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CHAPTER I

INTRODUCTION

I. BACKGROUND OF THE PROBLEM AND A GENERAL

REVIEW OF THE LITERATURE

The study of high temperature gaseous matter in a highly ionized

state has become known as the field of plasma physics. Such a state

exists in nature, for example, in the gases of interstellar space, the

ionized gases on the surface of the sun and the ionosphere. Man-made

plasmas include such well-known devices as thyratron tubes, mercury-vapor

rectifiers and plasma-filled waveguides. A plasma surrounds a space

vehicle during re-entry (causing the so-called communications blackout),

occurs in explosions and lightning bolts, and has been proposed for

rocket propulsion motors in interplanetary travel. Recently, a great

deal of attention has been focused on plasma physics through the attempts

to harness the energy available from a thermonuclear reaction.

2 3
A number of experimental devices, such as the DCX's and OGRA

injection machines, for example, have been built in an effort to produce

D. J. Rose and M. Clark, Jr., Plasmas and Controlled Fusion
(M.I.T. Press and John Wiley and Sons, New York, I96I), pp. 1-12; Proc.
2nd U. N. Conf. on Peaceful Uses of Atomic Energy, Vols. 31 and 32,
United Nations, Geneva (1958); A. Bishop, Project Sherwood (Addison-
Wesley, Reading, Mass., 1958), pp. 1-14; and Proc. Conf. on Plasma
Physics and Controlled Nuclear Fusion Research (international Atomic
Energy Agency, Salzburg, 1961), to name but a few.

2C. F. Barnett, P. R. Bell, J. S. Luce, E. D. Shipley, and A.
Simon, Proc. 2nd U. N. Conf. on Peaceful Uses of Atomic Energy, Vol. 31,
United Nations, Geneva (1958), P- 298.

L. A. Artsimovich, Proc. 2nd U. N. Conf. on



this reaction, and from these experiments come many theoretical prob

lems. Of these problems, the stable confinement of this plasma for a

sufficiently long time that fusion can occur has turned out to be one

4
of the most perplexing. Since fusion temperatures are in excess of

10,000,000°K, "containment and insulation" of the plasma using ordinary

laboratory vessels is impossible. However, at these energies a "magnetic

bottle" can be used where the interaction of the fully ionized gas with

an electromagnetic field is so adjusted that the electromagnetic force

on each particle is always directed away from the walls. It has become

evident, however, that instabilities, that is, small disturbances which

grow rapidly in either space or time in the plasma, contribute to the

mechanisms which eventually disrupt the confined system and terminate

the reaction. Impurity radiation is an example of a major non-insta-

bility loss mechanism in controlled thermonuclear processes.

The hydromagnetic instabilities (interchange, kink, sausage,

for example) which involve the plasma as a whole; plasma oscillations

Peaceful Uses of Atomic Energy, Vol. 31, United Nations, Geneva (1958),
p. 6.

A. S. Bishop, Physics Today 17, No. 3, 19 (1964). This article
also contains an excellent description of the principles of the different
thermonuclear machines, their advantages and limitations.

^R. F. Post, J. Nucl. Energy, Pt. C 3, 273 (1961); S. Cuperman,
F. Englemann, and J. Oxenius, Phys. Fluids £, 108 (1963); and Phys.
Fluids 7, 428 (1964).

M. N. Rosenbluth and C. L. Longmire, Annals of Physics 1, 120
(1957)] W. B. Thompson, lecture, Plasma Physics Summer School of the
Danish Atomic Energy Commission, Riso, Denmark (August i960), p. 273-
(Unpublished); and Masatomo Sato, "Stability of Plasma (l)," IPPJ-7
(March 1963). This review article contains many references to magneto-
hydrodynamic instability research.



or'micro-instabilities" ' which involve local turbulence or oscillations

of rapid growth rates (compared with hydromagnetic instabilities); and

another oscillatory instability characteristic of a weakly inhomogeneous

fully ionized plasma confined by a strong magnetic field called the
Q

"universal" or drift-wave instability are examples of disrupting wave-

type disturbances which have been predicted theoretically and whose

behavior has been studied in great detail. Of course, other instabili

ties exist, and furthermore, it seems evident that more instabilities

remain to be discovered.

To study the hydromagnetic instabilities one introduces the

assumptions that the velocity distribution of the particles is nearly

9
isotropic and that the system is adiabatic. Using these simplifying

postulates, the hydrodynamic equations of mass, momentum, and energy

conservation can be used. Also, one must include in the force term the

magnetic stress, - V x B, then employ the Maxwell equations to determine

the fields. The hydromagnetic instabilities predicted on the basis of

this theory are of low frequency (much less than the cyclotron frequency

of the positive ions ) and a relatively slow growth rate and lead to

^N. Rostocker, "Plasma Stability," GA-2617 (December l4, I961);
and M. N. Rosenbluth, lecture, Plasma Physics Summer School of the
Danish Atomic Energy Commission, Riso, Denmark (August i960), p. 201.
(Unpublished).

8H. Lashinsky, Phys. Rev. Letters 12, 121 (1964); and N. Krall
and M. N. Rosenbluth, Phys. Fluids 6, 254~Tl963), for example.

^S. Glasstone and R. H. Lovberg, Controlled Thermonuclear Reac
tions (D. Van Nostrand Co., Inc., Princeton, New Jersey, i960), p. 487,
for example.

10L. Spitzer, Jr., Physics of Fully Ionized Gases (interscience
Publishers, New York, 1962), p. 51.



the expulsion of a confined plasma by gross drift motions. Stabilization

of a number of these disturbances, however, is theoretically possible.

A large class of instabilities, however, exist which are usually

highly localized and represent charged particles interacting through

collective fields, not necessarily at low frequencies. These have been

12
dubbed the "micro-instabilities. Theoretically predicted micro-

instabilities include: l) the two-stream instability which is described

as simply being produced by two interpenetrating streams of particles,

N 142) the electrostatic cyclotron resonance instability which describes

resonant coupling between plasma oscillations and particle rotation in

a magnetic field, and 3) the pinch-type instabilities associated with

'The reader will find in the literature many papers devoted to
this subject. As an example, M. N. Rosenbluth, Proc. 3rd International
Conference on Ionized Gases, Venice (1957), P- 903- In addition to the
bibliography of Sato (footnote 6), W. B. Thompson, An Introduction to
Plasma Physics (Pergamon Press, Oxford, 1962), pp. 97-138, is an excel-
lent reference to magnetohydrodynamic stability.

12
As with the hydromagnetic instabilities, most books on the

subject of plasma physics devote a great deal of their space discussing
these phenomena and usually the original works are well referenced. An
excellent review article describing many Russian contributions to these
instabilities is A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev,
Soviet Physics Uspekhi 4, 332 (1961).

13
There has been a great deal of research on this instability

mode; for example, in the theoretical research on beam-plasma inter
actions. The following reference is an excellent review article on the
subject and is well referenced. Ya. B. Fainberg, J. Nucl. Energy,
Pt. C 3, 203 (I962). Specifically see 0. Buneman, Phys. Rev. Letters
1, 8 (1958); and Phys. Rev. 115, 503 (1959).

14
The pioneering work was done by E. G. Harris, "Unstable

Plasma Oscillations in a Magnetic Field," 0RNL-2728 (June 5, 1959);
and Phys. Rev. Letters 2, 3h (1959).

15yH. P. Furth, Phys. Fluids 6, 48 (1963). This reference gives
a very thorough cataloging of the pinch-type instabilities.
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self-focusing of charged particle streams. One could continue this list

to include the "universal" instabilities, mentioned briefly above, and

the mirror hydromagnetic and slow-growth-rate Alfven-wave instabilities

16
described by Post, to name but a few.

These plasma oscillations, often characterized by large growth

rates and short wavelengths, by their nature do not lead to gross drift

motions but "act to destroy effective confinement through causing en

hanced diffusion across the magnetic field or through causing excessively

17rapid energy exchange among components of the plasma."

These instabilities manifest themselves in the details of the

velocity space distribution function. The "origin" of the micro-insta

bility is a departure from isotropic conditions (anisotropy), a property

l8
which afflicts magnetically confined systems. It seems plausible then

that these instabilities should be difficult to stabilize since a re

arrangement of the distribution function would be called for.

It is the purpose of this dissertation to study in some detail

one particular micro-instability, the ion-cyclotron resonance insta

bility, to survey what has been done to date, to discuss its role in

the thermonuclear machines, to offer new calculations regarding finite-

16
R. F. Post, "Some Observations on Plasma Instabilities in the

Mirror Machine," plasma Hydromagnetics, D. Bershader, editor (Sixth
Lockheed Symposium on Magnetohydrodynamics, Stanford University Press,
Stanford, California, 1962), p. l6.

"^Ibid., p. 17.
18
Ibid., p. l6.

19E. G. Harris, J. Nucl. Energy, Pt. C 2, 138 (1961).
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geometry aspects of the theory and stable-unstable operating regimes,

and finally to suggest further calculations to be attempted.

II. BEGINNING CONSIDERATIONS

Plasma oscillations as a new and separate phenomenon were first

20
studied by Langmuir and Tonks in 1929- They observed that collective

effects disrupted an electron beam in a plasma in a distance much shorter

than could be explained by collisions. They interpreted this disrupting

mechanism as plasma-electron oscillations at the plasma frequency. In

21
1938 A. A. Vlasov treated a system of charged particles by means of a

modified Boltzmann equation. Vlasov showed that for a plasma the elec

tron oscillation frequency could be much larger than the frequency of

collision between charged particles and neutral gas, and consequently,

one could neglect all "collision" interactions. This approach is valid

for low density and high temperatures when the thermal energy is much

greater than the mean potential energy between neighboring particles.

The self-consistent electromagnetic fields were calculated using the

distribution functions as sources in the Maxwell equations, and a dis

persion relation calculated for both longitudinal and transverse waves.

22
However, L. Landau in 1946, using Vlasov's basic equation,

found that Vlasov's results were incorrect and furthermore found that

in the rigorous sense no proper dispersion relation exists for waves

20
I. Langmuir and L. Tonks, Phys. Rev. 33, 195, 990 (1929).

21A. A. Vlasov, J. Exp. Theor. Phys. (u.S.S.R.) 8, 291 (1938).
See also USAEC Translation 2729.

22
L. D. Landau, J. Phys. (U.S.S.R.) 10, 25 (19^6).



in a plasma. He showed that for a given wave vector k, arbitrary values

of to, the frequency of a disturbance in the plasma, are possible. Lan

dau's correct initial-value treatment led to qualitatively new results,

namely a damping mechanism which could absorb energy from oscillations

23
in a collisionless plasma. Van Kampen solved the problem in a strik

ingly different manner. Landau's treatment did not answer the question

of divergence of a singular integral in the stationary wave method.

Van Kampen showed that it is possible to construct a complete set of

stationary plane wave solutions of arbitrary wave number and arbitrary

frequency. Although each "Van Kampen mode" alone does not exhibit

damping, an arbitrary initial disturbance will produce a spectrum of

modes and the gross perturbation will decay with Landau damping be-

havior.

The problems considered above are based on an infinite, homo

geneous model in which the time-dependent parts of the dependent var

iables are assumed small compared with the time-independent parts. A

perturbation technique is employed in which products of perturbation

terms are neglected, the equations linearized, and the Fourier compon

ents of the dependent variables are derived. In the work that follows,

a similar model will be used except in the consideration of finite-

geometry cases where slight modifications will be in order. Also, the

N. G. Van Kampen, Physica 21, 9^9 (1955).

24
T. H. Stix, The Theory of Plasma Waves (McGraw-Hill Book

Company, New York, 1962), p! 148. For rigorous mathematical extensions
and discussions of the Landau and Van Kampen formulations, see K. M.

Case, Annals of Physics 7, 349 (1959); G. Bacus, J. Math. Phys. 1, 178
(i960); and J. N. Hayes, Phys. Fluids 4, 1387 (1961).



perturbed part of the magnetic field is neglected so that the electric

field is a curl-free vector limiting then the study to longitudinal

25
oscillations. Drummond, Rosenbluth, and Johnson ' claim to have shown

that this is a valid assumption if the ratio of the plasma pressure to

magnetic field energy density is small.

III. MATERIAL IN SUCCEEDING CHAPTERS

In Chapter II a review of the literature on the ion-cyclotron

resonance instability research will be given. Included in this resume

will be a discussion of finite-geometry effects and the attempt by this

author to describe a set of vacuum-plasma boundary conditions.

Chapter III begins with a discussion of the Vlasov equations.

Then the dispersion relation for four separate models is derived. These

models are: (A) The infinite plasma model which as considered by

Harris is extended to include the dispersion relation using a two-

temperature distribution function. The groundwork will be laid here

for the evaluation of this dispersion relation with the aid of a high

speed digital computer. (b) The Harris model limited in z (where z is

the direction of the external magnetic field) in which the infinite model

is replaced by a plasma slab bounded at z = ±a. The particles are con

sidered to have no velocity spread in the z-direction but to have a MB*

spread in the direction perpendicular to z. The singular character of

yW. E. Drummond, M. N. Rosenbluth, and M. L. Johnson, Bull.
Am. Phys. Soc, Series II, 6, No. 2, 185 (1961).

Harris, loc. cit.

Maxwell-Boltzmann.



the differential equations involved is discussed and compared with a

27
similar problem in the literature. (c) The Burt-Harris model where a

cylindrical-shaped plasma is considered in which the ions move in Larmor

orbits in the ion-cyclotron frequency. This model is used as an approx

imation to a weak mirror thermonuclear device. The dispersion relation

is studied in the limit of infinite length, finite radius and visa-versa.

Finally, (d) the Shima model in which a finite problem of one or two

ion orbits across is approximated by an exactly solvable problem, again

an infinite plasma but one in which the Maxwellian ion distribution

rotates as a whole at the ion-cyclotron frequency. It is shown how

these results are incorporated into the computer-code of model (A).

In Chapter IV are presented the details of the computer calcula

tions of models (A) and (D). For various temperature parameters, regions

of stability and instability are determined and a perturbation technique

used to determine growth rates. The computer work was done on the

Control Data Corporation l6o4-A Machine.

In Chapter V the conclusions are drawn and suggestions for

further research presented, particularly in connection with further

exhaustive computer calculations emphasizing DCX parameters.

2^P. B. Burt and E. G. Harris, Phys. Fluids 4, l4l2 (1961); and
P. B. Burt, disseration, University of Tennessee, 1961.

oO

Y. Shima, Thermonuclear Div. Semiarm. Progr. Rept. Oct. 51,
1962, ORNL-3392, p. 61.
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CHAPTER II

PREVIOUS WORK

I. LITERATURE SURVEY

The ion-cyclotron resonance instability theory had its inception

in attempts to explain oscillatory phenomena evident in many plasma-type

experiments. One such early experiment was that by Alfven and his co

workers concerning electron phenomena in trochotron tubes.* At low elec

tron density the motion follows classical behavior. At higher densities,

however, the electron's energy distribution is so altered that an appre

ciable part of the current is collected by electrodes negative with

respect to the filament. Simultaneously, strong beam noise was detected.

2
Malmfors suggested that the noise was due to collective behavior of the

electrons in the beam and predicted unstable oscillations with the fre

quency within small intervals of multiples of the gyromagnetic (cyclotron)

frequency. **•

3
Gross in a later paper reported an error in Malmfors' work.

Taking into account random thermal motion, he shows for a peaked velocity

Alfven et al., Theory and Applications of Trochotrons, Kungl.
Tekniska Hbgskolans Handlingar, NR 22 (1948).

So named because electrons emitted from a hot cathode in a tube

with crossed electric and magnetic fields travel to the anode in tro-
choidal paths.

2K. G. Malmfors, Arkiv for Fysik 1, 569 (1950).

For very high electron beam density Malmfors' theory predicted
unstable oscillations at all frequencies.

5E. P. Gross, Phys. Rev. 82, 232 (1951).
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distribution the existence of gaps in the spectrum at frequencies which

are approximate multiples of the cyclotron frequency. Gross demonstrated

that when the effect of the thermal motion is small, no instability could

exist. Furthermore, he postulated that the same type of calculations

should hold whatever the effect of the thermal motion. While Gross's

4
approach was a kinetic theory treatment, Sen, looking for a connection

between solar "enhanced radiation" and plasma oscillations, followed Lan

dau's prescription and found that the system was unstable in frequency

bands around multiples of the gyrofrequency. Upon further investigation

of Gross's dispersion relation, Sen showed numerically that unstable oscil

lations did exist (using parameters suited to solar data, i.e., far from

Gross's original approximation).

