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ABSTRACT

An analysis of a rectangular grid of perpendicular beams simply sup-
ported at the ends is presented. Bending, shearing, and torsional effects
of beams with arbitrary cross sections are taken into account, and the
beams may be subjected to uniform or concentrated loads. An energy method
is used in the analysis, and a matrix formulation for determining the un-
known coefficients appearing in the Fourier series expression for the
lateral deflection is given. This formulation is especially suited for
computer application, and a computer program for performing the analysis
is described. Data are presented for use in the design and evaluation of
certain grid configurations. Applications to nonrectangular grids are

also considered.
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NOMENCLATURE

Cross-sectional area of a beam

® >

Series coefficients, wherem, n =1, 2, ...

B
2]

External work of uniform loads
External work of concentrated loads
Young's modulus of elasticity

Total energy of the grid

=!

Shear modulus of the material
Number of beams perpendicular to the y axis of the grid
Number of beams perpendicular to the x axis of the grid

Moment of inertia

G H R Q< B W

Torsional factor dependent on the cross section (polar moment
of inertia if the cross section is circular)

Common length of the beams perpendicular to the x axis

=
H

oy

Common length of the beams perpendicular to the y axis

Bending moment

0=

-

Concentrated load (positive downward) located at (xik’ yjk)

Uniform load (positive downward)

H Q@

Torsional strain energy

GJ

i Torsional constant

ct
It
|

S = SGA Shearing constant

oET .
5GA Shearing constant
Shearing force
Bending strain energy

Deflection, positive downward

¥ %5 O o

x coordinate of ith beam perpendicular to x axis

y coordinate of Jjth beam perpendicular to y axis

N <

Shearing strain energy in combination with bending strain
energy

*
Additional definitions are given as needed in the discussion of the
matrix formulation.




Subscripts

xi,

yd,

yij

xi]

i

J

viii

Cross-sectional constant

Angle of twist of a segment

ith beam perpendicular to x axis
Jth beam perpendicular to y axis
Total strain energy

Segment [(Xl,yJ) J (Xi+l,yJ) ]

Segment [(xi,yJ) J (Xl,yJ+l) ]




1. INTRODUCTION

With the advent of gas-cooled, graphite-moderated reactors another
important use was found for the already widely used beam-grillage support
system. This type of supporting structure is useful in reactors with
vertical fuel channels because it dces not adversely affect the flow of
coolant and it covers a minimum of the lower surface of the active core.

A beam-grillage arrangement which is supported at its outer edge and
covered by a plate for transmitting loads to the beams is commonly used.
Such a structure offers the advantages of a low depth requirement and
increased accessibility to the reactor face, as compared with a truss
arrangement, for example. These considerations are of great importance
when the fuel is loaded and unloaded from the bottom of the reactor. Be-
cause oOf the exacting nature of the design analysis for this application,
new impetus was given to developing methods for analyzing these structures.

An analysis for an array of perpendicular beams arranged to form a
structure that is rectangular in plane form is presented in this report.
Only beams with simply supported ends are considered, but the beam cross
sections may be of any shape. The bending, shearing, and torsional ef-
fects are taken into account. The beams may be subjected to distributed
or concentrated loads or both. An energy method is used in the analysis
and the lateral deflection is represented by a Fourier series with unknown
coefficients. The values of these coefficients depend upon the geometry
of the grid, the properties of the material, and the loadings to which the
grid is subjected.

An expression is derived for the total energy in a grid system as a
result of combinations of bending, shearing, and torsional effects and
of external loadings. Upon minimizing the total energy of the grid, a
linear simultaneous system of equations results; a formulation is given
for determining the matrix elements of this system. A simplified analysis
is given for rectangular grids with identical and equally spaced beams.
The analysis may also be applied to grid systems in which the beams in a
given direction are unequal in length.

An IBM TO4 computer program for making the analysis outlined in this
report was written. It 1is described briefly in Appendix A. Through the




use of this program, almost any rectangular grid of perpendicular beams
may be analyzed.

Generalized analyses were made for square structures with equally
spaced beams that are subjected to uniformly distributed (or simply uni-
form) loads, and data for use in the design of this type of structure are
presented. The data given are for bending alone, but the shearing and
torsional effects may be included through the use of specially prepared
curves, which give multiplicative constants to apply to the bending re-
sults. Finally, one section of this report is devoted to nonrectangular

grids and other grid applications.

