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CHAPTER I
INTRODUCTION

I. BACKGROUND OF THE PROBLEM AND A GENERAL

REVIEW OF THE LITERATURE

The study of high temperature gaseous matter in a highly ionized
state has become known as the field of plasma physics. Such a state
exists in nature, for example, in the gases of interstellar space, the
ionized gases on the surface of the sun and the ionosphere. Man-made
plasmas include such well-known devices as thyratron tubes, mercury-vapor
rectifiers and plasma-filled waveguldes. A plasma surrounds a space
vehicle during re-entry (causing the so-called communications blackout ),
occurs in explosions and lightning bolts, and has been proposed for
rocket propulsion motors in interplanetary travel. Recently, a great
deal of attention has been focused on plasma physics through the attempts
to harness the energy available from a thermonuclear reaction.

3

A number of experimental devices, such as the DCX's2 and OGRA

injection machines, for example, have been built in an effort to produce

lD. J. Rose and M. Clark, Jr., Plasmas and Controlled Fusion
(M.I.T. Press and John Wiley and Sons, New York, 1961), pp. l1-12; Proc.
ond U. N. Conf. on Peaceful Uses of Atomic Energy, Vols. 31 and 32,
United Nations, Geneva (1958); A. Bishop, Project Sherwood (Addison-
Wesley, Reading, Mass., 1958), pp. 1-14; and Proc. Conf. on Plasma
Physics and Controlled Nuclear Fusion Research (International Atomic
Energy Agency, Salzburg, 1961), to name but a few.

2C. F. Barnett, P. R. Bell, J. S. Luce, E. D. Shipley, and A.
Simon, Proc. 2nd U. N. Conf. on Peaceful Uses of Atomic Energy, Vol. 31,
United Nations, Geneva (1958), p. 298.

5L. A. Artsimovich, Proc. 2nd U. N. Conf. on



this reaction, and from these experiments come many theoretical prob-
lems. Of these problems, the stable confinement of this plasma for a
sufficiently long time that fusion can occur has turned out to be ocne
of the most perplexing.LL Since fusion temperatures are in excess of
10,000,000°K, "containment and insulation" of the plasma using ordinary
laboratory vessels is impossible. However, at these energies a "magnetic
bottle"” can be used where the interaction of the fully ionized gas with
an electromagnetic field is so adjusted that the electromagnetic force
on each particle is always directed away from the walls. It has become
evident, however, that instabilities, that is, small disturbances which
grow raplidly in either space or time in the plasma, contribute to the
mechanisms which eventually disrupt the confined system and temminate
the reaction. Impurity radiation is an example of a major non-insta-
bility loss mechanism in controlled thermonuclear processes.5
The hydromagnetic6 instabilities (interchange, kink, sausage,

for example) which involve the plasma as a whole; plasma oscillations

Peaceful Uses of Atomic Energy, Vol. 31, United Nations, Geneva (1958),
7

p. O.

MA. S. Bishop, Physics Today 17, No. 3, 19 (196k4). This article

also contains an excellent description of the principles of the different
thermonuclear machines, their advantages and limitations.

°R. F. Post, J. Nucl. Energy, Pt. C 3, 275 (1961); 8. Cuperman,
F. Englemann, and J. Oxenius, Phys. Fluids 6, 108 (1963); and Phys.
Fluids 7, 428 (1964). -

6M. N. Rosenbluth and C. L. Longmire, Annals of Physics 1, 120
(1957); W. B. Thompson, lecture, Plasma Physics Summer School of the
Danish Atomic Energy Commission, Risd, Denmark (August 1960), p. 273.
(Unpublished); and Masatomo Sato, "Stability of Plasma (I)," IPPJ-7
(March 196%). This review article contains many references to magneto-
hydrodynamic instability research.
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or”micro—instabilities”7 which involve local turbulence or oscillations
of rapid growth rates (compared with hydromagnetic instabilities); and
another oscillatory instability characteristic of a weakly inhomogeneous
fully ionized plasma confined by a strong magnetic field called the
"universal" or drift-wave instability8 are examples of disrupting wave-
type disturbances which have been predicted theoretically and whose
behavior has been studied in great detail. Of course, other instabili-
ties exist, and furthermore, it seems evident that more instabilities
remain to be discovered.

To study the hydromagnetic instabilities one introduces the
assumptions that the velocity distribution of the particles 1s nearly

9 Using these simplifying

isotropic and that the system is adiabatic.
postulates, the hydrodynamic equations of mass, momentum, and energy
conservation can be used. Also, one must include in the force term the
magnetic stress, % ﬁ?x fi then employ the Maxwell equations to determine
the fields. The hydromagnetic instabilities predicted on the basis of

this theory are of low frequency (much less than the cyclotron frequency

of the positive ionslo) and a relatively slow growth rate and lead to

n. Rostocker, "Plasma Stability," GA-2617 (December 1k, 1961);
and M. N. Rosenbluth, lecture, Plasma Physics Summer School of the
Danish Atomic Energy Commission, Risd, Denmark (August 1960), p. 201.
(Unpublished ).

8H. Lashinsky, Phys. Rev. Letters 12, 121 (196k); and N. Krall
and M. N. Rosenbluth, Phys. Fluids 6, 254 (1963), for example.

98. Glagstone and R. H. Lovberg, Controlled Thermonuclear Reac-
tions (D. Van Nostrand Co., Inc., Princeton, New Jersey, 1960), p. 437,
for example.

lOL. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience
Publishers, New York, 1962), p. 5l.




the expulsion of a confined plasma by gross drift motions. Stabilization
of a number of these disturbances, however, is theoretically possible.ll
A large class of instabilities, however, exist which are usually
highly localized and represent charged particles interacting through
collective fields, not necessarily at low frequencies. These have been
dubbed the ”micro—instabilities."12 Theoretically predicted micro-
instabilities include: 1) the two-stream instability which is described
as simply being produced by two interpenetrating streams of particles,13
2) the electrostatic cyclotron resonance instabilityl4 which describes

resonant coupling between plasma oscillations and particle rotation in

a magnetic field, and 3) the pinch-type instabilities15 associated with

llThe reader will find in the literature many papers devoted to
this subject. As an example, M. N. Rosenbluth, Proc. 3rd International
Conference on Ionized Gases, Venice (1957), p. 903. 1In addition to the
bibliography of Sato (footnote 6), W. B. Thompson, An Introduction to
Plasma Physics (Pergamon Press, Oxford, 1962), pp. 97-138, is an excel-
lent reference to magnetohydrodynamic stability.

les with the hydromagnetic instabilities, most books on the
subject of plasma physics devote a great deal of their space discussing
these phenomena and usually the original works are well referenced. An
excellent review article describing many Russian contributions to these
instabilities 1s A. A. Vedenov, E. P. Velikhov, and R. 7Z. Sagdeev,
Soviet Physics Uspekhi 4, 332 (1961).

13There has been a great deal of research on this instability
mode; for example, in the theoretical research on beam-plasma inter-
actions. The following reference is an excellent review article on the
subject and is well referenced. Ya. B. Fainberg, J. Nucl. Energy,
Pt. C 3, 203 (1962). Specifically see O. Buneman, Phys. Rev. Letters
1, 8 (1958); and Phys. Rev. 115, 503 (1959).

lLL’I_‘he ploneering work was done by E. G. Harris, "Unstable
Plasma Oscillations in a Magnetic Field," ORNL-2728 (June 5, 1959);
and Phys. Rev. Letters 2, 34 (1959).

Dy b, Furth, Phys. Fluids 6, 48 (1963). This reference gives
a very thorough cataloging of the pinch-type instabilities.




self-focusing of charged particle streams. One cculd continue this list
to include the "universal" instabilities, mentioned briefly above, and
the mirror hydromagnetic and slow-growth-rate Alfvén-wave instabilities
described by’Post,l6 to name but a few.

These plasma oscillations, often characterized by large growth
rates and short wavelengths, by their nature do not lead to gross drift
motions but "act to destroy effective confinement through causing en-
hanced diffusion across the magnetic field or through causing excessively
rapid energy exchange among components of the plasma.”17

These instabilities manifest themselves in the details of the
velocity space distribution function. The "origin" of the micro-insta-
bility is a departure from isotropic conditions (anisotropy), a property
which afflicts magnetically confined systems.18 It seems plausible then
that these instabilities should be difficult to stabilize since a re-
arrangement of the distribution function would be called for.

It is the purpose of this dissertation to study in some detail
one particular micro-instability, the ion-cyclotron resonance insta-
bility,l9 to survey what has been done to date, to discuss its role in

the thermonuclear machines, to offer new calculations regarding finite-

16R. F. Post, "Some Observations on Plasma Instabilities in the
Mirror Machine," Plasma Hydromegnetics, D. Bershader, editor (Sixth
Iockheed Symposium on Magnetohydrodynamics, Stanford University Press,
Stanford, California, 1962), p. 16.

YMpia., p. 17.

18Ibid., p. 16.

YE. a. Harris, J. Nucl. Energy, Pt. C 2, 138 (1961).



geometry aspects of the theory and stable-unstable operating regimes,

and finally to suggest further calculations to be attempted.
II. BEGINNING CONSIDERATIONS

Plasma oscillations as a new and separate phenomenon were first
studied by Langmuir and Tonks20 in 1929. They observed that collective
effects disrupted an electron beam in a plasma in a distance much shorter
than could be explained by collisions. They interpreted this disrupting
mechanism as plasma-electron oscillations at the plasma frequency. In
1938 A. A. Vlasov21 treated a system of charged particles by means of a
modified Boltzmann equation. Vlasov showed that for a plasma the elec-
tron oscillation frequency could be much larger than the freguency of
collision between charged particles and neutral gas, and consequently,
one could neglect all "collision" interactions. This approach is valid
for low density and high temperatures when the thermal energy is much
greater than the mean potential energy between neighboring particles.
The self-consistent electromagnetic fields were calculated using the
distribution functions as sources in the Maxwell equations, and a dis-~
persion relation calculated for both longitudinal and transverse waves.

However, L. Landau22 in 1946, using Vlasov's basic equation,
found that Vlasov's results were incorrect and furthermore found that

in the rigorous sense no proper dispersion relation exists for waves

20;, Langmuir and L. Tonks, Phys. Rev. 33, 195, 990 (1929).

aly. a. Vlasov, J. Exp. Theor. Phys. (U.S.S.R.) 8, 291 (1938).
See also USAEC Translation 2729.

221, 1. Landau, J. Phys. (U.S.8.R.) 10, 25 (1946).
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in a plasma. He showed that for a given wave vector E: arbitrary values
of w, the frequency of a disturbance in the plasma, are possible. Lan-
dau's correct initial-value treatment led to gqualitatively new results,
namely a damping mechanism which could absorb energy from oscillations
in a collisionless plasma. Van Kampen25 solved the problem in a strik-
ingly different manner. Landau's treatment did not answer the question
of divergence of a singular integral in the stationary wave method.
Van Kampen showed that it is possible to construct a complete set of
stationary plane wave solutions of arbitrary wave number and arbitrary
frequency. Although each "Van Kampen mode'" alone does not exhibit
damping, an arbitrary initial disturbance will produce a spectrum of
modes and the gross perturbation will decay with Iandau damping be-
havior.2

The problems considered above are based on an infinite, homo-
geneous model in which the time-dependent parts of the dependent var-
iables are assumed small compared with the time-~independent parts. A
perturbation technique is employed in which products of perturbation
terms are neglected, the equations linearized, and the Fourier compon-
ents of the dependent variables are derived. In the work that follows,
a similar model will be used except in the consideration of finite-

geometry cases where slight modifications will be in order. Also, the

25N. G. Van Kampen, Physica 21, 949 (1955).

ZMT. H. Stix, The Theory of Plasma Waves (McGraw-Hill Book
Company, New York, 1962), p. 143. TFor rigorous mathematical extensions
and discussions of the Landau and Van Kampen formulations, see K. M.
Case, Annals of Physics 7, 349 (1959); G. Bacus, J. Math. Pays. 1, 178
(1960); and J. N. Hayes, Phys. Fluids 4, 1387 (1961).




perturbed part of the magnetic field is neglected so that the electric
field is a curl-free vector limiting then the study to longitudinal

oscillations. Drummond, Rosenbluth, and Johnson25 claim to have shown
that this is a valid assumption if the ratio of the plasma pressure to

magnetic field energy density is small.
IITI. MATERIAL IN SUCCEEDING CHAPTERS

In Chapter II a review of the literature on the ion-cyclotron
resonance instability research will be given. Included in this resumé
will be a discussion of finite-geometry effects and the attempt by this
author to describe a set of vacuum-plasma boundary conditions.

Chapter III begins with a discussion of the Vlasov equations.
Then the dispersion relation for four separate models is derived. These
models are: (A) The infinite plasma model which as considered by
HarriSZ6 is extended to include the dispersion relation using a two-
temperature distribution function. The groundwork will be laid here
for the evaluation of this dispersion relation with the aid of a high-
speed digital computer. (B) The Harris model limited in z (where z is
the direction of the external magnetic field) in which the infinite model
is replaced by a plasma slab bounded at z = *a. The particles are con-
sidered to have no velocity spread in the z-direction but to have a MB*

spread in the direction perpendicular to z. The singular character of

25W. E. Drummond, M. N. Rosenbluth, and M. L. Johnson, Bull.
Am. Phys. Soc., Series II, 6, No. 2, 185 (1961).

Harris, loc. cit.

*
Maxwell-Boltzmann.




the differential equations involved is discussed and compared with a
similar problem in the literature. (C) The Burt-Harris® | model where a
cylindrical-shaped plasma is considered in which the ions move in Larmor
orbits in the ion-cyclotron frequency. This model is used as an approx-
imation to a weak mirror thermonuclear device. The dispersion relation
is gtudied in the 1limit of infinite length, finite radius and visa-versa.
Finally, (D) the Shima28 model in which a finite problem of one or two
ion orbits across is approximated by an exactly solvable problem, again
an infinite plasma but one in which the Maxwellian ion distribution
rotates as a whole at the ion-cyclotron frequency. It is shown how
these results are incorporated into the computer-code of model ().

In Chapter IV are presented the detalls of the computer calcula-
tions of models (A) and (D). For various temperature parameters, regions
of stability and instability are determined and a perturbation technique
used to determine growth rates. The computer work was done on the
Control Data Corporation 160L-A Machine.

In Chapter V the conclusions are drawn and suggestions for

further research presented, particularly in connection with further

exhaustive computer calculations emphasizing DCX parameters.

£7p. B. Burt and E. G. Harris, Phys. Fluids 4, 1412 (1961); and
P. B. Burt, disseration, University of Tennessee, 1961.

28Y. Shima, Thermonuclear Div. Semiann. Progr. Rept. Oct. 31,
1962, ORNL-33%92, p. 61.
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CHAPTER II
PREVIOUS WORK
I. LITERATURE SURVEY

The ion-cyclotron resonance instability theory had its inception
in attempts to explain oscillatory phenocmena evident in many plasma-type
experiments. One such early experiment was that by Alfvénl and his co-
workers concerning electron phenomena in trochotron tubes.* At low elec-
tron density the motion follows classical behavior. At higher densities,
however, the electron's energy distribution is so altered that an appre-
ciable part of the current is collected by electrodes negative with
respect to the filament. Simultaneously, strong beam noise was detected.
Malmfors2 suggested that the noise was due to collective behavior of the
electrons in the beam and predicted unstable oscillaticns with the fre-
quency within small intervals of multiples of the gyromagnetic (cyclotron)
frequency. *¥

C—ross5 in a later paper reported an error in Malmfors' work.

Taking into account random thermal motion, he shows for a peaked velocity

lAlfve'n et al., Theory and Applications of Trochotrons, Kungl.
Tekniska HOgskolans Handlingar, NR 22 {1943).

*

S0 named because electrons emitted from a hot cathcde in a tube
with crossed electric and magnetic fields travel to the anode in tro-
choidal paths.

%, . Malmfors, Arkiv fOr Fysik 1, 569 (1950).

*¥
For very high electron beam density Malmfors' theory predicted
unstable oscillations at all freguencies.