These then were some of the first few attempts to give a possible

explanation to some of the experimental phenomena occurring in electrical

discharges in the laboratory (and in nature, too) on the basis of unstable

plasma oscillations. Next came the thermonuclear machines and with them

a seemingly unending source of confinement disrupting mechanisms to be

studied theoretically. Quite early it became all too obvious that violent

localized disturbances on the microscopic scale were contributing to the

unstable configurations. Colgate and Furth, writing on the stabilized

pinch and controlled fusion power, revealed that although the pinch could

be "stabilized," small-scale turbulence exists within the gross configura

tion. There was evidence of electrons interacting with electrostatic

H. K. Sen, Phys. Rev. 88, 8l6 (1952).

5S. A. Colgate and H. P. Furth, Science 128, 337 (1958).
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plasma waves enhancing the resistivity effect at high power levels discour

aging the use of a stabilized pinch as a thermonuclear plasma container.

Cooperative phenomena in the B-l Stellarator discharges were reported by

Bernstein et al. These data indicated the existence of unexplained col

lective processes. X-rays were produced by "runaway" electrons striking

the walls; furthermore, the discharge current decayed in abrupt steps

correlated in time with the bursts of X-rays. There was even evidence

that the runaway electrons themselves affected the development of the

discharge.

In an effort to give a possible theoretical explanation to phe-

7
nomena of this nature Harris, expanding on the work of Malmfors, Gross,

and Sen, developed a theory in which the anisotropies of the distribution

function were considered to give rise to these instabilities. The re

mainder of the discussion in this dissertation will be based on Harris's

basic works.

Harris in his first paper* derives the general dispersion relation

for longitudinal waves based on the Vlasov set of equations following

Q

fairly closely the work of Bernstein. Many simplifying assumptions are

W. Bernstein et al., Phys. Fluids 1, 420 (1958).

E. G. Harris, "Unstable Plasma Oscillations in a Magnetic Field,"
0RNL-2728 (June 5, 1959); Phys. Rev. Letters 2, 3^ (1959); and J. Nucl.
Energy, Pt. C 2, 138 (1961).'

Harris's papers will be referred to as I, II, and III as they
appear in footnote 7- Paper II is a condensed version of I; however,
the theory's applicability to DCX and OGRA is discussed. Paper III
includes all the cases of I, and also transverse oscillations are
considered (i.e., the full set of Maxwell's equations are used in the
formulation of the problem).

Q

I. B. Bernstein, Phys. Rev. 109, 10 (1958).
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made and will be discussed in some detail in Chapter III of this disser

tation. The distribution function used by Malmfors, Gross, and Sen, in

which all electrons and ions move with the same speed perpendicular to the

field, is employed by Harris:

1 , N5(vj_ - v*)
f . = — S(v ) J- (l)
oj 2it z; v, v '

where S(x) is the Dirac 5-function, and the symbols 1 and z represent

directions with respect to the external magnetic field, and j represents

either species of the plasma. If the ion motions are neglected (i.e.,

let m. - co) and set k = 0, where k is the component of the wave vector

along the magnetic field, one finds

CO

^p2 X"1 n%P ld
1--3?*L (-, +£ )S5xJp'M <2>

ce ce
n=-oo

where

c

pe m
a> 2=M!£ (5;

e

is called the plasma frequency,

/eB \£
co 2=(-£) (4)
ce \m c/

v e y

is called the cyclotron frequency, and

k. v

\ - i e
ce

It was in using this dispersion relation that Gross showed no unstable

modes of oscillation for X « 1, that Sen showed that instabilities could

g
^See, for example, P. M. Morse and H. Feshbach, Methods of

Theoretical Physics (McGraw-Hill Book Company, New York, 1953), p. 122.
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exist for X « 1 and finally that Harris, using a Nyquist diagram tech

nique, was able to show that instabilities set in when X> 1.84. It

was shown next for k. = 0 that the plasma was stable, but when neither

k, nor k was zero, there could be instabilities for X < 1.84. In order
1 z

to consider the effect of a spread of velocities on stability the fol

lowing zero-order anisotropic distribution function was used:

_v 2 ia 2

1 ? a • e L 1J
^ —^ , (6)°J 2* aL* « vz2 + az/

where a. and a measure the spread in velocity in the directions perpen

dicular and parallel to the field. Using this distribution function and

assuming again no motion of the ions, it is shown that for waves propa

gating parallel to the magnetic field the oscillations are damped at the

plasma frequency (Landau damping); and furthermore that there is neither

instability nor Landau damping for k = 0. However, with no restrictions

—>

on k, taking into account the motion of the ions but letting the temper

ature along the field be zero (i.e., let (X = 0), one finds a very funda

mental relationship. It is shown that a sufficient condition for unstable

oscillations in a plasma is:

co 2 > j?2co .2, z = ±1 , ±2 , (7)
pe ci

where to is defined by Equation (3) and to . is the ion-cyclotron fre-
pe ci

quency given by Equation (4) with m replaced by m..

H. M. James, N. B. Nichols, R. S. Philips, Theory of Servo-
mechanism (MIT Radiation Laboratory Series, McGraw-Hill, New York, 1947),
p. 70; and P. Penrose, Phys. Fluids 3, 258 (i960).
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A small scale trochotron-type experiment was tried by Harris and

his students in an attempt to verify Equation (7). Powers found, how

ever, that other phenomena occurred long before the critical current

required for instability based on the theory of Harris could be reached.

Equation (7) is the now well-known result of Harris. Since any

confinement of a plasma by a magnetic field necessarily produces aniso

tropic velocity distributions, Harris thought mirror-type thermonuclear

machines might breed these instabilities readily. It now seems quite

probable that many thermonuclear devices do indeed exhibit this "Harris

instability." In what follows is a brief description of a few experi

mental devices* and the results they yield.

II. EXPERIMENTAL OBSERVATIONS

The DCX plasma is formed by injecting 600-keV molecular hydrogen

12
ions into a magnetic mirror geometry. The molecular ions dissociate

either by colliding with neutrals or by Lorentz breakup and are trapped

in the magnetic field, which is perpendicular to the injection plane.

By this means a high concentration of energetic ions are accumulated in

a charged ring and held until they have randomized into a high temperature

plasma.

11P. A. Thompson, Bull. Am. Phys. Soc, Series II, 6, 196 (i960);
and W. L. Powers, Master's thesis, University of Tennessee, 1963-

Included will be the molecular-ion injection type machines DCX-I
and II and the Russian's OGRA and the neutral injection machines ALICE
and Phoenix.

12See, for example, The ORNL Thermonuclear Program Jan. 15, 1958,
ORNL-2457, p. 7ff. Also the Thermonuclear Division of ORNL publishes
bi-annually a progress report in which
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It has become evident that a density-limiting mechanism is present

13
in DCX-I of the micro-instability type. Strong proton cyclotron radia

tion with harmonics through the seventh was observed with each even

harmonic weaker than the following odd harmonic. It was seen that the

amplitude of these signals was dependent on the input current and magnetic

field. The resonance character of these collective oscillations was given

the following interpretation. The charge waves following the rotating

ions close on themselves. After many passes in this ring, only those

waves rotating in phase survive, forming a circular array of charged

14
"bunches." These bunches manifest themselves as oscillations at multi

ples of the ion-cyclotron frequency. That these protons in the trapped

ring might be "bunching," could possibly explain space and energy diffusion

in DCX through a resonance instability of ion-cyclotron motion with elec

tron plasma oscillations. A thesis problem by Burt using an idealized

the detailed description of the thermonuclear program is included.

13T. K. Fowler, Thermonuclear Div. Semiann. Progr. Rept. Oct. 31,
I963, ORNL-3564, p. 8l. An argument against micro-instabilities in DCX
devices is also given in this section.

This discussion of charge "bunching" in DCX follows very closely
the Section 8.1.2 of Thermonuclear Div. Semiann. Progr. Rept. Oct. 31,
1963, ORNL-3564. Also see J. D. Jackson, J. Nucl. Energy, Pt. C 1, 171
(I96I); and Thermonuclear Div. Semiann. Progr. Rept. Apr. 30, 19^3,
ORNL-3472, p. 75.

15"Negative-Mass" type Instabilities have also been suggested as
ion-bunching mechanisms. See C. E. Nielsen, A. M. Sessler, and K. R.
Symon, CERN Conf. Report, 1959, Geneva, European Organization for Nuclear
Research, p. 239-

P. Burt, dissertation, University of Tennessee, I96I; and P.
Burt and E. G. Harris, Phys. Fluids 4, l4l2 (1961).
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DCX geometry model, showed that the ions tended to "bunch," giving rise

to large electric fields within the plasma.

The DCX-II ' device has recently begun operation in which the den

sity buildup is accomplished by multiple passes of an injected molecular

ion beam through an arc discharge. This machine attains ion-beam inten

sities seven to eight times greater than DCX-I, and with a more efficient

dissociation of the incident beam. As with its earlier counterpart, DCX-

II also emits a considerable amount of radio-frequency energy consisting

principally of the harmonics of the molecular-and-atomic-ion-cyclotron

frequencies (l8.6 Mc). Some "white" noise extending above 100 Mc is

also present but is not explained.

Recently, however, it has been shown that these Harris instabi

lities may be suppressed somewhat by heating the electrons in the trapped

plasma. Harris ^ has suggested that in an idealized representation of

the DCX-I plasma, passing an electron beam through the circulating ion

beam stabilizes the lowest frequency modes, but further calculations

indicated that this was not promising. It is concluded that stability

occurs because energy is drained out of the machine by convection at a

more rapid rate than it is produced. However, new unstable modes at

'P. R. Bell et al., Thermonuclear Div. Semiann. Progr. Rept.
Apr. 30, 1964, ORNL-3315, pp. 15-20; Nucl. Fusion: I962 Suppl., Pt. 1,
251-258; and ORNL CF-60-1-73 (Mar. 4, i960).

-1 Q

Thermonuclear Div. Semiann. Progr. Rept. Oct. 31, 19^2, 0RNL-
3392, pp. 17-22.

"e. G. Harris, "Stabilization of a Plasma by Convection."
(Privately circulated note); and Thermonuclear Div. Semiann. Progr.
Rept. Apr. 30, I963, ORNL-3V72, pp. 79-81.
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higher frequencies are introduced. In addition, a sufficient tempera

ture spread in ions and electrons should also limit the Harris-type

Instability.*

The Russian contributions to plasma physics and the controlled

thermonuclear processes has been quite impressive. They have put into

operation a large magnetic mirror system called OGRA** very similar to

DCX-II except for the injection energy (here 200 keV) and method of break-

up (on the background gas). Measurements indicate that both an ion-

cyclotron and low-frequency flute instability are present. The plasma

is characterized by a large positive space potential creating a strong

radial electric field. As the plasma rotates, spikes are formed at its

surface, thereby spewing the electrons and ions across the magnetic field.

Also, a significant portion of the electrons acquire enough energy to

escape through the mirrors along the magnetic field lines. The signals

received by the external detectors indicate low-frequency oscillations

that coincide in frequency with frequency of the rotation of the plasma

plus intense coherent radiation at the ion-cyclotron frequency and over

tones. Experiments on injected currents agree qualitatively with theo

retical predictions of Harris. However, when a positive potential is

impressed on end grids, located beyond the mirrors outside the plasma,

the oscillation amplitude of the cyclotron frequencies decreases. This

20
The discussion of the OGRA device was taken from G. F. Bogdanov,

Kurchatov Institute of Atomic Energy, Moscow, I962 No. 23/236 reprint,
Translated by J. Lewin of the Thermonuclear Division, ORNL, October
31, 1962.

•*

This fact will be clearly seen in Chapter III using Model (A)
and also the computer results presented in Chapter IV.

•x-x-

After L. A. Artsimovich and I. N. Golovin.
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partial stabilizing effect is possibly explained by the decrease in elec

tron density and an increase in the electron temperature.* Again, the

computer work in Chapter IV will bear out this fact. It is concluded

that the interaction of the electrons' oscillations and the ion-cyclotron

waves is the mechanism by which the electrons acquire energy large enough

to pass through the end mirrors in the presence of the high plasma poten

tial.

21
The neutral injection machines, ALICE at Lawrence Radiation

22Laboratory and the Phoenix at Culham Laboratories in England, have

recently begun operation, and experimental results indicate that the

Harris instability is here also. In ALICE a 20 keV beam of excited

neutral atoms enters a discharge chamber and these atoms are ionized

by Lorentz breakup or by collision with background gas resulting in

the buildup of a high energy plasma. Phoenix is different only in the

fact that the primary beam is 60 keV neutral hydrogen atoms and is in

jected into the mirror magnetic field perpendicular to the field lines

in the median plane. The experimental results from Phoenix indicate

that when the electron plasma frequency is greater than the ion

It was conjectured that an increase In the electron temperature
was due to an increase in the time spent in the interior of the plasma
by the electrons as a result of the elimination of the flute instability
by these end grids.

Controlled Thermonuclear Research Semiannual Report June, 1962,
UCRL-10294, pp. 15-25; and UCRL-IO852, pp. 19-35-

L. G. Kuo et al., "Experimental and Theoretical Studies of
Instabilities in a High Energy Neutral Injection Mirror Machine," CLM-
P32. (November, I963), p. 305- (Submitted for publication to Phys.
Fluids). See also, D. R. Sweetman, Nuclear Fusion, I962 Supplement,
Part 1, 279 (1962).
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cyclotron frequency, discontinuous oscillation at the ion-cyclotron fre

quency (~ 60 mc/s at 40 kg), continuous oscillation at the ion-cyclotron

frequency, and strong low frequency (~ 100 kc/s) oscillation occur.

These instabilities promote strong scattering of the ions out of the

transverse direction but cannot be observed to cause actual loss of

plasma. This leads to an apparent "self-quenching" of the oscillation

by changing the anisotropy of the ion-velocity distribution enough to

terminate or weaken the instability. There were also observed oscilla

tions at one-half the ion-cyclotron frequency--a fact that will be dis

cussed in connection with results from the computer analysis of Harris's

dispersion relations.

It is apparently obvious that the experimental observations pre

sented above are consistent with the electrostatic ion-cyclotron resonance

instability predicted by Harris. The presence of this instability would

be expected to increase the energy transferred between ions and electrons

23and to enhance other transport coefficients in the plasma.

III. FURTHER THEORETICAL DEVELOPMENTS

OF THE HARRIS INSTABILITY

24In order to extend the original theory, Harris suggested that

if there were a spread in the cyclotron frequencies due to a non-uniform

23
R. F. Post, "Some Observations on Plasma Instabilities in the

Mirror Machine," Plasma Hydromagnetics, Daniel Bershader, editor (Sixth
Lockheed Symposium on Magnetohydrodynamics, Stanford University Press,
Stanford, California, I962), p. 21.

24
E. G. Harris, "The Effect of a Spread in Frequencies on the

Stability of a Plasma," ORNL CF-62-8-37 (Aug. 21, I962); also see
Thermonuclear Div. Semiann. Progr.
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magnetic field, the coherence of the oscillations may be destroyed, since

many of the particles will be out of resonance. It was found (using DCX-I

parameters) that there was only a narrow band of densities for which the

plasma goes unstable. Next, the effect of non-zero a on the dispersion

2 5relation was investigated J assuming propagation of waves almost parallel

to the magnetic field. It was found, using the Burt-Harris model, that

the solution of the dispersion relation could be attained without the aid

of a computer. The results are presented in a parameterized form as a

graph on which are mapped stable and unstable regions for given values of

the temperatures occurring in the plasma. Thus for a given value of the

density and magnetic field, one could predict stable or unstable operating

conditions as a function of plasma anisotropies (temperatures).

The effect of non-zero ion and electron temperatures on the gen

eral dispersion relation* has been investigated by a number of authors.

?6Sagdeev et al. showed that if the longitudinal and transverse energies

are approximately equal, it was reasonable to "assume" that the plasma

was stable. Analyzing the longitudinal part of the conductivity tensor,

Rept. Oct. 31, 1962, ORNL-3392, PP- 56-60.

2^E. G. Harris, "The Effect of Finite Ion and Electron Temperature
on the Ion-Cyclotron Resonance Instability," CLM-R32 (October, I963).

•X"
That is, the dispersion relation derived from a bi-Maxwellian

distribution function. This derivation will be given in the discussion
of Model (A) of Chapter III.