2. TOTAL ENERGY FORMULAS

A typical structure to which the equations derived herein apply con-
sists of the rectangular grid of perpendicular beams shown in Fig. 1.
The strain energy method used in the analysis presented consists of de-
riving expressions for the total energy of the system in terms of unknown
coefficients. These coefficients are then determined by minimizing the
total energy [l].* The unknown coefficients, a , to be evaluated appear
in the expression for the lateral deflection, w, which is taken to have

the following series form:

vl .onEx . my
W o= z;z; a . sin 7 sin =, (1)
nm J

where the coordinates and LJ and LI are defined in Fig. 1. This ex-
pression yields deflections and moments that are zero at the end, and,
hence, it satisfies the boundary conditions for simply supported beams.
The series can be made to represent any deflection curve to which this
analysis may be applied with a degree of accuracy that depends upon the
number of terms of the series taken. Only odd values of m and n are re-

guired for a rectangular grid possessing load and gecmetrical symmetry

*
Brackets refer to numbered references in the Bibliography.
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Fig. 1. Coordinate System of Typical Grid Structure.

about the center lines, while both odd and even values are required for

the nonsymmetrical case.
The total energy of the system is given by
VT=ZT+TT+BT+CT, (2)

where

total shearing strain energy in combination with bending
strain energy,

N

TT
By

total torsional strain energy,

total external work of uniform loads,
CT = total external work of concentrated lcads.

If the shearing strain energy is neglected, Z_ in Eq. 2 is replaced by

RT’ the total bending strain energy. ’
Each term on the right-hand side of Eq. 2 may be expressed in terms
of the deflection as given by Eq. 1. Thus, Eg. 2 gives an expression for
the total energy of the structure in terms of the coefficients, a The
expression for the total energy is minimized by taking the partial deriva-
tive with respect to each an and setting each expression thus obtained

equal to zero. This gives a set of simultaneous linear equations in the




coefficients, & 0 the solution of which provides an explicit expression
for the deflection. The expressions for the terms on the right-hand side
of Eq. 2 are listed below, and the derivations are given in the next
section.

1l. Total Bending Strain Energy.

3
Y LJ n LI
1 nKx 2
. 4
+ —LS ;<EI)X1 % (Zn: a_ . sin y ) n* | . (3)
I J

2. Total Shearing Strain Energy in Combination With Bending Strain
Energy.

* |1 4 \°
ZT = — |— 23 (EI)yj 23 . (Z} & n sin mﬂyJ >
m

Lo, 5 2s_.(EI) .r°n® + 12
P n SyJ(E )an =+ 15 L
1 ‘ m* nnX, 2
+ — E . i .
L Z B0t ; 28 (EI) .mPx® + 12 (2 S T > )
I ¢ xi xi I J
3. Total Torsional Strain Energy.
2 h
7 1 1 mry ,
T = — |— 23 (aJ) . z: - 23 m cos J a
T 2 |12 : I 120 x - X m L n
I J i+l i I
ngex nrx, 2 1 g 1
sin irl — sin l> + — Z (GJ) Z
L L I2 1 *+ =0y -y
J J J J+1 J
nx my . my 2
Z} n cos 23 a sin I gin J (5)
n L m m L L
J I I




4. Total External Work of Uniform Loads.

2

D a2 (3 ) e
B =-—-—1|L . a - sin
T 7 ['I %; qyJ m ( n ma n LI

1 nnxi
+LIZquZ<Zamn—> sin ] (6)

5. Total External Work of Concentrated Loads.

Xk MY sk
Cp=— Z P ZZ a  sin sin . (7
k n m

L L

5. ENERGY TERMS

The derivations for the terms RT’ ZT, TT’ B and CT are given in

’
this section. The coordinate system and nomenclzture shown in Fig. 1 are
used in the analysis.

First, the expression for the total bending strain energy, RT’ is
derived. If Ryj and in are the bending strain energies along the jth

and ith beams, respectively, then

(EI). . L <d2w>2
= I I — dx at y =y. , (8)
vd 2 fo a2 J
and
(E1) . L Ew\*2
R, = x1f1(__) &y at x = x; . (9)
2 0 dy®

The lateral deflection, w, i1s given by Eq. 1, and it follows that




dw e . Iy nx
Fr i [ <23 a . sin T ) n cos 7 ] 5 (10)
J Ln \m I J
and
Ew  —? myy nrx
\
—_— 23 a sin — )} n® sin — |. (11)
ax? I? n m mn L L
J I J
Similarly,
Ew  —® nwx mty
—_— —— 23 23 a sin — | sin — | . (12)
a2 12 |@m \m ™ L L
I J I
Thus,
Ew\2 % my \2 nocx
—— = — 23 23 a  sin — n?t sin® ——
4
ax® L7 |2 \= L L
+ (cross product terms) | ,  (13)
and
@Ew\® n* | . nnx \ 2 miy
— == ZJ ( & sin ———-) m? sin® —
dy= L |@ \» L; L
+ (cross product terms) | .  (14)

The cross product terms of Eq. 13 are of the form

. onmrxX ., mmx
k¥ sin —— sin T s
J I

where k is a function of the summation containing y, m, or n; alsom % n.

