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Preface 

. 
t 

T h e  Neutron P h y s i c s  Divis ion is aga in  i s s u i n g  
i t s  annual  progress  report i n  two volumes,  with the  
papers  descr ibing research  performed i n  the  high- 
energy radiation sh ie ld ing  program col lec ted  i n  
Volume 11. T h e  Divis ion is also cont inuing i t s  
policy of including only abbreviated papers  in  the  
annual  report, e i ther  summaries  of work i n  progress 
or a b s t r a c t s  of papers  publ ished elsewhere.  A s  
w a s  pointed out i n  l a s t  year’s  preface,  th i s  policy 
w a s  ins t i tu ted  t o  give authors  more time t o  spend 
on topical  reports and journal  a r t i c l e s  and i t s  
s u c c e s s  is evidenced by the  50% i n c r e a s e  i n  the 
number of papers  included i n  t h e  l i s t  of publica- 
t ions beginning on page  65 of th i s  volume. 

T h e  reader wil l  not ice  that  for some of t h e  ab- 
s t r a c t s  included h e r e  t h e  corresponding papers  a r e  
not yet publ ished.  T h i s  i s  done only  for t h o s e  
papers  tha t  have  progressed t o  t h e  point that  pub- 
l icat ion i s  e i ther  imminent or a t  l e a s t  cons idered  
t o  b e  not too f a r  i n  t h e  future. Also ,  w e  a r e  
including a b s t r a c t s  of papers  which cover  work 
that  w a s  summarized i n  l a s t  year ’s  annual .  
T h i s  is done to call a t ten t ion  t o  t h e  fac t  tha t  
topical  papers  on t h e s e  par t icular  s u b j e c t s  have 
now been  i s s u e d  and t o  h e l p  i n  loca t ing  them. 
A s  before, work tha t  w a s  performed during t h e  
reporting period but  not y e t  descr ibed i n  a s e p a r a t e  
paper is summarized in  t h i s  report. 
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1. Nuclear and 

1.1 NEUTRON SCATTERING CROSS SECTIONS 
FOR SILICON DETERMINED 

BY TIME-OF-FLIGHT TECHNIQUE 

J. A. Biggerstaff '  
J. K. Dickens 

M. V. Harlow, Jr. 
W. E. Kinney 

F. G. Perey 

Absolute  differential c r o s s  s e c t i o n s  for e l a s t i c  
s c a t t e r i n g  and i n e l a s t i c  s c a t t e r i n g  (Q = -1.78 
MeV) of 5.03- and 5.6-Mev neutrons from natural  
s i l icon h a v e  been  measured a t  laboratory a n g l e s  
of 21, 31, 41, 56, 72, 92, 112, and 132'. Burs t s  
of deuterons,  2 n s e c  wide a t  half maximum, from 
t h e  ORNL 3-Mv Van d e  Graaff acce lera tor  bom- 
barded a double-foil deuterium g a s  target, thereby 
producing, by t h e  D(d,n) 3He react ion,  b u r s t s  of 
monoenergetic neutrons. Samples of s i l icon and 
carbon, t h e  la t te r  used  as  a s tandard,  were p laced  
a t  zero  degrees  and a t  d i s t a n c e s  of from 7 t o  1 2  cm 
from the target. Both s a m p l e s  were tight-circular 
cy l inders  approximately >3 mean f ree  path thick 
to  5-Mev neutrons. 

Reactor Physics 

Scat tered neutrons were de tec ted  by a scint i l la-  
tor, which ut i l ized neutron-gamma discr iminat ion,  
loca ted  3 m from the  sample. F igure  1.1.1 shows 
a schemat ic  diagram of a typ ica l  s c a t t e r i n g  
geometry. A long  counter, p laced  at 65', monitored 
t h e  neutron intensi ty  from t h e  target. Time-of- 
flight s p e c t r a  of t h e  sca t te red  neutrons were taken 
with a 4096-channel, two-dimensional pulse-height 
ana lyzer  in  which input  p u l s e s  were sor ted  
according to the i r  height  and the i r  time-of-flight 
amplitude. Output paper t a p e s  from t h i s  ana-  
lyzer  were then fed  into a CDC 160-A computer, 
where they were corrected for background e f f e c t s  
and  for time walk with pulse  height. '  F igure  
1.1.2 s h o w s  o n e  of t h e s e  corrected time spectra .  

Absolute  differential c r o s s  s e c t i o n s  for s i l i con  
were obtained by normalizing re la t ive  c r o s s  sec- 
t ions  of s i l i con  to  those  measured for t h e  carbon 
sample  at each  angle. Although mult iple  sca t te r -  
i n g  correct ions to the data  a r e  not  y e t  completed, 
t h e  uncorrected 5.03-Mev c r o s s  s e c t i o n s  a r e  i n  
good qual i ta t ive  agreement with 4.8-Mev d a t a  

ORNL-DWG 65-8501 

INTERMEDIATE SHIELD TARGET SHIELD DETECTOR SHIELD 

DEUTERIUM 
INTILLATOR GAS TARGET 

SCATTERING 
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56" 

PHOTOMULTIPLIER TUBE 
INCHES AND TUBE BASE 

Fig. 1.1.1. Schematic Diagram of  Scattering Geometry for Measurement a t  56'. Cross-sectional v iew taken in 

the horizontal plane. 
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1.2 LOCAL-EN ERGY APPROXIMATION 
FOR FINITE RANGE IN STRIPPING 

REACTION s 
J. K. Dickens 
R. M. Drisko' 

F. G. P e r e y  
G. R. Sa tch ler3  

Approximate t reatments  of t h e  finite-range 
e f f e c t s  in distorted-wave ca lcu la t ions  of s t r ipp ing  
and pickup react ions a r e  d iscussed .  Prel iminary 
r e s u l t s  which compare t h e  local-energy approxima- 
tion with e x a c t  ca lcu la t ions  on some typical  
examples  a r e  presented.  T h e  40Ca(d,p)41Ca and 

T h e s e  resu l t s  
ind ica te  tha t  the  local-energy approximation is a 
good o n e  and should b e  u s e d  when e x a c t  ca lcu la-  
t ions  a r e  not avai lable .  

60(n, d) ' 'N examples  a r e  treated. 

References and Notes 

'Abstract  of publ ished paper: Phys .  L e t t e r s  

*Electronuclear  Division. 
3 P h y s i c s  Division. 

15, 337 (1965). 

Fig. 1.1.2. Corrected T ime Spectrum for **Si.  

1.3 INELASTIC SCATTERING OF DEUTERONS 
FROM 60Ni AND '14Cd1 

taken elsewhere.  Final corrected resu l t s  wil l  
partially s a t i s f y  a priority 1 reques t  for s i l i con  
cross-sect ion data ,  

References and Notes 

' P h y s i c s  Division. 
*W. E. Kinney, Data  Reduction Programs for 

the CDC 160-A Computer, ORNL-TM-1208 (in 
preparation). 

3M. D. Goldberg e t  al., Angular Distr ibut ions in  
Neutron-lnduced React ions,  BNL-400, 2d ed., 
vol. I, p. 14-28-1 (October 1962). 

4A. B. Smith, compiler, Compilation of R e q u e s t s  
for Nuclear  C r o s s  Section Measurements, WASH- 
1047 (EANDC (US)-53"u"), p. 18 (February 1964). 

J. K. Dickens F. G. Perey  
G. R. Sa tch ler2  

Differential c r o s s  s e c t i o n s  for i n e l a s t i c  sca t te r -  
i n g  from t h e  f i rs t  exc i ted  s t a t e s  of ' 14Cd and 60Ni  
were measured for deuteron bombarding energ ies  
between 8 and 15 Mev for '14Cd, and between 
9.9 and 13.6 Mev for 60Ni. T h e  d a t a  were ana- 
lyzed  by t h e  distorted-wave method u s i n g  the  
co l lec t ive  model of exci ta t ion.  Good agreement 
with experiment w a s  obtained for all c a s e s ,  but 
only by deforming both rea l  and imaginary p a r t s  of 
t h e  opt ica l  potent ia l  and  by including Coulomb ex- 
c i ta t ion.  R e a l  coupl ing a lone  considerably under- 
e s t i m a t e s  t h e  magnitude of the c r o s s  s e c t i o n s ,  
e v e n  though for  n icke l  i t  reproduces s l ight ly  
bet ter  t h e  experimental angular  dis t r ibut ions.  At 
t h e  lower energ ies  there  a r e  la rge  contr ibut ions 
from Coulomb exci ta t ion and  i t s  interference with 
t h e  nuclear  exci ta t ion.  
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1.4 LEVEL STRUCTURE OF 64Zn 

J .  K. Dickens  F. G. Perey  
R. J. S i lva '  

During t h e  experiments  t o  measure  e l a s t i c  and 
i n e l a s t i c  sca t te r ing  of 11.0- and 12.0-Mev protons 
from 6 4 Z n  i t  became evident  tha t  the  ava i lab le  
information on t h e  exc i ted  states of 6 4 Z n  might 

not  b e  suf f ic ien t  and tha t  t h e  resul t ing theoret ical  
a n a l y s e s  of t h e s e  d a t a  would b e  hindered. There-  
fore, t h e  experimental  program w a s  modified t o  
s tudy  t h e  leve l  s t ructure  of 64Zn. Specif ical ly ,  a t  
a n g l e s  of  45 and 80°, u s i n g  12.0-Mev protons, 
suf f ic ien t  data  were accumulated that  uncer ta in t ies  
i n  peak  posi t ion d u e  t o  count ing s t a t i s t i c s  could 
b e  reduced t o  less than 10 kev. T h e  experimental 
procedure w a s  t h e  same as  t h a t  u s e d  to  s tudy t h e  
exc i ted  s t a t e s  of 64Ni. 

F igure  1.4.1 shows t h e  spectrum obtained a t  
809 Proton groups resul t ing from s c a t t e r i n g  by 
z i n c  can  definitely b e  dis t inguished from t h o s e  
resu l t ing  from scatterin'g by t h e  contaminants  by 
u t i l i z ing  t h e  kinematics  of t h e  sca t te r ing  as well 
as the expected magnitudes of  t h e  i n e l a s t i c  
sca t te r ing .  T h e  proton groups can  b e  dis t inguished 

Table 1.4.1. 64Zn Excited States 

Peak Number Ex 

1 0.99 

2 1.80 

3 1.90 

4 2.31 

5 2.61 

6 2.74 

7 2.79 

8 3.00 

9 3.08 

10 3.20 

1 1  3.30 

12 3.37 

13' 3.45 

14 3.55 

15' 3.60 

16 3.71 

17 (3.81) 

18 3.86 

19 3.93 

20 4.03 

21 (4.12) 

Peak Number Ex(Mev)a 

22 

23' 

24' 

25 

26 

27 

28 

29 

30 

31' 

32 

33  

34 

35 

36b 

37' 

38 ' 
39 

40 

41 

4.16 

4.31 

4.39 

4.46 

4.50 

4.54 

4.66 

4,70 

4.75 

4.83 

4.94 

5.00 

5.06 

5. 14 

5.21 

5.30 

5.41 

5.50 

5.63 

5.73 

*An error of f i 0  kev is assigned to all levels .  

'The proton group associated with this level  has a width larger than expected for  a s ingle  l eve l  and may include 

scattering by more than one excited state  of 64Zn. 
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from t h e  alpha groups by t h e  definitely different 
pulse-height responses .  T h e  i so topic  composi- 
tion of  t h e  ta rge t  w a s  >99% of 6 4 Z n ,  and i t  is 
unlikely that  any numbered proton group i n  Fig. 
1.4.1 could resul t  from proton s c a t t e r i n g  by nuclei  
other than 64Zn.  

Energ ies  of exci ta t ion were obtained a t  severa l  
a n g l e s  for both incident  energies .  T h e  va lues  
were averaged to obtain t n e  exc i ted  s t a t e s  pre- 
s e n t e d  in  Table  1.4.1. In Fig. 1.4.1, t h e  groups 
from 6 4 Z n  a r e  labe led  with t h e  peak numbers 
corresponding to  t h e  a s s o c i a t e d  exc i ted  s t a t e s  
given i n  T a b l e  1.4.1. In some c a s e s ,  indicated in  
t h e  table ,  the  a s s o c i a t e d  proton groups had widths  
>40 kev,  and i t  is probable  that  t h e s e  groups con- 
s i s t  of more than o n e  component. In two c a s e s ,  
p e a k s  18 and 22, smal le r  b u l g e s  on t h e  high- 
energy s i d e  of t h e  larger  peak sugges ted  proton 
s c a t t e r i n g  from two 64Zn l e v e l s  with a difference 
i n  exci ta t ion of -40 kev. T h e s e  occurred on all 
s p e c t r a  analyzed, but were never  c lear ly  resolved. 
Peak-str ipping techniques were appl ied  t o  the two 
12-Mev spec t ra ,  and the  resul t ing exci ta t ion 
energ ies  for t h e  l e s s - e x c i t e d  s t a t e s  a r e  shown in 
parentheses .  

Exci ta t ion energies  for 4 1  l e v e l s  between 0.99 
and 5.73 Mev a r e  reported, but  i t  is unlikely that 
a l l  of t h e  l e v e l s  in  t h i s  energy region were found. 
In addition t o  l e v e l s  which could not b e  resolved,  
l e v e l s  with la rge  shins a r e  not  appreciably exc i ted  
by proton scat ter ing;  the  s p i n s  of most  of t h e s e  
4 1  s t a t e s  will b e  l e s s  than 6. Angular distribu- 
t ions  for 12.0-Mev proton sca t te r ing  h a v e  been ob- 
ta ined for 2 1  l e v e l s  between 0.99 and  4.31 M ~ v ; ~  
t h e s e  d a t a  will b e  analyzed u s i n g  a deformable 
opt ica l  model t o  try to obtain s p i n s  and par i t ies  
for s e v e r a l  of t h e s e  leve ls .  
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1.5 DEPENDENCE OF PROTON OPTICAL- 
MODEL PARAMETERS UPON EXPERIMENTAL 

ERRORS 

J. K. Dickens 

Optical-model a n a l y s i s  of t h e  e l a s t i c  sca t te r ing  
of f a s t  nuc leons  from medium and heavy e lements  
h a s  been u s e d  ex tens ive ly  in  recent  years .  Ex- 
ce l len t  fits t o  experimental d a t a  a r e  usua l ly  ob- 
ta ined if most  of t h e  parameters of t h e  model a r e  
a l lowed to  vary. T h e  fitting procedure c o n s i s t s  
in  varying severa l  of t h e  parameters of t h e  model 
by an automatic  s e a r c h  code  unt i l  the  quant i ty  
x 2 ,  given by 

i s  a minimum. 

R e c e n t  emphas is  h a s  been on t h e  s tudy of the  
s y s t e m a t i c s  of the  model.’ In t h e s e  s t u d i e s  many 
angular  dis t r ibut ions of e l a s t i c  s c a t t e r i n g  from a 
var ie ty  of ta rge ts  and over  a chosen  range of 
inc ident  energy a r e  analyzed. Very good f i t s  t o  
many angular  dis t r ibut ions h a v e  been  obtained by 
al lowing most  of t h e  parameters t o  vary, but t h e  
resul t ing “best-fit” parameters  exhibi t  consider-  
a b l e  variation from one angular  dis t r ibut ion to  the  
next. A bet ter  understanding can b e  obtained by 
f ixing t h e  geometrical parameters  (e.g., radius, 
d i f fuseness  parameters) and al lowing only t h e  well 
depths  to vary. T h e  d a t a  a r e  qui te  adequately 
reproduced by t h i s  res t r ic ted model, and t h e  varia- 
t ion in  well-depth parameters is subs tan t ia l ly  re- 
duced. A qual i ta t ive dependence of t h e  well-depth 
var ia t ions upon target  parameters h a s  been  found, 
but  determining t h e  magnitude of t h e  dependence  
is difficult. For  example, s e v e r a l  groups h a v e  
inves t iga ted  the magnitude of t h e  i sobar ic  s p i n  
dependence [i.e., the  ( N  - Z ) / A  term]; agreement 
i s  only nominal. 

P a r t  of t h i s  difficulty may b e  a s s o c i a t e d  with 
t h e  dependence  of t h e  parameters upon var ious 
errors inherent  in t h e  experimental d a t a  being 
analyzed.  Usual ly ,  t h e  experimental is t  s t u d i e s  
t h e s e  errors  and  arr ives  a t  an overal l  error that  h e  
a s c r i b e s  t o  e a c h  datum. Each a s s i g n e d  error, 
then, g ives  a cer ta in  weight to  i t s  a s s o c i a t e d  
datum during t h e  least-squares  s e a r c h  t o  find the  
parameters t h a t  yield t h e  minimum x 2 .  T h e  
error d o e s  not in  any way a l te r  the  va lue  of t h e  

c 
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datum. Suppose,  for example, that  there  are two 
angular  dis t r ibut ions with exac t ly  t h e  same da ta  
but  tha t  t h e  errors  a s s o c i a t e d  with t h e  d a t a  of 
o n e  distribution a r e  twice  t h o s e  a s s o c i a t e d  with 
t h e  d a t a  of t h e  other. Analyses  of t h e s e  two dis-  
t r ibut ions by minimizing x2 will  y ie ld  ident ica l  
sets of model parameters; only t h e  value of x 2  
will  b e  different. However, t h e  conclusion that  
t h e  model parameters have  no dependence on ex- 
perimental error i s  not  demonstrated by the  above 
tes t .  If, i n s t e a d ,  two angular dis t r ibut ions - one 
made u p  of t h e  experimental d a t a  plus  t h e  associ- 
a ted  errors  and the  other  made up  of the  experi- 
mental d a t a  minus t h e  a s s o c i a t e d  errors  - a r e  
analyzed,  t h e  model parameters  wil l  usual ly  be  
different. T h i s  h a s  been verified by  s o m e  of our 
s t u d i e s  made on 12-Mev deuteron s c a t t e r i n g  from 
60Ni,  "Zr, and ' I 4 C d  in  which we found tha t  
normalizing t h e  d a t a  for a par t icular  i so tope  a t  
one energy changed t h e  model parameters by a 
factor much larger  than t h e  normalization factor. 

A s tudy  s imilar  to t h e  above  h a s  been in i t ia ted  
for t h e  proton opt ica l  model. R e s u l t s  ind ica te  
tha t  parameter variation with normalization e x i s t s  
for 12-Mev proton sca t te r ing  from 6 4 Z n  (ref. 3) and 
for 9.8-Mev proton sca t te r ing  from '"Sn (ref, 4). 

v w x2 

52.0 12 300 

51.5 11 2 0 0  

51.0 10 100 

50.5 9 0 

v w x2 

51.0 19 60 

50.5 18 40 

50.0 17 2 0  

49.5 16 0 

STANDARD 

-"a\- 
.-----_ 

Also under  s tudy a r e  errors  a s s o c i a t e d  with the  
a n g l e  measurements  and with t h e  incident-energy 
measurement and errors  which a l te r  t h e  s h a p e  of 
t h e  angular  distribution. 

F igure  1.5.1 s h o w s  t h e  resu l t s  of  a n a l y s i s  i n  
which for two different sets of geometry only t h e  
real  and imaginary well depths  were varied. 
(Errors which a l te r  the  s h a p e  of t h e  angular  dis-  
tribution a r e  approximated by changing the  
normalization of t h e  d a t a  for 8 > llO".) Even 
though t h e  resu l t s  h a v e  s imilar  form for t h e  four 
error t y p e s  and  two s e t s  of geometry, t h e  graphs 
ind ica te  t h a t  t h e  functional dependence of t h e  
parameters  is not  the  same for all e ight  cases, 
Therefore, a s i n g l e  a s s i g n e d  error d o e s  not  yield 
t h e  correct  funct ional  dependence of the  model 
parameters  on t h e  ac tua l  experimental  errors. In 
addi t ion,  the  var ia t ion of V ( the real-well depth) 
i s  smal l ,  cer ta inly smaller  than that  obtained in  a 
s imilar  six-parameter search .  T h e  va lue  of AV 
for i l O %  absolu te  normalization error, f O .  1' 
error in  angle ,  and  f 2 5  kev error in incident  
energy is -500 kev,  a small va lue  compared with 
tha t  of V but fa i r ly  la rge  compared with t h e  as- 
sumed va lue  for  t h e  i sobar ic  s p i n  dependence,  
-1.7 M e V .  

GEOMETRY 
ORNL-DWG 65-7240 

r - I - 7 7  

- (O  -5 0 5 10-10 -5 0 5 10 -0 .2  -0.1 0 0.1 0 2  -0.25 0 0 2 5  

NORMALIZATION (yo) NORMALIZATION OF (MeV) nec M. ( d e d  
u(8>110 deq) (%) 

. 

Fig. 1.5.1. Values o f  the Well-Depth Parameters and Minimum xz a s  Functions of Errors for 12-Mev Protons 

= 1.25 

= 1.24 fermis, a = 0.774 fermi, 

Scattering from 64Zn. The standard geometry i s  given by r 

fermis, a ,  = 0.47 fermi, and V s o  = 7.5 MeV. 

r = 1.2 fermis, rOi = 1.386 fermis, ai = 0.34 fermi, and V s o  = 4.83 MeV. 

= 1.25 fermis, a = 0.65 fermi, r = 1.2fermis,r 
Or O i  

or 
The best-fit geometry i s  given by r 

. 

. 
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T h e s e  resu l t s  ind ica te  tha t  whi le  meaningful -3.08, -3.20, -3.30, -3.37, -3.45, -3.55, -3.60, 
optical-model a n a l y s i s  may b e  obtained by us ing  -3.71, -3.86, -3.93, -4.03, -4.16, and -4.31 
da ta  with t h e  u s u a l  quoted errors  a s tudy of the  
f ine  s t ruc ture  of t h e  model probably requires  bet ter  
data .  T h e  normalization of experimental  d a t a  
should b e  determined without recourse t o  opt ical-  
model ca lcu la t ions  s i n c e ,  as  shown i n  Fig. 1.5.1, 
t h e  value of normalization for minimum x2 i s  de- 
pendent  on t h e  geometry. 

MeV) .  
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1.6 ELASTIC AND INELASTIC SCATTERING 
OF 12.0-Mev PROTONS FROM 62Ni, 63Cu, AND 

CROSS SECTIONS' 
4Z n: TAB UL AT ED D I F F E R ENT I AL 

J. K. Dickens R. J. Silva' 

Numerical va lues  o f  different ia l  c r o s s  s e c t i o n s  
for  e l a s t i c  and i n e l a s t i c  sca t te r ing  of 12.0-Mev 
protons from 62Ni,  63Cu, and 64Zn a r e  reported 
in  tabular  form. C r o s s  s e c t i o n s  were  determined 
a t  5' in te rva ls  between laboratory angles  of 20 and 
165' for 62Ni  and  64Zn and between laboratory 
angles  of 20 and 110' for 63Cu. Inelast ic-scat ter-  
i n g  d a t a  a r e  reported for two exc i ted  states of 

Ni (Q = -1.17 and -2.74 Mev); for seventeen  
exc i ted  s t a t e s  of 63Cu (Q = -0.668, -0.961, 

6 2  

-1.327, -1.412, -1.547, -1.862, -2.012, -2.080, 
-2.210, -2.337, -2.405, -2.50, -2.69, -3.28, 
-3.45, -3.69, and -4.11 Mev); and for twenty-one 
exci ted s t a t e s  of 64Zn (Q = -0.993, -1.804, 
-1.904, -2.31, -2.61, -2.74, -2.79, -3.00, 

1.7 ELASTIC SCATTERING OF 12.0- AND 
14.O-Mev DEUTERONS FROM 902r  AND THE 

REACTION 9 0  Z r ( d , ~ ) ~  ' Zr: TABULATED 
DIFFERENTIAL CROSS SECTIONS' 

J. K. Dickens F. G. Perey  
R. J. Silva' 

Numerical v a l u e s  of differential c r o s s  s e c t i o n s  
for elastic s c a t t e r i n g  of 12.0- and 14.0-Mev 
deuterons from 9 0 Z r  a r e  reported i n  tabular  form. 
C r o s s  s e c t i o n s  were determined a t  5O in te rva ls  
between laboratory a n g l e s  of 20 and 165O. Differ- 
e n t i a l  c r o s s  s e c t i o n s  for  proton groups from t h e  
90Zr(d,p)9 'Zr react ion a r e  reported. F o r  E ,  = 12.0 
MeV, d a t a  a r e  tabulated for e leven proton groups 

1.93, 1.73, 1.53, and  1.33 Mev); and for E ,  = 

14.0 M e V ,  d a t a  are tabulated for n ine  proton 
groups (Q  = 4.981, 3.77, 2.91, 2.79, 2.42, 1.93, 
1.73, 1.53, and 1.33 Mev). 