?6R. Z. Sagdeev et al., Proceedings of the Second International
Conference on the Peaceful Uses of Atomic Energy, Vol. 31, United Nations,
Geneva (1958), p. 15; and A. A. Vedenov, E. P. Velichov, and R. Z.
Sagdeev, Soviet Physics Uspekhi 4, 332 (1961).
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2T
Drummond, Rosenbluth, and Johnson found that T,/T * of the ions must

1' z

be greater than eight or nine for instability to occur, where

2kT .

a, 2= —^ (8)
lj m

and

2kT

a £= ZL (9)
zj m. w

j

and

k = Boltzmann's Constant.

pD

Ozawa, Kaji, and Kito, using a complex potential technique, derive the

stability criterion for longitudinal waves in a magnetic field. For a

one species plasma with a bi-Maxwellian velocity distribution

1 -vl2/°l2 " vz2/az2f =—t^ e X X Z z (10)
° W%2a

1 z

they show stability when T /T < 2 and to /to < 0.6. These results will
1 z p' c

be compared with work from Chapter IV of this dissertation. A. V.

29
Timofeev attributes the buildup of ion acoustic vibrations in an aniso

tropic, nonisothermal plasma as a result of cyclotron resonance. He

showed that for an instability to occur one must have T ./T,. < 0-5 and
zi' li

27
'W. E. Drummond, M. N. Rosenbluth, and M. L. Johnson, Bull. Am.

Phys. Soc, Series II, 6, No. 2, 185 (1961).

The symbols T, and T are the familiar representation of temper
atures perpendicular and parallel to the magnetic field. A more physi
cally correct statement would be the velocity spread perpendicular and
parallel to the magnetic field.

pO

Y. Ozawa, I. Kaji, and M. Kito, J. Nucl. Energy, Pt. C 4, 271
(1962).

29A. V. Timofeev, Soviet Physics JETP 12, 28l (1961).

mmmmmmmummm
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T ./T ~ 0.2. Again comparison with results of this dissertation is
zi' ze

30
possible. Kahn, making calculations on the same lines as Harris but

assuming instead that the electrons have zero velocity and that the ions

are bi-Maxwellian, proves a sufficient condition of instability to be

to > to and T. = 2T . In work closely resembling Model (A) of Chapter
p c 1 z

31III, Dnestrovsky, Kostomarov, and Pistunovich found analytically that

the ion anisotropv T,./T . must be greater than two and the ratio of the
*J li' zi

electron plasma frequency to the ion-cyclotron frequency must be greater

than one half for the plasma to exhibit unstable behavior. They showed

that the largest region of instability corresponds to long wave length

disturbances propagated almost perpendicular to the magnetic field. The

waves satisfying
k to

k to . >
ci

n being some integer, are shown to possess the largest growth rate. The

effect of non-zero electron temperature on the stability of the system is

indicated. The above work was carried out using asymptotic expansions of

32
the dispersion relation. Also Hall and Heckrotte prove a necessary

33
condition for stability similar to those above. Hall looks also at

30
F. D. Kahn, report to be published.

31
Yu. N. Dnestrovsky, D. P. Kostomarov, and V. I. Pistunovich,

Nuclear Fusion 3, 30 (1963).

32L. S. Hall and W. Heckrotte, "Stability of Longitudinal Oscil
lations in a Uniform Magnetized Plasma with Anisotropic Velocity Dis
tribution," UCRL-7627 (Dec. 9, 1963); and T. Kamash and W. Heckrotte,
Phys. Rev. 131, 2129 (1963).

33L. S. Hall, W. Heckrotte, and T. Kamash, "Ion-Cyclotron
Electrostatic Instabilities." Paper Presented at Sherwood Plasma Physics
Theory Meeting, Gatlinburg, Tennessee, May 7-8, 1964.
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ion-ion and electron-electron type interactions and derives instability

criteria for these cases.

IV. FINITE GEOMETRY CONSIDERATIONS

In most of the above calculations the major simplifying assumption

was that of a plasma of infinite extent. In an effort to determine the

34
effect of finite boundaries Burt derived boundary conditions for a

cylindrical shell of ions rotating at the ion-cyclotron frequency. It

was shown that space charge piling up on the boundaries led to discon

tinuities in the electric field. Assuming that one could integrate

the potential across this discontinuity, a complicated dispersion relation

was found which after various simplifications was found not to be very

35
sensitive to the boundaries. Soper found it more appropriate to con

sider each boundary separately, calculate the surface charge that migrates

to the boundary upon perturbation of the plasma and derive the boundary

conditions without recourse to step function distributions, etc. Again

it was found that the boundary conditions entered only in a secondary

manner. New "modes" depending on the boundaries were found to be present,

however. An extension of these boundary conditions to the present work

was attempted but was abandoned in favor of a more rigorous method.*

36
Following an article by Frieman et al., who show in a case similar to

34
Burt, loc. cit.

35G. K. Soper, Master's thesis, University of Tennessee, 1962.

* / \See Model (B), Chapter III for this discussion.

5 E. A. Frieman et al., Phys. Fluids 5_, 196 (1962).
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Model (B) that the differential equation governing the electric potential

must be singular somewhere in the interface between plasma and vacuum, the

connection formulas are written down in the limiting case of a sharp-beam

boundary. Following this prescription, and using the Burt-Harris model,

a finite geometry problem approximating a mirror machine which has both

37strong and weak mirrors is solved. Finally, Shima has extended Harris's

original problem to include a rotating beam with finite temperatures. It

is shown that the dispersion relation is identical with that of Harris

(paper III) except that the ions are Doppler shifted due to the rotations.

The solution of this dispersion relation with the aid of a computer is

Included in Chapter IV.

^'Thermonuclear Div. Semiann. Progr. Rept. Oct. 51, 19&2, ORNL-
3392, p. 6T:
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CHAPTER III

SOLUTION OF THE PROBLEM

Although each of the four models discussed in the introduction will

be taken up separately, the basic plasma equations, common to all four

models, will first be presented and discussed in some detail. A common

technique for the solution of plasma oscillation problems is based on a

perturbation technique in which the basic equations are linearized, Fourier

and Laplace analyzed, and a dispersion equation obtained. The most general

theoretical approach to microscopic plasma oscillation problems is through

the Boltzmann and Maxwell equations. These equations connect the self-

consistent electric and magnetic fields with the particle distribution

functions. The Boltzmann equation without collision terms for the elec

trons and ions plus Maxwell's equations are called the Vlasov equations.

I. THE VLASOV EQUATIONS

Due to the long range of the electric and magnetic forces between

particles in a plasma, each particle is almost constantly interacting with

a large number of other particles. One assumes that each particle of the

plasma moves in an average electric and magnetic field produced by all the

other particles of the plasma and by external fields. So if one considers

the plasma as a continuous medium to which electrodynamics applies, the

description of the plasma is given by:

^fi -» ei ,=* 1 -» ->v /ClfN / N37^ + v • Vf. + -^ (E + - v x B) • V f. = (-r-) =0 (l)
at ,i m. c v i dt nnj m. c v j _ cQll

and



27

V • E = 4jtp (2a)

V • I? = 0 (2b)

Vxf=-i§f (2=)

_ =? l dlf 4n -=> /0 nx
VxB = c5t + ~J <2d>

and where V represents the gradient operator in velocity space.* Equa

tion (l) describes the rate of change of the distribution function f. for

each species of the plasma and, of course, Equations (2a-d) are Maxwell's

equations. These equations are made self-consistent with the definition

of the charge and current densities:

P =/ . e. / f.d3v (2e)
3d 3

J' =L ejj vfjd3v • ^

It is these groups of equations which are referred to as the Vlasov equa

tions. The unrationalized set of Gaussian units is used throughout.

* a OA oa d a

v dv dvx 3v ovz

1A. A. Vlasov, J. Exep. Theor. Phys. (USSR) 8, 291 (1938). See
also USAEC translation- 2729; and E. G. Harris, "On a Self-Consistent
Field Method for a Completely Ionized Gas," NRL-4944 (May 17, 1957). The
rigorous molecular foundation of the Vlasov equation was first investi
gated by N. N. Bogoliubov, Problems of a Dynamical Theory in Statistical
Physics, Moscow, 1946; translated by E. K. Gora, in Studies in Statistical
Mechanics, Vol. 1, edited by J. deBoer and G. E. Uhlenbeck, Interscience,
New York, 1962; N. Rostocker and M. N. Rosenbluth, Phys. Fluids 3, 1
(i960) derive the Vlasov equation in the fluid limit, i.e., e ->0, m -> 0,
c -> 00 such that e/m and ec remain constant; and finally see R. Balescu,
Statistical Mechanics of Charged
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The Boltzmann distribution function, i.e., f.(x, v, t)d3xd3v,
J

describes the probability of finding a particle of species j* within the

volume element d3x about x and within dJv, the element of velocity space

in time t. The electric and magnetic fields are considered to be the sum

of the average internal and external fields. Also, no distinction need be

made between B and H, and E and D since all currents and charge densities

2
in the medium are treated explicitly.

It should be noticed that the collision term in the Boltzmann

equation has been set equal to zero. For this reason only oscillatory

phenomena and stability questions can be treated using the Vlasov equa

tions. Problems concerning relaxation of long-lived plasma or "resistive"

instabilities, for example, cannot be solved using this assumption because

of the hck of dissipative effects. It is shown in Appendix A that the

interaction between individual particles can indeed be neglected.

Equations (l) and (2a-d) are non-linear since E and B depend upon

f., making an exact solution of these equations quite difficult. However,
J

a solution of the Vlasov equations is made tractable by considering

systems which depart only slightly from an equilibrium form. One linear

izes the equations by writing

f• = f .(v) + f.. (x, v, t) (3)
J oj 1J

Particles (interscience Publishers, New York, 1963), pp. 65-69.

The symbol j represents either ions or electrons.

A. Simon, An Introduction to Thermonuclear Research (Pergamon
Press, New York, 1959), ¥"• 138; lecture^ Plasma Physics Summer School
of the Danish Atomic Energy Commission, Riso, Denmark (August, i960),
p. 64.
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E"= fQ + E\(x, t) (4)

f = B0 + "Bl(x, t) (5)

where it is assumed that:

(a) all perturbation terms are much smaller than the equilibrium

quantities, e.g., fi « fQ, and furthermore that all products of perturba

tion quantities may be neglected, (b) E0 = 0, there is no steady state

electric field,

ljo ~ -"o-

and finally

(c) C = BA , (6)

—>

(d) Bi = 0 (7)

which implies

(e) e\ = - V7$(x, t) (8)

In this approximation the first of the Vlasov equations is linear and

dropping the subscript j reduces to:

3T1 + v • Vfi + — (v x Bn) • V -fx = - V$ • V f. (9)
at mc v °' vm vo w/

where the electric potential satisfies the Poisson equation:

V2$ = -4it ) e. / fx(x, v, t)d3v . (10)

j

It is not correct in general to determine the electric field from the

distribution function by means of the Poisson equation in a static

magnetic field problem. Instead, the full set of Maxwell equations

should be used resulting in a coupling of longitudinal and transverse

motions. However, it can be shown that this approximation is justified

\. A. Bailey, Phys. Rev. 83, 439 (l95l); and I. B. Bernstein and
R. M. Kulsrud, Phys. Fluids 3, 937 (l9^0).
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for the case when to « kc and to « kc. This is known as the electro-
P c

static or longitudinal wave approximation and designates Coulomb inter

actions as most responsible for plasma instabilities. A solution of the

zero-order Vlasov equation:

(vx 4) •Vyf0 =0 (11)

where 1? = B z
o o

fQ(v) =fo(v±, vj (12)

where

v.2 = v 2 + v 2 . (13)
1 x y x '

Although the derivation of the dispersion relation for each model

is based on Equations (9) and (10), the general discussion will be term

inated and the individual nature of the solutions presented.

II. THE INFINITE PLASMA MODEL

The derivation of the dispersion relation for the infinite plasma

starting with Equation (9) has been given by a number of authors. The

following development will follow that of Harris (paper i), but omitting

much of the detail.

Since Equation (9) is linear, one can begin by Fourier and Laplace

transforming the space and time dependent quantities:

fl.(k, v, t) =fe-i^*f1.& 7, t)d3x (14)
and

co

fltJ& v, a>) =J ela3t ?±.{1, v*, t)dt (15)
0

and similar equations for $(x, t). If Imto > 7 and f and 0 are assumed
J
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to be of order e7t for t > 0, then Equation (9) can be transformed to

give:

Ofx °fA ie$ r* „ ,-r> -»•
y ^ v T

i(k • v -to)f -to v £± -v ^ =— k •V f - g(k, 7) (16)
v y 1 cV y ov x dv / m v o

x y

where it has been assumed that

o o

and where

->

(£, v) =fl(k, v, t=0) =/e-ik'X fx(x, v, 0)d3x (17)

is the Fourier transform of the initial perturbation and where

eB.
CXi = —

c mc
(18)

is the cyclotron frequency of the species.*

It is convenient to introduce cylindrical coordinates v^, 0 , and

v in velocity space. Thus

-> /S _ . A A
v = xv, cos 0 + yv, sin 0 + zvi

z
(19)

k = xk, + zk (20)
1 z

and Equation (16) becomes

of, l , . ie$ / df5^ +- (-0. +k^ cos 0+kzvjfl =— (k± cos 0^-
(21)

+ k o N .A

o

'"z ov / to
zy c

The particle designation has been omitted from the above equa
tions. The following convention is used: for the electrons

-eB /m c ; for the ions W . = eB /m.c .
o' e ci o' 1

co
ce o' e
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whose solutions is:

f^k, v, to) =J d0' G(0, 0')$(k, to)
±co

le of
—— k. cos 0' ^—
mto 1 ov

1

%fo I+ k ^ Iz dv J

where

G = exp

+J d0' G(0, 0')g(k, v) ,
±co

- -ito + ik v
z z

to
0

ikLVl
) + — (sin 0 - sin 0' )

to

(22)

• (23)

The sign in the lower limit of Equation (22) is chosen so that G(0, 0')

vanishes at the lower limit when to has a positive imaginary part. Trans

forming Poisson's equation

k20(k, to) =4ji ) e/f^k, "v, to)d3v (24)

substituting Equation (22) and solving for $, one finds (restoring the

particle designation) that:

0(k, to) = -J-

4jte.2 p
«2- / S.d3v

k^Dc J J
J

1 - D(k, to)

where S. is the last term on the right-hand side of Equation (22),

r" icup.2
JD(k, to) =

k^c
j j

Of

+ k
z Ov

±00

d3v
" of /?
kl SaT / G^0' 0' ^ cos 0' d0'

±co

G(0, 0')

4.
I. B. Bernstein, Phys. Rev. 109, 10 (1958).

(25)

(26:
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4jtn .e
to 2 = 2J_ (27)
PJ m.

is the plasma frequency of species j, and where n , the equilibrium

density per unit volume, was added as a separate factor so that f is

normalized to unity.

The solution to the initial value problem is found by inversion of

the Laplace and Fourier transforms, viz.,

+co tier

*£ t) =f ^ f -^L ei(?-x--t) ^ ^ (28)
-co +ia

where the above integral is to be carried out in the complex to plane above

—* 5all singularities of <J>(k, to). Following the arguments of Landau, one

assumes that g.(k, v) are entire functions of the complex variable v. Upon
J

invoking analytic continuation of the integrals in Equation (25), one can

show for sufficiently well-behaved zero-order distribution functions that

Equation (25) represents the ratio of two entire functions and that the

only singularities of $(k, to) are the zeros of the denominator of Equation

(25). The time dependence of $(x, t) is completely determined by these

zeros.

The dispersion relation, i.e., the relation connecting cd and k,

is then written

D(k, to) = 1 , (29)

the solution of which in general determines the behavior of the plasma.

For example, if there exist solutions to Equation (29) for which the

imaginary part of the frequency, to, has a positive real value, then plasma

5L. D. Landau, J. Phys. (U.S.S.R.) 10, 25 (1946).
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oscillations exist whose amplitudes increase exponentially with time. It

is this growth from arbitrarily small disturbances which is termed an

instability.

Using Equation (26) in (29) and the identity
co

(30)

where

ix sin(0 - 6) \ i s in(0 - 0)
; = / J (,x;e

n

n=-co

where J^ is the Bessel function of order n, one can reduce the dispersion

relation to the following form

00

V 2jtto 2 V"1 p ?? 03 . of . nJ 2(k.v./co .)
—' k2 ^ J z J -1- -L I v. dv, fi ,
j n=-oo -co 0 J

of . J (k.v./to .)
+ k , °'] n L L c-1

z ov £1
z zj

1

(31)

ft.=-to + kv-nto.. (32)
zj z z cj v> '

In order to compute the effect of finite temperature distribution functions,

the integrals in Equation (31) are evaluated using the following bi-Maxwel-

lian equilibrium distribution:*

'Oj n3/2 a, 2 a
1 J zj

-vl2/ali2 " vz2/az-2e ij " Z- (33)

where a 2=2kT± /m and «z.2 =2KTz./m- measure the spread in velocities

perpendicular and parallel to the field.