Since




L L

f J oin2 ax dx = 2 s (15)
0 2
and
LJ
f sin ax sin bx dx = O, a#fb, (16)
0
then
(EI)_ x* L i mry . \Z nrex
Ryj=——--}ﬂ—fJ Z(Zaﬂmsin J) n sin —
4
QLJ 0 n m LI IU
+ (cross product terms) | dx
(EI) .n* mry . \2
=-——4—§J—-Z Z a ., sin J n? . (17)
LJ n \m LI
Similarly,

(EI)xin4 - nox, \2

. : 4

R = e IZn/ (; a - sin - m* . (18)
I J

Hence, the strain energy from bending is
Ry = ] R,y zl: R (19)

where the summations Z and Z are summed over all the beams perpendicular

J i
to the y and x axes, respectively. Thus,

7t |1 my 5 2
e e e N 4
Ry = ; ) (E1), | ; ( a_ sin ) n

3 &
LJ J m LI
1 nex, \2
+ —_ (EI) Z Z a  sin 1 m* (20)
3 xi mn :
LI i m n LJ




If both bending and shearing are taken into account, then the

following relations must hold for the jth beam [2]:

Ew M . au_,
=Y 4o YL (21)
ax2 (EI) . YJ o ax
¥
and
a
~Jd _ g . , (22)
dx ¥3

where Syj is a constant, the value of which is discussed later.
Similar conditions hold for the beams in the y direction. Elimi-

nating ij from Eq. 21 and substituting for w yields

@M M 72 - nnx myry
Esyj Jd yJ —_ 2324 n° a  sin — sin — , (23)
2
ax? (EI) IU. n m Ls L
which has for a general solution
M .= C,exp X + C,exp — X
yJ /25 (EL)_. 25 (EI)_.
Jd JdJ Jd JdJ
= nnx mnyj
+ 7®(EI) . 2323 a_ sin sin . (2
Y BT 25 (EI) .nPx® + I3 L L
yd yd J J I

The simple-support boundary conditions require C, = C; = 0. Thus,

M. EI) ij: a_ _ sin sin J , (25)
v mn 25 J(EI)yJ.nzn2 + 12 ™ L L




and
73(EI) . n> e x mry .
ij = Jd a . cos sin d . (26)
2_2 2
L; m n ESyj(EI)yjn nZ + I L; L
The strain energy, Zyj’ in the Jjth beam is
L L
1 J J
Z .= M, d&x + S_. U2, a&x 2
vy~ 2l EISyj fo N yiJy Y ’ (27)
which, proceeding as for the bending analysis, yields
4 4 2
n*(EI)_ . n ¥
Zys = IJ ). a__ sin —3 ) . (28)
L, n 25 _,(EI)_ .n®x® + 12 \m L
J YJ( )YJ J I
Similarly,
114(EI)xi m* X, e
Z oy = }D a . sin . (29)
2 2
uLI m ESXi(EI)ximzﬂ + 12 \n Ly
The strain energy, ZT’ resulting from bending and shear 1s
A= ) Byt B (29)
J 1
which yields
n? n* mry. \*
T = — |— ), (EI)yJ (Z a_ sin J )
2 2 2
b|L; ESyj(EI)yjn n® + IZ \m Ly
1 m* n;rtxi 2
4 o— Z (ED) 4 Py <Z a . sin ) . (31)
L ESxi(EI)xi % + L7 \n L
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For each beam the shearing constant, S, is of the form

e

g =
where « depends on the cross section [2]. The constant, S, which may
vary from beam to beam, can be expressed as a function of EI; however,
it is more convenient to replace S by = so that

ET

oET

S=m. (55)

It is this expression for the shearing constant that is an input parameter

to the computer program described in Appendix A.

In the following discussion, Xy =¥, = 0, X4l = LJ, yg+l = LI' The
torsional strain energy, Tyij’ of the segment [(Xi’yj)’ (Xi+l’yj)] of the
jth beam, as shown in Fig. 2, is [3]

(61)_ 6=, .
i
Tyij _ yd ¥id , (3k)
2(x; = xy)
where
6,15 = — : (35)
dy dy
UNCLASSIFIED
ORNL-DWG 63-7252

SEGMENT [(x;, yj)0xiy p, ] - -0
Y\\\

Fig. 2. Typical Segment Used in Torsional Analysis.
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Similarly, the torsional strain energy, Txij’ of the segment [(Xi’yj)’

(xi,yj+l)] of the ith beam is
(GJ)_ .62, .
T = xi"xij (36)
ey, -y
Vi1 TV
where
x1iJ ‘
dx dx

Thus, the torsional strain energy, Tj’ of the Jjth beam is

(GJ)yj

T. = ——

J 2

dy dy

X, - X,
i+1 i

N l:dw( xi+l’y,j) _ dW( Xi’yj)]z
), : (38)
i=0

Similarly, for the ith beam,

2
(GJ) g l:dw(xi)yj+l) _ dW(Xi)yj)]
xi 23 dx dx

3=0

Ti = ———
2 yj+l - yj

Hence, the total torsional strain energy of the system is

2

) (en . ) W &
3 yd i=0 X, . — X,

i+l i

[dw<xi,yj+l) aw<xi,yj>]2

g -

+ ) (), ), ax . (0)

