sphere with radius r .  The electron,  with a radius r 

w i l l  be intercepted by a gas molecule when the distance from the  centers  

of the  molecule and the  e lec t ron  a r e  l e s s  than the sum of the  radi i ,  

i . e .  r + r . e e 

The electron beam i s  at tenuated by e e i n  going a distance 

s through a gas of N molecules per u n i t  volx,me. The r a t i o  of t h e  

current  a t  a dis tance s t o  the current  when s = 0 i s  given by 

e’ 

2 The cross s e c t i o n a l  area f o r  c o l l ~ i s i o n  i s  then s(r + r ) . 
- N f i ( r  + r ) 2 s  

23P. Klemperer, Electron Optics, (University Press, Cambridge, 1 9 5 3 ) ~ ~  
77 -84. 
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2 
I - = e  -NT~(R + re) s 
I 

0 

The mean free path s is 

1 - 
2 s =  

Na(r + re) 
Now since r >> r r can be neglected so that Eq. (21) becomes 

e' e 

1 

N m  

- s = -  
2 

24 Equations (20) and (21) may be combined to yield, 

-S /i- 1 = 1  e 
0 

A gas at standard temperature and 760 mm of Hg pressure has 2.24 

x lo-' m3/mole and 6.02 x lop3 molecules/mole. 

of molecules per cubic meter at standard temperature and a pressure, 

Now the number, N, 

P, in mm of Hg is given by 

~(6.02 x molecules/mole). 

(760 mm of Hg) (2.24 x 1-0 -2 3 
N =  

m /mole) 

- 
The mean free path, s, in meters for a molecular radius, r ,  in meters 

and a pressure, P, in mm of Hg is then 

-24 - 9.00 x 10 s =  

24~. L. Sproull, - op. g. p. 39-43. 
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E .  Time-of -Flight Desim Parameters 

. 

Measurements of neutron energies by t ime-of-fl ight have been 

ef fec ted  for  many years.  This method has found pr inc ipa l  appl icat ion 

i n  determinations of primary neutron spec t ra  from nuclear react ions,  

and i n  measuring nuclear i n e l a s t i c  s c a t t e r i n g  and absorption cross 

sec t ions .  A large body of information e x i s t s  on t h i s  t ime-of-f l ight  

technique25 but l i t t l e  of it seems applicable t o  e lectron measurements 

because of the small energies involved which preclude use of nuclear 

counters and because of electron-gas molecule react ions and electron 

s e n s i t i v i t y  t o  def lect ion by charged surfaces and space charge i n  the 

d r i f t  tube, a l l  of which l i m i t  f l i g h t  paths t o  l e s s  than one meter. 

The only important appl icat ion of the  neutron work appears t o  be i n  

the s i m i l a r i t y  i n  the  electronics  requirements --both require  f a s t ,  

sens i t ive ,  broad-band amplifiers and sampling oscil loscopes.  

The basic  dimensions, times, and energies f o r  the d r i f t  experiment 

were determined as follows. The fundamental equations involved are:  

E = - v  and s = v t  (26 )  
m 2  
2 

The energy uncertainty i s  r e l a t e d  t o  the v e l o c i t y  uncertainty by 

Av - 2 -  E V 
_ -  AE 

No simple re la t ionship  e x i s t s  f o r  the uncertaint ies  i n  distance and 

time, f o r  these parameters a r e  r e l a t e d  e s s e n t i a l l y  by the electron 

25J. H .  Neiler and W.M. Good, i n  Marion and Fowler's Fast  Neutron 
Physics, ( Interscience Publishers, Inc . , New York, 1960), Par t  1, 
pp 509-621. 