G. N. Watson, Theory of Bessel Functions (Cambridge University
Press, Cambridge, I945), p. 14.

Harris used a Maxwellian in the

if'*l-««««l*9*«»S»*H4J*«*SS*B.-'
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The solution of Equation (31) with the bi-Maxwellian is straight

forward and gives:

co

1=/{^J L C|n| 1V*
z zjy _j u n=-co

where

-\.

Ci i = e J 11 i(\.) , Ii I(A..) = Imaginary Bessel function, (35)
|n| |n|v j7 |nr j'

k2a, .2
X. =-i-ii , (36)
J 2to 2

cj

and where
CO £

Z(E)--±r f ^ (37)
Jit d u - C
^ -CO

is the plasma dispersion function of Fried and Conte. Equation (37) is

defined by Im£ > 0 and as the analyticic continuation of this for

Imt; < 0.

In general the solution of Equation (34) must be obtained numeri

cally. In Chapter IV simplifying approximations will be made and the

solution discussed.

III. THE HARRIS MODEL LIMITED IN z

Suppose instead of an infinite plasma, one considered a plasma of

finite extent. Assume a model in which there exists a plasma slab, bounded

V »<
xjo - nto . \

, k a . J
z ZJ

n

ffi
2 <o - nto

cj

z ZJ7

k a .
1 z ZJ '

perpendicular direction and Lorentzian in z, later letting the temperature
in the z direction go to zero.

^B. D. Fried and S. D. Conte, The Plasma Dispersion Function
(Academic Press, New York, I961), p. 1; and D. Pines and J. R. Schrieffer,
Phys. Rev. 124, 1387 (1961).
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at z = ±a, and infinite in the x and y directions. Furthermore, suppose

the particles have a temperature spread in the perpendicular direction and

are cold* in the z direction, or:

_, n (z) -v.2/a. .2
fo1(v, z) =-2--i6(v )e L ^ (38)

where the exact dependence of the density on position has been left

Q

arbitrary. Earlier treatments of a similar finite geometry problem con

sidered only infinitely sharp plasma-vacuum density distribution. In other

words, inside the plasma the unperturbed density was given as a constant

and outside, the density was exactly zero.

The form of the distribution function suggests the particles'

behavior to be described by the Vlasov equation in the perpendicular

direction and by the hydrodynamic equations in the z-direction. The

velocity dependence in the z-direction can be eliminated by taking moments

of the Vlasov equation with respect to v . Letting B = 0 as a further
z & o

simplification, integrating Equation (l) over dv , one has (dropping the

label j):

CO CO CO

\- / fdv +V • / v fdv +- E • / \7 fdv =0 . (39)
dt j z J z m J v z v ^'

-co -co -co

Introducing the notations of perpendicular and parallel gradient operators:

V=vi +S|A where v± =|a+ aa {kQ)

That is, the particles have no velocity spread in the z-direction.
Q

G. K. Soper, Master's thesis, University of Tennessee, I962.
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and similar equations for the velocity gradients, Equation (39) is:

CO

dF -> „ „ dII- + v. •V, F + v- / v fdv + -f. •V ,F
dt 1 1 dz J z z m 1 vl

-CO

CO

e tp f of ,+ — E / -r— dv = 0
m z J dv z

z
^0

where
CO

F(x, v±, t)sj f(x, v, t)dvz
-CO

Defining
CO

(41)

(42)

H(x, v±, t) =J vzf(x, v, t)dvz (43)
-co

and linearizing, one finds that:

oFn -> OH. e -> ,, ..
X-i + v, • V.F. t ^-i- + - E . • V ,F = 0 . (44)
dt 1 1 1 oz m li vl o

The next step in this hierarchy is to multiply the Vlasov equation

by v and integrate over dv ,
z z

CO 00 '30

$- / v fdv + / v • Vfv dv + - / v E • V fdv = 0
dtjzzj zzmjz vz

-co -co -co

and upon integrating the last term by parts, the above equation gives:

CO

I? +v. • V.H + / v 2 1^- dv +- E. • V ,H - - EF=0 . (45)
dt 1 1 Jzdv zml vl mz

z
-co

It is easy to see that following this procedure, one could get as many

moment equations as wished, each coupled to the other. One would have,

say, N coupled equations with N t 1 unknowns. To terminate this hierarchy,

one rewrites Equation (45) to read:
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CO CO

-CO -CO

CO

- :r- / <^V ><V > fdv t-E, -V,H--EF = 0
dz J \ zx ^ 7f z ml vl m z

-co

where
'30

/ v fdv
J z z
-co H

(46)

<V^, t)>^ =h. (,?)

fdv
z

-CO

Defining a scalar pressure

CO

P=m/ (vz -<V^>)2fdvz
-co

9
in analogy with the general pressure tensor, the middle three terms of

Equation (46) become

1 d
m

or from Equation (47)

|_ (Ip +H/V >)....
dz vm \ z/ '

Thus Equation (46) is reduced to

I? +v. •V,H +I (i P+H/V> )+-E. •V ,H --EF. (48)
dt 1 1 dz vm \ z/ ' m 1 vl m z v '

The above equation is linearized by writing

co oo co

m" Po =/ Vz£fod\ "2J \ <Vz> V\ +/<V>2 fodVz M
-00 -CO -00

9^1. B. Bernstein and S. K. Trehan, Nuclear Fusion 1, 1 (i960); and
L. Spitzer, Physics of Fully Ionized Gases,
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which is zero since f is proportional to 5(v ), and since

CO

H = / vf dv =0 ,
o J z o z

-CO

therefore

dH _> 1 ^Pn e
•v-i + v. • V.H. + - 3-i - - E F = 0 . (50)
dt 1 1 1 m dz m lz o

As was stated earlier, the particles are assumed to obey the hydro-

dynamic equations in the z-direction. From the adiabatic relation and the

linearized equations of hydromagnetics, one finds:

P1 ~ PQV •f (51)

where i denotes the displacement of an element of the fluid. Since

P =0, then P, ~ 0 and one finds that
o ' x

dH, -> e , .
^ + v, • V.H, = - Ex F (52)
dt 1 1 x m 1z o

thus terminating the hierarchy. The solution of Equation (52) when sub

stituted into Equation (44) will determine the source function for Maxwell's

equations.

It shall now be assumed that all first order quantities have their

space and time dependence given by a factor:

ik. -x. -itot

~g(z) e (53)

(interscience, New York, I962), p. 24.

S. Chandrasekhar, Plasma
Press, Chicago, i960), pp. 99-102

S. Chandrasekhar, Plasma Physics (The University of Chicago
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The dispersion relation obtained in this way is the same as is obtained

from the complete initial value treatment following Landau's prescription

for evaluating the singular integrals. A growing wave corresponds to a

solution of the dispersion relation for which Imto > 0.

From Equations (52) and (53) one finds:

k

and similarly for Equation (44)

dH.. e -» , ,.
i^F.+r-ii-E. •V , F = 0 . (56)

k -1 dz m 11 vl o

Uslng d$/v , ,

and substituting Equation (54) into Equation (56), one finds (restoring

the j label again) that:

ei d d<£ ei ->
F1 . = *- z— (F . ^—) + —*- Ok • V, F . (58)

x3 m.fl 2 oz oj dz m.o lv oj

where

and therefore

F .(v., v , z) = n .(z) F .(v., v ) (59)
oj 1; z' oj oj 1' z'

kne.2
>2- n .(z) = to .2(z) . (60)

m. oj pj
J

From Poisson's equation

or upon substituting Equations (57) and (58), dropping bars on



F .(v., v ):
oj^ 1' z'

—o + k.^
dz2 1

+ to .2(z)<5k,
PO 1
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00 ti d/„s Z( \&® \ ^2F . —\ to . (z)—-)d v
oj dz\ pj 'dz 7

a
-co

00 V ,F .d2v,
vl oj 1

a.

-CO
k

1

(61)

Integrating the first term on the right hand side by parts and simplifying,

aves:

k *
dz2 -L k.2 ^ 1

k,

& V ,F .d2v.
± - - JJ \

J -°o

jLfo, .2(Z)|i)-03 ,2k23
dz\ pj 'dz/ pj 1

which can be written:

<i-»(*)>£ ke<D (1 - G(z)) = 0 (62)

where

or

then

Since

CO

-co

V iF -d vi
Vl °" l 03 .2 (Z)

2 \ "i

#. to 2V ,F t to 2V ,F .
// pe vl oe pi vl oi -,2.

d^v
1

.00
k

o mp o032=— t02=B6D^
pi m- pe pe

00

* 2(s)
G =_ _£ "2" Vkl

V ,F + SV ,F .
vl oe vl 01 ,p

JT d vl
kk

1 -co

and letting m. = co (5 -> 0)

(63)

(64)
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to 2(z) / np V F d2v.\

^ -^~ (h •If -V-H^S) • «*>
1 -CO

So Equation (62) can be written

s- [^-oWJi] - */(1 - cU)) *=0.
Let to 2 (z)

0 < A(z) = -E^ < 1 (66)
po

and assume that to (z) has its maximum at z = 0 and falls monotonicallv
pe J

to zero at z = ± co. Further assume that

k± = k±x (67)

and use

CO ^ 1 "p

r 1 -vi /°iF = / f dv =-— e X X (68)
-co 1

to finally show that Equation (62) can be written as:

- k 2 (l - r)A(x)) $ = 0 (69)
dz

where

(X -,*<,» ff

k± a± \a±

where Z(£) is the Fried-Conte plasma dispersion function as defined by

Equation (37)- The prime means differentiation with respect to the

argument.

It will be shown that Equation (69) has no solutions that are free

of singularities. The proof follows the work of Frieman et al., whose

E. A. Frieman et al., Phys. Fluids 5_, 196 (1962).



43

paper on the streaming instabilities of a finite beam passing through a

cold plasma is based on an equation very similar to Equation (6^) above.

Assume that 0 and $' are finite everywhere. Multiply Equation (69) by

0* and integrate by parts to get:

00

'|d<l>|2 n 2 |j2
azu - tiau;; \\

-co

dz(i-^(Z))M2£r + v i*r) =o (71)

where the surface terms vanish since one assumes regularity at z = ±00.

Taking the imaginary part of Equation (71) shows that f] must be real,

and since the sign of the integral must change somewhere, then i\ must be

greater than unity. So if the solutions to Equation (69) are to be regular

everywhere, then

•n real, T] > 1 . (72)

Therefore, somewhere in the plasma, at z = z , say, the coefficient

1 - t]A(z) of the second derivative of Equation (69) will vanish, and at

12
that point this differential equation will have a regular singular point.

Let

so that Equation (69) can be written as a Riccati equation:

^ (1 -r!A(z)H =(1 -^A(z))(kl2 -r2) (74)

and since 0 is regular at infinity, then clearly as z -> +00 , \|/ -> -k. < 0;

as z -> -co, f -> +k. > 0. Since Equation (69) is invariant under reflec

tion in z, §(-z) is also a solution as is any linear combination of solu

tions. Then it is clear that in constructing solutions to Equation (69),

12
E. D. Rainville, Elementary Differential Equations (The Macmillan

New York, 2nd ed., I958), pp. 276-7.
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one can choose even or odd solutions. From Equation (73) it is seen that

\|/ must be an odd function of z. Considering then the behavior for z > 0,

it is seen from the asymptotic behavior of t that the only way \|/(z) can

become positive is if it vanishes at some z±. Note that even if \[f(z) can

change sign by becoming infinite at z = z2, then <t>(z2) = 0. Since $(z)
-kiz

~ e as z -> 00, there must be a finite z± > z2 at which O'(zi) = 0 and

hence \|/(zi) = 0. But at any zi for which \|/ vanishes one has from Equation

(T4):
(1 -r1A(z1)) i|r'(Zl) = (1 -T]A(Zl)) k±2 (75)

If zi / zQ, then t'(zi) = k 2 > 0 and hence \j/(z) cannot decrease through

zero. Since i|r < 0 at infinity, it must be negative for all z > zQ. On

the other hand, at z = zQ / 0 or 00 and if $(z0) / 00, then from Equation

(69) $'(zQ) = 0 and from Equation (74)

t(z0) = 0 (76)

unless o(z ) = 0. But if $ = 0 at z = zQ, then since 0' = 0 here also,

there must exist a z,, > zQ for which <±>'(z3) = 0 and §(z3) / 0. This

implies that i|r(z3) = 0. But we have shown above that \|r < 0 for z > z .

Thus S>(zQ) cannot vanish. If for any zQ < z < 00, \|r'(z) can become

negative, then since 1 - rjA(z) > 0 for z > zQ, one can infer from Equation

(74) that i]/2 > k 2 that is

Itl > k± . (77)

From the parity arguments it has been shown $ can be chosen to be either

even or odd. As one moves infinitesimally away from the origin toward

positive z, 0 and $' have the same sign which implies \|/ > 0 for z = 0 .

It is seen that if there exists a z., 0 < z < z such that t(Z4.) = 0
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then V(z4) = k 2 > 0. Hence \|/ > 0 for 0 < z < zQ. The coefficient

1 - T]A(z) is less than zero for 0 < z < z and if \j/'(z) can become nega

tive, then again from Equation (74) it is inferred that |\|/| > k. . Thus

it is concluded that about z = z , \[f is bounded above and below by the

value k. . Hence if $ is to be regular at z = +°o, then it cannot be

regular at z = zQ. Similar arguments hold for z = -zQ.*

It has been seen above that the electric potential has a singular-

13
ity which depends upon r\. It was shown that the rj 's formed a continuum

and that by constructing wave-packet solutions the singular character of

the solution was "smeared out" thus enabling them to derive a connection

formula for the solution across the singularity in the beam. This connec

tion formula turns out to be for the slab geometry simply:

(l - "nA) —- is continuous across z = z„ (78)
s ' ' dz °

which is just -^
D = IC„E is continuous — (79)n -33 n ^ i>'

familiar from electrostatics, where

K33 = 1 - tjA . (80)

However, one does not have $ continuous across the singularity.

In the special case of a sharp boundary between plasma and vacuum,

15
Frieman et al. argue that one or more of the original assumptions, such

The author acknowledges helpful discussions with Dr. R. L. Becker
and Dr. G. E. Guest.

13
I_bicL

A. B Kitsenko and K. N. Stepanov, J. Tech. Phys. 6, 127 (l96l).
This reference gives the components of the dielectric tensor in terms of

integrals over the equilibrium distribution function.

Frieman et al., loc. cit.
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as zero parallel temperature, small fields, etc., breaks down within the

slab edge, so that $ is no longer singular and one does have the boundary

condition:

$ is continuous . (8l)

With this additional boundary condition the eigenfrequencies are effec-

16
tively discrete. The sharp edge case will be used throughout this dis

sertation, again referring the reader to the original paper of Frieman et

al. for details of the "weak-beam" situation. Appendix B gives a brief

outline of the above considerations using the initial value treatment.

Letting to be constant inside the slab and drop rapidly to zero
pe

within a narrow edge at z = ±z , Equation (69) then becomes:

(1 -r1)(^2| -k2$) =0 for Izl <a. (82)
dz2 -1-

Outside the plasma:

d2$

dz
- k,2$ = 0 . (83)2 "1

The solutions of the above equations are:

-k. z

= a1e

-k. z k. z

= a e + a e
2 3

z < a (84)

U| < a (85)

k. z

= a e z < -a . (86)
4

One also recovers the infinite plasma solution

T\ = 1 (87)

Equations (79) an^ (8l) constitute the plasma-vacuum or free
boundary conditions as considered by W. P. Allis, S. J. Buchsbaum, and
A. Bers, Waves in Anisotropic Plasma (M.I.T. Press, Cambridge, Mass.,
1963), pp. 132-ff.
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from Equation (82). Equation (87) indicates an arbitrary choise of 3>(z)

inside the plasma slab. Thus, since the connection formula (78) can be

written

d£ I d$ d$
dz Ia-e dz |a+e dz a-e

and since t\ = 1, then

^1 = 0
dz I a+e '

that is, just outside the plasma and similarly for z = -a. Then since

0 = 0 at z = ±00, <D(z) must be zero everywhere outside the plasma slab.

This also indicates that the potential in the interior must vanish at

z = ±a since from Equation (8l) the potential must be continuous across

the interface. Since the solutions vanish at z = ±a, it is sufficient to

nri
take k = —-, n = 0, ±1, ±2,... as the z component of the wave vector.*

z 2a

Using Equations (84), (85), and (86) with Equations (79), (80), and

(8l), gives a set of four homogeneous, algebraic equations with constant

coefficients. For a non-trivial solution to exist the determinant of the

coefficients must vanish, giving:

^= ^Ta • (88)
lie -1

One should notice that Equations (87) and (88) satisfy the original condi

tions that T] must be real and greater than or equal to unity. One can

find the dependence of to on k. , a, to 2, and <x from Equations (88) and

(70).

