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PREFACE 

. 
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used i n  t h i s  t h e s i s  were taken and analyzed. 

In  June 1962, t h e  
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t inu ing  i n t e r e s t  i n  t h e  work a t  t h e  Universi ty  and t h a t  done a t  ORNL. We 

a l s o  wish t o  thank him f o r  making t h e  arrangements f o r  t he  move t o  ORNL. 

The author wishes t o  take t h i s  opportunity t o  thank the  e n t i r e  staff 

of t h e  High Voltage Laboratory of ORNL f o r  t h e i r  i n t e r e s t ,  t h e i r  w i l l i ng  

ass i s tance ,  and f o r  t h e i r  many he lpfu l  comments and suggestions. I n  

pa r t i cu la r ,  w e  most ea rnes t ly  thank D r .  R. L. Robinson f o r  h i s  ass i s tance  

with t h e  experimental work and for reading and cor rec t ing  t h e  many drafts 

of t h i s  d i s se r t a t ion .  D r .  R. W. Lamphere i s  due our spec ia l  thanks f o r  
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i t s  use. We a r e  indebted t o  D r .  H. B. Willard f o r  h i s  c r i t i c a l  reading 

of Chapter IV, D r .  F. G. Perey f o r  making ava i lab le  h i s  o p t i c a l  model 

computer code, and Dr. J. A. Biggerstaff for h i s  construct ive c r i t i c i s m  

of many of t h e  computer codes which were developed and used. We would 

a l so  l i k e  t o  thank D r s .  J. K. Dickens and T. Tamura for making ava i l ab le  

prepr in ts  of t h e i r  proton data  and t h e o r e t i c a l  work, respect ively.  We 

are g r a t e f u l  t o  D r s .  P. H. Stelson and F. K. McGowan f o r  t h e i r  help 

during t h e  e a r l y  p a r t  of t h e  work a t  ORNL. 
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CHAPTER I 

INTRODUCTION 

I 

. 

Several years ago Kinsey’ reported a resonance i n  t h e  y i e ld  of 
12  e l a s t i c a l l y  sca t t e red  protons2 from C 

Dickens’ r ecen t ly  confirmed and s tudied t h i s  resonance more extensively.  

This resonance corresponds t o  an exc i t a t ion  of 22.7 MeV i n  t h e  compound 

nucleus N13 which i s  formed by a proton plus  C . If we assume t h a t  

t he re  i s  a similar resonance a t  an exc i t a t ion  energy of 22.7 MeV i n  C 

which i s  t h e  compound nucleus formed by a neutron plus  C 

a t  a proton energy of 22.5 MeV. 

12  

13 , 
12 , then it follows 

5 that 19.3 MeV neutrons would be required t o  produce such a resonance. 

This d i s s e r t a t i o n  deals  with t h e  search f o r  t h i s  neutron resonance. 

Measurements were made of t h e  d i f f e r e n t i a l  e l a s t i c  cross  sec t ion  as a 

funct ion of energy a t  s i x  sca t t e r ing  angles and t h e  t o t a l  cross  sec t ion  

as a funct ion of energy f o r  17.2 t o  21 MeV neutrons on C 12  . 
The d i f f e r e n t i a l  e l a s t i c  cross  sect ions determined by Dickens and 

The 600 data a r e  i n  the  data  taken by Kinsey a r e  shown i n  Figure 1.1. 

r e l a t i v e  units. For the other  data  i n  the f igure ,  t h e  d i f f e r e n t i a l  cross  

sec t ion  i s  i n  mi l l ibarns  per s te rad ian  i n  t h e  center  of mass system; t h e  

‘B. B. Kinsey, Phys. Rev. - 99, 332 (1955) 
‘Elast ical ly  sca t t e red  protons a r e  protons which have been 

sca t t e red  suf fer ing  no l o s s  i n  energy i n  t h e  center  of mass 
coordinate system. 

’J. K. Dickens, Ph.D Disser ta t ion,  University of Southern 
Cal i fornia ,  1962; J. K. Dickens, D. A. Haner, and C.  N. Waddell, 
Phys. Rev. - 132, 2159 (1963) 

‘N. Bohr, Nature - 137, 344 (1936) 
’E. C. Monahan, M.A. Thesis,  University of Texas, 1961, p. 1 
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s c a t t e r i n g  angle and t h e  incident proton energy a r e  i n  t h e  laboratory 

system. If we assume t h a t  the  proton data i n  t h e  f igure  between 19.5 

and 24 MeV a r e  a r e l i a b l e  q u a l i t a t i v e  guide t o  what one might expect t o  

f i n d  f o r  the  d i f f e r e n t i a l  e l a s t i c  cross sec t ion  of neutrons f o r  C 12 be- 

tween 17.2 and 21 MeV, then t h e r e  should be a resonance a t  19.3 MeV a t  

s c a t t e r i n g  angles ranging from 43" t o  about 60". A t  these angles t h i s  

resonance should have a t o t a l  width a t  half  maximum of about 2 MeV and a 

peak cross sec t ion  that i s  about 12 percent grea te r  than t h e  non-resonant 6 

cross  section. A s  i n  t h e  case of t h e  proton data,' the  resonance should 

appear a t  s c a t t e r i n g  angles around 130" t o  140" as a very rapid change 

i n  t h e  d i f f e r e n t i a l  cross section, possibly by a f a c t o r  of 7, over an 

energy i n t e r v a l  of 2 MeV. 

The t o t a l  cross sect ion,  cr is  r e l a t e d  t o  the  d i f f e r e n t i a l  e l a s t i c  T' 

cross sec t ion  by t h e  equation 

7.r 

cr = 27- [ c ( 0 ) s i n e  de + c T NE' 
0 

(1.1) 

where u(e)  i s  t h e  d i f f e r e n t i a l  e l a s t i c  cross sect ion and cr i s  t h e  t o t a l  NE 
non-elastic cross  section. If we assume t h a t  u i s  constant i n  the  region NE 

of 19.3 MeV, then t h e  t o t a l  cross sect ion should exhibi t  a resonance a t  

19.3 MeV i f  there  i s  a resonance i n  u(0) at  this  energy. The t o t a l  cross 

sect ion w a s  measured i n  t h e  neutron energy range of 17.2 t o  21 MeV since 

precise  data  were not avai lable .  

The non-resonant cross sec t ion  i s  t h e  cross  sect ion upon 6 

'T. Tamura and T. Terasawa (submitted t o  Phys. Let ters  f o r  

which t h e  resonance i s  superimposed. 

publ icat  ion) 
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In the  present work the  d i f f e r e n t i a l  e l a s t i c  cross  sec t ion  w a s  

a measured using r i n g  geometry, a s c i n t i l l a t i o n  neutron detector ,  and a 

beam of neutrons which w a s  produced by deuterons from the  ORNL 5.5 MV 

Van de Graaff acce lera tor .  The d i f f e r e n t i a l  cross sec t ion  was calcu- 

l a t e d  from experimental parameters and from t h e  measured value of t h e  

sca t t e r ing  r a t i o  R a t  each value of incident  neutron energy and a t  each 

sca t t e r ing  angle. R i s  defined as the  r a t i o  of t he  sca t t e red  neutron 

i n t e n s i t y  divided by the  d i r e c t  neutron i n t e n s i t y  where both t h e  sca t -  

t e r e d  and t h e  d i r e c t  i n t e n s i t i e s  have been corrected f o r  background. 

The t o t a l  cross  sec t ion  w a s  ca lcu la ted  a t  each neutron energy from 

a transmission which w a s  measured by a conventional transmission experi-  

ment.g 

a t tenuated by t h e  sample divided by t h e  d i r e c t  neutron in t ens i ty .  

measurement w a s  ca r r i ed  out with e s s e n t i a l l y  t h e  same apparatus and neu- 

t r o n  source as were used for t h e  d i f f e r e n t i a l  cross  sec t ion  experiment. 

The transmission i s  defined as t h e  r a t i o  of t h e  neutron i n t e n s i t y  

The 

The experimental aspects  of t h e  two experiments a r e  discussed i n  

Chapters I1 and 111. We follow t h i s  discussion with t h e  ca l cu la t ion  of 

t h e  d i f f e r e n t i a l  cross  sec t ion  i n  Chapter IV and t h e  ca lcu la t ion  of t he  

t o t a l  cross  sec t ion  i n  Chapter V. Chapter V I  concludes t h e  d i s se r t a t ion .  

8 W .  D. Whitehead and S. C. Snowdon, Phys. Rev. 92, 114 (1953); 
M. Walt, Fast  Neutron Physics, Pa r t  11, eds. J. B. MGion and 
J. L. Fowler (New York: Interscience Publishers,  Inc., 1963), p. 1033 

. 

'D. W. Miller, Fast  Neutron Physics, Par t  11, eds. J. B. Marion 
and J. L. Fowler (New York: Interscience Publishers,  Inc., 1963), 
P* 985 
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10,11 I n  it we compare t h e  proton d i f f e r e n t i a l  e l a s t i c  cross sect ion 

with t h e  neutron d i f f e r e n t i a l  cross section, as calculated i n  Chapter 

IT, and t h e  t o t a l  cross section, calculated i n  Chapter V, with data  

taken by another group. 

B. B. Kinsey, op. z. 10 

"J. K. Dickens e t  a1 
- 

op. G. - - * )  - . 
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CHAPTER I1 

EXPERDENTAL APPARATIJS 

2.1 Introduction 

Essent ia l ly  t h e  same apparatus w a s  used f o r  both t h e  d i f f e r e n t i a l  

cross sect ion experiment and t h e  t o t a l  cross  sec t ion  experiment. We first  

discuss each of t h e  pieces of t h e  equipment common t o  both of the  two 

experiments: t h e  detector ,  t h e  monitor, t h e  t a r g e t ,  and t h e  support stand 

f o r  t h e  detector ,  f o r  t h e  sample, and f o r  t h e  at tenuat ion bar. We con- 

clude t h e  chapter wi th  discussions of t h e  samples and geometries used i n  

each of t h e  two experiments. 

2.2 The Neutron Detector and Associated Electronics 

The neutron detector  was a s c i n t i l l a t i o n  detector  u t i l i z i n g  pulse 

shape discrimination t o  separate proton r e c o i l  pulses from pulses due t o  

e lectrons a r i s i n g  from t h e  in te rac t ion  of gamma rays with t h e  s t i l b e n e  

c rys ta l .  

i s  shown i n  Figure 2.1. The detector  w a s  made up of t h e  1 in.  X 1 in.  

s t i lbene  c r y s t a l ,  a 1 in.  diameter by 3.5 in .  long l u c i t e  l i g h t  pipe, a 

6810~ photomultiplier tube, a tube base, and emitter followers. The as- 

sociated e lec t ronics  w a s  divided i n t o  a l i n e a r  channel, a slow-component 

channel, a slow coincidence c i r c u i t ,  d i sp lay  e lec t ronics ,  and two s c a l e r s .  

For the  d i f f e r e n t i a l  cross  sect ion experiment and, inc ident ia l ly ,  f o r  

A block diagram of t h e  detector  and t h e  associated e lec t ronics  

the  t o t a l  cross  sect ion experiment, t h e  detector  had t o  have good energy 

resolut ion.  Since energy reso lu t ion  of t h e  detector  w a s  s t rongly dependent 

upon the  q u a l i t y  of the  s t i l b e n e  c r y s t a l  and on t h e  way i n  which it w a s  

. 



13 

I MIXING AMPLIFIER OF BIASED TUBE BASE AND 100 f t 'RG62/<  - GAIN 400 AMPLIFIER C,RCUIT RCA EMITTER FOLLOWERS 

UNCLASSIFIED 
ORNL-LR-DWG 7 9 0 7 4 R 2  

' 

4 

~ 

NEUTRONS + I 

y - RAYS. 
SCALER 

NO. 1 

. 

PHS OUT PHS OUT 
~ 

SLOW COINCIDENCE ~ 

~ 

CIRCUIT 

1 
DISPLAY ELECTRONICS 

, , 

' 1 FOLLOWER 1 I 
I 

100 f t  RG 62/U 

ORNL A-8 LINEAR 
AMPLIFIER AND 

I 
I 
I LINEAR CHANNEL 
I 
I 

I 
I 

A 

I 

I SLOW-COMPONENT 
1 CHANNEL 
I 

ORNL A-ID LINEAR 
I AMPLIFIER AND 
~ INTEGRAL DISCRIMINATOR 
I 

Figure 2.1. Block Diagram of t h e  Detector Electronic  System. 

, 



mounted, a 1 in.  X 1 in.  s t i l b e n e  c r y s t a l ,  which w a s  t ransparent  and f r e e  

of cracks w a s  used. It w a s  c a r e f u l l y  mounted i n  t h e  following manner. 

After being wrapped i n  aluminum f o i l  and taped with p l a s t i c  tape,  t h e  

c r y s t a l  and t h e  l i g h t  pipe were placed i n  a l i g h t - t i g h t  housing made of 

t h i n  w a l l  brass.  

i n  a pos i t ion  such t h a t  t h e  c y l i n d r i c a l  axes of t h e  c r y s t a l  and t h e  l i g h t  

pipe were i d e n t i c a l  with t h e  c y l i n d r i c a l  ax is  of t h e  photomultiplier tube. 

The c r y s t a l  w a s  pressed against  the  l i g h t  pipe, and t h e  l i g h t  pipe w a s  

pressed against  t h e  photocathode by a d isk  spring located between t h e  

end of the  housing and t h e  f ront  face of t h e  s t i l b e n e  c r y s t a l .  Optical  

coupling of t h e  c r y s t a l  and t h e  photomultiplier tube t o  t h e  l i g h t  pipe 

w a s  made with s i l i c o n  vacuum grease. 

The housing supported t h e  c r y s t a l  and t h e  l i g h t  pipe 

The pr inc ip le  of operation of t h e  detector  i s  reasonably s t r a i g h t -  

forward. If a neutron incident on t h e  organic s t i l b e n e  c r y s t a l  c o l l i d e s  

with a hydrogen nucleus i n  the  c r y s t a l ,  a r e c o i l  proton i s  produced. We 

can neglect t h e  e f f e c t s  of a neutron c o l l i s i o n  with a carbon nucleus. 

If t h e  r e c o i l  proton i s  completely absorbed by the  s t i l b e n e  c r y s t a l ,  a 

l i g h t  pulse i s  produced which has an amplitude t h a t  i s  a funct ion of t h e  

energy of t h e  r e c o i l  proton. This l i g h t  pulse i s  t ransmit ted through 

t h e  l i g h t  pipe t o  t h e  photocathode of t h e  photomultiplier tube and t h e r e  

produces photoelectrons. 

tube l i n e a r l y  amplifies t h e  i n i t i a l  photoelectron current  by a f a c t o r  of 

about 10 mil l ion t o  produce a current  pulse which can be adequately 

handled by conventional vacuum tube or t r a n s i s t o r  fast pulse techniques, 

Gamma rays in te rac t ing  with t h e  s t i l b e n e  c r y s t a l  give r ise t o  e lec t rons  

The mul t ip l ie r  chain of t h e  photomultiplier 

. 
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which, when completely absorbed by t h e  c r y s t a l ,  r e s u l t  i n  l i g h t  pulses 

which have amplitudes proportional t o  the  energy of t h e  electrons.  

The voltage divider  network of t h e  photomultiplier tube w a s  designed 

t o  allow a current pulse i n  t h e  photomultiplier tube t o  be sampled a t  

dynodes 10 and 13 and a t  t h e  anode. 

amplitude proportional t o  the  l i g h t  output from t h e  s t i lbene  c r y s t a l .  

It w a s  fed i n t o  t h e  A-8  l i n e a r  amplif ier  i n  t h e  manner shown i n  Figure 

2.1. 

and t o  a multichannel analyzer used f o r  c a l i b r a t i o n  purposes. The in te -  

g r a l  discriminator of the  amplif ier ,  which w a s  used as the  detector  b i a s  

control, w a s  connected t o  sca le r  number one and t o  t h e  slow coincidence 

c i r c u i t ,  Data taken on s c a l e r  number one were used t o  monitor t h e  over- 

a l l  performance of t h e  detector  e lec t ronics  system by showing up any 

f a i l u r e s  which might have occurred i n  the  pulse shape discrimination 

c i r c u i t  o r  i n  s c a l e r  number two. 

The pulse from dynode 10 had an 

The output of t h e  A-8 amplif ier  went t o  t h e  display e lec t ronics  

The t o t a l  and the  d i f f e r e n t i a l  cross sect ions calculated from t h e  

data  taken with s c a l e r  number one and number two agreed within s t a t i s t i c s  

i n  a l l  cases except f o r  those d i f f e r e n t i a l  cross sections taken a t  124" 

and 139". 

neutron energy of 13 MeV which allowed g m a  rays absorbed by t h e  s t i l -  

bene c r y s t a l  t o  be recorded by s c a l e r  number one. 

d i f f e r e n t i a l  cross sect ions were about 40 percent grea te r  than those 

calculated from the  s c a l e r  number two data. 

crimination c i r c u i t  d i d  not p lay  an important r o l e  except f o r  measure- 

ments taken a t  these two angles. 