. 
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i 

i -  

i 

motion during accelerat ion i n  the e lec t ron  gun where the second of 

Equations 26 does not hold. An e lectron of energy between zero and one 

electron v o l t s  starts a t  some undetermined point  i n  the  space charge 

cloud between cathode and anode, i s  accelerated by an unknown e l e c t r i c  

f i e l d  screened by t h e  space charge, and may or may not emerge from the 

anode a f t e r  fal-l ing through an unknown p o t e n t i a l  difference.  Although 

no re la t ionship  e x i s t s  between the  distance uncertainty A s  and the  

temporal uncertainty A t ,  it i s  c l e a r  t h a t  the  point  of or ig in  of the 

electrons can be unknown by no more than the cathode-plate distance,  

and the  time of or ig in  by the  duration of the pulse on the  g r i d .  These 

uncertaint ies  a r e  e s s e n t i a l l y  unrelated ye t  each contributes t o  the 

uncertainty i n  the ve loc i ty .  

contribute the  same uncertainty t o  the Velocity; i . e .  k / s  = Av/v 

It would seem reasonable t o  l e t  each 

= O t / t .  

The energy uncertainty desired, AE, is 0.01 eV. The d r i f t  time 

required for magnetic focusing i n  the  e a r t h ' s  f i e l d  i s  7 = TOO nsec 

(see Section C ) .  

as about 0 . 1  c m  and f o r  a minimal f i e l d  leakage through the electrodes,  

the  electrode spacing should be no l e s s  than t h i s  amount; t h a t  is A s  

= 0 . 1  em. With three  of the e ight  unknowns spec i f ied  i n  the  f i v e  

equations above, the other f i v e  unknowns are  determined. I n  terms 

of the above spec i f ied  values, the ve loc i ty  i s  

A reasonable beam aperture i n  the gun w a s  chosen 

t A E  8 
m As v = - - = 1.23 x 10 cm/sec 

which corresponds t o  an energy E = 4.31 eV, a temporal uncertainty A t  

= 0.811 nsec, and a f l i g h t  distance s = 86 em. The a c t u a l  values used 



. 

were very close t o  these with a pulse of width 2 nanoseconds a t  ha l f  

maximum (and with e lec t ron  emission occurring only near the peak of 

the  pulse because of the negative g r i d  b i a s ) ,  and a f l i g h t  distance of 

83 em. 

The ve loc i ty  may be eliminated from Equation 26 t o  y i e l d  a 

convenient numerical re la t ionship  between E i n  eV and t i n  nsec. 

6 -2 
E = 1.96 x 10 t (29) 

F. Conversion of Time-of-Arrival Distr ibut ion t o  an Energy Distr ibut ion 

The amplifier output gives the  time d i s t r i b u t i o n  of the electrons 

a f t e r  they have t raveled up the d r i f t  tube.  

d i s t r i b u t i o n  t o  an energy d i s t r i b u t i o n  a re la t ionship  between the 

two functions must be found. The number of electrons i n  the time 

i n t e r v a l  between t and t + d t  i s  defined as N ( t ) d t  and the number of 

e lectrons i n  the energy i n t e r v a l  between E and E + dE is  likewise 

defined as N'(E)dE.  Since the same number of e lectrons i s  involved 

i n  e i t h e r  case, the  two can be s e t  equal, i . e .  N ( t )  d t  = N'(E)dE or 

To change the  t i m e  

N ' (E)  = N ( t )  E d t  * ( 3 0 )  - m s  2 

t 3  
But by d i f f e r e n t i a t i n g  Equations (26) we f i n d  t h a t  dE = - d t  or 

-t 
m s  

3 
2 

- - .  - - -  d t  
m 

. Because the  distance - N ( t )  t3 From Equations (30) and (31), N ' (E)  = 

i s  constant, the  number of e lectrons as a function of energy i s  then 

given by 

rns 

N ' (e)  a N (  t )  t3 

! 

0 '  
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N. msuLTs 

A .  Direct Current Operation 

The co l lec tor  current ,  I as a function of the g r i d  voltage,  V 
P’ g ’ 

with d i f fe ren t  accelerat ing poten t ia l s  V i s  shown graphically i n  Fig.  

6. The posi t ioning of the  gr id  with respect  t o  the filament has a 

marked e f f e c t  on the  cont ro l  of the  emission by the  g r i d .  By posi t ioning 

the g r i d  qui te  c lose t o  the filament (see Fig.  3) a slight change i n  the 

g r i d  p o t e n t i a l  grossly a f f e c t s  the co l lec tor  current .  