The effect of the boundary conditions can be seen from the limiting

values of Equation (88). In the limit

The author is grateful to Dr. T. K. Fowler for pointing out this

fact.
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k^a -> co (89)
then

T) -> 2 (90)

indicating that for a bounded plasma the boundary effects have a role even

in the case of infinite separation. In the limit

k±a -» 0 (91)

then for the positive root of Equation (88)

•n -» 1 (92)

and for the negative root
T] -» 00 . (93)

In general, using Equation (70) and the expansion formulas found in Fried

and Conte, the dispersion relation can be solved for any value of k.a.

However, from Equation (93) one infers for the negative root of

Equation (88) that the plasma is always stable. One can conclude that

the boundary effects although present do not limit the behavior of the

plasma in any major respect in comparison with the infinite plasma be-

17havior. This is in general agreement with the paper of Frieman et al.

who conclude that the worst instabilities of a finite beam are essentially

the same as those for an infinite beam.

If one includes a static magnetic field in the z-direction, the

solution of the Vlasov equations, although more involved, goes through as

before, and one finally finds the differential equation for the transformed

electric potential $(k. , oo, z) to be:*

_d_
dz d-WO)g k±2(l -|A(z))<D =0 (94)

17
'Frieman et al., loc. cit.

The reader is referred to Appendix C for the details of the deriva

tion of Equation (94).
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where co _^-
I (\.)e J

and

t^) 03 2 > -iL-J: ^^ (95)
• ™ ^ (03 - nto .f2

- . )
j n=-oo cj

CO _^--
•to 2 r"1 nl (\.)e JP°J ) -iL_J , (96)
^i'^ci ~~J (to - nto . )j J ^ n=-oo v cj '

k, 2<x 2
X. = -i-ii- . (97)

3

cj
J 203 2

Multiplying by $*, assuming regularity at z = 00, integrating by parts,

and taking the imaginary part, gives:

Im j<k 2>£ +<k2> i }= 0 (98)
1

where

\"z / ,/ "" 'dz<o-/^iii^ <»>
and

^kj2^ / dz k±2 |$|2A . (100)

Equation (98) is very similar to the infinite dispersion relation

-> A 18
for B = BQz:

K 2 kl 2 /
1=(f) s +(^} l • (101)

Equation (94) is singular when the coefficient, 1 - £A(z), of the second

derivative vanishes for some z = +zQ. Since A < 1, then £ must be greater

than or equal to unity for this condition to be satisfied. However, unlike

Equation (69) there are no restrictive conditions on £ other than that

E. G. Harris, "Unstable Plasma Oscillations in a Magnetic
Field," ORNL-2728 (June 5, 1959)-
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given by Equation (98). Thus one has for the sharp-edge interface:

d2<i> o 1 1
- m^ $ = 0 z < a

dz'

and

2i,
k.^ $ = 0 |z| > a (103)dz2 ^

where

m2^ k2 (f^4) • (104)
1 vl b

For an infinite plasma the potential varies as

ik z

$ ~ e (105)

and Equation (102) becomes:

(_kz2 -m2)$ = 0 (106)

or

m2 = -k 2 . (107)
z \ 1 /

Using Equation (104), (95), and (96), Equation (107) can be written

CO

Y(03) =1=) > to 2 e"^ I (?,.)( (^f J-^ rA-i A_j poj n ^ j ' \\ v k ' X.to . (to - nto J
j n=-°o J CJ CJ

k 2 ^ ^ (108)
+ (-)k ' (03 _ na3cj )2

which is just Equation (49) of Harris's " original work.

In order to make the solution of the non-zero magnetic field case

a little easier, assume only a one plasma-vacuum interface at z =0.

Also first assume that m2 < 0 and let

m2 = -k 2 . (109)

19Ibid.
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Then the solution to Equation (102) is

ik z -ik z
z z<J> = a-, e + a„ e

and the solution to Equation (103) is

$ = a3 e
-k. z

(no)

(111)

Putting Equations (lio) and (ill) into the boundary conditions given by

Equations (79) and (8l), where

K33 = 1 " ^A

gives the following conditions:

and

ci- "T &p — cL,-,

ik

33 ="k^ (1 "')(ai "a£:
Eliminating a3 and solving for a1/a2 gives:

ik

1 - r-^ (1 - 0
1

1 +

ik

1

(1 - 0

(112)

(113)

(114)

(115)

This case corresponds to waves approaching the boundary and being per

fectly reflected.* To solve the problem one must choose to arbitrarily

and calculate k from:
z

.k 2 = k 2 (L^Atel
z £i Ki^lW,

If one does not make the approximation of a single interface, but

considers the original the original slab geometry, the solution of the

(116)

Notice |a |/)a2| --1, as would be expected since longitudinal
waves cannot propagate in the vacuum region.
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problem results in the evaluation of the familiar secular determinant

which finally reduces to:

2(1 - Ok k,
sin 2k a = — z , (117)

z k/ +(1 - 02\2

where as before m2 = -k 2. Using Equation (109), Equation (104) can be

written:

00

Y(oo, k)=1=V to 2Y e"^ 1 (v )/-A.
^ POJ ^ n j Ikz2 +k,2 X.03 (03 -nto )
j n=-co z j. j cj cj

kz2 l l (118)
k 2 + k,2 (03 - nto .Y
z J-- cj

Given a value of the slab width, a, one could in principle solve Equations

(117) and (ll8) simultaneously for 03 and k . Obviously, however, this

would require solving a very involved trancendental equation. Instead,

choose k arbitrarily, then determine to from the solution of Equation (ll8).

Now k , 03 and hence £ are known. Finally, use Equation (117) to find a,

the length of the machine for which the calculation applies. As a simple

example let

kz » k± . (119)

Then Equation (ll8) is almost independent of k , and its solution deter

mines to. From Equation (117)

2(1 - Ok k 2k.
sin 2k a = — « = «• 0

Z k±2 + (1 -o\2 <X "^kz

if 1 - £ does not become zero for the above value of to.

Thus

2k a = nit
z

or
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Now assume m2 > 0 and go back to the single interface approximation.

From the solution of the boundary value problem one finds:

kj_
m = j =- . (l2l)

Using Equation (l2l) in Equation (104) gives:
co

Y(03) =l=) 03 2 ) e J I (\.){
U pOJ ^ n J I 1 - (1 - O2 ("> - no3 J2j n=-co cj'

MM2 ^ (122)(1 - O n

1 _ (1 _ O2 \.(a .(<" - nto .)
v j cjv cj'

If one examines Y(to) in the neighborhood of 03 » to ~ ito .} only the term

with n = £ in the above sum is important. From Equation (95) one sees

that:

£ -h>co as '03 -> ito^. (123)

and

(1 " »" -! <!*)
1 - (1 - t;)2

and

11 . .
» - — . (125)

1 - (1 - 02 ?2

Therefore, Equation (122) can be reduced to the following approximate

expression:
4&2 to 2C

1 = Y(to) « Ei_i (126)
x. (to2 - rto .2)
iv ci '

which indicates that 032 is always positive and hence 03 has no imaginary

part which means stability.
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For the case

m = 0 (127)
Of)

Equation (104) turns out to be the result Harris finds for the infinite

21
plasma case with k =0. It was shown that there was neither instability

nor Landau damping for waves propagating perpendicular to the magnetic

field.

Boundary value problems similar to the Harris bounded model have

22
been studied by Allis, Buchsbaum, and Bers who devote the second part of

their book to the analysis of plasma waveguides and associated boundary-

value problems.

IV. THE BURT-HARRIS MODEL

This problem is based on the finite cylindrical shell of cold

23
plasma model of Burt and Harris in which the initial ion density moves

in concentric Larmor orbits with velocities:

V . = rto .$- (128)
01 ci v '

and where the electrons have zero velocity:

V = 0 . (129)oe \ ; 1

This model would be applicable to a thermonuclear device with very weak

mirrors in which v . ~ 0. The equations governing the particles for the
ZJ

Ibid.

21
I. B. Bernstein, loc. cit.

22
Allis, Buchsbaum, and Bers, loc. cit.

23
P. Burt, dissertation, University of Tennessee, I96I; and P.

Burt and E. G. Harris, Phys. Fluids 4, l4l2 (1961).
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cold plasma are

and

on.

•v-J- +V • (n.v. )= 0 (130)
Ot 3 3

which is the equation of continuity and

ov, _» .e, -> ,e, ^ x^ , ,
^i + v. •Vv. = (-) E + (-) -J 131)
ot j j m . m . c

3 3

which is the equation of motion for the particles where the subscript j

represents the species of the plasma.

The equations are linearized just as before by assuming

E = Ex , (132)

B=-BQ£, (133)

n = n (r, z) + n (r, 0, z, t) , (134)
J oj 1 j

v. = V* .+ u.(r, 0, z, t) (135)
3 oj 3

where products of perturbation quantities will be neglected, and where

the r and z dependence of the equilibrium density has been left arbitrary.

Substituting Equations (132) through (l35) into Equation (l3l), gives (for

the ions:*

dut du'. . A e
t—— + <^ . -5-7- t 03 ,(u .0 _ u ,.r) = —
dt ci d0 civ ri 0i m.

00 .^i + to_, (u_.$ -u^fi) =— E. (136)
i

Assuming that all perturbation quantites vary as

/ x IO3t-ii0 (137)
~g(r,zj e

one can write Equation (136) as

The fact that dr/d0 = 0 and d0/d-0 = -r has been used in this
derivation.
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-> e *—» =->
u. = — a. • E
1 m. 1

i

where the tensor a. is defined by

ifi

2 n 2

03

CI

to

ci

0) .c - a * 03 .2 - ft 2
ci £ ci i

ifi.

to.2-a2 to.2-n2
CI i CI i

m

and where

where

and

n = to - Jku
£ ci

Similarly, for the electrons one gets:

u = a • E
e me

e

a =
e

ito to
ce

to 2 - to2 to 2 - to2
ce ce

to
ce

ioo

03 2 - tO2 03 2 - tO2
ce ce

eB.
03

ce mec

ito

>38)

(139)

(140)

(141)

(143)

Using Equation (137) in (130) and substituting the perturbed density

into Poisson's equation which is:

V • E, = 4ite (nn . - n ) ,
x li le' '

(144)
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to

-Ei.
"(r, z) 03 2(r, z)

££. • cr
e

1 +
iO,

a. +
i ''03

->

E = 0 (145)

If one neglects the perturbed part of the magnetic field so that

F^ = -V$ , (l46)
then

V t. V $ = 0 (147)

is the differential equation for the electric potential of the Burt-Harris

plasma, with

^ -2(r, z)
<r=T+^

03

<—* p.
a. t —^ .
i ito

(r, z)
«—»

a
e

(148)
in

i

defined as the dielectric tensor of the plasma.

Dividing Equation (l47) into its perpendicular and parallel parts,

results in:

x£ oKlg o\ '[Kn V.O or + dT^K33^ = °- ^

If one considers only the region of to for which

to . « 03 ~ £'S> . £ to « to
cepi ci pe

then the dielectric tensor becomes:

2
to

1 - -EL.

£ ci

K

to to

ci pi

in£^/ ~"ci2)

md Equation (l49) reads:

to to

C1 P1

"W " "ci2)

to

pi

n 2 - co .2
£ ci

03 2 03 2
_£l_ _ pe

1 -

toc

(150)



58

v1 • ( 1
03

-EL. Vj$ +
•JO

Cl

doo 2
P1

fi„ - '03
Cl

r a/n/-^, ar

CO 2
P1

03 2 \ OO

»/ 032 ' dz

Concentrating on the root near to ~ ioo one has
ex

and if

then

and if

then assume

to

Pi

n 2 - to .2
i ci

to

to "-

~ 1 t 1

to

Cl

^•2(z) ,pi pi

dto

or

= 0

<Sy = ^,2(r) ,
pi pi

1 dto .2
£L_ « 1

fixo . dr
£ ci

so that the differential equation becomes

(1 - T)A(r, z)) |f2, . a
1 oz 0 ,

(151)

(152)

where the A(r, z) is defined so that it is less than or equal to unity

but greater than zero as r and z vary, and where

is not a function of r or z.

to 2 to 2
oe

fi 2 032
(153)



Suppose that the plasma is infinite in the r direction and that

A = A(z) (154)

then assuming the potential to be given by:

0=e1^ £~U0J£ (k±r)F(z) (155)

so that the r and 0 dependence of $(r, 0, z) transform like:

'30 CO

/ J (k.r) 4- (r 1^.) dr - i2 / -J (k.r) $dr
J m 1 or or J rml

0 0

co '00

= -k2 / J (k.r)<I>(r)rdr + (m2 - £z) / -J (k.r)$(r)dr
1 J m 1 K ' J r irr 1

-k 2 0 when m = i

and Equation (152) becomes

_d_
dz

(l - T]A) -r-
dz

k±2F =0 . (156)

Applying the same analysis as in the Harris bounded model, one can

show that T] must be real and

n > 1 . (157)

Equation (156) is very similar to Equation (69) of Section III and one can

prove similarly that if the potential is to be regular at z = ±00, then the

solutions must be singular somehwere in the plasma edge. However, assuming

a sharp boundary so that the eigenfrequencies are discrete, one can write

the equations for the potential as

V • (K • V$) = 0 for |z| < a (158)
and

V2$ =0 for |z| < a , (159)

and taking A = 1 inside the plasma and falling rapidly to zero at z = ±a,

then the boundary conditions can be written as
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(l - n) —I = —I (160)
dz z = ±a +e dz z=±a±e

and

4> I . _ = 0 , . . (l6l)
z =±a +e z = ±a ±e

Equation (158) becomes, using Equation (154),

whose solution is

F ~ sin k z
z

where P

v2 = JSkl
Z TJ - 1 >

and for Equation (159) "the equation is:

and whose solution is

<3 F n 2Tn I I v.—5- = k, F z > a
dz2 1

-k. z

F ~ e for z > a

:i62)

and .
k. z

F ~ e for z < -a .

Substituting these forms into the boundary conditions, gives a secular

determinant, the solution of which is:

tan 2k a = ——— (163)
z T 2

1 - K

and where

kS^ . (164)
z

Using the tangent double-angle formula, the dispersion relation (163) can

be written:

2 tan k a 2k

(165)
2 2

1 - tan k a 1 - k
z
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which means that

tan k a = I 1 [ . (l66)

It can be shown that the only solutions to the above equation are those

24 ^
for real k . This is reasonable since it has been shown that r\ > 1

z

and real, and k and r\ are related through Equation (162). One can plot

Equation (166) to find the solutions as seen in Figure 1. In principle,

the roots of Equation (166) can be found and the dispersion relation

solved. Particularly for large k a the solutions to Equation (163) can be

written:

k« (n +|) it (167)
and

k. S nrt . (168)

Equation (167) and (l68) are very similar to the odd and even modes derived

25by Dawson and Oberman for a similar geometry but where the particles are

constrained to move along the field line. However, in general the roots

must be found numerically, and calling these roots k , the dispersion

relation becomes:

•n = 1 + k (169)
n n

T) being given by Equation (153).

Now if one assumes z to be the infinite coordinate, the differential

equation is written (see Equation (152)):

V 2$ - k 2(l - T]A(r)) 0 = 0 (170)
J- Zi

24
Soper, loc. cit.

25J. Dawson and C. Oberman, Phys. Fluids 2, 103 (1959)-
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Figure 1. Graphical representation of the Burt-Harris dispersion relation.
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ikzz
where the z dependence has been given by a factor e . One can see

that Equation (170) is singular nowhere, the eigenfrequencies are discrete,

and in principle Equation (170) can be solved for any r dependence on A.

However, for simplicity only the sharp boundary case is considered here.

With A = 1 for r < R, R being the radius of the plasma cylinder, the

differential equation is:

whose solution is:

0 = a1J£ (k±r) + &2Y£ (k±r)

with

k±2 = kz2 (r, - 1) . (171)

But a£ = 0 since Y„(o) = to, so

0(r) = b.23z (k±r) r < R . (172)

Outside where A = 0 the differential equation becomes

1 d / d$s i2 , n 2.
- 7— (r t~) - -75 <£ - k ^ = 0
r dr df r z

whose solution is

$(r) = al. (k r) + a K„ (k r)
^ ' 3 £ K z ' 4iVzy

But a3 = 0 since I.(00) = co, and so one has for r > R

$(r) = a4K^ (kzr) .

Applying the familiar boundary conditions and solving the resulting

secular determinant gives,

kl(l "^ jTk-RT = kzKg(kR) (174)
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where the prime means differentiation with respect to the argument. This

equation determines a discrete set of k. for a given k and this used in
1 z

Equation (171)

*12r, = 1 + -±- (175)
k2

z

gives discrete t\. Equation (175) is essentially Equation (120) of

26Frieman et al., with k,/k of Equation (171) above replacing their |2.

