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ABSTRACT

An analysis of a rectangular grid of perpendicular beams simply sup

ported at the ends is presented. Bending, shearing, and torsional effects

of beams with arbitrary cross sections are taken into account, and the

beams may be subjected to uniform or concentrated loads. An energy method

is used in the analysis, and a matrix formulation for determining the un

known coefficients appearing in the Fourier series expression for the

lateral deflection is given. This formulation is especially suited for

computer application, and a computer program for performing the analysis

is described. Data are presented for use in the design and evaluation of

certain grid configurations. Applications to nonrectangular grids are

also considered.
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NOMENCLATURE

A Cross-sectional area of a beam

a Series coefficients, where m, n = 1, 2, ...
mn

B External work of uniform loads

C External work of concentrated loads

E Young's modulus of elasticity

v Total energy of the grid

G Shear modulus of the material

g Number of beams perpendicular to the y axis of the grid

h Number of beams perpendicular to the x axis of the grid

I Moment of inertia

J Torsional factor dependent on the cross section (polar moment
of inertia if the cross section is circular)

L Common length of the beams perpendicular to the x axis

L Common length of the beams perpendicular to the y axis
J

M Bending moment

P Concentrated load (positive downward) located at (x , y ., )

q Uniform load (positive downward)

T Torsional strain energy

C J
t = — Torsional constant

EI

cc
S = ^rr— Shearing constant

2GA

QEI

2GA
Shearing constant

U Shearing force

R Bending strain energy

w Deflection, positive downward

x. x coordinate of ith beam perpendicular to x axis

y. y coordinate of jth beam perpendicular to y axis

Z Shearing strain energy in combination with bending strain
energy

*
Additional definitions are given as needed in the discussion of the

matrix formulation.



vm

a. Cross-sectional constant

6 Angle of twist of a segment

Sub;scr•ipts

xi, i

yj, J

T

yij

xij

ith beam perpendicular to x axis

jth beam perpendicular to y axis

Total strain energy

Segment [(x^y ), (xi+1>yJ]
Segment [(x±,y ), (x±,y^+1)]



1. INTRODUCTION

With the advent of gas-cooled, graphite-moderated reactors another

important use was found for the already widely used beam-grillage support

system. This type of supporting structure is useful in reactors with

vertical fuel channels because it does not adversely affect the flow of

coolant and it covers a minimum of the lower surface of the active core.

A beam-grillage arrangement which is supported at its outer edge and

covered by a plate for transmitting loads to the beams is commonly used.

Such a structure offers the advantages of a low depth requirement and

increased accessibility to the reactor face, as compared with a truss

arrangement, for example. These considerations are of great importance

when the fuel is loaded and unloaded from the bottom of the reactor. Be

cause of the exacting nature of the design analysis for this application,

new impetus was given to developing methods for analyzing these structures.

An analysis for an array of perpendicular beams arranged to form a

structure that is rectangular in plane form is presented in this report.

Only beams with simply supported ends are considered, but the beam cross

sections may be of any shape. The bending, shearing, and torsional ef

fects are taken into account. The beams may be subjected to distributed

or concentrated loads or both. An energy method is used in the analysis

and the lateral deflection is represented by a Fourier series with unknown

coefficients. The values of these coefficients depend upon the geometry

of the grid, the properties of the material, and the loadings to which the

grid is subjected.

An expression is derived for the total energy in a grid system as a

result of combinations of bending, shearing, and torsional effects and

of external loadings. Upon minimizing the total energy of the grid, a

linear simultaneous system of equations results; a formulation is given

for determining the matrix elements of this system. A simplified analysis

is given for rectangular grids with identical and equally spaced beams.

The analysis may also be applied to grid systems in which the beams in a

given direction are unequal in length.

An IBM 70k computer program for making the analysis outlined in this

report was written. It is described briefly in Appendix A. Through the



use of this program, almost any rectangular grid of perpendicular beams

may be analyzed.

Generalized analyses were made for square structures with equally

spaced beams that are subjected to uniformly distributed (or simply uni

form) loads, and data for use in the design of this type of structure are

presented. The data given are for bending alone, but the shearing and

torsional effects may be included through the use of specially prepared

curves, which give multiplicative constants to apply to the bending re

sults. Finally, one section of this report is devoted to nonrectangular

grids and other grid applications.

2. TOTAL ENERGY FORMULAS

A typical structure to which the equations derived herein apply con

sists of the rectangular grid of perpendicular beams shown in Fig. 1.