P 

The co l lec tor  current ,  I was  col lected by a 6.23 em diameter 
P’ 

cup located about 10 em from the end of the electron gun. The current  

t o  the co l lec tor  w a s  measured by a Model 201c E-H Electrometer Amplifier. 

A peak i n  the co l lec tor  current  occurred when the g r i d  was about 

1.5 v o l t s  negative.  This apparently w a s  caused by a contact p o t e n t i a l  

between t h e  electrodes and was a l s o  evident i n  the t ime-of-f l ight  

curve of Fig. 9. The amplification fac tor ,  obtained from Fig.  6, i s  

about 11 i n  the normal operating region between the  cut-off voltage 

and the  I peak. 
P 

The shape and close proximity of the g r i d  t o  the filament causes 

the  g r i d  t o  c o l l e c t  much of the  emitted current  when it i s  pos i t ive .  

This w a s  apparently the  cause f o r  the  dip i n  the  current a f t e r  the  

r a t h e r  sharp peak as g r i d  voltage was increased. The f i e l d  penetrat ion 

from the  p l a t e  a f f e c t s  the  space charge around the filament l e s s  f o r  

the lower p l a t e  voltages.  Apparently t h i s  i s  why I i s  r e l a t i v e l y  

independent of gr id  voltage f o r  the low p l a t e  voltages but rap id ly  
P 
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26 increases f o r  the higher p l a t e  po ten t ia l s .  

A g r i d  b ias  of about a v o l t  and a ha l f  below the voltage necessary 

f o r  peak current diminished the co l lec tor  current  t o  1 t o  4% of i ts  

peak current  value. The gr id ,  during pulsed operation, w a s  normally 

operated a t  0.7 v o l t  or more below the  g r i d  voltage necessary f o r  peak 

current  which kept the  gun cut  off u n t i l  t h e  pos i t ive  pulse from the  

pulser  was delivered t o  the  gr id .  

B. Focussing Effec t  of t h e  Earth 's  Magnetic F ie ld  

The focussing e f f e c t  of the  e a r t h ' s  magnetic f i e l d  i s  shown 

graphically i n  Fig. 7. 

no baf f les  were placed i n  the d r i f t  tube. This cup was enclosed except 

f o r  a 0.64 em diameter opening t o  the  electron beam, so  t h a t  it would 

c o l l e c t  only the current a r r iv ing  on the ax is .  The electron gun w a s  

placed a t  the  bottom of the d r i f t  tube, and the  electrons were allowed 

t o  s p i r a l  i n  the e a r t h ' s  magnetic f i e l d  and be co l lec ted  84 em away 

i n  the  Faraday cup. 

a Model 20lC E-H Electrometer. 

To get  the maximum current  a t  the Faraday cup 

The current co l lec ted  by the  cup w a s  measured by 

The f o c a l  distance f o r  e lectrons t rave l ing  i n  a uniform magnetic 

f i e l d  var ies  as the square root  of the electron energy as shown i n  

Eq. 19. The electrons apparently came t o  a focus a t  the Faraday cup 

a f t e r  having s p i r a l e d  once i n  the e a r t h ' s  f i e l d  i n  the  higher energy 

peak, and twice i n  the lower energy peak. The r a t i o  of applied voltage 

*%. Klemperer, - -  op. c i t .  259 -68. 
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6*35  ' = 4.1, i s  very close t o  the r a t i o  of 4 f o r  peak currents ,  1-35 v 
t h a t  one would expect. 

The values t h a t  a r e  obtained f o r  the magnetic f i e l d  using Equation 

(19) and poten t ia l s  of 1.53 V and 6.35 V f o r  the  f o c a l  lengths of 1/2 s 

and s a r e  0.65 and 0.66 gauss respect ively.  

C .  Electron Col l i s ion  Cross Sections 

Electrons a r e  absorbed or s c a t t e r e d  f o r  the  electron beam by any 

r e s i d u a l  gaseous molecules. 