These authors find, as mentioned before, that the worst instabilities of

a finite beam are essentially the same as those of an infinite beam.

V. THE SHIMA MODEL*

For the infinite plasma with bi-Maxwellian distribution described

in Section II, the many ion orbits overlap. There was no average velocity

and no average current. However, for machines such as the DCX's and OGRA

in which the plasma is of finite size--about one or two ion orbits across--

the infinite plasma approximation is no longer justified. Although there

is a uniform field, there will be a strong diamagnetic current because of

27
the finite size of the plasma. Shima has shown that this situation can

be approximated by another exactly solvable problem, again an infinite

plasma, but one in which the bi-Maxwellian ion distribution rotates as a

whole at the ion-cyclotron frequency. Also, the ions are allowed to have

different temperatures parallel and perpendicular to the external magnetic

field as seen in the reference frame rotating with the ions.

26
Frieman et al., loc. cit.

This discussion is based on remarks by T. K. Fowler and Y. Shima.

27
Y. Shima, Thermonuclear Div. Semiann.' Progr. Rept. Oct. 31,

1962, ORWL-3392, P.~1dT
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So for Shima's case the equilibrium distribution function for the

electrons is of the form f (v., v ) and for the ions is of the form
oe 1' z

f .(v.', v ) where v ' is the velocity magnitude in the x-y plane of

reference rotating at the ion-cyclotron frequency and in the same sense

as the ions. (See Figure 2.) The rotating distribution function

f .(v.', v ), except for boundary effects, describes a spatially uniform

beam with finite temperature in a uniform field. The Burt-Harris problem

is a special case of Shima's model in that Burt and Harris make the approx

imation of zero temperature in the rotating frame of reference.

Analyzing the problem in cylindrical coordinates in order to couple

the rotating ions to the fixed electrons, Shima found in the extreme* case

of ions rotating at the ion-cyclotron frequency, that the dispersion rela

tion is just exactly as that for the infinite plasma model except that the

ion terms of the species sum have been Doppler shifted by ito ., where £ is

an integer denoting the azimuthal mode number. Thus for numerical work

one need only add the term ito ./k a . to the argument of the Fried-Conte
ci' z zi a

plasma dispersion function in the ion terms in order to take over the

infinite plasma formalism.

The word extreme is used since in most machines the frequency of
rotation of the ions is somewhat less than 03 ..

ci
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Figure 2. Coordinate system for the Shima model.
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CHAPTER IV

THE NUMERICAL SOLUTION OF THE INFINITE

PLASMA DISPERSION RELATION

The solution of the infinite plasma dispersion relation for ions

and electrons with bi-Maxwellian velocity distributions has been investi

gated previously in an attempt to extend Harris's original work. The

work included in this chapter has been done with parameters and simpli

fying assumptions which approximate the thermonuclear machines mentioned

in Chapter II. Comparison with previous results show qualitatively

similar results. However, the numerical solution of the Shima Model

indicates that one of the anisotropic modes of the infinite problem inter

acts strongly with the diamagnetic current and becomes essentially the

2
instability found by Burt and Harris.

The numerical work was done with the aid of the Control Data

Corporation 1604-A computer system. The numerical codes were written in

Fortran 62 language and the total computer time for each run was usually

less than three minutes. A typical code is included at the end of this

chapter.

A. V. Timofeev, Soviet Physics JETP 12, 28l (1961); Yu. N.
Dnestrovsky, D. P. Kostomarov, and V. I. Pistunovich, Nuclear Fusion 3,
30 (1963); Y. Ozawa, I. Kaji, and M. Kito, J. Nucl. Energy, Pt. C 4,
27I (1962); and Laurence S. Hall and W. Heckrotte, "Stability of Longi
tudinal Oscillations in a Uniform Magnetized Plasma with Anisotropic
Velocity Distribution," UCRL-7627 (December 9, 1963).

2P. Burt and E. G. Harris, Phys. Fluids 4, l4l2 (1961); and E. G.
Harris, "The Effect of Finite Ion and Electron Temperatures on the Ion-
Cyclotron Resonance Instability," CLM-R32 (October, I963).



I. REDUCTION OF THE DISPERSION RELATION

The dispersion relation to be solved was derived in Equation (34)

of Chapter III:

CO ^

' ^ • \2 V I' A \2 //x> - nto \

•CXT n <
-to - n03

w T) c, i (—W £J.) . cd
k a J Lj n Ik/ v k a . y \ k J / to . x V k a .
~ z zjy ' ' l

n=-co

^ \ ' v z ZJ

j\k a Jv z Zj'

- Z ZJ '

(1)

where the quantities above have been defined by Equations (34) through

(36) of Chapter III. Performing the sum over the species of the plasma

and writing the dispersion relation in dimenslonless form, the above

equation becomes:

co

n=-co

00

n=-co

tJ ^IV*z (6l/28"1/£y-°6"1/28"1/V=)
r

where X. is defined by Equation (36) of Chapter III
J

and
to

3f k a

03 .
Cl

Z Zl

% k a . '
u Z Zl

to
pe / \

% ~ k a . ' ^'

(3)

(4)
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m

5=-£, (6)
m.

1

and

T *

e-^- (?)
zi

But X can be expressed in terms of the gyro-radius of the electrons:

X = -rT 2 k2 (8)
e 2 L6 1

where

r, = a, /o3 (9)
Le le' ce

is the Larmor radius of the electrons, and if the temperature of the

electrons is less than or of the same order of magnitude as the temper

ature of the ions, then

and one has

rT « rT .
Le Li

X « X. . (10)
e 1

The waves considered in this problem are ones for which

k.rT. ~ 1 (11)
1 Li

and thus

X « 1 . (12)
e

In view of this approximation only the n = 0 term of the electron contri

bution is important, since from Equation (35) of Chapter III:

-X

Ci 1 = e SI| I(\ ) S 0 forn/O
|n| |n| e'

-X

and furthermore, C = e e I (\ )£ 1 and the dispersion relation can
o o e

now be written:

This term will be referred to as the electron temperature term.
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co

1

\ ^

Let

where

and

iz'(SV2 6--/J) ^ C|n!(x.) [z-ty- n^) -2n^cTZ(^- n^)
\t?p;

(13)

and where
/a .\2 T • *

Ts© -€ (1U)
is the term which measures the degree of anisotropy of the ions. The first

term of the right hand side of Equation (13) is the electron term, the

second the ion term. For the Shima Model all one need do is replace the

variable ^ by 4,+ £a/ in the ion term only.

In principle, Equation (13) can be solved to find:

kzf =^(T?P .^c ,t,e,\,5,i) . (15)

Jf =x+iy (16)

K(^p ,ac ,T,e,A. ,5,i) (17)X = X

-kzy=y(—J.p ,^-c ,t ,e,\ ,s, i) (18)

and for a given i, S, 6, T and X, one can draw curves of constant x and

y in the (k /k)^p -"Xc plane. The curve y = 0 is particularly important

since along it tf Is real and y must change sign as the curve is crossed.

This curve then divides the stable and unstable regions of the

(k /k)'2p -^c plane. Since the time dependence was assumed to be of

the form e , then substituting Equation (l6), one sees that

This term appears from the (l/X.)(k /k)2(n/^) term of Equation
(2), using Equation (36) of Chapter III and Equation (4) of this
chapter.
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-itot -i(x + iy)tk a . -lxtk a . ytk a .
v J ' z zi z zi z zi

e = e = e e

so since the sign of the imaginary part of the frequency changes from

negative to positive as one crosses the y = 0 curve, one has passed from

a stable operating region to an unstable region. It will be shown later

how to calculate the growth rates in these unstable regions.

The procedure for the computer calculation can be described as

follows:

For y = 0, take the imaginary part of Equation (13)*"
CO

S(x) =0=|imZ'^1/2 0_1/2x) +^ Ci ijlmZ'(x +i^, -n^)
n=-=o (19)

- 2nJ.cTImZ(x +j£ - n^) J

and the real part
oo

-~-— =| ReZ'(8V2 0-V2x) +y C(n| {ReZ'(x +%-n^)
\T%) n=\°° (20)

- 2n^.cTReZ(x + &fc - n^)

Choose X, 9, T, 5, and i, then for a given value of^ (some value of the

magnetic field) plot Equation (19) and find its roots; that is, find the

values of x for which S(x) = 0. Use these roots in Equation (20) to find

(k /k)^ . This then locates points in the (kz/k}o. -^ plane. One then

repeats the procedure for another value of -2> until the map is complete.

"V.

For completeness the factor £0, is included in the ion term.
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In order to make use of such a stability-instability plot, one

must first choose the parameters for which the most unstable plasma

exists, that is, parameters for which the unstable region of the

(k /k)^ —>x, plane is largest. Then one can vary these parameters to

find their effect on the stability of the plasma system. For the present

general discussion the value of i will be taken to be zero. Its very

important effect on the stability boundary will be discussed later.

II. THE i = 0 CASE

The most unstable plasma exists when the electron temperature

term (©) and the ion anisotropy term (T) are zero and the value of X.

is approximately three.* Figure 3 shows a plot of S(x) vs x for various

values of \.. It can be seen that these curves are not very sensitive

to changes in X. near X. rj 3- It can be shown using Equation (36) of

Chapter III and Equations (4) and (l4) of this chapter that

k^2 _iAfj_
^ ' 203 .2 -2\*J ¥& (21)

Cl z Jc

So as T and ^ vary, then X. should change also. However, X. is held

constant by varying k./k appropriately. The solution of the problem

was found to be

it could just as well have been written

k„ k

>=2(T?P'& ,9, T, -, 8,i) . (22)

X. was chosen to be three, since this made the first few
-X. i ;

e I| I(x.) near their maximum values.
n ' i'
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The most unstable choice of k,/k is the one which makes X. ~ 3. There-
1' z i

fore, for a given 6 and T, the Im^ = 0 curve in the (k /k) ^ -^V plane

traces out the most unstable region if k./k is continually adjusted to

keep X. ~ 3- If k./k is varied in any other way, a smaller region of

instability would result.

For real values of the argument the real and imaginary part of

the FC* functions have the following properties:

ReZ(x) = -ReZ(-x) , (23)

ImZ(x) = ImZ(-x) , (24)

and

Z'(x) = -2 - 2xZ(x) . (25)

Thus, when looking for the solution of Equation (19), one need only con

sider x = Rex- > 0. One should notice, however, that this is true only for

i = 0. For the above parameters, the behavior of the imaginary part of

the solution is given in Figure 4 for a few values of-^ .

It was found that for -V >> 1, the roots of the imaginary equation

were approximately (taking T = 0, first):

x=(j-|)^c (26)
and

X =J#c <2^
where

3 =1, 2, 3,.... (28)

and substituting these values into the real part of the dispersion rela

tion gives:**

•x-

Fried-Conte plasma dispersion function.

##•

With 9=0, the electron term of the imaginary part of the
dispersion relation was zero. For the real
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^,:f (. iY,,2
%) \i - v*' n-10

76

10

+5I C|n| ReZ' [(J -n"l^c]-

The second term on the right hand side is negligibly small; so

1

(29>

?= =777ITW- (30)

For the second set of roots

10

1 1
+ 5

/k \2 2 2

(f%) J* n=-10
where the second term on the right hand side becomes

I ciniReZ' IP -%c] (3D

5C^ReZ'(0) = -2&C . (32)

Thus

1 (\/k)

^ =I/7737^z--2
25c/f %)r k ^p'

and approaches

yc =V^j^7 (34)

as (k /k)*V approaches infinity. The behavior of these curves in the

(k /k)^ plane is shown in Figure 5 with the regions of stable and un

stable operating regions marked.

part the electron term reduces to l/xc

•x-

The infinite sum was replaced by a sum from n = -10 to n = +10,
since C|n| (3) became negligibly small for n > 10. For large values of
•Vc only two terms of the sum were significant, n = j - 1 and n = j, the
remaining terms, exponentially small.
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Giving the ion anisotropy term, T, a non-zero value increases the

stability of the plasma as seen from Figure 6. The root which was located

a"t jjf will be shifted to jo/ (l - T). The root located halfway between

(j - l)-^- and j<L. is not shifted. So, for^ » 1, the solutions to the

imaginary part are:

x=(j -|)^c , (35)
and

x =j^c(i -T) . (36)

It was found that the unstable region would vanish* if

or if

T>21 (37)
3

a relation found analytically by Dnestrovsky et al. for j = 1. Compar-

k
ison with the work of Ozawa, Kaji, and Kito. who solve the dispersion

relation for a one species plasma, in a different manner from that in

this dissertation, is accomplished by redoing this problem using X. =0.1

and T = 0.1 and neglecting the electron term. Figure 7 of this work is

identical to Figure 6 of their paper.

Heating the electrons, that is, giving 6 a non-zero value, also

improves the stability. For T = 0, and non-zero 0, the imaginary part

of the dispersion relation, is:

10

S(x) =0=|ImZ'^1/2 e"V2x) +^ Ci jImZ'(x -ra,) , (38)
n=-10

That is, there were no roots of Equation (19)«

3
Yu. Dnestrovsky et al., loc. cit.

k
Ozawa et al., loc. cit.
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and for 0 less than about five the amplitude of the electron contribution

is greater than that of the ion contribution, as seen in Figure 8. For

sufficiently large-a* there will be a solution of the imaginary part of

the dispersion relation. The 0 < 0 ~ 5 curves then are displaced upward

and the "half-integral" roots are displaced toward the integral roots as

seen for the 0 = 0.01 curve in Figure 9. For 0 greater than about five,

the amplitude of the electron contributions is less than the ion contribu

tion (see Figure 10) and the imaginary part of the dispersion relation has

a solution for all values of^ ,* except near-X- = 1where the n = 0 ion

contribution is important. Figures 11 and 12 are plots for 0 about five

and larger. With both 0 and T non-zero the imaginary part of the disper

sion relation takes the form:**

S(x) =0=| ImZ'tS1/2 0_1/2x) +C1|z'(x -̂ ) -2^,TZ(x -̂ )
(39)

One root is about at x =-a- (l - T) and the other is found from (assuming

T is small):

IImZ^S1/2 0_1/2x) +CImZ'(x -̂ q)=0, (4o)

whose solution is approximately

%
1 + 61/2 0-1/2 '

One sees that qualitatively the instability vanishes when

(4i)

•X

However, some of the solutions to the imaginary part when sub
stituted into the real equation yield negative values for (k /k &• ) .

•x-x

This form was suggested by E. G. Harris after conversation with
M. N. Rosenbluth.
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1+51/2 0-V2) ^c
or

1 + 81/2 0 1/2

5
again a result found quantitatively by Dnestrovsky et al. Thus the

plasma is stable if condition (42) is satisfied or if Equation (37) holds,

whichever is smaller. A plot similar to the one drawn by Timofeev is

shown in Figure 13. However, Timofeev's curve did not include the portion

for 0^5, thus indicating stability for 0 < 5 at all values of T.

For £ - 0, one can draw the operating regimes for ALICE and Phoenix

and the £ = 0 modes of the DCX's and OGRA. These regimes are presented

in Figure 14. The boundaries of the operating regions are determined by

the maximum and minimum values of k . For k = k, the maximum value of
z z '

k , one can draw a boundary whose slope is 00 /<d . . Since
z * pe' ci

00 ~ 5 x 104Jn~ (43)
pe ' ^ o v J

and considering typical Ion cyclotron frequencies of 10s sec-1, one has:

slope ~ 5 x 10" Jn , (44)

For ALICE, DCX-I, and Phoenix, the densities are between 10Y and 108 cm-3,

and the slope as a lower bound on the operating region can be drawn as

shown by the long dashed lines on Figure l4. For OGRA, n ~ 109 cm-3

and for DCX-II, densities as high as 10 cm-3 have been reached. The

minimum value of k is determined by the maximum wave length that can

Yu. Dnestrovsky et al., loc. cit.

6
Timofeev, loc. cit.



0.5

0.4

0.3

T

0.2

0.1

0

UNCLASSIFIED

ORNL-DWG 64-5885

9

Figure 13. Regions of stability-instability as a function of ion anisotropy
and electron temperature.

t •

0.8

00
Co



0 2 4 6

IPERTURBATIVE THEORY

r CORRECT "*"

k *t

UNCLASSIFIED
ORNL-DWG 64-3914

Figure l4. Bounds on the regions of applicability for the four
thermonuclear machines studied.



90

exist in the machine, which is approximately the length of the machine.