5E. P. Gross, Phys. Rev. 82, 232 (1951).
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distribution the existence of gaps in the spectrum at frequencies which
are approximate multiples of the cyclotron frequency. Gross demonstrated
that when the effect of the thermal motion is small, no instability could
exist. Furthermore, he postulated that the same type of calculations
should hold whatever the effect of the thermal motion. While Gross's
approach was a kinetic theory treatment, Sen,i'L looking for a connection
between solar "enhanced radiation" and plasma oscillations, followed Lan-
dau's prescription and found that the system was unstable in frequency
bands around multiples of the gyrofrequency. Upon further investigation
of Gross's dispersion relation, Sen showed numerically that unstable oscil-
lations did exist (using parameters suited to solar data, i.e., far from
Gross's original approximation).

These then were some of the first few attempts to give a possible
explanation to some of the experimental phenomena occurring in electrical
discharges in the laboratory (and in nature, too) on the basis of unstable
plasma oscillations. Next came the thermonuclear machines and with them
a seemingly unending source of confinement disrupting mechanisms to be
studied theoretically. Quite early it became all too obvious that violent
localized disturbances on the microscopic scale were contributing to the
unstable configurations. Colgate and Fﬁrth,5 writing on the stabilized
pinch and controlled fusion power, revealed that although the pinch could
be "stabilized," small-scale turbulence exists within the gross configura-

tion. There was evidence of electrons interacting with electrostatic

MH. K. Sen, Phys. Rev. 88, 816 (1952).

’s. A. Colgate and H. P. Furth, Science 128, 337 (1958).
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plasma waves enhancing the resistivity effect at high power levels discour-
aging the use of a stabilized pinch as a thermonuclear plasma container.
Cooperative phenomena in the B-1 Stellarator discharges were reported by
Bernstein et é;.6 These data indicated the existence of unexplained col-
lective processes. X-rays were produced by "runaway" electrons striking
the walls; furthermore, the discharge current decayed in abrupt steps
correlated in time with the bursts of X-rays. There was even evidence
that the runaway electrons themselves affected the development of the
discharge.

In an effort to give a possible theoretical explanation to phe-

7

nomena of this nature Harris, ' expanding on the work of Malmfors, Gross,
and Sen, developed a theory in which the anisotropies of the distribution
function were considered to give rise to these instabilities. The re-~
mainder of the discussion in this dissertation will be based on Harris's
basic works.

Harris in his first paper¥* derives the general dispersion relation

for longitudinal waves based on the Vlasov set of equations following

fairly closely the work of Bernstein.8 Many simplifying assumptions are

6w. Bernstein et al., Phys. Fluids 1, 420 (1958).

5. . Harris, "Unstable Plasma Oscillations in a Magnetic Field,"
ORNL-2728 (June 5, 1959); Phys. Rev. Letters 2, 34 (1959); and J. Nucl.
Energy, Pt. C 2, 138 (1961).

*Harris‘s papers will be referred to as I, II, and III as they
appear in footnote 7. Paper II is a condensed version of I; however,
the theory's applicability to DCX and OGRA is discussed. Paper III
includes all the cases of I, and also transverse oscillations are
considered (i.e., the full set of Maxwell's equations are used in the
formulation of the problem).

81. B. Bernstein, Phys. Rev. 109, 10 (1958).
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made and will be discussed in some detail in Chapter III of this disser-
tation. The distribution function used by Malmfors, Gross, and Sen, in
which all electrons and ions move with the same speed perpendicular to the

field, is employed by Harris:

f_:__g(v)?_(ﬂ_'_iﬁ (1)
oJ 2mn z vy

9 and the symbols 1 and z represent

where 8(x) is the Dirac 5-function,
directions with respect to the external magnetic field, and j represents
either species of the plasma. If the ion motions are neglected (i.e.,

let m, = ©) and set kZ = O, where kz is the component of the wave vector

along the magnetic field, one finds

0

2
e, 14
_.P_._Z .
1 mxden(M (2)

ce
n=-co
where o
o> LnN~e®
(De :—‘————-—m (5)
P e
is called the plasma frequency,
eBo 2
2 (=2
- (52 ()
e
is called the cyclotron frequency, and
k
N = 1e
Tw
ce

It was in using this dispersion relation that Gross showed no unstable

modes of oscillation for AN << 1, that Sen showed that instabilities could

9See, for example, P. M. Morse and H. Feshbach, Methods of
Theoretical Physics (McGraw-Hill Book Company, New York 19555, p. 122.
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exist for An << 1 and finally that Harris, using a Nyquist diagram tech-
nique,lo was able to show that instabilities set in when A > 1.84. It
was shown next for kl = O that the plasma was stable, but when neither
kl nor kz was zero, there could be instabilities for A < 1.84. In order

to consider the effect of a spread of velocities on stability the fol-

lowing zero-order anisotropic distribution function was used:

2 2
- o .
1 2 o e L / 13
— =l 2 (6)
Oj 2 o 2 2 2
T —LJ T VZ +O£ZJ-

where Qi and aZ measure the spread in velocity in the directions perpen-
dicular and parallel to the field. Using this distribution function and
assuming again no motion of the ions, it is shown that for waves propa-
gating parallel to the magnetic field the oscillations are damped at the
plasma frequency (Landau damping); and furthermore that there is neither
instability nor Landau damping for kZ = 0. However, with no restrictions
on E: taking into account the motion of the ions but letting the temper-
ature along the field be zero (i.e., let aZ = O), one finds a very funda-

mental relationship. It is shown that a sufficient condition for unstable

oscillations in a plasma is:

wpe2 > ggwciE, g =41, 2, .... (1)

where wpe is defined by Equation (3) and wci is the ion-cyclotron fre-

quency given by Equation (4) with m, replaced by m, .

lOH. M. James, N. B. Nichols, R. S. Philips, Theory of Servo-
mechanism (MIT Radiation Laboratory Series, McGraw-Hill, New York, 1947),
p. 70; and P. Penrose, Phys. Fluids 3, 258 (1960).
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A small scale trochotron-type experiment was tried by Harris and
his studentsll in an attempt to verify Equation (7). Powers found, how-
ever, that other phenomena occurred long before the critical current
required for instability based on the theory of Harris could be reached.

Equation (7) is the now well-known result of Harris. Since any
confinement of a plasma by a magnetic field necessarily produces aniso-
tropic velocity distributions, Harris thought mirror-type thermonuclear
machines might breed these instabilities readily. It now seems quite
probable that many thermonuclear devices do indeed exhibit this "Harris
instability.”" In what follows is a brief description of a few experi-

mental devices¥* and the results they yield.
II. EXPERIMENTAL OBSERVATIONS

The DCX plasma is formed by injecting 600-keV molecular hydrogen
ions into a magnetic mirror geometry.12 The molecular ions dissocilate
either by colliding with neutrals or by Lorentz breakup and are trapped
in the magnetic field, which is perpendicular to the injection plane.

By this means a high concentration of energetic ions are accumulated in
a charged ring and held until they have randomized into a high temperature

plasma.

llP. A. Thompson, Bull. Am. Phys. Soc., Series II, 6, 196 (1960);

and W. L. Powers, Master's thesis, University of Tennessee, 1963.

*

Included will be the molecular-ion injection type machines DCX-I
and IT and the Russian's OGRA and the neutral injection machines ALICE
and Phoenix.

leee,for example, The ORNL Thermonuclear Program Jan. 15, 1958,
ORNL-2457, p. 7ff. Also the Thermonuclear Division of ORNL publishes
bi-annually a progress report in which
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It has become evident that a density-limiting mechanism is present
in DCX-I of the micro-instability type.15 Strong proton cyclotron radia-
tion with harmonics through the seventh was observed with each even
harmonic weaker than the following odd harmonic. It wes seen that the
amplitude of these signals was dependent on the input current and magnetic
field. The resonance character of these collective oscillations was given
the following interpretation. The charge waves following the rotating
ions close on themselves. After many passes in this ring, only those
waves rotating in phase survive, forming a circular array of charged
"bunches.”lu These bunches manifest themselves as oscillations at multi-
ples of the ion-cyclotron frequency. That these protons in the trapped
ring might be "bunching," could possibly explain space and energy diffusion
in DCX through a resonance instability of ion-cyclotron motion with elec-

tron plasma oscillations.15 A thesis problem by Burtl6 using an idealized

the detailed description of the thermonuclear program 1s included.

15T. K. Fowler, Thermonuclear Div. Semiann. Progr. Rept. Oct. 31,
1963, ORNL-3564, p. 81. An argument against micro-instabilities in DCX
devices is also given in this section.

luThis discussion of charge '"bunching'” in DCX follows very closely
the Section 8.1.2 of Thermonuclear Div. Semiann. Progr. Rept. Oct. 31,
1963, ORNL-3564. Also see J. D. Jackson, J. Nucl. Energy, Pt. C 1, 171
21961); and Thermonuclear Div. Semiann. Progr. Rept. Apr. 30, 1963,
ORNL-3472, p. 75.

15"Negative—Mass" type instabilities have also been suggested as
ion-bunching mechanisms. See C. E. Nielsen, A. M. Sessler, and K. R.
Symon, CERN Conf. Report, 1959, Geneva, European Organization for Nuclear
Research, p. 239.

l6P. Burt, dissertation, University of Tennessee, 1961; and P.
Burt and E. G. Harris, Phys. Fluids L4, 1hk12 (1961).
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DCX geometry model, showed that the ions tended to "bunch," giving rise
to large electric fields within the plasma.

The DCX—II]'7 device has recently begun operation in which the den-
sity buildup is accomplished by multiple passes of an injected molecular
ion beam through an arc discharge. This machine attains ion-beam inten-
sities seven to eight times greater than DCX-I, and with a more efficient
dissociation of the incident beam. As with its earlier counterpart, DCX-
IT also emits a considerable amount of radio-freguency energy consisting
principally of the harmonics of the molecular-and-atomic-ion-cyclotron
frequenciesl8 (18.6 Mc). Some "white" noise extending above 100 Mc 1is
also present but is not explained.

Recently, however, it has been shown that these Harris instabi-
lities may be suppressed somewhat by heating the electrons in the trapped

19

plasma. Harris has suggested that in an idealized representation of
the DCX-I plasma, passing an electron beam through the circulating ion
beam stabilizes the lowest frequency modes, but further calculations

indicated that this was not promising. It is concluded that stability

occurs because energy 1s drained out of the machine by convection at a

more rapid rate than it is produced. However, new unstable modes at

17P. R. Bell et al., Thermonuclear Div. Semiann. Progr. Rept.
Apr. 30, 1964, ORNL-3315, pp. 15-20; Nucl. Fusion: 1962 Suppl., Pt. 1,
251-258; and ORNL CF-60-1-7% (Mar. 4, 1960).

18

Thermonuclear Div. Semiann. Progr. Rept. Oct. 31, 1962, ORNL-
3392, pp. 1l7-22.

Y. q. Harris, "Stabilization of a Plasma by Convection."
(PTivately circulated note); and Thermonuclear Div. Semiann. Progr.
Rept. Apr. 30, 1963, ORNL-3472, pp. 79-81.
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higher frequencies are introduced. In addition, a sufficient tempera-
ture spread in ions and electrons should also limit the Harris-type
instability.*

The Russian contributions to plasma physics and the controlled
thermonuclear processes has been quite impressive. They have put into
operation a large magnetic mirror system called OGRA¥¥* very similar to
DCX-II except for the injection energy (here 200 keV) and method of break-
up (on the background gas).zo Measurements indicate that both an ion-
cyclotron and low-frequency flute instability are present. The plasma
is characterized by a large positive space potential creating a strong
radial electric field. As the plasma rotates, spikes are formed at its
surface, thereby spewing the electrons and ions across the magnetic field.
Also, & significant portion of the electrons acquire enough energy to
escape through the mirrors along the magnetic field lines. The signals
received by the external detectors indicate low-frequency oscillations
that coincide in frequency with frequency of the rotation of the plasma
plus intense coherent radiation at the ion-cyclotron fregquency and over-
tones. Experiments on injected currents agree qualitatively with theo-
retical predictions of Harris. However, when a positive potential is
Impressed on end grids, located beyond the mirrors outside the plasma,

the oscillation amplitude of the cyclotron frequencies decreases. This

2OThe discussion of the OGRA device was teken from G. F. Bogdanov,

Kurchatov Institute of Atomic Energy, Moscow, 1962 No. 23/236 reprint,
ITranslated by J. Lewin of the Thermonuclear Division, ORNL, October

31, 1962,

*
This fact will be clearly seen in Chapter III using Model (A)
and also the computer results presented in Chapter IV.

Ko
After L. A. égtsimovich and 1. N. Golovin.
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partial stabilizing effect is possibly explained by the decrease in elec-
tron density and an increase in the electron temperature.* Again, the
computer work in Chapter IV will bear out this fact. It is concluded
that the interaction of the electrons' oscillations and the ion-cyclotron
waves is the mechanism by which the electrons acquire energy large enough
to pass through the end mirrors in the presence of the high plasma poten-
tial.

The neutral injection machines, ALICE21 at Lawrence Radiation
Laboratory and the Phoenix22 at Culham Laboratories in England, have
recently begun operation, and experimental results indicate that the
Harris instability is here also. In ALICE a 20 keV beam of excited
neutral atoms enters a discharge chamber and these atoms are ionized
by Lorentz breakup or by collision with background gas resulting in
the buildup of a high energy plasma. Phoenix is different only in the
fact that the primary beam is 60 keV neutral hydrogen atoms and is in-
jected into the mirror magnetic field perpendicular to the field lines
in the median plane. The experimental results from Phoenix indicate

that when the electron plasma frequency is greater than the ion

*It was conjectured that an increase in the electron temperature
was due to an increase in the time spent in the interior of the plasma
by the electrons as a result of the elimination of the flute instability
by these end grids.

21Controlled Thermonuclear Research Semiannual Report June, 1962,
UCRL-10294, pp. 15-25; and UCRL-10852, pp. 19-35.

2

°L. G. Kuo et al., "Bxperimental and Theoretical Studies of
Instabilities in a High Energy Neutral Injection Mirror Machine," CLM-
P32, (November, 1963), p. 305. (Submitted for publication to Phys.
Fluids). See also, D. R. Sweetman, Nuclear Fusion, 1962 Supplement,
Part 1, 279 (1962).
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cyclotron frequency, discontinuous oscillation at the ion-cyclotron fre-
quency (~ 60 mc/s at 40 kg), continuous oscillation at the ion-cyclotron
frequency, and strong low freguency (~ 100 kc/s) oscillation occur.
These instabilities promote strong scattering of the ions out of the
transverse direction but cannot be observed to cause actual loss of
plasma. This leads to an apparent "self-quenching" of the oscillation
by changing the anisotropy of the lon-velocity distribution enough to
terminate or weaken the instability. There were also observed oscilla-
tions at one-half the ion-cyclotron frequency--a fact that will be dis-
cussed in connection with results from the computer analysis of Harris's
dispersion relations.

It is apparently obvious that the experimental observations pre-
sented above are consistent with the electrostatic ion-cyclotron resonance
instability predicted by Harris. The presence of this instability would
be expected to increase the energy transferred between ions and electrons

25

and to enhance other transport coefficients in the plasma.

ITI. FURTHER THEORETICAL DEVELOPMENTS

OF THE HARRIS INSTABILITY

In order to extend the original theory, Harris24 suggested that

if there were a spread in the cyclotron frequencies due to a non-uniform

25R. F. Post, "Some Observations on Plasma Instabilities in the
Mirror Machine," Plasma Hydromagnetics, Daniel Bershader, editor (Sixth
Lockheed Symposium on Magnetohydrodynamics, Stanford University Press,
Stanford, California, 1962), p. 21.
24E. G. Harris, "The Effect of a Spread in Frequencies on the
Stebility of a Plasma," ORNL CF-62-8-37 (Aug. 21, 1962); also see
Thermonuclear Div. Semiann. Progr.
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magnetic field, the coherence of the oscillations may be destroyed, since
many of the particles will be out of resonance. It was found (using DCX-I
parameters) that there was only a narrow band of densities for which the
plasma goes unstable. Next, the effect of non-zero az on the dispersion
relation was investigated25 assuming propagation of waves almost parallel
to the magnetic field. It was found, using the Burt-Harris model, that
the solution of the dispersion relation could be attained without the aid
of a computer. The results are presented in a parameterized form as a
graph on which are mapped stable and unstable regions for given values of
the temperatures occurring in the plasma. Thus for a given value of the
density and magnetic field, one could predict stable or unstable operating
conditions as a function of plasma anisotropies (temperatures).