The strain energy method used in the analysis presented consists of de

riving expressions for the total energy of the system in terms of unknown

coefficients. These coefficients are then determined by minimizing the

r t *
total energy [1}. The unknown coefficients, a , to be evaluated appear

in the expression for the lateral deflection, w, which is taken to have

the following series form:

w = > > a sin - sin -=—^- , (lj
Uu mn LT LT ' s
n m J I

where the coordinates and L and L are defined in Fig. 1. This ex-
J 1

pression yields deflections and moments that are zero at the end, and,

hence, it satisfies the boundary conditions for simply supported beams.

The series can be made to represent any deflection curve to which this

analysis may be applied with a degree of accuracy that depends upon the

number of terms of the series taken. Only odd values of m and n are re

quired for a rectangular grid possessing load and geometrical symmetry

*

Brackets refer to numbered references in the Bibliography.
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Fig. 1. Coordinate System of Typical Grid Structure.

about the center lines, while both odd and even values are required for

the nonsymmetrical case.

The total energy of the system is given by

VT = ZT + TT + BT + CT , (2)

where

2. - total shearing strain energy in combination with bending
strain energy,

T = total torsional strain energy,

B = total external work of uniform loads,

C = total external work of concentrated loads.

If the shearing strain energy is neglected, Z in Eq. 2 is replaced by

Rr^, the total bending strain energy.

Each term on the right-hand side of Eq. 2 may be expressed in terms

of the deflection as given by Eq. 1. Thus, Eq. 2 gives an expression for

the total energy of the structure in terms of the coefficients, a . The

expression for the total energy is minimized by taking the partial deriva

tive with respect to each a and setting each expression thus obtained

equal to zero. This gives a set of simultaneous linear equations in the
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coefficients, a , the solution of which provides an explicit expression
' mn

for the deflection. The expressions for the terms on the right-hand side

of Eq. 2 are listed below, and the derivations are given in the next

section.

1. Total Bending Strain Energy.

RfTJ = -a 2(EI)yJz(zL= j yj n \m
a sin
mn

mity
J

1'
+ — V (EI) . )"

o Li xi LL? i xi Li
m ft

nitx. \2
a sm
mn

m (3)

2. Total Shearing Strain Energy in Combination With Bending Strain
Energy.

it

z<«>yjz ——~4
LLJ i « 2Syj(El)yo

/

.n2it2 + L2 \ m
yj J \

a sm
mn

mity .
J

m

+- Z <EI>X1 Z
m 2S .(El) .m2«2 + L2

xiv xi T
ill
i \n

mtx.
i

a sin
mn

3. Total Torsional Strain Energy.

it

TT =
2

— T, (GJ) . zT2 ^ yj .H
i=0 x. , — x.

l+l 1Ji J

'Z
mity,

m cos

m L,
Z mn

mtx. _, mtx.
l+l . 1

sin sin

I2 1 8 1

♦ -r Z «">* Z

mtx.

2» cos —

n L

V a
A-/ mn
m

J L

LJ T

sin

J=0 yj+l - yj

imty . , mity .

—i±i - sin - J')1!
I J

»

(5)



k. Total External Work of Uniform Loads•

2 r

it

/ 1\ wy^
Li %-j Li \ Li mn /
n J0 m \ n n/ LT

nitx.

+ L, Li ^xi Zj I Li amn /
j_ n \ m m /

sin

5. Total External Work of Concentrated Loads,

mtx., mity.,

Cm = - y, P, yy, a sin — sin ^—
T AJk^JAJmn

k n m L L

(6)

(7)

3- ENERGY TERMS

The derivations for the terms R^ ZL,, T , B , and C are given in

this section. The coordinate system and nomenclature shown in Fig. 1 are

used in the analysis.

First, the expression for the total bending strain energy, R , is

derived. If R . and R . are the bending strain energies along the jth
yj xi

and ith beams, respectively, then

and

(EI)
R . =
yj

• LT /d2wV

"0 Vdx2/
dx

xi

(EI) . LT /cL2w\2
—^1 — *

2 0 \ dy2 /

at y = y. ,

at x = x.

The lateral deflection, w, is given by Eq. 1, and it follows that

(8)

(9)



and

Similarly,

Thus,

dw

dx

fl IV /v • m^y \ nitx I= IT \L [L amn sm— 1n cos— ,
J Ln \m I / J J

2 rd2w —if

*(dx2 L2
id

d w —it

dy2 L%

^2 r /

L^ Z(2Lti m \n

mity

a sm —
mn

m L,

nitx

n2 sin

LJ J

mtx \ mity

m2 sin

LI -

a sm
mn

(
d2w\2 It4

dx2 / ~ Lt z(z
n \m

mity

a sin I n4 sin2
mn J

mtx

and

/d2w\2 ,t4

\d7/ =5 z(z
m \ n

mtx

a sm
mn )'

+ (cross product terms)

mity
4 • 2

m sm

+ (cross product terms)

The cross product terms of Eq. 13 are of the form

, . nitx . mitx
k sm sm -— ,

LJ LI

(10)

(11)

(12)

, (13)

(1*0

where k is a function of the summation containing y, m, or n; also m ^ n.