10) of both s ides  of Equation (23) and s u b s t i t u t e s  the value of s 
from Equation (23) one obtains 

I f  one takes the logarithm ( t o  the base 

A p l o t  of the l o g  of the current vs.  the pressure, as shown i n  Fig. 8, 

yields  a s t r a i g h t  l i n e  with a slope given by 

2 
Alog 1 - r s log e 

9 Ap - - 
From the  experimental slope,  the molecular radius r and hence the 

coll-ision cross sect ion can then be found. 

The fl ight path f o r  the electrons w a s  83 cm, and they were 

co l lec ted  i n  a 

had an opening t o  the electron beam 0.64 cm i n  diameter. 

small aper ture  and the  long fl ight path the  electrons were assumed 

sca t te red  out of the e lec t ron  beam with a s ingle  c o l l i s i o n .  The 

anode voltage on the electron gun was 5.2 volts. The pressure was 

increased by closing a valve between the  d r i f t  tube, and the pump 

Faraday cup (described i n  the  previous sect ion)  t h a t  

With t h i s  

(33) 
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and t r a p .  

The c o l l i s i o n  cross sect ion i n  Fig. 8 f o r  the  lower s t r a i g h t  l i n e  

i s  1.34 x em2 and for  the  upper l i n e  it i s  3.4 x em2.. The 

f i r s t  value compares reasonably wel l  with the  accepted value f o r  the  

t o t a l  c o l l i s i o n  cross sect ion of 1 .2  x ern summarized recent ly  

f o r  molecular nitrogen. 

2 28 

The second value i s  not known with as much accuracy but i s  

apparently l a r g e r  than the  most l i k e l y  contaminant, water vapor, which 

has a cross section29 of 1 .6  x 

the observed are associated with s c a t t e r i n g  off of l a r g e r  molecules 

such as might a r i s e  from d i f f u s i m  p u p  o i l  or i t s  decomposition 

products. I n  any case, the curve w a s  not exponential f o r  low pressures 

probably due t o  a lack of pressure equilibrium, ion gauge pumping, 

or var ia t ion  i n  ion gauge s e n s i t i v i t y  with gas composition. 

cm2. Cross sect ions as high as 

D.  D r i f t  Time Distr ibut ions 

A s  indicated by Equation (29), there  should be a l i n e a r  r e l a t i o n s h i p  

between the electron energy and the  square of rec iproca l  time-of - f l i g h t .  

A p l o t  o f  the  square of  the rec iproca l  t ime-of-fl ight versus the p l a t e  

voltage of the  electron gun i s  shown i n  Fig. 9. 

The gr id  w a s  operated f o r  t h i s  measurement a t  3.45 v o l t s  below 

the cathode p o t e n t i a l  and received a 0.7 v o l t  pos i t ive  pulse 20 nsec 

R .  H .  Neynaber, Lawrence L.  Marion, Erhard W .  Rothe, and S .  M .  T r u j i l l o ,  
"Low Energy Electron Sca t te r ing  From Atomic Nitrogen", Phys. Rev. 

28 

*, 2069, (1963). 

. 

'7H.S.W. Massey and E.H.S. Burhop, Electronic and Ionic Impact Phenomena , 
(Clmendon Press, Oxford, 195$ p. 208. 
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i n  width. This pulse,  used t o  gate  the  e lec t ron  gun, a l s o  supplied 

a reference mark t o  the  cathode r ay  oscil loscope. The e lec t rons  

d r i f t e d  down the  dr i f t  tube and were co l lec ted  by a plane co l l ec to r  

6.23 cm i n  diameter posi t ioned i n  the  d r i f t  tube a dis tance of 0.83 m 

from the  e lec t ron  gun. The e lec t ron  pulse w a s  amplified by the  

t r a n s i s t o r i z e d  pulse amplif ier  and then displayed on the  osci l loscope.  

The oscil-loscope t r a c e  w a s  reproduced on a recorder char t  by feeding 

the  oscil loscope v e r t i c a l  output t o  the recorder while dr iving the  

manual hor izonta l  scan with a synchronous motor. Measurements were 

r e s t r i c t e d  t o  the  e igh t  centimeter l i n e a r  port ion of the  hor izonta l  

sweep. 

t he  reference time could be accurately determined. A push button 

f i d u c i a l  marker w a s  depressed as t h e  scan passed each em mark on 

the  scope face s o  t h a t  t he  pos i t ion  of t he  pulse could be accurately 

measured with reference of the  cm-fiducal marks. The delay time 

i n  the  cable and amplif ier  of 16 nsec was  subtracted from the  displayed 

time -of - f l i g h t .  