The effect of non-zero ion and electron temperatures on the gen-
eral dispersion relation* has been investigated by a number of authors.
Sagdeev et g£.26 showed that if the longitudinal and transverse energies
are approximately equal, it was reasonable to "assume" that the plasma

was stable. Analyzing the longitudinal part of the conductivity tensor,

Rept. Oct. 31, 1962, ORNL-3392, pp. 56-60.

23E. a. Harris, "The Effect of Finite Ion and Electron Temperature
on the Ion-Cyclotron Resonance Instability," CIM-R32 (October, 1963 ).

*

That is, the dispersion relation derived from a bi-Maxwellian
distribution function. This derivation will be given in the discussion
of Model (A) of Chapter III.

26R. Z. Sagdeev et al., Proceedings of the Second International
Conference on the Peaceful Uses of Atomic Energy, Vol. 31, United Nations,
Geneva (1958), p. 15; and A. A. Vedenov, E. P. Velichov, and R. Z.
Sagdeev, Soviet Physics Uspekhi L4, 332 (1961).
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Drummond, Rosenbluth, and Johnson27 found that TL/TZ'* of the ions must

be greater than eight or nine for instability to occur, where

2kT |
o 2= —dd (8)
1J m,
J
and
o ZKTZ.
S (9)
J
and

K = Boltzmann's Constant.

Ozawa, Kaji, and Kito,28 using a complex potential technique, derive the
stabllity criterion for longitudinal waves in a magnetic field. For a

one specles plasma with a bi-Maxwellian velocity distribution

2 2 2 2

o = —;7;;j%;— (10)
T i ”

f

they show stability when TL/TZ < 2 and wp/wc < 0.6. These results will
be compared with work from Chapter IV of this dissertation. A. V.

29

Timofeev attributes the buildup of ion acoustic vibrations in an aniso-
tropic, nonisothermal plasma as a result of cyclotron resonance. He

showed that for an instability to occur one must have Tzi/TLi < 0.5 and

27w. E. Drummond, M. N. Rosenbluth, and M. L. Johnson, Bull. Am.
Phys. Soc., Series II, 6, No. 2, 185 (1961).

*The symbols T, and TZ are the familiar representation of temper-
atures perpendicular and parallel to the magnetic field. A more physi-
cally correct statement would be the velocity spread perpendicular and
parallel to the magnetic field.

28

Y. Ozawa, I. Kaji, and M. Kito, J. Nucl. Energy, Pt. C k4, 271
(1962).

293, V. Timofeev, Soviet Physics JETP 12, 281 (1961).
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/T S 0.2. Again comparison with results of this dissertation is

zi/ “ze

possible. Kahn,BO making calculations on the same lines as Harris but
assuming instead that the electrons have zero velocity and that the ions
are bi-Maxwellian, proves a sufficient condition of instability to be
wp > wc and Tl = ZTZ. In work closely resembling Model (A) of Chapter
11T, Dnestrovsky, Kostomarov, and Pistunovich51 found analytically that
the ion anisotropy T_Li/TZi must be greater than two and the ratio of the
electron plasma frequency to the ilon-cyclotron freguency must be greater
than one half for the plasma to exhibit unstable behavior. They showed
that the largest region of instability corresponds to long wave length

disturbances propagated almost perpendicular to the magnetic field. The

waves satisfying

k »
Z _Pe w
X o o
ci

n being some integer, are shown to possess the largest growth rate. The
effect of non-zero electron temperature on the stability of the system is
indicated. The above work was carried out using asymptotic expansions of
the dispersion relation. Also Hall and Heckrotte52 prove a necessary

55

condition for stability similar to those above. Hall loocks also at

5OF. D. Kahn, report to be published.

51Yu. N. Dnestrovsky, D. P. Kostomarov, and V. I. Pistunovich,
Nuclear Fusion 3, 30 (1963).

52L. S. Hall and W. Heckrotte, "Stability of Longitudinal Oscil-
lations in a Uniform Magnetized Plasma with Anisotropic Velocity Dis-
tribution," UCRL-7627 (Dec. 9, 1963); and T. Kemash and W. Heckrotte,
Phys. Rev. 131, 2129 (1963).

55L. S. Hall, W. Heckrotte, and T. Kamash, "Ion-Cyclotron
Electrostatic Instabilities." Paper Presented at Sherwood Plasma Physics
Theory Meeting, Gatlinburg, Tennessee, May 7-8, 196k4.
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ion-ion and electron-electron type interactions and derives instability

criteria for these cases.
IV. FINITE GEOMETRY CONSIDERATIONS

In most of the above calculations the major simplifying assumption
was that of a plasma of infinite extent. In an effort to determine the

3k

effect of finite boundaries Burt” derived boundary conditions for a
cylindrical shell of ions rotating at the ion-cyclotron frequency. It

was shown that space charge piling up on the boundaries led to discon-
tinuities in the electric field. Asgsuming that one could integrate

the potential across this discontinuity, a complicated dispersion relation
was found which after various simplifications was found not to be very

55

sensitive to the boundaries. Soper found it more appropriate to con-
sider each boundary separately, calculate the surface charge that migrates
to the boundary upon perturbation of the plasma and derive the boundary
conditions without recourse to step function distributions, etc. Again

it was found that the boundary conditions entered only in a secondary
manner. New "modes" depending on the boundaries were found to be present,
however. An extension of these boundary conditions to the present work

was attempted but was abandoned in favor of a more rigorous method.*

Following an article by Frieman et g&.,56 who show in a case similar to

3k

Burt, loc. cit.

55

G. K. Soper, Master's thesis, University of Tennessee, 1962.

*
See Model (B), Chapter IITI for this discussion.

563. A. Friemen et al., Phys. Fluids 5, 196 (1962).
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Model (B) that the differential equation governing the electric potential
must be singular somewhere in the interface between plasma and vacuum, the
connection formulas are written down in the limiting case of a sharp-beam
boundary. Following this prescription, and using the Burt-Harris model,

a finite geometry problem approximating a mirror machine which has both
strong and weak mirrors is solved. Finally, Shima37 has extended Harris's
original problem to include a rotating beam with finite temperatures. It
is shown that the dispersion relation is identical with that of Harris
(paper III) except that the ions are Doppler shifted due to the rotations.
The solution of this dispersion relation with the aid of a computer is

included in Chapter IV.

M hermonuclear Div. Semiamn. Progr. Rept. Oct. 31, 1962, ORNL-
3392, p. 6l.
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CHAPTER 11T
SOLUTION OF THE PROBLEM

Although each of the four models discussed in the introduction will
be taken up separately, the basic plasma equations, common to all four
models, will first be presented and discussed in some detail. A common
technique for the solution of plasma oscillation problems is based on a
perturbation technique in which the basic equations are linearized, Fourier
and Laplace analyzed, and a dispersion equation obtained. The most general
theoretical approach to microscopic plasma oscillation problems is through
the Boltzmann and Maxwell equations. These equations connect the gelf-
consistent electric and magnetic fields with the particle distribution
functions. The Beltzmann equation without collision terms for the elec-

trons and ions plus Maxwell's eguations are called the Vlasov equations.
1. THE VLASOV EQUATIONS

Du=s to the long range of the electric and magnetic forces between
particles in a plasma, each particle i1s almost constantly interacting with
a large number of other particles. One assumes that each particle of the
plasma moves in an average electric and magnetic field produced by all the
other particles of the plasma and by external fields. Sc if one considers
the plasma as a continuous medium to which electrodynamics applies, the

description of the plasma is given by:

of - e- 1 _ af
s_ti+7.<7fj+m-sl(ﬁ+g\?x§)-w = (=) -0 (1)

and




V. F = b (2a)

vV .B=0 (2b)

vxE--23 (z¢)
> 13F hn o

VxB=S5+ o d (2d)

and where VV represents the gradient operator in velocity space.* Equa-
tion (1) describes the rate of change of the distribution function fj for
each species of the plasma and, of course, Equations (2a-d) are Maxwell's
equations. These equations are made self-consistent with the definition

of the charge and current densities:

_
= e, f.dav 2e
o-) e [s, (2¢)
J
7 :jgj e.L/ﬁg%.dav . (2f)
3 3
J

It is these groups of equations which are referred to as the Vlasov eqgua-

tions.l The unrationalized set of Gaussian units is used throughout.

*

- - A
YT T b

A o)
X Ve
7z

. s 2 5.
dv,,

1

A. A. Vlasov, J. Exep. Theor. Phys. (USSR) 8, 291 (1938). See
also USAEC translation--2729; and E. G. Harris, "On a Self-Consistent
Field Method for a Completely Ionized Gas," NRL-49LL (May 17, 1957). The
rigorous molecular foundation of the Vlasov equation was first investi-
gated by N. N. Bogoliubov, Problems of a Dynamical Theory in Statistical
Physics, Moscow, 1946; translated by E. K. Gora, in Studies in Statistical
Mechanics, Vol. 1, edited by J. deBoer and G. E. Uhlenbeck, Interscience,
New York, 1962; N. Rostocker and M. N. Rosenbluth, Phys. Fluids 3, 1
(1960) derive the Vlasov equation in the fluid limit, i.e., e -0, m - 0,
¢ — o such that e/m and ec remain constant; and finally see R. Balescu,
Statistical Mechanics of Charged
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b

The Boltzmann distribution function, i.e., fj(x, 51 t)d®xd%v,
describes the probability of finding a particle of species % within the
volume element d%x about x and within d®v, the element of velocity space
in time t. The electric and magnetic fields are considered to be the sum
of the average internal and external fields. Also, no distinction need be
made between B and ﬁi and E and D since all currents and charge densities
in the medium are treated eXplicitly.2

It should be noticed that the collision term in the Boltzmann
equation has been set egual to zero. For this reason only oscillatory
phenomena and stability questions can be treated using the Vlasov equa-
tions. Problems concerning relaxation of loag-lived plasma or '"resistive"”
instabilities, for example, cannot be solved using this assumption because
of the lack of dissipative effects. It is shown in Appendix A that the
interaction between individual particles can indeed be neglected.

Equations (1) and (2a-d) are non-linear since E)and Eadepend upon
fj’ making an exact solution of these eguations gquite difficult. However,
a solution of the Vlasov equations is made tractable by considering
systems which depart only slightly from an equilibrium form. One linear-

izes the equations by writing

Particles (Interscience Publishers, New York, 1953), pp. 65-69.
*,
The symbol j represents either ions or electrons.

ZA. Simon, An Introduction to Thermonuclear Research (Pergamon
Press, New York, 1959), p. 138; lecture, Plasma Physics Summer School
of the Danish Atomic Energy Commission, Risd, Denmark (August, 1960),

p. 6h.
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E = f, + B, t) (%)
__} % -
B =B, + Bi(x, t) (5)

where 1t is assumed that:

(a) all perturbation terms are much smaller than the equilibrium
guantities, e.g., f1 << Ty, and furthermore that all products of perturba-
tion quantities may be neglected, (b) E; = 0, there is no steady state

electric field,

(c) B, =By2, (6)
and finally

(@) Br=0 (7)
which implies

(e) Eir = -Vo(X, t) (8)

In this approximation the first of the Vlasov equations is linear and

dropping the subscript j reduces to:

afl hncd e = e
g_t—+V 'Vfl+——'(VXBO) : valz

— Vo -VQf (9)

2l o
o)

where the electric potential satisfies the Poisson equation:
V29 = -l ZZJ ejk/pf1(§i v, t)d3v . (10)
J

It 1s not correct in general to determine the electric field from the
distribution function by means of the Polsson equation in a static
magnetic field problem. Instead, the full set of Maxwell equations
should be used resulting in a coupling of longitudinal and transverse

3

motions. However, it can be shown” that this approximation is justified

5V. A. Bailey, Phys. Rev, §2, 439 (1951); and I. B. Bernstein and
R. M. Kulsrud, Phys. Fluids 3, 937 (1950).
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for the case when_wp << ke and ®, << kc. This is known as the electro-
static or longitudinal wave approximation and designates Coulomb inter-
actions as most responsible for plasma instabilities. A solution of the

zero-order Vlasov equation:

(Vx By) * Uy =0 (11)
where E; = Bé@
is > N

fo(v) = fo(v , VZ) (12)
where

vlg = VX2 + Vy2 . (13)

Although the derivation of the dispersion relation for each model
is based on Equations (9) and (lO), the general discussion will be term-

inated and the individual nature of the solutions presented.

II. THE INFINITE PLASMA MODEL

The derivation of the dispersion relation for the infinite plasma
starting with Equation (9) has been given by a number of authors. The
following development will follow that of Harris (paper I), but omitting
much of the detail.

Since Equation (9) is linear, one can begin by Fourier and Laplace

transforming the space and time dependent quantities:

_)

- - -ik-x - -

£, 70 = [T e @T a ()
and
0

- - iwt - -

flj(k, v, ) =f e flj(k, v, t)dt (15)
0

and similar equations for ®(x, ). If Imw > v and flj and ¢ are assumed
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to be of order e7t for t 2 O, then Equation (9) can be transformed to

give:
af af 4 :
(. 2 1 1)\ =€ e _ - -
1(k v - w)fl wc<§y 5;; VX 3;;> = k vvfo 8(k; V) (16)

where it has been assumed that

and where

-
- - - - -ik- - =
oF D= 7 v-0) - [ LR T o)l (17)

is the Fourier transform of the initial perturbation and where

is the cyclotron frequency of the species.*
It is convenient to introduce cylindrical coordinates Vi, % , and

v, in velocity space. Thus

and Bquation (16) becomes

T

Q/

“
+
e

ied afo
(-w + klvl cos @ + kaZ)fl = Eﬂg'<£l cos @ Sv

(21)

L 90 &
ZEV (66}
Z C

*
The particle designation has been omitted from the above equa-
tions. The following convention is used: for the electrons

w = -eB /mc; for the ions W . = eB /m,c .
ce o e cl o1
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whose solutions is:

o -
I _ ' 1 g i I ! afo + afo '
£1(k, v, o) —L/n dg' G(g, ¢') ¢ (K, ») [nn) kj cos gl so=+ k5=
4 c L Z
+ 0
s (22)
-
+ [ ag' Glg, ¢')e(k, V),
0
where
=10 + ikaZ iklvl
G = exp {- !__—I)_——— (¢ - 525') + 5 (sin g - sin ¢')]} . (25)
c c

The sign in the lower limit of Equation (22) is chosen so that G(g, g")
vanishes at the lower limit when @ has a positive imaginary part. Trans-

Torming Poisson's equation
k2o(K, w) = lmZ effl('lé’, v, ®)a3v (2k)

substituting Equation (22) and solving for ¢, one finds (restoring the

particle designation) that:

O e 2
24 ———#L—u/\S,dav
k=we . J

o(k, ») = -4 2 (25)

where Sj is the last term on the right-hand side of Equation (22),

. o l(Dp ‘2 ., ~ afo P
D(k, w) ::2J ———J—l/nd vk G(g, 8') cos ¢g' dg'
’ - k%bc, 1 E?I ’
J J

+oo

afo
v [ o, e
2 4o B

MI. B. Bernstein, Phys. Rev. 109, 10 (1958).
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is the plasma frequency of species j, and where noj’ the equilibrium
density per unit volume, was added as a separate factor so that foj is

normalized to unity.

The solution to the initial value problem is found by inversion of
the Laplace and Fourier transforms, viz.,

+00+io N
- aw a®k i (K%~ wt)
@(x, t) = —_— S
-00 +ig

o(K, o) (28)

where the above integral is to be carried out in the complex @ plane above
all singularities of @(Ei w). Following the arguments of Landau,5 one
assumes that gj(ﬂi 53 are entire functions of the complex variable v. Upon
invoking analytic continuation of the integrals in Equation (25), one can
show for sufficiently well-behaved zero-order distribution functions that
Equation (25) represents the ratio of two entire functions and that the
only singularities of o(k, ) are the zeros of the denominator of Equation
(25). The time dependence of @(Ei t) is completely determined by these
zeros.

N
The dispersion relation, i.e., the relation connecting & and k,

is then written
D(k, ) =1, (29)

the solution of which in general determines the behavicr of the plasma.
For example, if there exist solutions to Equation (29) for which the

imaginary part of the frequency, ®, has a positive real value, then plasma

5L. D. Landau, J. Pays. (U.S.8.R.) 10, 25 (1946).
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oscillations exist whose amplitudes increase exponentially with time. It
is this growth from arbitrarily small disturbances which is termed an
instability.