(Q = 4.981, 3.77, 3.55, 3.09, 2.91, 2.79, 2.42, 

References and Notes 

'Abstract of ORNL-3850 (September 1965). 
'Chemistry Division. 

1.8 ANALYSIS OF ELASTIC AND INELASTIC 
SCATTERING OF NEUTRONS FROM 'O'Pb, 

"*Pb, AND '09Bi BELOW 4.5 Me"' 

W. R. Smith 

T h e  Hauser-Feshbach compound-nucleus sca t te r -  
i n g  theory h a s  been  appl ied t o  neutron e l a s t i c  and 
i n e l a s t i c  s c a t t e r i n g  from '06Pb, 2 0 8 P b ,  and  '09Bi 
i n  t h e  energy range 0.8 to  4.5 M e V .  T h e  theory 
appears  to work qui te  wel l  for both t h e  compound- 
elastic s c a t t e r i n g  a n d  t h e  i n e l a s t i c  scat ter ing,  
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provided tha t  t h e  imaginary potent ia l  W h a s  t h e  
correct  energy dependence.  T h e  r e s u l t s  show 
t h a t  for t h e  i so topes  considered W should b e  
cons tan t  a s  a function of bombarding-minus-excita- 
tion energy and  nearly cons tan t  a s  a function of 
bombarding energy above  4-Mev bombarding energy,  
bu t  should b e  made increasingly smal le r  as t h e  
bombarding energy is lowered below t h i s  amount. 

Reference 

of 3.5, 4.0, 4.5, 5.0, and 5.5 Mev and t o  l e v e l s  i n  
t h e  residual  n u c l e u s  of 0, 1.21, 2.07, and 2.56 
Mev of exci ta t ion.  A s i n g l e  set of parameters ,  
differing s l ight ly  from t h e  predict ions of proton 
and deuteron e l a s t i c  sca t te r ing ,  w a s  found tha t  
reproduced most of t h e  angular  dis t r ibut ions 
sat isfactor i ly .  However, t h e  spec t roscopic  fac tors  
obtained thereby were,  on t h e  average,  30% 
smaller  than t h o s e  obtained from a n a l y s i s  of 12- 
Mev data. 

Reference 
'Abstract of ORNL-TM-1238 (in preparation). 

'Abstract of ORNL-TM-1235 (in preparation). 
1.9 USE OF ELASTIC-SCATTERING 
PARAMETERS IN (d,p) STRIPPING 

CALCULATIONS' 

W. R. Smith 

T h e  angular  dis t r ibut ions of "Zr(d,p)' 'Zr, 
52Cr(d,p)53Cr,  '06Pb(d,p)207Pb,  and Zn(d,p)  
were ca lcu la ted  by means  of the distorted-wave 
Born approximation in  which var ious optical-model 
parameter s e t s  were obtained by f i t t ing appro- 
pr ia te  deuteron and  proton e las t ic -sca t te r ing  data .  
In most cases i t  w a s  found t h a t  parameter am- 
bigui t ies  did not  greatly affect  t h e  relat ive 
angular dis t r ibut ions b u t  did c a u s e  differences 
of a factor of more than 2 between t h e  resul t ing 
spec t roscopic  factors .  Poten t ia l  ambigui t ies  of 
t h e  form VR" = cons tan t  were shown t o  b e  of 
considerably greater  importance for the  s t r ipping 
resu l t s  than were o ther  t y p e s  of ambiguities. 

1.11 REGIONS OF VALIDITY OF THE (d ,p )  
COULOMB-STRI PPING APP ROXIMATION 

W. R. Smith 

T h e  validity of t h e  Coulomb-stripping approxi- 
mation for ( d , p )  reac t ions  w a s  inves t iga ted  numer- 
i c a l l y  for s i x  ta rge ts ,  ranging from l60 to 2 3 8 ~ .  

T h e  invest igat ion involved finding t h e  region i n  
(E , ,  Q) s p a c e  where DWBA c a l c u l a t i o n s  t h a t  in- 
c l u d e  nuclear  optical-model po ten t ia l s  y ie ld  
agreement with ca lcu la t ions  t h a t  inc lude  only t h e  
Coulomb potent ia ls .  F o r  nuc le i  between 48Ca 
and  2 3 8 U  i t  w a s  found tha t  t h e  boundary between 
val id  and  nonvalid Coulomb s t r ipp ing  had an 
E ,  dependence  proportional t o  Z and a Q de- 
pendence proportional to  Z / A " 3  and could b e  
approximated by a s t ra ight  l i n e  which for 
"Zr(d,p)''Zr h a s  t h e  in te rcepts  E ,  = 4.2 Mev 
and Q = 5.2 M e V .  

References 

References 
'Abstract of ORNL-TM-966 (October 1964); 

'Abstract of ORNL-TM-1240 (in preparation) and 
a l s o  of Phys .  Rev. 137, B913 (1965). 

of paper to b e  submit ted t o  Nuclear P h y s i c s .  

1.10 DWBA ANALYSIS OF THE 
9 0  Zr(d,p)' ' Zr REACTIQN AT 

ENERGIES BETWEEN 3.5 AND 5.5 Me"' 

W. R. Smith 

1.12 INTEGRAL SPECTRA AND DOSE 
CONVERSION FACTORS FOR Am-Be, Po-Be, 

Pu-Be, AND Am-B NEUTRON SOURCES' 

S. K. Mehta' W. R. Burrus 
T h e  distorted-wave Born approximation (DWBA) 

theory w a s  appl ied t o  "Zr(d,p)''Zr angular dis-  T h e  integral  energy spectrum @(E)  (that i s ,  t h e  
tributions corresponding t o  bombarding energ ies  neutron flux below a n  energy E )  and t h e  t i s s u e  
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dose-conversion fac tors  [ the  first-collision d o s e  
(Kerma) K, t h e  first-collision R B E  d o s e  (Kerma 
equivalent)  Keq,  and t h e  R B E  d o s e  (dose  equiva- 
lent) DE per uni t  neutron flux] have  been  measured 
for Am-Be, Pu-Be,  Po-Be,  a n d  Am-B neutron 
sources  with a modified Bonner-sphere neutron 
spectrometer. Measurements were also made for 
t h e  Po-Be s o u r c e  a t  t h e  center  of 5.0- and 8.5-in.- 
diam s p h e r e s  of water. T h e  spectrometer  covered 
the  range 0.01 e v  to  15.5 M e V .  T h e  dose-vs-flux 
curves  as  a function of neutron energy were taken 
from NBS Handbooks 63 (Figs .  1 and 13) and 75 
(Table  A.6). T h e  method u s e d  t o  ana lyze  t h e  
d a t a  took in to  account  t h e  known smoothness  of 
t h e  spectrum from ( a , n )  s o u r c e s  and assumed an 
upper bound for t h e  neutron flux above  5.5 Mev 
taken from other  measurements. T h e  va lues  for 
t h e  d o s e  conversion factors ,  K[(ergs/g)/(neutron/ 
cm ')I, Keq[(ergs/g)/(neutron/cm ')I, and DE 
[rems/(neutron/cm2)] for t h e  four s o u r c e s  are ,  
respect ively:  

Am-Be (3.72 i0.53)10-7, (2.70 t0.26)10-', (3.79 +0.23)10-8 

Pu-Be (3.61 t0.57)10-', (2.65 ?0.29)10-6, (3.72 tO.28)10-* 

Po-Be (3.96 f 0.67)10-7, (2.82 i0.31)10-6, (3.84 t0.19)10-8 

Am-B (3.51 +0.42)10-7, (2.64 i0.23)10-6, (3.75 +0.21)10-8 . 

T h e  v a l u e s  of t h e s e  conversion fac tors  for the  
Po-Be source  surrounded by water  are:  

5 in. H,O (2.78 f0.51)10-7, (2.06 t0.27)10U6, (2.85 t0.24)10-8 
8.5 in. H,O (2.60 k0.69)10-7. (1.90 ?0.39)10-6. (2.60 t0.38)10-8 . 

References and Notes 

'Abstract  of paper to b e  submit ted t o  Heal th  

'Atomic Energy Establ ishment ,  Trombay, 
P h y s i c s .  

Bombay, India. 

1.13 SIMULTANEOUS MEASUREMENTS OF THE 

CROSS SECTIONS OF 235U 
NEUTRON-CAPTURE AND FISSION 

L. W.  Weston 
R. Gwin 
R. W.  Hockenbury' R .  Ingle' 

G. d e  Saussure 
J .  E. R u s s e l l  ' 

T h e  program for measuring t h e  ratio of t h e  cap- 
ture  and f iss ion c r o s s  s e c t i o n s  ( a )  of 235U h a s  

been cont inued with measurements  conducted a t  
t h e  Rensse laer  Poly technic  Ins t i tu te  Electron 
L i n e a r  Accelerator  i n  t h e  energy range 0.4 t o  2 
kev. T h e  technique w a s  the  s a m e  as tha t  u s e d  for 
ear l ie r  measurements  ( s e e  Sect. 1.14 and ref. 3) 
except  tha t  a 'OB-NaI detector  w a s  u s e d  to  meas- 
ure  t h e  neutron flux through t h e  235U f iss ion 
chamber. T h e  important feature  of t h e s e  measure- 
ments  is tha t  t h e  capture  and f i ss ion  c r o s s  sec- 
t ions  were determined s imultaneously under 
ident ical  condi t ions with t h e  same sample,  thus  
el iminat ing many relat ive errors  between t h e  cap-  
ture  and f i ss ion  cross s e c t i o n s  s u c h  as s l i g h t  
errors  in  neutron energy,  neutron flux, neutron 
s c a t t e r i n g  effects ,  e tc .  

T h e  a n a l y s i s  of the measurements  i s  incom- 
plete ,  bu t  a typ ica l ,  uncorrected time-of-flight 
spectrum is shown in Fig.  1.13.1, where the  scale 
at t h e  bottom represents  a neutron energy from 
10 k e v  a t  t h e  le f t  t o  0.2 etr at  t h e  right. T h e  
sharp  breaks  in t h e  spectrum were  c a u s e d  by the  
computer's changing  t h e  e f fec t ive  time-of-flight 
channel  widths. 

T h e  measurements  wil l  b e  ana lyzed  to obtain 
resonance  in tegra ls  over var ious neutron energy 
ranges,  as wel l  a s  t h e  differential c r o s s  sec t ions .  
Resonance  in tegra ls  a r e  of va lue  in  computing 

ORNL-DWG 65-4628 
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gross  charac te r i s t ics  of reactors ,  whereas  differ- 
ent ia l -cross-sect ion d a t a  a r e  u s e d  t o  c a l c u l a t e  
Doppler coef f ic ien ts  and flux depress ions .  

A feasibi l i ty  s tudy on the  measurement of the  
capture  and f iss ion c r o s s  s e c t i o n s  of 2 3 9 P u  w a s  
a l s o  performed with t h e  R P I  l inac.  T h e  pulse-  
height  spectrum method of discr iminat ing capture  
from f iss ion w a s  u s e d . 4  Analys is  of t h i s  study 
will b e  continued. 

References and Notes 

'Rensse laer  Poly technic  Inst i tute ,  Troy, New 

'Instrumentation and  Controls  Division. 
3L. W. Weston, G. d e  Saussure ,  and R.  Gwin, 

4R.  Gwin et al., Neutron Phys.  Div. Ann. Progr. 

York. 

Nucl. Sci. Eng. 20, 80 (1964). 

Rept. Auk. 1, 1963, ORNL-3499, vol. I,  p. 15. 

1.14 MEASUREMENT OF a ,  THE RATIO OF THE 
NEUTRON-CAPTURE CROSS SECTION TO THE 

FISSION CROSS SECTION, FOR 235U IN THE 
ENERGY REGION 3.25 ev TO 1.8 kev' 

G. d e  Saussure  
L. W. Weston R. Gwin 

J. E. R u s s e l l '  

R. W. Hockenbury ' 
T h e  va lue  of a ,  the  ratio of t h e  neutron-capture 

c r o s s  sec t ion  t o  t h e  f i ss ion  c r o s s  sec t ion ,  for 
235U h a s  been measured over  a neutron energy 
range extending from 3.25 e v  t o  1.8 kev. In 
addition, capture  and f iss ion c r o s s  s e c t i o n s  
have  been measured from 3.25 t o  25 ev. T h e  ex- 
periment w a s  performed with t h e  neutron time-of- 
flight fac i l i t i es  a t  R e n s s e l a e r  Poly technic  
Inst i tute .  A mult iplate  '"U f iss ion chamber, 
surrounded by a l a r g e  l iquid scint i l la tor ,  w a s  
placed in t h e  neutron beam. Gamma rays emitted 
when t h e  uranium absorbed a neutron were de- 
tec ted  with high eff ic iency by the  scint i l la tor ,  
and, if the  absorption resu l ted  i n  a f iss ion,  t h e  
f iss ion fragments were de tec ted  by t h e  f i ss ion  
chamber i tself .  T h e  va lue  of a w a s  derived from 
the ratio of t h e  count  ra te  of the  sc in t i l l a tor  i n  
ant icoincidence with t h e  f iss ion chamber t o  the  
count  ra te  of t h e  sc in t i l l a tor  in  coincidence with 
t h e  f iss ion chamber. Rela t ive  f iss ion and capture  
c r o s s  s e c t i o n s  were  obtained from t h e s e  count  
r a t e s  and from an auxi l iary measurement of the  
incident  neutron beam spectrum. R e s u l t s  a r e  pre- 
sen ted  in  graphical  and  tabular  form. 

References and Notes 

'Abstract of ORNL-3738 (April 1965). 
'Rensselaer  Poly technic  Institute. 

1.15 STUDY OF RESONANCE PARAMETERS 
OF Pu' 

J. Blons  A. Michaudon ' 
H. Derrien' P. Ribon' 

G. d e  Saussure  

T h e  resonance  parameters  of 2 3 9 P u  were deter-  
mined from total-cross-sect ion measurements  up  
to  200 e v  and from previously reported measure- 
ments  of f i ss ion  c r o s s  sec t ions .  T h e  experimental  
t echniques  and t h e  method of a n a l y s i s  of t h e  re- 
s u l t s  a re  briefly descr ibed,  and the  resonance  
parameters  are given. I t  s e e m s  that  up t o  200 e v  
few r e s o n a n c e s  a r e  missed ,  though there  is some 
ambiguity (asymmetry expl icable  e i ther  by inter-  
fe rence  or by small resonances) .  A s t a t i s t i c a l  
s tudy is made on leve l  s p a c i n g s  and reduced 
neutron-, radiation-, and fission-width distribu- 
tions. Several  resonances  h a v e  very great width 
(r > 1 ev);  t h e  radiat ion wid ths  f luctuate  
qui te  strongly and a r e  not  c o n s i s t e n t  with a con- 
s t a n t  value;  t h e  f luctuat ions a r e  comparable with 
t h e  o n e s  observed for 235U. 

Y .  

4 

References and Notes 

'Abstract  of paper  submit ted by  CEN,  Saclay,  
for EANDC Meeting on Study o f  Nuclear Structure 
Using Neutrons, Antwerp, July  1965. 

'Centre d ' E t u d e s  Nuclgaire ,  Saclay. 

1.16 PULSED-NEUTRON MEASUREMENTS 
OF DIFFUSION PARAMETERS IN ORDINARY 
ICE AS A FUNCTION OF TEMPERATURE BY 

THE METHOD OF TIME-DEPENDENT 
NEUTRON DIFFUSION' 

E. G. Silver 

T h e  parameters  ha, D ,  and C in  t h e  familiar 
equation 

A =  ha + DB'(1 - CB') 
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have  been  measured for  ice over  t h e  buckling 
range 0.039 to 0.738 cm-'. T h e  c l a s s i c a l  
pulsed-neutron method w a s  u s e d  with the  ice 
contained in a n  absorber-lined c ryos ta t  a t  temper- 
a tures  down t o  -85OC. Spec ia l  techniques were 
developed for producing accurately shaped  ice 
cyl inders  of uniform densi ty .  

A 300-kev deuteron accelerator ,  both pre- and 
postaccelerat ion pulsed,  w a s  u s e d  to  produce 
20- t o  2 0 0 - p e c  burs t s  of D-D neutrons which 
impinged on t h e  ice cyl inders .  [D-T neutrons 
could not  b e  used ,  d e s p i t e  intensi ty  advantages ,  
because  they c a u s e d  a high quasi-flat background 
due to  photoneutrons produced by t h e  gamma rays  
emitted in  b e t a  d e c a y  of 7.35-sec 16N produced 
by the  160(n,p)16N reaction.] Each  of 65 decays  
was  measured with a t  l e a s t  l o 6  counts  in  an 18- 
channel  time analyzer ,  a f t e r  wai t ing t imes  rang- 
ing  from 533 p s e c  ( la rges t  cylinder) t o  140 p s e c  
( smal les t  cylinder). 

T h e  resu l t s  were analyzed by a nonl inear  leas t -  
s q u a r e s  f i t t ing t o  a two-exponential decay  model. 
A s mall-ampli tu d e  acce lerator-deri ved back ground 
of (6.5 k 2.5) x l o p 3  sec-' w a s  found and cor- 
rected for. T h e  corrected d a t a  had s l o p e s  con- 
s t a n t  within 1.5% over t h e  t ime observed. 

T h e  resu l t s  show t h a t  t h e  absorpt ion c r o s s  
sec t ion  h a s  a l / v  dependence over  t h e  measured 
temperature range, making ha a cons tan t  and 
yielding an average  va lue  of (331.5 k 3.1) mb for 
oJH). F i t t ing  (vD) t o  a l inear  temperature rela- 
tion y ie lds  

[3.30 + 0.0123 T(OC)] x l o4  cm'/sec . 
T h e  diffusion-cooling coeff ic ient  C h a s  large 
unce r t a in t i e s  bu t  fits a l i nea r  temperature de- 
pendence of 

C = L4.55 + 0.025 T(OC)] x l o 3  cm4/sec . 

References 

'Abstract of ORNL-TM-1204 (September 1965) 
and of paper t o  b e  publ ished in Proceedings  of 
International Atomic Energy Agency Symposium 
on Pulsed-Neutron Research,  Karlsruhe, F e d e r a l  
Republ ic  of Germany, 10-14 May 1965 (Paper  
NO. SM-62/72). 
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1.17 PHOTONEUTRON SPECTRA AND CROSS 
SECTIONS FOR 12C AND 1601 

V. V. Verbinski J. C. Courtney' 

Par t ia l  (y,n) c r o s s  s e c t i o n s  h a v e  been meas- 
ured for two self-conjugate  nuclei ,  ''C and l60, 
by measuring t h e  spec t ra l  intensi ty  of emit ted 
neutrons in  conjunct ion with a determination of 
t h e  time-integrated absolu te  photon flux. T h e  
maximum-energy photoneutrons which l e a v e  the  
residual  nuclei  i n  their  ground s t a t e  were i s o l a t e d  
from other t rans i t ions ,  making i t  p o s s i b l e  to  s tudy  
individual e x c i t e d  l e v e l s  in "C and l60. By 
measuring t h e  neutron spec t ra  a t  s e v e r a l  a n g l e s  
and tak ing  advantage  of t h e  u s e  of self-conjugate  
target  nuclei ,  t h e s e  i so la ted  l e v e l s  in  '*C and 
l60 were found to  b e  due  to e lectr ic-dipole  photo- 
absorption with subsequent  emiss ion  of d-wave 
neutrons. 

References and Notes 

'Abstract of ORNL-TM-1158 (June 1965) and 
of paper  to b e  publ ished in Nuclear  P h y s i c s .  

'Catholic University, Washington, D.C.; Grad- 
u a t e  Fel low,  Oak Ridge  Inst i tute  of Nuclear  
Studies. 

1.18 DIFFERENTIAL NEUTRON CROSS 
SECTIONS FOR SEVERAL MATERIALS 
BOMBARDED BY 14-, 18-, AND 56-Mev 

PROTONS 

M. Young' W. R. Burrus 
V. V. Verbinski J. C. Courtney' 

Differential "net" (p,n) c r o s s  s e c t i o n s  h a v e  
been determined as a function of neutron energy 
and neutron emission angle  for  severa l  mater ia ls  
bombarded by 14-, 18-, and 56-Mev proton beams. 
T a r g e t s  which removed about  10 Mev from t h e  
incident  beam of Be,  "B, C ,  0, and A1 were 
bombarded by 56-Mev protons. Measurements 
were made a t  a n  emiss ion  a n g l e  of 64O for e a c h  
element  and  a t  30' for B e  alone. T a r g e t s  which 
removed about  1 Mev from t h e  incident  beam were  
bombarded by 14- and  18-Mev protons, the  meas-  
urements covering emission angles  of from 0 to  
170'. At 18 Mev t h e  ta rge ts  were Be, N,  Al, F e ,  
In, Ta, and "'Pb; and a t  1 4  Mev they were Be 



12 

and z O s P b .  T h e  resul t ing ne t  c r o s s  sec t ion  i s  
def ined by 

T h e  f inal  differential ( p , n )  c r o s s  s e c t i o n s  wil l  
b e  determined from t h e  th ickness  of t h e  targets ,  
t h e  integrated proton current, and the  absolu te  
neutron spectrum. T h e  absolu te  spectrum from 
about  0.5 Mev t o  t h e  maximum neutron energy is 
be ing  unfolded by means  of t h e  FERDO general- 
purpose unfolding c o d e  from pulse-height distri- 
but ions measured with a cal ibrated NE-213 liquid- 
organic  scint i l la tor .  T h e  cross-sect ion resu l t s  
will b e  presented i n  t h e  laboratory system i n  
terms of barns  s te rad ian- '  M e V - '  a s  a function 
of emission a n g l e  and  neutron energy for e a c h  
bombarding energy. A transformation to  the  
center-of-mass sys tem cannot  b e  made b e c a u s e  
t h e  different reaction mechanisms leading to  
neutrons were not separated.  

Notes 

'Research par t ic ipant  from Louis iana  S ta te  
University. 

*Cathol ic  University, Washington, D.C.; Grad- 
u a t e  Fel low,  Oak Ridge  Inst i tute  of Nuclear  
Studies. 

1.19 DEUTERON POLARIZATION FROM THE 
9Be(p,d)8Be REACTION AT 3 TO 5 MeV' 

V. V. Verbinski M. S. Bokhari '  

T h e  polar izat ion of deuterons produced i n  the 
'Be(p,d)'Be ground-state reaction w a s  measured 
a t  severa l  a n g l e s  in  t h e  region of the  s t r ipp ing  
peak and for proton energ ies  of 3 ,  4, and 5 M e V .  

Us ing  a carbon ana lyzer  v ia  t h e  "C(d, p ) '  'C 
ground-state react ion and t h e  relat ionship E (the 
asymmetry) = 3P * P,, where P is t h e  polar iza-  
tion, the  s ign  of t h e  deuteron polarization n e a r  t h e  
s t r ipping peak w a s  found to b e  pos i t ive  a t  3 and 
4 M e V .  T h i s  i s  in  agreement  with ear l ie r  experi-  
mental  f indings and DWBA ca lcu la t ions  for which 
deuteron-wave dis tor t ion is assumed to  predom- 
inate .  However, t h e  s i g n  w a s  measured t o  b e  
nega t ive  a t  5 M e V ,  which may b e  due  t c  a rela- 
tively grea te r  proton-wave dis tor t ion at  th i s  
energy. 