For these two angles, the  detector  b i a s  had t o  be s e t  below a 

These calculated 

Hence, the  pulse shape d is -  

A pulse produced by a gamma r a y  and one produced by a neutron a r e  
* 

I 
1 
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similar t o  the  extent  t h a t  they can both be decomposed i n t o  a fast  com- 

ponent having a decay time of 6.2 x 

a decay time of 370 x 

percent of t h e  charge i s  contained i n  t h e  fast component, where t h e  a reas  

a r e  defined i n  Figure 2.2a. For a gamma r a y  pulse and a neutron pulse of 

equal amplitudes, t h e  amplitude of  t h e  slow component of t he  neutron pulse 

see and a slow component having 

For both types of pulses ,  more than  90 see.' 

2 

i s  1.8 times t h a t  of t h e  gamma r a y  pulse.3 The pulse shape discr iminat ion 

c i r c u i t  t h a t  w a s  used took advantage of t h i s  difference i n  t h e  slow com- 

ponent amplitudes t o  separate  neutron pulses from gamma r a y  pulses.  

This pulse  shape discrimination c i r c u i t  w a s  e s s e n t i a l l y  a Forte  

4 c i r c u i t  which w a s  modified by removing t h e  ad jus tab le  c i r c u i t  elements 

from the  tube base and re loca t ing  them a s a f e  dis tance from the  neutron 

beam or ig ina t ing  from the  gas t a r g e t .  The ad jus tab le  c i r c u i t  elements 

were t h e  mixer, t h e  amplif ier  of gain 400, and t h e  biased amplif ier .  

These c i r c u i t  elements a r e  shown i n  t h e  block diagrams of Figures 2.1 

and 2.2. This modified Forte  c i r c u i t  w a s  capable of discr iminat ing be- 
! 

tween gamma rays and neutrons f o r  e lec t ron  energies grea te r  than approxi- 

mately 70 keV (neutron energies of 620 keV). 

'R. B. Owen, Proceedings of t h e  In t e rna t iona l  Symposium on 
Nuclear Electronics,  Vol. I, (Vienna: In t e rna t iona l  Atomic Energy 
Agency, 1959), P. 27 

and J. L. Fowler, (New York: In te rsc ience  Publishers,  Inc., 1963), 
F. W .  K. Firk,  Fast  Neutron Physics, Par t  11, eds. J. B. Marion 2 

P- 2237 
'R. B. Owen, op. c i t .  
4 - -  

M. Forte,  A. Konsta, and C. Maranzana, Proceedings of t h e  
Conference on Nuclear Electronics ,  Vol. 11, (Vienna: In t e rna t iona l  
Atomic Energy Agency, 1962), p. 277 

* 

! 
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The funct ion of t he  Forte c i r c u i t  was t o  remove t h e  f a s t  component 

from the  dynode 13 pulse and t o  amplify t h e  remaining slow component. 

These two operations a re  shown schematically i n  Figure 2.2. The slow 

component of t h e  anode pulse was eliminated by d i f f e r e n t i a t i n g  t h e  pulse  

v i t h  a, r e s i s t o r ,  capaci tor  d i f f e r e n t i a t i o n  network and by removing the  

r e su l t i ng  pos i t i ve  overshoot with a biased "off" emi t te r  follower.  

dynode 13 pulse  and t h e  clipped anode pulse  were then combined i n  t h e  

mixer c i r c u i t  i n  such a way t h a t  t h e  fast  component from t h e  dynode 13 

pulse w a s  removed. 

The 

A pos i t i ve  sum pulse ( ca l l ed  t h e  slow-component pulse)  having an 

amplitude proport ional  t o  t he  slow component OS t h e  unmixed dynode 13 

pulse w a s  produced by t h e  mixer c i r c u i t .  The c i r c u i t  a l s o  served t o  

approximately normalize t h e  slow-component pulse  t o  the  t o t a l  pulse  height  

of t he  umixed  dynode 13 pulse.  There w a s  a negative spike preceding 

t h e  slow-component pulse which was caused i n  t h e  mixing c i r c u i t  by a 

s l i g h t  d i f fe rence  i n  t h e  shape of t h e  fast  components of t h e  unmixed 

dynode 13 pulse and t h e  clipped anode pulse.  This spike w a s  removed 

from the  slow-component pulse by the  gain of 400 amplif ier  and t h e  biased 

amplif ier  shown i n  Figures 2.1 and 2.2. After  being amplified by t h e  

A-ID amplif ier ,  t h e  slow-component pulse w a s  f ed  i n t o  t h e  d isp lay  

e lec t ronics .  The i n t e g r a l  discriminator of t h e  A-ID ampl i f ie r  w a s  f ed  

i n t o  the  slow coincidence c i r c u i t .  

The mixing c i r c u i t  w a s  s o  adjusted t h a t  t h e  slow-component pulse  

height of a ganrma r a y  pulse w a s  no more than one ha l f  t he  slow-component 

pulse height of a neutron pulse having a t o t a l  amplitude equal t o  t h a t  

of t h e  gamma r a y  for neutron energies grea te r  than 8 MeV. The d isp lay  
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I 

e lec t ronics  system w a s  used t o  indicate  when t h e  optimum adjustment of 

t h e  Forte c i r c u i t  had been reached. 

Since the  d isp lay  system was an analogue t h r e e  dimensional pulse 

height analyzer, i t s  operation i s  more e a s i l y  understood i f  one assigns 

an x and a y coordinate t o  each l i g h t  pulse detected by t h e  photomulti- 

p l i e r  tube. 

The output from t h e  A-8 amplif ier  shown i n  Figure 2.1 i s  proportional t o  

t h i s  t o t a l  pulse height.  

t a ined  from t h e  A-ID amplif ier  of Figure 2.1 i s  taken t o  be t h e  y coordi- 

nate.  

s a t i s f y  the  coincidence conditions of the slow coincidence c i r c u i t ,  a dot 

appeared on the display oscil loscope. The coordinates of the  locat ion 

of the  dot on t h e  oscil loscope a r e  proportional t o  t h e  x and y coordi- 

We l e t  t h e  x coordinate be t h e  t o t a l  pulse height of a pulse.  

The amplitude of a slow-component pulse ob- 

For every pulse having an x and a y coordinate l a r g e  enough t o  

nates,  respect ively.  

number of pulses having a p a r t i c u l a r  s e t  of x and y coordinates which 

occurred i n  a given i n t e r v a l  of time. 

number w a s  obtained from t h e  i n t e n s i t y  of the  dot on t h e  long p e r s i s t e n t  

screen of the oscil loscope. Typical displays f o r  an optimum adjustment 

of t h e  mixer c i r c u i t  a r e  shown i n  Figures 2.1 and 3 . 3 .  

The t h i r d  dimension of t h e  d isp lay  system w a s  t h e  

A q u a l i t a t i v e  indicat ion of t h i s  

Once t h e  mixing c i r c u i t  had been adjusted t o  give an optimum dis -  

play, the  i n t e g r a l  discriminators of t h e  A-1D and t h e  A-8 amplif iers  

were s e t .  

i n  d e t a i l  i n  Section 3.4. 

criminators were set s o  t h a t  only proton r e c o i l  pulses having an energy 

grea te r  than t h a t  corresponding t o  t h e  discriminator s e t t i n g  of t h e  A-8 

amplifier could t r i g g e r  the  slow coincidence c i r c u i t  shown i n  Figure 2.1. 

The procedure f o r  s e t t i n g  these discriminators i s  described 

It i s  s u f f i c i e n t  t o  say here t h a t  t h e  d is -  
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The output pulses of t he  slow coincidence c i r c u i t  were counted by s c a l e r  

nmber  two and were a l s o  used t o  gate  t h e  d isp lay  e lec t ronics  system. 

A spectrum of proton r e c o i l  pulses r e s u l t i n g  from t h e  bombardment 

of t h e  s t i l b e n e  c r y s t a l  of t h e  de tec tor  with a d i r e c t  beam of 20.87 MeV 

monoenergetic neutrons i s  shown i n  Figure 2.3. Spectra similar t o  t h i s  

one were used t o  c a l i b r a t e  t h e  de tec tor  b i a s  i n  terms of neutron energy. 

The spectrum w a s  obtained with a multichannel pulse height  analyzer which 

w a s  connected t o  t h e  output of t h e  A-8 amplif ier  shown i n  Figure 2.1 and 

which was gated with t h e  output of t h e  slaw coincidence c i r c u i t .  The 

spectrum was taken a f t e r  t h e  mixer c i r c u i t  had been adjusted t o  an op t i -  

mum se t t i ng .  It i s  reasonably f la t ;  t h e  counts per channel change about 

15 percent over t h e  energy i n t e r v a l  of 11.8 t o  20.9 MeV. 

number a t  t h e  ha l f  maximum of t h e  forward edge of t he  spectrum ( t h a t  p a r t  

of t he  spectrum around channel 85) corresponds t o  a neutron energy of 

20.87 MeV. 

criminator of t h e  A-8  amplif ier  shown i n  Figure 2.1. 

b i a s  edge i n  terms of neutron energy i s  discussed i n  Sect ion 3.3. 

The channel 

The b i a s  edge of t h e  spectrum r e s u l t s  from the i n t e g r a l  dis-  

Cal ibra t ion  of t h e  

2.3 The Neutron Monitor and Associated Electronics  

I n  both t h e  d i f f e r e n t i a l  cross sec t ion  experiment and t h e  t o t a l  

cross  sec t ion  experiment, only a r e l a t i v e  measurement of t h e  neutron 

i n t e n s i t y  from t h e  t a r g e t  w a s  required.  

was made with t h e  monitor counter which w a s  placed a t  a f ixed  pos i t i on  

9 in.  from the  t a r g e t .  

detector  of conventional design. 

t h a t  was used w a s  small enough t o  l i m i t  t he  maximum de tec tab le  e lec t ron  

This r e l a t i v e  f lux measurement 

The monitor w a s  a proton r e c o i l  s c i n t i l l a t i o n  

The 1 ern X 1 em p l a s t i c  s c i n t i l l a t o r  
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pulse  due t o  a gamma r a y  t o  about 4 MeV and yet l a rge  enough t o  have 

adequate s e n s i t i v i t y  t o  17 t o  21 MeV neutrons. 

Figure 2.4 shows t h e  e lec t ronic  c i r c u i t r y  assoc ia ted  with t h e  moni- 

t o r  which w a s  of conventional design. The i n t e g r a l  discr iminator  of t he  

A-8  amplif ier  w a s  s e t  above t h e  maximum poss ib le  pulse height  of e lec t rons  

r e su l t i ng  from gamma ray  in te rac t ions  ( i . e . ,  4 MeV) i n  t h e  c r y s t a l .  With 

t h i s  s e t t i n g ,  t h e  monitor would record only neutrons from the  t a r g e t  pro- 

duced by t h e  T(d,n)He 4 r eac t ion  of t h e  t a r g e t .  Neutrons from t h e  reac t ion  

3 D(d,n)He 

proton r e c o i l  pulse height due t o  these  neutrons w a s  below t h e  i n t e g r a l  

discr iminator  s e t t i n g  of t h e  A-8  amplif ier .  

were not  recorded by t h e  monitor s ca l e r  because t h e  maximum 

Figure 2.5 shows a t y p i c a l  neutron spectrum which was taken t o  check 

the  performance of t h e  monitor counter and t o  serve as a guide f o r  set- 

t i n g  t h e  i n t e g r a l  discriminator.  The spectrum w a s  obtained by connecting 

t h e  output of t h e  A-8  amplif ier  of  Figure 2.4 t o  t h e  input of t h e  m u l t i -  

channel analyzer and ga t ing  t h e  analyzer with t h e  i n t e g r a l  discr iminator  

of t he  amplif ier .  

2.4 The T r i t i u m  Gas Target 

4 The source of neutrons f o r  both experiments w a s  t h e  T(d,n)He r e -  

The tritium w a s  contained i n  a double f o i l  gas t a r g e t  and w a s  action. 

bombarded with a deuteron beam from t h e  Van de Graaff acce lera tor .  For 

the  case of a 5 pa deuteron beam having an energy of 3 MeV a t  t h e  center  

of t he  tritium gas c e l l  (3 em long containing 0.43 a t m  of tritium), t h e  

neutron y i e ld  from the  t a r g e t  was 2.3 x 10 8 neutrons per second. This 
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neutron y ie ld  i s  about 14 times t h a t  which one would obtain f o r  a z i r -  

conium t r i t i d e  t a r g e t  of equivalent thickness.  

A schematic diagram of t h e  double f o i l  gas t a r g e t  i s  shown i n  Figure 

It can be operated a t  a maximum proton beam current of 22 pa,  which 2.6. 

i s  about a f a c t o r  of 10 grea te r  than the  maximum proton beam current 

which can be handled by a s i n g l e  f o i l  gas ta rge t .5  

f r i g e r a t e d  helium gas w a s  used t o  cool t h e  two one m i l  t h i c k  n icke l  

f o i l s .  

handling system t h a t  contained a compressor and a network of f i l t e r s  f o r  

f i l t e r i n g  t h e  gas before it re-entered t h e  cooling c e l l .  

A stream of unre- 

6 The helium cooling gas w a s  rec i rcu la ted  through a closed gas 

Figure 2.7 i s  a schematic diagram of t h e  vacuum system between t h e  

analyzing magnet of t h e  acce lera tor  and t h e  tritium gas c e l l .  

e l e c t r o s t a t i c  quadrupole l e n s  shown i n  t h e  f i g u r e  w a s  placed midway be- 

tween t h e  analyzing magnet and t h e  t a r g e t  and w a s  used t o  focus t h e  beam 

on t h e  gas t a r g e t .  

produced i n  t h e  neighborhood of t h e  analyzing magnet w a s  accomplished by 

t h e  two foot  t h i c k  concrete w a l l .  

ruptured, the  fast shutoff valve closed, thus preventing t h e  accelerator  

vacuum system from being spoi led by t h e  flow of helium cooling gas. The 

t a r g e t  w a s  supported i n  t h e  pos i t ion  shown i n  Figure 2.7 by supporting 

members fastened t o  the  w a l l  and t h e  c e i l i n g  of the  room. 

The 

I s o l a t i o n  of t h e  t a r g e t  a rea  from t h e  background 

When t h e  f i r s t  f o i l  of the  t a r g e t  

These 

'R. W. Lamphere ( p r i v a t e  communication) 
6 The f o i l s  were grade C f o i l s  purchased from t h e  Cromium 

Corporation of America, Waterbury, Connecticut. 
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supporting members could be adjusted so  t h a t  t h e  t a r g e t  could be moved a 

s m a l l  amount i n  any d i r ec t ion  and then locked i n  the des i red  pos i t ion .  

2.5 The Support Stand f o r  t h e  Detector, Sample and t h e  
Attenuation Bar 

Apparatus f o r  supporting the  detector ,  sample and t h e  a t tenuat ion  

bar  w a s  e s s e n t i a l l y  the  same f o r  both t h e  d i f f e r e n t i a l  cross  sec t ion  and 

t h e  t o t a l  cross  sec t ion  experiments. A r i g i d  platform made of duralumin 

having a hor izonta l  surface 3 in .  wide and 63 in .  long w a s  t h e  main p a r t  

of t h e  a p p a r a t ~ s . ~  This platform could be ro t a t ed  i n  a hor izonta l  plane 

about a v e r t i c a l  ax i s  which passed through both t h e  r o t a t i o n  point  of 

t he  platform and t h e  center-point of t h e  gas t a r g e t  c e l l .  The angle of 

ro t a t ion ,  ca l l ed  t h e  platform r o t a t i o n  angle, w a s  defined by t h e  angle 

between t h e  center - l ine  of t h e  hor izonta l  surface of t h e  platform and 

t h e  ax i s  of t h e  deuteron beam. It w a s  always f ixed  a t  zero degrees ex- 

cept during t h e  ca l ib ra t ion  of t he  de tec tor  b ias .  

The detector ,  sample and t h e  a t tenuat ion  bar  were r i g i d l y  supported 

approximately 12 in.  above and d i r e c t l y  over t h e  center - l ine  of t h e  

platform by l egs  made of t h i n  w a l l  brass  tubing. 

t o  t h e  platform i n  such a way t h a t  t h e  pos i t i on  of a piece of supported 

apparatus could be adjusted i n  a hor izonta l  plane i n  a d i r ec t ion  perpen- 

d icu lar  t o  the  center - l ine  of t h e  platform or  i n  a d i r ec t ion  along t h e  

center - l ine  of t h e  platform. They were a l s o  designed t o  permit a cer -  

These l egs  were fastened 

t a i n  amount of v e r t i c a l  adjustment. 

7For a discussion of t h e  platform and t h e  background of neutrons 
sca t t e red  from it, see E. C. Monahan, op. c i t .  - -  



2.6 The Samples and t h e  Experimental Geometries 

Samples used i n  both of the  experiments were composed of n a t u r a l  

12 carbon which contains 99 percent C 

t o t a l  cross sec t ion  of C13 (approximately 1.6 barns between 15 and 19 

MeV ) i s  about t h e  same as t h a t  f o r  C12, the  n a t u r a l  carbon samples t h a t  

were used were t r e a t e d  as composed e n t i r e l y  of C . Table 2.1 gives t h e  

and one percent C13. Since t h e  

8 

12 

r e s u l t s  of t h e  analysis  of the  carbon used f o r  samples f o r  t h e  two 

experiments. We see from t h e  t a b l e  t h a t  ATJ grade reactor  graphite and 

electrode graphi te  a r e  e s s e n t i a l l y  i d e n t i c a l  from t h e  point of view of 

impurit ies,  and t h a t  each i s  of high puri ty .  

