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I 

REVIEW OF ORNL THERMAL DIFFUSION PROGRAM 
JANUARY - DECEMBER 1963 

T .  A.  But le r ,  W .  R .  Rathkamp, H. B. Greene 

ABSTRACT 

This repor t  reviews a c t i v i t i e s  of t h e  ORNL Thermal 
Diffusion Program f o r  1963 and covers equipment 
used, t h e o r e t i c a l  s tud ies ,  and production data. 

. 
I. 

The ORNL Thermal Diffusion Program makes ava i l ab le  enriched i so topes  which 
e i t h e r  cannot be provided by o the r  separa t ion  methods or a r e  more cos t ly  
when prepared by a l t e r n a t e  means with emphasis on concentrating i so topes  
of t he  i n e r t  gases. The heavies t  and l i g h t e s t  i so topes  i n  such mixtures 
(e .g .  Ne2', Ne2', o r  A r 3 6 )  can e a s i l y  be enriched t o  any des i red  concen- 
t r a t i o n  i f  a d i f fus ion  system i s  constructed of s u f f i c i e n t  length .  A 
cascade t o  enr ich  an i so tope  of o the r  than t h e  g r e a t e s t  or l e a s t  mass 
i n  a mixture of t h r e e  o r  more components becomes more complicated i n  
arrangement and o f f e r s  design problems r e l a t i v e  t o  length, width, and 
flow r a t e s .  

e 

Construction of thermal  d i f fus ion  columns presents  engineering problems 
assoc ia ted  with supporting heated c e n t r a l  elements. 
ORNL columns a r e  designed t o  use standard, commercial t ubu la r  hea te r s  
which a r e  0.440 i n .  i n  diameter with an e f f e c t i v e  length of 7 f t .  I n  
some cases the  column length  i s  doubled by i n s e r t i n g  a second hea te r  
through t h e  bottom. Columns have an annular gas space 1/8 i n .  wide, 
and hea te r s  a re  held along t h e  a x i s  of t h e  tube by small dimples i m -  
pressed i n t o  the  cold walls. 
diameter Nichrome wire previously used as t h e  hea t ing  element. 

A t  t h e  present  time 

These tubu la r  u n i t s  replace the  0.022-in.-  

Approximately 200 columns a r e  i n s t a l l e d  i n  t h e  thermal d i f fus ion  labora- 
t o r y .  
j acke t  8 i n .  i n  diameter (F ig .  1-1). Four of t hese  "bundles" are i n  
use.  Since a l l  columns a r e  sealed ind iv idua l ly  when t h e  "flat head" 
a l t e r n a t e  arrangement i s  used, ind iv idua l  columns can be interconnected 
ex te rna l ly  t o  give any des i r ed  shape of cascade. 
some tubes can be used f o r  enriching one isotope, while a t  the  same t i m e  
o the r  columns a r e  being used t o  enr ich  a d i f f e r e n t  i so tope  or a d i f f e r -  
e n t  element. 

To conserve space, 36 columns a r e  enclosed i n  a common water 

W i t h i n  t h e  same bundle, 
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11. THERMAL DIFFUSION DEVELOPMENT PROGRAM 

Separation Fac tors  

If an e f f i c i e n t  tapered cascade i s  t o  be designed t o  enr ich  an i so tope  
from some small concentration (e .g .  Ara6  a t  0.34% na tu ra l  abundance) 
t o  some higher concentration ( e .g .  99.9$), t h e  thermal d i f fus ion  charac- 
t e r i s t i c s  of a given column system must be determined. These charac- 
t e r i s t i c s  can be computed theo re t i ca l ly . '  To t e s t  t h e  v a l i d i t y  of t h i s  
theory, a s e r i e s  of experiments was performed t o  determine the  agreement 
between observed values of thermal d i f fus ion  separa t ion  f a c t o r s  and t h e  
t h e o r e t i c a l  values ca lcu la ted  according t o  Jones and Furry.  

The da ta  taken during these  experiments a r e  shown i n  F ig .  11-1. The 
t h e o r e t i c a l  and observed separa t ion  f a c t o r s  f o r  Ne, K r ,  and Xe as 
func t ions  of gas pressure  a r e  p l o t t e d  t o  t h e  same sca l e  i n  F ig .  11-2 
and show t h a t  t he  maximum equilibrium separa t ion  f a c t o r  occurs a t  a 
lower pressure f o r  t h e  higher mass gases and t h a t  t h e  value of t h i s  
maxima separa t ion  f a c t o r  i s  much smaller f o r  krypton and xenon than 
f o r  neon. 