P 
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2. Critical Experiments 

2.1 DETERMINATION OF NEUTRON FLUX IN . 2.2 BOUNDARY CONDITIONS FOR THE 
NUCLEAR REACTORS BY THE UNCOLLIDED- 

FLUX ESTIMATOR APPLIED TO 
CYLINDRICALIZED CELL OF 

REACTOR- LATTl C E CALCULATIONS’ 
MONTE CARLO COLLISIONS~ 

J. W. Webster 

An invest igat ion was  made of the uncollided- 
flux est imator ,  appl ied t o  Monte Carlo co l l i s ions ,  
a s  a means of determining the  neutron flux a t  
specif ied s p a t i a l  points  of a reactor. The  uncol- 
lided-flux est imator  is e s s e n t i a l l y  a n  evaluat ion 
of the  flux as given by the Boltzmann equat ion in  
integral  form. T h e  method is appl ied to two sample  
reactor problems: the Godiva assembly and a n  
8-unit interact ing array of highly enriched uranium- 
metal cyl inders .  T h e  s c a l a r  flux i n  Godiva, cal- 
culated by us ing  t h e  co l l i s ions  from 15,000 neu- 
trons,  was  found to  be in exce l len t  agreement with 
t h e  flux ca l cu la t ed  by the Carlson S, method. In 
the second  problem, us ing  the co l l i s ions  from about 
10,000 neutrons,  the  dis tor t ing effect on the  flux 
distribution of t h e  nearby interact ing cyl inder  
shows  up clear ly ,  although more neutrons would 
be necessa ry  for sa t i s fac tory  accuracy.  

T h e  computer t i m e  required on the  CDC 1604-A 

J. W. Webster 

In t h e  solut ion for the thermal-flux dis t r ibut ion 
in a cyl indrical ized cell us ing  the  one-dimensional 
spher ica l  harmonic method of third order, s e v e r a l  
different sets of boundary condi t ions at the  outer  
sur face  have been proposed i n  the  l i terature.  T h e s e  
are  reviewed, and another poss ib l e  set is derived 
from a considerat ion of a n  analogy between t h e  
equat ions for the  moments in  cyl indrical  and plane 
geometry. 

T h e  physical  properties e x i s t i n g  in ac tua l  cells, 
which a r e  necessa r i ly  tr iangular,  square,  or hex- 
agonal  in  cross sec t ion ,  a r e  reflection of neutrons,  
zero current, and zero normal der ivat ive of s c a l a r  
flux. None of the  poss ib l e  sets of boundary con- 
di t ions for t h e  cyl indrical ized cell sa t i s fy  all 
t h e s e  physical  properties,  and i t  is shown math- 
ematical ly  why they do not. 

Reference 

in the f i rs t  problem w a s  215 min (36 min per s p a c e  
Doint), and was 480 min in  the second  problem *Abstract  of ORNL-TM-1022 (Dec. 30, 1964). . .. 
(69 min per s p a c e  point). T h e  uncollided-flux 
est imator  is therefore concluded t o  be pract ical  

s p a c e  points or when high accuracy is not desired.  
only when the  flux is needed a t  a sma l l  number of 2.3 ONE-VELOCITY MONTE CARLO 

CALCULATIONS OF URAN IUM-ME TAL 
CRITICAL G E OME TR I E S’ 

J. T. Mihalczo 

A method is descr ibed for predicting the multi- 
pl icat ion factors  of geometrically complicated 

’Abstract  of ORNL-TM-1175 (August 1965). configurations of bare,  unmoderated, enriched 

Reference 
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uranium metal from the  resu l t s  of two delayed- 
c r i t i ca l  experiments in  s imple geometry, one 
with a nearly minimum surface-to-volume rat io  
and the other with a large surface-to-volume ratio. 
T h e  method requires two one-velocity cons tan ts ,  
the total  col l is ion c r o s s  sec t ion  ( x t )  and the 
number of neutrons produced per  co l l i s ion  (vCf/C:,), 
which are obtained from t h e  two experiments by 
us ing  S transport  theory ‘calculat ions with 
isotropic  scat ter ing.  T h e s e  cons tan ts ,  together  
with the assumption of isotropic  scat ter ing,  a r e  
then used in 0 5 R  Monte Car lo  neutron-transport 
calculat ions to  predict  the  multiplication factors .  
T h e  method h a s  been t e s t e d  by predicting the 
multiplication fac tors  of 21  different delayed- 
critical configurations t o  within a s tandard de-  
viation of 1.5%. 

t iv i t ies  and equa l  prompt-neutron decay  c o n s t a n t s  
a t  delayed cr i t ical .  In c a s e s  where iner t ia l  e f f e c t s  
become important, a cylinder of greater  h /d  ra t io  
will  produce shorter  burs t s  s i n c e  a la rge  part  
(approximately one-half) of the temperature coef-  
f ic ien t  is a s s o c i a t e d  with vibrations i n  t h e  s m a l l  
dimension. T h e  temperature coeff ic ient  of reac- 
tivity of large-diameter cyl inders  is a s s o c i a t e d  
with expansion in  the  large dimension and wil l  
resul t  in  wider burst  widths.  The  yield from a 
30-in.-diam, 3.23-in.-high unreflected uranium- 
molybdenum cyl inder  w a s  ca l cu la t ed  t o  b e  7.8 x 
10’’ f i ss ions ;  that  from a 5.55-in.-diam, 32-in.-high 
cyl inder  was  2.9 x lo”. T h e s e  y ie lds  a r e  greater  
than the  maximum thus  far produced by the  Heal th  
P h y s i c s  Resea rch  Reactor ,  1.8 x 10” fissions, 
at t h e  same  peak temperature,  by factors  of 4.3 
and 1.6 respect ively.  

References 
Part I I  

’Abstract  of ORNL-TM-1220 (in preparation) and 
of paper to  be submitted t o  Nuclear Science and 
Engineering. 

2.4 

T h e  

INCREASED YIELD FROM FAST BURST 
REACTORS: PARTS I AND II’ 

J.  T. Mihalczo 

e f fec t  on t h e  yield and burst  s h a p e  of 
i nc reased  fissile m a s s  i n  superprompt cr i t ical-  
burst  reactors  cons i s t ing  of unreflected and of 
thin s ta inless-s teel-ref lected enriched uranium- 
molybdenum alloy cyl inders  h a s  been invest igated 
by transport  theory ca lcu la t ions  employing t h e  
Sn method. T h e  alloy was  10 wt % molybdenum 
and the  uranium was  enriched t o  97% in 235U. 
Calculat ions were a l s o  performed for c r i t i ca l  
enriched uranium-metal cy l inders ,  for which experi-  
mental  da ta  exis t .  T h e  cyl inders  range in  height- 
to-diameter ra t io  ( h / d )  from 0.1 t o  5.7. 

Part I 

The  resu l t s  show tha t  t h e  peak-to-average 
power-density ratio, the  prompt-neutron decay 
constant  a t  delayed cr i t ical ,  and the  s t a t i c  temper- 
ature coeff ic ient  of react ivi ty  a re  essent ia l ly  
independent of h/d. One-velocity space-independ- 
e n t  neutron k ine t ics  predict  the  same  burst  s h a p e  
for reactors  with equal  superprompt c r i t i ca l  reac-  

Adding a 1-in.-thick s t a i n l e s s  steel reflector to 
a cyl inder  of large h/d  ra t io  wil l  resu l t  in  a de-  
crease of about 25% i n  t h e  m a s s  required to  pro- 
d u c e  a given yield. Introducing a 2-in.-diam a x i a l  
hole  i n  t h i s  cyl inder  wil l  i nc rease  the yield per 
unit peak-temperature change by a s  much as 40%. 

Ca lcu la t ions  of unreflected 13.47-in.-diam cyl-  
inders  ind ica te  tha t  t h e  yield,  per unit  peak- 
temperature change,  from U(97)-Mo can  be in- 
c r eased  50% if  uranium of 60% 235U content  is 
subs t i tu ted  in the  inner  4.5-in.-diam region. 

References 

’Combined abs t rac t  of Increased Yie lds  from 
Fast  Burst Reactors. Part I: E f f e c t s  o f  Increased 
Mass on Uranium and Uranium-Molybdenum Critical 
Cylinders, ORNL-TM-1125 (Apr. 30,  1965) and 
Part 11: E f f e c t  o f  Thin Stainless Steel Reflectors 
o f  235U-Enriched Central Fuel Regions, ORNL- 
TM-1215 (in preparation). 

2.5 CRITICALITY OF A SINGLE UNIT OF 
AQUEOUS URANYL FLUORIDE SOLUTION 

ENRICHED TO 5% IN 235U1 

J. W. Webster E. B. Johnson 

As a part of t h e  continuing cr i t ical i ty  program 
with uranium enriched to  5% in 2 3 5 U  , a comparison 
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between theory and experiment w a s  made with 
regard to  t h e  cr i t ical i ty  of a volume of aqueous 
U(4.98)O,FZ solut ion (H: 235U = 496) contained 
in a thin-walled s t a i n l e s s  s t e e l  cylinder.  T h e  
solut ion had a height-to-diameter ra t io  of about 
2.5, thus making the  end l eakage  reasonably sma l l  
compared with the  radial  leakage.  Computations 
indicated tha t  t h e  end l eakage  from the  f ini te  
system corresponded to  only 1.5% in reactivity.  
One-dimensional ca lcu la t ions ,  with a n  approximate 
correction for end leakage,  a r e  therefore valid. 

T h e  Carlson S, D T F  I1 code  with the  Hansen-  
Roach 16-group c r o s s  s e c t i o n s  was  used for the  
calculation. T h e  computed multiplication factor  
of 1.002 for the  c r i t i ca l  sys t em l ends  further 
confidence to  the method and t o  the  cross-sect ion 
se t .  

Reference 

'Abstract  of ORNL-TM-1195 (in press).  

2.6 CRITICAL DIMENSIONS OF ARRAYS OF 
AQUEOUS URANYL FLUORIDE SOLUTION 

CONTAINING URANIUM ENRICHED 
TO 5% IN 235U 

E. B. Johnson 

T h e  program concerned with the determination 
of c r i t i ca l  parameters of aqueous  uranyl fluoride 
solut ion containing uranium enriched t o  4.98% in 
235U is being continued. Experiments with cyl-  
inders  of solut ion a t  a concentrat ion of 9 0 1  g of 
uranium per l i ter  (H:235U = 496) contained i n  
aluminum and having n o  hydrogenous reflector 
have  been reported. 

In more recent  experiments c r i t i ca l  arrays have  
been assembled in  which the  U(4.98)O 2F , solut ion 
at the  same  concentration was  contained in  10.75- 
in.-diam polyethylene bot t les  having a capac i ty  
of about 25 l i ters .  Since t h e s e  bot t les  are used  
for s torage and for intraplant  t ransfer  of uranium 
solut ions of low enrichment,  the  resu l t s  of t h e s e  
experiments form b a s e s  for s a f e  and economic 
handl ing cr i ter ia  although t h e  geometry of t h e  
uni ts  is not amenable to  calculation. T h e  bot t les  
were molded polyethylene of varying wal l  thick- 
n e s s e s  (0.25 in. a t  t h e  bottom and 0.10 in. a t  the  
top) with a concave  upward bottom and a sc rew 
cap. Each  bot t le  contained about 1.1 kg  of 235U 
in 24 l i t e rs  of solution. 

P l ana r  arrays of t h e s e  uni t s  i n  squa re  and tri- 
angular pat terns  were c r i t i ca l  under the  condi- 
t ions indicated in Fig.  2.6.1. I t  should b e  empha- 
s i z e d  tha t  although t h e  s i d e  and bottom ref lectors  
were in  con tac t  with t h e  bot t le  su r faces  the top 
reflector,  when present ,  was  about 1 0  in. from the  
top of the  solut ion b e c a u s e  of the  bot t le  caps.  
Nine uni t s  i n  a l ine and i n  con tac t  were subcr i t ica l  
when completely surrounded with polyethylene.  
T h e  array of  3 2  uni t s ,  surrounded on f ive s i d e s  
with 6-in.-thick polyethylene,  shown i n  Fig.  2.6.2, 
was  critical a t  a s u r f a c e  separat ion of 8.33 in. 
between rows. A similar  array containing only 16 
uni t s ,  arranged in two rows of e ight  un i t s  each ,  
w a s  c r i t i ca l  a t  a separat ion of 6.65 in. between 
rows when surrounded on five s i d e s  with 6-in.- 
thick polyethylene.  The  e f fec t  of P l e x i g l a s  
centered between t h e  rows of the  array with the  
sepa ra t ion  between rows equal  t o  6 in. w a s  deter-  
mined; Fig. 2.6.3 ind ica tes  tha t  the  optimum 

2 

A R R A Y  R E F L E C T O R  L A T T I C E  P A T T E R N  

- 0 N O N E  T R I A N G U L A R  
A A L L  SIDES T R I A N G U L A R  
A N O T O P  T R I A N G U L A R  

A L L  SIDES S Q U A R E  
0 NO TOP S Q U A R E  

1 

0 1 2 3 4 5 
SURFACE SEPARATION B E T W E E N  UNITS (in.) 

Fig. 2.6.1. The Critical Planar Arrays o f  Aqueous 

U(4 .98 )02F2  Solution a t  a Concentration o f  901 g of 

Uranium per Liter Contained in 10.75-in.-diam Poly- 
ethylene Bottles. The ref lector  w a s  6-in.mthick poly- 
eth y I en e. 
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1 

Fig. 2.6.2. An Array of Thirty-Two Units of Aqueous 
U(4.98)02F2 Solution at a Concentration of 901 g of 
Uranium per Liter Contained in  Polyethylene Battles and 
Surrounded on F i v e  Sides by 6*in.-Thick Polyethylene. 

ORNL-DWG 65-4935A 
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Fig. 2.6.3. Reactivity Introduced by Plexiglas Cen- 
tered Between the Rows of a Reflected Array of Poly- 
ethylene Bottles of Aqueous U(4.98)02F2 Solution at a 

Concen;ration of 901 g of Uranium per Liter. 

td ickness  of P l e x i g l a s  w a s  about 0.75 in ,  The  
relat ive e f fec ts  of mater ia ls  s u c h  as concrete ,  
wbod, P lex ig las ,  foamed p las t ic ,  and Foamglas  
a s  ref lectors  for th i s  enrichment.  were determined 
by subst i tut ion in  one s i d e  of the reflector. 

Reference 

, 'E. B. Johnson and D. F. Cronin, Neutron Phys. 
Div. Ann. Progr. Rept.  Aug. 1, 1964, ORNL-3714, 
vol. I, p. 31. 

1 2.7 CRITICAL EXPERIMENTS WITH 
SPERT-D FUEL ELEMENTS' 

R. K. Reedy, Jr. 
I 
1 E. B. Johnson 

1 T h e  cr i t ica l  dimensions of lattices of SPERT-D 
fuel e lements  i n  s e v e r a l  nonreactor environments 
were determined in order to e s t ab l i sh  spec i f i -  
ca t ions  for u s e  i n  s torage,  t ransportat ion,  and 
chemical-processing operations. A SPERT-D 
element cons is ted  of the  3-in.-square aluminum 
box, typical  of pool-type reactor e lements ,  f i t ted 
with U-A1 fuel  p la tes .  The  length of the  fuel  
s e c t i o n  was  23.9 5 0.4 in. A complete e lement  
contained about 300 g of 235U in  22 aluminum- 
c l a d  flat  plates .  

In addition to water  as the  moderator and re- 
f lector  of lattices of e lements ,  a di lute  aqueous 
solut ion of uranyl n i t ra te  w a s  used  in some experi- 
ments t o  s imula te  a dissolver .  In still other  
experiments,  varying amounts of boron were added 
to the  uranyl ni t ra te  solut ion t o  determine its 
effect as a so luble  neutron absorber  i n  chemical-  
p rocess  materials. 

I t  was  shown, for example,  tha t  a minimum of 
kbout 3.5 k g  of 235U is required i n  a critical 
lattice moderated and ref lected by water. T h i s  
hass w a s  reduced to 2.8 k g  (contained in  the  
klements themselves)  when U(92.6) solut ion 
Laving a 2 3 5 ~  concentrat ion of 3.99 g/liter w a s  
Lubsti tuted for water. I t  was  increased  to 13.6 
k g  when 1.118 g of natural  boron was added to 
(each l i ter  of the uranyl ni t ra te  solution. 

I 

Reference 
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1 'Abstract  of ORNL-TM-1207 (in press). b 
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2.8 CRITICALITY SAFETY TESTS FOR A 
PROPOSED IRRADtATlON FACILITY 

E. B. Johnson 

A lO-in.-long annulus  of U(93.4) metal, 3 x 3 in. 
in ins ide  dimensions,  containing 4.32 kg of 235U 
was found to  b e  subcr i t ica l  when submerged in  
e i ther  l ight or heavy water. T h e  metal  was used 
to  s imulate  the  fissile material  in a n  irradiation 
facility proposed for u s e  with the  Bulk Shielding 
Reactor. 

2.9 HIGH FLUX ISOTOPE REACTOR 
CRITICAL EXPERIMENT No. 3 

J. T. Thomas 

Cri t ical  experiments '  in support  of the  High 
Flux Isotope Reactor  were completed i n  April 
1965. The  HFIRCE-3 element w a s  s i m i l a r  t o  the  
HFIRCE-2 element  u s e d  by Magnuson, and the 
experiments ut i l ized t h e  same  b a s i c  equipment 
a s  t h e  HFIRCE-2 series. T h e  235U content  of 
t h e  element was  9.4 kg, a n  i n c r e a s e  of 1.4 k g  over 
the  HFIRCE-2 element,  and natural  boron, contain- 
ing  2.12 g of 'OB, w a s  p re sen t  in the f i l ler  p i e c e s  
of the fuel p la tes  of the inner annulus.  

Relat ive f i s s i o n  flux measurements were made 
in the  is land,  throughout the  core,  and in  the  water 
reflector exterior t o  t h e  beryllium reflector. The  
shutdown worth a s  well  a s  the  sens i t iv i ty  of the  
Ag-Cu-A1 control cyl inders  were determined. 
Similar measurements were conducted with t h e  
Eu ,O,-Ta-Al control cyl inders  intended for u s e  
in the  HFIR. 

References 

'J. T. Thomas, Neutron Phys. Div. Ann. Progr. 
Rept. Aug. 1, 1964, ORNL-3714, vol. I, p. 37. 

'D. W. Magnuson, Neutron Phys. Div. Ann. Progr. 
Rept. Sept. 1, 1961, ORNL-3193, p. 136. 

2.10 EXPERIMENTAL EVALUATION OF 
HANDLING PROCEDURES FOR HIGH 

FLUX ISOTOPE REACTOR FUEL 
ELEMENTS OUTSIDE THE REACTOR 

J. T. Thomas S. J. Raffety 

A s e r i e s  of experiments have  been performed 
with the  High F lux  Isotope Reactor  Cri t ical  Ex- 

periment No. 3 (HFIRCE-3) fuel  e lement ,  which 
w a s  t h e  same a s  tha t  descr ibed i n  ref. 1 excep t  
that  t h e  'OB con ten t  w a s  2.12 g, in  order to 
es tab l i sh  safe condi t ions for the  routine handling, 
shipping, and s torage of HFIR fuel.  

The  react ivi ty  of t h e  element  was -1.15 k 0.09 
dol lars ,  measured by the  pulsed-neutron method, 
when submerged and with a n  effect ively inf ini te  
water reflector.  However, t h i s  fuel e lement  may 
be  made cr i t i ca l  when submerged by d i sp lac ing  
approximately 15% of t h e  water from the  target  
region; with optimum water displacement ,  69%, 
the  react ivi ty  was maximum, + 2.90 * 0.10 dol lars .  

When s tored in  a water-filled pool, the e l emen t s  
will b e  mounted on a hollow water-filled pos t ,  
4.5 in. in  ou ts ide  diameter and c o n s i s t i n g  of 
0.058-in.-thick cadmium sandwiched between 
O.lOg-in.-thick s t a i n l e s s  steel cyl inders .  Under 
t h e s e  condi t ions t h e  element  was  observed t o  be  
approximately 9 dol lars  subcri t ical .  Displacement  
of the optimum amount of water from within t h i s  
pos t  made the element 3 dol lars  subcri t ical .  

A 0.024-in.-thick s h e e t  of cadmium placed around 
the element,  extending 2 in. above and below the  
fuel and enc los ing  a t- in.-thick water annulus  
ad jacen t  to t h e  element,  was worth about -15.8 
dol lars  when the  optimum amount of water w a s  
displaced from t h e  target region. 

S ta in less  steel s t r i p s ,  0.62 x 29 x 0.031 in. and 
containing 1.66 wt % boron enriched t o  92.15% in 
'OB, were found t o  be  worth -47.93 c e n t s  e a c h  
when inser ted between t h e  fuel  p la tes  i n  the  inner  
fuel  annulus  and t o  be  worth -26.66 c e n t s  e a c h  
when inser ted in  t h e  outer  annulus  of the  water- 
moderated and -reflected element.  In both cases 
t h e  s t r i p s  were sepa ra t ed  suff ic ient ly  t o  prevent 
interaction between them. 

To eva lua te  the  feasibi l i ty  of moving a complete  
element through t h e  hatch of the mass ive  steel 
reactor  v e s s e l  and of shipping an element in  a 
steel-l ined lead  container,  the  e f f e c t s  of t h e s e  
mater ia ls  as ref lectors  on the  react ivi ty  of the  
submerged element were measured. T h e  r e s u l t s  
are given in  Fig.  2.10.1, in which the  observed 
change in react ivi ty  of the element is plotted a s  
a function of the  th i ckness  of the  reflector material .  
T h e  cu rves  show the  effects of t h e  metal  ref lectors  
extending only half-way around t h e  element.  T h e  
lead  w a s  sepa ra t ed  from the  element by 0.75-in.- 
thick steel. A s i n g l e  point on the figure g ives  t h e  
react ivi ty  resul t ing from the  la te ra l  su r f aces  of 
the  element being completely surrounded with 

, 
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Fin. 2.10.1. Variation of React ivi ty  of o Crit ical .  .a- -- - -  
Submerged HFIRCE-3 Fuel Element os o Function of 

Thicknesses of Steel and/or Lead Displacing Water 

Adjacent to the Element. 

0.75-in.-thick steel followed by 4 in. of lead. 
Shown a l s o  is t h e  resu l t  of one  measurement 
made with t h e  element  ref lected a s  though i t  
were located i n  a corner  of the fuel s to rage  pool. 
It is to  be noted tha t  in  every measurement the 
t e s t  material  d i sp l aced  water from the  infinitely 
thick reflector. 

In a n  invest igat ion of the  condi t ions whereby 
two elements  may be  adjacent ,  it was  observed 
that  a sys t em composed of two submerged water- 
reflected elements  w a s  subcr i t ica l  when the  
sur face  separat ion between the  elements  was  
greater than 4 in. and tha t  t h i s  d i s t ance  was  
reduced to  2 in. when one of the  s t e e l  and cadmium 
water-filled p o s t s  was  located i n  the  target  region 
of each  element. 

Reference 

'F. T. Binford and E. N. Cramer, The High F l u x  
Isotope Reactor: A Func t iona l  Description, vol. 1, 
ORNL-3572, p. 5-3 (May 1964). 

2.11 EXPERIMENTS FOR THE DEVELOPMENT 
OF A REACTIVITY ACCEPTANCE TEST OF 

HIGH FLUX ISOTOPE REACTOR 
FUEL ELEMENTS 

S. J. Raffety J. T. Thomas  

T h e  des ign  requirements for High F lux  Isotope 
Reac to r  (HFIR) fuel  e l emen t s ,  with r e spec t  both 
to  burnable poison content  and t o  2 3 5 U  content  
and distribution, a re  expected t o  change as a resu l t  
of a l tered react ivi ty  condi t ions in the HFIR itself. 
Therefore the  neutron multiplication factor of e a c h  
new HFIR fuel e lement  wil l  have  to  be  e s t a b l i s h e d  
prior t o  ins ta l la t ion  in t h e  reactor.  Conformity of 
the  element  to i t s  spec i f ied  react ivi ty  wil l  thereby 
be  e s t ab l i shed  also.  A method h a s  been developed 
for determining the change  in  react ivi ty  n e c e s s a r y  
to make a n  element  c r i t i ca l  when i t  is submerged 
in a n  inf ini te ly  thick water reflector in  the a b s e n c e  
of beryllium. Experiments t o  develop t h e  method 
and t o  generate  t h e  required reference d a t a  have  
been  performed with t h e  element  fabr icated for 
s o m e  of t h e  c r i t i ca l  experiments ,  HFIRCE-3, 
support ing t h e  reactor design.  'This e lement  is 
t h e  same a s  that  descr ibed i n  ref. 1 except  tha t  
t h e  boron content  was 2.12 g of 'OB. 