For ALICE, Phoenix, and DCX-I, this is about 10 cm; for DCX-II, 1 meter;

for the OGRA, up to 10 meters. Taking a . to be about 108 cm/sec, one can

write „s a
">,.,• 10 L

(45)O-./fc k a . 2it
° Z Zl -r-

L

This bound is represented by the crosshatching in Figure l4, this bound

being flexible because of the uncertainty in the length L. The DCX-I

region is lower than Phoenix or ALICE because of the higher injection

energy and therefore larger a .. The effect of ion-anisotropy and elec

tron temperature can clearly be seen from this figure. A small amount

of electron temperature, theoretically, can stabilize the lower operating

regions with respect to the Harris instability and may eliminate some of

the low harmonics in the larger injection machines. Growth rates have

been determined for the unstable regions using a perturbation technique.

This aspect will be discussed later.

III. THE £ / 0 CASE

For DCX-I and II and OGRA the Larmor radius of the ions is compar

able to the machine radius and the infinite plasma model is a poor approx

imation. However, the approximation introduced by Shima, representative

of plasmas about one Larmor diameter across, can also be solved numerically.

It has been shown that the dispersion relation for this case is:

co

1 1

a
10

2it

/k \2

5f •Z'^
=- Z'(SX/2 0_1/2x) +1^ C|i Z'(x + £1

n=-oo

n^) -2n^TZ(x +fy -n£)_ .\±%) n=-°° 1 {k6)
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The general procedure outlined for the infinite plasma solution can be

followed for this case. However, due to the ion rotation, the imaginary

part of the dispersion relation is no longer symmetric with respect to

Reo/= x. In fact, it was found that for each value of the azimuthal mode

number £, that anisotropy mode with angular velocity (= Rea)/i) most nearly

coinciding with that of the ions changes character and becomes essentially

7
the instability found by Burt-Harris1 of zero-temperature ions rotating

through electrons.

Shima found it more convenient to analyze the problem using cylin

drical waves, so perturbations were assumed to go as

-ioit - i£6 ik^z

~ e J^(kJ_r) e Z . (47)

Since

e
-icot - ii0 _ IitfDt -iReoot - ±£9 /lo\

and if Reeo < 0, then this represents a wave moving in the positive 0

direction with angular velocity |Reoo|/i. Since the ions rotate in the

positive 0 direction (remember it was assumed that B = -B z), it is those

waves with Reoo < 0 which interact most strongly with the ions. In order

to display these results, it is convenient to take (kz/k)o. negative for

x = Re/L' negative, always with the understanding that (kz/k)^--D is really

positive.

Figure 15 shows the results of these calculations for 0=0,

T = 0, and £ = 1. For the portion ReO) < 0, one sees regions unique in

the analysis thus far. First of all, one finds a boundary (lnr2, = 0)

extending into the origin similar to the Burt-Harris mode (see Figure 16).

7
Burt and Harris, loc. cit.
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Furthermore, for this case, one finds "more stability" than is found in

the Burt-Harris problem (as seen by region A in Figure 15). Also the

anisotropy modes, regions B,* contribute "spikes" of unstable regions.

Figures 17, 18, 19, and 20 indicate how these modes are affected by the

ion anisotropy. Increasing T removes the anisotropic modes but leaves

the Burt-Harris mode effectively unchanged. However, giving the elec

trons a finite temperature removes the Burt-Harris instability and moves

the unstable regions to higher "V values, as was found in the infinite

plasma solution. Figures 21 and 22 are examples of this fact.

The effect of £ can be seen by comparing Figure 23 with Figure 17.

For low values of a,c increasing £ increases the unstable regions for low

density and decreases the stable region for larger density. Figure 24 is

a plot of the operating regimes for the machines applicable to the Shima

approximation. The dashed line on the Burt-Harris modes indicates the

effect of heating the electrons.

In order to complete the computer calculations one must be able to

determine the growth rates for the unstable regions. To do this exactly

is a formidable problem, indeed, and for the purposes of this dissertation

a perturbation technique** was used. Using Equation (46) and for sim

plicity letting T = 0, one gets:

00

1

xihj
^4z'(5l/2e_l/2 )+I c|n| zV2s -nro} {k9)F

There are further anisotropy modes, as seen in Figure 17. For
T = 0, in theory there are an infinite number of the anisotropy modes
each with decreasing unstable area as the mode number j increases.

This method was suggested by T. K. Fowler and E. G. Harris.



12

10

8

6

0

UNCLASSIFIED
ORNL-DWG 64-5305

-50 -30 -20

Re cu < 0

20 30

Re cu > 0

Figure 17. The anisotropy modes and the Burt-Harris mode of the Shima model for T = 0.



12

10

8

0

-28 -24 -20 -16 -12

Re oj< 0

-8 -4

UNCLASSIFIED

ORNL-DWG 64-5301

0

NO MORE

UNSTABLE

REGIONS

4

Re oj >0

8

Figure 18. The effect of increased ion anisotropy on the stability regions
of the Shima model for T = 0.2.

CT\



12

10

97

UNCLASSIFIED
ORNL-DWG 64-5300

\i\
\\
VS U vs. s \ ;V

9 --=o , r = o.4 , £-- 1

-20 •15 -10

Re (d < 0

-5 0 5

Re oj > 0

Figure 19. The effect of increased ion anisotropy on the stability
regions of the Shima model for T = 0.4.



\2

10

8

>*

0

UNCLASSIFIED

ORNL-DWG 64-5299

9 =0 , je-- 1 , T = 0.6

s u s

-15 -10 -5

Re w < 0

0 5

Re cu > 0

Figure 20. The complete removal of the anisotropy modes by increasing
T beyond 0.5.

.~<s**#.*U4#aNS*IM



}c

24

20

16

12

8

0

-50 -40 -30 -20

Reou < 0

-10 0

UNCLASSIFIED
ORNL-DWG 64-5302

0 = 0.01 , T = 0 J= 1

10 20 30

Re oj> 0

40 50

Figure 21. Removal of the Burt-Harris mode by increasing the electron temperature.

VO



><

180

160

140

120

mo

\
\

80

60

40

20

n

-280 -200 -120

Re w < 0

UNCLASSIFIED

ORNL-DWG 64-5298

^

1—~

9 = 3.92 , J-- 1 , T-- 0

100 200 300

Re cu > 0

400 480

Figure 22. Removal of the Burt-Harris mode by increasing the electron temperature.

H
O
O



12

10

8

h

0

-50 -40 -30 -20

Re oj < 0

-10 0

UNCLASSIFIED
ORNL-DWG 64-5304

10 20 30

Re oj> 0

40 50

Figure 23- The effect of the azimuthal mode number, £, on the stability plot.

o



UNCLASSIFIED

ORNL-DWG 64-3915

Figure 24. Operating regimes for the machines applicable to the Shima apprcximation.

o
CO



103

where

Hx) =R(^) + il(^) , ^= x + iy (50)

and where

R(9f) is real for real fy
and

l(Or) is real for real Js .

The boundary between stable and unstable regions is given by.

I(x) = o . (51)

Expanding about small values of y, one finds:

F(x + iy) ~ F(x) + iyF'(x)

or

F(x +iy) =R(x) +il(x) +iy [r'(x) +il'(x)] (52)

k 2

8W'P

Therefore, the imaginary part of Equation (52) reads:

0 = l(x) + yR'(x)

or

y=Im*= - Ml (53)
where

x = Re^. (54)

For 0=0, one can write

00

which is real.

R(x) =^2+i C,n, ReZ'(X +^c -n^)
n=-oo

so CO

R-(x) =-g^+I C,n, ReZ"(x +̂ c -n^)
n=-oo

and co

(55)

(56)

Kx) =/. Ci, ImZ'(x + ifc - n&) . (57)
n=-co

Using Equations (57) an^ (56) in Equation (53) determines the growth
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rate for the unstable modes. Again the use of a high-speed computer

system makes the analysis of equation (53) quite rapid. A sample program

for this calculation is found at the end of the chapter.

Notice for Sx2 « 1 (i.e., for x « J (m./m )), and using

ReZ' = 2, that
max

and therefore

R(x)~-\ (58)
6xs

R(x) -^
\ 2 Sx

6<f?P>
which yields , 2

~r% =W (59)
a fact which was used in displaying the curves on the Reco < 0 side of the

(k /k)/^- --V map. The numerical solution of Equation (53) showed that

most rapidly growing waves are those for which

k

CD K -id) ,
k pe ci

indicating the resonant character of this instability. The growth rates

for the .
" \ 1
— CO ~ (i - -)CD
k pe g C1

waves were negligibly small.

The perturbation technique is limited to values of x in Equation

(53) which keep the value of y small. Equations (56) and (53) show that

values of x for which

00

2

.3 a_, 1nl
Ci 1 ReZ"

5X-"
n=-co
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Q

makes y very large. It was estimated that the perturbation technique

was valid for values of |x| < 12.

IV. THE FORTRAN CODE

The program for the location of the points for the stability map

was found to be most efficient when a separate run was made for each

value of 9. Program DAMNIT was coded such that the machine, after giving

it a value of 0, would pick a value of T, a value of £, and a value of

-1/ , and start computing S(x), the imaginary part of the dispersion rela

tion. It was usually faster to have decks for the programs with x = Re

less than or greater than zero than to make IF statements to exclude the

value x = 0. The machine would compute a value for S(x), the increments

in x being 0.2, until S(x) changed sign indicating a crossing of the axis

or a root. Using the method of false position, the roots were located

and stored and used In the calculation for the value of (k /k)x- . The
z/ OV

results were printed out as values of (k /k) -a- for each root as a

function of<-V . The machine would then pick another value of <y and start

the process all over. The normal computer time for a typical run was

about three minutes. Program MINKOW, which computed the growth rates as

a function of x, was very much the same. Sample programs are included at

the end of this chapter.

T. K. Fowler, Private communication.



BEGIN J6B G04 05- |2*64
CC8P. 10601 ,GK SflPFR

FORTRAN,I.0.56.
PROGRAM OAMNIT

DIMENSION C(2I ).
C( I)=O.0OO0DQ97

C(2)»0.(J0QGQ659

C<3>»0. 00004051
C(4)»0. 00022265
C(5 )= D.00 I07956
C(6)»0. 00454090
C(7)»0.0I62I59I

C<8>«0. 04778332
C(9)=0. I I 178255

C( I0)»0, 19682671
C< II)=0f24300035
C( I2) = 0, 19682671
C( I3)=0, II178255
C( I4)r0,04778332
C( I5)=0,0|62I59I
C(I6)x0,00454090
C( I7 >=0 ,00 I07956
C< I8) = 0,00022265

C( I9)»0. 00004051
C<20)=0,00000659
C(?l UO, 00000097

Pl=3.5449078
PI 1=0.5641896
D=I./ 1836.

SGRTO=SQRTF< I./I 836 . )

0*0 . fl

T = o.o

A| » I.

WRJTE(9,300)0,T,A I
FfiRMAK |H| ,2HQ=,F430 0

3 02
WRITP(9,3 02)(L

FflRMAK IHO * I6Xj

DH2J=I,15

7C»J

Is I
Hl= l5.*ZC-5.

M2 =3n. «ZC- I.

Dfl3K=MI#M2

Y3 = K

Zsn.2*(-30

IF(ARSF(Z)

S=n, n

Dfl5N= 1,21
EsM- I |

S=S*C(N)»(Z+A

S=-S*PI

IF(ABSF(Z+3,«

S2=»S

Z2»Z

IF(ARSF(S)-

GsSO/S

IF(G)I 0, I I ,

ZI«Z
SI =s

NceuNT=o

ZsZI-SI

io6

ZP< In)»R08T( I0)

,2X,2HT=,F4,|,2x,3HAI=,F4.t)

,U«I ,7)

7(2ML=,I I• I0X),9X,3HL»R)

ZC+Y3)

0.»ZC)70,70,2

7T

13

25

I*ZOE»ZC*< I.-T) )»EXPF(-(Z+(E*AI )«ZC)**2)

ZO! .)-|.E-5) 11,11,13

.E-300) 14,14,7

(Zl-Z0)/(SI-S0)
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SrO.O

Dfl77N=1,21

EiN- I I

SsSfC(N)*(Z+AI»ZC+E«ZC,(l.-T))*EXPF(-(Z+(E*AI)»ZC)**2)

Ss-S»PI

NCOUNT =NCOUNT+ I

IF(NCSUNT-IQ) 151,151,14

IF(S)152,|4,15?

W=SQ/S

IFtW)19,19.20

IF(ARSF((Z-Z0)/Z0)-,0 05) 14, 14,20 I
so=s

zo =z

GO TO 25

IF(ABSF((Z-ZI)/ZI)-.0 05)I4,|4,|9I
S I=S

Z|=Z

GO TO 25

ROeT(L)=Z
IF(R00T(L))35,36,35
SUMaO.O

D067Ms|,2|

K I=N- I I

Bl=« I

X2=R00T(L)+(BI+AI)»ZC

IF<ARSF(X2)-|0.)65,65,66
S5»0.0
DOI I INI = I,40

E2 = NI

S5»S5+(EXPF(-(E2,*2/4,-E2,X2))-EXPF(«(P2»«2/4.*E2*X2)))/E2

REZX2 =-PI |•EXPF(-X2«*2)*(X2*S5)
GO TO 67

RFZX2=-I./X2-|./(2.*(X2»*3)>
SUM=SUM+C(N)*RFZX2*(X2«8I*ZC*T)

RFZP2=-2.*D*M.+SUM)*|./fRflOT(L),#2>
IF(RFZP2)9fl,96,99

ZP(l)=5CJRTF< I./KFZP2)

go m ioti

ZP(L) = 0.fi

GO TO Ion

ZP(L>=9.999

l =L+l
lF(L-8)22,22,29

S = S2

Zs?2

snss

ZO'Z

CONTINUE

L = L- I
IF<U)222,222,224

WRJTE(9,223)ZC
FORMAT<|H0.6HZP(ZCsF5,l,IOH)rNO ROOTS)

GO TO 2

WRITF(9,303)ZC,(ZP(LI),Llsl,L)
FORMAT ( IH0,6HZP(ZC=,F5. I»2H) =,8CFM.3,IX)>

WRITF(9,304)(ROOT(L3),L3=I,L)
FORMATMX,lOHROOT(SsO)«,8(EII.3,IX))

CONTINUE
STOP

END DAMNIT
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UI =I 5.»ZC

1.2 = 45.»ZC

DQIJ=LI,t_2
As J

XsU.2*(-3i:i,*iiC + A)
1FU3SFIX)- | ,b-6) | , I .6

6 « R i T E ( 9 , 3 ij y ) x
-H* FOKMATl |HO,2,-iX = ,f 5. I )

SUM I=0.
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SOM4s0.
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U3«!N=I ,21
LsN-||

d = L
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

FOR FURTHER RESEARCH

I. FINITE PLASMA GEOMETRY

One of the main conclusions drawn from the present study was that,

although a bounded plasma problem did exhibit modes of oscillation which

were unique, these effects were relatively minor. However, the differ

ences between the infinite and bounded plasma cases should be pointed out

and discussed. For the plasma slab with zero magnetic field, three

distinct solutions to the problem were found. One turned out to be the

infinite plasma solution which allowed arbitrary <t(z) inside the plasma

slab and zero potential, hence zero field everywhere outside the plasma.

It was also found that this solution of the infinite plasma mode required

$ to vanish at z = ±a. The remaining two solutions were the surface

charge modes which depended upon the dimensions of the plasma. These sur

face modes were relatively insensitive to the separation of the boundaries.

In the Harris model with a static magnetic field along z the solu

tion of the problem was more involved. The solutions did not separate

into surface and infinite plasma modes. For negative values of m2,

essentially the square of the z component of the wave vector, a relation

ship between m = ik and the width, a, of the plasma cculd be calculated.

As a possible suggestion for further research, Equations (117) and (ll8)

of Chapter III could be coded for a numerical evaluation by a computer

with k as the variable parameter. For each value of k (given a value
Zi z
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of the particle density and magnetic field strength) one could compute

the plasma width for this problem. For positive values of m2 it was seen

that the plasma was stable for frequencies in the neighborhood of the ion-

cyclotron frequency. The Burt-Harris model was assumed to be a good

representation of a mirror machine with very weak mirrors. The ions

traveled in concentric orbits in a plane perpendicular to the magnetic

field (z-axis). The problem was found to be solvable in general for

finite r and z dimensions. The results obtained indicated effects due to

finite boundaries but, again, effects not very different from an infinite

plasma type problem.

Although these boundary effects did not manifest themselves In any

major way, such as being a source for a new instability, the effects could

be calculated. Also, approximations were used which would not apply in a

real plasma. The most serious deviation arises in the linearization of

the basic equations, since a real plasma responds in a distinctly non

linear manner. Furthermore, one should not restrict the treatment to

longitudinal oscillations, for it is apparent that there must be some

coupling between the longitudinal and transverse modes.