The geometrical ax is  of each experiment was defined by t h e  extension 

of t h e  d i rec t ion  of the  deuteron beam beyond t h e  end of the  tritium gas 

c e l l .  

axes of t h e  detector ,  the  sample and t h e  at tenuat ion bar (when used) 

Each of the  experimental geometries required t h a t  t h e  c y l i n d r i c a l  

correspond t o  the  geometrical ax is  of the  experiment. 

convenience, t h e  center - l ine  of t h e  supporting platform w a s  a l igned t o  

be p a r a l l e l  t o  t h e  geometrical axis and t o  be contained i n  t h e  same 

v e r t i c a l  plane as t h e  geometrical axis. 

t h e  same f o r  both experiments: it w a s  9 in .  from t h e  center of t h e  

tritium gas c e l l  and a t  an angle of 55 degrees with respect t o  t h e  

d i rec t ion  of t h e  deuteron beam. 

As a matter of 

The pos i t ion  of t h e  monitor w a s  

The experimental geometry used for the  d i f f e r e n t i a l  cross sec t ion  

It i s  c a l l e d  r i n g  geometry because experiment i s  shown i n  Figure 2.8. 

H. 0. Cohn, J. K. B a i r ,  and H. B. Willard, Phys. Rev. - 122, 
a 

534 (1961) 



Table 2.1 

SEMIQUANTITATTVE SPECTROCHEMICAL ANALYSIS OF THE SAMF’L;ES 

Analysis done by ORNL Spectrochemical Laboratory 
Carbon sample No. 1 - ATJ P i l e  Grade Graphite 
Carbon sample No. 2 - Electrode Graphite cu t  from 

stock piece of e l e c t r i c  
furnace electrode.  

SYMBOLS FILM NO. 8162 
A:  10-loo$ C :  O.l-l$ E: 0.001-0.01% DATE 6-26-63 
B: l-lO$ D: O.Ol-O.l$ F: 0.0001-0.001% BY C. A. Pr i tekard  

-: Sought; not found (See l i m i t  of 
de tec t ion  below) 

FOR J. W. Johnson 
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D i f f e r e n t i a l  Cross Section Experiment. 
i n  a Horizontal Plane. 

Schematic Diagram of t h e  60" Geometry Used f o r  t h e  
Cross-Sectional V i e w  Taken 
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t h e  carbon sample w a s  i n  t h e  shape of an annulus. Ring geometry w a s  

chosen for t h e  experiment because a much l a r g e r  sample could be used 

than i n  t h e  case of c y l i n d r i c a l  geometry or slab geometry. 

met r ica l  set-up and t h e  dis tances  for t h e  October 1962 and February 1963 

The geo- 

runs on t h e  acce lera tor  a r e  summarized i n  Table 2.2. 

dis tance between t h e  center  of t h e  t a r g e t  and t h e  center  of t h e  cross  

D1 denotes t h e  

sec t iona l  a rea  of t h e  sample. 

t h e  sample and center  of t h e  s t i l bene  c r y s t a l  of t h e  detector .  D i s  

t h e  dis tance between t h e  center  of t h e  t a r g e t  and t h e  center  of t h e  

s t i l bene  c r y s t a l  for t h e  d i r e c t  flux measurement, and D4 t h e  same dis- 

tance for t h e  sca t t e red  flux measurement. The average sca t t e r ing  angle 

i s  t h e  angle between D1 and D2. 

a r e  given i n  t h e  labora tory  coordinate system. 

D2 i s  t h e  dis tance between t h e  center  of 

3 

A l l  d is tances  and angles i n  Table 2.2 

A s  can be seen i n  Table 2.2, two shadow cones were used, one of 

brass  10 in.  long and one of tungsten 12 in .  low. '  Simple ca lcu la t ions  

show t h a t  tungsten i s  about 20 times b e t t e r  than brass  for a t tenuat ing  

18 MeV neutrons; a 10 in.  long brass bar t ransmits  o n l y  0.7 percent of 

t h e  neutron flux incident  on it. The tungsten shadow cone w a s  used i n  

place of t h e  brass  shadow cone i n  order t o  decrease t h e  cont r ibu t ion  t o  

the  background caused by t h e  neutron flux t ransmit ted through t h e  shadow 

cone. Actual measurements a t  139" yielded a f a c t o r  of two decrease i n  

'The tungsten bar  s tock w a s  f ab r i ca t ed  by t h e  Fansteel  
Metal lurgical  Corporation of Chicago, I l l i n o i s  and i s  sold under 
t h e  t r ade  name of Fansteel  77. 
tungsten, 7 percent nickel ,  and 4 percent copper; it is machinable 
with tungsten carbide cu t t i ng  too l s .  

I ts  composition i s  89 percent 



Table 2.2 

SAMPLES, SHADOW CONES, AND GEOMETRICAL FACTS FOR TKE DIFFEREI\TTIAL 

CROSS SECTION EXPERIMENT 

Average Month 

Angle Taken 
Sca t te r ing  Data 

(Degrees) 

36 Feb. 1963 

51 Oct. 1962 

60 Feb. 1963 

86 Oct. 1962 

123 5 Feb. 1963 

139 Feb. 1963 

Shadow 
Cone 
Used 

Tungsten 

Brass 

Tungsten 

Brass 

Tungsten 

Tungsten 

Sample 
Used 

A 

B 

A 

B 

A 

A 

Dl 
( em> 

51.1 

42.6 

51.10 

42.6 

51.45 

53 80 

Annular Samples: 

A: Sample cut  from ATJ Graphite. 
Weight = 653.0 g. 

D2 
- (em) 

11.55 

8.30 

7-15 

5.85 

6.40 

7.80 

D3 
(cm) 

124.78 

124.38 

- 

124.78 

124.38 

124.78 

124.78 

6 in.  OD, 3 in .  I D  and 1.1 in.  thick.  

D4 
( cm) 

60 9 75 

- 

40.20 

55-10 

43.40 

48.20 

48.20 

w w 

B: Sample cu t  from Electrode Graphite. 
Weight = 651.3 g. 

6 in. OD, 3 in. I D  and 1.1 in .  thick.  
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t h e  s t a t i s t i c a l  e r r o r  between s c a t t e r i n g  r a t i o  da ta  taken with t h e  brass 

shadow cone and t h e  same da ta  taken with the  tungsten shadow cone. 

The experimental geometry used f o r  t h e  t o t a l  cross  sec t ion  experi-  

10 ment i s  shown i n  Figure 2.9. The sample w a s  3 in .  long and one inch 

i n  diameter and was machined from ATJ r eac to r  grade graphi te .  

placed midway between the  t a r g e t  and t h e  detector ,  and it w a s  j u s t  l a r g e  

enough completely mask t h e  s t i l b e n e  c r y s t a l  from t a r g e t  neutrons. 

background w a s  measured by replacing t h e  sample with a 10 in .  long by 

1.5 in.  diameter brass  bar.  

It w a s  

The 

"The geometry i s  similar t o  t h e  one discussed by D. W. Mil ler ,  
- op. z. 
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CHAPTER I11 

EXPERIMENTAL PROCEDURE 

3.1 Introduct ion 

This chapter deals  with the  determination of t h e  energy of t h e  neu- 

t rons  emitted from t h e  t a r g e t ,  t h e  c a l i b r a t i o n  of t h e  energy threshold 

(b i a s )  of t h e  de tec tor  i n  terms of neutron energy, and the  experimental 

procedures used i n  both t h e  d i f f e r e n t i a l  cross  sec t ion  and t o t a l  c ross  

sec t ion  experiments. Each of these th ree  subjec ts  a r e  discussed i n  a 

general  way. Representative samples of experimental da ta  are given t o  

i l l u s t r a t e  various poin ts  made i n  t h e  discussions.  

3.2 The Determination of t h e  Energy of t h e  Neutrons Emitted from 
t h e  Target 

I n  order t o  determine t h e  energy of t h e  neutrons emitted from t h e  

t a r g e t ,  we must f i r s t  know t h e  average deuteron energy i n  t h e  t a r g e t .  

The average deuteron energy i n  t h e  double f o i l  gas t a r g e t  w a s  t h e  

deuteron energy a t  a point  located on t h e  geometrical ax i s  (defined i n  

Section 2.6) of t h e  t r i t i u m  gas c e l l  midway between t h e  f o i l  window and 

t h e  end of t h e  c e l l .  

energy of t h e  deuteron beam p r i o r  t o  enter ing t h e  t a r g e t  and from t h e  

This average energy w a s  ca lcu la ted  from t h e  known 

ca lcu la ted  energy loss  i n  t h e  n i cke l  f o i l s  and t h e  helium and tritium 

gases. 

The r e s u l t s  of t h e  ca lcu la t ion  of t h e  average deuteron energy i n  

t h e  gas t a r g e t  and t h e  determination of t h e  energy of t h e  neutrons 

emitted from the  t a r g e t  f o r  a given s e t  of t a r g e t  parameters a r e  shown 

i n  Table 3.la. The f irst  column i s  t h e  energy of t h e  deuteron beam at  
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Table 3.la 

DEUTERON EKERGY LOSS I N  THE GAS TARGET AND THE 

E3ERGY OF THE NEUTRONS FROM THE TARGET 

Incident Deuteron Energy Loss (keV) 
Deuteron I n  F i r s t  I n  Helium I n  Second I n  F i r s t  Neutron 

fiergy Nickel Cooling Nickel H a l f  of T Energy 
(MeV) Foil Gas F o i l  Gas Cel l  (MeV) 

2.0 289 14 320 54 17.28 

3.0 229 10 240 32 18.92 

4.0 195 8 200 24 20.29 

Target Parameters Used For Tables 3.la, 3.lb, and 3.1~: 0.43 a t m  of T i n  
3 em long Cell.; 0.37 a t m  of He i n  0.7 em long cooling c e l l ;  and 0.1 m i l  
t h i ck  n icke l  windows. 
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t h e  entrance of the  t a r g e t .  

helium gas, and i n  t h e  tritium gas were obtained from graphs of energy 

l o s s  versus incident deuteron energy. These graphs were prepared f o r  a 

p a r t i c u l a r  s e t  of t a r g e t  parameters, l i k e  those given i n  Table 3.la,from 

a s e t  of dF,/dx versus E curves.’ 

a r e  neutron energies a t  zero degrees which were obtained from a t a b l e  of 

neutron energy versus deuteron energy. 

The energy l o s s  i n  t h e  n icke l  f o i l s ,  i n  t h e  

Lis ted i n  t h e  l as t  column of Table 3.la 

2 

The estimated energy spread i n  t h e  neutron energy incident  on t h e  

sample i s  given i n  Tables 3.lb and 3 . lc  f o r  the  d i f f e r e n t i a l  cross  sec t ion  

and t h e  t o t a l  cross sect ion experiments. We define t h i s  energy spread, 

&E5, by t h e  formula 

where we have neglected t h e  spread i n  t h e  neutron energy r e s u l t i n g  from 

t h e  energy regulat ion system of  t h e  accelerator ;  t h i s  l a t t e r  energy 

spread w a s  approximately 1 t o  3 keV. 

duced by t h e  s t raggl ing  of t h e  deuteron beam i n  t h e  two n icke l  f o i l s  as 

w a s  calculated from formulae given i n  t h e  1 i t e r a t ~ r - e . ~  

of 2 22 keV f o r  a l l  deuteron energies between 2 and 5 MeV. 

neutron energy spread due t o  the  half-thickness of the  tritium gas 

&E w a s  t h e  energy spread in t ro-  2 

It had a value 

AI? w a s  3 

h. Whaling, Handbuck der Physik, Vol. 34, ed. E. Flugge, 
(Berlin:  Springer-Verlag, 1958) , p. 193 

L. Blumberg and S. I. Schlesinger, R e l a t i v i s t i c  Tables of 2 

Energy Angle Relationships f o r  t h e  T(p,n)He3, D( d,n)He“, T(d,n)He4 
Reactions, A.E.C.U. 3118 (Washington: U. S.  Government Pr in t ing  
Off ice,  1 9 5 v l g l f f ’  

’P. Marmier, Kernphysik, Par t  I, (Zurich: Verlag des Vereins 
der Mathematiker und Physiker an der ETH Zurich, 1960), p. 57 
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Table 3.lb 

I THE UNCERTAINTY I N  THE EXERGY OF THE NEUTRONS FROM THE TARGET 

FOR THE DIFFERENTIAL CROSS SECTION EXPERlMEpJT 

Neutron Energy Spread 
Due t o  

of the  

Target 

Uncertainty i n  the  

F o i l  H a l f  - thickness Due t o  
Half-angular Thickness 

k c  ident  T r i t i u m  spread of Energy and Neutron 
Deuteron the  sample Spread dE/dx Energy 

7 
(keV) (keV) 

&6 LIE aE4 &5 
(keV) (keV) 

Energ &3 
(MeV7 (keV) 

71 18 77 45 56 

32 57 34 45 

45 57 25 38 

2.0 

3.0 42 

4.0 

5.0 26 

32 37 54 29 41 
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Table 3 . 1 ~  

THE UNCERTAINTY IN THE ESTERGY OF TKF, NEUTRONS FROM THE TARGET 

FOR THE TOTAL CROSS SECTION EXPERIMENT 

Neutron Energy Spread 
Due t o  

Uncertainty i n  t h e  

Half - thicknes s Due t o  Foil 

and 

&6 
(keV) (keV) 

Incident of t h e  H a l f  - angular Thic kne s s 
Deuteron Tritium spread of Energy Neutron 

AE 
mergy Target the  sample Spread dE/ dx Energy 

7 AE4 aF5 
(keV) (keV) 

nE3 
(keV) 

2.0 

3 90 

4.0 

71 

42 

32 

5 

5 

5 

75 

48 

39 

45 

34 

29 

56 

43 

39 
26 5 34 25 35 5.0 
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i -  

! .  

t a rge t .  

of t he  sample with respect t o  the  ta rge t .  It w a s  obtained from tabu- 

l a t e d  values of neutron energy versus angle. The uncertainty i n  t h e  

d i rec t ion  of t he  deuteron beam caused by s t raggl ing i n  t h e  two nickel  

f o i l s  was approximately k 0.7" and was neglected i n  the  calculat ion of 

AE w a s  t h e  neutron energy spread due t o  the  half-angular spread 4 

4 

&E4. 

spread of t h e  sample was approximately ? 2.5" about an average angle of 

7.5". &E4 ranged between f 18 and f 45 keV f o r  t h i s  experiment. 

t o t a l  cross sect ion experiment, t he  half-angular spread of t h e  sample 

w a s  k 1.5" about zero degrees; hence, AE w a s  about f 5 keV a t  a l l  

deuteron energies between 2 and 5 MeV. 

I n  the  d i f f e r e n t i a l  cross sect ion experiment, t he  half-angular 

In  t h e  

4 

7' The uncertainty (or standard deviation) i n  t h e  neutron energy, aE 

given i n  t h e  s i x t h  column of Tables 3.lb and 3.lc,  w a s  calculated from 

the  equation 

It w a s  necessary t o  know t h e  uncertainty i n  t h e  neutron energy because 

it entered in to  the  calculat ion of the absolute e r ro r  i n  t h e  d i f f e r e n t i a l  

cross sect ion (see Chapter I V ) ,  and i n t o  the  determination of t he  un- 

ce r t a in ty  i n  the  energy of t h e  resonance found i n  the exci ta t ion curves. 

AE2 has already been discussed. The uncertainty i n  t h e  energy due t o  
I 

t he  energy spread introduced by t h e  tritium c e l l ,  

angular spread of t h e  sample, &E4, i s  ce r t a in ly  l e s s  than e i the r  of these 

and t h e  f i n i t e  3' 

L. Blumberg and S .  I. Schlesinger, op. G. 
'P. Marmier, - op. g. 
4 

- 
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two er rors .  This lowering of t h e  uncertainty i s  taken care  of by t h e  

f a c t o r  a i n  equation ( 3 . 2 ) .  

should be taken f o r  a, 1/3 i s  believed t o  be a reasonable estimate. 

w a s  t h e  uncertainty i n  t h e  neutron energy due t o  t h e  uncertainty i n  t h e  

f o i l  thickness and t o  the  uncertainty i n  t h e  value of &E/& used t o  

Although it i s  not c l e a r  as t o  what value - 

&6 - 

ca lcu la te  t h e  energy l o s s  i n  t h e  n icke l  f o i l s .  

i n  t h e  f o i l  thickness,  and a k 5 percent uncertainty i n  dE/dx were used 

i n  the  ca lcu la t ion  of &6. 

from experimentally measured f o i l  thicknesses of 13 s e t s  of f o i l s  from 

t h e  same batch of f o i l s  used i n  our experiment. 