Using Equation (26) in (29) and the identity6
o0

Jix sin(e - 6) _ Z I (X)ein<¢ - ©) (30)

n=- 0

where Jn is the Bessel function of order n, one can reduce the dispersion

relation to the following form

20
w2 > x> o df . nd (kv Jo )
1= —2J L/“ dv v, dv - S =5 n L1 o
L K2 L zZ 1778 vy av] Q
. - ZJ
J n=-" -0 0
(31)
2
bk afoj Jn <klvlﬁwcj)
z OV Q. )
z z]
where
sz = - W+ kzvz - chj . <52)

In order to compute the effect of finite temperature distribution functions,
the integrals in Equation (31) are evaluated using the following bi-Maxwel-
lian equilibrium distribution:*

2 2 2 2
1 vy t/ey T - v e
o = e (33)
J 3/2 oalf ozzj

where 01,2 = 2«T,./m, and & % = 2«T__/m, measure the spread in velocities
J L3779 zJ zJ" ]

perpendicular and parallel to the field.

6G. N. Watson, Theory of Bessel Functions (Cembridge University
Press, Cambridge, 1945), p. Llk.

*
Harris used a Maxwellian in the
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The solution of Equation (31) with the bi-Maxwellian is straight-

forward and gives:

L) L o { () ) - )éfz =)

. . —cJ
J n=-% Kj(# a .
7 7]
where
-\
J . .
C = e I AL I A.) = Imaginary Bessel function
In| ln,( J) s lnl( J) g y ion, (35)
k, %o, 2
A (36)
Joow
CJ

and where
2

> -u
2(e) - = [ e (57)
VR
is the plasma dispersion function of Fried and Conte.7 Equation (37) is
defined by Im{ > O and as the analyticic continuation of this for
Im€¢ < 0.
In general the solution of Equation (34) must be obtained numeri-
cally. In Chapter IV simplifying approximations will be made and the

solution discussed.
III. THE HARRTIS MODEL LIMITED IN =z

Suppose instead of an infinite plasma, one considered a plasma of

finite extent. Assume a model in which there exists a plasma slab, bounded

perpendicular direction and Lorentziaen in z, later letting the temperature
in the z direction go to zero.

7B. D. Fried and S. D. Conte, The Plasma Dispersion Function
(Academic Press, New York, 1961), p. 1; and D. Pines and J. R. Schrieffer,
Phys. Rev. 124, 1387 (1961).
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at z = *a, and infinite in the x and y directions. Furthermore, suppose
the particles have a temperature spread in the perpendicular direction and

are cold* in the z direction, or:

2 2
n (z) -V, /Qij

TtOé_LJ.
where the exact dependence of the density on position has been left
arbitrary. Earlier treatments8 of a similar finite geometry problem con-
sidered only infinitely sharp plasma-vacuum density distribution. In other
words, inside the plasma the unperturbed density was given as a constant
and outside, the density was exactly zero.

The form of the distribution function suggests the particles'’
behavior to be described by the Vlasov eguation in the perpendicular
direction and by the hydrodynamic eguations in the z-direction. The
velocity dependence in the z-direction can be eliminated by taking moments
of the Vlasov equation with respect to v, . Letting EZ = 0 as a further

simplification, integrating FEquation (1) over dvz, one has (drOpping the

label j):
0 o0 0
a / - e =
5 f fdv_ + V ) fdv, + —F - v fav, =0 . (39)
~20 -00 -0

Introducing the notations of perpendicular and parallel gradient operators:

_ 3 A O A . OA
V=V +57% vhere Vi ssEE 5 Y (40)

*
Thet is, the particles have no velocity spread in the z-direction.

@]
OG. K. Soper, Master's thesis, University of Tennessee, 1962.
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and similar equations for the velocity gradients, Equation (39) is:

0
OF - ) f e :
STtV YRS v fdv, + = El VT
-C0
o (k1)
e of
+ E Ezf 57- dVZ =0
-0 Z
where
20
JCA SRS R I A TS (12)
-20
Defining ©
e - =
H(x, M t) Ef sz<x; v, t)dVZ (43)
-20
and linearizing, one finds that:
aF e d aH e -5
1 . L. &5 . _
STtV VR bt n BV FO=0 (lh)

The next step in this hierarchy is to multiply the Vliasov equation

by v, and integrate over dvz,

00 o) 20
N )
§L /ﬁ v _fdv +b/ﬁ v o« Vv dv_ + = k/ v E>"V fdv. =0
t J Z z z 2 m z v z
-0 -0 -20

and upon integrating the last term by parts, the above equation gives:

0
OH g o of e = . e
StttV VlH + v, 6;; dv + - E - V%iH "o EF=0. (45)
-0

It is easy to see that following this procedure, one could get as many
moment equations as wished, each coupled to the other. One would have,
say, N coupled equations with N + 1 unknowns. To terminate this hierarchy,

one rewrites Equation (45) to read:
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20 o0
o d 2 o Jf
StttV VE+ 5 (v, -V )fav, +2 5> v, V> fdv,
—00 -20
0 (46)
) e e _
-5 >V > fdv, +=E -V H--EF=0
Y
where %
JF v_fdv
Z
- - _ =0 _ E
L, v, = - (47)
fdv
Z
~20
Defining a scalar pressure
0
P=n L/ﬁ (VZ —<:y;>) fdv,
-0

in analogy with the general pressure tensor,9 the middle three terms of

Equation (46) become

10 ) o
. EEP-F 2 FZ<V>H - <VZ><VZ>F ‘e
or from Equation (47)
S EGS )

Thus Equation (46) is reduced to

OH - o 1 e — o
Ft+vl-VJ_HJFEE(EPJrH(VZ})JFEEJ‘-VVLH-EEZF. (48)
The above equation is linearized by writing
o0 [ve] cO
1 _ 2 2
=P = f v Br v, - 2 f v <V; £odv, f <V> rav, (49)
-00 -00 -0

9I. B. Bernstein and S. K. Trehan, Nuclear Fusion 1, 1 (1960); and
L. Spitzer, Physics of Fully Ionized Gases,
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which 1s zero since fo 1s proportional to 5(VZ>, and since

[ve]
H = L/ﬁ vifdv =20,
@] Z O 4
=CO
therefore
oH 1 oP
1,7 . -1 _ ¢ _
StV Vi oS- B F =0 (50)

As was stated earlier, the particles are assumed to obey the hydro-

dynamlic equations in the z-direction. From the adiabatic relation and the

linearized equations of hydromagnetics, one finds:lO
-
P, ~P V - & (51)
where E>denotes the displacement of an element of the fluid. Since
PO = 0, then P, & O and one finds that
éH — e
1 . S
St VL lel m Eleo (52)

thus terminating the hierarchy. The solution of Equation (52) when sub-
stituted into Equation (4lh) will determine the source function for Maxwell's
equations.

It shall now be assumed that all first order quantities have their
space and time dependence given by a factor:

? - Lot
1 | X.L-l

~g(z) e (53)

(Interscience, New York, 1962), p. 2k.

lOS. Chandrasekhar, Plasma Physics (The University of Chicago
Press, Chicago, 1960), pp. 99-102.
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The dispersion relation obtained in this way is the same as is obtained
from the complete initial value treatment following Landau's prescription
for evaluating the singular integrals. A growing wave corresponds to a
solution of the dispersion relation for which Imw > O.

From Equations (52) and (53) one finds:

e
. m 1z o
_ o —
Q. =k v -0 (55)
and similarly for Equation (4k4)
oH e -
. 1. & . _
10F + 5= +=-F -V, F =0. (56)
Using R N 3o
. ~
El = kJ_(D v z (57)

and substituting Equation (54) into Equation (56), one finds (restoring

the j label again) that:

€. 0 e N
F,, = - —L — ek -V F_.
+J m.Q. 2 0z ( oJ Bz) " m.Q k 1v oj (58)
J ok Jk
where
- _—
P (W vy ) = (@) T, ) (59)
and therefore
hye 2
s _ 2
mj noj(z) - (Dpj (Z) . (60)

From Poisson's equation
3 2
M-KL /f NoRa's M-KZ ejffFlevl
J

or upon substituting Equations (57) and (58), dropping bars on
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F (v, v.):

oj L

et 2
a%o Z f OJ dz < pJ dz> d VL
J

-0

(61)

0
v _F .d%v
e o 2(z)08 /f Jvloj” L J
pJ 1 Q.k
00

Integrating the first term on the right hand side by parts and simplifying,

gives:

d2® Z V F dV
__k2q>=— /f —( S )
az= pJ dz pJ L

which can be written:

[ ae 2 _
L(l-e(z))dz}kl@(1-G(z))_o (62)
where
P d v
G =Z ﬁ _L_J_.__lm 2 (z)
PdJ
or
1 = oo egvv_LFoe o igvv.LFoi
G:—_§<k_l_ '/]‘ Yo a P dEV_L> . (65)
Ky k
-0
Since
m
o f=ZLo 280 ©, (6h)
pi m; pe pe
then

w 2(z) /s, OOV_LF A
Gz—PET—(k j:[ vl oe V01d2V>
1 2, 1

=00

]
—
o
l
O
~—

and letting m,
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w 2(2) o vV F 4d%v
e = vl 1
6(z) = k2—<kl-ﬂ_ o 1) (65)
1 o k
So Equation (62) can be written
L la-oNd] -2 a-oE)r-o
Let w 2 (z)
osa(z)=—P§——2—_<_1 (66)
a4
po

and assume that wpe(z) has its maximum at z = 0 and falls monotonically

to zero at z = £ . Further assume that
— _ e
K = le (67)
and use
oo 2/ 2
- Q
1 /
F :\/p fadv = —=— ¢ Lo (68)
(@] O Z T, =
0 1

to finally show that Equation (62) can be written as:

& (- mee) §] - w® - se) e - o (69)
where
o _Dpo (2
VA ) (70)

where Z(t) is the Fried-Conte plasma dispersion function as defined by
Equation (37). The prime means differentiation with respect to the
argument.

It will be shown that Equation (69) has no solutions that are free

of singularities. The proof follows the work of Frieman et g&.,ll whose

Mg, A. Frieman et al., Phys. Fluids 5, 196 (1962).
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paper on the streaming instabilities of a finite beam passing through a
cold plasma is based on an equation very similar to Equation (69) above.
Assume that ¢ and ¢' are finite everywhere. Multiply Equation (69) by

¢* and integrate by parts to get:

w S

fdz(l - malz)) <!§—5§2 + k l<b12>= 0 (71)

=00
where the surface terms vanish since one assumes regularity at z = Zco.
Taking the imaginary part of Equation (71) shows that n must be real,
and since the sign of the integral must change somewhere, then 7 must be
greater than unity. So if the solutions to Equation (69) are to be regular

everywhere, then

nreal, 1 >1. (72)
Therefore, somewhere in the plasma, at z = z, say, the coefficient
1 - 1A(z) of the second derivative of Equation (69) will vanish, and at

that point this differential equation will have a regular singular point.12

Let
1 do
V=33 (73)
so that Equation (69) can be written as a Riccati equation:
(1= aa())y = (1 - na(z))(52 - ¢?) (74)

and since ¢ is regular at infinity, then clearly as z — +0, ¥ —>—kl < 0;
as z — -0, ¥ —>+kl > 0. Since Equation (69) is invariant under reflec-

tion in z, ¢(-z) is also a solution as is any linear combination of solu-~

tions. Then it is clear that in constructing solutions to Equation (69),

12E. D. Rainville, Elementary Differential Eguations (The Macmillan

New York, 2nd ed., 1958), pp. 276-7.
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one can choose even or odd solutions. From Equation (75) it is seen that
¥ must be an odd function of z. Considering then the behavior for z > O,
it is seen from the asymptotic behavior of ¥ that the only way y(z) can

become positive is i1f it vanishes at some z1. Note that even if w(z) can

change sign by becoming infinite at z = zz, then o(zz) = 0. Since o(z)

-k, z
~e 4

as z - ©, there must be a finite z3 > zp at which 0'(z1) = O and

hence y(z1) = 0. But at any zi1 for which | vanishes one has from Equation

(74):
(2 - m8(z0)) w'(zy) = (1 - m4(zy)) K ® (75)

If z3 % zo, then v'(z1) = kl2 > 0 and hence ¥(z) cannot decrease through

zero. Since y < 0 at infinity, it must be negative for all z > z On

o
the other hand, at z = z, # O or ® and if @(zy) # ©, then from Equation

(69) ¢'(z,) = 0 and from Equation (74)
¥(z,) =0 (76)

unless @(ZO) =0. But if ¢ =0 at z = 2 then since ¢' = O here also,

0

there must exist a z, > z_ for which ¢'(z,) = O and o(z,) # 0. This

O

implies that ¥(z5) = 0. But we have shown above that y < 0 for z > z_.
Thus @(zo) cannot vanish. If for any z, <z < oo, ¥'(z) can become

negative, then since 1 - nA(z) > 0 for z > z., one can infer from Equation

[oF4

(7h) that ¥® > k &, that is

vl >k . (77)

From the parity arguments it has been shown ¢ can be chosen to be elther

even or odd. As one moves infinitesimally away from the origin toward

+

positive z, & and @' have the same sign which implies ¥ » 0 for z O .

il

It is seen that if there exists a z,, 0 <z, < z_, such that w(z4) 0



b5

then w'(z4) = klz > 0. Hence v > 0 for 0 <z < g The coefficient

o
1 - 1A(z) is less than zero for 0 < z < z and if ¥'(z) can become nega-

tive, then again from Equation (7&) it is inferred that 'W‘ > kl' Thus

1t 1s concluded that about z = z_, ¥ is bounded above and below by the

value kl' Hence if & is to be regular at z = 400, then it cannot be

regular at z = z Similar arguments hold for z = -z,.%

o* O

It has been seen above that the electric potential has a singular-

15

ity which depends upon 1. It was shown that the n's formed a continuum
and that by constructing wave-packet solutions the singular character of
the solution was "smeared out" thus enabling them to derive a connection
formula for the solution across the singularity in the beam. This connec-
tion formula turns out to be for the slab geometry simply:

(1 - na) %g is continuous across z = z (78)

which 1s just 14
D = KyE, is continuous — (79)

familiar from electrostatics, where

Koy =1 - 14, (80)

However, one does not have ¢ continucus acrcoss the singularity.
In the special case of a sharp boundary between plasma and vacuum,

1
Frieman et al. 2 argue that one or more of the original assumptions, such

*
The author acknowledges helpful discussions with Dr. R. L. Becker
and Dr. G. E. Guest.

15Ibid.

l%A. B Kitsenko and K. N. Stepanov, J. Tech. Phys. 6, 127 (1961).
This reference gives the components of the dielectric tensor in terms of
integrals over the equilibrium distribution function.

15Frieman et al., loc. cit.



as zero parallel temperature, small fields, ete., breaks down within the

slab edge, so that ¢ is no longer singular and one does have the boundary

condition:

d is continuous .

(81)

With this additional boundary condition the eigenfrequencies are effec-

tively discrete.l6 The sharp edge case will be used throughout this dis-

sertation, again referring the reader to the original paper of Frieman et

al. for details of the "weak~beam" situation.

Appendix B gives a brief

outline of the above considerations using the initial value treatment.

Letting wpe be constant inside the slab and drop rapidly to zero

within a narrow edge at z

(1 - (&

Outside the plasma:

One algso recovers the

Equation (69) then becomes:

K 20) =0 for |z] <a .

infinite plasma solution

(82)

(83)

(8k)

(85)

(86)

(87)

6

Equations (79) and (81) constitute the plasma-vacuum or free
boundary conditions as considered by W. P. Allis, S. J. Buchsbaum, and
A. Bers, Waves in Anisotropic Plasma (M.I.T. Press, Cambridge, Mass.,

1963), pp. ls2-ff.
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from Equation (82). Equation (87) indicates an arbitrary choise of o(z)

inside the plasma slab. Thus, since the connection formula (78) can be

written
do|  _ao| _ a0
dz t a-e  dz lat+e = ' dz | a-€
and since n = 1, then
do
az lare = 0
that 1s, just outside the plasma and similarly for z = -a. Then since

o =0 at z = £, o(z ) must be zero everywhere outside the plasma slab.