Since



and

L_ L_

( sin2 ax dx = — ,
0 2

J sin ax sin bx dx = 0, a ^ b ,
0

then

(EI) .it4 LT
R . =- EL_ / Jyj 2L4 J0

J

(mity \2

m Lx /

mity . \^ nitx
J 1 4

a sm I n sm

+ (cross product terms)

(EI) .it4
yj

hL3T
J

Similarly,

/ mity \2

Z Z v sln t^ n<n \m LI /

R
xi

(EI) .it4
xi

(nitx. \2

Z amn sin —i )n L /

Hence, the strain energy from bending is

RT = Z Rv.i + Z Rxi >T u "yj

m

(15)

(16)

dx

(17)

(18)

(19)

where the summations Y and V are summed over all the beams perpendicular

J i
to the y and x axes, respectively. Thus,

«T

jt

k

1 / mity, \2
- Z(°)rt Z(Z \n ^ -* "4

1 / mtx. \2

♦ -i z <=>* z (z *m ^ -i) nr (20)



If both bending and shearing are taken into account, then the

following relations must hold for the jth beam [2]:

and

d2w M . dU
— + 2S .—^ , (21)

dx2 (El) . yj dx
yj

dM .

—^ = U ., (22)
dx yj

where S . is a constant, the value of which is discussed later.
<y j

Similar conditions hold for the beams in the y direction. Elimi

nating U . from Eq. 21 and substituting for w yields
«y j

d2M . M . it2 mtx mity
2s . —22 u- = — y y n2 sin — si — (25)

which has for a general solution

M . = C1exp ——3—^—;——i- C2exp —
yj 72S .(EI) . V2S .(EI) .

v yj yj v yj yj

n2 mtx mity,
+ it2(El) . YY a sin sin «• . (2+)

yj m^ 2S .(EI) .n2it2 +L2 ^ LT LT
yj yj J J i

The simple-support boundary conditions require C1 = C2 = 0. Thus,

n2 mtx mity.
M . = it2(El) . Y Y a sin sin ± , (25)
yj yJ m^ 2S .(EI) .n2it2 +L2 LT LT

yj yj J J i



and

it3(El) . n3
U . = — Y Y a cos sin -

LT mn 2S .(El) .n2it2 + L2 mn LT LT
J yj yj J J I

mtx mity,

yj

The strain energy, Z ., in the jth beam is

L L

I . = o/_iv f d M2 . dx + S . f JU2.dx,
yj 2(EI)yi o yj V1 V1yj J0 yj

which, proceeding as for the bending analysis, yields

yj

it4(El) .
yj y

+LT n 2S .(El) .
J yj yj

Similarly,

n4 /
f z

.n2it2 + L2 \ m

mity;

a sm
mn )'

it4(El)
xi

xi Z
m

/' a sin
Li mn

+LT m 2S .(EI) .m2*2 + L2 \n
I xi xi I x

nitx. V

The strain energy, Z^, resulting from bending and shear is

\ =Z Zyj +Z Zxi '
J ^ I

which yields

(26)

(27)

(28)

• (29)

(30)

- Z <=>„ Z
n

(s
mity,

1z* =

- - Z <=>* Z
LI ±

n 2S .(El) .n2it2 + L2
yj yj

a sin
mn

m

m 2S .(El) .m2*2 + L2
xi xi I

(mtx, \2
(3D
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For each beam the shearing constant, S, is of the form

S =
a

2GA '
(32)

where (X depends on the cross section [2]. The constant, S, which may

vary from beam to beam, can be expressed as a function of EI; however,

it is more convenient to replace S by — so that

QEI

2GA
(33)

It is this expression for the shearing constant that is an input parameter

to the computer program described in Appendix A.

In the following discussion, x °> n+1 = V yg+l Jr
The

torsional strain energy, T .., of the segment [(x,,y.), (x -,,y.)] of the
jij i j 1+1 j

jth beam, as shown in Fig. 2, is [3]

where

yij

T
yij

(GJ) .e2 .
yj yij

2(x. . - x.)
v 1+1 1

dw(x.+1,y.) dw(x.,y.)

<iy dy

UNCLASSIFIED

ORIML-DWG 63-7252

SEGMENT [(x,,yj)(xi+1, y,)]

Fig. 2. Typical Segment Used in Torsional Analysis.