The separa t ion  f a c t o r  p e r  mass u n i t  i s  

H*L 

Kc + Kd 
9 qx = 

where 
H* = coe f f i c i en t  of thermal d i f fus ion  t r anspor t  p e r  u n i t  mass, 
K, = coe f f i c i en t  of convective remixing, 
Kd = c o e f f i c i e n t  of d i f f u s i v e  remixing, 

L = length of t h e  colwnn. 

The H*, Kc, and Kd f a c t o r s  can be wr i t t en  as functions of pressure and 
take  t h e  form 

K = BP4 , 
C 

K d = C ,  

where A, B, and C a r e  constants determined by column geometry and tem- 
pera ture  and by p r o p e r t i e s  of t h e  gas. 
determined from equilibrium data,  but a d i f f e r e n t  kind of experiment 
must be performed t o  estimate A and allow ca lcu la t ion  of B and C .  
r a t i o s  may be computed from t h e  equations 

The r a t i o s  B/A and C/A can be 

These 

lR. C .  Jones and W.  H. Furry, Revs. Modern Phys. 1 8 ( 2 ) :  151-224 (1946). 
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and L 
2P2 l og  q* , B/A = 

LP2 C/A = 2 log q* , 
where 

P = gas pressure  a t  which t h e  maximum separa t ion  f a c t o r  occurs, 
q* = separa t ion  f a c t o r  pe r  u n i t  mass a t  t h e  maximum i n  t he  curve. 

The observed and t h e o r e t i c a l  r a t i o s  f o r  Ne, K r ,  and Xe a r e  given i n  
Table 11-1. 

Table 11-1. Theore t ica l  and observed r a t i o s  f o r  
neon. k m t o n .  and xenon 

Theore t i c a l  Ob se rved 
Element 

B/A C I A  C/B B/A C I A  C/B 

0.89 980 1100 1.05 1280 1220 Neon 

Krypton 79.2 166 2.10 118 389 3 -30 

Xenon 450 137 0.305 668 315 0.472 

A second experiment was performed with neon t o  measure H* and A. 
gas was allowed t o  flow through t h e  top  of t h e  experimental column t o  
maintain constant concentration a t  t h i s  feed  poin t ,  and enriched Ne2’ was 
withdrawn from t h e  bottom a t  var ious  r a t e s .  From t h e  withdrawal r a t e  and 
corresponding concentration da ta ,  H* was ca lcu la ted  t o  be 7.65 x 
x P2. 

Neon 

A comparison of observed and t h e o r e t i c a l  values for neon follows. 
a 

Theore t ica l  O b  served 

H* 9.80 x x P* 7.65 x x p2 
Kc 8.70 x x P* 8.05 x x P4 
Kd 9.60 x 9.81 x lo-* 

Experiments show t h a t  observed values f o r  K and K a r e  i n  good agreement 
with t h e o r e t i c a l  values,  bu t  theory over-esgimates the  value f o r  H*. d 

I n  add i t ion  t o  t h e  terms K, and Kd, t h e  c o e f f i c i e n t  of remixing ( K )  may 
contain a p a r a s i t i c  remixing term Kp which a r i s e s  due t o  unknown i n -  
accuracies within t h e  colwnn (e .g .  nonuniform surface temperature 
d i s t r i b u t i o n  and poor center ing  of t h e  hea te r  i n  t h e  cold t u b e ) .  This 

f a c t o r  t h e o r e t i c a l l y  behaves i n  very much t h e  same manner as K, and 
present  w i l l  appear as an apparent increase  i n  K,. Since t h e  observed 

. 



4 

value of K, i s  a c t u a l l y  a b i t  lower than expected, any p a r a s i t i c  remix- 
ing  must be small. 

Complete analyses of H*, K,, Kd, and Kp f o r  krypton and xenon w i l l  be 
made when experiments t o  measure H* a r e  f i n i s h e d .  