This also indicates that the potential in the interior must vanish at

z = *a since from Equation (81) the potential must be continuous across

the interface. ©Since the solutions vanish at z = #a, it is sufficient to

take kZ = %g, n=20, x1, *2,... as the z component of the wave vector.¥
Using Equations (84), (85), and (86) with Equations (79), (80), and

(81), gives a set of four homogeneous, algebraic equations with constant

coefficients. For a non-trivial solution to exist the determinant of the

coefficients must vanish, giving:

n= — -7K8 - (88)

1l xe
One should notice that Equations (87) and (88) satisfy the original condi-

tions that n must be real and greater than or equal to unity. One can

£, and @, from Equations (88) and

L

find the dependence of ® on k,, a,‘wpe

1
(70).

The effect of the boundary conditions can be seen from the limiting

values of Equation (88). In the limit

*
The author is grateful to Dr. T. K. Fowler for pointing out this
fact.
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K8~ o (89)
then
N -2 (90)

indicating that for a bounded plasma the boundary effects have a role even
in the case of infinite separation. In the limit

kja = 0 (91)
then for the positive root of Equation (88)

n -1 (92)

and for the negative root

n o . (93)

In general, using Equation (70) and the expansion formulas found in Fried
and Conte, the dispersion relation can be solved for any value of kla.

However, from Equation (93) one infers for the negative root of
Equation (88) that the plasma 1s always stable. One can conclude that
the boundary effects although present do not limit the behavior of the
plasma in any major respect in comparison with the infinite plasma be-
havior. This is in general agreement with the paper of Frieman et g;.l7
who conclude that the worst instabilities of a finite beam are essentially
the same as those for an infinite beam.

If one includes a static magnetic field in the z-direction, the
solution of the Vlasov equations, although more involved, goes through as
before, and one finally finds the differential equation for the transformed

electric potential @(El, w, z) to be:¥

-dd; [(1 - ta(z)) %‘f_\ -k 2(1 - £a(z))e =0 (9h)

17Frieman et al., loc. cit.

*
The reader is referred to Appendix C for the details of the deriva-
tion of Equation (94).



where 0 -\,
5o e o
EE w : _____=l.___.__) 95
poJ (v - nw )2
J Nn=-00 e
0 -\
U -’JJO.Z = nI (\.)e Y
e=/), 2 ! : (96)
TN T (@ - my)
and
k, %o, Z
1 7L
N = 4 (97)
2L
CJ

Multiplying by ©¢%, assuming regularity at z = o, integrating by parts,

and taking the imaginary part, gives:

Tm {<kZ2>C +<k_|_2> £ }= 0 (98)
where
N — 4ao2
<5 fdz =" a (99)
and
2N\ = 2 2
<1<;l >= f dz le|= A . (100)
Equation (98) is very similar to the infinite dispersion relation
for E = Bolz\:18
kZ 2 k_‘_ 2
1=() ¢ ()¢ (101)

Equaetion (94) is singular when the coefficient, 1 - ¢A(z), of the second
derivative vanishes for some z = +Z.. Since A £ 1, then { must be greater

than or equal to unity for this condition to be satisfied. However, unlike

Equation (69) there are no restrictive conditions on { other than that

18E. G. Harris, "Unstable Plasma Oscillations in a Magnetic
Field," ORNL-2728 (June 5, 1959).
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given by Equation (98). Thus one has for the sharp-edge interface:

a%o
EZ—Z_mZCD:O lzl<a,
and
& kK20 =0 lz| > a (103)
az?2 1.
where
= k2 (==EF) . (104)
1 1 -¢

For an infinite plasms the potentizl varies as

ikzz
o~ e (105)
and Equation (102) becomes:
(—kz2 -m8)d =0 (106)
or
2 = -k 2, (107)

Using Eguation (104), (95), and (96), Equation (107) can be written

00
oo
Y{w) =1 = 2: 2J w 2 e
poJ

j n:_—..OO

which is just Equation (49) of Harris's19 original work.

A, n

k_l.. 2
1 o] o CE e

(108)

In order to make the solution of the non-zero magnetic field case
a little easier, assume only a one plasma-vacuum interface at z = O.
Also first assume that m® < 0 and let

m® = -kzz . (109)

l9Ibid.
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Then the solution to Equation (102) is

® =aq e + a_ e 2 (110)

b =a. e . (111)

Putting Equations (110) and (111) into the boundary conditions given by
Equations (79) and (81), where

K,. =1-¢tAa (112)
gives the following conditions:

a, +ag = ag (113)
and

a, = - 37— (1 - ¢)(ay - a2) . (114)

Eliminating &, and solving for a;/as gives:

| Y )]

X 1 - —2 (1 -t

gl_:_‘ i—ll; . (115)
2 [1 + Ezi (- g)]

This case corresponds to waves approaching the boundary and being per-
fectly reflected.* To solve the problem one must choose ® arbitrarily

and calculate kZ from:

-%2:1&2<i:%£% (116)

If one does not make the approximation of a single interface, but

considers the original the original slab geometry, the solution of the

Notlce [a ‘/!a f =1, as would be expected since longitudinal
waves cannot propagate in the vacyuum region.
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problem results in the evaluation of the familiar secular determinant

which finally reduces to:

2(1 - )k k
. z L
sin ZKZa = p P (117)
L (L -¢) K,
where as before m® = -kzg. Using Equation (109), Equation (104) can be
written:
st 2
\ -\ k n
T(w, k) =1-= z<%£22 e JIH(%){ 2l = ( )
A (W=
3 n=-c0 Ky L M e
2

k, 1 (118)
; )2}

2 2
kZ + k_l ((D - D.(DCJ.

Given a value of the slab width, a, one could in principle solve Egquations
(117) and (118) simultaneously for @ and kZ. Obviously, however, this
would require solving a very involved trancendental equation. Instead,
choose kZ arbitrarily, then determine & from the solution of Equation (118).
Now kZ, w and hence { are known. Finally, use Equation (117) to find a,
the length of the machine for which the calculation applies. As a simple
example let
k, 2>k . (119)

Then Equation (118) is almost independent of kZ, and its solution deter-
mines ®. From Equation (117)

2(1 - L)k k 2k

sin Zkza = L N 1 £ 0

klg + (1 - §)2k22 (1 - C)kz

if 1 - £ does not become zero for the above value of ®.

Thus

2Kk a = nxu
Z

or




k = = . (120)

Now assume mZ > 0 and go back to the single interface approximatiomn.

From the solution of the boundary value problem one finds:

(121)

Using Equation (121) in Equation (10L) gives:
0

¥(w) = 1 =§{j(bpo§ ZE: e-xj tn <k3)-{ 1 (l ;
: i

n==~co cJ

) (1 - §)2 n j}
1-(1-¢)F xjch.(w - n‘%j)

If one examines Y (@) in the neighborhood of wce S>> W o~ ﬂwci, only the term

with n = 4 in the above sum is important. From Equation (95) one sees

that:
{ o0 as® - (123)
and -
1 -
( &) -1 (124)
1-(1-¢)7
and
1
.= (125)

1-(1-¢)* ¢z

Therefore, Egquation (122) can be reduced to the following approximate

expression:
4&2(D,202
1= Yw) = S (126)
n (02 - B B)
1 cl

which indicates that®® is always positive and hence ® has no imaginary

part which means stability.
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ror the case
m=0 (127)

Eguation (104) turns out to be the result Harrisgo finds for the infinite
plasma case with kZ = 0. It was shown21 that there was neither instability
nor Landau dazmping for waves propagating perpendicular to the magnetic
field.

Boundary value problems similar to the Harris bounded model have
been studied by Allis, Buchsbaum, and Bers22 who devote the second part of
their book to the analysis of plasma waveguides and assoclated boundary-

velue problems.
IV. THE BURT-HARRIS MODEL

This problem is based on the finite cylindrical shell of cold
plasma model of Burt and Harris25 in which the initial ion density moves

in concentric Larmor orbits with velocities:

= N
Vi = ro,.B (128)

and where the electrons have zero velocity:

o= 0. (129)

This model would be applicable to a thermonuclear device with very weak

~

mirrors in which Véjo ~ 0. The equations governing the particles for the

2OIbid.

211. B. Bernstein, loc. cit.
22 . .
Allis, Buchsbaum, and Bers, loc. cit.

25P. Burt, dissertation, University of Tennessee, 1961; and P.
Burt and E. G. Harris, Phys. Fluids 4, 1412 (1961).
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cold plasma are

on,
L+ v (nJ.'x?J.) -0 (130)

which i1s the equation of continuity and

v v, x B
| — — S = S j
. = — —
5§l4-vj ij (m).E + an _iTT_ (131)

J

which is the equation of motion for the particles where the subscript j
represents the species of the plasma.

The equations are linearized just as before by assuming

-E) = ﬁl ’ (152)
B - -Bo'z‘ , (133)
nJ- = noj(r’ z) + nlj(r’ 2, 2, t) , (134)
and
;)J = VOJ + —a)lj(r) §Z§, Z) t) (155)

where products of perturbation quantities will be neglected, and where
the r and z dependence of the equilibrium density has been left arbitrary.
Substituting Equations (132) through (135) into Equation (131), gives (for

the ions:*

Yy Ui A Ay _e §
w W - = ——
3t T o197 T ci(urdg Ui ) m, E . (136)
Assuming that all perturbation quantites vary as
it -1 4g (137)

nug(r,z) e

one can write Equation (136) as

*
The fact that 3?/a¢ = g'and 8876¢ = -? has been used in this
derivation.
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i m, i
i
— .
where the tensor o, is defined by
in wci ]
0
o 2 . 2 o 2 _ 2
ci Qﬂ ci Qz
@® iQ
—
GZLE -— cl 4 0 5
o 2 - - 2
ci Qz ci Qz
0 0 =
iQ
_ v
and where
Q =w - .
£ ci
Similarly, for the electrons one gets:
4 =-=5% -E
e m e
e
where L
. B
1 wce
0
w 2 .02 w 2 202
ce ce
W T4
ﬁ;* = _ ce * o
€ w 2 -7 ® 2 .02
ce ce
L
0 0 o
and — —
eB
® o= . =2,
ce mec

Using Equation (137) in (130) and substituting the perturbed density

into Poisson's equation which is:

_)
V *© E = lbre (n1i - nle) s

(138)

(139)

(140)

(141)

(143)

(144)
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1

one gets
w 2(r, z) © Z(r, z)
V-[(él—}+ — ’8’?+—Ee—.,}———(?>-E_> =0 . (1k5)
\ Qg i iw e

If one neglects the perturbed part of the magnetic field so that

E = Vo, (146)

v-[?-v{lzo (147)

is the differential equation for the electric potential of the Burt-Harris

then

plasma, with

—> 6]—_-) w ig(r; Z) — @ eg(r} Z) —>

= Lr - ke
K + 5 o, + o o, (148)
Y/
defined as the dielectric tensor of the plasma.
Dividing Equation (147) into its perpendicular and parallel parts,

results in:
if oK ) 30
; aiad . -
V_L [Kll quzl - o 'E'Ija + 57 (KBB E) o . (l)-l-9)
If one considers only the region of @ for which

o, Ko w, o << |lo |,
cl ce

pl pe
then the die}ggtric tensor becomes:
w 2 o w 2
l—————Pi——-———- _ ci pi 0
2 2 2 2
Qﬂ - Loy lQﬂ(QE - Pes )
— w w2 w 2
T ci pi 1 pl 0
. 2 _ 2 2 _gp 2
lgz(gﬂ CDci ) Qﬂ cli
w 2 n 2
0 0 ;. P _ _pe
Q2 CD2
L 2 .

and Equation (149) reads:
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w y) W &biz
vl-<1-————-pl——- Ve + =0 € P
2 _ ., 2 r 2 _, 2
Q Pei QZ(QE ci ) or
(151)
w 2 \ 30
+__ (__p__ _P___.> o
&)2 aZ
Concentrating on the root near ® ~ ﬁwci, one has
w 2 w 2
l_———_B.].:_____ ~ ] + cl ~ ]
02 -w 2 w 2
£ ci ci
gand 1if
2 _ 2
wpi _wpi (Z)J
then
dn 2
el _
or
and 1f
2 _ ., 2
then assume
1 .
+_ << 1
E ci
so that the differential equation becomes
=0 (152)

b

3 | 30
2

V.L ®+FZ (l -’QA(I‘, Z))gg
where the A(r, z) is defined so that it is less than or equal to unity

but greater than zero as r and z vary, and where

0 2 W 2
no= ke g EOS (153)
9’22 UJ2

is not a function of r or z.
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Suppose that the plasma 1s infinite in the r direction and that
A = Az) (154)
then assuming the potential to be given by:

§ = P £_i£¢J£ (klr)F(z) (155)

so that the r and g dependence of ®(r, 3, z ) transform like:

o0 0
u/\ Jm(klr> g% (r g%) dr - /&ZL/1 % Jm(klr> ddr
0 C
0 0
= -k_LEL/ﬁ Jm(klr)®(r)rdr + (m® - EZ)U/ﬁ % Jm(klr)Q(r)dr
0 C

= -kf@ when m = £

and Equatiocn (152) becomes
d daF o oom
Iz [(l - T]A) a‘z—] - K_L F=20. (156>

Applying the same analysis as in the Harris bounded model, one can

show that 1 must be real and

n>1. (157)
Equation (156) is very similar to Eguation (69) of Section III and one can
prove similarly that i1f the potential is to be regular at z = w0, then the
solutions must be singular somehwere in the plasma edge. However, assuming
a sharp boundary so that the eigenfrequencies are discrete, one can write

the equations for the potential as

v.(E- ) =0 for |z| < a (158)
and

V20 = 0 for |z] < a, (159)

and taking A = 1 inside the plasma and falling rapidly to zero at z = *a,

then the boundary conditions can be written as
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dd do }
(l"n>agz=ia$€__522:iaie (160)
and
QIZ =*a Te¢ qDlz::ia *e <l6l)
Equation (158) becomes, using Equetion (15k),
2
aZF K|
oL T <
By fal< e
whoge solution is
F~gin k z
Z
where s
2 K|~
k <= , (162)

and for Equation (159) the equation is:

acF o
- - - >
1.2 kl F lzl a
and whose solution is
—kLZ
Fe~e for 7z > a
and klz
Fe~e for z < -a .

Substituting these forms into the boundary conditions, gives a secular

determinant, the soclution of which is:
ten 2k a = —— (163)

and where

(16k)

Using the tangent double-angle formula, the dispersion relation (163) can

be written:
2 tan kZa 2K
- = (165)

2 2
1l - tan kZa 1 -k
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which means that
K

ten k a = 1p (166)
K

It can be shown that the only solutions to the above equation are those
for real kz.zlL This is reasonable since it has been shown that n 2 1
and real, and kZ and 1 are related through Equation (162). One can plot
Equation (166) to find the solutions as seen in Figure 1. In principle,
the roots of Equation (166) can be found and the dispersion relation

solved. Particularly for large kza the solutions to Equation (163) can be

written:
<% (n+2) = (167)

and

K & nw . (168)

Equation (167) and (168) are very similar to the odd and even modes derived

25

by Dawson and Oberman for a similar geometry but where the particles are
constrained to move along the field line. However, in general the roots
must be found numerically, and calling these roots Kn, the dispersion
relation becomes:

n =1+&k (169)
n being given by Equation (153).

Now if one assumes z to be the infinite coordinate, the differential

equation is written (see Equation (152)):

Vl2® - kzz(l -na(r)) @ = 0 (170)

Soper, loc. cit.

25J. Dawson and C. Oberman, Phys. Fluids 2, 103 (1959).
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ik, z
where the z dependence has been given by a factor e . One can see

that Equation (l?O) is singular nowhere, the eigenfrequencies are discrete,
and in principle Equation (170) can be solved for any r dependence on A.
However, for simplicity only the sharp boundary case is considered here.
With A = 1 for r < R, R being the radius of the plasma cylinder, the
differential equation is:

£2

% g% (r %;) -5 0 - kz2(n - 1) =0

whose solution is:

177
with
2 = 2 _
k== k (n - 1) . (171)
But a, = O since Y£<O) = ®, S0

o(r) = a,J (klr) r <R. (172)

Outside where A = O the differential equation becomes

2
19 (r @g) 4

= -0 -k 2 =
r dr of rZ 2z ©

whose solution is

o(r) = a,I, (kzr) +ak, (kzr) .