More important than the actual results 'of the finite cases, however,

was the fact that the solution of the differential equation defining the

electric potential, although in most cases singular somewhere in the plasma

edge, was found to lead to the familiar electrostatic boundary conditions

only in the case of a perfectly sharp interface between plasma and vacuum.

This was demonstrated, using results derived in an earlier paper, by

LE. A. Frieman et al., Phys. Fluids 5, 196 (1962).
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assuming the unperturbed or equilibrium particle density to be an arbi

trary function of position. It was interesting to note that the boundary

conditions derived* in previous work of this author using a "cold" plasma

slab model with perfectly sharp edges were consistent with the above re

sults. However, the attempt to take over the boundary conditions for the

Harris finite model with temperature effects by merely replacing the equa

tion for the surface charge by its average over the new distribution func

tion, led one to boundary conditions which were not consistent with the

3
above paper—a strange result Indeed. Harris pointed out that instead of

averaging over the velocities, one should assume that the distribution was

made up from many streams, then add up all the streams, and then replace

the summation by integrals to finally arrive at the correct equations.

II. DISPERSION RELATION ANALYSIS

There has been considerable interest in possible ways of elimi

nating the strong ion-cyclotron oscillations that are present, for example,

in the ALICE, Phoenix, DCX, and OGRA machines. A possible interpretation

k
of the mechanism for these oscillations was given by Harris, who assumed

that this instability originated from the anisotropy in velocity space of

These boundary conditions were derived by calculating the surface
charge which migrates to the boundary after perturbation, and from this
the discontinuity in the normal component of the electric field was
derived.

2
G. K. Soper, Master's thesis, University of Tennessee, I961.

3
E. G. Harris, Private communication.

k
E. G. Harris, "Unstable Plasma Oscillations in a Magnetic Field,"

ORNL-2728 (June 5, 1959).
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the particle distribution function. Harris's work was extended by this

author to include finite ion and electron temperature effects with special

emphasis on the machines named above. It was found that on a plot con

sisting essentially of the magnetic field versus the density, regions of

instability appeared which arose from the anisotropic nature of the plasma.

It was found that either reducing the anisotropy of the ions, T../T ., or

increasing the electron temperature tends to stabilize these anisotropy

modes. Also, even with cold electrons and T.. » T ., reducing the mag-

netic field stabilizes a plasma of finite length, as was observed in the

6
Phoenix experiment. The largest growth rates occurred at frequencies

very near the ion-cyclotron or multiples of the ion-cyclotron frequency.

Strong oscillations were seen in Phoenix at frequencies of one-half the

ion-cyclotron frequency. Although it was found in this dissertation that

the plasma could become unstable for values of the frequency satisfying

l/2 co . < co < co ., the growth rate that was calculated for the wave at
' ci ci'

one-half the ion-cyclotron frequency was negligible compared to that at

co = co .. Thus it was concluded that the observed strong oscillations at
ci

cu = 1/2 co . were not explainable on the basis of the model assumed in this

dissertation.

For the Shima model, representative of plasma about one Larmor

diameter across, as in the DCX's and OGRA, most of the anisotropic modes

-^See also Y. Ozawa, I. Kaji, and M. Kito, J. Nucl. Energy, Ft. C
k, 271 (1962); and Yu. N. Dnestrovsky, D. P. Kostomarov, and V. I.
Pistunovich, Nuclear Fusion 3, 30 (1963).

L. G. Kuo et al., "Experimental and Theoretical Studies of
Instabilities in a High Energy Neutral Injection Machines," CLM-P32
(November, I963).
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found above remained essentially unchanged. However, for each value of

the azimuthal mode number, £, that anisotropy mode with angular velocity

which most nearly coincided with that of the ions changed character and

became essentially the instability found by Burt and Harris. In this

case, reduction of the ion anisotropy removed the unstable anisotropic

modes but left the Burt-Harris mode unaffected. A finite electron temp

erature, however, had a stabilizing effect on the Burt-Harris modes.

III. SUGGESTIONS FOR FURTHER STUDY*

Dr. J. B. Taylor suggested making a complete density versus mag

netic field stability map to provide a basis for deciding which machine

is best. Dr. R. F. Post suggested trying the large density limit

(gd » &x> .; co ~ ico .) to get a stability map in T, ./T . vs T /T .pe ciJ ci' B j v j_1/ Z1 ze/ Z1

for unlimited k .
z

Since the bi-Maxwellian distribution function is more represen

tative of the asymptotic state in the DCX's, one might try an ion distri

bution function which is approximately a delta function in |v.|, that is

more representative of the injection conditions of most machines. The

growth rates calculated in this dissertation were based on a perturbation

technique which was applicable only in a limited region. By major modi

fications of the present code, the analysis could include growth rates for

all regions. Those areas of special interest would be those where the

unstable regions of two or more resonances overlap.

These remarks are partly based on a program suggested by Dr. T. K.
Fowler for further analysis of the Harris dispersion relation.
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One should also redo the computer analysis for the case of a

Lorentzian distribution in v , mainly to be able to compare the results

with other authors.* Furthermore, analysis of the case where T » T.

could be incorporated into the computer code by changing the original

assumptions as the regions of interest. Here one would want, for example,

to examine the region near the electron cyclotron frequency. This has

obvious bearing on the problem of the heating a plasma by electron cyclo

tron resonance by R. A. Dandl at ORNL.

7
In conclusion, it should be noted that, as stated by N. Rostoker:

"In order to produce a confined plasma for interesting times, we must

eliminate intolerable instabilities, tolerate instabilities that cannot

be eliminated, and know which is which."

e.g., Laurence S. Hall at Livermore.

7-N. Rostoker, "Plasma Stability," GA-2617 (Dec. ik, I961).
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APPENDIX A

THE APPROXIMATION OF A COLLISION-FREE PLASMA

In the discussion of collisions between particles in a plasma, one

usually speaks of an interaction as an encounter leading to a deflection

of 90° or more. In order to understand the physical assumption of a

collisionless plasma, It is noted that the collisions that can occur can

be roughly divided into two types. The first is the "short-range en

counters" in which the ordinary short-range force acting on a particle

when it makes a close collision gives rise to heavy momentum changes. In

a low density plasma these encounters introduce only minor corrections to

the collisionless treatment. However, at higher densities this effect may

destroy the collective behavior of the plasma. The second type is that

of "long-range encounters" which represent many interactions of a single

particle with other members of the plasma giving rise to a large angle

scattering and a very small momentum transfer per individual encounter.

In principle these encounters extend over the whole plasma since the range

of the Coulomb force is infinite.

Assuming that the long-range encounters make a more significant

contribution that collisions resulting in large momentum changes, one

can derive a cross section, a_, for large angle, distant scattering to

be:

S. Chapman and T. G. Cowling, Mathematical Theory of Non-Uniform
Gases (Cambridge University Press, London, 1952), pp. I78-I79.

2M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys. Rev. 10J_,
1 (1957); and R. S. Cohen, L. Spitzer, Jr., and P. McR. Routly, Phys.
Rev. 80, 230 (1950).
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o~ s =^~ £nh (Al)
D E2

where E is the energy of the scattered particle and where

A=^L (A2)
min

where b represents the impact parameter. The minimum value of the impact

parameter is taken equal to the distance of closest approach for a scat

tering of 90° in a single encounter. The maximum value of the impact

parameter is given by the Debye shielding distance

o

a distance beyond which the plasma is considered to be electrically neutral

so that the particle under consideration is not affected by Coulomb forces.

For probable conditions existing in a thermonuclear reaction inA would be

3
in the vicinity of twenty.

The mean collision time for an ion scattered by distant encounters

4
with other ions can be written

t.. = —i (A4)
n n.a_v.

l D l

where v. is the average ion velocity. For 300 kev protons Equation (A4),

using Equation (Al), gives

t.. ~ .25 sec (A5)
li

3
L. Spitzer, Jr., Physics of Fully Ionized Gases (interscience

Publishers, New York, I962), p. 128.

4
S. Glasstone and R. H. Lovberg, Controlled Thermonuclear Reactions

(D. Van Nostrand Company, Inc., Princeton^ i960), p. 95•



125

where a value of n. = n = n = 101 particles per cm3 was used. However,
1 e o '

it is easy to show that the typical frequency which occurs in a plasma

is:5 £l/£
4atnne

co = ( 2_) (A6)
p m ' v '

and for a plasma of electrons and protons, Equation (A6) yields:

co ~ 6 x 1011 sec"1 . (A7)p \ \ '

Therefore, the average time necessary to randomize the initial distribu

tion is very large compared with the oscillation time of the plasma, and

one sees that for a relatively long time the Vlasov equations are quite

useful.

For example, see J. D. Jackson, Classical Electrodynamics (John
Wiley and Sons, New York, 1962), p. 337- Almost any book or article on
beginning plasma physics will have the derivation of this expression.
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APPENDIX B

THE INITIAL VALUE TREATMENT OF THE

BOUNDED SLAB PROBLEM*

If Equation (39)** had been subjected to the formal initial value

analysis prescribed by Equations (l4) and (15), Equation (69) would have

appeared

_d_
dz

(1 -T](03)A(z)) |~ (k±, 03, z)| -k±2(l -i!(03)A(z))$ =S(k±, co, z)
(Bl)

where S(k,, co; z) represents the initial value terms. Solving Equation

(Bl), one can find the time dependence of the electric potential by inver

sion:
-KXH-ia

>(t, z) =± J d03e-ia3t $(co, z) (B2)
-co+ia

From solutions of the homogeneous equation one can construct solutions to

the inhomogeneous Equation (Bl).

First solve the homogeneous equation

d

dz

which can be written

d$„
[l - r, A(z)) -^

n dz
kf (1 - r\ A(z)) 0 =0 (B3)
1 x 'n x '' n

H$ - T] LO =0 (B4)
n n n

The author is grateful to Dr. E. G. Harris for the details of this
section.

Unless noted, all equation numbers will refer to equations found
in Chapter III.
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H = ^-k2 (B5)
dz2

and

A A

Since H and L are Hermitian operators, it is easy to show that,

/dz<t> *M =5 (B7)
J m n mn

and thus one can construct a solution of the homogeneous equation from a

linear combination of the orthogonal functions §n. Therefore,

0(co, z) = ^an$n , (B8)
n

and substituting Equation (B8) into Equation (Bl), one finds:

(H -T!(03)L)$K z) =^ an(T!n -T](a>))L$n =S . (B9)
n

Multiplying by $ *, integrating and using Equation (B7), one sees that

/ dz$n*S

n ~ ~n - ri(co)
n

Therefore, from Equations (B8) and (BIO)

(BIO)

(03. z) = / 7~y / dz1> *S (Bll)^-'/Z_jri-ri(o3)J n v '
n

n

and finally,

a>+-ia T_,

>(t, Z) . i / ^-W* ^ ^-i^y /<*V(.)SK z) (Bl2)
-ocH-ia n
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If one assumes that there are only simple poles and let co .* be a

solution of

r|(co) =qn , (B13)

then one can write Equation (B12) as:

0(t, z) =1^ 2, \(z)e ^ Anj +^ z> (Blk^>
n 3

where

A .=iResidue of r—r /dz$ *S at co =03 . (BI5)nj rin - T](o3) J n nj

and G(t, z) is the contribution due to any poles of / dz$ *S which is of

less importance.

Therefore it is seen that the frequencies of the system are deter

mined by the eigenvalues of the homogeneous equation. If the r\' s form a

continuum, then

}K z) =J a(T])$(Ti, z)dr|
and

V r -i^.(n)t
$(t, z) =^ j chl$(Ti, z)e J A (11) +G(t, z) (Bl6)

3

where the integration in Equation (Bl6) will smear out the singularity if

the singularity is mild enough for the integral to converge.

For each eigenvalue r\ there may be many roots, so distinguish each

of them with a subscript j.
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APPENDIX C

THE DERIVATION OF EQUATION (94)

With

Equation (l)* is written:

of -> df m
— + v • —. - co

dt dx

Introducing cylindrical coordinates and using the moment technique of

Section III of Chapter III, one can show that the differential equations

for the linearized form of the F and H functions defined by Equations (42)

and (43) are:

B* = -B§
o o

df df
v r - v

y dvx x dvy
eE o f
m v

dr. i , . 1
^r + — (Vicos 0 - ^)Fi= - —

c c

dHn e -»
-^ + - E, , * V .Frt
dz m ±1 vl o

and

dHon. i , ,

sir+ - (Vi cos 0 - °>K =
eE F

m03

where the particle subscript has been suppressed for simplicity,

solution of Equation (C4) is

1

Hi =oT
c

eE-, 7F0
i'G(0, 0') -^-2-

±00

and similarly for Equation (C5)

0

d0'G(0, 0')F,
1

CO

±00

OH,

57"

m

+ - E
m

ii * V .F
!! vl o

(Cl)

0C2)

(C3)

(c4)

The

(C5)

(c6)

Again, all equation numbers will refer to equations from Chapter
III.

LI. B. Bernstein, Phys. Rev. 109_, 10 (1958).
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where

G(0, 0') = expJ — (0 - 0') - — (sin 0 - sin 0')L (C7)

When Equation (C5) is substituted into Equation (C6), F becomes:

F, = - — / d0'G(0, 0') - E . • V ,F
•' co J m 1 vl o

C ±00

"5T2 f^'^' s*') J d0"G(0', 0") i (^°ElZ . (c8)
C ±00 +C0

Since

nQ(z) -vl7ai2
e , (C9)

0 JtC^2

co

(ik^/^) sin 0 r-1 kivi In0
Jn(nr-) e (clo)

c
n=-oo

and 00

(ik v /03 sin 0) ^ n k|V, In0

^ 1 1' C C
n=-oo

00

_ 2eFQ $klVl ^-(ik^) sin 0y n JJk^)
1 " 2 __,

ma (k. v./co ) (.03 _ no3 )
1 n=-oo ^ 1 1' c' K c'

co

e d d$ -(ik.v./co ) sin0^ k.v, eln0
" " T~ (F. T-) e X-1 C ) J(-^-) ^ ™. C12)

m az ° az A_j n co (co - nco )^ '
n=-co c c

Inserting Equation (C12) into Poisson's equation:

,-—, 00 00

*L* -^=ksl L ejJ VldvlJ ^^jK v±, 0, z) (C13)

in0
e
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2
and using the identity found in Watson

CO 2. I P1

/ ^(^ ^ "' V-l •= \ al S'X ^Inl <*> (Cl4)
o c

where X is defined by Equation (97), then one finds:

co -~X-

*2» V & 2 (z) V nIl |(^-)e J
1 ^£ 1 Z_i \.a> . Z_j 03 - nco .

CO

iui(^)e

-X.
J

|_ (a, f -) ) "''^ .g (C15)
dz pj oz A-i (co - n03 . )ci

n=-oo CJ

which reduces to Equation (94), where the spatial dependence has been

absorbed into the factor A(z).

G. N. Watson, Theory of Bessel Functions (Cambridge University
Press, Cambridge, 19^5 ).> P« 395-





f

$3.'

ORNL-3696

UC-28 — Particle Accelerators and

High-Voltage Machines

TID-4500 (34th ed.)

INTERNAL DISTRIBUTION

1. Biology Library 54. J. Neufeld
2-4. Central Research Library 55. J. F. Potts, Jr.

5. Reactor Division Library 56. M. J. Skinner
6-7. ORNL - Y-12 Technical Library 57. A. H. Snell

Document Reference Section 58. W. L. Stirling
3-48. Laboratory Records Department 59. J. A. Swartout
49. Laboratory Records, ORNL R.C. 60. A. M. Weinberg
50. Tien Sun Chang 61. H. A. Wright
51. C. V. Dodd 62. Harold Grad (consultant)
52. C. E. Larson 63. Warren Heckrotte (consultant)
53. N. H. Lazar 64. D. J. Rose (consultant)

EXTERNAL DISTRIBUTION

65. Owen Eldrldge, University of Tennessee
66. David Montgomery, University of Maryland
67. C. E. Nielsen, Ohio State University
68. E. G. Harris, University of Tennessee
69. L. S. Hall, Lawrence Radiation Laboratory

70-79. G. K. Soper, 5428 Broomwall Street, Dayton, Ohio
80-81. Betty Sue Van Hoozer, Oak Ridge Institute of Nuclear Studies

82. Research and Development Division, AEC, 0R0
83-622. Given distribution as shown in TID-4500 (34th ed.) under

Particle Accelerators and High-Voltage Machines category

(75 copies - CFSTl)


	image0001
	image0002