Gas Viscos i ty  Measurements 

One of t h e  b e s t  ways t o  ca l cu la t e  thermal d i f f u s i o n  c h a r a c t e r i s t i c s  of a 
gas i s  from data on v i s c o s i t y ;  however, r e l i a b l e  v i s c o s i t y  d a t a  a r e  
meager and i n  t h e  case of s eve ra l  gases (notably krypton) are q u i t e  
inadequate. Figure 11-3 shows t h e  apparatus r ecen t ly  assembled t o  
measure v i s c o s i t y  of gases a t  e leva ted  temperatures. Tr ia l  runs using 
He, Ne, Ar, and N 2  (gases  f o r  which good v i s c o s i t y  d a t a  have been 
published) showed agreement w i t h i n  2-3% between ORNL measured values 
and published d a t a  from o the r  sources.  

Observed values f o r  krypton v i s c o s i t y  a r e  p l o t t e d  i n  F ig .  11-4 as a 
func t ion  of temperature, and these  measurements are compared with a 
few published values es tab l i shed  f o r  lower temperatures. Observed and 
published values f o r  argon a r e  included f o r  comparison. 

111. PRODUCT ENRICHMENTS 

Neon - 
I n  t h e  neon thermal d i f fus ion  cascade, concentration of Ne2’ i s  being 
emphasized with high p u r i t y  Ne2’ and Ne22 being co l l ec t ed  as by-products. 
The progress of t h e  system f o r  January - May 1963 i s  shown i n  Table 111-1. 
An assay taken a t  t h e  pos i t i on  l i s t e d  ( ind ica t ing  t h e  number of columns 
from the  bottom of t h e  system) gave t h e  enrichment of Ne21 a t  t h a t  po in t  
i n  t h e  cascade a t  t h e  end of t h e  month. The values l i s t e d  for March 
show t h a t  t h e  peak of t h e  Ne2’ d i s t r i b u t i o n  w a s  about halfway beyween 
these  po in t s  with an enrichment >12$. 
i t s  way up t o  t h e  center  of t h e  system. 

By May the  Ne2’ peak had worked 

Table 111-1. Enrichment of Ne2’ achieved 
January - May 1963 

Month Pos i t ion  Pe r ce n t  age 
of Ne2‘ 

January 1 
February 2 
March 1 
March 2 

> 1.5 
>12 .o 

12 .o 
11.0 

4 
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Table 111-1. - continued 

1 

I 
. 

Month Po s i t  ion  Percentage 
of Ne21 

Apr i l  2 
Apr i l  3* 
&Y 3* 

16.9 
13 *7 
20.3 

* center  of t h e  system 

I n  June t h e  columns were rearranged so t h a t  a l l  t e n  u n i t s  (each 15 f t  
i n  length)  were i n  s e r i e s .  
length of t h e  system, it could now sus t a in  higher grad ien ts .  Progress 
a f t e r  t h e  modification i s  shown i n  Table 111-2. 

Since t h i s  rearrangement increased t h e  

Table 111-2. Enrichment of Ne2' achieved 
June - December 1963 

Per cent age 
Month Pos i t i on  of Ne21 

June 4 
J u l y  4 
August 4 
S e p t emb e r 4 
October 2 
November 1 
December 2 

29.6 
27.8 
23 .o 
31.8 
29.7 
22.5 
31.5 

(Since t h e  t o t a l  height of t h e  system i s  now 10 columns, 5 columns from 
t h e  bottom represents  t h e  center  of t he  system.) 

After reaching 29.6% enrichment i n  June, opera t iona l  d i f f i c u l t i e s  slowed 
progress of t he  system. 
thus  far  i n  the  cascade (31.8%) was a t t a i n e d .  
operating d i f f i c u l t i e s  have prevented exceeding t h i s  value.  

I n  September t h e  h ighes t  enrichment reached 
Since t h a t  time, a d d i t i o n a l  

Neon-20 was discarded from t h e  top  of t h e  system during January. 
February a spec ia l  i n t e r e s t  i n  Ne2' arose,  and 25 l i t e r s  (STP) of neon 
was co l l ec t ed  with an enrichment of Ne2' -9.98% and a chemical p u r i t y  
89%. 

A renewed i n t e r e s t  i n  highly enriched Ne2' with high chemical p u r i t y  
(<l% H2 contamination) a rose  i n  October, and during the  remainder of 
t h e  year  -39 l i t e r s  of neon were co l l ec t ed  a t  an enrichment of -99.99% 
Ne2' with a chemical p u r i t y  799%. 

I n  

From March t o  October, Ne2' was again discarded from t h e  system. 