H
i
M-

By substituting for %; and %% it follows that



iz

Ly Ly Iy 1 J=0 Y3541 ~ V5
nmx., mry . mey , 2

z: n cos = a sin —3L _ gin J . (41)

n L m L L

J I I

As for the shearing analysis, a constant, t, defined by
GJ

t ==, (L2)

is introduced as an input parameter for the aforementioned computer
program.
The external work, B ., and B_., caused by uniform loads of . and
yd X1 qYJ
qxi on the jth and ith beams, respectively, are

L
J
B , = . w dx L
v = s (42)
and
L
I
B, ==, fo w dy . (L)
Thus,
L my . st X
B . = —qy. jﬁ J Z} ‘ a sin J sin dx
JJ J % @@ ™ L L
I J

2q L. _ 1 my |
=____qVJJZ<Za —)sin J (45)
m n
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for n an odd integer only; the integral is zero for even integer values

of n. Similarly,

quiLI 1 nstxi
B, =——— Z (Z a ., —) sin s (46)
7 n m m LJ

for m an odd integer only. Thus, the external work, B for all beams is

T)

2 1 .
S Y8, ) B, _[Lquy.z(za 7 oan
J yd i p¢ J J m n mn n LI

1 nstxi
P () =] o
1 n m m LJ

where n takes on odd values only in the first summation and m takes on
odd values only in the second.
If P, is a concentrated load at (x

k
work, Ck’ developed by this load is

ik’yjk) on a beam, then the external

C, = —Pw at (Xik’yjk) . (48)
Thus,
nnx, mry ,
. ik . k
~P) z:z: a  sin sin 5 (49)
nm LJ LI

Hence, the external work, C.,, resulting from concentrated loads is

T
k
or
e x my .
ik |, Jk
CT = —Z Pk ZZ & sin sin . (51)
k nm L L
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L, MATRIX FORMULATIONS OF THE TOTAL ENERGY FORMULAS

In this section, procedures are described for obtaining the system

of equations derived by minimizing the total energy [1]. From Eq. 2, if

=0, (52)

a linear simultaneous system of equations of order pgq is cobtained, where

p is the maximum value of m and g is the maximum value of n for the series
coefficients. The strain energies give rise to the coefficients of the
unknowns, while the external work energies produce the constants. The
system of equations is given in matrix form and the matrix or vector
formulation for each energy is considered separately, the exception being
that the combined energies of bending and shearing are considered as one.
The sequence in taking partial derivatives and arranging the unknowns is

veey a_, and each

8115 8ply eevy &, 8lz, o2, ey 8 5 ey Pq

a
p1 P2 1q’
equation (i.e., matrix and vector) is divided by n*/2.

The final matrix equation is of the form

Ax = b, (53)

where A is the total energy matrix depending on the form of Eq. 2 for the
case under consideration, x is the coefficient vector of the amn's, and
b is the loading vector. The arrangements of the elements of A, x, and
b are determined as indicated above. The arrangements for the individual
energies are discussed below.

If the total energy due to bending alone is considered, then from

Eq. 3,

4
2 BRT a* ' cnyj oy
— = — 24 (EI)yj sin 23 a.a sin —=
4 3 &
Tt Bacd LJ 3 LI m LI
c? drx, nnx,
+ ;g 2: (EI)xi sin — 1 a,, sin - , (5k4)
1 °t J J
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where ¢ and 4 are particular values for m and n. If R is the matrix
derived from the bending analysis, it 1s of order pg and its elements
may be determined from Eq. 54. A simple way to determine R is to par-

tition it into submatrices in the following manner:

R, ng . qu
R ves
R=| 22 (55)
. R
L qq -

and then determine the elements of the submatrices. FEach submatrix is

of the form

11 12 1p

R = |72 - (56)

r
pp

The elements T of submatrix Rkﬂ may be determined by careful inspection
of the sequence of taking partial derivatives and arranging the unknowns
described above and then relating this analysis to Eq. 54. It is to be
noted that in Eq. 55 the subscripts run from 1 to gq; in Eg. 56, from 1

to p. One result of this inspection is that for any k, the elements,

roo of Rkﬂ’ L going from 1 to g, are the coefficients determined by
taking the partial derilvative of 8y T going from 1 to p. From Egq. 5k,
2 3 k* Ty . mry ,
By Yy Yy
_— =—Z(EI) . sin Za sin ~—==
7%t da 13 3 Y L. @ = L
rk J Y I I
rt kox nnx,
+ ;g Z: (EI)Xi sin N 2; a_ sin N . (57)
T+ J J

The coefficients in the right-hand side of Eq. 57 may now be related to

the matrix elements. All the coefficients of the first summation are
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elements of Rkﬂ where k = £, while only one coefficient of the second

summation is an element of Rkﬁ where k = £ (this is the case of n = k).