A k 7 percent uncertainty 

The k 7 percent uncertainty w a s  obtained 

6 

3.3 The Cal ibrat ion and Se t t ing  of the  Energy Threshold o r  B i a s  of 
t h e  Detector 

The main funct ion of t h e  energy threshold of t h e  detector ,  of ten 

ca l led  t h e  detector  bias, w a s  t o  prevent i n e l a s t i c a l l y  s c a t t e r e d  neutrons 

from t h e  sample and neutrons produced by t h e  D(d,n)He 3 reac t ion  a t  t h e  

t a r g e t  and coll imators from being recorded by t h e  detector.' The de- 

t e c t o r  bias w a s  determined by t h e  s e t t i n g  of t h e  i n t e g r a l  discriminator 

of t h e  A-8  amplif ier  of the  detector  e lec t ronics  (shown i n  Figure 2.1). 

A multichannel pulse height analyzer and t h e  d i r e c t  neutron beam were 

used t o  c a l i b r a t e  t h e  bias s e t t i n g  i n  terms of neutron energy. 

c a l i b r a t i o n  w a s  accomplished by taking spectra  of monoenergetic neutrons 

This 

I ,  

I 

%e wish t o  thank D r .  R. W. Lamphere f o r  giving us t h e  data 
on these 13 s e t s  of f o i l s .  

'Neutrons from the  D(d,n)He 3 react ions w i l l  be r e f e r r e d  t o  

i n  the  r e s t  of t h i s  d i s s e r t a t i o n  as d,d neutrons. 
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a t  a number of neutron energies between 12.8 and 21 MeV and by s e t t i n g  

t h e  discriminator a t  a new s e t t i n g  before each spectrum w a s  taken. 

One of these  spectra  i s  shown i n  Figure 2.3. A t y p i c a l  curve of 

discriminator s e t t i n g  versus channel number, which w a s  obtained from a 

number of spec t ra  l i k e  t h e  one of Figure 2.3, i s  shown i n  Figure 3.1. 

The curve of neutron energy versus channel number obtained from t h e  same 

s e t  of spec t ra  i s  shown i n  Figure 3.2. 

discriminator w a s  ca r r i ed  out a t  l e a s t  once a day as  da ta  were taken on 

t h e  Van de Graaff acce lera tor .  

The energy ca l ib ra t ion  of t h e  

I n  both t h e  d i f f e r e n t i a l  and t h e  t o t a l  cross  sec t ion  experiments, 

t he  de tec tor  b ias  w a s  s e t  a t  a neutron energy between t h e  energy of t h e  

e l a s t i c a l l y  sca t t e red  neutrons and t h e  energy of neutrons i n e l a s t i c a l l y  

sca t t e red  from t h e  4.4 MeV s t a t e  of C . Within t h i s  r e s t r i c t i o n ,  t h e  

b ias  s e t t i n g  was s e t  a s  low as  possible  so  t h a t  a maximum s e n s i t i v i t y  of 

t h e  de tec tor  t o  e l a s t i c a l l y  sca t t e red  neutrons was obtained. 

sen ta t ive  values of these  energies a re  tabula ted  i n  Table 3.2 f o r  t h e  

sca t t e r ing  angles of 36 and 139 degrees. 

were used i n  t h e  ca l cu la t ion  of these  e l a s t i c  and i n e l a s t i c  s ca t t e r ed  

neutron energies.  

12 

Repre- 

Formulae given i n  t h e  l i t e r a t u r e  

8 

The requirement on t h e  b i a s  e n e r g y t h a t  it be s e t  s o  as t o  prevent 

t h e  de tec tor  from recording d,d neutrons w a s  automatically met when t h e  

b i a s  energy w a s  above t h e  energy of t h e  i n e l a s t i c a l l y  sca t t e red  neutrons. 

This was t h e  case because t h e  bias energy was always grea te r  than 8 MeV, 

J. B. Marion, ed., 1960 Nuclear Data Tables, Par t  3, (Washington: 8 

U. S. Government P r in t ing  Office, 19601, pp. 1 6 2 - 1 c  
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Table 3.2 

A SAMF'U OF VALUES OF DIRECT ENERGY, ELASTIC AND I N E M S T I C  

EIVERGY, BIAS EDJERGY, AND BIAS CONSTANF B(0) USED IN 

THE DIFFEFXNTIAL CROSS SECTION EXPERDW3NT FOR THE 

FIXED SCATTERING ANGLES OF 36" and 139" 

Scat te r ing  Angle = 36" 

Direct E E l a s t  E B i a s  E I n e l  E B(36) 
18.33 
18 . 47 
18.77 
19.06 
19.21 
19.48 
19.75 
20.02 
20.15 
20.42 
20.54 
20.68 

17-76 
17 89 
18.18 
18.46 
18.61 
18.87 

Scat te r ing  Angle = 139" 

Direct E 

17.48 
17 83 
18.16 

18 77 
18.47 

19.06 
19.21 
19.48 
19.75 
20.02 
20.29 
20.42 

E l a s t  E 

13. 04 
13 -30 
13 55 
13 78 
14.00 
14.22 
14 33 
14 53 
14.74 
14.94 
15.14 
15.24 

15 15 
15 29 
15.60 

16.30 
16 57 
16.82 
16.95 
17 23 
17 34 
17.32 

15.89 
16.04 

B i a s  E 

10.77 
11.01 
11.22 
11.42 
11.64 
11.84 
11.92 
12.12 

12.48 
12.68 

12.32 

12.58 

13.37 
13 50 
13 79 
14.07 
14.22 
14.48 
14.74 
15.01 
15 13 
15.39 
15 51 
15.65 

I n e l  E 

9.22 
9.48 
9.73 
9.96 
10.18 
10.40 
10.51 
10.71 
10.91 
11.12 
11.32 
11.41 

83 
83 
83 
83 
.84 
.84 
.84 
.84 
.84 
.84 
.84 
.84 

B(139) 

.62 

.62 

.62 

.62 

.62 

.62 

.62 

.62 

.62 

.62 

.62 

.62 
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3 and a 5 MeV deuteron produces a 8.2 MeV neutron from t h e  D(d,n)He 

act ion.  

co l l ided  with deuterons which had been driven i n t o  the  col l imators  of 

t he  t a r g e t  and i n t o  the  end wa l l  of t h e  tritium gas c e l l .  

re -  

3 The D(d,n)He reac t ion  occurred when t h e  deuterons i n  t h e  beam 

I n  t h e  d i f f e r e n t i a l  cross  sec t ion  experiment, we a l s o  required t h a t  

t h e  detector  bias be proport ional  t o  the  incident  neutron energy E 0 . 
That i s ,  

where E B 

proport ional i ty .  

It i s  shown i n  Sect ion 4.3 that when t h e  de tec tor  b i a s  i s  proport ional  

t o  the  d i r e c t  neutron energy, t h e  measured sca t t e r ing  r a t i o  (defined i n  

Chapter I) i s  approximately proport ional  t o  t h e  d i f f e r e n t i a l  cross  sec t ion  

per s teradian.  

change i n  t h e  d i f f e r e n t i a l  cross  sec t ion  as  a funct ion of neutron energy. 

i s  t h e  detector  bias energy, and B(eO)  i s  t h e  constant of 

Representative values of B ( B  0 ) a r e  given i n  Table 3.2. 

Consequently, t h e  sca t t e r ing  r a t i o  would r e f l e c t  any 

3.4 The Experimental Procedure Used f o r  t he  D i f f e r e n t i a l  Cross 
Sect ion Experiment 

The double f o i l  gas t a r g e t  w a s  i n s t a l l e d  i n  t h e  t a r g e t  room on a 

beam por t ,  and it was evacuated and very thoroughly checked for vacuum 

and pressure leaks.' During t h e  time t h a t  t h e  gas t a r g e t  w a s  being s e t  

'Suitable precautions were taken t o  minimize t h e  l o c a l  and the  
building-wide contamination t h a t  would have r e su l t ed  from any ser ious 
accident involving t h e  tritium gas from t h e  t a r g e t .  Fortunately,  no 
such accident occurred during our turns on t h e  acce lera tor  and only 
a s m a l l  amount of l o c a l  tritium contamination w a s  experienced. This 
l o c a l  contamination r e su l t ed  pr imar i ly  from t h e  contact of pieces  of 
experimental apparatus and hand t o o l s  with t h e  t a r g e t  system. 
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up, the  various components of t h e  detector  and t h e  monitor e lec t ronic  

systems were put i n  t h e i r  respective places i n  the t a r g e t  room and i n  

t h e  counting room. These components had been assembled and wired t o -  

gether beforehand s o  t h a t  t h e  i n s t a l l a t i o n  of them w a s  straightforward 

and quickly done. The operation of the  two e lec t ronic  systems w a s  checked 

by using neutrons from a Pu-Be neutron source. 

Once a wel l  regulated,  steady deuteron beam from t h e  acce lera tor  

had been obtained, the  gas t a r g e t  w a s  al igned so t h a t  t h e  beam passed 

through t h e  two col l imat ing apertures  of t h e  t a r g e t ,  through t h e  helium 

cooling c e l l ,  and i n t o  the  tritiwn gas c e l l .  This alignment w a s  achieved 

by moving the  t a r g e t  about so  t h a t  the  beam current  measured on t h e  gas 

c e l l  w a s  maximized, and t h e  beam currents  measured on t h e  f i r s t  and 

second col l imators  of t h e  t a r g e t  were minimized. 

s i t i o n  w a s  reached, t h e  t a r g e t  w a s  locked i n t o  posi t ion.  

alignment of t h e  t a r g e t  had been completed, t h e  analyzing magnet of t h e  

acce lera tor  w a s  ca l ibra ted ,  i f  t h i s  w a s  necessary, using t h e  reac t ion  

T(p,n)He 

When t h e  optimum PO- 

After  t h e  

3 and a zirconium t r i t i d e  t a r g e t .  

The apparatus and t h e  support platform were then aligned using t h e  

pos i t ion  of t h e  gas t a r g e t  t o  define t h e  geometrical a x i s  of t h e  experi-  

ment. 

t h e  various geometrical distances were recorded. 

t h e  apparatus t o  t h e  nearest  1/32 inch. 

mark t h e  posi t ions of t h e  sample and t h e  de tec tor  on the support platform 

were secured r i g i d l y  t o  t h e  platform. 

of t h e  sample and t h e  detector  t o  be reproducible t o  within about 1/32 

inch. The support member f o r  t h e  shadow cone w a s  designed so  t h a t  t h e  

The r i n g  geometry f o r  a f ixed  s c a t t e r i n g  angle w a s  s e t  up, and 

Care w a s  taken t o  a l i g n  

The s tops t h a t  were employed t o  

These stops permitted t h e  posi t ions 
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I 

! 
1 .  

shadow cone could be removed from t h e  support platform and replaced 

again i n  a pos i t ion  t h a t  w a s  within a t  l e a s t  1/32 inch of i t s  o r i g i n a l  

posit ion.  

a t  an angle of about 55" with respect t o  the geometrical axis of t h e  

experiment and at  a dis tance of 9 inches from t h e  center  of t h e  tritium 

gas c e l l .  

The monitor detector  w a s  mounted on a r i g i d  stand and placed 

The next s t e p  i n  t h e  procedure w a s  t o  f i n d  a hole-free s e t  of nickel  

f o i l s  f o r  t h e  t a r g e t .  

using t h e  gas t a r g e t  system because t h e  f o i l s  were s o  f r a g i l e  t h a t  they  

could be handled, without damage, only t h e  s ing le  time t h a t  it took t o  

i n s t a l l  them i n  t h e  f o i l  receptacles  of t h e  helium cooling c e l l  of t h e  

ta rge t .  After i n s t a l l i n g  a s e t  of n icke l  f o i l s  i n  t h e  ta rge t ,  the  triti- 

um gas c e l l ,  the  helium c e l l ,  and t h e  sect ion of beam tube located i n  

f r o n t  of t h e  helium c e l l  were evacuated and i s o l a t e d  from each other by 

turning of f  valves on t h e  gas d i s t r i b u t i o n  manifold. 

w a s  then brought up t o  atmospheric pressure. 

t h e  tritium c e l l  or i n  t h e  sect ion of beam tube were negl igible  a f t e r  a 

t e n  minute w a i t ,  the  f o i l s  were considered t o  be f r e e  of holes. If t h e  

pressure a t  e i t h e r  pos i t ion  changed, the  corresponding f o i l  w a s  removed 

and replaced with a new one and t h e  checking procedure w a s  repeated. 

It took about 30 minutes t o  an hour t o  car ry  out one complete cycle i n  

t h e  checking procedure. 

number of times before a hole-free set of f o i l s  w a s  found. After a 

hole-free s e t  of n icke l  f o i l s  had been found, the  t a r g e t  w a s  evacuated 

and f i l l e d  with tritium gas; t h e  helium cooling gas was then turned on. 

The search f o r  a good s e t  of f o i l s  had t o  be made 

The helium c e l l  

If t h e  pressure changes i n  

This procedure of ten  had t o  be repeated a 



The next s t e p  i n  t h e  experimental procedure w a s  t o  ad jus t  and t o  

c a l i b r a t e  t h e  e lec t ronics .  The pulse shape discrimination c i r c u i t  of 

t h e  detector  w a s  adjusted so  t h a t  an optimum separat ion w a s  obtained be- 

tween neutron pulses and gamma r a y  pulses.  

w a s  monitored with the  d isp lay  oscil loscope. Figure 3.3 shows the  d is -  

p lay  which corresponds t o  an optimum adjustment of the  c i r c u i t .  The 

b i a s  or  i n t e g r a l  discriminator s e t t i n g  on the  A - l D  amplif ier  shown i n  

Figure 2.1was s e t  a t  a pulse height midway between t h e  average neutron 

slow-component pulse height and t h e  average height of the  slow-component 

gamma r a y  pulse height. This s e t t i n g  i s  i l l u s t r a t e d  i n  Figure 3.3. With 

t h e  b i a s  of t h e  A - l D  amplifier s e t  a t  t h i s  leve l ,  the  detector  would re -  

cord only neutrons having an energy equal t o  or grea te r  than t h e  energy 

threshold or  b i a s  of t h e  detector .  

The adjustment of t h e  c i r c u i t  

After  these  operations, t h e  detector  w a s  ca l ibra ted  i n  terms of 

neutron energy (see  Section 3.3). 

t h e  shadow cone were removed from t h e  support platform, and t h e  detector  

w a s  exposed t o  a d i r e c t  beam of neutrons produced by a deuteron beam on 

t h e  t a r g e t  of 0.1 va. 

t o  prevent pulse pile-up i n  t h e  detector .  

t h e  t a r g e t  i n  a horizontal  plane t o  d i f f e r e n t  platform r o t a t i o n  angles 

t o  obtain t h e  range of neutron energies needed f o r  t h e  c a l i b r a t i o n  ( see  

Figure 3.4). 

b ias ,  a t a b l e  of values of b i a s  s e t t i n g s  versus neutron energy w a s  con- 

s t ruc ted  f o r  a f ixed value of B ( 8 ) .  During t h e  co l lec t ion  of data,  t h e  

detector  b i a s  w a s  s e t  a t  a value E The adjustment of 

t h e  monitor system on t h e  multichannel analyzer and s e t t i n g  t h e  i n t e g r a l  

For t h i s  ca l ibra t ion ,  the  sample and 

The deuteron beam current w a s  purposely made small 

The detector  w a s  r o t a t e d  about 

With t h e  completion of t h e  c a l i b r a t i o n  of t h e  detector  

given by Eq. 3.3. B 
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discriminator of the amplif ier  a t  a pulse height above t h e  maximum pulse 

height corresponding t o  gama rays and/or d,d neutrons, 

The procedure for  taking t h e  data consisted of an order ly  s e t  of 

operations by which t h e  sca t te red  neutron f lux,  the  background neutron 

flux, and the  d i r e c t  neutron f l u x  were measured. 

ments, which were made a t  a given neutron energy, were c a r r i e d  out one 

r i g h t  a f t e r  t h e  other and as quickly as possible  i n  order t o  minimize 

e f f e c t s  upon the  data caused by any slow drifts  i n  t h e  e lec t ronics  and 

i n  t h e  energy ca l ibra t ions .  The procedure f o r  the  f l u x  measurements 

The t h r e e  f l u x  measure- 

were as 

1) 

2) 

3 )  

4) 

follows : 

The energy of the  neutrons emitted from t h e  t a r g e t  w a s  f ixed  

a t  a p a r t i c u l a r  value by a wel l  defined deuteron beam energy. 

The detector  bias w a s  s e t  a t  a value which corresponded t o  t h e  

value of t h e  incident neutron energy. 

The sample, shadow cone, and the detector  were placed i n  t h e  

proper pos i t ion  f o r  t h e  sca t te red  f l u x  measurement. A 

measurement of t h e  s c a t t e r e d  neutron f l u x  w a s  c a r r i e d  out 

f o r  a preset  number of monitor counts adequate t o  give the  

desired counting s t a t i s t i c s .  

The sample w a s  removed. The background neutron f lux w a s  

measured f o r  a preset  number of monitor counts adequate t o  

give the desired counting s t a t i s t i c s .  

The shadow cone w a s  removed, and the  detector  w a s  moved back 

about 124 em from t h e  center  of t h e  gas t a r g e t .  

neutron flux w a s  measured f o r  a prese t  number of monitor 

counts adequate t o  give t h e  desired counting statistics. 

The d i r e c t  
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The deuteron beam current  on t h e  gas t a r g e t  was kept as constant as 

possible  during the  th ree  f l u x  measurements. 

repeated a t  neutron energy in t e rva l s  of approximately 150 keV between 

17.2 and 21 MeV. Measurements a t  some of t h e  energies were repeated. 