A t o t a l  of 9.4 l i t e r s  with <0.3% 
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H2 contamination was t r a n s f e r r e d  d i r e c t l y  t o  inventory-. The e f f o r t  t o  
c o l l e c t  highly enriched Ne2' slows accumulation of Ne21 i n  t h e  system. 
Ordinar i ly  Ne2' i s  withdrawn when it reaches a concentration of 99% 
which allows add i t iona l  normal ma te r i a l  t o  e n t e r  t h e  cascade. Several  
e x t r a  days a r e  required f o r  t h e  Nez0 i n  the  5 - l i t e r  end-volume t o  enr ich  
t o  89.98% so it can be removed. 

Table 111-3 shows neon production during the  year .  I n  add i t ion  t o  t h e  
ma te r i a l  placed i n  inventory, 1 4  l i t e r s  of Nez2 a t  an enrichment 39.94 
was removed from t h e  system and i s  being held as in-process material. 

Table 111-3. Enriched neon i so topes  re leased  t o  inventory 
January - December 1963 

I s o t  ope Enrichment, % Weight of contained 
element, mg 

Nez1 
Ne2' 
Nez1 
Ne21 
Nez1 
Nez0 
Nez0 
Nez0 

8.5 
12.6 
10.8 
20.6 
30.8 
-9.98 
99 -99 
99 -99 

324 
18 
90 
18 
18 

22, 500 
2,142 
6,300 

Argon 

The thermal d i f fus ion  system f o r  concentrating argon i so topes  was f i rs t  
used t o  enr ich  Ar3". 
and t h e  cascade was modified t o  c o l l e c t  ArS8 on t h e  f i r s t  pass .  

La ter  i n t e r e s t  was centered on enr ich ing  Ar38, 

When it became evident t h a t  enrichments of 
be d i f f i c u l t  t o  achieve, t h e  columns of t h e  system were rearranged and 
connected i n  series t o  give one long system ( e f f e c t i v e  length  -112 f t )  
a s ing le  column i n  width. 
Ar38 inventory t o  be accumulated i n  t h e  center  of t he  system without 
t h e  t a i l s  of t he  peak concentration s p i l l i n g  over t o  t h e  ends of t h e  
system and being l o s t .  
t op  of t h e  system f o r  t h e  c o l l e c t i o n  of t h e  l igh t -end  impur i t ies  and 
a 1 - l i t e r  volume i s  provided one column down f o r  t h e  accumulation of 
Ar36. 

as g r e a t  as 20% would 

This rearrangement w i l l  permit a l a r g e r  

A 1 - l i t e r  volume i s  provided a t  t h e  extreme 

A 100-ml volume i s  loca ted  a t  a p o s i t i o n  7 columns below t h e  _ _  
volume (about t h e  v e r t i c a l  cen ter  of t h e  system) f o r  accumulation 

of Ar38. 

Table 111-4 shows progress of t h e  system f o r  t h e  year .  The enrichment 
l i s t e d  f o r  each month represents  e i t h e r  t h e  maximum Ar38 concentration 
noted each month o r  t he  enrichment of a sample taken near t h e  end of 
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t h a t  month. The pos i t i on  of t he  sample t a p  represents  t he  number of 
columns below the  provided Ara6 volume. 

Table 111-4. Enrichment of Ar38 achieved 
January - December 1963 

Month Pos i t  ion  Percentage 
of Ara8 

January 
February 
March 
Apri 1 
May 
June 
J u l y  
August 
September 
October 
November 
D e  c emb e r 

9 
8 
7 
7 
7 

3 -9 
5.8 
5.8 

13.8 
19.2 

14.1 

20.4 
21.8 
22.2 
23.1 
22.1 
18.9 

The highest  Ar38 enrichment achieved with t h i s  system (23 .l%) was reached 
on October 21, and it became evident during November t h a t  t h i s  enrich- 
ment was about as high as could be sustained with the  present  system. 
A decis ion was made e a r l y  i n  December t o  withdraw Ar38 a t  values >20% 
f o r  production inventory and t o  e s t a b l i s h  a production r a t e  f o r  Ar38 
- > 20% with t h e  e x i s t i n g  equipment. 
Table 111-5. 