The reference pulse w a s  displayed on t h e  scope t r a c e  s o  t h a t  

The curve of Fig. 9,  extrapolated t o  i n f i n i t e  t i m e ,  in te rcepts  

This i n t e rcep t  w a s  a t t r i b u t e d  

The r ec ip roca l  slope of t he  l i n e  

the  energy axis a t  about -1.5 v o l t s .  

t o  a contact p o t e n t i a l  i n  the  gun. 

i s  2.03 x 10 
-6 eV nsec' which, agrees wel l  with the  value i n  E q -  

-6 29 of 1.96 x i o  . 
Three representa t ive  pulses,  taken from those used t o  p l o t  Fig. 9, 

a r e  displayed i n  Fig.  10. For the  acce lera t ing  voltage of 7.5 v o l t s  

t he  pulse a t  ha l f  height  i s  26 nsec wide with an appreciable port ion 
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Fig. 10. Arrival Time Distr ibut ion of Pulsed Electron Beam. 



, -  

of t h i s  pulse width introduced by the  amplif ier  and the  20 nsec wide 

gat ing pulse.  

is respec t ive ly  38 and 52 nsec.  

The width a t  ha l f  height for v = 5.0 and 3.0 vo l t s  
P 

The pulses displayed i n  Fig. 10 were taken with the  m a x i m u m  

amplif icat ion of t h e  oscil loscope. 

de l iver  a 2 nsec wide pulse but  t h i s  reduces the  pulse amplitude by 

about a f ac to r  of 10 which i n  turn  diminishes the  pulse amplitude 

f o r  t he  low acce lera t ing  po ten t i a l s  t o  the  point  t h a t  it i s  d i f f i c u l t  

t o  determine the  time -of - f l i gh t .  

The pulse generator can e a s i l y  

The pulses shown i n  Fig. 10 were divided i n t o  s t r i p s  5 nsec wide. 

The height of each s t r i p ,  N ( t ) ,  was mul t ip l ied  by t3 and the  r e s u l t i n g  

energy d i s t r i b u t i o n  w a s  p lo t t ed  against  the  e lec t ron  energy as shown 

i n  Fig.  11. 

, 
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V. CONCLUSIONS 

. 

An electron gun, d r i f t  tube, and f a s t  amplifier have been designed and 

t e s t e d  as  a p a r t  of a time-of -flight electron beam monochromator. 

t ime distributions were obtained f o r  e lectrons of mean energy f r o m  3 t o  15 eV 

D r i f t  

which required mean t r a n s i t  t i m e s  f r o m  800 t o  350 nanoseconds, respectively. 
Kn 

The widths of these  distributions ranged f r o m  52  t o  24 nanoseconds, respec- 

tively, with the la t ter  minimum value corresponding t o  the e f f e c t s  of amplifier 

124 
‘3 J 

?,.I& 

rise t ime  and pulse width f r o m  the  pulser. The fo rmer  value corresponds t o  a n  

electron energy spread f r o m  the  electron gun of about 0.6 eV. The reciprocal 

of t he  square o f  the  t r a n s i t  t i m e  is a l inear function of the  electron gun acceler- 

a t ing  potential  with an  in te rcept  a t  -1.5 vol t s  a t t r i bu ted  t o  contact  potentials. 

Beam at tenuat ion due t o  sca t te r ing  off of residual gas in the vacuum sys tem 

indicated tha t  pressures  below 10 mm Hg are required in order  t o  avoid loss 

of e lectrons in d r i f t  distances of t he  order  of one meter .  Additional work is 

required t o  reduce the  amplifier rise t ime  and t o  improve the  electron gun both 

-6 

in regard t o  magnitude of emission and pulse shape a t  the  grid. If these  can be 

accomplished sat isfactor i ly ,  then problems of gating the beam a t  t h e  exit end 

of t he  tube can be studied. 
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