But a, = O since I ,(0) = ©, and so one has for r > R

; K

o(r) = a K, (kzr) .

Applying the familiar boundary conditions and solving the resulting

secular determinant gives,
1 1
I, (klR) K, (kZR)
K
£

k.l.<l - T]) S‘BK-L—R)—— = kZ W (17%)
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where the prime means differentiation with respect to the argument. This
equation determines a discrete set of kl for a given k_  and this used in
Equation (171)

N =1+ (175)

gives discrete 1. Equation (175) is essentially Equation (120) of
Frieman et gl.,26 with kl/kz of Equation (171) above replacing their £2.

These authors find, as mentioned before, that the worst instabilities of

a finite beam are essentially the same as those of an infinite beam.
V. THE SHIMA MODEL*

For the infinite plasma with bi-Maxwellian distribution described
in Section II, the many ion orbits overlap. There was no average velocity
and no average current. However, for machines such as the DCX's and OGRA
in which the plasma is of finite size--about one or two ion orbits across--
the infinite plasma approximation is no longer justified. Although there
is a uniform field, there will be a strong diamagnetic current because of
the finite size of the plasma. Shima27 has shown that this situation can
be approximated by another exactly solvable problem, again an infinite
plasma, but one in which the bi-Maxwellian ion distribution rotates as a
whole at the ion-cyclotron frequency. Also, the lons are allowed to have
different temperatures parallel and perpendicular to the external magnetic

field as seen in the reference frame rotating with the iomns.

Frieman et al., loc. cit.

*
This discussion 1s based on remarks by T. K. Fowler and Y. Shima.

27Y. Shima, Thermonuclear Div. Semiann. Progr. Rept. Oct. 31,
1962, ORNL-3392, p. 61.




65

So for Shima's case the equilibrium distribution function for the
electrons is of the form foe(v , VZ) and for the ions is of the form
(V_L'J VZ) where vl' is the velocity megnitude in the x-y plane of

reference rotating at the lon-cyclotron frequency and in the same sense

.
ol

as the ions. (See Figure 2.) The rotating distribution function
foi(vl’, VZ),except for boundary effects, describes a spatially uniform
beam with finite temperature in a uniform field. The Burt-Harris problem
is a special case of Shima's model in that Burt and Harris make the approx-
imgtion of zero temperature in the rotating frame of reference.

Analyzing the problem in cylindrical coordinates in order to couple
the rotating ions to the fixed electrons, Shima found in the extreme* case
of ions rotating at the ion-cyclotron frequency, that the dispersion rela-
tion is just exactly as that for the infinite plasma model except that the
ion terms of the species sum have been Doppler shifted by ﬂwci, where £ is
an integer denoting the azimuthal mode number. Thus for numerical work
one need only add the term ﬂwci/kzazi to the argument of the Fried-Conte

plasma dispersion function in the ion terms in order to take over the

infinite plasma formalism.

*
The word extreme is used since in most machines the frequency of
rotation of the ions is somewhat less than wci'
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CHAPTER IV

THE NUMERICAL SOLUTION OF THE INFINITE

PLASMA DISPERSION RELATION

The solution of the infinite plasma dispersion relation for ions
and electrons with bi-Maxwellian velocity distributions has been investi-
gated previously in an attempt to extend Harris's original work.l The
work included in this chapter has been done with parsmeters and simpli-
fying assumptions which approximate the thermonuclear machines mentioned
in Chapter II. Comparison with previous results show qualitatively
similar results. However, the numerical solution of the Shima Model
indicates that one of the anisotropic modes of the infinite problem inter-
acts strongly with the diamagnetic current and becomes essentially the
instability found by Burt and Harris.2

The numerical work was done with the aid of the Control Data
Corporation 160L4-A computer system. The numerical codes were written in
Fortran 62 language and the total computer time for each run was usually
less than three minutes. A typical code is included at the end of this

chapter.

Ta. v, Timofeev, Soviet Physics JETP 12. 281 (1961); Yu. N.
Dnestrovsky, D. P. Kostomarov, and V. I. Pis%ﬁhovich, Nuclear Fusion 3,
30 (1963); Y. Ozawa, I. Kaji, and M. Kito, J. Nucl. Energy, Pt. C k,
271 (1962); and Laurence S. Hall and W. Heckrotte, "Stability of Longi-
tudinal Oscillations in a Uniform Magnetized Plasma with Anisotropic
Velocity Distribution," UCRL-7627 (December 9, 1963).

2p. Burt and E. C. Herris, Phys. Fluids %, 1412 (1961); and E. G.
Harris, "The Effect of Finite Ion and Electron Temperatures on the Ion-
Cyclotron Resonance Instability," CIM-R32 (October, 1963).
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I. REDUCTION OF THE DISPERSION RELATION

The dispersion relation to be solved was derived in Equation (BH)

of Chapter III:

) (L )Zc; HOL=NE;

- nw

<zz

J

ZJ

s

=)}

(1)

where the quantities above have been defined by Equations (34) through

(36) of Chapter IIIL. Performing the sum over the species of the plasma

and writing the dispersion relation in dimensionless form, the above

equation becomes:

a}pzz cw (xi) { C%Z)‘gzv

n=-o0

'_l
I

=+
@
S
Y
[>18
_o
B

_na)‘<kl2 nzz—n%
c

7 (51/2 9-1/22r_

e

51/ 9-1/236) }

where xj is defined by Equation (36) of Chapter III

and

i

I

e

)<{ <ﬁ§>22'(61/2 9-1/23,_ n5"1/2 9-1/29E)
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m

S:f} (6)
i
and
ze *
o = 222 (7)
zl

But Xe can be expressed in terms of the gyro-radius of the electrons:

1l
A =-r. Zk?Z (8)
4
where
e T Oie/wce (9)
is the Larmor radius of the electrons, and if the temperature of the
electrons is less than or of the same order of magnitude as the temper-

ature of the lons, then
<<
e T YL
and one has

A<, . (10)
e i

The waves considered in this problem are ones for which

kr ., ~1 (11)
and thus

N <1 (12)
In view of this approximation only the n = O term of the electron contri-
bution is important, since from Egquation (35) of Chapter III:

A
Clal = © © I,nr(xe) X0 forn#£0

-A
and furthermore, CO e °© Io(xe) ~ 1 and the dispersion relation can

now be written:

*
This term will be referred to as the electron temperature term.
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0

(23,) L2 L) 00 21 g) - gty ge)]
—k_ b n=-~<co

1

(13)
and where o T .
L \2 .
= a%i = Eéi (1k4)
1i 1i

is the term which measures the degree of anisotropy of the ions. The first
term of the right hand side of Eguation (13) is the electron term, the
second the ion term. For the Shima Model all one need do is replace the
variable% by %+ E% in the ion term only.

In principle, Equation (13) can be solved to find:

k
VA Ao LY SRS I (15)
Let
Z:x+iy (16)
where
k?
x=x(—f%p,2c,T,9,>\.,6,,@) (17)
and "
YZY(—R%§P;%C;T;9;>‘-;5;'Z> (18)

and for a given £, &, 6, T and A, one can draw curves of constant x and

y in the (kz/k)ﬁ]g-}c plane. The curve y = 0 is particularly important
since along it Z is real and y must change sign as the curve is crossed.
This curve then divides the stable and unstable regions of the
(kz/k)§]g-w9c plane. Since the time dependence was assumed to be of

the form e_lwt, then substituting Equetion (16), one sees that

*

This term appears from the (l/xi)(kl/k)z(n/gg) term of Equation
(2), using Equation (36) of Chapter III and Equation (%) of this
chapter.
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T1

-iwt -i(x + 1y)tkzazi -ixtk @ . ytk oo
e =e = e e

so since the sign of the imaginary part of the frequency changes from
negative to positive as one crosses the y = O curve, one has passed from
a stable operating region to an unstable region. It will be shown later
how to calculate the growth rates in these unstable regions.

The procedure for the computer calculation can be described as

follows:
For y = 0, take the imaginary part of Eguation (13)*
0
S(x) =0 = L o1ug(s1/2 9'1/2x) +-§: C mz'(x + 42, - n3 )
] ln’ 2& 26
n=-

(19)

- Zn}CTmz(x + 336 - nz/c)}

and the real part
<)

k Op _ 239ETRGZ(X v o3 - ng) }-. (20)

Choose A\, 0, T, 8, and £, then for a given value of;k: (some value of the
magnetic field) plot Equation (19) and find its roots; that is, find the

values of x for which S(x) = 0. Use these roots in Equation (20) to find
(kz/k>3b' This then locates points in the (kz/kX}ﬁ -3 plane. One then

repeats the procedure for another value of%%é until the map is complete.

*
For completeness the factor %;& is included in the ion term.
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In order to make use of such a stability-instability plot, one
must first choose the parameters for which the most unstable plasma
exists, that 1s, parameters for which the unstable region of the
(kz/k)zap _?yc plane is largest. Then one can vary these parameters to
find their effect on the stability of the plasma system. For the present
general discussion the value of £ will be taken to be zero. Its very

important effect on the stability boundary will be discussed later.
II. THE £ = O CASE

The most unstable plasma exists when the electron temperature
term (8) and the ion anisotropy term (T) are zero and the value of A
is approximately three.* Figure 3 shows a plot of S(x) vs x for various
values of xi. It can be seen that these curves are not very sensitive
to changes in Ki near xi ~ 3. It can be shown using Equation (36) of

Chapter III and Equations (4) and (14) of this chapter that

l l

5 " (21)

T

So as T andA3% vary, then Ki should change also. However, xi is held
constant by varying kl/kz appropriately. The solution of the problem

was found to be

?:%(%%:?C:G:T)Xi)6:2)3

it could just as well have been written

Kk
}=@<f}p’2/c’9:“%z;:5:”- (22)

*
5\ Xi was chosen to be three, since this made the first few

e lIlnl(xi) near their maximum values.
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The most unstable choice of kl/kz is the one which makes xi = 5. There-
fore, for a given 9 and T, the Imzy = 0 curve in the (kz/k)sz - %, plane
traces out the most unstable region if kl/kz is continually adjusted to
keep xi & 3. If kl/kz is varied in any other way, a smaller region of
instability would result.

For real values of the argument the real and imaginary part of

the FC* functions have the following properties:

ReZ(x) = -ReZ(-x) , (23)
Imz(x) = Imz(-x) , (24)

and
7' (x) = -2 - 2x2(x) . (25)

Thus, when loocking for the solution of Equation (19), one need only con-
sider x = R%5'> 0. One should notice, however, that tais is true only for
4 = 0. For the above parameters, the behavior of the imaginary part of
the solution is given in Figure 4 for a few values OfZK:'

It was found that for 9% >> 1, the roots of the imaginary equation

were approximately (taking T = 0, first):

x= (-9 % (26)

and

x = ‘jﬁlc (27)

where
J=1,2, 3,.... (28)

and substituting these values into the real part of the dispersion rela-

tion gives:¥*

*
Fried-Conte plasma dispersion function.

*%
With 6 = 0, the electron term of the imaginary part of the
dispersion relation was zero. For the real
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10

1 _ 1
kZ 2 . 1 2 = i
(¥ (-3p7 =

The second term on the right hand side is negligibly small; so
1 Z
9’0_ . 1 <kk2/p>'
(J -E)

For the second set of roots

10

S R
x Jo c neT

where the second term on the right hand side becomes

1

SCzReZ’(O) = -28C

P
Thus
1 (k,/k) %
% ! /1 + 2602(% }p)E

and approaches

% = 1/,/232%

6Z |, ReZ [(j “n - %)%C:I.

(29)*

(30)

(31)

(32)

(54)

as (kz/k)zfp approaches infinity. The behavior of these curves in the

(kz/k>%fp plane is shown in Figure 5 with the regions of stable and un-

stable operating regions marked.

part the electron term reduces to l/xz.

*

The infinite sum was replaced by a sum from n = -10 to n = +10,
since C,n' (3) became negligibly small for n > 10. For large values of
3o only two terms of the sum were significant, n=j - 1 and n = j, the

remaining terms, exponentially small.
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Giving the ion anisotropy term, T, a non-zero value increases the
stability of the plasma as seen from Figure 6. The root which was located
at Jﬁé will be shifted to j}é(l - T). The root located halfway between

. - .ﬂ 3 . >> .
(j 1)26 and Jaa is not shifted. So, forzyé 1, the solutions to the

imaginary part are:
1

= (J = g)ﬁc b (55)

ko]
!

and

]
I

jga(l -T) . (36)

It was found that the unstable region would vanish¥* if

(G- 9% > FZE -1

or if 1
T > 23 (37)

a relation found analytically by Dnestrovsky et g£.5 for j = 1. Compar-
ison with the work of Ozawa, Kaji, and Kito.LL who solve the dispersion
relation for a one species plasma, in a different manner from that in
this dissertation, is accomplished by redoing this problem using xi = 0.1
and T = 0.1 and neglecting the electron term. Figure 7 of this work is
identical to Figure 6 of their paper.

Heating the electrons, that is, giving 8 a non-zero value, also
improves the stability. For T = O, and non-zero €, the imaginary part

of the dispersion relation, is:

10
S(x) =0 = % ImZ'(61/2 67%/2%) +->J c'n‘ ImZ'(x - %}é) , (38)
n=-10

*
That is, there were no roots of Equation (19).

3

Yu. Dnestrovsky et al., loc. cit.

Ozawa et al., loc. cit.
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and for O less than about five the amplitude of the electron contribution
is greater than that of the ion contribution, as seen in Figure 8. For
sufficiently largezyc there will be a solution of the imaginary part of
the dispersion relation. The O < 8 N 5 curves then are displaced upward
and the "half-integral" roots are displaced toward the integral roots as
seen for the O = 0.0l curve in Figure 9. For 6 greater than about five,
the amplitude of the electron contributions is less than the ion contribu-
tion (see Figure 10) and the imaginary part of the dispersion relation has
a solution for all values ofz%c,* except near'/}/(3 = 1 where the n = O ion
contribution is important. Figures 11 and 12 are plots for O about five
and larger. With both 6 and T non-zero the imaginary part of the disper-

sion relation takes the form:**

0.1 (gl/2 g=1/2 '
S(x)—O-QImZ(B 6 x)+ClZ<X-g/c)-2%TZ<x—é/c) .
(39)
One root is about at x :j§b<l - T) and the other is found from (assuming

T is small):
%ImZ'(Bl/z 9'1/2x) + ClImZ'(x -ch) =0, (40)

whose solution is approximately

x ~ I . (k1)

T 14 81/2 g71/2

One sees that qualitatively the instability vanishes when

*
However, some of the solutions to the imaginary part when sub-
stituted into the real equation yleld negative values for (kz/k'éb)z'

This form was suggested by E. G. Harris after conversation with
M. N. Rosenbluth.
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Y i
ke

. 5l/2 g71/2

T >
1+ 8l/2 gm1/2 ?

J=1, (42)

again a result found quantitatively by Dnestrovsky et g;.S Thus the
plasma is stable if condition (42) is satisfied or if Equation (37) holds,
whichever is smaller. A plot similar to the one drawn by Timofeev6 is
shown in Figure 135. However, Timofeev's curve did not include the portion
for 6 S 5, thus indicating stability for 6 < 5 at all values of T.

For £ = O, one can draw the operating regimes for ALICE and Phoenix
and the £ = O modes of the DIX's and OGRA. These regimes are presented
in Figure 1l4. The boundaries of the operating regions are determined by
the maximum and minimum values of kZ. For kZ = k, the maximum value of

kZ, one can draw a boundary whose slope is wpe/wci' Since

o 5x 104VG§; (43)

b

and considering typical ion cyclotron frequencies of 10° sec'l, one has:

slope ~ 5 x 10—4\/n . (4k)

e}

For ALICE, DCX-I, and Phoenix, the densities are between 10’ and 10° cm_g,

and the slope as a lower bound on the operating region can be drawn as
shown by the long dashed lines on Figure 1k, For OGRA, n, ~ 10° cm™3
and for DCX-II, densities as high as 10'° cm™® have been reached. The

minimum value of kz is determined by the maximum wave length that can

5Yu. Dnestrovsky et al., loc. cit.