(3^)

(35)
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Similarly, the torsional strain energy, T ,., of the segment [(x, ,y.),
xij l j

(x.,y. n)] of the ith beam is
x'Jj+1

T

where

dv(xi-yj+i) dw<xi>yj)
xij

dx dx

Thus, the torsional strain energy, T., of the jth beam is

tj =

(GJ) . h

—^ Z
2 1=0

-,2'dw(x.+1,yj) dw(x.,yj)
dy ay

X. ., — X.
1+1 1

Similarly, for the ith beam,

(GJ) . §

T±-—S Z
2 j=0

"Mx^y.^) dw(x.,y.)-]2
dx dx

yj+l yj

Hence, the total torsional strain energy of the system is

T,
T 2 Z <«)yJ Z

J i=0

<3.w(xi+1,yj) dw(xl
dy Jay

x. , — x.
l+l 1

"dv(xi-yj+l) d^xl^j)"
dx

+Z «*>* Z L
dx

J=0 yj+i yo

dw dw
By substituting for 3— and -j— it follows that

J & dx dy

(36)

(37)

(38)

(39)

2 \

(ho)



T =
T

12

1 & 1

~2 I <GJ>v.i Z
Li i 1=0 x1+]_ - x.

Z
mity,

m cos

m L,
Z

nitx. _. mtx.
l+l . i'

sin sm

lj V--

k2 1 Si

♦ rr Z <«>* Z —
L? i

a
mn

( >° yj+i - yj

Z" COS

mtx.

J

Y a (s
Li mn V
m \

mny .. mity

il± - sin «•
LT LT )]f

As for the shearing analysis, a constant, t, defined by

t =
GJ

El '

(^1)

(^2)

is introduced as an input parameter for the aforementioned computer

program.

The external work, B . and B ., caused by uniform loads of q . and

q^. on the jth and ith beams, respectively, are
V;

and

Thus,

B
yj

B .= -a . f Jw
yj tj Jn

dx

B .=-q^ J w dy .
xi

0

•^yj / ZZ amn Sin
0 m n

mity. nitx
1
sin dx

LI LJ

2q .L

^z(Zv-)-
it m \ n n /

mity.
J

(^3)

(W)

(45)
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for n an odd integer only; the integral is zero for even integer values

of n. Similarly,

B
xi

2q .LT
TCI I Z(Z amn-)

n \m m'it n \m

mtx.
1

sm (46)

for m an odd integer only. Thus, the external work, B , for all beams is

B~ =Z BV.i +Z B;
J

xi ~
i «

(V n. -ljZ vj Z (Z a,mn
m \ n n

+LI Z Sci Z (Z amn "
l n \m m

mity,

sm

mtx_,

sin , (47)

J J

where n takes on odd values only in the first summation and m takes on

odd values only in the second.

If P, is a concentrated load at (x ,y., ) on a beam, then the external
k ik jk

work, C, , developed by this load is
K.

Thus,

C, = -P, w
k k at (xik'yjk} '

nitx., mity.,

C> = -K ZZ a sin —* sin —-£k k Li Li mn x _
n m LT L,.

Hence, the external work, C„, resulting from concentrated loads is

or

CT =Z Ck '
k

mrty

CT ="ZPk ZZ amnSin
k n m

mtx.,
ik

sm
jk

(48)

(49)

(50)

(51)
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4. MATRIX FORMULATIONS OF THE TOTAL ENERGY FORMULAS

In this section, procedures are described for obtaining the system

of equations derived by minimizing the total energy [l]. From Eq. 2, if

= 0 , (52)
ba.

a linear simultaneous system of equations of order pq is obtained, where

p is the maximum value of m and q is the maximum value of n for the series

coefficients. The strain energies give rise to the coefficients of the

unknowns, while the external work energies produce the constants. The

system of equations is given in matrix form and the matrix or vector

formulation for each energy is considered separately, the exception being

that the combined energies of bending and shearing are considered as one.

The sequence in taking partial derivatives and arranging the unknowns is

an, agi, ..., a , ai2, a^z, •••, a , ..., a , ..., a , and each

equation (i.e., matrix and vector) is divided by it4/2.

The final matrix equation is of the form

Ax = b , (53)

where A is the total energy matrix depending on the form of Eq. 2 for the

case under consideration, x is the coefficient vector of the a 's, and

b is the loading vector. The arrangements of the elements of A, x, and

b are determined as indicated above. The arrangements for the individual

energies are discussed below.

If the total energy due to bending alone is considered, then from

Eq. 3,

2 ^ d4 city. mity.

=3Z <EI)yj 5in T' Z amd Sln T°L3 j Lj m Ll

c4 ditx. mtx.

it4 da ,
cd

(54)x3 Li x 'xi T Li cn T '
Li ± lj n lj
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where c and d are particular values for m and n. If R is the matrix

derived from the bending analysis, it is of order pq and its elements

may be determined from Eq. 54. A simple way to determine R is to par

tition it into submatrices in the following manner:

Rn R12 R
iq.