For a fixed r the coefficient of a is an element on the main diagonal

of Rkﬁ where k = ¢. This means that if r = s and k = £, then T is the

coefficient of a., for a fixed r. Hence, from Eq. 57,

k* rﬂyj r* kﬂxi
= — Y F 2 —_ 2
X, = = 2; (EI)yj sin y + = z: (EI)Xi sin — (58)
J I 1t J
Ifr % s, k = £, and r 1s fixed, then T is the coefficient of I thus,
from Eq. 57,
k* Ty . STy .
r = —— z: (EI)_ . sin J sin J (59)
rs L3 - YJ L L
J J I I

As r and s go from 1 to p and k and £ from 1 to q, all the elements of
sz for k = £ are determined by Egs. 58 and 59.
It remains to determine the elements of R for k and £ going from

k2
1 to q, except k # £. The only nonzero elements of R k # 4, arise

kg’
from the terms which are unaccounted for above in the second summation

of Eq. 57. Only these will be given further consideration. As before,

rrS is taken as an element of Rkﬂ for 4 going from 1 to q, except k # 2.

The coefficient of a. is an element of the main diagonal of R

kn for n

going from 1 to g. Thus, from Eq. 57 for £ = n and r = s,

e kﬁxi Eﬂxi
= — z: (EI)Xi sin sin
33 L L
I J J

(60)

r
rs

=

This accounts for all the terms in Egq. 57. Thus, for the case k # £ and

I‘%S,

r. = 0. (61)
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In summary the elements, T’ of R, . may be determined as follows:

k&
If X = £, then, for r = s,

k? r-xtyj r% kﬂxi
- .2 _ .2 .
r. = ” 2; (EI)yj sin . + = 23 (EI)Xi sinf N ; (62)
7 J I 11 J
for r ¥ s,
k* rry . sty
r = ——-22 (EI) . sin d sin J (63)
e 13 yJ L L
J J I I

If k # 4, then, for

2]

I

n
™

r* knx, frxy
r. = ;; 23 (EI)Xi sin N sin N 5 (64)
It J J
for r £ s,
ro = o . (65)

If both bending and shearing strain energies are considered, then,

from Eq. 4,
2 9 as (EI) ey mry
— ZT = — ) sin J 23 amd sin J
4 252 2
b Bacd IU j 2s jn a= + LJ LI m LI
ct \ (EI)Xi dnx nmx,
4+ — sin 23 a  sin , (66)
- 2
Lp 1 esxiﬂ2c2 + 17 L; n L;

where Syj(EI)yj = Syj’ etc., If the bending and shearing matrix, 7, is
set up similar to the bending matrix, then the element Z.q of matrix Zkz

is found as follows: If k = £, then, for r = s,




rs + — sin® = 5 (67)
L. 3 2s_ %K% + IF L L. 3 2s_.x®r® + IZ L
yd xi I J

7z = — Z yJ sin J sin J | (68)

r* . (EI)Xi kax 289
Z = — sin sin ; 69
s L & 2s .nfr% + 12 L L ’ ( )
1t i I J J
for r # s,
2., =0. (70)

If the torsional strain energy alone 1s considered, then, from Eq. 5,

h

2 9T 2 c cny . 1 dnx
__I _ __ — Z (GJ)_ . cos J Z —— |sin i
7% Jda & 12 Jd L i=0 x - x L
cd I J I i+l i J
dnxi - mry . mxi+l nnx,
— sin Z/ m coOs J Z amn sin ~——— — sin
LJ m LI n LJ LJ
ot dnx g 1 cny ey
+ — Z (GJ) . cos ! Z ———— {sin B L. J
12 3 = L. |3=0y, -V L L
Jg J J+1 J I I
nnx, mry . mry .
Z n cos - Z a sin —9 _ gip J . (71)
1 L. m ™ L L
J I I
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If the torsional matrix, T, 1s set up similar to the bending matrix, then

the element t of matrix T is
rs k£

2 sr rny . sny . h 1
t = — —_ Z (GJ)_ . cos J cos J Z
'S 12 5 ¥ L L. 150 x, . — x.
I J I I i+l i
kﬂle kvrxi hxiﬂ_ ‘ Inx
sin — sin sin — sin
LJ LJ LJ LJ
£k kﬂxi Enxl g 1
+ — Z (aJ) cos cos
I2 1 xi L L. |=0y, -V
T J J J+1 J
Ny . Ty, SRy . STy .
(sin N 5 2P d ) (sin S J) . (T2)
LI LI LI LI

The uniform load vector may also be determined in a manner similar

to that for the bending matrix. From Eq. 6

2 OB 4 L ey, L dnx
T = J , I - i
= — ( Z a4 sin + ; 4, sin ) . (73)

Ly

B=]. , (74)

where the elements BE of B are
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o
14
b
24
Bﬁ = 2 (75)
b
jo¥%
then
L Lr o ray L o dmxy
b, = — | = )3 a4 sin 4 o— 23 9,4 sin , (76)
L L3 LI r 4 LJ

where the first summation is zero if £ is even and the second is zero if

r is even.