Since t h e  HFIRCE-3 element w a s  subcr i t ica l  
when submerged, react ivi ty  was  added by p l ac ing  
p la tes  containing 235U or  cyl inders  of Styrofoam 
in the  target  region. Each  p la te  w a s  0.060 x 
2.704 x 25.125 in., and contained 1 4  g of 2 3 5 U  
a s  U(93.2)-Al alloy c l a d  with aluminum. The 
Styrofoam (expanded polystyrene with noninter- 
connect ing a i r  bubbles  and a dens i ty  of 0.024 
g/cm3) reduced the hydrogen content  of the target  
region. F i n e  react ivi ty  adjustments  were made 
by p l ac ing  s t r i p s  of s t a i n l e s s  s t e e l  and/or s t r i p s  
of s t a i n l e s s  s t e e l  containing boron between t h e  
fuel  p la tes  in  t h e  outer  annulus  of the  element.  
T h e  react ivi ty  contribution of var ious amounts 
of fuel in p l a t e s ,  of different voids  introduced by 
the  Styrofoam, and of var ious numbers of s t e e l  
s t r i p s  was  e s t ab l i shed  in order tha t  the  subcr i t ica l  
react ivi ty  of e lements  could be  determined. I t  w a s  
observed,  for example,  that  two p la tes ,  s epa ra t ed  
2.5 in. and symmetrically mounted about the  
element  ax is ,  added 2.4 dol la rs  of reactivity.  T h e  
s t e e l  s t r i p s  used  for f ine adjustment introduced 
as l i t t l e  as -1.3 c e n t s  each.  

Since both i n c r e a s e s  and reduct ions in  react ivi ty  
c a n  be evaluated by t h i s  method, it can ,  of cour se ,  

L 
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b e  appl ied t o  e lements  which a r e  supercr i t ical  
when submerged. 

Reference 

'F. T. Binford and E. N. Cramer, The  High Flux 
I so tope  Reactor: A Funct iona l  Description, vol. 1, 
ORNL-3572, p. 5-3 (May 1964). 

2.12 POTASSIUM REACTIVITY COEFFICIENT 
IN SMALL REFLECTED UO, ASSEMBLIES' 

J. T. Mihalczo 

Three  small c r i t i ca l  a s s e m b l i e s  of 'U-enriched 
UO, reflected by beryllium and graphi te  have  
provided measurements of t h e  potassium react ivi ty  
coeff ic ient  to verify methods of calculat ion.  

Reference 

'Unclassif ied abs t rac t  of ORNL-TM-1222 (classi- 
f ied)  (in preparation). 

2.13 EXPERIMENTS AND CALCULATIONS ON 

CRITICAL ASSEMBLIES' 
URANIUM-MOLYBDENUM ALLOY 

J .  T. Mihalczo W.  E. Kinney 

A s e r i e s  of c lean  c r i t i ca l  experiments  with ura- 
nium-molybdenum al loy were performed and com- 
pared with reactor  phys ics  ca lcu la t ions .  T h e  cr i t i -  
cal heights  of three configurations of the  al loy were 
measured: a n  unref lected so l id  cyl inder  20.32 c m  
in  diameter; a n  unreflected cyl indrical  annulus  hav- 
i n g  a n  ins ide  diameter  of 5.08 c m  and a n  outs ide  
diameter of 20.32 cm, both filled with s t a i n l e s s  
s t e e l  and lef t  empty; and a Plexiglas-ref lected 
annulus in  which the  upper 12.7 c m  of the hole  w a s  

enlarged t o  a n  8.89-cm diameter, both with and 
without cadmium between the  core  and reflector. In 
addition, f i s s ion  dens i ty  dis t r ibut ions and void co- 
ef f ic ien ts  of react ivi ty  were measured for t h e  unre- 
f lected assembl ies .  Transpor t  ca lcu la t ions  with 
Hansen and Roach c r o s s  s e c t i o n s  successfu l ly  
predicted the c r i t i ca l  he ights  and f i ss ion  dens i ty  
dis t r ibut ions for the  unreflected a s s e m b l i e s  and for 
a s s e m b l i e s  reflected by 2.5 c m  of P lex ig las .  T h e  
ca lcu la ted  void coef f ic ien ts  a r e  from 5 to 20% 
lower than t h o s e  measured. 

Reference 

'Abstract of ORNL-TM-1277 (in preparation). 

2.14 STATIC AND DYNAMIC TRANSPORT 

EXPERIMENTS WITH SPHERES OF 
URANYL NITRATE SOLUTION' 

CALCULATIONS FOR PULSED-NEUTRON 

D. W .  Magnuson 

In s t a t i c  reactor ca lcu la t ions  t h e  neutron ba lance  
between production by f iss ion and loss by leakage  
and absorpt ion is ar t i f ic ia l ly  maintained by ad jus t -  
i n g  the  value of  v, which is equivalent  to adding  
neutrons a t  f i s s ion  energ ies .  In dynamic reactor 
ca lcu la t ions  the  neutron ba lance  between produc- 
tion and loss is effect ively maintained by the  
neutrons added by t h e  changing neutron population. 
T h e s e  added neutrons a r e  proportional t o  t h e  f luxes 
and inversely proportional t o  the  neutron veloci ty ,  
S ince  t h e  neutrons added by the  two methods have  
unequal  importances, the corresponding s t a t i c  and 
dynamic react ivi t ies  determined by t h e s e  two 
methods a r e  unequal. Calculat ions on some s imple 
sys tems were made for appl icat ion t o  pulsed-neutron 
experiments  on spheres  of uranyl ni t ra te  solut ion.  

Reference 

'Abstract of ORNL-TM-1213 (in preparation). 



3. Reactor Shielding 

3.1 MEASUREMENT 
OF THETHERMAL-NEUTRONFLUX 

DOWNARECTANGULARCONCRETEDUCT' 

i n  t h e  duct ,  one  from s lowing  down of epi thermal  
neutrons in  t h e  duc t  wal l s  and t h e  o ther  from the  
incident  thermal neutrons on t h e  duc t  s o u r c e  wall. 

F. J. Muckenthaler 
J .  J .  Manning 
J .  L. Hull 

K. M. Henry 
L. B. Holland 
D. R. Ward 

A s  part  of the  experimental study of t h e  trans- 
mission of neutrons down a rectangular  duc t  with 
concre te  wal l s ,  measurements  were made of t h e  
thermal-neutron flux dis t r ibut ion a long  the  a x i s  
of a s t ra ight  duc t  and d u c t s  with one  and two bends  
of 90 deg. T h e  detector  u s e d  for t h e  measurements  
w a s  a spherical ly  s h a p e d  B F ,  proportional counter. 
F o r  th i s  experiment, t h e  Tower Shielding Reactor  
11 (TSR-11) w a s  p laced  i n s i d e  a spher ica l  lead-  
water  sh ie ld  from which a neutron Seam emerged 
through a 3-in.-diam air-filled collimator. T h e  
beam of neutrons impinged on t h e  ins ide  sur face  
of one of t h e  w a l l s  (source wal l )  of t h e  duc t ,  
whose axis w a s  placed a t  a n  a n g l e  of 45O to t h e  
incident  beam center  l ine.  F o r  t h e  background 
measurements, the  s o u r c e  w a l l  w a s  removed and  
a p iece  of cadmium w a s  inser ted  i n  i t s  p l a c e  to 
s imulate  the  at tenuat ion of t h e  s o u r c e  wal l  to  
a i r -scat tered thermal neutrons. In order to  deter-  
mine t h e  distribution of t h e  thermal-neutron flux 
incident  on t h e  duct  wal l ,  BF, counter  measure-  
ments  were made with t h e  s o u r c e  wal l  of t h e  
duc t  removed (Fig. 3.2.2 of Sec t .  3.2). Twenty-two 
t raverses  were made horizontally a long  the  plane 
of the  wall, 11 with the  counter  bare  and 11 with 
the  counter  cadmium-covered. T h e  integral  under 
t h e s e  curves  g ives  t h e  to ta l  number of thermal 
neutrons incident  on t h e  wal l  and ind ica tes  tha t  
the  majority s t r i k e  t h e  wal l  within 5 f t  of t h e  
mouth of the  duct. 

T h e  experiment w a s  des igned  to  determine sepa-  
rately two components of t h e  thermal-neutron flux 

ORNL-DWG 65-8434 
I O 3  
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Fig.  3.1.1. Thermal-Neutron F lux  as  a Function of 
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Duct. 
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Six different measurements a long  the  a x i s  of t h e  
duct  were necessa ry  to determine t h e s e  two com- 
ponents. T h e s e  were 

1. bare detector,  no s o u r c e  wall ,  

2. cadmium-covered detector ,  no source  wall ,  

3. bare detector ,  n o  s o u r c e  wal l ,  coll imator beam 
cadmium-covered, 

4. bare detector ,  s o u r c e  wa l l  present ,  

5. bare detector ,  sou rce  wa l l  present ,  coll imator 
beam cadmium-covered, 

6. cadmium-covered detector ,  s o u r c e  wal l  present.  

Typical  resu l t s  from t h e s e  subt rac t ions  for the 
straight  duct  a r e  given in  F ig .  3.1.1. 

1 -  Note 

'Work funded by Defense Atomic Support Agency 
under Order EO-802-65. 

3.2 MEASUREMENT OF THE FAST-NEUTRON 
DOSE RATE DOWN A RECTANGULAR 

CONCRETE DUCT' 

F. J. Muckenthaler J. L. Hull  
K. M. Henry 
J. J. Manning D. R. Ward 

L. B. Holland 

A series of experiments have been  ini t ia ted a t  
the  Tower Shielding Fac i l i ty  t o  measure the fast- 
neutron d o s e  rate  distribution down a rectangular  
concrete  duct,  with a coll imated reactor beam 
used as a source.  T h e  duc t  was  placed at a n  
angle  of 45' with r e spec t  to the beam center  l ine,  
the mouth of t h e  duct  being -5 f t  from t h e  reactor  
collimator. Measurements have  been  completed for 
a 45-ft s t ra ight  duct,  and a r e  being continued for 
d u c t s  with one and two bends; however, t h i s  paper 
summarizes only t h e  measurements i n  t h e  s t ra ight  
duct.  In conjunction with t h e s e  measurements,  a 
series of ca lcu la t ions  have  been made u s i n g  a lbedo  

Fig. 3.2.1. Experimental Arrangement for Measurement of the F a s t  Neutrons Transmitted dawn a Concrete Duct. 

I -  

I .  ' 
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r e s u l t s  for concrete ,  obtained analyt ical ly  and 
descr ibed i n  Sect. 3.8. 

T h e  TSR-11' w a s  placed i n s i d e  a spher ica l  lead-  
water  sh ie ld ,  from which a collimated beam of 
neutrons emerged. T h e  beam w a s  collimated by 
p lac ing  a 3-in.-diam by 30-in.-long collimator in  a 
b e a m  port of the shield.  

T h e  concre te  d u c t s  were made of t h e  same s t e e l -  
reinforced, low s i l icon  content ,  normal-grade 
concrete  (densi ty  = 2.35 g / c m 3 )  that  w a s  used  in  
previous albedo s tudies  with a concre te  s l a b . 3  
T h e  experimental se tup  is shown in F ig .  3.2.1. 
T h e  d u c t s  were made in  var ious lengths ,  having an 
ins ide  c r o s s  s e c t i o n  3 f t  s q u a r e  with g-in.-thick 
wal ls .  A maximum length of "65 ft could be obtained 
for the s t ra ight  duct. Corner s e c t i o n s  were built 
for  conversion of the  s t ra ight  duct  t o  a duc t  con- 
ta ining one or two bends for future experiments .  

T h e  fast-neutron d o s e  rate  incident  on the i n s i d e  
wall of the duc t  was  mapped with a fast-neutron 

ORNL-DWG 65-8452 
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Fig. 3.2.2. Experimental Arrangement o f  TSR-II and 
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Fig. 3.2.3. Fast-Neutron Dose Rate  a s  a Function o f  

Distance Along the Axis  o f  a Rectangular Concrete 

Duct. 

dosimeter, with the  wall of the  duct  removed (Fig.  
3.2.2). Measurements were made horizontally a long 
the  p lane  of t h e  wall every 6 in. from t h e  floor of 
the  duc t  t o  the  cei l ing.  T h e  d a t a  were cross-plot ted 
to  give a mapping of the source  in  t h e  ver t ica l  
direction; and t h e  a r e a  under both the  ver t ical  and 
horizontal curves  w a s  found by integration, w a s  
converted to  number of neutrons, and w a s  multiplied 
by the  c o s i n e  of 4 5 O  to give t h e  total number of 
f a s t  neutrons incident  on t h e  wall of the duct. T h e  
neutron distribution ind ica tes  that  the source  of 
the  sca t te red  neutrons reflected down the  duc t  w a s  
contained in  the f i rs t  5-ft length of t h e  duc t  wall. 

I . 
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Measurements were made along the  a x i s  of the 
s t ra ight  duc t  with the  fast-neutron dosimeter  mounted 
vertically, with and without t h e  duc t  wall in  t h e  
reactor beam. T h e  difference between t h e s e  meas-  
urements g ives  the  scattered-fast-neutron d o s e  
rate as  a function of duct  length. A beam ca tcher  
w a s  used  t o  reduce the  background from air-scat- 
tered neutrons which penetrated the duc t  wal l s .  

Typical  resu l t s  of t h e  measurements a re  given 
in F ig .  3.2.3. Measurements down the  second l e g  
of a duct  with a s ingle  90" bend have been com- 
pleted. 
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3.3 MONTE CARLO CALCULATION 

ALONG THE CENTER LINE OF A STRAIGHT 
RECTANGULAR DUCT USING THE ALBEDO 

CONCEPT, AND COMPARISON 
WITH EXPERIMENT' 

OF THE FAST-NEUTRON DOSE RATE 

R. E. Maerker 

T h e  fast-neutron, doubly different ia l  a lbedo  d a t a  
for concrete  previously reported have  been  incor- 
porated into t h e  f lexible  duc t  c o d e  of C a i n q 3  
Calculat ions h a v e  been  made of t h e  fast-neutron 
d o s e  ra te  at  some 16 loca t ions  between t h e  mouth 
and 40 f t  down t h e  center  l ine  of a 3- by 3-ft 
rectangular duct .  T h e  incident  fast-neutron s p e c -  
trum w a s  assumed t o  b e  the  s a m e  as tha t  reported 
previously for a s imilar  TSR-I1 g e ~ m e t r y , ~  and 
the  incident  beam w a s  assumed t o  b e  monodirec- 
t ional ,  s t r ik ing  a s i d e  wal l  of t h e  duc t  a t  a n  a n g l e  
of 45". R e s u l t s  of the  ca lcu la t ion  were normalized 
to t h e  total neutrons from t h e  TSR-I1 incident  
on t h e  wal l ,  t h e  la t te r  being obtained by nu- 
merical integration of t h e  measured incident  
d o s e  ra te  over t h e  wal l  sur face .  From the  s o u r c e  

Table  3.3.1 Comparison o f  Calculated and Measured Center L i n e  Dose Rates 

Dose Rate (ergs g-l hr-' w-') 
Error (70) 

Measured C a1 cul at ed 

Singly Scattered Dose Rate 

Total Dose Rate 
C a l c .  

Center Line Distance 
from Mouth (f t )  

3 0.73 6.6 x 6 . 2 3 ~  -6 

4 

5 

3.70 x 3.24 -13 

2 . 0 8 ~  1 0 - ~  1 . 8 4 ~  -12 

6 0.44 1.27 1 0 - ~  1.21 1 0 - ~  -5 

8 

10 

12  

15 
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30 

35 

0.35 

0.38 

0.43 

0.47 

0.61 

5.35 1 0 - ~  5.92 + 11 

2.75 10-~  2.80 + 3  

1.50 1.42 1 0 - ~  

2.85 x lov6  2.30 x -20 

1.30 x lod6 1.02 x lod6  -22 

6.7 5.37 lo-' -2 1 

3.9 IO-' 3 . 1 9 ~  -19 

-5 

7.1 x 6.15 x -14 

40 0.65 2.45 x 2.05 x 1 0 - ~  -17 
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mapping measurements ,  the  p lane  source  for t h e  
ca lcu la t ion  w a s  determined to b e  centered a t  
t h e  mouth at  a point  1 .45 ft from t h e  floor and 
1.45 f t  from t h e  wal l  n e a r e s t  t h e  reactor, and 
w a s  0.90 ft i n  height  and  1.34 f t  i n  width measured 
i n  t h e  p lane  of t h e  mouth. E ight  thousand his-  
to r ies  were run for t h i s  problem. 

T a b l e  3 .3 .1  s h o w s  a comparison of t h e  ca lcu-  
l a t e d  and measured d o s e  r a t e s  a long the duct  cen ter  
l ine ,  t h e  measured va lues  be ing  taken f rom t h e  
foreground less t h e  back  ground s m oot hed curve 
reported in  Sec t .  3.1. 
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3.4 A MONTE CARLO DETERMINATION 

NEUTRON ALBEDOS FORCONCRETE' 
OF INTERMEDIATE-ENERGY DIFFERENTIAL 

W. A. Coleman R. E .  Maerker 

T h e  problem of radiat ion s t reaming through multi- 
bend air-concrete d u c t s  may be  t reated by deter-  
mining the  ref lected energy-angle  s p e c t r a  for a 
particular concre te  composition and  ut i l iz ing t h e s e  
d a t a  in  a n  a lbedo  random walk  for a particular 
geometry. T h e  authors  have  ca lcu la ted  different ia l  
energy-angle a lbedo d a t a  for a semi-infinite s tee l -  
reinforced concrete  medium, u s i n g  a s e r i e s  of 
incident  angle  and energy condi t ions.  T h e  energy 
range from 0.5 e v  to 200 kev  w a s  divided into 
ten  groups, A E ; ,  equal ly  s p a c e d  i n  lethargy. T h e  
incident  a n g l e s  were 0, 45, 60, 75, and 85'. A 
general-purpose Monte Car lo  neutron-transport 
code ,  0 5 R ,  w a s  u s e d  to obta in  a co l l i s ion  d is -  
tribution for e a c h  inc ident  energy band AE6 and 
angle  8i. T h e  dis t r ibut ion of ref lected neutrons 
i n  energy and angle  w a s  determined by computing, 
at  e a c h  co l l i s ion ,  the  probability of e s c a p e  a long  
e a c h  of 54 direct ions (defined by a n g l e s  0, and 

4,). T h i s  scheme h a s  been  u s e d  recent ly  to 
generate  fast-neutron different ia l  d o s e  a lbedos  
which agree  wel l  with experimental  d o s e  measure-  
ments. 

In addition t o  t h e  doubly different ia l  energy-  
a n g l e  albedo, t h e  following s t u d i e s  were made 
for intermediate  energies:  

1. the  radial  d i spers ion  of ref lected neutrons from 
t h e  point of inc idence ,  

2. t h e  dis t r ibut ion i n  depth and  energy of inter- 
mediate-energy captures ,  

3. t h e  dis t r ibut ion i n  polar angle  8, and depth  of 
t h o s e  neutrons which were degraded below 0.5 
e v  before escaping .  

T h e  ref lected s ingly  s c a t t e r e d  s p e c t r a  ca lcu la ted  
analyt ical ly  agreed (within s t a t i s t i c s )  with t h e  
Monte Car lo  es t imate  of t h e  s ing ly  s c a t t e r e d  s p e c -  
t ra .  A comparison s tudy  showed t h e  Monte Carlo 
resu l t s  to b e  i n  good agreement  with t h o s e  obtained 
i n  a 30-group Sl6 ca lcu la t ion  u s i n g  D T F ,  a one- 
dimensional  Sn code  developed by General  Atomic: 
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3.5 MONTE CARLO DETERMINATION 
OF THE DIFFERENTIAL THERMAL-NEUTRON 
ANGULARALBEDOSANDCAPTURE-GAMMA 

DOSE RATES FOR CONCRETE ARISING 

INTERMEDIATE-ENERGY NEUTRONS' 
FROM THE SLOWING DOWN OF INCIDENT 

R. E. Maerker 

To complete  the  determination of the  different ia l  
neutron a lbedos  of concre te  for incident  interme- 
diate-energy (200-kev t o  0.5-ev) monodirectional 
neutron beams (Sect. 3.4), one-velocity Monte 
Car lo  ca lcu la t ions  were  carr ied out for t h e  diffu- 
s i o n  of the  neutrons degraded below 0.5 ev. 

A s e r i e s  of one-velocity diffusion problems were  
run t o  c a l c u l a t e  the  different ia l  angular  ref lected 
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current, the  to ta l  t ransmit ted current, and t h e  
s p a t i a l  dis t r ibut ion of captures  within a semi-  
infinite g-in.-thick s l a b .  E a c h  problem w a s  char-  
ac te r ized  by s e l e c t i n g  t h e  locat ion of a point 
isotropic  source  of thermal neutrons uniformly 
within a given depth band ins ide  t h e  s l a b .  E a c h  of 
the  nine depth bands  coincided with t h o s e  used  
t o  determine the  s p a t i a l  dis t r ibut ion of neutrons 
s lowing  down below 0.5 e v  from the intermediate- 
energy ca lcu la t ions  (Sect. 3.4). Six hundred his-  
tor ies  were run for e a c h  problem, and a doubly 
correlated sampling technique w a s  used  t o  obtain 
resu l t s  as  funct ions of the  number of sca t te r ings  
allowed (50, 100, 200, 400) and t h e  th ickness  of 
the  s l a b  (9 and 16.75 in.). Isotropic  s c a t t e r i n g  
w a s  assumed,  and t h e  one-velocity (0.025-ev) 
parameters xs /xT  used  were 0.987 and 0.978 for 
the  three concre te  and  two reinforced-concrete 
regions respect ively.  Confidence l imits  on t h e  
differential angular  ref lected currents  average  
less than +lo%. A technique of es t imat ing  t h e  
differential angular  current  through e a c h  of nine 

space-f ixed ref lected polar a n g l e s  at e a c h  sca t te r -  
i n g  w a s  employed, u s i n g  the  est imat ion 

" 2, 4n f 

where the  pi = -(i + 0.5)/9, i = 0, 1, . . . , 8, a r e  
the  c o s i n e s  of t h e  ref lected polar  a n g l e s  with 
r e s p e c t  t o  a n  inwardly drawn s l a b  normal and W 
is the  neutron weight  before t h e  col l is ion.  T h e  
captures  were ca lcu la ted  by adding  

a t  e a c h  co l l i s ion  into the  proper depth  band. T h e  
resu l t ing  gamma-ray different ia l  angular  current  
d o s e  ra te  s h a p e  a s  a function of p is assumed t o  
b e  that  of t h e  uncollided gamma rays ,  s i n c e  the 
scattered-gamma-ray contribution is less than 

Table  3.5.1. Curve-Fit ted Values of Thermal-Neutron Albedos Produced by Slowing Down of  

Incident Intermediate-Energy Neutrons 

d9h/dQ [thermal neutrons steradian-' ath (thermal neutrons per source neutron) 
h 0  (source neutron)-'] 

55.1-200 kev 

15.2-55.1 kev 

4.2-15.2 kev 

1.15-4.2 kev 

0.32-1.15 kev 

0.087-0.32 kev 

24-87 e v  

6.6-24 ev 

1.8-6.6 ev 

0.5-1.8 ev 

lpl (1 + 1.73 i p l )  (0.0043 + 0.0058p0) 

\pi (1 + 1.73 lpl) (0.0052 + 0.0059p0) 

IpI (1 + 1.73 ]pi) (0.0062 + 0.0071p0) 

1111 (1 + 1.73 Ip!) (0.0077 + 0.0073p0) 

lpl (1 + 1.73 lpl) (0.0090 + 0.0099po) 

Ip/ (1 + 1.73 lpl) (0.011 + 0.012p0) 

lpl [(0.0185 + 0.0150p0) 
+ Ipl (0.0177 + 0.0235p0)l 

]pi [0.0332 + 0.0085p0) 
+ ]pi (0.0220 + 0.0268p0)] 

lpl [ 0.0595 
+ ipl (0.0290 + 0.0305p0)1 

lpl L(0.124 - 0 . 0 3 5 ~ ~ )  
+ lpl (0.020 + 0.053p0)1 

0.02 9 + 0.03 9po 

0.035 + 0.040p0 

0.042 + 0 . 0 4 8 ~ ~  

0.052 + 0.049p0 

0.061 + 0 . 0 6 7 ~ ~  

0.074 + 0.081p0 

0.095 + 0.096p0 

0.150 + 0.084p0 

0.248 t 0 . 0 6 4 ~ ~  

0.431 + O.OO1po 
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half t h e  total .  T h e  uncollided secondary  gamma- 
ray angular  current  d o s e  r a t e  w a s  thus  multiplied 
by a buildup factor  averaged over t h e  capture-  
gamma-ray spectrum and depth. 