R = 21 (55)

qq-J

and then determine the elements of the submatrices. Each submatrix is

of the form

\i

r r
11 12

r2i **'

IP

(56)

PP

The elements r of submatrix R may be determined by careful inspection

of the sequence of taking partial derivatives and arranging the unknowns

described above and then relating this analysis to Eq. 54. It is to be

noted that in Eq. 55 the subscripts run from 1 to q; in Eq. ^6, from 1

to p. One result of this inspection is that for any k, the elements,

r^, of R, , £ going from 1 to q, are the coefficients determined by
rs

taking the partial derivative of a ,, r going from 1 to p. From Eq. 54,
rk

da ,
rk

Z <EI>
UJ J

yj

nty.

sm Z
m

mity,

a , sm
mk

+

T3
LI X

Z <EI) xi

kitx.

sin i J
rn

n L

nitx.

a__ sin . (57)

The coefficients in the right-hand side of Eq. 57 may now be related to

the matrix elements. All the coefficients of the first summation are



16

elements of R where k = SL, while only one coefficient of the second

summation is an element of R where k = SL (this is the case of n = k) .

For a fixed r the coefficient of a . is an element on the main diagonal

of R where k = £. This means that if r = s and k = SL, then v^^ is the

coefficient of a , for a fixed r. Hence, from Eq. 57;
r£

k4 nty. r4 kitx.
r = — Y (EI) . sin2 i + — Y (EI) . sin2 ^ . (58)rs 3 Zj 'yj 3 Lj xi

Lj j Li V LJ

If r 4- s, k = £, and r is fixed, then r is the coefficient of a.; thus,
' ' ' ' rs sk

from Eq. 57,

k4 nty. sity.
r = — Y (El) . sin ^ sin ^ . (59)
rs ,3 h yj T T

LJ J LI LI

As r and s go from 1 to p and k and SL from 1 to q, all the elements of

R^ for k = £ are determined by Eqs. 58 and 59'
It remains to determine the elements of R for k and £ going from

1 to q, except k ^ SL. The only nonzero elements of R , k ^ £, arise

from the terms which are unaccounted for above in the second summation

of Eq. 57- Only these will be given further consideration. As before,

r is taken as an element of R, „ for £ going from 1 to q, except k d £.
rs k.£

The coefficient of a is an element of the main diagonal of Rn for n
rn kn

going from 1 to q. Thus, from Eq. 57 for £ - n and r = s,

r4 kitx, iitx.
r = — Y (El) . sin sin . (60)
rs 3 V xi T T

LI x LJ LJ

This accounts for all the terms in Eq. 57• Thus, for the case k ^ £ and

r ^ s,

r = 0 . (61)
rs
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In summary the elements, r , of R may be determined as follows:
r S K-Xr

If k = SL, then, for r = s,

k4 nty. r4 kitx.
? = — Y (El) . sin2 ^ + — Y (El) . sin2 - ; (62)rs t3 Li 'yj T3 V n t

LJ J LI LI i LJ

for r ^ s,

k4 nty. sity.
r = — Y (El) . sin ^ sin i . (63)rs 3 Zj yj t tL j L L

If k ^ SL, then, for r = s,

for r =f s,

r4 kitx. £itx

rrs =- Z (EI>xi Sin ' Sin ' {6k)
LI ± LJ LJ

r = 0 . (65)
rs v y

If both bending and shearing strain energies are considered, then,

from Eq. 4,

1 1*l_ . f! v _if__^_ sln ^ z ta ^
4 N " r, Pj2 t2 T Zj mdit* da , LT -? 2s .it^d^ + Ll LT m LT

cd J J yj J I I

c4 (El) , ditx mtx.

+~" Z :—TT—J sin — Z acn sin —- > (66)Lx i 2s .it^c2 + L2 LT n LT
I x xi I J J

where S .(El) . = s ., etc. If the bending and shearing matrix, Z, is
yj yj yj

set up similar to the bending matrix, then the element z of matrix Z,
r s K./&

is found as follows: If k = SL, then, for r = s,
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rS Lx "t 2s .i^k2 + L2
J J yj J

k4 (EI) .

-z —^
nty. r (EI)., kitx.

sin2 i + -Z
XI 2 ; (67)sin

Lx Lx i 2s .it2!5 + L2 LT
I I d xi I J

for r ^ s,

k4 (El) .

-Z
nty. sity.

yj _ . „,•„ J o,-^ J

rS LT ^ 2s .it2k2 + L2 LT LT
J J yj J I I

If k ^ £, then, for r = s,

for r ^ s,

r

V
UrS LT t 2s .i^r2 + L2

I xi I

sm sm

(El) . kitx. iitx.
xi . 1 . 1

sm sm

z = 0
rs

J

(68)

(69)

(70)

If the torsional strain energy alone is considered, then, from Eq. 5,

h2 BTT 2

it4 da , it2
cd

- z ^
city

i=0 x. _, — x. \
l+l l N

ditx
i+1

in

JI J
yj

mity.