It follows from Egq. 7 that for concentrated loads,

ik J

2 oC 2 anx, CRY sy
——— e Z} P sin sin . (77)
Yy

Ly Ly

If ¢ is the concentrated load vector and is set up similar to the uniform

load vector, then c. of CE is

£

2 Inx, iy .
c = — Z: P. sin 1k sin Jk . (78)
re 4 k

ok LJ LI

The above analysis holds for both symmetrical and nonsymmetrical
deflections about the center lines. For geometrical and load symmetry,
however, only the odd-numbered values of m and n are necessary. If the
sequence in teking partial derivatives is a;,, a5,, 851, «++y 837, 8a3;
... and each equation is divided by ﬂ4/2, the formulas presented are
valid when k is replaced by 2k — 1, £ by 24 — 1, r by 2r — 1, and s by

2s — 1, with the row-column matrix element designation remaining unchanged.
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5. ANALYSES OF EQUALLY SPACED SYMMETRICALLY
LOADED GRID SYSTEMS

One of the more common configurations of symmetrical, rectangular
beam grillages is one in which the beams in a given direction are equally
spaced and uniformly loaded (hence, only odd values of m and n are re-
quired). It is also assumed that all the beams are identical, except for
length. For structures of this type the analysis given in the previocus
section can be greatly simplified. The following trignometric relation-

ships are used for this purpose. The expression to be evaluated is:

sin el sin brd
p+ 1 p+ 1’

(79)

‘g

)
i
-

where a and b are odd integers. If S i1s the value of expression 79, then
the desired relationships are as follows [L]:
1. Ifa#b, and a + b and |a - b| are simultaneously multiples or

nonmultiples of 2(p + 1), then
S=0. (80)

2. If a=Db and a is a multiple of p + 1, then

S=0. (81)

3., If a =b and a is not a multiple of p + 1, then

s -2t1l, (82)

The matrix elements derived in the previous section may now be re-

formalized; in particular, Eq. 57 may be written as

2 BRT kt b T ni
— = EI —Zsin Za sin
7% da I3 =1 h+lm = h+ 1
rk J
rt 8 kni nni
+ — -23 sin a . sin . (83)
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From Egs. 80 through 82 the elements, r oo of sz may be determined.

Since only a few of the a,.'s are sufficient for most applications

and the number of beams is rel;gively great, (m + n) is usually less than
2(g + 1); hence, Eqs. 63 and 64 are zero (i.e., for most applications the
only nonzero elements of the bending matrix are on the main diagonal) .
Also, m and n are usually less than g + 1. In these cases, i1f k = £ and
r = s and r and k are not multiples of h + 1 and g + 1, respectively,

Eq. 62 becomes

r
rs

EI (LI>3 . .
= — — k*(1 +h) + r* 1+ g) ] . (84)
213 |\ Ly

If r and k are simultaneously multiples of h + 1 and g + 1, respectively,
then Eq. 62 is also zero, and a singular system of equations results.
Should such a case occur, an acceptable analysis may be obtained either
by reducing the number of coefficients to be determined or, at least,

omitting that particular coefficient. For uniform loading on the beams

(qyj =q, = q), Eq. 76 may be reduced to

1l + cos

I
MLpa [ 1+ cos T %
rk - S . Kk
s r sin
1+ g

b

(85)

LJ
+-—
LI k sin

I
1 +nh
Thus from Egs. 84 and 85 the coefficients may be found directly. It is

of note that the factors in parentheses in Eqs. 84 and 85 are dimension~-

less. Also by the method of arranging the unknowns previously described,

T of Rkk is the matrix coefficient of D Thus,
B kxt rn n
1 + cos T LJ 1+ cos T+ h
kn T
a Bl ) Ei r sin +— Ly k sin 37— (56)
qL‘f 7> L 8
— k*(1 + h) + r%(1 + g)
L\ 1
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The combined bending and shearing coefficients may also be determined
as above. If k = £, then for r = s and r and k not simultaneously multi-

ples of p + 1, Eq. 67 becomes

EI L3k%(1 + h) 12r%(1 + g)
I I
ZTS - 3 2y2 2 N 2.2 2 ) (87)
2LI LJ(2sn + L3 2sm + 17

The other conditions are the same as those given for the bending analysis
above. From Egs. 85 and 87 the coefficients in dimensionless form for a

bending and shearing analysis are

- rv -
1l + cos k= LJ 1l + cos T+ %
Tk T T T
arkEI ) Ei r sin T+ g LI k sin T (88)
qL# 7> L3k*(1 + h) I2r%(1 + g)
I T + I
I LJ(2sn2k2 + Li) 2snere + Lﬁ |
In the case of square grids (LI = LJ), the above equations become even

simpler. The elements of the torsional matrix may also be simplified
considerably; however, there are nonzero elements off the main diagonal,
and, as a result, the exact solution of the system of equations is not
readily available.