The repeated measurements agreed wi th in  counting s t a t i s t i c s .  It took 

anywhere from 20 minutes t o  one hour t o  complete t h e  measurements a t  one 

energy and t o  change t h e  neutron energy t o  t h e  next value. 

The f l u x  measurements were 

A s ca t t e r ing  r a t i o  R, which i s  defined i n  Chapter I, and t h e  approxi- 

mate s t a t i s t i c a l  e r r o r  i n  R were ca lcu la ted  a t  each neutron energy 

immediately a f t e r  t he  f l u x  measurements a t  an energy were completed. 

Equations for R and t h e  s t a t i s t i c a l  e r r o r  i n  R i n  terms of t h e  de tec tor  

and t h e  monitor counts a r e  given i n  Appendix A. When t h e  51 and 85 de- 

gree da ta  were taken, a number of background measurements a t  some of t h e  

energies were skipped because experience had shown t h a t  t hey  could be 

obtained by in te rpola t ion  from measured background values. 

values of t h e  background were used i n  the  ca lcu la t ion  of t h e  sca t t e r ing  

r a t i o  f o r  these  energies.  A s  t he  data  were taken and R calculated,  a 

graph of R versus t h e  d i r e c t  neutron energy w a s  p lo t t ed  ( see  Figure 4.5).  

Since R w a s  approximately proport ional  t o  t h e  d i f f e r e n t i a l  cross  sect ion,  

t h e  graph i l l u s t r a t e d  t h e  change i n  t h e  r e l a t i v e  d i f f e r e n t i a l  cross  

sec t ion  with energy, It, therefore ,  served as  a guide i n  t h e  choice of 

neutron energies a t  which data  could be taken t o  bes t  descr ibe t h e  reso- 

nance e f f e c t s  t h a t  were observed. 

immediately, equipment f a i l u r e s ,  misalignment and e r ro r s  made i n  t h e  

procedures. Thus, not much time was l o s t  i n  t h e  experiment taking 

worthless data  t h a t  otherwise might have been thought t o  be cor rec t .  

Extrapolated 

The graph a l s o  served t o  point  up, 
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3.5 Measurement of the  Total  Cross Section 

Essent ia l ly  t h e  same experimental apparatus and experimental pro- 

cedures were used i n  t h e  t o t a l  cross sec t ion  experiment as were used i n  

the  d i f f e r e n t i a l  cross  sec t ion  experiment. The sample and the shadow 

cone used i n  t h e  d i f f e r e n t i a l  cross  sect ion experiment w e r e  simply re -  

moved. The sample f o r  the  t o t a l  cross sec t ion  experiment w a s  subs t i tu ted  

i n  t h e i r  place, and distances and alignments were changed. 

bias w a s  s e t  so  t h a t  it w a s  necessary t o  change it only once f o r  about 

every 1 MeV change i n  t h e  neutron energy. When s e t  i n  t h i s  manner the 

b i a s  energy w a s  high enough so t h a t  i n e l a s t i c a l l y  sca t te red  neutrons 

were not recorded. 

The detector  

The alignment of t h e  sample, t a r g e t ,  and t h e  detector  w a s  done wi th  

an a l ign ing  bar which exact ly  replaced t h e  sample i n  the  sample holder 

and which had center  points  a t  e i t h e r  end which defined t h e  ax is  of t h e  

bar.  

holder u n t i l  the  ax is  of t h e  bar and t h e  geometrical axis of t h e  experi- 

ment were ident ica l .  

t o  a pos i t ion  midway between t h e  detector  and t h e  t a r g e t .  When t h e  tar-  

get ,  the  sample, and t h e  detector  were properly aligned, t h e  sample com- 

p l e t e l y  masked the  detector  from t h e  d i r e c t  f l u x  of neutrons from the  

t a r g e t .  The alignment w a s  checked per iodica l ly  as data were taken. 

This ax is  w a s  posit ioned by changfng t h e  pos i t ion  of t h e  sample 

The bar spaced t h e  sample holder, hence t h e  sample, 

The procedures f o r  taking data were e s s e n t i a l l y  those followed i n  

t h e  d i f f e r e n t i a l  c r m s  sec t ion  experiment. 

sample holder, and a,n at tenuated f l u x  w a s  measured. 

moved, and a d i r e c t  f l u x  w a s  measured. An at tenuated bar w a s  put i n  t h e  

sample holder, and t h e  background f l u x  w a s  measured. 

The sample was put i n  t h e  

The sample w a s  re- 

For these  t h r e e  



measurements t he  pos i t ion  of t h e  de tec tor  remained t h e  same, and t h e  

beam current  was kept as constant as possible .  Measurements were taken 

a t  approximately 150 keV in t e rva l s  between 17.5 and 21 MeV. 

number of t h e  measurements were repeated. The t o t a l  cross  sect ions 

calculated from these  repeated measurements agreed within counting sta- 

t i s t i c s .  It took an average of about 30 minutes t o  take t h e  data  a t  one 

energy and t o  change the  neutron energy t o  the  next value. 

A l a rge  

The transmission, which i s  defined i n  Chapter I, and t h e  s t a t i s t i c a l  

e r ro r  i n  t h e  transmission were ca lcu la ted  a t  each energy as t h e  data 

were taken. 

ca lcu la t ion  of t h e  transmission a t  those energies a t  which no background 

w a s  taken. The t o t a l  cross  sec t ion  w a s  ca lcu la ted  from t h e  transmission 

using equation (5.4) and p lo t t ed  as  a funct ion of neutron energy. 

graph was similar t o  t he  graph i l l u s t r a t e d  i n  Figure 5.2. 

t o  monitor t h e  progress of t h e  experiment. 

Extrapolated values of t he  background were used i n  t h e  

The 

It w a s  used 
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CHAPTER IV 

THE D1FFERF;PJTIAL CROSS SECTION EXPERImT 

. 

4.1 Introduction 

An equation f o r  the  d i f f e r e n t i a l  cross sect ion a t  an average scat-  

t e r i n g  angle i s  derived and then evaluated by numerical integrat ion.  

This equation contains correct ions for  the f i n i t e  s i z e  of t h e  sample, 

f o r  the  f i n i t e  s i z e  of t h e  detector ,  f o r  absorption i n  t h e  sample, and 

f o r  the  angular spread of t h e  sample with respect  t o  t h e  detector .  

correct ions were appreciable i n  t h e  present experiment, and therefore  

had t o  be considered. A correct ion f a c t o r  f o r  multiple s c a t t e r i n g  i n  

the  sample and a correct ion f a c t o r  f o r  the  polar iza t ion  of t h e  neutrons 

from the  t a r g e t  a r e  derived and calculated.  

were obtained a f t e r  a l l  correct ions had been made, a r e  presented along 

with the e r r o r s  i n  these  r e s u l t s .  

r e s u l t s  i s  d e a l t  with i n  Chapter V I .  

These 

The f i n a l  r e s u l t s ,  which 

The physical s ignif icance of these  

4.2 The Defini t ion of Symbols and Coordinate Systems 

I( @,Ed) = number of neutrons of energy E per s teradian d 

per see emitted from t h e  t a r g e t  a t  an angle @. 
crR(@,Ea) = d i f f e r e n t i a l  reac t ion  cross sect ion f o r  t h e  

T(d,n)He 4 reac t ion  f o r  neutrons emitted from 

t h e  t a r g e t  a t  an angle d with an energy E6. 1 

'In t h e  calculat ions which follow, t h i s  cross sect ion w a s  
obtained from N. J a m i e  and J. D. Seagrave, eds., Charge P a r t i c l e  
Cross Sections, LA-2014, (Washington: 
Office, 1957), p r  

U. S. Government Pr in t ing  



12 3 = number of C nuc le i  per em . 
= number of hydrogen nuc le i  per em3 i n  t h e  s t i l bene  

1 n 

n2 

c rys t  a 1  . 
= volume of t h e  s t i l bene  c r y s t a l .  

= 
v2 

€(Ei,%) f r a c t i o n  of t he  proton r e c o i l  spectrum counted 

by t h e  detector  f o r  neutrons of energy E i incident  

on t h e  s t i l bene  c r y s t a l  and f o r  a de tec tor  bias 

energy of E It can be shown t h a t  B' 

where end e f f e c t s ,  absorption, and mult iple  sca t -  

t e r i n g  i n  t h e  c r y s t a l  have been neglected. 

CJ ( E ~ )  = neutron-proton t o t a l  cross  sec t ion  f o r  neutrons of 
nP 

2 energy Ei. 

1 2  
C J ~ ( E ~ )  = t o t a l  neutron cross  sec t ion  f o r  c for neutrons of 

3 energy Ei. 

CJ( e> = d i f f e r e n t i a l  e l a s t i c  cross  sec t ion  for neutrons of 

1 2  incident  energy E i e l a s t i c a l l y  sca t t e red  from C 

i n t o  a sca t t e r ing  angle of 8. 

Eel(0) = t h e  energy of neutrons e l a s t i c a l l y  sca t t e red  from 

C" i n t o  an angle e. 

t h e  energy of neutrons emitted from t h e  t a r g e t  a t  0'. = 
EO 

'In t h e  ca lcu la t ions  which follow, t h i s  cross  sec t ion  w a s  ob- 

'Measured t o t a l  cross  sect ions were used i n  t h e  ca lcu la t ions .  

t a ined  from J. B. Marion, - op. =., p. 111. 
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k(  e) = f r a c t i o n  of t h e  incident energy c a r r i e d  away by 

a neutron e l a s t i c a l l y  sca t te red  from C i n t o  a 12  

s c a t t e r i n g  angle of 8; i .e . ,  Eel(6) = k(B)E$.  

- (kl c2), where and 2 a r e  u n i t  vectors -1 - 
1 2 - cos 

defined i m p l i c i t l y  i n  Figure 4.1. 

= s c a t t e r i n g  r a t i o  a t  an average sca t te r ing  angle 0 . 
0 

R i s  t h e  r a t i o  of t h e  sca t te red  neutron i n t e n s i t y  

divided by t h e  d i r e c t  neutron i n t e n s i t y  where both 

s c a t t e r e d  and d i r e c t  i n t e n s i t i e s  have been corrected 

f o r  background; see Appendix A. 

The other quant i t ies  used i n  t h e  following der ivat ions a r e  defined i n  

t h e  t e x t  or i m p l i c i t l y  i n  Figures 4.1, 4.2, 4.4, o r  4.6. 

The der ivat ion of t h e  equation used t o  ca lcu la te  the  d i f f e r e n t i a l  

cross  sec t ion  involves integrat ions over the  sample volume and t h e  volume 

of t h e  s t i l b e n e  c r y s t a l .  For t h i s  reason, two separate coordinate systems 

must be defined. Cyl indrical  symmetry of t h e  sample and of the  s t i l b e n e  

! .  c r y s t a l  with respect  t o  t h e  geometrical axis,  and t h e  f a c t  t h a t  t h e  f r o n t  

face planes of t h e  sample and t h e  s t i l b e n e  c r y s t a l  a r e  p a r a l l e l  t o  each 

other and a r e  both perpendicular t o  the  geometrical ax is  make c y l i n d r i c a l  

polar coordinates an i d e a l  choice for t h e  two coordinate systems. The 

two coordinate systems a r e  i l l u s t r a t e d  i n  Figures 4 .1  and 4.2. 

of the  sample coordinate system i s  a t  t h e  point of in te rsec t ion  of the  

The o r i g i n  

f r o n t  face plane of the  sample and t h e  geometrical axis, and t h e  or ig in  

of the  c r y s t a l  coordinated system i s  a t  t h e  in te rsec t ion  of t h e  f r o n t  

face plane of t h e  s t i l b e n e  c r y s t a l  and t h e  geometrical axis. Pos i t ive  

x d i rec t ion  i s  chosen t o  be t h e  r i g h t  of t h e  or ig ins  along t h e  geometrical 
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A Cross-Sectional View of t h e  Geometry Used f o r  t h e  
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axis  of both of t h e  coordinate systems. 

and = 0, 

When the  polar  angles 5 = 0 

t h a t  i s ,  t h e  plane of zero a and i s  t h e  plane of Figure 4.1. The 

symbolic volume elements of t h e  sample and t h e  s t i lbene  c r y s t a l  coordi- 

nate  systems a r e  

1 2 

and 

r e  spec t i v e l  y . 
4.3 The Derivation and t h e  Solution of t h e  Equation Used t o  

Calculate t h e  D i f f e r e n t i a l  Cross Section 

Since t h e  geometry i n  t h e  present experiment w a s  such t h a t  t h e  

source of neutrons w a s  e s s e n t i a l l y  a point  source, a point  source w i l l  

be assumed i n  t h e  following derivation. 

s ing le  s c a t t e r i n g  events occurred i n  t h e  sample. 

We w i l l  a l s o  assume t h a t  only 

With these  assumptions, we can w r i t e  t h a t  t h e  symbolic number of 

neutrons per second which a r e  e l a s t i c a l l y  sca t te red  by t h e  volume element 

dV i n t o  an angle 0 and leave t h e  sample is, t o  within several  percent,  1 
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where t h e  f a c t o r  i n  t h e  brackets i s  the  neutron i n t e n s i t y  incident on 

J 

i 

dV1, and exp[-nlrrT(Eel)r2] i s  t h e  at tenuat ion f a c t o r  f o r  sca t te red  neu- 

t rons  leaving the  sample. O f  these sca t te red  neutrons, only ms a r e  re -  

corded by t h e  detector .  dFs i s  given by 

where we define dV 

coordinate system which has i t s  or ig in  a t  t h e  center  of dV 

i n  t h e  s t i lbene  c r y s t a l  a t  a dis tance D from t h e  o r i g i n  of t h i s  spher ica l  

as a symbolic volume element of a spherical  polar 3 
dV l i e s  

1' 3 

polar  coordinate system. Such an equation as t h e  one above would be 

extremely d i f f i c u l t  t o  in tegra te  i n  i t s  present form. In order t o  make 

it more manageable, we replace dV 

c y l i n d r i c a l  polar  coordinate system of t h e  s t i lbene  c r y s t a l .  

by dV2, t h e  volume element of t h e  3 
This 

s impl i f ica t ion  introduces a systematic e r r o r  i n  t h e  absolute value of 

t h e  cross sect ion which i s  roughly estimated t o  be of t h e  order of about 

_+ 10 percent. The s implif ied equation i s  

The t o t a l  r a t e  of neutrons, Fs, recorded by the  detector  i s  ob- 

t a ined  by replacing aF 

equation (4.1) and in tegra t ing  t h e  r e s u l t i n g  equation over the  volume 

of t h e  sample and t h e  s t i l b e n e  c r y s t a l  giving 

i n  equation (4.2) by t h e  right-hand s ide  of 1 
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When t h e  de tec tor  i s  exposed t o  t h e  d i r e c t  neutron beam, t h e  t o t a l  

neutron i n t e n s i t y  recorded by t h e  de tec tor  i s  

Since t h e  right-hand s ide  of equation (4.4) i s  constant with respect  t o  

t h e  var iab les  of in tegra t ion  i n  equation (4.31, t h e  integrand of equation 

(4.3) i s  s impl i f ied  by dividing equation (4.3) by equation (4.4).  

r e su l t i ng  equation i s  

The 

where 

(4.6) 

The subs t i t u t ion  of E f o r  E i n  equations (4.6) and (4.7) and t h e  removal 
0 

of H from t h e  i n t e g r a l  of equation (4.5) a r e  discussed below. 

Let us consider t h e  f a c t o r  

Since t h e  mean ha l f  angle 5 which t h e  sample subtends with t h e  geometrical 

axis a t  t h e  t a r g e t  ranges between 6" and 7.5" for a l l  geometries s tudied,  
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we can replace @ i n  t h e  f a c t o r  by 5 = 7.5'. 

smallness of 4 , Eo - E@ 

A s  a consequence of t h e  

0.1 MeV; hence, t o  a good approximation 

The r a t i o  I(@, E@)/I(O, Eo) can be replaced by i t s  equivalent,  t he  r a t i o  

of t he  reac t ion  cross  sec t ions :  cr ( 4 ,  E4)/uR(0, Eo). Incorporating R 

these  changes i n t o  t h e  f ac to r  gives 

The rec iproca l  of H i s  p lo t t ed  i n  Figure 4.3. 

t h a t ,  fo r  a given mean sca t t e r ing  angle, t he re  i s  very l i t t l e  percentage 

change i n  H as a funct ion of neutron energy i n  the  energy range of 17.2 

t o  21.0 MeV. We a l s o  note t h a t ,  f o r  a given energy, H changes only a 

few percent as t h e  sca t t e r ing  angle i s  var ied  10 degrees or  so  about 

any of t h e  mean sca t t e r ing  angles. We conclude from t h i s  discussion 

t h a t  H can be considered constant with respect  t o  the  var iab les  of i n t e -  

gra t ion  i n  equation (4.5);  and, can therefore  be removed from the  

in t eg ra l .  