T h e  resu l t s  of all t h e s e  ca lcu la t ions  a r e  sum- 
marized i n  T a b l e s  3.5.1, 2, and 3. T a b l e  3.5.1 
gives  curve-fitted va lues  of t h e  ref lected differen- 
tial angular  current  a lbedo  of thermal (i.e., sub-  
cadmium) neutrons in  neutrons per s te rad ian  per  
incident  neutron of energy within A E , ,  as  wel l  
a s  va lues  of the  to ta l  thermal a lbedo.  T h e  h i g h e s t  
s i x  incident-energy groups produce a reflected- 
thermal-neutron dis t r ibut ion having  a s h a p e  inde- 
pendent  of  po,  t h e  c o s i n e  of the  incident  polar 
angle ,  and  ident ica l  to t h e  s h a p e  ca lcu la ted  by 
Fermi and P l a c z e k .  T h e  curve-fitted va lues  

reproduce t h e  Monte Carlo v a l u e s  to within +15% 
for the  different ia l  thermal  a l b e d o s  and to within 
*lo% for t h e  to ta l  thermal a lbedos .  

T a b l e  3.5.2 gives  curve-fitted va lues  of t h e  sec- 
ondary capture  gamma-ray different ia l  angular  cur- 
rent  d o s e  rate  a lbedo  and va lues  of t h e  to ta l  
current d o s e  ra te  a lbedo.  T h e  departure  of t h e  
quant i ty  i n  parentheses  on the  extreme right of 
the  f i rs t  express ion  from unity represents  t h e  d o s e  
rate  due  t o  epicadmium (0.5 e v  to 200 kev)  cap-  
tu res ;  the  remainder is d u e  to subcadmium (<0.5 
ev)  captures .  T h e  curve f i t s  reproduce t h e  cal- 
cu la ted  va lues  t o  within f15% for the different ia l  
d o s e  r a t e s  and to within 110% for the  total d o s e  
rates .  

Table  3.5.2. Curve-Fi t ted Values of Secondary-Gamma-Ray Dose Rates Arising f rom the 

Slowing Down of Incident Intermediate-Energy Neutrons 

D [rads hr-' Y dD /dQ [rads hr-' steradian-' Y 
k 0  per incident source neutron sec-'] per incident neutron sec-'1 

. 

55.1-200 kev 

15.2-55.1 kev 

4.2-15.2 kev 

1.15-4.2 kev 

0.32-1.15 kev 

0.087-0.32 kev 

24-87 e v  

6.6-24 e v  

1.8-6.6 e v  

0.5-1.8 ev 

lpl (0.43 + 2.17 jpl - 1.67p') 
(0.40 + 0.60p0) (1 -10) 

(0.39 + 1.78 1p1 - 1 .39~ ' )  

(0.55 + 0 . 7 5 ~ ~ )  (1.11) 

/ p (  (0.70 +2.53 lpl - 2 .07~ ' )  

(0.42 + 0.52p0) (1.12 - O.O1po) 

lpI (0.68 t2 .59  1p[ - 2 . 0 8 ~ ~ )  
(0.45 t 0.60p0) (1.12 - 0.0111 ) 

0 

lpl (0.66 +3.18 IpI - 2.60~')  
(0.48 + 0.5711,) (1.14 - 0.02p0) 

lpl (0.97 + 2.39 [ p [  - 2 . 0 8 ~ ~ )  
(0.48 + 0 . 7 0 ~ ~ )  (1.18 - 0.06/~,) 

(1.07 + 1.96 lpl - 1.831-1') 

(0.53 + 0.86p0) (1.30 - 0.15p0) 

1 0 - 7  (1.75 t 2.25 [pi - 2.32~') 
(0.50 + 0 .541~~)  (1.11 - 0 . 0 4 ~ ~ )  

lo-' [pi cl.51 + 0 . 6 3 ~ ~  + lpl (0.15 +2.30po) - pz (0.60 
+ 2.11p0)] (1.09 - 0 . 0 3 ~ ~ )  

l o R 7  (pI 12.23 t 0 . 7 6 ~  t lpI (-1.54 + 3.07p0) 
+ ~ ' ( 0 . 4 2  - 2.82p0)f(1.07 - 0.02p0) 

10-7(1.30 + 1 . 9 6 ~ ~ )  

(1.52 + 2 . 0 7 ~ ~ )  

(1.77 + 2 . 1 9 ~ ~ )  

(1.93 + 2.57p0) 

l o p 7  (2.23 + 2 . 6 5 ~ ~ )  

(2.30 + 3 . 3 5 ~ ~ )  

1 0 - ~  (2.43 + 3 . 9 5 ~ ~ )  

(3.28 + 3 . 5 4 ~ ~ )  

(4.08 + 3.52p0) 

(4.46 + 4.40p0) 

. 
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T a b l e  35.3.  Curve-Fit ted Parameters for the Dif ferent ial  Angular Current Albedos 

Summed Over Al l  Ref lected Energies 

a l  2 
a Pl Y1 Y2 a b C 61 

55.1-200 kev 0.190 -0.020 0.020 0.300 0.11 0.91 0.20 0.56 0 0.880 -0.208 

15.2-55.1 kev 0.190 -0.025 0.025 0.295 0.11 0.91 0.225 0.69 0 0.865 -0.177 

4.2-15.2 k e v  0.216 -0.047 -0.004 0.307 0.12 0.91 0.24 0.70 0 0.875 -0.200 

1.15-4.2 kev 0.210 -0.046 -0.005 0.310 0.12 0.91 0.24 0.70 0 0.875 -0.232 

0.32-1.15 kev 0.208 -0.042 -0.005 0.305 0.12 0.91 0.24 0.70 ) 0.860 -0.205 

0.087-0.32 kev 0.210 -0.061 -0.003 0.296 0.125 0.865 0.28 0.72 0 0.845 -9.210 

0 0.830 -3.228 24-87 e v  0.205 -0.068 -0.003 0.283 0.13 0.845 0.30 0.73 

6.6-24 e v  0.202 -0.075 -0.002 0.270 0.13 0.82 0.32 0.74 0 0.815 -0.230 

1.8-6.6 e v  0.172 -0.059 0.021 0.218 0.105 0.65 0.40 0.77 0 0.817 -0.244 

0.5-1.8 e v  0.105 -0.036 0.115 0.125 0.080 0.48 0.255 -0.072 0.765 0.792 -0.232 

T a b l e  3.5.3 presents  va lues  of t h e  curve-fitted 
parameters for the  different ia l  angular current 
a lbedos  summed over a l l  reflected energ ies  from 
t h e  source  energy down to and including thermal 
and for the  total-current a lbedos .  T h e  curve fits 
reproduce nearly all the  Monte Car lo  va lues  to 
within +15% for the different ia l  a lbedos  and to  
within k 3 %  for the  total-current a lbedos.  T h e  
general  curve-fitted express ions  a r e  

References and Notes 

'Work funded by Defense  Atomic Support Agency 
under Order EO-802-65. 

'E. Fermi, On the Motion o f  Neutrons in Hydrog- 
enous Substances, NP-2385 (1951) [transl. by 
G. M. Temmer of Ricerca Sci. 7(2), 13 (1936)]. 

3G. Placzek ,  Phys. Rev. 72, 556 (1947). 

3.6 INVESTIGATION OF THE ACCURACY 
OF THE MONTECARLOMETHOD FOR 

CALCULATING DIFFERENTIAL ANGULAR 
THERMAL-NEUTRON ALBEDOS AND 

THERMAL-NEUTRONCAPTURES FOR 
A WEAKLY ABSORBING MEDIUM 

SUCH AS CONCRETE' 

R. E. Maerker 

An invest igat ion w a s  made of t h e  accuracy  of 
the  Monte Carlo technique us ing  a s ingle-veloci ty  
model for ca lcu la t ing  different ia l  angular  thermal- 
neutron a lbedos  from, and thermal-neutron captures  
within, a medium of relat ively smal l  absorpt ion.  
In  particular, t h e  thermal a lbedos,  capture  s o u r c e s ,  
and capture-gamma d o s e s  were ca lcu la ted  a s  a 
function of both the  number of sca t te r ings  al lowed 
and the  th ickness  of the  medium. T h e  validity of 
us ing  a s ingle-veloci ty  t reatment  i n  represent ing 
the  true phys ica l  s i tua t ion  in  the  thermal region 
is d i s c u s s e d  in  Sect .  3.7. 

T a b l e  3.6.1 s h o w s  a comparison of the  differen- 
t i a l  angular a lbedos  (i.e., ref lected number current 
per s te rad ian  per incident  s o u r c e  neutron) for t h e  
case of c,/C, = 0.975, a n  inf ini te  s l a b ,  isotropic  
s c a t t e r i n g  i n  t h e  laboratory s y s t e m ,  and a normally 
incident  beam of neutrons, with t h e  theore t ica l  

b 
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Table 3.6.1 Comparison of Monte Carlo Results wi th  Exact  Results of Chandrasekhar 

d a / d O  per Steradian 

It4 1 5 10 20 50 100 200 
Scattering Scatterings Scatterings Scatterings Scatterings Scatterings Scatterings Exact 

- . __-___I__- ~ - 

1 .o 
0.9 

0.8 

0.7 

0.6 

0.4 

0.3 

0.2 

0.1 

3.92 x lo-' 
3.72 x lo-' 
3.50 x 

3.24 x lo-' 

2.96 x lo-' 
2.27 x lo-' 
1.85 x lo-' 

1.34 x l o F 2  

7.35 x 

1.10 x 10-1 

9.47 x 10-2 

1.03 x lo-' 

8.59 x lo-' 
7.63 x lo-' 
5.46 x 

4.24 x lo-' 
2.92 x lo-* 

1.51 x lo-' 

1.46 x lo-' 
1.35 x lo- '  
1.22 x lo- '  

1.10 x 10-1 

9.63 x lo-' 

6.67 x lo-' 
5.08 x lo-' 
3.43 x lo-' 

1.73 x lo-' 

1.73 x lo-' 
1.59 x lo-' 
1.43 x lo- '  
1.27 x lo-' 
1.11 x 10-1 

7.53 x 10-2  

3.79 x lo-' 

5.67 x l o F 2  

1.89 x lo-' 

1.93 x lo-'  
1.76 x lo-'  
1.58 x lo- '  
1.39 x 20-' 

1.20 x lo-' 

8.09 x lo-' 
6.06 x lo-' 
4.02 x lo-' 
1.99 x lo-' 

1.97 x lo-' 
1.79 x lo- '  

1.61 X lo- '  
1.42 x lo- '  
1 .22 x 10-1 

8.19 x 

6.13 x lo-' 
4.06 x lo-' 

2.01 x 10-2 

1.98 x lo- '  2.00 x lo- '  
1.80 x lo- '  1.82 x lo-' 
1.61 x lo-' 1.63 x lo- '  

1.42 x lo-' 1.44 x lo-' 
1.23 x lo- '  1.24 x lo- '  

8.21 x 8.26 x lo-' 

6.14 x 6.15 x lo-' 
4.07 x 4.02 x lo-' 

2.01 x lo-' 1.94 x lo-' 

ORNL-DWG 65-7439 

____ - MC, 200 SCATTERS + RESIDUAL -~ 

2 ___ --+-- MC. 200 SCATTERS 

20 30 40 50 0 to 
MEAN FREE PATHS FROM SOURCE P L A N E  

Fig. 3.6.1. Comparison of Copture Sources Calculated by Monte Carlo and DTF for the Case of Normal Incidence 

and cs/cT = 0.987. 

e 
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curve of Chandrasekhar ,  ca lcu la ted  from the  ex-  
pression 

da  0.975 Ip/ 
-_ - -  - p ( 0 . 9 7 5 ,  1 )  X ( 0 . 9 7 5 ,  \pi) . 
dQ 477 /PI + 1 

A correlated sampl ing  technique on 2000 his to-  
r ies  w a s  used  t o  obtain t h e  r e s u l t s  as a function 
of the  number of s c a t t e r i n g s ,  and a s t a t i s t i c a l -  
es t imat ion technique w a s  used  a t  e a c h  sca t te r ing .  

F igure  3.6.1 s h o w s  a comparison of t h e  Monte 
Carlo resu l t s  for the  capture  s o u r c e s  with t h o s e  
of a n  SI, ,  DTF-I1 one-group ca lcu la t ion  for t h e  
case of isotropic  sca t te r ing ,  normal inc idence ,  
inf ini te  s l a b ,  and cs/cT = 0.987. T h e  residual  
Monte Carlo resu l t s  presented represent  t h e  capture  
s o u r c e s  due  t o  200 sca t te r ings  or less p l u s  t h e  
weight remaining af ter  the  200th sca t te r ing .  T h u s  
the  two Monte Carlo curves  should  bracket  the  
correct  result. 

From the  above comparisons it is c l e a r  t h a t  
s imple  Monte Carlo techniques  a r e  adequate  t o  
t reat  one-velocity diffusion and c a n  b e  used  i n  
cases where other  methods may b e  inadequate ,  
s u c h  as the case of an iso t ropic  s c a t t e r i n g  i n  the  
laboratory sys tem or in  heterogeneous media. 
Azimuthal dependence of the  different ia l  angular 
a lbedo may also b e  ca lcu la ted  with t h e s e  s a m e  
s imple  Monte Carlo techniques .  

F r o m  a n  a n a l y s i s  of t h e  r e s u l t s  of many Monte 
Carlo problems run for various a n g l e s  of inc idence ,  
i t  may be  concluded that ,  for weakly absorbing 
media s u c h  as ordinary concre te  ( C s / C T  '2 0.987), 
the  number of sca t te r ings  needed to reach  conver- 
gence is at l e a s t  50  for t h e  thermal a lbedo ,  150 
for the  capture  s o u r c e s  ( the  number i n c r e a s e s  as 
one goes deeper  into the  s l a b ) ,  and  100 for the  
capture-gamma d o s e  on t h e  sur face .  A s l a b  approx- 
imately 7 mean free pa ths  th ick  e s s e n t i a l l y  sat- 
ura tes  t h e  differential angular  thermal a lbedo,  
and one 1 2  mean free pa ths  th ick  e s s e n t i a l l y  
s a t u r a t e s  the  capture-gamma d o s e  on the surface.  

References and Notes 

'Paper  submitted for presentat ion a t  the  Ameri- 
c a n  Nuclear Society 1965 Winter Meeting, November 
15-18, Washington, D.C.; work funded by Defense  
Atomic Support Agency under Order EO-802-65. 

2S. Chandrasekhar ,  Radia t ive  Transfer, Oxford 
University P r e s s ,  London (1950). 

3.7 SINGLE-VELOCITY CALCULATION 
AND MEASUREMENT OF DIFFERENTIAL 

ALBEDOS FOR CONCRETE' 
ANGULAR THERMAL-NEUTRON 

R. E. Maerker F. J. Muckenthaler 

In Sect. 3.6 the Monte Car lo  method w a s  con-  
c luded to be  adequate  for descr ib ing  thermal neu- 
t rons diffusing i n  weakly absorb ing  media i f  a 
suff ic ient  number of sca t te r ings  were followed for 
e a c h  neutron. In th i s  s e c t i o n ,  resu l t s  from a 
s ingle-veloci ty  Monte Carlo treatment a r e  compared 
with experiment for the  case of monodirectional 
neutrons incident  on concrete .  T h e  ex ten t  t o  
which agreement is es tab l i shed  ind ica tes  t h e  
errors  involved in  represent ing t h e  propert ies  of 
subcadmium neutrons by s ingle-veloci ty  parameters. 

T h e  s ta t is t ical-est imat ion technique u s e d  in  the  
ca lcu la t ions  is ident ica l  to that  descr ibed  for 
fast neutrons.2 T h e  composition of t h e  s l a b  
assumed for t h e  ca lcu la t ions  w a s  ident ica l  to t h a t  
of the  low-silicon, s teel-reinforced concrete  s l a b  
employed i n  t h e  experiment. It w a s  9 in. th ick  
and w a s  divided in to  f ive  regions,  two of which 
were 1-in.-thick steel-reinforced regions posi t ioned 
1.75 and 7.25 in. from t h e  front face of t h e  s lab .  
T h e s e  two regions were assumed t o  b e  homogene- 
ous and t o  have  a c,/C, = 0.978 for a neutron 
energy of 0.025 ev.  For  the  three remaining regions 
(no s t e e l ) ,  C,/C, w a s  taken to b e  0.987. 

T w o  sca t te r ing  l a w s  were assumed: (1) isotropic  
sca t te r ing  in the  laboratory sys tem for al l  e lements ;  
that  i s ,  the  hydrogen is completely bound to  the  
oxygen i n  the  case of water, and t h e  s m a l l  anisot-  
ropy i n  t h e  sca t te r ing  c r o s s  s e c t i o n s  of the  other  
e lements  is neglected;  (2) anisotropic  water  s c a t -  
tering, u s i n g  a sca t te r ing  law deduced from the 
resu l t s  of experiments  by Greenspan and B a k s y s ,  
a t  an energy of 0.0358 ev,  together with isotropic  
laboratory sca t te r ing  for nonwater oxygen, calcium, 
etc. In both c a s e s ,  the total thermal-neutron c r o s s  
sec t ion  (0.025 ev) for water  w a s  taken4 as  1 0 5  
barns .  

Absorptions within 20 depth regions of t h e  s l a b  
were also ca lcu la ted ,  and the resul t ing capture- 
gamma d o s e  on the  sur face  w a s  obtained by inte-  
gration. T h e  capture  spec t ra  of e a c h  element  
were taken from the Reactor  Handbook. In  e a c h  
of  the  ten  problems run (angles  of incidence of 0, 
45, 60, 75, and 90" for e a c h  of the two assumed 
sca t te r ing  laws), 2000 h is tor ies  were followed, 
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until a neutron e s c a p e d  from t h e  front or back face 
or suffered more than 200 co l l i s ions .  In the  event  
of the la t te r  occurrence, the  residual  weight w a s  
added into the  depth band where the  200th sca t te r ing  
took place;  except  for depths  near t h e  back face ,  
the residual  weight contribution is negligible, and 
amounts a t  most t o  1% of the  absorpt ions.  

A s e r i e s  of very careful  measurements, ut i l iz ing 
a highly collimated neutron beam and a detector  
geometry s imilar  t o  tha t  of the  fast-neutron exper- 
iment, were performed a t  the Tower Shielding 
Fac i l i ty  t o  determine t h e  thermal different ia l  angular  
a lbedos a s  a function of reflected polar  and az i -  
muthal angles  for a n g l e s  of incidence of 0, 45,  
60,  and 75O. Sixteen different measurements us ing  
a BF, detector  were necessary  a t  e a c h  of 7 2  com- 
binations of the  incident  angle  and t h e  polar and 
azimuthal reflected angles  to ef fec t  a s ing le  meas- 
urement of the  angular albedo. Cadmium-covered 
and bare-detector readings were taken for t h e  cases 
of cadmium over the  s l a b ,  cadmium over t h e  reactor 
collimator, cadmium over both s imultaneously,  and 
both s l a b  and collimator bare  for both foreground 
and background geometries. By a s e r i e s  of sub-  
t ract ions,  the  thermal differential angular  a lbedo  
was  one of t h e  quant i t ies  tha t  could b e  obtained.  
Measured va lues  were corrected for a i r  a t tenuat ion 
and t h e  inverse square  effect ,  and then divided by 
the incident  subcadmium current integrated over 
the sur face  of the  s l a b  t o  determine t h e  thermal 
differential angular a lbedos.  

A surpris ing measured azimuthal  variation w a s  
c lose ly  approximated by t h e  anisotropic-water- 
sca t te r ing  calculat ion,  which agreed within a root- 
mean-square deviat ion of 5.1% for 7 2  measured 
differential angular a lbedos.  Therefore ,  the  one- 
velocity treatment seemed t o  be  qui te  adequate  for 
concrete .  

A s imple express ion  for the thermal differential 
angular current a lbedo  for t h i s  concrete  is 

cos + + 0.20  cos2 +)] , 

in  which 1-1 and p0 a r e  t h e  polar a n g l e  c o s i n e s ,  
with regard t o  the  inwardly drawn s l a b  normal, of 
t h e  reflected and incident  beams,  respect ively,  and 
+ is t h e  conventional azimuth. 
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3.8 CALCULATION AND MEASUREMENT 
OF THE FAST-NEUTRON DIFFERENTIAL 

DOSE ALBEDO FOR CONCRETE’ 

R. E. Maerker F. J .  Muckenthaler 

Monte Car lo  ca lcu la t ions  have  been  carr ied out 
i n  great  detai l  on t h e  reflection propert ies  of 
concrete  for f a s t  neutrons. T h i s  report p r e s e n t s  
t h e  resul ts  for t h e  differential angular  d o s e  a lbedo  
for var ious incident-beam condi t ions and touches  
upon s o m e  of t h e  other  dis t r ibut ions ca lcu la ted .  
T h e  following formula represents  the ca lcu la ted  
different ia l  angular  d o s e  a lbedo  t o  bet ter  than 10% 
for about 95% of t h e  va lues  obtained and c a n  b e  
used  to  extend the  resu l t s  t o  the  en t i re  hemispherical  
range for both incident- and reflected-neutron 
veloci ty  vectors :  

. 
c 
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where 

O , ,  8 = the  incident  and reflected polar angles  
with respec t  t o  the  inwardly drawn s lab  
normal, respec t ive ly ,  

4 = the  ref lected azimuthal angle ,  
d a  
- = lcos 81 . (angular flux) in  d o s e  uni t s  per 
d o  s te rad ian  per  incident  par t ic le  d o s e ,  

5 c o s  8 5 0, 
cos 0 = c o s  8, cos 8 f s i n  8, s i n  8 cos 4, -1 

and 

I J 

i =O j =o 
= 2 ( / c o s  81)' 2 a i j ( A E o )  cosi 8,. 

A comparison of the  fast-neutron angular  d o s e  
albedo ca lcu la t ions  weighted by an incident  spec-  
trum previously measured at the  Tower Shielding 
Fac i l i ty  with the  resu l t s  of a s e r i e s  of d o s e  a lbedo  
measurements performed a t  the  T S F  shows that  
f rom 147 combinations of t h e  incident  and  reflected 
angles  there  is a root-mean-square deviat ion of 
3.1%, with the  la rges t  s ing le  deviation be ing  9%. 
T h i s  exce l len t  agreement shows tha t  e x i s t i n g  
c r o s s  s e c t i o n s  are adequate  t o  c a l c u l a t e  differential 
a lbedos  to a high precis ion.  
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3.9 A CALCULATION OF THE NEUTRON 
DOSE IN ORDINARY CONCRETE DUE 

FROM A POINT FISSION SOURCE' 
TO AIR-SCATTERED NEUTRONS 

D. K. Trubey 

A calculat ion of t h e  fast-neutron d o s e  i n  concre te  
d u e  to  a point f i s s ion  source  loca ted  i n  a i r  a t  a 
d i s t a n c e  of 1 0 0  g/cm' h a s  been  performed. T h e  
moments-method code  RENUPAK w a s  used  s u c c e s -  
s ive ly  t o  produce t h e  energy spectrum in a i r  from 
the  point source  and  t h e  energy spectrum i n  con- 
c r e t e  from t h e  air-scat tered source .  Angular 

dis t r ibut ion conversion fac tors  and d a t a  for con- 
vers ion to other  amounts of a i r  a t tenuat ion a r e  
given. 
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3.10 MEASURED NEUTRON SOURCE SPECTRA 
FOR ANGULAR SCATTERING EXPERIMENTS 

WITH SMALL CYLINDERS' 

J. C. Courtney2 V. V. Verbinski 

In a s e r i e s  of experiments  in  which t h e  s c a t t e r i n g  
of f a s t  neutrons from s m a l l  cy l inders  of var ious 
mater ia ls  w a s  invest igated,  a pulsed  s o u r c e  of 
bremsstrahlung-produced neutrons w a s  obtained by 
i r radiat ing a lead  ta rge t  with 14-nsec  burs t s  of 
34-Mev e lec t rons  from t h e  General  Atomic electron 
l inear  accelerator .  T h e  different ia l  energy s p e c t r a  
of  the source  neutrons for t h e  three  a n g l e s  of 
incidence used  a r e  presented.  
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3.1 1 FAST-NEUTRON SCATTERING 
FROM SMALL CYLINDERS OF STEEL, 
ALUM1 NUM, GRAPHITE, CONCRETE, 

J. C. Courtney' 

AND LITHIUM HYDRIDE' 

V. V. Verbinski  

Time-of-flight methods were used  t o  measure t h e  
s p e c t r a  of f a s t  neutrons s c a t t e r e d  a t  a n g l e s  20, 
45,  70, 110,  135,  and 160° from a n  incident  beam 
by small cy l inders  of s t e e l ,  aluminum, graphite, 
concrete ,  and lithium hydride. T h e  lithium hydride 
cy l inders  were 1v2 and 3 in.  i n  diameter ,  t h e  
concre te  cyl inders  were 12 in.  in  diameter, and 
all other  s a m p l e s  were 2 in. i n  diameter. T h e  
measurements  were made a t  t h e  General  Atomic 
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electron l inear  acce lera tor ,  where a pulsed source  
of bremsstrahlung-produced neutrons w a s  obtained 
by i r radiat ing a lead  target  with 14-nsec  burs t s  
of 34-Mev electrons.  T h e  energy spectrum of t h e  
neutrons approximated a f i ss ion  spectrum. Some 
of the  neutrons s t ruck  the  s c a t t e r i n g  sample ,  which 
w a s  placed 13 in. from t h e  source ,  and then p a s s e d  
through a s y s t e m  of col l imators ,  down a drift 
tube, and into a liquid-scintillator fast-neutron 
detector .  Pulse-shape  discr iminat ion circui t ry  
w a s  used  t o  e l iminate  p u l s e s  due  t o  any  gamma- 
ray background. 