Since shear and torsional effects are often negligible, it is usu-
ally only necessary to make a bending analysis. However, the secondary
shearing and torsional effects may become significant in certain configu-
rations. For square grids under uniform load the first coefficient, a,,,
is dominant, and the first term alone may be used to determine these ef-
fects. For rectangular grids in general, other coefficients may become
significant; the investigations of these secondary effects are more
difficult.

Using the computer program described in Appendix A, analyses were
= L_ = L) with beams equally spaced and alike

I J
in both directions. The grids were assumed to be uniformly loaded, and

made for square grids (L

results were obtained for up to 20 beams in a given directlion. Four terms
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in the series were used, except where g equals 1 or 2.* The systems for
these cases are given in Appendix B. Results in dimensionless form for
bending analyses are given in Table 1. Both the deflections and the coef-
ficients were normalized by the factor qL4/EI; the normalizing factor for
the moments was gqIlf. Only the maximum deflections and moments are given,
but the series coefficients may be used to determine these gquantities at
any location.

The normalized maximum deflections and moments from Table 1 are
plotted versus the number of beams in Fig. 3, and Fig. 4 gives the di-
mensionless variation of the maximum deflections and of the maximum
moments with the number of beams for the case in which the total load on
each grid is 1 1b.

If shear is taken into account, the ratio of the first bending and

shearing coefficient to the first bending coefficient is

% 1(bending and shearing) 2nfs
=1 +

(89)
ail(bending) L
Since for square grids the first coefficient is the dominating one, the
effect of shear should vary little from that given by this ratio. A
graph of s/L2 versus the ratio of the maximum bending and shearing de-
flection to the maximum bending deflection is given in Fig. 5. The right-
hand side of Eq. 89 is also plotted on Fig. 5. It may be seen that the
simple expression given above for the shearing effect is adequate. TFor
the cases considered there is less than 4% variation of the bending and
shearing moment from the bending moment (that is, the consideration of
shearing affects only the deflection).

It is of note that the results from page 172 of ref. 2 for a single

beam may be compared directly with the bending and shearing results of

*
Since the maximum value for m or n is then 3, the only case in

which the bending or bending and shearing matrices have nonzero off-
diagonal elements is when g = 1. This case is equivalent to the case
for g = 2. For g > 2, the dlagonal elements of the matrix taken in
order are g + 1, 41(g + 1), 41(g + 1), and 81(g + 1).
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able 1.

Dimensionless Results from Bending Analyses of Uniformly
Loaded Square Grids

Normalized Vector Elements Normalized Coefficients Normalized Normalized

g Maximum Maximum
bll b13 = b31 b33 a,, 84 = 85 8qq Deflection Moment

x 1072 x 1072 x 1072 x 1072 x 1074 X 1075 x 1072 x 1071

1 2.6142 -0.8714 1.3125 0.5379 1.3017 1.2423

2 4.5279 0.7547 1.5093 0.6211 1.3%017 1.2423%

3 6.3113 1.593%3% 0.3609 1.5778 0.9715 1.1140 1.5595 1.4713

b 8.0457 2.2906 0.6331 1.6091 1.1174 1.563%2 1.5141 1.4177

5 9.756k4 2.9%3% 0.8714 1.6261 1.1923 1.7928 1.6040 1.5031

6 11.454 3.5481 1.0928 1.6362 1.2362 1.9270 1.5750 1.4712

7 13.143 4,1466 1.3041 1.6428 1.26Lk2 2.0126 1.6195 1.5145

8 14.826 4.7351 1.5094 1.6473 1.2832 2.0703 1.6003 1.4939

9 16.505 5.3163 1.7102 1.6505 1.2966 2.1114 1.6267 1.5198

10 18.182 5.8924 1.9080 1.6529 1.3065 2.1417 1.6132 1.5055
11 19.857 6.4651 2.1037 1.6547 1.3140 2.1643 1.6306 1.5227
12 21.53%0 7.0348 2.2976 1.6561 1.3198 2.1821 1.6207 1.5122
13 23,202 7.6026 2.490L 1.6573 1.%245 2.1959 1.6330 1.5244
1k 24.873 8.1683 2.6819 1.6582 1.3282 2.207h4 1.6253 1.5164
15 26.543 8.73%27 2.8726 1.6589 1.3312 2.2165 1.6345 1.5256
16 28.212 9.2961 3.0627 1.6595 1.3337 2.2241 1.6285 1.519%
17 29.881 9.8584 3.2522 1.6600 1.3358 2.2305 1.6355 1.5264
18 31.549 10.420 3.4411 1.6605 1.3376 2.23%59 1.6307 1.5213
19 33,217 10.981 3.6297 1.6608 1.3391 2.2405 1.6363 1.5269
20 31,884 11.541 3.817h 1.6611 1.3404 2.24ks5 1.6323 1.5228

G¢e
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Fig. 3. Dimensionless Variation of Deflections and Moments with
the Number of Beams for Uniformly Loaded Square Grids.
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Fig. 4. Dimensionless Variation of the Deflections and Moments
with the Number of Beams for Grids Uniformly Loaded to 1 1b.
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the analysis of this report where g = 1. The bending results for the de-
flection from the reference is 5/384, which is within 0.03% of the result
(0.013017) for g = 1 in Table 1. If h?/I? = 0.6153%85, then s = 0.1, and
the deflection from the combined bending and shearing analysis from the
reference is 2.92, as compared with 2.9087 from the analysis presented
here. These results agree within 0.4%.