6Timofeev, loc. cit.
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exist in the machine, which is approximately the length of the machine.
For ALICE, Phoenix, and DCX-I, this is about 10 cm; for DCX-IIL, 1 meter;

for the OGRA, up to 10 meters. Taking azi to be about 10° cm/sec, one can

write
w 102 L
% Tk él 2 T ox (45)
d‘ z zi 7% 108 n

This bound is represented by the crosshatching in Figure 14, this bound
being flexible because of the uncertainty in the length L. The DCX-I
region i1s lower than Phoenix or ALLICE because of the higher injection
energy and therefore larger azi' The effect of ion-anisotropy and elec-
tron temperature can clearly be seen from this figure. A small amount

of electron temperature, theoretically, can stabilize the lower operating
regions with respect to the Harris instability and may eliminate some of
the low harmonics in the larger injection machines. Growth rates have
been determined for the unstable regions using a perturbation technique.

This aspect will be discussed later.
III. THE £ # O CASE

For DCX-I and IT and OGRA the Larmor radius of the lons is compar-
able to the machine radius and the infinite plasma model is a poor approx-
imation. However, the approximation introduced by Shima, representative
of plasmas about one Larmor diameter across, can also be solved numerically.

It has been shown that the dispersion relation for this case is:

o
1

— L oi/s1/2 -1/2X N x4 p
6(% %p)g 5 Z (3 6 ) nz_oocln, [z ( ﬁ,}c -
- nzé) - BanTZ(x + ﬂ}b - %3éi] .
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The general procedure outlined for the infinite plasma solution can be
followed for this case. However, due to the lon rotation, the imaginary
part of the dispersion relation is no longer symmetric with respect to
Re}f: x. In fact, it was found that for each value of the azimuthal mode
number £, that anisotropy mode with angular velocity (= Rew/z) most nearly
coinciding with that of the ions changes character and becomes essentially

7

the instability found by Burt-Harris' of zero-temperature ions rotating
through electrons.

Shima found it more convenient to analyze the problem using cylin-

drical waves, so perturbations were assumed to go as:

-iot - 146 ik =z

~ e 3,5 r) e z . (47)

Since

e-iwt - 146 - eImbt e-iRewt - 146 ) (48)
and if Rew < 0, then this represents a wave moving in the positive 6
direction with angular velocity lRew'/ﬂ. Since the ions rotate in the
positive 6 direction (remember it was assumed that §>: -BOQ), it is those
waves with Re® < 0 which interact most strongly with the ions. In order
to display these results, it is convenient to take (kz/k)ZYp negative for
X = R?} negative, always with the understanding that (kZ/k)Z'p is really
positive.

Figure 15 shows the results of these calculations for 6 = O,

T =20, and £ = 1. For the portion Rew < 0, one sees regions unique in

the analysis thus far. First of all, one finds a boundary (Iﬁ},z 0)

extending into the origin similar to the Burt-Harris mode (see Figure 16).

7Burt and Harris, loc. cit.
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Furthermore, for this case, one finds "more stability" than is found in
the Burt-Harris problem (as seen by region A in Figure 15). Also the
anisotropy modes, regions B,* contribute "spikes" of unstable regions.
Figures 17, 18, 19, and 20 indicate how these modes are affected by the
ion anisotropy. Increasing T removes the anisotropic modes but leaves
the Burt-Harris mode effectively unchanged. However, giving the elec-
trong a finite temperature removes the Burt-Harris instability and moves
the unstable regions to higher 3@ values, as was found in the infinite
plasma solution. Figures 21 and 22 are examples of this fact.

The effect of £ can be seen by comparing Figure 23 with Figure 17.
For low values Of}’c increasing £ increases the unstable regions for low
density and decreases the stable region for larger density. Figure 24 is
a plot of the operating regimes for the machines applicable to the Shima
approximation. The dashed line on the Burt-Harris modes indicates the
effect of heating the electrons.

In order to complete the computer calculations one must be able to
determine the growth rates for the unstable regions. To do this exactly
is a formidable problem, indeed, and for the purposes of this dissertation
a perturbation technigue** was used. Using Equation (46) and for sim-

plicity letting T = 0, one gets:

——kz_l_e _ F(B’) - % Z'(61/2 9-1/2 ) +Z Clnl Z.(‘%Jr 236 - ng/c) (49)
6<T}p> e

*
There are further anisctropy modes, as seen in Figure 17. For

T = 0, in theory there are an infinite number of the anisotropy modes

each with decreasing unstable area as the mode number j increases.

X%
This method was suggested by T. K. Fowler and E. G. Harris.
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where
F(z) = R(g) +1iI(g) , F=x+1iy (50)

and where

R(%) is real for real %
and

I('br) is real for real 3« .

The boundary between stable and unstable regions is given by:
I(x) =0 . (51)
Expanding about small values of y, one finds:

F(x + iy) ~ F(x) + in'(x)

. F(x + iy) = R(x) + iI(x) + iy [R'(x) + iI'(x)] (52)
1 . .
= ——R——Z—— which is real.
515,

Therefore, the imaginary part of Equation (52) reads:

0 = I(x) + yR'(x)
or
y = Imy= - ;ng}z (53)
where
X =Re?. (54)
For 6 = 0, one can write
o0
R(x) =§§+Z Clq] Re2'(x + sy - ) (55)
=-00
e o)
2 "
R'(x)=-gx—3+z Clnl ReZ (x+z§,c-n%) (56)
and 00
I(x) =Z Cln' ImZ'(x + Z% - n'afc) . (57)
n=-00

Using Equations (57) and (56) in Equation (53) determines the growth
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rate for the unstable modes. Again the use of a high-speed computer
system makes the analysis of equation (53) quite rapid. A sample program
for this calculation is found at the end of the chapter.

Notice for 8x%2 << 1 (i.e., for x << V/?E;7£;73, and using

|Rez."| = 2, that
max

R(x) ~ =5 (58)
dX
and therefore
1 1
k, > R(x) = 5x>
6(7;??p)
which yields K 2

2

=% = Ixl (59)

a fact which was used in displaying the curves on the Rew < 0 side of the
(kz/k)ﬁyp -'3% map. The numerical solution of Equation (53) showed that
most rapidly growing waves are those for which

k

z
—_— W PN
k “pe IPei

indicating the resonant character of this instability. The growth rates

i h
or the Lk

1
Z ~ 3 ——
-R—UJPGN(J -Z)U)
waves were negligibly small.

The perturbation technique is limited to values of x in Equstion

(53) which keep the value of y small. Fquations (56) and (53) show that

0
—— C ReZ
8x° lnf ©

n=-o

values of x for which
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makes y very large. It was estimated8 that the perturbation technique

was valid for values of |x| < 12.
IV. THE FORTRAN CODE

The program for the location of the points for the stability map
was found to be most efficient when a separate run was made for each
value of 6. Program DAMNIT was coded such that the machine, after giving
it a value of 6, would pick a value of T, a value of £, and a value of
3’C’ and start computing S(x), the imaginary part of the dispersion rela-
tion. It was usually faster to have decks for the programs with x = Re
less than or greater than zero than to make IF statements to exclude the
value x = 0. The machine would compute a value for S(x), the increments
in x being 0.2, until S(x) changed sign indicating a crossing of the axis
or a root. Using the method of false position, the roots were located
and stored and used in the calculation for the value of (kz/k)}/p. The
results were printed out as values of (kz/k)éyp for each root as a
function of?yc. The machine would then pick another value of’ZE and start
the process all over. The normal computer time for a typical run was
about three minutes. Program MINKOW, which computed the growth rates as
a function of x, was very much the same. Sample programs are included at

the end of this chapter.

8

T. K. Fowler, Private communication.
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BEGIN J®B Gn4 05-(2-64
cear,ipg601,GK SBPER
FARTRAN,I.0,56,
PRAGRAM DAMNIT
DIMENSION C(21),ZPCIN),RAOTCID)
Cel1)=0.00000097
C(2)=0.00000659
C(3)=0.00004051
C(4)=0.00022265
C(S)=0.00107956
C(6)=0.00454090
C(71=0.01621591
C(8)20,04778332
€C(9)=0.11178255
C(10)=20,19682671
Cti11)=0,24300035
c(12Y=0,1968267 1
Cei13)=0,11178255
C(i14)=0,04778332
C(15)=0,01621591
C(16)=z0,00454090
Ce17y=n,00107956
C(18)=0,00022265
Ce19)Y=0.00N004051
c(20)=0,0000065¢
ce(2iY=0,00000097
P1=3,5449(078
P11=0.,5641896
D=|c/|8é6'
SQRTND=SQGRTF(1./1836,)
Qz0,.0
T=0,N
Als|,
WRITE(9,300)0,T,A|
30N FARMAT(IH]|,2HQ=,F4,],2X,2HT=,F4,|,2X,3HAI=,F4.1)
WRITE(9,302)(L1,LIi=1,7)
302 FARMAT(IHO, 16X, 7¢2ML=2, 11,10X),9X,3HL=R)
DrR2J=1,15
0=
L=l
Miz|5,%ZC-5.
M233N, *ZC~ 1.
NAIK=M| s M2
Y3zK
7z20,2%¢(=30.,*72C+Y3)
IF{ARSF(Z)=i0,*ZC)70,70,2
7“ S:ﬂ,,ﬂ
Dﬂ5N=l.2l
ExN=1|
5 S2S+C(N)*(Z+AL*ZC+EZ20%( 1 =TI *EXPF(-(Z2+(E+AI)*ZIC)**2)
==5*P1
IF(ABSF(Z+3,%2C+ . Y=1 E=5)Y11,11,13
I3 S2=28
123
IF(ARSF(S)~|,E~-300)14,14,7
7 G=S0/S
1F(GY IO, 01,11
0 21s2
Si1=35
NCBUNT=0
25 2=z21=S1*(21-20)/(S51=-S0)
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S=n.0
Dﬂ77N=|;2|
EzN=1|

77 S=S+C(N)*(Z+Ai*Z2C+E*2C*() =TI *EXPF(~(Z+(E+A|)*IC)**2)
SzeS*p!

NCAUNT=NCOUNT+ |
IF(NCAUNT=-10)154,151,14

151 IF(S)Y152,14,152

|52 W=S0/S
IF(WY19,19,20

20 IF(ARSF((2-20)720)-,005)14,14,201

201 Sn=S
Z0=2
G# TO 25

19 JFCABRSF((Z=Z1)/Z1)=.005)14,14,19]

i91 SI1=S5
Zi=2
Ge Ta 25

14 ROEBT(L)=Z
IF(RAOT(L))IZ5,36,35

35 SuMs=0.0
DB&7Ns | ,2]

KizsN=}|

Bi=k!
X2=RABT(L)+(BI+AI)*ZC
IFCARSFIX2)=10.)65,65,66

65 S5=20.0
DAILINI=]), 40
E2=N|

111 S53SB+(EXPF(-(F2%*2/4,~E2%X2))=EXPF(=(F2%%2/4,4E2%X2)))/E2
REZX2==-P1 | *EXPF(=X2%*2)#(X2+55)
Ga TH 67

66 REZX2=w| /X211 ,/7(2,%(X2%*3))

67 SUMESUM+C(N) *REZX2*(X2~B|*ZC*T)
REZP2==2.%D*( | ,+SUM)+ | . /(RBOAT(L)**2)
IF(REZP2Y98,98,90

G99 ZP(L)=SARTF (| ./KEZP2)

GA T 1an

36 ZP(LY=NGN
Go Te 160

98 ZP(L)=9,Y99

on L=L+|
IF(L'8)22:22:29

22 S=82
1=722

11 Sn=§
20=2Z

3 CANTINUE

29 L=L-!

1Fe.)222,222,224

222 WRITE(9,223)ZC
223 FERMATCIHO,6HZP(ZC=F5,1,10K)=NA RANTS)
G 1M 2
224 WRITE(9,303)ZC,(ZP(LIY,L131,L)
303 FARMAT(IHD,6HZP(ZCz,F5.)1,2H)=,B(F|1,3,1X))
225 WRITE(9,304)(RAOT(LI),L3=],L)
304 FORMAT(AX, |UHRAAT(S=0)e,B(E]1.3,1X))
2 CONTINUE
STAPF
END DAMNIT
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BEGIN Jud LIl Uub=-04-04
coaP, 0601 ,5K SIPER,
FORTRAN,D»D a5k,
PROGRAM mMINKUNW
DIMENSION r(eld)rv(d)
Cel)=y,000nuuY7
C(<)af,juundad9
C(3)=0,060n4u01
2(4)=0,0n022€65
C(2)=n,.uiln?996
2(0)=0,0L4540u 90D
C(/)=0,01621291
C(8)ap,u4/78832
C(Y)=sy,t 17855
Ceipg)y=n.!948207]
Celly=zn,2433003>
Ctl2)y=n.19a820671
C(18)=p.t 170852
C{idy=n,n47783934
C(15y=n,ui1adid9]
Celey=n.upn43%09u
COI7y=n.u0102956
L(lgy=p.ugndedé>
Cel9y=n,u0audusl
C(20y=0,0000u0%7
Ceélby=zp. . unnoLu9/
vil)z2,
V(€)zip.
Vvid)y=3pn.
v(4)=z6(.
P1=3,544978
Pll=z,56418956
b=t.r183¢,
izy,
T=u,
A=,
Dadpr=.4
LC=V (T
FRITE(Qs3011)02T2A},2C
S0 FORMAT(IHI ,2rUesF3.1 +2Xs2HT=,F3,1,2X02445,73,142X,
| 3HLC=z,F4a1 271}
LI=}5.%7C
L2345, %20
eld=Lt.L2
Azd
AZU..2%(=30,*ZC+A)
LFCARSFUX)-1eE=02 1,146
& WRITE(Q,3y»)x
$p2 FORMAT(IHG,2 X288,
SuMi=Q,
SuM2a=q.,
sUM3=q.
SUM4z=p.,
StiMbzq,
SyMé=g,
[18ZN=|,21
LaN=1{
dzl
ANTX&(R+A|Y*L0
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SUMSeSUMT~R [ *LIN) s XN EXPF (~(XN"*2))
SUME=SUMO=~0 [ "C(NI#( |+ =2+ " (XN)**Z)*cXPF(n(X\N*"2))
TFCABSF(XNY=10,24,3,4

510,

DooM=] , 40

s

SIS +LEXPFI=LE " 2/4,~E XN )aEXPF (o (E*®2/4. . e8%Ky) )2/
RELXN==P ]| #EXPF = (XN**2))*¢(XN+S}|)

SUM) 2SUM) =2, *CINY*XN*RELXN

SUM22SIUMZ =2, *CUN)#(| 4*2 ¢ *(XN)**2)*REZXY

@ Tg 2

Re=}) ,/¥Ne| . /12, "(xXN**3))
SUM3I=zSUME-2 , "C( N2 *R*XN

SUMA=SUMA =2, "CUNI#(| 4 =2+ *(XN)**2) *]

CAONTINUE

SUM7=zSUMi+gimd

3UMB=SUM2+g me

JOr XN=SUMS

UPREFANSSUMKS

RAFXNT] 4/ (N*(X**2))=2,+5UM7

RPREFXNS22, /\U*(X**3))+4, " (XeA| *2C)+SiyMs
Ys=GAFYN/ROUF XN

RELPSRAF XN-Y "WUPOF XN

IF(REZP)9D, 90591

IP=9,9999

w@ Te 92

LP=SQRTF (), /{RELF*D))

WRITE(Q» S0 )Y 2270 QBFXN,UPRAFXN,ROF XY s RPRUFXY

FARMAT(IH ,25Y=ak | 2.4.2Xs5HREZP%2£124412%,04107xY52E12.442X
BHIPRAFXNZ, 21299 2Xs6HRUFXNZ,E1204,2%,84RPRIFXNesELI244)

CONTINUE
CONTINUE
STUP

ENU MINKUW
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER RESEARCH
I. FINITE PLASMA GEOMETRY

One of the main conclusions drawn from the present study was that,
although a bounded plasma problem did exhibit modes of oscillation which
were unique, these effects were relatively minor. However, the differ-
ences between the infinite and bounded plasma cases should be pointed out
and discussed. For the plasma slab with zero magnetic field, three
distinct solutions to the problem were found. One turned out to be the
infinite plasma solution which allowed arbitrary ¢(z) inside the plasma
slab and zero potential, hence zero field everywhere outside the plasma.
It was also found that this solution of the infinite plasma mode required
¢ to vanish at z = xa. The remaining two solutions were the surface
charge modes which depended upon the dimensions of the plasma. These sur-
face modes were relatively insensitive to the separation of the boundaries.