We note i n  t h e  f i g u r e  

The approximate so lu t ion  of equation (4.5) for t h e  cross  sec t ion  

u(8) i s  obtained by f i r s t  expanding t h e  cross  sec t ion  i n  a Taylor 's  

s e r i e s  about t h e  average s c a t t e r i n g  angle 8 (defined i m p l i c i t l y  i n  

Figure 4.4) and neglect ing t h i r d  and higher order terms. 

i s  

0 

This expansion 

a II 

(4.8) d e )  =O.(e,) + C~-S,)U'(6,)  t a- (eo) t ) 

where ~ ' ( 8 ~ )  and U' ' ( e o )  a r e  t h e  f i r s t  and second der iva t ives  of a(@) 

with respect  t o  8. Next, equation (4.8) i s  then subs t i t u t ed  i n t o  equation 
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(4.5) t o  give t h e  so lu t ion  

J /  
vz v, 

The f irst  term of equation (4.9) i s  the  calculated cross  sec t ion  

corrected f o r  absorption i n  t h e  sample and f o r  t h e  f i n i t e  s i z e  of t h e  

detector  and of t h e  sample. The absorption correct ion i s  accomplished 

by t h e  f a c t o r  

er.p [-0, { qf E.) r, + &(EJ)rL} 3, 
which i s  contained i n  G; and t h e  i n t e g r a l s  over the detector  and sample 

volumes a r e  t h e  f i n i t e  s i z e  corrections.  The second term of equation 

(4.9) i s  t h e  cross sec t ion  which r e s u l t s  from t h e  angular spread of t h e  

sample with respect  t o  the  detector.  This cross sec t ion  i s  added t o  or 

subtracted from (depending upon t h e  s ign of t h e  i n t e g r a l )  t h e  cross  

sec t ion  calculated by t h e  f i rs t  term of t h e  equation t o  correct  it f o r  

t h e  angular spread of t h e  sample. 

I n  t h e  present experiment, we were pr imari ly  i n t e r e s t e d  i n  t h e  

r e l a t i v e  d i f f e r e n t i a l  cross sec t ion  as a funct ion of neutron energy a t  

a f ixed  s c a t t e r i n g  angle 8 . 
angular spread, and f i n i t e  sample and detector  s i z e  were e i t h e r  constant 

or slowly varying functions of neutron energy, we i n i t i a l l y  omitted a l l  

of these  correct ions and reduced equation (4.9) t o  

Since the  correct ions for absorption, 
0 

(4.10) 
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Thus, w e  obtained an equation for ca lcu la t ing  a r e l a t i v e  d i f f e r e n t i a l  

cross  sect ion.  

imp l i c i t l y  i n  Figure 4.4. 

I n  equation (‘+.lo), N = nlV1; and D and D2 a r e  defined 1 

The ca lcu la t ion  of t h e  r e l a t i v e  d i f f e r e n t i a l  cross  sec t ion  was 

g r e a t l y  f a c i l i t a t e d  during t h e  experiment.al phase of t h e  work by s e t t i n g  

t h e  de tec tor  b ias ,  #, so  t h a t  

(4.11) 

where B(eO) i s  a constant.  

gives the  equation 

Introducing t h i s  equation i n t o  equation (4.10) 

(4.12) 

Since t h e  f a c t o r  i n  t h e  brackets i s  independent of neutron energy, d e o )  

i s  d i r e c t l y  proport ional  t o  R and therefore  has t h e  same energy dependence 

as R. 

i s  shown i n  Figure 4.5. 

were taken so t h a t  t h e  progress of t h e  experiment could be continuously 

monitored. 

An example ( f o r  eo = 3 6 O )  of a curve of R versus neutron energy 

Curves such as t h i s  one were p lo t t ed  as da ta  

I n  order t o  obta in  t h e  r e l a t i v e  d i f f e r e n t i a l  cross  sec t ion  t o  a 

b e t t e r  approximation, and i n  order t o  express it i n  absolute  units, t h e  

cross  sec t ion  was ca lcu la ted  by equation (4.9). 

equation (4.9) contains correct ions f o r  absorption, angular spread, and 

f i n i t e  sample and de tec tor  size.  The general  method used t o  evaluate 

equation (4.9) i s  bes t  i l l u s t r a t e d  by evaluat ing a simpler equation which 

i s  obtained from equation (4.9) when t h e  correct ions f o r  angular spread 

A s  w a s  mentioned above, 
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(4.14) 

where the  energy dependence of t h e  var iables  i s  indicated by the  super- 

s c r i p t  m; and where, f o r  t h e  geometry of t he  present experiment, 

2 
4 

equations (4.15 
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i j  
2 Measured values of r were used i n  the  calculat ions.  Some of the  geo- 

metr ical  q u a n t i t i e s  i n  equations (4.15) a r e  i l l u s t r a t e d  i n  Figure 4.6 

f o r  the  case of summation limits a = b = 2. The a c t u a l  numerical calcu- 

l a t i o n  of t h e  cross  sec t ion  by equation (4.14) (and a l s o  by equation 

(4.16)) w a s  c a r r i e d  out on a CDC 1604A d i g i t a l  computer. 

The cross  sect ion w a s  calculated by equation (4.14) a t  each value 

of neutron energy E" and a t  each average s c a t t e r i n g  angle eo. 

calculated by equations given i n  Appendix A. 

4.3. E" w a s  calculated a t  each $ by formulae obtained by l e a s t  squares 

f i t t i n g  s t r a i g h t  l i n e s  t o  t h e  measured energy and b i a s  c a l i b r a t i o n  data;  

R w a s  
0 

H w a s  taken from Figure 

B 

see Figures 3.1 and 3.2 for a sample of t h i s  data.  

of $ which were calculated by t h i s  procedure a r e  given i n  Table 3.2. 

Distances were taken from sca le  drawings of t h e  geometries. 

Some of the  values 

The upper 

l i m i t s ,  a and b, of t h e  summations were both s e t  equal 2 because t r i a l  

calculat ions of t h e  cross sect ion a t  36", 86O, and 123.5' f o r  a = b = 2 

d i f fe red  only two percent i n  absolute value from those calculated a t  

these angles when a = b = 4. 

In  the  course of the  ca lcu la t ion  of the cross  sect ion by equation 

(4.14) ,  it w a s  found t h a t  it w a s  possible  t o  remove the  exponential from 

t h e  summation s ign and t o  replace it by an average exponential f a c t o r  

outside t h e  summation without introducing more than about 2 2 percent 

uncertainty i n  t h e  absolute value of the  calculated cross  section. Th i s  

0 average exponential fac tor  i s  given i n  Table 4.1, where r 1' r2, and 

a r e  defined i m p l i c i t l y  i n  Figure 4.4. 

Before t h e  numerical in tegra t ion  of equation (4.9) was undertaken, 

it w a s  s implif ied i n  t h e  following manner. We assumed t h a t ,  as i n  t h e  
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Table 4.1 

i- n, [cT(Eo)rl + cT(Eel)r21 AVERAGE ABSORPTION CORRECTION FACTOR e 

Neutron Angle ( i n  degrees) 

17.6 1.44 1.50 1.61 1.33 1.50 1.51 

18.6 1.46 1.51 1.61 1.36 1.52 1.51 

19.6 1.50 1.54 1.64 1.37 1.58 1.54 

20.6 1.50 1.51 1.64 1.34 1.57 1.55 



75 

case of equation (4.14), t h a t  t h e  exponential fac tor ,  which is contained 

i n  G, could be removed from t h e  summation and replaced by an average 

f a c t o r  outside of the  summation. 

a r e  given i n  Table 4.1 were used. 

introduced by t h i s  s impl i f ica t ion  i s  l e s s  than t h e  uncertainty i n  t h e  

absolute value of t h e  cross  section; see Section 4.6 

This s implif ied form of equation (4.9) i s  

A s  before, t h e  average f a c t o r s  which 

The assumed 2 2 percent uncertainty 

The f irst  and second der ivat ives  of t h e  cross  sect ion a r e  given approxi- 

m a t  e l y  by 

and 

(4.19) 

(4.20) 
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IXGEXDRE POLYNOMIAL EXPANSION COEFFICIENTS FOR 
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where P (cos@) i s  t h e  Legendre polynomial of t h e  f i rs t  kind of order R ,  R 
and t h e  coe f f i c i en t s  a a r e  defined by t h e  approximate r e l a t ionsh ip  R 

12 
(4.21) 

The coe f f i c i en t s  a which were used were t h e  same coe f f i c i en t s  which 

were obtained i n  Section 4.4 f o r  t h e  mult iple  s ca t t e r ing  correct ion.  

a 
A 

t y p i c a l  s e t  of these  coe f f i c i en t s  a r e  given i n  Table 4.3. We have used 

a maximum R value of 12 i n  equations (4.19), (4.20), and (4.21) because 

it w a s  found i n  Section 4.4 t h a t  t h e  cross sec t ion  from which the  coef- 

f i c i e n t s  were determined could be adequately represented by an expansion, 

equation (4.21), up t o  and including a maximum R value of 12. 

The numerical in tegra t ion  of equation (4.16) w a s  ca r r i ed  out i n  a 

way qu i t e  similar t o  t h a t  used i n  t h e  in tegra t ion  of equation (4.13). 

However, s ince t h e  volume in t eg ra l s  i n  equation (4.16) were over both 

t h e  volume of t h e  sample and t h e  volume of t h e  c r y s t a l ,  equations f o r  D2 

and 8 ,  which were more general  than those given i n  equations (4.15), had 

t o  be used. These general  equations a r e  given below and were derived 

using t h e  geometrical arrangement i l l u s t r a t e d  i n  Figure 4.2. 

i n  t h e  numerical i n t eg ra t ion  of equation (4.16) were t h e  coordinated 

Needed a l s o  

elements and recursion formulae given i n  equations (4.15) and those 

addi t iona l  ones given below 

na = %/e, 1 
a k = (k-l)AQl, 

.&x2 = 2.54/e, 

1 

All2 = 1.27/d 

= (t - 0.5)AR1, m2 

na2 = 2T/f, 
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A sample of t h e  r e s u l t s  of these calculat ions i s  shown i n  Table 4.2. 

The cross sect ions uc(e0) and ad(eo) were obtained by using t h e  summation 

l imits on the  numerical in tegra t ion  of a = b = c = d = e = f = 2. These 

summation l imits correspond t o  the  d iv is ion  of both t h e  sample and s t i l -  

bene c r y s t a l  i n t o  8 equal volumes. 

4.4 The Multiple Sca t te r ing  Correction 

In  t h e  preceding sect ion we did not consider neutrons which were 

recorded by t h e  detector  a f t e r  undergoing two, three,  four,  or more col-  

l i s i o n s  i n  t h e  sample. However, t h e  measured s c a t t e r i n g  r a t i o  R does 

include a contr ibut ion from multiply sca t te red  neutrons, and a correct ion 

f o r  t h i s  contr ibut ion must be made t o  the experimental d i f f e r e n t i a l  cross  

section, which i s  calculated from the  measured value of R. 

of multiple s c a t t e r i n g  i s  t o  make the  experimental angular d i s t r i b u t i o n  

more i so t ropic  than t h e  t r u e  angular d i s t r ibu t ion .  

t r a t e s  t h i s  increase i n  isotropy for an experimental d i s t r i b u t i o n ,  curve 

b, as compared t o  a t r u e  d is t r ibu t ion ,  curve a. Although t h e  mult iple  

sca t te r ing  correct ion i s  bes t  car r ied  out by a Monte Carlo calculat ion,  

The e f f e c t  

Figure 4.7 i l l u s -  

4 

M. Walt, op. c i t .  4 
- -  
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Table 4.2 

COMPARISON OF THE CORRECTIONS TO THE LABORATORY DIFFERmTIAL 

CROSS SECTION FOR A NEUTRON ENERGY OF 18.0 MeV 

36 157 219 224 204 206 

51 59 86 86 57 47 

34.5 51 55 41 27 

33.5 46 46 51 49 

60 

86 

123 5 10.7 14.1 15.8 14.7 12.5 

13 9 9.1 12.5 13.5 13 11.5 

ua(eo) = uncorrected cross sec t ion  (equation (4.10)). 

Fb o 

ac(Qo) = 

ud(e0) = 

ve(OO) = 

(8 ) = cross sec t ion  (equation (4.13)) corrected f o r  f i n i t e  
sample size and f o r  absorption. 
cross  sec t ion  (first  term of equation (4.16)) corrected f o r  t h e  
f i n i t e  s i z e  of the  detector  and t h e  sample and f o r  absorption. 
cross  sec t ion  (equation (4.16)) corrected f o r  f i n i t e  sample and 
detector  s i z e ,  for absorption 
cross sec t ion  (equation (4.163) a l s o  corrected f o r  mult iple  
s c a t t e r i n g  using t h e  f a c t o r s  given i n  Figure 4.8. 

and f o r  angular spread. 
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t h e  complexity of such a ca lcu la t ion  ru l ed  out i t s  use i n  t h e  present 

experiment and an approximate method was used instead. 

This approximate method w a s  introduced by Walt 5 f o r  c y l i n d r i c a l  

geometry and v e r i f i e d  by him with a Monte Carlo ca lcu la t ion  f o r  t h e  case 

of 1.0 MeV neutrons e l a s t i c a l l y  sca t t e red  by cadmium. N. Nauta u t i l i z e d  6 

e s s e n t i a l l y  t h e  same scheme i n  h i s  mult iple  s ca t t e r ing  cor rec t ion  t o  t h e  

angular d i s t r ibu t ions  of e l a s t i c a l l y  sca t t e red  14  MeV neutrons from lead,  

mercury, tungsten, and severa l  other heavy elements. The method i s  

based upon the  following assumptions: 

1) The angular d i s t r i b u t i o n  of neutrons emerging a f t e r  n c o l l i s i o n s  

i n  t h e  sample i s  t h e  same as  t h e  angular d i s t r i b u t i o n  of neutrons which 

have had n c o l l i s i o n s  i n  an i n f i n i t e  medium of t h e  sca t t e r ing  mater ia l .  

The f r a c t i o n  of doubly sca t t e red  neutrons suf fer ing  a t h i r d  2) 

co l l i s ion ,  S / S  

suffer ing a second co l l i s ion ,  S2/S1. 

‘k+l k 

i s  t h e  same as t h e  f r a c t i o n  of s ing ly  sca t t e red  neutrons 3 2’ 

In  general ,  we w i l l  assume t h a t  

/ S  is  independent of k. 

The following der iva t ion  i s  very similar t o  the  one given by Nauta. 7 

We w i l l  assume at  t h e  outse t  t h a t  t h e  neutron detector  i s  equal ly  sensi-  

t i v e  t o  s ing ly  and mult iply sca t t e red  neutrons. 

necessary oversimplif icat ion of t h e  ac tua l  experimental s i t ua t ion ,  and 

Such an assumption i s  a 

the  r e s u l t i n g  cor rec t ion  f a c t o r  f o r  mult iple  s ca t t e r ing  i s  approximately 

’M. Walt, Ph.D Thesis, The University of Wisconsin, 1953, p. 27 
I 

bN. Nauta, Ph.D Thesis, Universi ty  of Groningen, 1957, p. 45 
’Nauta, - -  op. c i t .  
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equal t o  or l a r g e r  than t h e  t r u e  correct ion f a c t o r  which i s  obtained 

from a Monte Carlo calculat ion.  

By assumption 1) , t h e  angular d i s t r i b u t i o n  of neutrons e l a s t i c a l l y  
a sca t te red  k-times i s  

where C i s  a constant and S “ l ( C )  i s  t h e  r a t e  of k-times sca t te red  neu- 

t rons which a r e  recorded by t h e  detector  located a t  the  s c a t t e r i n g  angle 

k k 

8. The coef f ic ien ts  a a r e  defined by t h e  equation i 

4) 

q ( e >  = 5 a; P;(GOS 61, (4.24) 
i = 0  

where u 

t rons.  

( e )  i s  t h e  d i f f e r e n t i a l  cross sect ion f o r  s i n g l y  sca t te red  neu- e l  

It can be shown from equation (4.24) that 

0 ’  
cr = 4 ~ a  e l  (4.25) 

where u i s  t h e  t o t a l  e l a s t i c  cross section. e l  
If we mult iply equation (4.23) by P ( c o s @ )  and in tegra te  t h e  re -  

0 

s u l t i n g  equation over a u n i t  sphere, we obtain a f t e r  s implif icat ion,  t h e  

equation 

(4.26) 

where Sel i s  t h e  t o t a l  r a t e  of neutrons e l a s t i c a l l y  s c a t t e r e d  k-times. k 

J. Blok and C. C. Jonker, Physica X V I I I ,  809 (1952) 8 



The second assumption allows us t o  wr i t e  

S2/S1 = S /S - /S = M, 3 2 - ‘k+l k 

This equation can be wr i t t en  as where M i s  a constant.  

Sk/S1 = Mk-l.  

(4.27) 

(4.28) 

Since t h e  t o t a l ,  mult iple  s ca t t e r ed  neutron r a t e  S can be decomposed i n t o  

contr ibut ions from t h e  t o t a l  r a t e s  of neutrons t h a t  have been sca t t e red  

one, two, three,  or more times, S1, S2, S3, S4, respect ively,  we can 

wr i t e  

s = s 1 + s 2 + s  + s  + . . * .  3 4  

Combining t h i s  equation and equation (4.27) gives 

S = S1 + M  (S + S + S + ...). 
1 2 3  

From which it follows, t h a t  

s-s M =  1 
s *  

M i s  evaluated i n  Appendix B f o r  r ing  geometry. 