Measured source  s p e c t r a  were  used  as  input  for 
Monte Carlo ca lcu la t ions  of t h e  s c a t t e r e d  neutrons, 
and t h e  resu l t s  were compared with measured 
sca t te red  spec t ra l  in tens i t ies .  T h e  ca lcu la t ions  
and experiments, integrated over energy,  agreed 
within 16%. S ince  t h e  s p e c t r a l  s h a p e  w a s  satis- 
factorily reproduced, it is bel ieved tha t  t h e  uncer- 
ta inty in  t h e  measurement of t h e  integrated fas t -  
neutron flux by foil ac t iva t ion  accounts  for any 
d iscrepancies .  T h e s e  comparisons ind ica te  that  
the ORNL cross-sec t ion  library (see Sect. 5.21) 
for t h e s e  e lements  is adequate  for neutron-scatter- 
ing  calculat ions.  
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3.12 MEASUREMENT 
OF THE NEUTRON-SOURCE 

DISTRIBUTION IN A POOL-TYPE 
RESEARCH REACTOR’ 

M. S. Bokhari’ V. V. Verbinski 

An absolute-power cal ibrat ion of a swimming 
pool type of research reactor  w a s  performed i n  
order t o  obtain t h e  p r e c i s e  source  term for some 
ear l ier  measurements of neutron s p e c t r a l  in tens i ty  
in  the  water  sh ie ld  of the  reactor  ( s e e  Sect .  3.13). 
A straightforward method of flux mapping w a s  used:  

t h e  re la t ive  flux w a s  measured with copper-wire- 
act ivat ion techniques,  and the copper  wires  were 
cal ibrated aga ins t  thin samples  of t h e  reactor fuel .  
T h e  thin uranium foils were act ivated in  both the  
reactor and t h e  thermal column of the  ORNL s tand-  
ard pi le ,  and t h e  act ivat ion ra t ios  gave t h e  equiv- 
a l e n t  thermal-neutron flux for producing f i ss ion  
e v e n t s  in  the uranium fuel. T h e  absolu te  neutron- 
source  dens i ty  w a s  determined from the  flux and  
the  known uranium densi ty .  T h e  copper-wire 
act ivi ty  w a s  found to b e  proportional to  t h e  f i ss ion  
ra te  within about  2% over the  en t i re  length of t h e  
reactor fuel e lements .  T h u s  in  t h i s  type  of reac tor  
t h e  copper  act ivat ion is proportional to  power 
densi ty  within 1 t o  2% b e c a u s e  of averaging over  
the ent i re  reactor volume. 
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3.13 MEASUREMENTS AND CALCULATIONS 
OF SPECTRAL AND SPATIAL DETAILS 

OF FAST-NEUTRON FLUX 
IN WATER SHIELDS’ 

V. V. Verbinski  M. S. Bokhari2 
J. C.  Courtney3 

Measurements have been made of t h e  spec t ra l  
and s p a t i a l  d e t a i l s  of neutron flux i n  t h e  water  
sh ie ld  surrounding the BSR-1 swimming pool  
reactor. F o r  t h e s e  measurements t h e  absolu te  
spec t ra l  intensi ty  w a s  obtained for a reactor  con-  
figuration i n  which t h e  absolu te  neutron-source 
dis t r ibut ion w a s  measured. Us ing  the  la t te r  as  an 
input to  the  NIOBE and DTK neutron-transport 
c o d e s ,  both the  neutron s p e c t r a  of angular f lux 
and the  absolu te  intensi ty  were predicted with 
reasonably good accuracy by the  ca lcu la t ions .  

Another set of measurements  w a s  made for neu- 
t rons f rom a pulsed l i n a c  source ,  u s i n g  s l a b s  of 
water and measuring neutron-leakage s p e c t r a  a t  
0 and 30° t o  the s l a b  normal by high-resolution 
time-of-flight spectroscopy.  Sulfur-pellet a t ten-  
uat ion rat ios  were also obtained for e a c h  s l a b  
thickness .  T h e  smal l ,  5-cm-diam, l inac  source  
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' .  

was surrounded by a 7.5-cm-thick lead  housing. 
A DTK transport calculat ion that  could handle  the  
5-cm source configuration without divergence 
diff icul t ies  reproduced the  main fea tures  of both 
the 0 and 30° experimental s p e c t r a  fairly wel l ,  
except  tha t  i t  predicted too  low a flux in t h e  4.5- 
t o  7.5-Mev energy region. Updating the  oxygen 
total  c r o s s  s e c t i o n s 4  corrected th i s  disagreement .  
T h e  sulfur-activation rat ios ,  as measured with 
sulfur p i l l s  placed on e a c h  s i d e  of the  water  s l a b ,  
agree with t h e  rat io  ca lcu la ted  by the DTK code  
for a 40-cm s lab .  All the 0' ca lcu la t ions  yielded 
neutron s p e c t r a  that  were too low in the  region of 
the high, broad t ransmission peak  between 5.5 
and 7.5 M e V .  
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3.14 PROPAGATION OF NEUTRON WAVES 
THROUGH HETEROGENEOUS MULTIPLYING 

AND NONMULTIPLYING MEDIA' 

V. R. Cain 

T h e  behavior of neutron waves  i n  heterogeneous 
media w a s  predicted by u s e  of the  one-group diffusion 
theory and t h e  age-diffusion theory. T h e  one-group 
theory w a s  used  in  two different f in i te  geometries 
which allowed reduction to a one-dimensional and 
a two-dimensional problem. T h e s e  cases resu l ted  
in  diffusion kernels ,  or Green's funct ions,  for the  
two f ini te  configurations. T h e  theory w a s  then 
extended to include Fermi-age, or cont inuous 
slowing-down, theory for higher-energy neutrons, 
a n  approach which is similar  t o  the  Feinberg- 
Galanin heterogeneous-reactor theory e x c e p t  for 
being appl ied to a f ini te  geometry and including 
time dependence. A f in i te  diffusion kernel  was  
obtained which is similar  to  t h e  resu l t s  of the  

simpler ca lcu la t ions ,  and a finite-medium, Fermi- 
a g e  kernel  which d e s c r i b e s  the  behavior of the 
slowing-down neutrons in  the  f ini te  geometry. 

Both the  one-group and the  age-diffusion develop- 
ments  were used to  c a l c u l a t e  numerically sample 
configurations which are  s u i t a b l e  for experimental 
verification. T h e s e  include rectangular assembl ies  
of graphite and heavy water which have  poison or 
fuel  rods inserted. 

In order to  demonstrate  bet ter  the improvements 
of th i s  work over t h e  Feinberg-Galanin theory, a n  
ex tens ion  was  made t o  cr i t ical  assembl ies .  T h i s  
offers the possibi l i ty  of doing  cr i t ical i ty  calcu- 
la t ions  for physical ly  small a s s e m b l i e s  which a r e  
not amenable to  homogenization techniques.  

Us ing  the  age-diffusion-theory resu l t s ,  i t  w a s  
also shown tha t  d a t a  from neutron-wave experiments  
may b e  processed  in  such a way a s  to give exper- 
imental  measurements of both the  diffusion and 
t h e  slowing-down kernel. 
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3.15 DIFFERENTIAL DOSE ALBEDOS 
FOR CALCULATION OF GAMMA-RAY 

REFLECTION FROM CONCRETE' 

M .  B. Wells 
Radiat ion Research  Assoc ia tes ,  Inc. 

Differential d o s e  a lbedos  for gamma-ray reflection 
from concre te  were der ived from Monte Carlo ca lcu-  
la t ions  of gamma-ray sca t te r ing  in air and concrete  
for source  energ ies  of 0.6, 1 ,  2, 4, and 7 M e V .  

Curves showing the albedo for reflection in the  
p lane  of incidence a re  presented for angles  of 
inc idence  of 8 ,  = 0, 30, 45, 60, and 75". At inci- 
dent  energ ies  greater than 2 MeV, the  computed 
d o s e  a lbedos  a r e  smaller than those  reported by 
R a s o '  (also based  on Monte Carlo) and those  given 
by the  Chilton-Huddleston3 formula. However, 
comparisons with experimental d a t a  for 'Cs and 
6 o C o  gamma rays reported by J o n e s  e t  af.,4 Clif- 
ford,' and Barrett and Waldman6 indica te  that  the 
ca lcu la ted  albedos for t h e s e  s o u r c e s  agree  as well 
with t h e  experimental d a t a  as d o  ca lcu la t ions  
based ei ther  on the Chilton-Huddleston formula or  
Raso ' s  Monte Car lo  calculat ions.  
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3.16 NEUTRON AND GAMMA RADIATION 
PENETRATION INTO CONCRETE-SHI ELDED 

UNDERGROUND STRUCTURES’ 

R. L. French M. B. Wells 
N. M. Schaeffer 

Radiat ion Research  A s s o c i a t e s ,  Inc. 

T h e  fast-neutron and gamma-ray d o s e  ra tes  i n  
concrete-shielded and concrete-lined cyl indrical  
h o l e s  and bunkers located 100 t o  700 f t  from the  
ORNL Tower Shielding Reactor  (TSR-11) were 
computed and compared with measured d o s e  rates .  
T h e  ca lcu la t ions ,  which in most  cases agree with 
the  measurements within 2574, show t h e  relat ive 
importance of the various radiation components, 
including direct-beam, shield-scat tered,  and wall- 
sca t te red  radiation and secondary gamma rays.  
Wall-scattered neutrons were found t o  contr ibute  
up t o  40% of the  fast-neutron dose  r a t e  a t  pos i t ions  
d e e p  i n s i d e  t h e  s t ructures .  Thermal-neutron capture  
in  t h e  concre te  s h i e l d s  accounted for as much a s  
90% of the  gamma-ray d o s e  r a t e s  for thick sh ie lds .  
Capture  gamma rays produced in  the  wal l s  of the 
cyl indrical  h o l e s  and bunkers were also important 

i n  many cases. Simplified methods were developed 
for computing most of the radiat ion components. 
An appendix g ives  t h e  appl icat ion of t h e s e  methods 
t o  a cyl indrical  hole  with laminated iron and  
concre te  sh ie lds .  
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3.17 STRUCTURAL AND SHIELDING 
CONSIDERATIONS IN THE DESIGN 

OF HARDENED FACILITIES’ 

R. H. Karcher  J. H. Wilson 
Holmes and Narver, Inc. 

Structural requirements and in i t ia l  radiation 
sh ie ld ing  requirements have  been ca lcu la ted  as  
a function of weapon yield and separa t ion  d i s t a n c e  
for fully buried domes, a r c h e s ,  and rectangular 
s t ructures .  T h e  two cr i ter ia  have  been  super- 
imposed to  determine the  range and magnitude of 
t h e  sh ie ld ing  problems a t tendant  t o  t h e  d e s i g n  of 
hardened s t ructures .  T h e  s i n  gle-de gree-of-f reedom 
spring-mass sys tem w a s  u s e d  to  descr ibe  the  
response  of s t ruc tures  t o  b l a s t  loading. Neutron 
penetration of s t ruc tures  w a s  ca lcu la ted  by means 
of removal-diffusion theory, while  gamma-ray pen- 
e t ra t ion w a s  ca lcu la ted  by u s e  of point  kernel  
techniques.  T h e  interact ion of s t ruc tura l  and 
sh ie ld ing  cr i ter ia  is ana lyzed  i n  cons iderable  
detai l ,  and in i t ia l  radiation sh ie ld ing  requirements 
a r e  given as a function of weapon y ie ld  for a 
number of d iscre te  overpressure leve ls .  
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3.18 PENETRATION OF NEUTRON 
AND GAMMA RADIATION THROUGH 
THE OPENINGS OF UNDERGROUND 

STRUCTURES’ 

R. L. French M. B. Wells 
N. M. Schaeffer 

Radiation Research  Assoc ia tes ,  Inc. 

Calcu la t ions  were performed of the  radiat ion 
in tens i t ies  i n  open concrete-lined cyl indrical  ho les  
and i n  open concre te  bunkers due to a f i ss ion  
source  suspended  in  a i r  a t  d i s t a n c e s  of 100 to 
700 ft away. T h e  ca lcu la t ions  a r e  par t  of a n  anal-  
y s i s  of experiments performed with t h e  Tower 
Shielding Reactor  I1 (TSR-XI) a t  ORNL; included 
were numerous radiation measurements in t h e  
underground s t ruc tures  with and without s h i e l d s  
over the  openings. T h e  approach followed in  the 
calculat ions was  to  determine, from geometric 
considerat ions,  the portion of the incident  radiation 
in tens i t ies  which could e n t e r  the  s t ructures .  Meth- 
o d s  were developed t o  account  for e f fec ts  of the  
air-ground interface, and albedo models were 
devised  t o  simplify calculat ion of wal l -scat tered 
radiation and production of secondary gamma radi- 
a t ion i n  the  wal ls .  In general, the ca lcu la ted  and 
measured da ta  agree within approximately 25%. 

References and Notes 

‘Abstract of RRA-T41 (Nov. 30, 1965); work 
performed by Radiat ion Research  Assoc ia tes ,  Inc., 
for ORNL under subcontract  No. 2267; work funded 
by the Defense  Atomic Support Agency under DASA 
Order EO-800-64. 

3.19 GAMMA-RAY ATTENUATION 
COEFFICIENT FOR GERMANIUM’ 

G. T. Chapman 

T h e  increas ing  u s e  of lithium-drifted germanium 
diodes  for the  detect ion of gamma rays n e c e s s i t a t e s  
knowing the  at tenuat ion coef f ic ien ts  as  a function 
of gamma-ray energy t o  make even approximate 
calculat ions of the eff ic iency for a given diode. 
Since these  coef f ic ien ts  could not b e  found in  the 
l i terature ,  an interpretat ive method w a s  used  t o  
derive them. T h e  method is explained in de ta i l ,  

and the  resul t ing coef f ic ien ts  a re  given for gamma- 
ray energ ies  from 0.05 to 15 M e V .  
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3.20 GAMMA-RAY SPECTRUM EMITTED 
BY A STAINLESS-STEEL-CLAD 

REACTOR (BSR-11)’ 

G. T. Chapman W. R .  Burrus 

T h e  d a t a  taken to determine t h e  spectrum of 
gamma r a y s  emitted by the  BSR-I1 reactor  operat ing 
a t  a 2-w power leve l  were reported e l s e w h e r e Z  as  
pulse-hei ght distributions. T h e  pulse-height dis-  
tributions were not a sat isfactory approximation t o  
the  des i red  gamma-ray spectrum because  of the 
“ ta i l s”  introduced by the spectrometer and because  
of the  changing eff ic iency due  to t h e  detector  
c rys ta l  and t h e  changing acceptance  angle  of t h e  
collimator. Therefore, a program w a s  written t o  
remove t h e  t a i l s  and t o  correct  for the  changing 
ef fec ts  as a function of energy. T h e  f inal  gamma- 
ray spectrum s t i l l  re ta ins  the inherent energy 
resolution of the spectrometer. 

T h e  f inal  resul ts  show the gamma-ray different ia l  
spectrum and the  integral spectrum as  a function of 
d i s t a n c e  from t h e  reactor sur face  (1 t o  60 cm), and  
as  a funct ion of angle  about  two points  1 0  and  2 5  
cm from the surface.  T h e  integral spectrum (which 
is the  integral  of the differential spectrum from 
E to -) may prove useful  in  sh ie ld ing  ca lcu la t ions  
in  which i t  is desired to  know how much gamma 
flux there  is between two energy limits. Confidence 
intervals  for the differential and integral  s p e c t r a  
are  included which consider  t h e  count ing s t a t i s t i c s  
and the power-measurement uncertainty. 

T h i s  report inc ludes  a FORTRAN a n a l y s i s  code  
which. with minor changes,  i s  also appl icable  to 
other  types  of spectrometers .  

References and Notes 

‘Abstract of ORNL-TM-1284 ( in  preparation). 

’G. T. Chapman, K. M. Henry, and J .  D. Jarrard, 
Pulse-Height  Spectra  of Gamma R a y s  Emi t ted  by 
the  Stainless-Steel-Clad Bulk Shielding Reac tor  
Reac tor  (BSR-Zl), ORNL-3609 (November 1964). 
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3.21 SNAP REACTOR INSTALLATION 
AT THE TOWER SHIELDING FACILITY 

C. E. Clifford F. J. Muckenthaler 
J .  Lewin 

I t  is proposed to  i n s t a l l  a SNAP 2/10A (Space 
Nuclear  Auxiliary Power)  reactor  a t  the Tower 
Shielding Fac i l i ty  in  1966 for t h e  purpose of pro- 
viding experimental resu l t s  for comparison with 
Monte Carlo ca lcu la t ions  of the  radiation in tens i t ies  
transmitted through shadow sh ie lds .  T h e  reactor 
and t h e  detector  collimator configurations that  will 
b e  used  t o  make the  measurements a r e  shown in 
Fig.  3.21.1. 

T h e  reactor is t o  b e  a modification of SNAP-1OA 
(descr ibed in  ref. 1) and will b e  designed and 
fabricated by Atomics Internat ional ,  Division of 
North American Aviation, Inc. T h e  principal modi- 
f ica t ions  required are  the following: a d e c r e a s e  in  
the  reactivity of the core ,  replacement of two of 
t h e  four control dr ives  by pneumatically ac tua ted  
dr ives  which c a n  be scrammed by t h e  act ion of 
spr ings,  and instal la t ion of a NaK-to-air h e a t  ex-  

changer  above t h e  reactor. T h e  h e a t  exchanger  is 
des igned  to be wholly within t h e  conica l  shadow 
cone of the  shield.  Exis t ing  reflector a s s e m b l i e s  
and fuel  e lements  will be  ut i l ized t o  minimize the  
c o s t  of the  new instal la t ion.  T h e  5- to 10-kw 
power leve l  is e s t a b l i s h e d  by the maximum allow- 
ab le  temperature of components  near the  heat-  
re ject ion system. 

T h e  Tower Shielding Fac i l i ty  will b e  modified to 
rece ive  the new reactor. A s h e l t e r  c o n s i s t i n g  of 
three thick concre te  w a l l s  for sh ie ld ing  and a 
roof will be constructed ad jacent  to the  e x i s t i n g  
reactor  s torage  pool. A sh ie ld ing  window and 
manipulators will b e  loca ted  in one  wal l  of t h e  
she l te r .  T h e  pool i t se l f  will b e  converted to a dry 
chamber for containing the  de tec tors  and the i r  
sh ie lds .  T h e  reactor will be  suspended  rigidly at 
t h e  end of a lead  screw,  which will i n  turn be  par t  
of a rotat ing and e leva t ing  mechanism suspended  
a t  the e n d  of a 10-ft boom extending from a ver t ical  
column. T h u s  t h e  reactor  c a n  be swung out  over 
the  chamber or into t h e  shel ter .  Both pos i t ions  
wil l  b e  u s e d  for measurements. A col l imated 
detector  within t h e  she l te r  will be  u s e d  for  mapping 

ORNL-DWG 65-7616 

Fig. 3.21.1. Arrangement for SNAP Shielding Experiments. 
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the  c o r e  leakage  spectrum, while t h e  converted 
10-ft-diam collimator' loca ted  in  t h e  chamber wil l  
b e  used  for mapping t h e  d o s e  t ransmit ted through a 
LiH shield.  T h e  arrangement for the  la t te r  meas- 
urement is shown i n  Fig.  3.21.2. 

T h e  role of s t ructural  components in  sca t te r ing  
neutrons will be  a s s e s s e d  i n  a n  arrangement of 
equipment a s  shown in F ig .  3.21.3. 

References and Notes 

'J. Susnir and T. Harmon, SNAP-1OA Reactor 
Design Summary, NAA-SR-Memo 8679 (S-RD) (clas- 
sified). 

'Figure 12.3 in ORNL-2942 (classif ied) .  

3.22 CALCULATIONS FOR THE SCATTERING 
OF NEUTRONS BY AIR, GROUND, 

AND STRUCTURES FOR SNAP 
SHI ELDlNG EXPERIMENTS' 

F. B. K. Kam 

T a b l e s  of neutron air-, ground-, and structure- 
sca t te r ing  ca lcu la t ions  have been compiled for u s e  
of the experimenter who w i s h e s  some quant i ta t ive 
e s t i m a t e s  of t h e s e  effects in des igning  his  experi- 
ment. In all ca lcu la t ions  the  source  w a s  assumed 
t o  b e  a point isotropic  f iss ion source.  T h e  tab les  
containing ca lcu la t ions  of t h e  flux and d o s e  scat- 
ter ing e f f e c t s  in  a i r  a s  a function of the  so l id  
angle  subtended a t  t h e  detector  and the  source-  
detector  separat ion d i s t a n c e  were computed by 
u s i n g  s ingle-scat ter ing theory i n  which material 
a t tenuat ion w a s  neglected and the s c a t t e r i n g  c r o s s  
sec t ion  w a s  assumed to be  isotropic  in  t h e  laboratory 
system. T h e  air-scat ter ing resu l t s  obtained by 
t h i s  method were in good agreement with t h o s e  
obtained by the  Monte Carlo method. T a b l e s  of the  
d o s e  ground-scattering effect  (assumed t o  b e  con- 
crete)  as a function of t h e  d i s t a n c e  of the  source  
above the ground and the  so l id  angle  of the  ground 
s e e n  from the  source  and of t h e  s t ructure-scat ter ing 
e f fec ts  (dose uni ts)  from different s e c t i o n s  of t h e  
wall and c e i l i n g  for the Plumbrook Fac i l i ty  were 
ca lcu la ted  by u s i n g  different ia l  angular  d o s e  
albedos computed by the  Monte Car lo  method.' 
T h e  equat ions for t h e  s t ructure-scat ter ing e f fec t  
c a n  b e  applied to  any building having cyl indrical  
w a l l s  and capped by a hemispherical  dome. 

References and Notes 

'Abstract of ORNL-TM-1269 (in preparation). 

2R. E. Maerker e t  al., Differential Fast-Neutron 
Albedos for Concrete, vol. I, ORNL-3822 (in 
press) .  

3.23 SECONDARY GAMMA-RAY PROBLEM 
IN MAN-RATED SHIELDS 

F. B. K. Kam E.  Whitesides ' 
Shielding ca lcu la t ions  for manned v e h i c l e s  con- 

ta ining reactor  power s o u r c e s  a re  much more dif- 
f icul t  than those  for instrumented v e h i c l e s  i n  tha t  
much larger neutron at tenuat ions must be consid- 
ered;  also, the d o s e s  from secondary ( n , r )  gamma 
rays must be  predicted for t h e  man-rated s h i e l d s .  
In order t o  ca lcu la te  t h e  source  s t rength of second-  
ary gamma rays produced within the  sh ie ld ,  the  
low-energy neutron f lux dis t r ibut ion must  b e  deter-  
mined. 