In the Harris model with a static magnetic field along z the solu-
tion of the problem was more involved. The solutions did not separate
into surface and infinite plasma modes. For negative values of m2,
essentially the square of the z component of the wave vector, a relation-
ship between m = ikZ and the width, a, of the plasma cculd be calculated.
As a possible suggestion for further research, Equations (117) and (118)
of Chapter III could be coded for a numerical evaluation by a computer

with kZ as the variable parameter. For each value of kZ (given a value
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of the particle density and magnetic field strength) one could compute

2 it was seen

the plasma width for this problem. For positive values of m
that the plasma was stable for frequencies in the neighborhood of the ion-
cyclotron frequency. The Burt-Harris model was assumed to be a good
representation of a mirror machine with very weak mirrors. The ions
traveled in concentric orbits in a plane perpendicular to the magnetic
field (z-axis). The problem was found to be solvable in general for
finite r and z dimensions. The results obtained indicated effects due to
finite boundaries but, again, effects not very different from an infinite
plasma type problem.

Although these boundary effects did not manifest themselves in any
major way, such as being a source for a new instability, the effects could
be calculated. Also, approximations were used which would not apply in a
real plasma. The most serious deviation arises in the linearization of
the basic equations, since a real plasma responds in a distinctly non-
linear manner. Furthermore, one should not restrict the treatment to
longitudinal oscillations, for it is apparent that there must be some
coupling between the longitudinal and transverse modes.

More important than the actual results ‘of the finite cases, however,
was the fact that the solution of the differential equation defining the
electric potential, although in most cases singular somewhere in the plasma
edge, was found to lead to the familiar electrostatic boundary conditions
only in the case of a perfectly sharp interface between plasma and vacuum.

. . . 1
This was demonstrated, using results derived in an earlier paper, by

'E. A. Frieman et al., Phys. Fluids 5, 196 (1962).
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assuming the unperturbed or equilibrium particle density to be an arbi-
trary function of position. It was interesting to note that the boundary
conditions derived* in previous work of this au.thor2 using a "cold" plasma
slab model with perfectly sharp edges were consistent with the above re-
sults. However, the attempt to take over the boundary conditions for the
Harris finite model with temperature effects by merely replacing the equa-
tion for the surface charge by its average over the new distribution func-
tion, led one to boundary conditions which were not consistent with the
above paper--a strange result indeed. Harris5 pointed out that instead of
averaging over the velocities, one should assume that the distribution was
made up from many streams, then add up all the streams, and then replace

the summation by integrals to finally arrive at the correct equations.
IT. DISPERSION RELATION ANALYSIS

There has been considerable interest in possible ways of elimi-
nating the strong ion-cyclotron oscillations that are present, for example,
in the ALICE, Phoenix, DCX, and OGRA machines. A possible interpretation
of the mechanism for these oscillations was given by Harris,lL who assumed

that this instability originated from the anisotropy in velocity space of

*These boundary conditions were derived by calculating the surface
charge which migrates to the boundary after perturbation, and from this
the discontinuity in the normal component of the electric field was
derived.

2G. K. Soper, Master's thesis, University of Tennessee, 1961.
5

L

E. G. Harris, "Unstable Plasma Oscillations in a Magnetic Field,"
ORNL-2728 (June 5, 1959).

E. G. Harris, Private communication.
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the particle distribution function. Harris's work was extended by this

5

author” to include finite ion and electron temperature effects with special
emphasis on the machines named above. It was found that on a plot con-
sisting essentially of the magnetic field versus the density, regions of
instability appeared which arose from the anisotropic nature of the plasma.
It was found that either reducing the anisotropy of the ions, Tli/Tzi’ or
increasing the electron temperature tends to stabilize these anisotropy

modes. Also, even with cold electrons and T,. -2 T,;» reducing the mag-

11
netic field stabilizes a plasma of finite length, as was observed in the
Phoenix experiment.6 The largest growth rates occurred at frequencies
very near the lon-cyclotron or multiples of the ion-cyclotron frequency.
Strong oscillations were seen in Phoenix at frequencies of one-half the
ion-cyclotron frequency. Although it was found in this dissertation that
the plasma could become unstable for values of the frequency satisfying

1/2 @ <w< ®_;, the growth rate that was calculated for the wave at

one-half the ion-cyclotron frequency was negligible compared to that at

O = wci' Thus it was concluded that the observed strong oscillations at
w=1/2 W, were not explainable on the basis of the model assumed in this
dissertation.

For the Shima model, representative of plasma about one Larmor

diameter across, as in the DCX's and OGRA, most of the anisotropic modes

5See also Y. Ozawa, I. Kaji, and M. Kito, J. Nucl. Energy, Pt. C
4, 271 (1962); and Yu. N. Dnestrovsky, D. P. Kostomarov, and V. I.
Pistunovich, Nuclear Fusion 3, 30 (1963).

6L. G. Kuo et al., "Experimental and Theoretical Studies of
Instabilities in a High Energy Neutral Injection Machines,"” CIM-P32
(November, 1963 ).
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found above remained essentially unchanged. However, for each value of
the azimuthal mode number, £, that anisotropy mode with angular velocity
which most nearly coincided with that of the ions changed character and
became essentially the instability found by Burt and Harris. In this
case, reduction of the ion anisotropy removed the unstable anisotropic
modes but left the Burt-Harris mode unaffected. A finite electron temp-

erature, however, had a stabilizing effect on the Burt-Harris modes.
III. ©SUGGESTIONS FOR FURTHER STUDY*

Dr. J. B. Taylor suggested making a complete density versus mag-
netic fileld stability map to provide a basis for deciding which machine
is best. Dr. R. F. Post suggested trying the large density limit
(wpe >> o 5 @ ﬂwci) to get a stability map in Tli/Tzi N Tze/Tzi
for unlimited kz.

Since the bi-Maxwellian distribution function is more represen-
tative of the asymptotic state in the DCX's, one might try an ion distri-
bution function which is approximately a delta function in [Vi,’ that is
more representative of the injection conditions of most machines. The
growth rates calculated in this dissertation were based on a perturbation
technique which was applicable only in a limited region. By major modi-
fications of the present code, the analysis could include growth rates for

all regions. Those areas of special interest would be those where the

unstable regions of two or more resonances overlap.

*
These remarks are partly based on a program suggested by Dr. T. K.

Fowler for further analysis of the Harris dispersion relation.
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One should also redo the computer analysis for the case of a
Lorentzian distribution in v, mainly to be able to compare the results
with other authors.* Furthermore, analysis of the case where T, >> T,
could be incorporated into the computer code by changing the original
assumptions as the regions of interest. Here one would want, for example,
to examine the region near the electron cyclotron frequency. This has
obvious bearing on the problem of the heating a plasma by electron cyclo-
tron resonance by R. A. Dandl at ORNL.

In conclusion, it should be noted that, as stated by N. Rostoker:7
"In order to produce a confined plasma for interesting times, we must

eliminate intolerable instabilities, tolerate instabilities that cannot

be eliminated, and know which is which."

*
e.g., Laurence 5. Hall at Livermore.

T, Rostoker, "Plasma Stability," GA-2617 (Dec. 14, 1961).
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APPENDIX A
THE APPROXIMATION OF A COLLISION-FREE PLASMA

In the discussion of collisions between particles in a plasma, one
usually speaks of an interaction as an encounter leading to a deflection
of 90° or more. In order to understand the physical assumption of a
collisionless plasma, it 1s noted that the collisions that can occur can
be roughly divided into two types. The first is the "short-range en-
counters"” in which the ordinary short-range force acting on a particle
when it makes a close collision gives rise to heavy momentum changes. In
a low density plasma these encounters introduce only minor corrections to
the collisionless treatment. However, at higher densities this effect may
destroy the collective behavior of the plasma. The second type is that
of "long-range encounters" which represent many interactions of a single
particle with other members of the plasma giving rise to a large angle
scattering and a very small momentum transfer per individual encounter.

In principle these encounters extend over the whole plasma since the range
of the Coulomb force is infinite.

Assuming that the long-range encounters make a more significant
contribution that collisions resulting in large momentum changes,l one

can derive a cross section, for large angle, distant scattering to

be:2

UD,

lS. Chapman and T. G. Cowling, Mathematical Theory of Non-Uniform
Gases (Canmbridge University Press, London, 1952), pp. 178-179.

M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys. Rev. 107,
1 (1957); and R. S. Cohen, L. Spitzer, Jr., and P. McR. Routly, FPhys.
Rev. 80, 230 (1950).
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where E 1s the energy of the scattered particle and where

b
b

max

A = (A2)

min

where b represents the impact parameter. The minimum value of the impact
parameter is taken equal to the distance of closest approach for a scat-
tering of 90° in a single encounter. The maximum value of the impact

parameter is given by the Debye shielding distance

KT 1/2

Do = Pp = (—p) (83)

L
218 noe

a distance beyond which the plasma is considered to be electrically neutral
so that the particle under consideration is not affected by Coulomb forces.
For probable conditions existing in a thermonuclear reaction 4nAA would be

in the vicinity of twenty.5

The mean collision time for an ion scattered by distant encounters

with other ions can be written

t.., = —%—‘— (Ak)

where A is the average ion velocity. For 300 kev protons Equation (AL),
using Equation (Al), gives

tyy ~ .25 sec (A5)

5L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience
Publishers, New York, 1962), p. 128.

S. Glasstone and R. H. Lovberg, Controlled Thermonuclear Reactions
(D. Van Nostrand Company, Inc., Princeton, 1960), p. 95.
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where a value of n;, =n,=mn = 101° particles per cm® was used. However,

it is easy to show that the typical frequency which occurs in a plasma

. .5
is: . 1/2
by e

wp = (—'5~——) (A6)

and for a plasma of electrons and protons, Equation (A6) yields:
wp ~ 6 x 101t sect (A7)

Therefore, the average time necessary to randomize the initial distribu-
tion is very large compared with the oscillation time of the plasma, and
one sees that for a relatively long time the Vlasov equations are quite

useful.

5For example, see J. D. Jackson, Classical Electrodynamics (John
Wiley and Sons, New York, 1962), p. 337. Almost any book or article on
beginning plasma physics will have the derivation of this expression.
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APPENDIX B

THE INITIAL VALUE TREATMENT OF THE

BOUNDED SLAB PROBLEM*

If Equation (59)** had been subjected to the formal initial value

analysis prescribed by Equations (14) and (15), Equation (69) would have

appeared
N {(1 - nalz)) & (5, e, Z); - 5201 - n@a(a))e = (5, @, 2)

(B1)

N
where S(ki’ @, z) represents the initial value terms. Solving Equation
(B1), one can find the time dependence of the electric potential by inver-
sion: .
+co+1o
o(t, z) = % f dwe 1Ot o(w, z) (B2)

-cotig

From solutions of the homogeneous equation one can construct solutions to
the inhomogeneous Equation (BL).

First solve the homogeneous equation

a dd, 5
o | (@ - na2)) E:] -k (L -nA(z)) e =0 (85)

which can be written

A
Ho - Lo =0 (Bk4)

*
The author is grateful to Dr. E. G. Harris for the details of this
section.

Unless noted, all egquation numbers will refer to equations found
in Chapter III.
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where
N g2 5
H= -k (B5)
and
L= a0) 2 - x2a0) . (36)
dz dz 1
A A
Since H and L are Hermitian operators, it i1s easy to show that,
*/\
fdchm Lo = amn (B7)

and thus one can construct a soluticn of the homogeneous equation from a

linear combination of the orthogonal functions ¢,. Therefore,

o(w, z) = Zancpn , (B8)

n

and substituting Equation (B8) into Equation (Bl), one finds:

@ - n@hoe, 2) =) s (1 - 1@ -5 . (B9)

Multiplying by @m*, integrating and using Equation (B7), one sees that

b/ﬂdz<1> *5
n

a = . (B10O)
n n, - @

Therefore, from Equations (B8) and (B10)

o (z)
o(w, z) = Z ﬁnn——ﬂmfdmn*s (B11)

and finally,

oo+io

o(t, z) = Zi]'[ f dqwe 10t Z % fdchn*(z)s(w, 2) (Bl2)
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If one assumes that there are only simple poles and let wnj* be a

solution of

ﬂ(w) = ﬂn b (BlB)

then one can write Equation (Bl2) as:

N -1 .t
o(t, z) :2: 24 @n(z)e U a(t, z) (B1h)
n o j

where
1
A ., = i Residue of L/ﬁdz@D *¥5 at © = . Bl
ng ﬂn - nZwF n nJ ( 5)

and G(t, z) is the contribution due to any poles OfL/“dZ®n*S which is of
less importance.

Therefore it is seen that the frequencies of the system are deter-
mined by the eigenvalues of the homogeneous equation. If the n's form &
continuum, then

o(w, z) =fa(n)®(n, z )an

and

=) [t e I wmy ot 0 me)
J

where the integration in Equation (Bl6) will smear out the singulsrity if

the singularity is mild enough for the integral to converge.

*
For each eigenvalue 7, there may be many roots, so distinguish each
of them with a subscript j.
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APPENDIX C
THE DERIVATION OF EQUATION (94)

With

Equation (1)* is written:

dr . o . af dof dr | e .
YRR a;'ch’yavx‘anvy == % % e8)

Introducing cylindrical coordinates and using the moment technique of
Section III of Chapter III, one can show that the differential equations

for the linearized form of the F and H functions defined by Equations (hz)

and (43) are:

OF, i ( N 1 | oH, e )
% 3 kjv) cos g - O)F) = - & |3 *n By - V¥ (€
and
oH i el F
1 — - 1z 0o
55 * 5 (klvl cos @ - CD)Hl = =y (ch)

where the particle subscript has been suppressed for simplicity. The
solution of Equation (CL4) isl
1 ek Fg
Hy =w—fd¢'G(¢, pr) ——= (c5)

¢ xoo)

and similarly for Equation (C5)

8
1 oH e
F, = - — / dg'a(g, @') SEA o Ey VVLFO:I (c6)
]

*
Again, all equation numbers will refer to equations from Chapter
III.

1. B. Bernstein, Pays. Rev. 109, 10 (1958).
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where

i® ik_LV_L
G(¢; ¢') = exp{dT (Qﬂ - Qﬂ') -5
C C

When Bquation (C5) is substituted into Eguation (C6), Fj becomes:
@

L , 1y & .
F, o= - = u/w dp'G(g, ¢') B | - YV F_
€ o0

d | O(F.E. , )
L e otz
_50_5 d¢'G(¢, ¢1) d¢"G(¢’, ¢vv)I_n_?Z__]_-___ .
+00

(sin ¢ - sin ¢')}.

as
ince no(z) _Vl2/ai2
Fo = > € ,
TICZ_L
00
(iklvl/wc) sin ¢ Ej J (klvl) ing
e = n'\ o € )
c
n=-0
and 0
(ikv) /%, sin ¢) T n gy e
cCos @ e = Z_l e 5
(kyv) /0 ) "ot &
n=- 00
© ing
- ZeFo<I>k_L fl e-(iklvl/wc) sin ¢§ij n Jn(klvl/wc) e
1T e /
in n:_d)(klvl/wc) (w - nwc)
e
(i in gt ing
_E % é?) . (1klvl/wc) 51n¢2—j S (klvl ) e
m oz 0 9z n' w (w - o )2 °
n=-00 ¢ c

Inserting Equation (Cl2) into Poisson's equation:

Q 0

0= ;;
kla@ - a—zjg = LH'[ leV_LdV_Lf d¢F1J((D, V_L) @, Z)
j 0 0

(c7)

(c11)

c12)

(c13)
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and using the identity found in Watson2

a0 2/, 2
kv v, = /o -N
2 ALV 1771 B E 2
\/ﬁ J. ( = ) e vidv) =z % e Iln,(x) (cik)
c
0
where A is defined by Equation (97), then one finds:
5 0 —Kj
N N nI AL
K 2g - 2y 2 ZZJ__EQ_Siz Zij Z ’nl( J)e
il Jz2 L A ® -
;9% e J
e
NOd T n h e
) e Z e (c15)
J n=-co Cj

which reduces to Equation (94), where the spatial dependence has been

absorbed into the factor A(z).

2G. N. Watson, Theory of Bessel Functions (Cambridge University
Press, Cambridge, 1945), p. 395.
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