— sm

ditx. \

— )Z m cos

mtx. , mtx
l+l

sm sinYa (
Li mn V
n \

mtx. \

cityd ditx.

+^ Z ^xi c<
JJ

:os Z (sin
3=0yj+l-yj v

mity

J+l — sin

L% i

Z°

L,

mtx. /

cos Z amn V
L.T m \

sm sm )'

)
(71)
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If the torsional matrix, T, is set up similar to the bending matrix, then

the element t of matrix T, . is
rs ki

rs 2
fir

f

(•

sr

Z (gj)
JI J

yj

nty

cos
3 SltyjJ cos «•

h

Z
i=0 x. n — x.

i+l i

kitx. . kitx. \ / Mx, n
, i+l , i \ / . i+l

sin sin | I sm sm)(•
£-fix

L ')'
ik

+T Z (Gj)xi cos —h
kitx. iitx.

cos

L?i
Z —

J=° yj+l " yj

rity . - „ -
sin iti _ sin J

rity

L ')(
sity . n .

sin —iti - sin _1J
sity.

Ln ) (72)

The uniform load vector may also be determined in a manner similar

to that for the bending matrix. From Eq. 6

2 dBT 4 /L4 /Lj
— ( — Y' q, . sin - + — V q , sin
it5 Vd t Vj - X1it4 da

cd

city. _ Lx

LT c i

If B is the uniform load vector and

B

where the elements B of B are

Bi

B„

B
l qj

ditx

L '-) (73)

(74)
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r£

4 /LT

*5 M j
^
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B£ =

\t~

\i

>.

I^ +Lism - Z ^Xi
iitx..

sin , ,

LJ!)

(75)

:i6)

where the first summation is zero if £ is even and the second is zero if

r is even.

It follows from Eq. 7 that for concentrated loads,

2 dCn 2

4* ~ 4Z Pk
it* da , « k

cd A

ditx.,
ik

sm sm

L
J

city
jk

!77)

If C is the concentrated load vector and is set up similar to the uniform

load vector, then c of C. is

'r£

iitx.,

> P, sm sm
4 <-. k

« k J

rity
jk

(78)

The above analysis holds for both symmetrical and nonsymmetrical

deflections about the center lines. For geometrical and load symmetry,

however, only the odd-numbered values of m and n are necessary. If the

sequence in taking partial derivatives is a11, &31, a51, ..., a31, a33,

... and each equation is divided by it4/2, the formulas presented are

valid when k is replaced by 2k - 1, £ by 2£ - 1, r by 2r - 1, and s by

2s — 1, with the row-column matrix element designation remaining unchanged.
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5. ANALYSES OF EQUALLY SPACED SYMMETRICALLY
LOADED GRID SYSTEMS

One of the more common configurations of symmetrical, rectangular

beam grillages is one in which the beams in a given direction are equally

spaced and uniformly loaded (hence, only odd values of m and n are re

quired) . It is also assumed that all the beams are identical, except for

length. For structures of this type the analysis given in the previous

section can be greatly simplified. The following trignometric relation

ships are used for this purpose. The expression to be evaluated is:

V • aiti . biti ,_ .>, sm sm - , (79)
Li P + l p + 1 ' v "

i = l

where a and b are odd integers. If S is the value of expression 79; then

the desired relationships are as follows [4]:

1. If a ^ b, and a + b and |a — b| are simultaneously multiples or

nonmultiples of 2(p + l), then

S = 0 . (80)

2. If a = b and a is a multiple of p + 1, then

S = 0 . (81)

3. If a = b and a is not a multiple of p + 1, then

S =£-±-i . (82)

The matrix elements derived in the previous section may now be re-

formalized; in particular, Eq. 57 may be written as

2 o^
= EI

/k4 £ ntj mtj
it4 da .

rk
^L3 jti h+1 £ =* h+1

r4 |> kiti mti
V • V

T3 -H -, Lj rnL^ i=l g + 1 n g + 1
(83)
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From Eqs. 80 through 82 the elements, r , of R may be determined
rs' ki

Since only a few of the a, .'s are sufficient for most applications
J-3

and the number of beams is relatively great, (m + n) is usually less than

2(g + l); hence, Eqs. 63 and 64 are zero (i.e., for most applications the

only nonzero elements of the bending matrix are on the main diagonal).