Argon production i s  given i n  

Table 111-5. Enriched Ar38 re leased t o  inventorv 
January - December 1963 

Weight of contained 
element, mg Month Enrichment, 4 

~ 

February 4.7 18 
March 8 - 3  18 
Apri l  11.0 18 
November 22.1 21 
December >20 .o 199 

Carbon 

One of t he  most p e r s i s t e n t  problems encountered i n  the  C 1 3  thermal d i f -  
fus ion  cascade i s  decomposition of t he  process gas (methane) i n t o  f r e e  
hydrogen and carbon. Since t h i s  decomposition could be catalyzed by 
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t h e  sur face  of t h e  c e n t r a l  hea te r ,  a s e r i e s  of experiments was conducted 
t o  evaluate methane decomposition on var ious  metal sur faces .  These t e s t s  
revealed t h a t  i n  t h e  temperature range 400 t o  6oo0c, decomposition of 
methane on s t a i n l e s s  s t e e l  sur faces  was much g r e a t e r  than  on aluminum 
sur f  aces . 
To permit f u r t h e r  t e s t i n g  of t h i s  observation, a thermal d i f f u s i o n  column 
was constructed using a hea te r  made by swaging a s o f t  aluminum sheath 
over a standard s t a i n l e s s  s t e e l  calrod. The column was f i t t e d  with 
sampling valves a t  top  and bottom, a pressure  gage connected t o  t h e  
gas annulus, a thermocouple a t tached  t o  t h e  h e a t e r  sheath, and a Pyrex 
window a t  t h e  bottom t o  allow observation f o r  f r e e  carbon p a r t i c l e s .  
Methane decomposition was de tec ted  by: 
of samples from t h e  top  of t he  column t o  determine hydrogen content; 
( 2 )  increase  i n  gas pressure  with time as C H 4  decomposed t o  form 2H2; 
and (3)  decrease i n  hea te r  temperature with time as hydrogen, having 
g r e a t e r  thermal conductivity than CH4, accumulated i n  t h e  upper p a r t  
of t h e  column. 

(1) mass spectrometric ana lys i s  

No pe rcep t ib l e  decomposition of methane was observed a t  400°C hea te r  
temperature; some decomposition was noted a t  500°C a f t e r  two weeks of 
operation; severe decomposition was observed a t  temperatures above 
500°C. Pas t  experience with s t a i n l e s s  s t e e l  calrod hea te r s  showed 
severe decomposition of methane a t  400°C. 

These observations ind ica t e  t h a t  aluminum hea te r s  should give no decom- 
p o s i t i o n  of methane a t  b O ° C ,  t h e  opera t ing  temperature f o r  which t h e  

cascade was designed. Fur ther  i nves t iga t ions  are t o  be made con- 
cerning t h e  p r a c t i c a b i l i t y  of r a i s i n g  t h e  operating temperature above 
400°C t o  improve t h e  d i f fus ion  e f f i c i ency  of t h e  columns, operating 
w i t h  a cont ro l led  r a t e  of decomposition, and e s t a b l i s h i n g  a regular  
schedule of maintenance shutdowns t o  remove accumulated carbon. 

Krypton 

A system f o r  enriching both t h e  heavy (Kr86)  and t h e  l i g h t  (Kr78)  i so topes  
of krypton has been i n  operation f o r  s i x  months. Sixteen columns a r e  
connected i n  s e r i e s  t o  form a cascade one column i n  width and 240 f t  
long. 
between t h e  e ighth  and n in th  columns f o r  use as a feed  reservoi r ,  and 
a double-ended bellows pump has been connected across  t h e  extreme ends 
of t he  system t o  provide f o r  inter-column mixing of gas .  

A 6 - l i t e r  volume has been connected i n t o  t h e  cen te r  of t h e  system 

I n  October t h e  operation was stopped, and krypton i n  t h e  system was 
removed and s tored  so t h a t  column s h e l l s  and hea te r s  could be cleaned. 
Krypton was returned t o  t h e  system on October 11, and by t h e  end of 
t he  month Kr86 enrichment was 74.3%. 

Operational d i f f i c u l t i e s  and equipment f a i l u r e s  have l imi t ed  progress i n  
t h i s  cascade; but Kr8" a t  t h e  bottom of t h e  system, representing -400 m l  
(STP), had increased t o  81.2% a t  the  end of December. 
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Xenon 

A 36-coi~m.n cascade t o  enr ich  Xe124 from i t s  na tu ra l  abundance of 0.094% 
t o  10% achieved a concentrat ion of 4.4$. 
been r e s t r i c t e d  by leaks i n  t h e  system, bu t  a l l  components are now operat-  
i n g  normally. 

Operation of t h e  cascade has 

Additional increases  i n  Xe12* concentration are an t i c ipa t ed .  
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Fig. 11-1. Separation Factor vs G a s  Pressure for Neon, Krypton, 
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