From t h e  work of Nauta,’ we obtain t h e  equation 

(4.29) 

where t h e  contr ibut ion of t h e  reac t ion  cross  sec t ion  t o  the  t o t a l  c ross  

N. Nauta, op. c i t .  9 - -  
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has been neglected. When t h i s  equation i s  combined with a;r' s e c t  ion, 

equation (4.28) we ge t  t h e  equation 

which, when subs t i t u t ed  i n t o  equation (4.26),  y ie lds  

(4.31) 

With t h e  subs t i t u t ion  of equation (4.32) i n t o  equation (4.23), t he re  r e -  

s u l t s  t h e  following equation which i s  t h e  angular d i s t r i b u t i o n  of neutrons 

e l a s t i c a l l y  sca t t e red  k- t imes . 

where we have r e s t r i c t e d  t h e  maximum value of i t o  20. 

(4.33) 

Let  crtrue(0) be t h e  t r u e  d i f f e r e n t i a l  e l a s t i c  cross  sec t ion  for 

singly sca t t e red  neutrons and cr 

ca lcu la ted  from t h e  experimental data .  

(0)  be t h e  d i f f e r e n t i a l  cross  sec t ion  
exP 

These two cross  sect ions a r e  r e -  

l a t e d  by the  equation 

which i s  equivalent t o  the  equation 

(4.34) 



I n  t h i s  equation, we have s e t  t he  maximum value of k equal t o  three ;  t h a t  

i s ,  t h e  p o s s i b i l i t y  of a neutron being sca t t e red  more than th ree  times 

has been ignored. Inclusion of f o r t h  and higher order s ca t t e r ing  would 

change t h e  value of t he  ca lcu la ted  cr 

f ac to r  

( e )  by about two percent.  The t r u e  

i s  defined as  t h e  mult iple  s ca t t e r ing  cor rec t ion  f ac to r .  

The angular d i s t r ibu t ions  measured i n  t h e  present experiment had, 

a t  most, only s i x  poin ts  a t  each energy and were therefore  not adequate 

f o r  t h e  ca lcu la t ion  of t h e  mult iple  s ca t t e r ing  f ac to r .  Approximate 

angular d i s t r ibu t ions ,  which were obtained by extrapolat ing the  ava i lab le  

14.2 MeV d i f f e r e n t i a l  e l a s t i c  cross sec t ion  data 

were used t o  ca l cu la t e  t h e  cor rec t ion  f ac to r .  This extrapolat ion w a s  

10 t o  higher energies,  

accomplished by ca lcu la t ing  t h e  angular d i s t r ibu t ions  between 17 and 21 

MeV i n  0.5 MeV s t eps  from o p t i c a l  model parameters which were obtained 

by f i t t i n g  t h e  14.2 MeV data  with an o p t i c a l  model po ten t i a l ,  11,12 An 

angular d i s t r i b u t i o n  t y p i c a l  of these  i s  shown i n  Figure 4.7, curve a. 

Each of these  angular d i s t r ibu t ions  was then expanded i n t o  a s e r i e s  of 

Legendre polynomials by using the  equation 

'OM. D. Goldberg, V. M. May, and J. R. Stehn, Angular 
Dis t r ibu t ions  i n  Neutron-Induced Reactions, Vol. I , m O ,  
(Washington: 

model code and f o r  h i s  help with t h e  parameter search. 

U. S. Government Pr in t ing  Office, 19621=-0-8,9 

' h e  wish t o  thank D r ,  F. G. Perey f o r  t h e  use of h i s  o p t i c a l  

F. G. Perey, Phys. Rev. - 131, 745 (1963) and reference 
contained the re in  
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ll 

ai= 2;tl6.(. 2 p; (cos e)  siue de 

t o  determine t h e  coef f ic ien ts ,  a - t h e  i n t e g r a l  w a s  evaluated numerically 

by Simpson’s r u l e .  

i’ 

A t y p i c a l  s e t  of coef f ic ien ts  i s  given i n  Table 4.3. 

Once t h e  ai’s and M ( see  Appendix B) had been calculated a t  each of t h e  

above mentioned energies,  the  correct ion f a c t o r  and u ( 0 )  were calcu- 
ex?? 

l a t e d  as a function of energy and s c a t t e r i n g  angle. A t y p i c a l  curve of 

u ( e )  i s  shown i n  Figure 4.7, curve b. A t  each energy and angle, t h e  

correct ion f a c t o r  w a s  normalized by t h e  f a c t o r  
exP 

4rr 

..Q/J d , p  LPJL, 

where d A  i s  t h e  d i f f e r e n t i a l  s o l i d  angle. This normalization w a s  

c a r r i e d  out so  that t h e  t o t a l  e l a s t i c  cross  sec t ion  obtained from t h e  

calculated experimental cross sect ion would be t h e  same as t h e  t o t a l  

e l a s t i c  cross  sect ion obtained from t h e  extrapolated 14.1 MeV experi- 

mental data. 

r e c t i o n  f a c t o r s  used t o  correct  t h e  d i f f e r e n t i a l  cross  sec t ion  calculated 

by equation (4.16). 

Figure 4.8 shows t h e  normalized multiple s c a t t e r i n g  cor- 

4.5 The Correction f o r  Polar izat ion Effects  

The cross sect ions calculated i n  Section 4.3 and corrected f o r  

multiple s c a t t e r i n g  i n  Section 4.4 must a l s o  be corrected for polar i -  

zat ion e f fec ts .  This correct ion a r i s e s  from t h e  f a c t  that r i n g  geometry 

was employed, and that t h e  incident13’14 and s c a t t e r e d  neutrons were 

~-~ ~ 

13Levitov, Miller,  and Shamshev, JETP - 7, 712 (1958) 
1 4  R. B. Perkins and J. E. Simmons, Phys. Rev. 124, 1153 (1961) - 
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polarized. 

i s  t h e  polar iza t ion  produced by t h e  sca t t e r ing  nucleus, t he  measured 

d i f f e r e n t i a l  cross sec t ion  r7 (0,E) for r i n g  geometry i s  r e l a t e d  t o  t h e  

d i f f e r e n t i a l  cross  sec t ion  for zero polar iza t ion ,  r7( 0,E) by t h e  equation 

If P i s  t h e  po la r i za t ion  of t he  incident  neutrons, and P2 1 

P 
1 5  

P 

t rons  from t h e  T(d,n)He 

i s  a funct ion of 4 and Ed, where Q i s  t h e  emission angle of t h e  neu- 1 
4 reac t ion  and Ed i s  deuteron energy. 

I n  t h e  present experiment t h e  maximum average value of Q w a s  7.5', 

1 and t h e  maximum value of Ed w a s  4.3 MeV. 

given i n  Figure 4.9, we can wr i t e  t h a t  

Using measured values of P 

Pl(7.5, 4.3) -" 6%* 

Since measured values of P2 a re  not ava i lab le ,  we w i l l  consider t h e  

worst case, i .e.,  P2 equal t o  e i t h e r  +1 o r  -1. This assumption, 

f a c t  t h a t  P,(7.5, 1) 2 0, leads 

polar iza t ion  cor rec t ion  f ac to r ,  

respect ively.  

t o  an upper and a lower l i m i t  of 
-1 

[i - p1P2] , of 1.06 and 0.94, 

and t h e  

t h e  

Since we know only t h a t  t h e  corrected cross  sec t ion  deviates ,  a t  

most, only 6 percent from t h e  uncorrected cross  sec t ion ,  no po la r i za t ion  

correct ion w a s  made t o  t h e  d i f f e r e n t i a l  cross  sec t ion  ca lcu la ted  by 

equation (4.16). The uncer ta in ty  introduced by t h e  omission of t h e  

15W.  Haeberli,  Fast  Neutron Physics, Par t  11, eds. J. B. Marion 
and J. L. Fowler, (New York: Lnterscience Publishers,  Inc., 1963), 
P. 1379 
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polar iza t ion  correct ion w a s  included as a contr ibut ion t o  the  absolute 

e r r o r  i n  t h e  cross sect ion,  see Section 4.6. 

4.6 F ina l  Results and Errors 

The f i n a l  r e s u l t s  of the d i f f e r e n t i a l  cross  sec t ion  experiment a r e  

shown i n  Figure 4.10. 

cross sect ion per s te rad ian  i n  t h e  center  of mass system versus labora- 

t o r y  neutron energy for s i x  s c a t t e r i n g  angles. 

f igure  were drawn by inspection. 

section. The cross  sect ion calculated by t h i s  equation w a s  corrected 

f o r  multiple s c a t t e r i n g  by f a c t o r s  given i n  Figure 4.8 and then t rans-  

formed t o  center  of mass coordinates. 

P lo t ted  i n  the  f igure  i s  t h e  d i f f e r e n t i a l  e l a s t i c  

The smooth curves i n  t h e  

Equation (4.16) w a s  used f o r  t h e  cross  

16 

The e r r o r s  shown on t h e  points  i n  Figure 4.10 a r e  e r r o r s  r e s u l t i n g  

from counting s t a t i s t i c s .  These s t a t i s t i c a l  e r r o r s  were calculated from 

formulae given i n  Appendix A f o r  t h e  s t a t i s t i c a l  e r r o r  i n  R. We note i n  

t h e  f i g u r e  t h a t  t h e  s t a t i s t i c a l  e r r o r  seems t o  be t h e  major r e l a t i v e  

error ;  that is ,  t h e  e r r o r  of one point  r e l a t i v e  t o  the  next. Slow drifts  

i n  the  b i a s  c a l i b r a t i o n  are c e r t a i n l y  another source of r e l a t i v e  e r ror .  

However, s ince f o r  a given angle a l t e r n a t e  points  shown i n  Figure 4.10 

were taken a t  times d i f f e r i n g  by t h r e e  or four  hours i n  most cases, and 

s ince these points  f a l l  on a smooth curve drawn through t h e  s t a t i s t i c a l  

e r ror  bars of t h e  points ,  t h e  e r r o r  introduced by b i a s  dr i f t  i s  ap- 

parent ly  small compared w i t h  t h e  s t a t i s t i c a l  e r ror .  

''Formulae which were used f o r  t h i s  transformation a r e  given 
by L. I. Schiff ,  Quantum Mechanics, (New York: McGraw-Hill Book 
Company, Inc., 1955), p. 99. 

. 



91 

- 
z to 0 4235 (LAB) 

OR 
-+ \+,+ 

C 

2 20 

2 t o  

200 

t 90 

480 

t 70 

.- 6 t60 

: -  
2 60 
n - E 5 0  

0 40 

U 

\ 

2 

+ v .  
W 

v, 
v) 

V 

k 
ln 

v) 60 

50 

2 40 

a 
J 30 

5 20 

w 
-I 

+ 
2 -  
W 
[r 
W 
LL 

0 
cn 
ln 
Q 
I <  

LL 

46 
n 

z 
W 

p t 4  

0 t2  

40 

8 

1 

l.+\4 t 

T 
\ I  

UNCLASSIFIED 
4-4550 

- 
\ 8 g  4275 ( C M )  

F 
6 3  

n 
E 

+'+,p. 

\ 
\* 4 + 

4-+-*- 4 

qt\ 
-. 439 0' (LAB) 

OR 

2 

Figure 4.10. 
Exper b e n t  . The Fina l  Results of the D i f f e r e n t i a l  Cross Section 

<' 2 

>F-! 

1 7 2  476 480 484 488 



For t h e  purpose of ca lcu la t ing  t h e  absolute e r r o r  o r  standard devi- 

a t i o n  i n  t h e  cross section, t h e  cross sect ion,  which i s  shown i n  Figure 

4.10, w a s  assumed t o  have been calculated by equation (4.10) and then 

corrected f o r  f i n i t e  sample and detector  s i z e ,  absorption, angular spread, 

and multiple s c a t t e r i n g  by appropriate energy dependent fac tors .  

estimate of the  absolute e r r o r  i n  t h e  cross sec t ion  w a s  calculated from 

An 

the  absolute error i n  each of these correct ion fac tors ,  from the  absolute 

e r r o r  i n  each of the f a c t o r s  of equation (4.10), and from systematic 

e r rors .  Given i n  Table 4.4 a r e  t h e  estimated e r r o r s  i n  each of t h e  above 

mentioned fac tors ,  t h e  estimated t o t a l  systematic e r ror ,  and t h e  r e s u l t i n g  

estimated absolute e r r o r  i n  t h e  d i f f e r e n t i a l  cross  sect ion.  Table 3.lb 

gives t h e  absolute e r r o r  i n  t h e  neutron energy; the  estimated absolute 

e r r o r  i n  t h e  s c a t t e r i n g  angle i s  +_ 2 degrees. 

I n  Table k.4 t h e  e r r o r  given for R i s  t h e  s t a t i s t i c a l  e r ror ,  t h a t  
4 given f o r  H r e s u l t s  from t h e  e r r o r  i n  t h e  T(d,n)He 

section,17 and t h e  e r r o r  given f o r  €(Eo,EB)/€(Eel,%) were obtained by 

assuming a 2 0.4 MeV uncertainty i n  t h e  detector  bias energy. 

i n  t h e  t o t a l  number of nuclei  i n  t h e  sample, N, w a s  o n l y  _+ 0.3 percent 

reac t ion  cross  

The e r r o r  

and w a s  therefore  neglected. The e r r o r s  i n  t h e  multiple s c a t t e r i n g  cor- 

rec t ion  and i n  t h e  angular spread and t h e  f i n i t e  detector  and sample 

s i z e  correct ion were obtained by assuming a 2 40 percent uncertainty i n  

t h e  amount of each of these  correct ions.  For example, t h e  e r r o r  i n  t h e  

multiple sca t te r ing  correct ion w a s  obtained from the  equation 

l 7 N .  Jarmie and J. D. Seagrave, - op. z. 
. 
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k 0.4 (1 - m), 

where MS denotes t h e  multiple s c a t t e r i n g  f a c t o r  given i n  Figure 4.8. 

The e r r o r  i n  t h e  absorption correct ion w a s  obtained from t h e  standard 

deviation of the t o t a l  cross section. 

The t o t a l  systematic e r r o r  given i n  t h e  t a b l e  w a s  obtained from 

t h e  square root  of t h e  sum of the  squares of t h e  following four e r r o r s :  

1) The estimated e r r o r  made i n  t h e  s c a t t e r i n g  r a t i o ,  R, which 

r e s u l t e d  from t h e  use of t h e  background measured when t h e  

detector  w a s  i n  the sca t te red  beam pos i t ion  f o r  t h e  back- 

ground f o r  t h e  d i r e c t  beam measurement. This e r r o r  w a s  

estimated t o  be k 5 t o  f 7 percent a t  51" and 86O, 

respect ively,  and k one percent a t  the  other angles. 

2) The estimated k 10 percent e r r o r  made when dV2 w a s  subs t i -  

t u t e d  f o r  dV 

The estimated k 2 percent e r r o r  made by removing t h e  

i n  equation (4.2). 3 
3 )  

absorption f a c t o r  from t h e  in tegra ls  of equation (4.16). 

4) A n  assumed k 3 percent e r r o r  made i n  the  cross sect ion 

by omitting t h e  correct ion f o r  po lar iza t ion  e f f e c t s .  
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THE CALCULATION OF THE TOTAL CROSS SECTION 

5.1 Introduction 

The t o t a l  cross sec t ion  of carbon w a s  measured by a simple t rans-  

mission experiment using t h e  e lec t ronics ,  t h e  t a r g e t  and some of t h e  

mechanical apparatus used i n  t h e  d i f f e r e n t i a l  cross sec t ion  experiment. 

The formula used t o  ca lcu la te  t h e  t o t a l  cross sec t ion  from t h e  measured 

transmission and t h e  sample weight i s  derived. The in-sca t te r ing  cor- 

rec t ion  i s  discussed. The formula f o r  ca lcu la t ing  t h e  s t a t i s t i c a l  e r r o r  

i n  the  cross sect ion i s  presented. A b r i e f  discussion of the  f i n a l  re -  

s u l t s  follows. The physical  s ignif icance of these r e s u l t s  i s  presented 

i n  Chapter V I .  

5.2 The Derivation of t h e  Equation Used f o r  Calculating t h e  
Total  Cross Section 

The t o t a l  cross sec t ion  i s  defined as t h e  number of nuclear re-  

act ions and s c a t t e r i n g  events of any type occurring per mit incident  

f lux per t a r g e t  nuclei .  Let us consider the sample, the  neutron source, 

and t h e  neutron detector  shown i n  Figure 5.1. The sample i s  f a r  enough 

removed from t h e  source t h a t  t h e  neutron beam can be assumed t o  be a 

p a r a l l e l  beam. The number of neutrons per second, dI ,  removed from t h e  

neutron beam by nuclear react ions and s c a t t e r i n g  occurring i n  t h e  sample 

element of thickness dx i s  given symbolically by 

(5.1) 
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2 where I i s  t h e  i n t e n s i t y  of neutrons per em 

-3  dx, n i s  t h e  dens i ty  of nuc le i  i n  cm 

per second at the  center  of 

i s  the  t o t a l  cross  sect ion i n  ' "T 
2 em , and dx i s  i n  em. The r e l a t i v e  decrease i n  t h e  incident  f l u x  caused 

by the  e n t i r e  sample i s  obtained by in tegra t ing  t h e  equation 

- -  'I - -nc d~ 
I T 

over x between t h e  limits of x = o t o  x = R .  We obtain t h e  equation 

(5.2) 

I 
0 

where Io i s  the  neutron f l u x  a t  x = o and I i s  t h e  neutron f lux a t  x = R. 