Also, m and n are usually less than g + 1. In these cases, if k = £ and

r = s and r and k are not multiples of h + 1 and g + 1, respectively,

Eq. 62 becomes

rs

EI

2L: (y k4(l + h) + r4(l + g) (84)

If r and k are simultaneously multiples of h + 1 and g + 1, respectively,

then Eq. 62 is also zero, and a singular system of equations results.

Should such a case occur, an acceptable analysis may be obtained either

by reducing the number of coefficients to be determined or, at least,

omitting that particular coefficient. For uniform loading on the beams

(q. = q. = q), Eq. 76 may be reduced to

kit4L q / 1 + cos j
rk

r sm
kit

1 +

-, rit
Lx 1 + cos - ,J 1 + h

, . rit
L-,. k sm t —

I 1 + h

:85)

Thus from Eqs. 84 and 85 the coefficients may be found directly. It is

of note that the factors in parentheses in Eqs. 84 and 85 are dimension-

less. Also by the method of arranging the unknowns previously described,

r of R, , is the matrix coefficient of a , . Thus,
rr kk rk

a .EI
rk

qL^

kit T , nt
1 + COS •= LT 1 + COS t —

1 + g J 1 + h, £ + —
kit . . nt

r sm LT k sin —
1 + e I 1 + h

4(1 + h) + r4(l + g)er -
(86)
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The combined bending and shearing coefficients may also be determined

as above. If k = i, then for r = s and r and k not simultaneously multi

ples of p + 1, Eq. 67 becomes

rs

EI

2L3

L3k4(l + h) L2r4(l + g)

_L (2sit2k2 + L2 2sit2r2 + L2
J

(87)

The other conditions are the same as those given for the bending analysis

above. From Eqs. 85 and 87 the coefficients in dimensionless form for a

bending and shearing analysis are

nt

8

" it5

1 + cos kit L
1 J

1 + COS t —
1 + h

a .EI
rk

r sin - LT
1 + g I

rit

k Sin 1 + h

qL4 L3k4(l + h) L2r4(l + g)
A-

LT(2sit2k2 + L2) 2sit2r2 + L2

(88)

In the case of square grids (L = LT), the above equations become even

simpler. The elements of the torsional matrix may also be simplified

considerably; however, there are nonzero elements off the main diagonal,

and, as a result, the exact solution of the system of equations is not

readily available.

Since shear and torsional effects are often negligible, it is usu

ally only necessary to make a bending analysis. However, the secondary

shearing and torsional effects may become significant in certain configu

rations. For square grids under uniform load the first coefficient, aXl,

is dominant, and the first term alone may be used to determine these ef

fects. For rectangular grids in general, other coefficients may become

significant; the investigations of these secondary effects are more

difficult.

Using the computer program described in Appendix A, analyses were

made for square grids (L = L = L) with beams equally spaced and alike

in both directions. The grids were assumed to be uniformly loaded, and

results were obtained for up to 20 beams in a given direction. Four terms
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in the series were used, except where g equals 1 or 2. The systems for

these cases are given in Appendix B. Results in dimensionless form for

bending analyses are given in Table 1. Both the deflections and the coef

ficients were normalized by the factor qL4/EI; the normalizing factor for

the moments was qL2. Only the maximum deflections and moments are given,

but the series coefficients may be used to determine these quantities at

any location.

The normalized maximum deflections and moments from Table 1 are

plotted versus the number of beams in Fig. 3; and Fig. 4 gives the di

mensionless variation of the maximum deflections and of the maximum

moments with the number of beams for the case in which the total load on

each grid is 1 lb.

If shear is taken into account, the ratio of the first bending and

shearing coefficient to the first bending coefficient is

li(bending and shearing) 2it2s
1 +

n(bending)

Since for square grids the first coefficient is the dominating one, the

effect of shear should vary little from that given by this ratio. A

graph of s/L2 versus the ratio of the maximum bending and shearing de

flection to the maximum bending deflection is given in Fig. 5. The right-

hand side of Eq. 89 is also plotted on Fig. 5. It may be seen that the

simple expression given above for the shearing effect is adequate. For

the cases considered there is less than 4$ variation of the bending and

shearing moment from the bending moment (that is, the consideration of

shearing affects only the deflection).

It is of note that the results from page 172 of ref. 2 for a single

beam may be compared directly with the bending and shearing results of

*

Since the maximum value for m or n is then 3, the only case in
which the bending or bending and shearing matrices have nonzero off-
diagonal elements is when g = 1. This case is equivalent to the case
for g = 2. For g > 2, the diagonal elements of the matrix taken in
order are g + 1, 4l(g + l), 4l(g + l), and 8l(g + l).
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the analysis of this report where g = 1. The bending results for the de

flection from the reference is 5/384, which is within 0.03$ of the result

(0.013017) for g = 1 in Table 1. If h2/L2 = O.615385, then s = 0.1, and

the deflection from the combined bending and shearing analysis from the

reference is 2.92, as compared with 2.9087 from the analysis presented

here. These results agree within 0.4$.