In considering the torsional effects, the expression

is a constant and

1 1 g+ 1

S L/(g + 1) L

. (90)

If the torsional matrix is multiplied by L3/EI, the constant factor

t(g + 1) remains. It follows that the ratio of bending and torsional de-
flection to bending deflection is a function of t(g + 1). This function
for the maximum deflection is plotted in Fig. 6 with g as a parameter.

In Fig. 7 the corresponding curves for the maximum moment are given.

6. ANALYSES OF NONRECTANGULAR GRIDS AND OTHER APPLICATIONS

Nonrectangular grids of perpendicular beams may also be analyzed by
the method described previously. This is done by dividing the grid of
interest into a series of rectangular grids and analyzing each grid for
its particular loading. The grids may then be "fastened together" by
imposing concentrated loads at the intersections common to two grids.

The concentrated load at a point on one grid will be in a direction Ooppo-
site to that of the corresponding point on the other grid. Since the
concentrated loads are unknown, the deflection for a concentrated load

of 1 1b (or —1 1b, as the case may be) at each common intersection may

be determined. This in turn gives the deflection at any point of the

grid in terms of the unknown concentrated loads. After this is done for
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each intersection, the total deflections at a point of intersection of
the grids resulting not only from their respective loadings but also from
the imposed concentrated loads at all intersections are set equal. By
doing this at each intersection a linear system of equations in the un-
known concentrated loads results. Having solved the system, the total
loading of each individual rectangular grid is available, and the analysis
previously presented may be applied. Also symmetry of the grids often
allows consideration of several points of intersection at the same time.
In particular, if a nonrectangular symmetrical grid is divided into rec-
tangular grids, the placing of the unknown concentrated loads at a set of
symmetrically located points reduces the computations to one for each
grid and set. Also, if shearing is taken into account on any one grid,
it must of course be taken into account throughout the entire analysis.

As previously indicated an analysis for distributed loadings in
general may be performed by the method presented. This may be done by
approximating distributed loads by concentrated loads applied at the
centroids of small portions of the beams, the concentrated loads being
the total load on the various portions.

It is to be noted that the assumption of perpendicularity of the
beams does not enter into the analysis of grids. It enters only in con-
sidering the adequacy of the analysis. Thus grids of nonperpendicular
beams may be analyzed the same as grids of perpendicular beams, but
additional analysis must be made to assess the twisting and warping re-
sulting from the nonperpendicularity.

Another point of interest is that the analysis provides only that
the deflection at an intersection (or a point of contact before loading)
is the same for the beams in question. Thus for an analysis including
bending and shearing, it is often immaterial whether the beams are actu-
ally connected or & set in one direction is resting on a set in the other
direction. The beams must actually intersect, or be connected, however,

if a torsional analysis is to be made.
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APPENDIX A. THE GRID ANALYSIS COMPUTER PROGRAM

Two codes were written for the IBM-TO4 [5], one for solving the sym-
metrical case and the other for solving the nonsymmetrical case. The
codes have the following features:

1. Any rectangular grid may be analyzed which has 90 beams or less
in a glven direction.

2. Any n® coefficients may be found; n = 1, ... 5.

3. The effect of shearing and torsion in any combination with
bending may be considered.

L, The cross section of individual beams and beam spacing are arbi-
trary.

5. A uniform load is assoclated with each beam while concentrated
loads may be placed at will.

6. Deflections and moments may be calculated along any desired
beamn.

7. Studies of the variation of the number of coefficients and in
the variation of shearing or torsional effects or both may be made with-
out running separate cases.

The analysils for bending alone, based on a 20 X 20 array of beams,
usually requires only a few seconds, while the bending and shearing compu-
tation may require up to 30 sec. In contrast, the torsional computation

may require 4 or 5 min.
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APPENDIX B. SQUARE GRIDS OF ONE AND TWO BEAMS
IN A GIVEN DIRECTICN

The bending analyses of these two cases are equivalent to the analy-
sis of a single beam with a uniform load (see Table 1). The nonsingular

matrix equation given by the formulas of this report for the one-by-one

grid is
2 -1 =1 a 0.026142109
-1 8 0 a4 | = |-0.0087140%64 | ,
-1 0 & a4 —0.0087140364

which has the solution
-1
a,, = 0.13125 x 10 s

— = -4
84 = 2,4 = 0.53790 X 10

There is no torsional effect on the one-by-one grid as indicated in
Figs. 6 and 7.
A three-by-three nonsingular matrix exists for the two-by-two grid.

The diagonal elements for this case are 3, 121.5, and 121.5, respectively.
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