When equation (5.3) i s  solved for the  t o t a l  cross  sect ion we ge t  

1 1 c = - R n - ,  T nR T (5.4) 

where T i s  defined as t h e  transmission and i s  

Equation (5.4) i s  a v a l i d  equation for ca lcu la t ing  t h e  t o t a l  cross 

sect ion from measured transmission data provided t h e  following conditions 

a r e  s a t i s f i e d :  

1) The energy spread of t h e  neutrons incident on t h e  sample 

must be s m a l l  compared t o  t h e  energy range i n  which t h e  

t o t a l  cross sec t ion  changes appreciably. 

The measured transmissions must be corrected f o r  background. 

An in-sca t te r ing  cor rec t ion  must be made t o  the  right-hand 

2 )  

3 )  



s ide  of equation (5.4) t o  cor rec t  it f o r  t h e  cont r ibu t ion  

of neutrons which a r e  e l a s t i c a l l y  sca t t e red  i n  t h e  sample 

through s m a l l  angles but a r e  s t i l l  detected by t h e  neutron 

detector .  

The condi t ion i s  s a t i s f i e d  i n  t h e  present  experiment i f  t h e  c ross  

sec t ion  does not change r ap id ly  i n  an energy increment of 51 keV which 

i s  t h e  average energy spread i n  t h e  neutron energy i n  t h e  energy range 

of 17.3 t o  21.6 MeV (see Table 3 . 1 ~ ) .  

The second condition was s a t i s f i e d  by cor rec t ing  t h e  measured t r ans -  

missions f o r  background. 

f o r  backgrbund i s  

The expression f o r  t h e  transmission corrected 

a l a '  - c/c '  
T =  b/b' - C / C '  ' (5.5) 

where t h e  primes denote monitor counts and a, b and e,  respec t ive ly  are 

t h e  counts recorded by the  detector  f o r  t h e  at tenuated f l u x  (sample i n ) ,  

for t h e  d i r e c t  flux (sample out ) ,  and f o r  t h e  background f l u x  (sample 

out and a t tenuat ion  bar  i n ) .  For t h e  case of f l u x  measurements f o r  which 

no background measurements were made, t h e  transmission i s  given by 

where d i s  t h e  normalized background counting r a t e  obtained by l i n e a r  

in te rpola t ion  between normalized measured background counting r a t e s .  

The t h i r d  condition w a s  s a t i s f i e d  by cor rec t ing  equation (5.4) for 

in -sca t te r ing .  In  our t o t a l  cross  sec t ion  experiment, t h e  in - sca t t e r ing  

f ac to r  w a s  only about one percent.  We therefore  do not f e e l  t h a t  a 
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lengthy discussion of the  f a c t o r  i s  j u s t i f i e d .  

only the equation used t o  ca lcu la te  t h e  f a c t o r  and t h e  assumptions which 

were made i n  t h e  der ivat ion of t h e  equation. 

Hence, we w i l l  present 

1 The in-sca t te r ing  correct ion f a c t o r  w a s  derived by D. W .  Mil ler  

using t h e  following assumptions which a r e  v a l i d  a l s o  f o r  our experiment: 

The sample has t h e  shape of a r i g h t  c i r c u l a r  cylinder 

and i s  located midway between t h e  t a r g e t  and t h e  detector .  

The sample and t h e  detector  are so  or ien ta ted  t h a t  t h e  

sample masked t h e  detector  f o r  the  source of neutrons; i .e.,  

t h e  geometry is  as shown i n  Figure 5.1. 

The cross sec t iona l  area of t h e  sample i s  much smaller 

than t h e  dis tance from t h e  sample t o  t h e  detector  of t h e  

t a r g e t ,  That i s ,  

1) 

2 )  

where D and L a r e  defined i n  Figure 5.1. 2 

1' 3 )  The sample length R i s  much l e s s  than L 

4) The detector  bias i s  s e t  so that no i n e l a s t i c a l l y  

s c a t t e r e d  neutrons a r e  recorded. 

It follows from these assumptions that t h e  in-sca t te r ing  correct ion 

f a c t o r  P i s  
-I 

b. W. Miller,  op. c i t .  - -  
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where c' 

equa-t; ion 

i s  the  apparent t o t a l  cross sect ion,  and*cT i s  given by t h e  
T q 

do) i s  the  d i f f e r e n t i a l  c ross  sect ion a t  zero degrees. ~ ( 0 )  has not 

(5.8) 

been measured i n  the  energy range of 17.2 t o  21 MeV; but,  of course, it 

i s  l e s s  than the  t o t a l  cross section. was 

approximately one percent f o r  our experiment, and since d ~ ) / a '  i s  l e s s  

than one, we f e e l  it t o  be qui te  reasonable t o  use 0.99 f o r  the value of 

2 2 Since the  f ac to r  ~ T D  /(2L1) 

T 

P. When equation (5.4) i s  corrected f o r  in -sca t te r ing  it takes the  form 

where Q has been subs t i tu ted  f o r  t he  product nl? of equation (5.4). 

5.3 Final  Results 

Equation (5.9) w a s  used t o  ca lcu la te  t he  t o t a l  cross  sec t ion  p lo t t ed  

i n  Figure 5.2. The er rors  i n  the  cross sect ions shown i n  the  f igure  a r e  

s t a t i s t i c a l  e r ro r s  and were calculated by the  equation 

1 AT Au = - T FQT' (5.10) 

where AT/T is  given i n  Appendix A. 

e r ro r  i n  the  cross  sec t ion  i s  e s s e n t i a l l y  the  s t a t i s t i c a l  error. The 

reason f o r  t h i s  i s  that the  assumed k 0.5 percent e r ro r s  i n  both P and 

Q can be neglected r e l a t i v e  t o  the  approximately * 2 percent s t a t i s t i c a l  

The standard deviat ion or absolute 
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error. 

from Table 3 .IC. 

The e r ro r s  i n  t h e  neutron energy shown i n  t h e  f igu re  were taken 
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. 

CHAPTER V I  

DISCUSSION OF RESULTS 

The f i n a l  results of t h e  d i f f e r e n t i a l  cross  sec t ion  experiment a r e  

shown i n  Figure 4.10.l 

versus neutron energy, which a r e  shown i n  t h e  f igure ,  show a resonance 

a t  labora tory  sca t t e r ing  angles of 3 6 O ,  51°, and 60". 

centered about a labora tory  energy of 19.5 * 0.2 MeV and has a width a t  

half  maximum of 1.1 MeV. 

t h e  cross  sec t ion  measurement, t he  resonance does not appear a t  8 6 O .  

The e f f e c t  of t he  resonance i s  evident a t  123.5' and 139" by a monotonic 

decrease i n  t h e  c ross  sec t ion  by a f a c t o r  of t h r e e  between 17.5 and 

20.5 MeV. 

The curves of d i f f e r e n t i a l  e l a s t i c  cross  sec t ion  

This resonance i s  

Within t h e  4.5 percent s t a t i s t i c a l  e r r o r  of 

This neutron resonance agrees q u a l i t a t i v e l y  with t h e  proton reso- 

nance shown i n  Figure 1.1. 

resonance i s  evident a s  a peak i n  t h e  d i f f e r e n t i a l  cross  sec t ion  as a 

funct ion of energy a t  s c a t t e r i n g  angles between 36" and 60"; a t  angles 

between 126' and 145", t h e  resonance becomes a r ap id  monotonic decrease 

i n  t h e  cross  sec t ion  as a funct ion of energy. 

are broad: 

t h e  neutron resonance has a width of 1.1 MeV a t  ha l f  maximm. The simi- 

l a r i t y  of t h e  neutron and proton resonances and of t h e  exc i t a t ion  energy 

In  both t h e  neutron and t h e  proton data ,  t h e  

Both of t h e  resonances 

t h e  proton resonance i s  1.8 MeV wide a t  ha l f  maximum, and 

'As f a r  as it is known, t h e  cross  sec t ions  shown i n  Figure 
4.10 a r e  t h e  only ex i s t ing  d i f f e r e n t i a l  e l a s t i c  cross  sec t ion  da ta  
for neutrons on carbon i n  t h e  energy range of 17.2 t o  21 MeV. 

c 
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i n  C1' (22.9 MeV) and 2J13 (22.7 MeV) suggests t h a t  t h e  s t a t e  or s t a t e s  

exci ted i n  these compound nuclei  have s imilar  s t ruc ture .  

Tamura and Terasawa' have shown t h a t  t h e  proton resonance could be 

due t o  t h e  formation of two s t a t e s  i n  N13, a 3/2' state  a t  21.7 MeV and 

a 5/2+ s t a t e  a t  22.0 MeV. It i s  i n t e r e s t i n g  t o  note t h a t  t h e  energy of 

these two s t a t e s  a r e  s i g n i f i c a n t l y  d i f f e r e n t  from 22.7 MeV e x c i t a t i o n  

energy i n  NL3 corresponding t o  the  proton resonant energy of 22.5 MeV 

( laboratory system). 

i s  2.5 MeV and t h a t  of t h e  5/2 state i s  1.5 MeV. 

The t o t a l  width a t  ha l f  maximum of t h e  3 / 2  s t a t e  

The r e s u l t s  of t h e  t o t a l  cross sec t ion  experiment a r e  shown i n  

Figure 6.1 by t h e  s o l i d  curve. 

curve a t  a laboratory energy of 19.6 t 0.2 MeV which has a peak height 

of e ight  percent above the  continuum and a width a t  half  maximum of 

about 1.2 MeV. These cross sect ion data  agree with those taken a t  

Harwell 

t h e  absolute value of the  Harwell r e s u l t s  i s  considered. 

There appears t o  be a resonance i n  t h i s  

3 ( a l s o  shown i n  Figure 6.1) when the  f 450 keV uncer ta in ty  i n  

The resonance i n  t h e  t o t a l  cross sec t ion  i s  due e n t i r e l y ,  o r  i n  

par t ,  t o  t h e  resonance i n  t h e  t o t a l  e l a s t i c  cross sec t ion  which r e s u l t s  

from the  above-mentioned resonance i n  t h e  d i f f e r e n t i a l  e l a s t i c  cross  

sect ion a t  19.5 MeV. However, since,  i n  addi t ion  t o  e l a s t i c  sca t te r ing .  

Tamura and Terasawa, op. s. 2 

'P. H. Bownen, J. P. Scanlon, G. H. Stafford,  J. J. Thresher, 
- 

and P. E. Hodgson, Nuclear Phys. - 22, 640 (1961) 

. 
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4 t h e  following react ions 

21 MeV, one might expect some contr ibut ion t o  t h e  resonance i n  t h e  t o t a l  

cross sect ion from a resonance i n  t h e  non-elastic cross sect ion.  

a r e  energe t ica l ly  possible  between 17.3 and 

The 

Reaction EThreshold (Lab) 

None c 12 (n,7)cl3 

Cl2(n,n‘ cl2 4.8 MeV 

C12(n,He 4 9  )Be 6.18 MeV 

13.64 MeV 12 C 1 2  (n, p) B 

C l 2  (n, d) B l l  14.85 MeV 

17.28 MeV, C (n,np)B 12 11 

reason f o r  t h i s  i s  t h a t  each of t h e  above l i s t e d  react ions can be thought 

of as proceeding with t h e  formation of t h e  compound nucleus C l 3  which 

then  decays by the  reac t ion  products of the  p a r t i c u l a r  react ion.  

t h e  C l 3  would therefore  be able  t o  decay by other  modes than e l a s t i c  

sca t te r ing ,  t h e r e  might be a resonance i n  t h e  non-elastic cross sec t ion  

a t  19.5 MeV. 

sect ion data ava i lab le  between 17.2 and 21 MeV with which t o  v e r i f y  t h e  

existence of such a resonance. 

Since 

Unfortunately t h e r e  i s  not adequate non-elast ic  cross  

L. A. Koenig, J. H. E. Mattauch, and A. H. Wapstra, Nuclear 4 
Data Tables, Par t  1, (Washington: U. S. Government Pr in t ing  Office, 
19611, p. 24 - - 

. 



APPFXDIX A 

THE CALCULATION OF THE SCATTERING RATIO, THE TRANSMISSION 

AND THE STATISTICAL ERROR I 3  THESE TWO QUANTITIES 

I n  t h i s  appendix we present the  formulae used t o  ca lcu la te  t h e  

s c a t t e r i n g  r a t i o  R, t h e  transmission T, and t h e  f r a c t i o n a l  s t a t i s t i c a l  

e r r o r s  AR/R and AT/T. Even though t h e  physical in te rpre ta t ions  of T 

and R a r e  qui te  d i f f e r e n t ,  t h e  formulae by which they a r e  calculated 

have t h e  same mathematical form: 

b o l  R can be replaced by t h e  symbol T when formulae f o r  T a r e  desired.  

In  t h e  formulae given below, the  sym- 

By d e f i n i t i o n  we can wr i te  

&/a' - c/c '  
b/b' - c / c '  ' R =  

where a i s  t h e  number of counts recorded with t h e  sample in ,  b i s  t h e  

number of counts recorded when t h e  detector  i s  exposed t o  t h e  d i r e c t  

neutron beam, c i s  t h e  number of background counts recorded, and a ' ,  b ' ,  

and e '  are t h e  corresponding number of monitor counts recorded. 

standard deviation i n  each of the numbers of counts given i n  equation 

(1) is  taken t o  be t h e  square root  of t h e  number of counts, then t h e  

f r a c t i o n a l  s t a t i s t i c a l  e r r o r  i n  R i s  

If t h e  
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I n  t h e  d i f f e r e n t i a l  cross sect ion experiment, t he  background w a s  

not, measured a t  1/3 of the  points  taken a t  51' and a t  1/2 of t he  points  

taken a t  86'. 

measured a t  only 2/5 of the t o t a l  number of points  taken.) 

where no background w a s  measured, the  background w a s  calculated from a 

formula which was obtained by a weighted l e a s t  squares f i t  of a s t r a i g h t  

( I n  t h e  t o t a l  cross sect ion experiment t h e  background w a s  

For a point  

line' through measured background points  having energies near t h a t  of 

t h e  unmeasured point .  If we l e t  d denote t h i s  calculated,  normalized 

background, then 

E =  *. ( 3 )  

The s t a t i s t i c a l  e r ro r  i n  d was taken t o  be the  square root of t h e  weighted, 

average square deviation of t h e  f i t t e d  s t r a igh t  l i n e  from t h e  measured 

background poin ts ,  I n  terms of t h i s  calculated s t a t i s t i c a l  e r ror ,  t he  

f r ac t iona l  s t a t i s t i c a l  e r ro r  i n  R w a s  calculated by an equation qui te  

similar t o  equation (2). 

IF. B. Hildebrand, Introduction t o  Numerical Analysis, (flew 
York: McGraw-Hill Book Company, 19561, p. 258 



APPENDIX B 

THE CALCULATION OF M 

. 

In  Sect ion 4.4 t h e  quant i ty  M w a s  introduced i n  the der iva t ion  of 

t he  mult iple  s c a t t e r i n g  cor rec t ion  f ac to r .  M w a s  defined by t h e  equation 

where S w a s  t h e  t o t a l  

w a s  t h e  t o t a l  r a t e  of 

s-SI M =  
s ’  (4.29) 

r a t e  of neutrons sca t t e red  by t h e  sample, and S1 

neutrons sca t t e red  more than once. Thus, M i s  the 

f r a c t i o n  of neutrons sca t t e red  more than  once. The nota t ion  introduced 

i n  Chapter IV w i l l  be used i n  t h e  following der iva t ion  of an equation 

f o r  M f o r  t he  r i n g  geometry used i n  t h e  present experiment. 

If w e  neglect  t h e  cont r ibu t ion  t o  t h e  t o t a l  cross  sec t ion  of t h e  

reac t ion  cross  sect ion,  t h e  t o t a l  s c a t t e r i n g  r a t e  i s  given approximately 

by 

2 where n , i s  t h e  number of nuc le i  per  em 

neutrons, which a r e  s ing ly  sca t t e red  and leave t h e  sample, i s  given 

i n  t h e  sample. The number of 

approximately by 

. 
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where we have neglected t h e  neutrons sca t t e red  out of t h e  plane of t h e  

cross sec t ion  of t h e  sample’ ( t h e  1.5 in .  X 1.1 in.  cross s e c t i o n ) ,  and 

where t h e  nota t ion  < > ind ica tes  that an average over 0 has been taken 

of t h e  quant i ty  wi th in  t h e  brackets .  

Using expressions (1) and (21, we obta in  t h e  approximate equation 

f o r  M 

. 

The numerical i n t eg ra t ion  of equation ( 3 )  i s  

where m i s  t h e  index denoting d i f f e re ing  values of Eo, 

and where t h e  indices  and t h e  indexed geometrical quan t i t i e s  a re  shown 

i n  Figure B . l .  

%. Walt, Ph.D Disser ta t ion,  p.  35 

L 
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