In considering the torsional effects, the expression

is a constant and

x. ., — x.
i+l 1

x, ., ~ x L/(g + 1)
i+l

If the torsional matrix is multiplied by L3/EI, the constant factor

t(g + l) remains. It follows that the ratio of bending and torsional de

flection to bending deflection is a function of t(g + l). This function

for the maximum deflection is plotted in Fig. 6 with g as a parameter.

In Fig. 7 the corresponding curves for the maximum moment are given.

6. ANALYSES OF NONRECTANGULAB GRIDS AND OTHER APPLICATIONS

Nonrectangular grids of perpendicular beams may also be analyzed by

the method described previously. This is done by dividing the grid of

interest into a series of rectangular grids and analyzing each grid for

its particular loading. The grids may then be "fastened together" by

unposing concentrated loads at the intersections common to two grids.

The concentrated load at a point on one grid will be in a direction oppo

site to that of the corresponding point on the other grid. Since the

concentrated loads are unknown, the deflection for a concentrated load

of 1 lb (or —1 lb, as the case may be) at each common intersection may

be determined. This in turn gives the deflection at any point of the

grid in terms of the unknown concentrated loads. After this is done for

-r1 • (90)
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each intersection, the total deflections at a point of intersection of

the grids resulting not only from their respective loadings but also from

the imposed concentrated loads at all intersections are set equal. By

doing this at each intersection a linear system of equations in the un

known concentrated loads results. Having solved the system, the total

loading of each individual rectangular grid is available, and the analysis

previously presented may be applied. Also symmetry of the grids often

allows consideration of several points of intersection at the same time.

In particular, if a nonrectangular symmetrical grid is divided into rec

tangular grids, the placing of the unknown concentrated loads at a set of

symmetrically located points reduces the computations to one for each

grid and set. Also, if shearing is taken into account on any one grid,

it must of course be taken into account throughout the entire analysis.

As previously indicated an analysis for distributed loadings in

general may be performed by the method presented. This may be done by

approximating distributed loads by concentrated loads applied at the

centroids of small portions of the beams, the concentrated loads being

the total load on the various portions.

It is to be noted that the assumption of perpendicularity of the

beams does not enter into the analysis of grids. It enters only in con

sidering the adequacy of the analysis. Thus grids of nonperpendicular

beams may be analyzed the same as grids of perpendicular beams, but

additional analysis must be made to assess the twisting and warping re

sulting from the nonperpendicularity.

Another point of interest is that the analysis provides only that

the deflection at an intersection (or a point of contact before loading)

is the same for the beams in question. Thus for an analysis including

bending and shearing, it is often immaterial whether the beams are actu

ally connected or a set in one direction is resting on a set in the other

direction. The beams must actually intersect, or be connected, however,

if a torsional analysis is to be made.
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APPENDIX A. THE GRID ANALYSIS COMPUTER PROGRAM

Two codes were written for the IBM-704 [5], one for solving the sym

metrical case and the other for solving the nonsymmetrical case. The

codes have the following features:

1. Any rectangular grid may be analyzed which has 90 beams or less

in a given direction.

2. Any n2 coefficients may be found; n = 1, ... 5-

3. The effect of shearing and torsion in any combination with

bending may be considered.

4. The cross section of individual beams and beam spacing are arbi

trary.

5. A uniform load is associated with each beam while concentrated

loads may be placed at will.

6. Deflections and moments may be calculated along any desired

beam.

7. Studies of the variation of the number of coefficients and in

the variation of shearing or torsional effects or both may be made with

out running separate cases.

The analysis for bending alone, based on a 20 x 20 array of beams,

usually requires only a few seconds, while the bending and shearing compu

tation may require up to 30 sec. In contrast, the torsional computation

may require 4 or 5 min.
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APPENDIX B. SQUARE GRIDS OF ONE AND TWO BEAMS
IN A GIVEN DIRECTION

The bending analyses of these two cases are equivalent to the analy

sis of a single beam with a uniform load (see Table l). The nonsingular

matrix equation given by the formulas of this report for the one-by-one
grid is

2 -1 -1

-1 82 0

-1 0 82

which has the solution

li

a,
31

13

0.026142109

-0.0087140364

-0.0087140364

an = °-13125 X 10-1 ,

-4Si = ai3 = 0* 53790 X 10

There is no torsional effect on the one-by-one grid as indicated in

Figs. 6 and 7«

A three-by-three nonsingular matrix exists for the two-by-two grid.

The diagonal elements for this case are 3, 121.5, and 121.5, respectively.
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