T h e  b a s i c  approach which is being inves t iga ted  
u s e s  t h e  Car l son  Sn technique. Considerable  
a t tent ion is being given to  developing a n  operat ional  
two-dimensional Sn transport c o d e  which wil l  a l low 
a higher-order polynomial expansion of t h e  c r o s s  
s e c t i o n s  than do t h e  ex is t ing  PI  approximations. 
A STRETCH, FORTRAN IV program, 2 D F ,  h a s  
been c h o s e n  a s  the  code  to which modifications 
will b e  made t o  obtain a code  compatible with t h e  
IBM 360-75 and having s u c h  fea tures  as angular- 
flux printout and opt ions to u s e  t h e  step-function 
Sn equat ions  whenever a negat ive flux is produced. 
Many of t h e  changes  have been completed, but 
cons iderable  t e s t i n g  remains to b e  done. 

In addition, two-dimensional coupl ing of t h e  
0 5 R  Neutron Monte Carlo c o d e  to  Sn c o d e s  is 
being invest igated for u s e  with cases which require 
a three-dimensional geometrical representat ion in 
s o m e  s p a t i a l  regions. Coupling of 0 5 R  to DTF-  
ANISO, a one-dimensional Sn code,  h a s  been  com- 
pleted and a t e s t  problem run. C h e c k s  a g a i n s t  
experimental r e s u l t s  have not ye t  been made. 

If t h e  coupl ing of Monte Car lo  c o d e s  to Sn c o d e s  
is s u c c e s s f u l ,  a t tent ion will b e  directed t o  running 
the  c o d e s  separa te ly  and/or in combination with 
each other to determine an eff ic ient  procedure of 
get t ing the secondary gammas in a rea l i s t ic  con- 
figuration. 
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Note 

‘Central Data  P r o c e s s i n g  F a c i l i t y ,  Oak Ridge 
Gaseous  Diffusion Plan t .  

3.24 MONTE CARLO CALCULATIONS 
OF NEUTRON PENETRATION THROUGH 

SHAPED SNAP SHIELDS’ 

F. B. K. Kam 

T h e  Monte Carlo method was  used  to  inves t iga te  
neutron penetrat ion through a rea l i s t ic  SNAP 
sh ie ld  (LiH) f rom a bare  cyl indrical  homogeneous 
reactor source.  Although t h e  reactor  is not typical  
of SNAP reactor d e s i g n s ,  i t  w a s  fe l t  tha t  s u c h  a 
model for the reactor  w a s  the  most  pract ical  source  
which could be used  at  the  time the  ca lcu la t ions  
were done. R e s u l t s  were obtained with severa l  
parabolic outer  s u r f a c e s  ( the  s h i e l d  sur face  neares t  
the detector) in  order to determine the sur face  that  
produces the  desired sh ie ld ing  with minimum 
weight. 

Us ing  t h i s  model with t h e  SNAP-1OA shie ld ,  the 
ca lcu la t ions  indicated tha t  t h e  10-A des ign  is 
close t o  optimum for  t h e  neutron d o s e  on the center  
l ine of the system. 

L a t e r  ca lcu la t ions  wil l  inc lude  a bet ter  reactor 
descr ipt ion and will give parametric da ta ,  for 
severa l  points  on the  d o s e  plane,  to b e  u s e d  in 
determining optimum shie ld  s h a p e s .  

Note 

’The technical  memorandums covering th i s  s tudy  
wil l  also include more b a s i c  L i H  neutron penetration 
calculat ions.  T h e  ca lcu la t ions  will c o n s i s t  of the  
d o s e  rate from a point isotropic  f i ss ion  source  i n  
an infinite medium and of the  d o s e  rate  a t  a colli- 
mated detector  from a collimated source  through 
s l a b  sh ie lds .  Comparisons wil l  b e  made with 
experimental d a t a  taken  a t  t h e  Tower Shielding 
Fac i l i ty .  

3.25 SLOWING-DOWN SPECTRA 
OF NEUTRONS IN LITHIUM HYDRIDE’ 

V. V.  Verbinski  

T h e  spec t ra  of neutrons moderated in lithium 
hydride were measured over  the energy range from 

about  0.01 to 1000 e v ,  and t h e  resu l t s  were com- 
pared with ca lcu la ted  spec t ra  obtained with t h e  
NIOBE, 0 5 R ,  and SPECTRUM c o d e s  and with t h e  
moments method. T h e  measurements were performed 
at  t h e  General  Atomic l inear  accelerator  fac i l i ty ,  
where a s o u r c e  with a near-fission neutron spectrum 
w a s  obtained by placing a lead ta rge t  i n  the elec- 
tron beam. Spectra  of t h e  l e a k a g e  f lux,  fonvard- 
directed flux, and s c a l a r  flux were obtained a t  
depths  f r o m  2.5 t o  1 0  cm. In each  case t h e  spectrum 
a t ta ined  a n  asymptot ic  s h a p e  a t  <5  c m .  T h e  
s h a p e s  of the  ca lcu la ted  s p e c t r a  agree  wi th  t h e  
s h a p e s  of the  measured s p e c t r a  for all energy 
regions in which e a c h  calculat ion is val id .  A large 
discrepancy between t h e  NIOBE r e s u l t s  and t h e  
measurements below 0.08 e v  is c a u s e d  by upsca t -  
ter ing and molecular-binding e f f e c t s ,  which a r e  
neglected by NIOBE. T h e s e  e f f e c t s  were included 
i n  a SPECTRUM calculat ion for a n  infinite medium 
with a cons tan t  source  densi ty;  however, agreement  
with measurement w a s  obtained only for the  case 
in which t h e  measurement had been made i n  a 
nearly gradient-free region. T h e  scalar-f lux spec-  
trum and t h e  forward-directed-flux spectrum a t  
s e v e r a l  depths  in L i H  were found to b e  properly 
related by t h e  energy-dependent transformation of 
Purohi t .  

References 

‘Abstract of ORNL-TM-1077 (May 1965) and of 
paper submit ted to  Nuclear  S c i e n c e  a n d  Engineer- 
ing. 

ORNL-3005 (Sept. 28, 1960). 
‘S. N. Purohit, Milne Problem with Capture, 

3.26 ANGULAR DISTRIBUTIONS 
OF LOW-ENERGY NEUTRONS LEAKING 

FROM VARIOUS SCATTERING MATERIALS’ 

V. V. Verbinski  

Experiments  i n  which a wide  range of sca t te r ing  
mater ia ls  in t h e  form of s l a b s  were bombarded by 
reactor neutrons showed that  t h e  angular dis t r ibut ion 
of low-energy (<5-ev) neutrons leak ing  from t h e  
s i d e  of e a c h  s l a b  opposi te  t o  the  s o u r c e  is inde- 
pendent  of the s o u r c e  term and of the  s l a b  thick- 
n e s s  for t h i c k n e s s e s  greater than some minimum 
th ickness  zmin. In the  cases of pure l e a d ,  pure 
water, and mildly poisoned water, t h e  resul t ing 
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dist r ibut ions a re  i n  agreement with t h e  Fermi 
expression @(p) = 1 + P p .  T h e  resu l t s  for pure 
lead  a r e  also i n  exce l len t  agreement with one- 
velocity ca lcu la t ions .  An imperfect experiment with 
poisoned l e a d  i s  in qual i ta t ive agreement with 
one-velocity ca lcu la t ions .  T h e  angular dis t r ibut ion 
for lithium hydride is descr ibed by @(p)  = 1 + A p ,  
where A is less than p a t  1.5 and 5 e v .  

Numerical ca lcu la t ions  descr ibing the angular  
distributions for water and LiH were only par t ia l ly  
successfu l .  T h e  DTK code  w a s  nearly correct  for 
water, while the  NIOBE c o d e  predicted a value for 

A that  w a s  much too high everywhere. Neither of 
t h e s e  two c o d e s  appears  to  be correct  for LiH a t  
all energ ies ,  but a Monte Car lo  calculat ion seems 
to give reasonable  v a l u e s  of A above 5 e v ,  its 
low-energy cutoff. 

Reference 

'Abstract  of ORNL-TM-1078 (May 13, 1965) and 
of paper submit ted t o  Nuclear Sc ience  a n d  Engineer- 
ing. 
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4. Radiation Shielding Information Center 

4.1 PROGRAM OF THE RADIATION SHIELDING 
IN FORMATION CENTER 

S. K. Penny D. K. Trubey 
B. F. Maskewitz 

T h e  program of the  Radiat ion Shielding Infor- 
mation Center  (RSIC) h a s  been  expanded to  inc lude  
information on sh ie ld ing  of manned s p a c e  v e h i c l e s  
and high-energy accelerators . ’  ,’ No major c h a n g e s  
have  been  made i n  t h e  library funct ions of t h e  
Center ,  but t h e  technica l  funct ions h a v e  i n c r e a s e d  
to t h e  point of now comprising t h e  most  important 
par t  of t h e  Center’s work. S ince  January 1965 t h e  
internat ional  sh ie ld ing  community h a s  been in- 
formed through monthly newsle t te rs  of t h e  ac t iv i t ies  
of RSIC and other  organizat ions or iented toward 
sh ie ld ing  and of t h e  l i terature  and computer c o d e s  
acquired by  t h e  Center. 

L i b r a r y  F u n c t i o n s  

Through t h e  Center’s information retr ieval  s y s -  
tem,  , 4  bibliographic information cont inues to b e  
s tored,  re t r ieved,  and printed; a s  t h e  sys tem is up- 
dated,  t h e  information is automatical ly  and 
se lec t ive ly  d isseminated  t o  t h e  individual  sc ien t i s t .  
T h e  third cumulative bibliography of reactor  and  
weapons shielding l i terature  w a s  publ ished,  and a 
loose-leaf volume of a b s t r a c t s  (ORNL-RSIC-6, 
Vol. I) of t h e  references contained i n  t h e  bibli- 
ography w a s  included with t h o s e  bibl iographies  
i s s u e d  t o  t h e  s c i e n t i s t s  on t h e  Center’s mailing 
l is t .  T h e  a b s t r a c t s  wi l l  b e  updated and i s s u e d  
with t h e  fourth bibliography, which is now in 
preparation (to b e  publ ished as ORNL-RSIC-15). 

A bibliography (ORNL-RSIC-11) and a loose-leaf 
volume of a b s t r a c t s  (ORNL-RSIC-12) containing 
references on t h e  sh ie ld ing  of manned s p a c e  
vehic les  and high-energy acce lera tors  a r e  being 

prepared by techniques  s imilar  to t h o s e  u s e d  for 
t h e  bibl iographies  and  a b s t r a c t s  on reactor  and  
weapons shielding.6 In general ,  only work on 
space-vehic le  sh ie ld ing  done af ter  1962 is in-  
c luded,  but, b e c a u s e  of its much less voluminous 
nature ,  a l l  per t inent  work on acce lera tor  sh ie ld ing  
is included. Shielding per se wil l  be  emphas ized ,  
and in  t h e  important a r e a s  of s p a c e  radiation 
s o u r c e s  and par t ic le-par t ic le  in te rac t ions  only 
review a r t i c l e s  wil l  b e  included. 

Also  in  preparation is a loose- leaf  notebook 
(ORNL-RSIC-13) of a b s t r a c t s  of t h e  complete  code  
packages  assembled  by RSIC. A col lec t ion  of t h e  
l i terature  on sh ie ld ing  c o d e s ,  which is now 
disseminated  only through t h e  monthly newsle t te rs ,  
is cont inuing and  wil l  probably b e  publ ished within 
t h e  next year. Upon reques t ,  t h e  computer code  
packages  which h a v e  been  assembled  by RSIC a r e  
now dis t r ibuted by t h e  Center’s staff. Cooperation 
along t h e  l i n e s  of s tandardizat ion and exchange  of 
c o d e s  h a s  been  es tab l i shed  with t h e  Argonne Code  
Center  and t h e  European Nuclear  Energy Agency 
(ENEA) Computer Programme Library. An example 
of s u c h  cooperation is t h e  jo in t  paper t h a t  w a s  
recent ly  presented at a n  internat ional  meeting. ’ 

T h e  Center  h a s  taken on t h e  responsibi l i ty  of 
dis t r ibut ing s p e c t r a l  d a t a  from t h e  Monte Carlo 
intranuclear  c a s c a d e  ca lcu la t ions  for nucleon-  
nuc leus  co l l i s ions  i n  t h e  energy range 50 t o  400 
M e V .  T h e s e  d a t a  a r e  dis t r ibuted on microfilm, on 
r e e l s  of magnet ic  tape ,  and,  more rarely, as pr inted 
1 i s  t in  gs. 

T e c h n i c a l  F u n c t i o n s  

T h e  technica l  work of RSIC h a s  i n c r e a s e d  con-  
s iderably  in  t h e  p a s t  year. T h r e e  reports have  
been  written which review o r  survey cer ta in  t o p i c s  
in  shielding (see Sects .  4.3, 4.5, and  4.10). An 
addi t ional  report is being prepared which s u r v e y s  
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the  methods u s e d  to  c a l c u l a t e  neutron hea t ing  in  
shields .  Three  reports have  been  written i n  which 
ca lcu la t iona l  methods a r e  compared with each  
other ,  as  wel l  as  with some experimental r e s u l t s  
( s e e  Sects .  4.4, 4.7, and 4.9). In addition, two 
reports have  been  publ ished which tabula te  d a t a  
i n  sca t te red  gamma-ray f luxes  i n  iron and on t h e  
fast-neutron dis t r ibut ion in  ordinary concre te  (see 
Sects. 4.6 and 4.8). 

T h e  Center  cont inues  t o  fill reques ts  for s p e c i f i c  
advice  and information, e i ther  by le t te r  or tele- 
phone; t h i s  c o n s t i t u t e s  one  of t h e  most important 
s e r v i c e s  provided. In t h i s  a rea ,  t h e  information 
retrieval sys tem w a s  u s e d  t o  produce many s p e c i a l  
l i terature  s e a r c h e s ,  and advice  w a s  given on t h e  
implementation of computer codes.  

T h e  computer code  s e c t i o n  h a s  assembled  36 
complete code  packages.  T h e s e  packages  con- 
ta in  all t h e  computer-oriented media necessary  
(punched cards ,  magnetic t a p e s ,  etc.); t h e  auxi l iary 
c o d e s  for d a t a  preparation, e tc . ;  sample  input  and 
output; and all relevant documentation. Some 30 
other c o d e s  have  been  co l lec ted  which wil l  b e  
complete  c o d e  packages  when they contain t h e  one  
or more i tems  now lacking. 
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4.2 LITERATURE EXAMINED BY THE 
RADIATION SHIELDING INFORMATION CENTER 

S. K. Penny D. K. Trubey 
M. B. Emmett’ 

T h e  third cumulat ive bibliography of t h e  l i terature  
examined by t h e  Radiation Shielding Information 
Center  w a s  published’ a long with a col lect ion of 
a b s t r a c t s  of t h e  literature. T h i s  bibliography 
s u p e r s e d e s  t h e  second one  and differs  from i t  i n  
s e v e r a l  important ways. Documents of a def ini te ly  
preliminary nature  have been  replaced,  and s u b j e c t  
ca tegor ies  have  been revised. T h e  la t ter  change  
w a s  primarily made t o  include l i terature  re la t ing t o  
the  sh ie ld ing  of radiation from nuclear  weapons,  
which RSIC i s  now p r ~ v i d i n g . ~  Also ,  t h e  L i s t  of 
Subject  Categories  h a s  been  arranged i n  out l ine  
form s o  that  differences between related ca tegor ies  
would be  immediately obvious. In addi t ion,  a Key 
Word Index h a s  been included which should s e r v e  
as  a n  a id  i n  locat ing bibliographic re ferences  t o  a 
given subject .  T h e  p a g e s  a s s o c i a t e d  with a word 
in t h e  index wil l  contain a l i s t  of documents  t h a t  
might b e  relevant to  t h e  word. T h e  accompanying 
a b s t r a c t s  a r e  i n  a loose-leaf binder so t h a t ,  as  new 
bibl iographies  a r e  i s s u e d ,  a b s t r a c t s  corresponding 
to  addi t ions or  replacements  i n  t h e  sys tem c a n  b e  
included i n  t h e  binder. 
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3Abstracts o f  the Literature Examined by the 
Radiation Shielding Znformation Center, ORNL- 
RSIC-6 (vol. I). 

4 T h e  work related to  weapons is funded by the  
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4.3 A SURVEY OF EMPIRICAL FUNCTIONS 
USED TO FIT  GAMMA-RAY BUILDUP FACTORS’ 

D. K. Trubey 

T h e  u s e  of s imple functions for es t imat ing gamma- 
ray buildup factors  is reviewed on t h e  b a s i s  of 
s implici ty  and accuracy. Analysis  shows  that  t h e  
most accu ra t e  form is four-term-polynomial fit with 
coeff ic ients  published by Capo.’ Fo r  most pur- 
poses ,  however, a function proposed by Berger3 is 
recommended s i n c e  it is a s  s imple to  u s e  as t h e  
l inear  form and is essent ia l ly  as accura t e  as t h e  
more complicated forms. 

T a b l e s  of t h e  coeff ic ients  are given for t h e  
l inear ,  quadrat ic ,  Berger,  and Taylor  f i t t ing 
functions.  Some typical  graphs of the funct ions 
a re  a l s o  given. 

U s e  of the  Berger and quadrat ic  funct ions is 
demonstrated for the  c a s e  of exponential  sou rce  
dis t r ibut ions in s l a b  geometry. 
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4.4 COMPARISON OF THREE METHODS USED 
TO CALCULATE GAMMA-RAY TRANSPORT 

IN IRON’ 

D. K. Trubey S. K. Penny 
K. D. Lathrop’ 

Three methods for determining the gamma-ray 
energy spec t ra ,  dose  rate ,  and heating i n  a sphe re  

of iron were compared: t h e  Monte Carlo method, 
t h e  Sn method, and integration of moments-method 
d a t a  (Goldstein-Wilkins). T h e  source  w a s  t aken  
t o  be  isotropic  and to  b e  distributed uniformly 
within a sphe re  with an energy distribution 
proportional to where E is t h e  energy in 
M e V .  T h e  resu l t s  of all ca lcu la t ions  were in  very 
good agreement. 
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4.5 SURVEY OF METHODS FOR CALCULATING 

GAMMA-RAY HEATING’ 

H. C. Claiborne’ 

T h e  engineering des ign  of nuclear  reactors  is 
largely governed by the heat  l iberated i n  the  
f i ss ion  p r o c e s s  and t h e  subsequen t  absorpt ion of 
t h e  a s s o c i a t e d  radiation. External  t o  t h e  fuel 
region, the  main contribution to t h e  hea t  generation 
ra te  usual ly  resu l t s  from energy degradation and 
absorption of gamma photons e s c a p i n g  from the  
fuel  region, Fo r  some des ign  condi t ions,  gamma 
radiation a r i s ing  from neutron cap tu re  can  contrib- 
u te  s ignif icant ly  t o  the  hea t  generation rate .  

T h i s  survey is concerned only with hea t  gener- 
a t ion due t o  gamma rays,  regard less  of t h e  source ,  
interact ing with the  usua l  reactor  materials.  T h e  
purpose is t o  examine the var ious methods used  i n  
ca lcu la t ing  gamma-ray heat ing for reactor  des ign  
purposes.  Comparisons of experiments  with calcu-  
la t ions  are made where poss ib le ,  and  recommen- 
da t ions  a r e  made as to the  appl icabi l i ty  of e a c h  
method to  reactor  design. 

T h e  methods d i s c u s s e d  tha t  are adap tab le  to  
hand ca lcu la t ions  include t h e  buildup-factor method 
and t h e  straightahead-scattering method. Other 
methods require a high-speed digi ta l  computer,  
T h e s e  include the  differential-energy-spectrum 
method and the s a m e  methods used  in neutron 
at tenuat ion:  Monte Carlo,  direct  integrat ion of the  
Boltzmann equat ion,  moments method, Sn and Pn 
approximations t o  t h e  Boltzmann equat ion,  and 
diffusion theory. A l i s t ing  of t h e  ava i lab le  
machine c o d e s  is made for e a c h  method. 
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4.6 TABULATED VALUES OF SCATTERED 
GAMMA-RAY FLUXES IN IRON INTERPOLATED 

FROM MOM EN TS-ME THOD CALCULATIONS' 

D. K. Trubey 

T a b l e s  of  s c a t t e r e d  gamma-ray f luxes i n  iron 
that a r e  s u i t a b l e  for integration over  source  s p e c t r a  
have  been generated on  t h e  IBM 7090 computer by 
Lagrangian interpolation of Goldstein-Wilkins 
moments-method resu l t s  for point isotropic  gamma- 
ray sources .  Values  of t h e  f luxes  were obtained 
for a cons is ten t  s e t  of sca t te red  gamma-ray 
energ ies  taken  in s t e p s  of 0.1 Mev from 0.2 to 1.0 
Mev and i n  s t e p s  of 0.25 Mev from 0.25 to 10 M e V .  

One tab le  w a s  obtained for e a c h  sca t te red  energy 
for various va lues  of t h e  source  energy and of t h e  
d i s t a n c e  from t h e  s o u r c e  i n  mean free paths .  
T a b l e s  were then  generated in  which t h e  d i s t a n c e  
from t h e  source  w a s  converted from mean f ree  
pa ths  to  centimeters. T h e  la t te r  set may b e  in te -  
grated over  any source  spectrum to obta in  t h e  f lux  
of sca t te red  gamma rays  in  iron and ,  with smal l  
error, i n  any material for which t h e  c r o s s  s e c t i o n  
is similar. 
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4.7 A COMPARISON OF FIRST- AND LAST- 
FLIGHT EXPECTATION VALUES USED 

IN AN 0 5 R  MONTE CARLO CALCULATION OF 
NEUTRON DISTRIBUTIONS IN WATER' 

D. K. Trubey M. B. Emmett' 

T h e  dis t r ibut ions in  water  of fast neutrons from 
isotropic  f i ss ion  and 14-Mev point s o u r c e s  have  
been  ca lcu la ted  with t h e  0 5 R  Code. Two methods 
of scor ing  t h e  s a m e  case h i s t o r i e s  were used  t o  
es t imate  t h e  energy distribution and t h e  d o s e  rate. 
T h e  est imators  employed were t h e  first- and  last- 

flight expectat ion,  o r  s t a t i s t i c a l  es t imat ion,  
values .  T h e  first-flight es t imator  w a s  found t o  b e  
somewhat bet ter ,  d u e  t o  the  importance of t h e  f i rs t  
f l ight  i n  t h e  to ta l  transport of t h e  neutrons. T h e  
resu l t s  a r e  i n  good agreement with RENUPAK 
moments-method resu l t s  and with experimental 
resul ts .  
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4.8 SOME CALCULATIONS OF THE FAST- 
NEUTRON DISTRIBUTION IN ORDINARY 
CONCRETE FROMPOINTANDPLANE 

I SOTROPIC FISSION SOURCES~ 

D. K. Trubey M. B. Emmett' 

Fast-neutron d o s e  ra tes  and energy dis t r ibut ions 
d u e  t o  point and  p lane  i so t ropic  f i ss ion  s o u r c e s  i n  
a n  inf ini te  medium of ordinary concre te  h a v e  been  
ca lcu la ted  by t h e  moments-method code  RENUPAK . 
A s  a check  on t h e  method, o n e  Monte Carlo ca lcu-  
la t ion w a s  performed which yielded resu l t s  tha t  
a r e  i n  good agreement with t h o s e  for t h e  corre- 
sponding RENUPAK case.  T h e  e f f e c t s  of varying 
t h e  concre te  composition, espec ia l ly  t h e  hydrogen 
content ,  and t h e  lower energy cutoff were examined 
for s e v e r a l  cases and found t o  be  s ignif icant .  
Detai led t a b l e s  of t h e  energy s p e c t r a  a r e  given a t  
lethargy s t e p s  of 0.1 from 0.001 t o  18 M e V .  
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4.9 SOME CONCLUSIONS REGARDING THE USE 
OF THE Sn METHOD IN SHIELDING 

CALCULATIONS~ 

J. W. Webster 

In order to gain further numerical exper ience  
with t h e  Sn method as a tool  for sh ie ld ing  a n a l y s i s ,  
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a study w a s  made of t h e  fundamental problems of 
neutron penetration from a point f i s s ion  source  into 
hydrogen and water. 

Some of t h e  resu l t s  and conclus ions  a r e  as 
follows: 

T h e  Sn method, as appl ied by  means of t h e  
DTF-I1 code ,  g ives  exce l len t  agreement with t h e  
moments method for fast-neutron penetration over  
the  d i s t a n c e s  from t h e  point source  s tudied here  up  
to  90 c m  i n  hydrogen and  1 2 0  cm i n  water. It 
s e e m s  reasonable  t o  conclude tha t  sa t i s fac tory  
agreement would b e  obtained a t  even  greater  
penetration. 

An angular  segmentat ion of flux of a t  l e a s t  
n = 1 2  should b e  u s e d  for fast-neutron penetrat ion,  
and even greater  segmentat ion is necessary  for 
accura te  computation of t h e  s p a t i a l  dis t r ibut ion of 
s low neutrons. 

Taking  into account  t h e  terms of t h e  Legendre  
expansion of t h e  sca t te r ing  c r o s s  s e c t i o n  up  to 
order 2 g i v e s  good resul ts .  However, t h e  e f fec t  of 
including higher terms was  not quant i ta t ively 
evaluated.  

A s p a t i a l  mesh (Ar)of  5 cm or  less is necessary  
for fast-neutron penetrat ion problems and of 2 c m  
or less i f  t h e  distribution of s low neutrons is of 
interest .  

A 28-group s t ructure ,  with a le thargy width per  
group of 0.2 for E > 1 M e V ,  w a s  u s e d  i n  all t h e  
ca lcu la t ions ,  and i t  is concluded that  t h i s  is a 
qui te  sa t i s fac tory  energy mesh. 
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4.10 THE EXPONENTIAL TRANSFORM AS AN 
IMPORTANCE SAMPLING DEVICE - A 

REVIEW' 

F. H. S. Clark 

T h e  exponent ia l  transform is reviewed with 
emphas is  on i t s  u s e  a s  a guide t o  e f fec t ive  i m -  
portance sampling i n  t h e  solut ion of t h e  Boltzmann 
equat ion by Monte Carlo methods. Contr ibut ions 
of var ious workers a r e  assembled,  a long with 
numerical resul ts .  Spec ia l  considerat ion is given 
t o  approximate forms and t o  e f fec t ive  prac t ica l  
methods, Problems related t o  nega t ive  e f fec t ive  
c r o s s  s e c t i o n s ,  t racking a c r o s s  d iscont inui t ies ,  
direct ional  b ias ing  i n  inhomogeneous media, and 
high var iance  i n  back-scat tered components  a r e  
spec i f ica l ly  t reated.  
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5. Mathematics and 

5.1 J TMSl(05R:SOU RCE), A NEUTRON 
DISTRIBUTION SUBROUTINE FOR 
THE 05R MONTE CARLO CODE' 

J. T. Mihalczo G. W. Morrison' 
D. C. Irving 

T h e  FORTRAN subroutine JTMSl(05R:SOURCE) 
h a s  been writ ten for determining the  energy, the  
s p e e d ,  and the in i t ia l  s p a t i a l  dis t r ibut ion of neu- 
trons a r i s ing  from f i ss ion .  T h e  energy dis t r ibut ion 
within the  batch of neutrons is obtained by sam- 
pling a Maxwellian f i ss ion  spectrum which depends 
upon the  energy of the neutrons producing f iss ion.  
T h e  program loca tes  the  neutrons a t  a point or 
d i s t r ibu tes  them spa t ia l ly ,  e i ther  uniformly or 
according t o  a c o s i n e  function. Two i so topes  
producing f i ss ion  neutrons having s l igh t ly  different 
energy dis t r ibut ions can  b e  t reated in  t h i s  program 
by a n  approximation (using an average temperature) 
giving the  correct f i rs t  moment of the resul t ing 
overal l  energy distribution. 
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5.2 OGRE-P3, AN OGRE SYSTEM MONTE CARLO 
CODE FOR THE CALCULATION OF GAMMA-RAY 

DOSE RATE A T  ARBITRARY POINTS 
FROM POINT SOURCES IN LAMINATED 

SLAB GEOMETRY' 

D. K. Trubey M. B. Emmett '  

An OGRE system gamma-ray Monte Carlo code  
h a s  been writ ten for the  calculat ion of d o s e  ra te  

Computer Programs 

by s t a t i s t i c a l  estimation at arbitrary points  out- 
s i d e  a laminated s lab .  T h e  monoenergetic point 
sou rce  is a l s o  located outs ide the s l a b .  I t  may 
be monodirectional (gun barrel) or have  a n  iso-  
tropic or cos ine  angular distribution. Options 
a l s o  allow the s imultaneous ca lcu la t ion  of one- 
dimensional reflection and/or t ransmission.  
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5.3 OGRE-G, AN OGRE SYSTEM MONTE CARLO 
CODE FOR THE CALCULATION OF GAMMA-RAY 

DOSE RATE AT ARBITRARY POINTS 
IN AN ARBITRARY GEOMETRY' 

D. K. Trubey M. B. Emmett '  

An OGRE sys t em gamma-ray Monte Carlo code  
h a s  been writ ten for the  calculat ion of d o s e  ra te  
at arbitrary points  by s t a t i s t i c a l  es t imat ion.  T h e  
general  geometry routine GEOM of D. C. Irving 
h a s  been ut i l ized to  provide almost  completely 
arbitrary material  and s t a t i s t i c a l  weight geom- 
etries. Input sou rce  parameters may be read to  
spec i fy  point sou rce  configurations,  or binary t a p e s  
may be  read to  provide the in i t ia l  par t ic le  param- 
e t e r s  for arbitrary sou rce  configurations.  
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5.4 05R MONTE CARLO ANALYSIS ROUTINES 
OF USE IN REACTOR PROBLEMS 

J .  T. Mihalczo G. W. Morrison 
D. C. Irving 

Various FORTRAN programs which a n a l y z e  t h e  
neutron-history t a p e s  produced by the  0 5 R  Monte 
Carlo neutron-transport c o d e  and c a l c u l a t e  quanti- 
t i e s  of in te res t  to  reactor  problems have  been  
developed. 

SPCTRM' is a program which obta ins  t h e  energy 
spec t ra  of neutrons c r o s s i n g  a boundary, of neu- 
trons i n  the  medium, or of s o u r c e  neutrons. Up 
t o  1 0 0  equal  energy intervals  or e q u a l  logarithmic 
energy in te rva ls  c a n  b e  used.  I t  a l s o  computes  
the  to ta l  f ract ion of neutrons leak ing  from the  
sys tem and the  average  number of c o l l i s i o n s  before 
l o s s  by absorption, leakage ,  or reduction i n  energy 
t o  a value below which the neutrons a r e  not fol- 
lowed. T h e  s tandard deviat ion of a neutron leak-  
a g e  spectrum is also computed. 

TIMDIE, TIMBTH, TIMDIELK, and VOIDTIME 
a r e  programs which ca lcu la te ,  respec t ive ly ,  t h e  
mean time from f i ss ion  birth t o  l o s s ,  f r o m  birth 
t o  f i s s i o n  production, and from birth t o  loss minus 
t h e  t i m e  s i n c e  t h e  l a s t  real  co l l i s ion  and  t h e  
mean t ime s p e n t  i n  internal  voids. T h e  s tandard  
devia t ions  for t h e s e  quant i t ies  a r e  also ca lcu la ted .  

R E A C T  is a program for ca lcu la t ing  t h e  proba- 
bility that  a neutron born i n  one  region wil l  produce 
a neutron i n  another  region. 

CONVRG is a program for  forming a matrix of 
the probabi l i t ies  ca lcu la ted  by R E A C T  and for 
i terat ing on t h e  in i t ia l  source  dis t r ibut ion with 
t h i s  matrix unt i l  convergence is obtained.  T h e  
number of i t e ra t ions  required for convergence is 
the  average  number of b a t c h e s  t h a t  must  b e  ca lcu-  
la ted  before s p a t i a l  convergence. CONVRG also 
c a l c u l a t e s  the  la rges t  e igenvalue of th i s  matrix, 
which is the  neutron multiplication factor .  

FISRATE is a program which c a l c u l a t e s  t h e  num- 
ber of neutron reac t ions  of a par t icular  type  i n  a 
spec i f ied  region. T h e s e  reac t ions  may b e  with 
the  nuclei  u s e d  in  t h e  0 5 R  Monte Carlo ca lcu la t ion  
or with nuclei  introduced only for t h e  purpose of 
a n a l y s i s .  
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5.5 ACTI-FK(05R:ANALYSIS), 
A GENERAL-PURPOSE CODE TO ANALYZE 05R 

COLLISION TAPES' 

K. D. Franz '  F. B. K. Kam 

ACTI-FK(05R:ANALYSIS) h a s  been  written t o  
fac i l i t a te  t h e  a n a l y s i s  of t h e  co l l i s ion  t a p e s  gener- 
a t e d  by t h e  0 5 R  c o d e . 3  T h e  c o d e  h a s  been  s u c -  
cess fu l ly  appl ied to a wide range of problems and  
h a s  reduced considerably the  time required to 
a c h i e v e  a n  operat ional  program. ACTI-FK requires  
t h a t  subrout ines  be  written before it c a n  b e  used. 
However, th i s  d i sadvantage  is minor when t h e  user  
cons iders  t h e  following advantages :  (1) one  of t h e  
methods of a n a l y s i s  a l ready written c a n  be  used ,  
or the  u s e r  c a n  d e v i s e  h i s  own method; (2) any  
nonelas t ic  e v e n t  c a n  b e  t reated through t h e  u s e  of 
a nonelas t ic  s c a t t e r i n g  package  incorporated i n  
t h e  code;  (3) most of t h e  bookkeeping t a s k s ,  s u c h  
a s  t a p e  reading and writing, in i t ia l iza t ion  of param- 
e t e r s ,  finding t h e  proper cross s e c t i o n s ,  checking  
for any  overlapping of d a t a  and programs, e tc . ,  
have  been  bui l t  in to  t h e  code;  (4) a n  opt ional  
s t a t i s t i c a l  a n a l y s i s  c o d e  is included which t h e  
authors  have  found important i n  determining t h e  
s ign i f icance  of the  Monte Car lo  resu l t s ;  and (5) 
very little coding effort is required, as h a s  been  
ev idenced  by all t h e  problems so lved  t o  d a t e ,  many 
of which h a v e  been complicated.  

References and Notes 

'Abstract  of ORNL-3856 (in preparation). 
'Central Data  P r o c e s s i n g  F a c i l i t y ,  Oak Ridge 

G a s e o u s  Diffusion Plan t .  
3R. R. Coveyou, D. C. Irving, e t  al., 0 5 R ,  A 

General-Purpose Monte Carlo Neutron Transport  
Code, ORNL-3622 (February 1965). 
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5.6 A CYLINDRICAL VOLUME SOURCE ROUTINE 
FOR THE 05R MONTE CARLO CODE’ 

L. G. Mooney 
Radiat ion Research  A s s o c i a t e s ,  Inc. 

A computer subrout ine ent i t led SOURCE ‘ h a s  
been coded i n  FORTRAN-63 to  generate  the  in i t ia l  
neutron s ta r t ing  parameters required t o  perform 
reactor  sh ie ld ing  ca lcu la t ions  with t h e  ORNL 0 5 R  
Monte Carlo code.  T h e s e  parameters  include t h e  
neutron energy, weight, direct ion,  and s p a t i a l  
locat ion within the  reactor core. While coded  
primarily for ca lcu la t ions  involving t h e  SNAP-1OA 
reactor, subrout ine SOURCE is appl icable  to all 
cyl indrical  source  geometries i n  which t h e  radial  
distribution of the  source  s t rength  is symmetrical. 
Reactor  information required by SOURCE inc ludes  
the  a x i a l  and radial  power dis t r ibut ions and t h e  
reactor core  dimensions.  T h e  sampling s c h e m e s  
included i n  subrout ine SOURCE permit b iased  
sampling t o  emphas ize  t h o s e  core  regions and 
energy and angular  groups which make par t icular ly  
important contr ibut ions to t h e  leakage  from t h e  
reactor  surface.  Included with t h e  descr ipt ion of 
subrout ine SOURCE is a program ut i l izat ion.  T e s t  
problems and a l i s t i n g  of the  FORTRAN s ta tements  
a r e  given i n  appendices  t o  t h e  report. 

References and Notes 

‘Abstract  of RRA-T53 (June 30 ,  1965); work 
performed by Radiat ion Research  A s s o c i a t e s ,  Inc., 
for ORNL under subcontract  No. 2478. 

’Editor’s note: T h e  name SOURCE is generic  for 
all 0 5 R  neutron generator subrout ines ,  but a t  t h e  
time t h i s  report w a s  publ ished t h e  authors  had not 
been informed of the  convention for naming of 0 5 R -  
related subrout ines .  T h i s  convent ion,  which applies 
also to 0 5 R  routines s u c h  as GEOM, ANALYSIS, 
e tc . ,  requires  a n  addi t ional  ident i f icat ion,  by t h e  
user ,  p l u s  the  0 5 R  generic  name i n  parentheses .  
F o r  example, “LGMCV(05R:SOURCE)” could have  
been used  here  to  properly identify t h e  code.  

5.7 THE FORTRAN CODE FANLFR2 
TO CALCULATE NONLOCALITY AND FINITE 
RANGE EFFECTS IN STRIPPING AND PICKUP 

A P P R OX I MAT ION 
REACTIONS USING THE LOCAL-ENERGY 

J. K. Dickens F. G. Perey  

All  distorted-wave theories  of d i rec t  reac t ions  
In t h e  u s u a l  formulation have  t h e  s a m e  s t ructure .  

t h e  t ransi t ion ampli tude for, s a y ,  A(d,p)B st r ipping 
h a s  the  form 

where  ‘4: is t h e  wave  function for t h e  captured 
neutron, t h e  s c a l a r  function D = V n p Y d  is the  
product of t h e  (n,p) interact ion and  t h e  internal  
s t a t e  of the  deuteron, and the  x’s a r e  t h e  incoming 
and outgoing dis tor ted waves.  Cons iderable  s u c -  
cess i n  reproducing experimental d a t a  h a s  been  
obtained by generat ing t h e  dis tor ted w a v e s  u s i n g  
local opt ica l  potent ia ls  which reproduce t h e  elastic 
s c a t t e r i n g  for the input and output c h a n n e l s  and by 
u s i n g  the  “zero-range” approximation, which con- 
s i s t s  of replacing D by a de l ta  funct ion i n  r 

np’ 
Although e x a c t  ca lcu la t ions  c a n  b e  performed t o  
obtain nonlocal  wave functions ’ and to  incorporate  
f ini te  range exact ly’  i n  Eq. (1). very good approxi- 
mations for both e f f e c t s  have been obtained which 
reduce considerably t h e  complexity of t h e s e  cal- 
culat ions.  

T h e  approximated nonlocal wave  funct ion is 
obtained by multiplying t h e  local wave  funct ion 
[i.e., tha t  obtained u s i n g  the appropriate  local 
optical-model potent ia l ,  U(r)] by t h e  factor F :  

where p is the  range of the  nonlocal i ty;3 C = 1 for 
scat ter ing,  or C = 1 for the  bound s t a t e  and  is 
c h o s e n  to  give t h e  correct  wave-function normaliza- 
tion. 

T h e  approximation to  t h e  e x a c t  finite-range cal- 
culat ion c o n s i s t s  of multiplying t h e  bound-state  
wave  function in  Eq.  (1) by t h e  factor  k 4  

> 

Here n is the  captured par t ic le ,  Vi(‘) is t h e  (complex) 
opt ica l  potent ia l  for par t ic le  i, M i is t h e  m a s s  of 
par t ic le  i, m is a n  atomic mass uni t ,  B ,  is t h e  
separa t ion  energy of n from d leaving  p ,  and t h e  

range” is R .  
T h e  program FANLFR2 computes  the local bound- 

s t a t e  wave  function, s multiplies t h i s  wave  function 

1 1  
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by the  appropriate form of F ,  and renormalizes  t h e  
resu l t ing  wave function. T h i s  nonlocal  bound- 
s t a t e  wave  function is then multiplied by s u i t a b l e  
f o r m s  of F to  s imulate  the  nonlocal  e f f e c t s  i n  t h e  
input  and output  dis tor ted waves .  L a s t l y ,  the  wave  
function is multiplied by t h e  finite-range approxima- 
t ion factor A. T h e  resul t ing radial  wave function 
is punched on c a r d s  s u i t a b l e  for input  for the  
dis tor ted-wave code  JULIE.  

FANLFR2 is programmed in the  FORTRAN-63 
language to make u s e  of t h e  complex-arithmetic 
routines, s implifying t h e  coding  of t h e  fac tors  F 
and A. 
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‘F. G. P e r e y  and B. Buck,  Nucl. Phys .  32, 353 

2N. Austern e t  al., P h y s .  Rev. 133, B3 (1964). 
3F. G. Perey ,  p. 1 2 5  i n  Proceedings  of the  Con- 

ference on Direc t  In te rac t ions  a n d  Nuclear  Reac t ion  
Mechanisms, University of Padua ,  September 3-8, 
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& Breach, New York, 1963. 

4P. J. A. But t le  and  L. J. B. Goldfarb, Proc.  
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and J. Zimanyi, P h y s .  L e t t e r s  9 ,  246 (1964); 
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The  Distorted-Wave Theory of Direc t  Nuclear  R e a c -  
fions, ORNL-3240 (1962). 
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5.8 THE FORTRAN CODE XBACK3: AN AID 
IN THE ANALYSIS AND DATA REDUCTION 

OF PULSE-HEIGHT SPECTRA 

J. K. Dickens  

To experimentally measure t h e  e l a s t i c  and ine las -  
tic sca t te r ing  of protons from some target  for every 
5’ between laboratory a n g l e s  of 20 and 165’ re- 
qu i res  obtaining “35 pulse-height  spec t ra .  In 
our case t h e s e  35 s p e c t r a  wil l  b e  s tored  on a 
magnetic tape.  T h e  idea l  data-reduction computer 
routine will d i g e s t  e a c h  spectrum, loca te  and 

c l a s s i f y  peaks ,  a s c e r t a i n  background if n e c e s s a r y ,  
determine a de tec tor  response  for t h e  par t ic les  
being s tudied,  and apply t h i s  response  function 
(or u s e  some other  technique)  t o  t h e  p e a k s  of 
in te res t  to obtain t h e  numbers of counts  i n  e a c h  
of t h e s e  peaks.  Any further input  to a id  in  t h e s e  
ca lcu la t ions  should b e  appl icable  t o  all t h e  s p e c t r a  
and should  not require  more than a cursory inspec-  
t ion of all t h e  s p e c t r a  nor e n t a i l  a de ta i led  s t u d y  
of more than one  spectrum. 

At present ,  XBACK3 reads  in  a spectrum; o b t a i n s  
and s u b t r a c t s  a n  exponent ia l  background from 
val ley to val ley;  f inds and classifies p e a k s  accord-  
ing  to posi t ion,  maximum counts ,  and  number of 
channels  peak  to val ley;  f inds  a s tandard  peak ,  
usual ly  the  o n e  corresponding t o  elastic sca t te r ing ;  
determines t r ia l  parameters  and then f i t s  t h i s  
peak  by least s q u a r e s  u s i n g  a skewed-Gauss ian  
response  function; determines which of t h e  remain- 
i n g  p e a k s  s a t i s f y  minimum requirements  of peak  
height  and peak  to valley; u s e s  the  elastic re- 
sponse-funct ion parameters  as t r ia l  parameters  
i n  order t o  obtain the  a r e a s  of t h e  p e a k s  c h o s e n  
for further a n a l y s i s ;  and  f inal ly ,  pr ints  ou t  all 
th i s  information plus  d iagnos t ic  m e s s a g e s  which 
a id  in  judging t h e  val idi ty  of t h e  ca lcu la t ions .  
T h i s  routine is repeated for a l l  s p e c t r a  of in te res t .  
Input d a t a  inc lude  two background parameters ,  
two parameters to  reduce t h e  s e a r c h  for t h e  elastic 
peak, one  peak-choosing cr i ter ion,  two l e a s t -  
s q u a r e s  f i t t ing cr i ter ia ,  t h e  four s k e w  parameters  
of t h e  seven-parameter skewed-Gaussian r e s p o n s e  
function, s e v e r a l  control  in tegers ,  and the  ident i -  
f icat ion numbers of t h e  s p e c t r a  to b e  reduced. 

T h e  routine h a s  s e v e r a l  drawbacks:  T h e  cr i ter ia  
for choos ing  p e a k s  to be  ana lyzed  depend upon 
t h e  re la t ive  size and  i so la t ion  of t h e  peak and a r e  
not re la ted to the  Q va lue  or to t h e  type  of react ion.  
P e a k s  corresponding t o  two or  more unresolved 
groups a r e  not correct ly  reduced;  however ,  a diag-  
nos t ic  m e s s a g e  ind ica tes  t h i s  difficulty. T h e  
ful l  width a t  half  maximum (FWHM) of t h e  s tandard  
peak  is limited t o  b e  between 2 and  5 c h a n n e l s  
for optimum operation. T h e  qual i ty  of ca lcu la t ion  
d e c r e a s e s  for FWHM < 2  or > 5 channels .  

Another flaw is t h e  inabi l i ty  t o  sa t i s fac tor i ly  
f i t  the  s tandard  peak  while  s e a r c h i n g  on a n y  of 
t h e  s k e w  parameters. T h e  response  funct ion is 
given by 

. 
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. 
and 

for x 2 Xi 1: 
where Xi, u, and A i  a r e  the  usua l  Gauss ian  param- 
e t e r s  and P,, P,, P,, and a a r e  the  s k e w  param- 
eters .  F o r  the  t i m e  be ing  only Xi, 0; and A ,  a r e  
allowed t o  vary. Good t r ia l  parameters  for Xi, D, 

and Ai a r e  determined by t h e  routine, reducing 
the time used  i n  t h e  s e a r c h  for a b e s t  fit. T h e  
code sa t i s fac tor i ly  a n a l y z e s  two or more c l o s e l y  
s p a c e d  but resolved groups, handl ing up  to an 
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2 

to3 
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eleven-parameter s e a r c h  made up of f ive  va lues  
of x and of A and o n e  va lue  of u. 

Although t h e  code  is cont inual ly  being modified, 
i t  is being used ,  and reduces  the  amount of drudg- 
ery a s s o c i a t e d  with d a t a  reduction by a factor  of 
a t  l e a s t  3. Recent ly  obtained d a t a  for t h e  sca t te r -  
ing  of 11-Mev protons from ,'Cr have  been reduced 
us ing  XBACK3; a n  example is shown in Fig. 5.8.1. 
T h e  t ime required t o  obtain t h e  r e s u l t s  shown i n  
th i s  figure w a s  -1 min on t h e  CDC 1604-A com- 
puter. 

Note 

'Grateful appreciat ion is extended t o  A. G. Blair  
and W. S. Hal l  of Los Alamos Scient i f ic  Laboratory 
for providing their  data-reduction routine SKEWED 
and s e v e r a l  very usefu l  references.  

Fig. 5.8.1. Pulse-Height Spectrum o f  11-Mev Protons Scattered from 52Cr a t  50'. The port ion between channels 

336 and 356 has no in te res t ing  features and was deleted. Peaks corresponding to protons scattered by a target 

impur i ty are marked w i t h  the  symbol for that  nucleus. T h e a s t e r i s k s  ind ica te  peaks for wh ich  diagnost ic messages ac- 

companied the  standard output. The dashed curve ind ica tes  the background subtract ion computed by the routine. 
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5.9 JTMll(05R:INELAS), A FORTRAN 
SUBROUTINE FOR DESCRIBING INELASTIC 

AND (n,2n) REACTIONS’ 

J .  T. Mihalczo G. W. Morrison’ 
D. C.  Irving 

JTMIl(05R:INELAS) is a FORTRAN subrout ine 
which determines for t h e  0 5 R  Monte Car lo  neutron- 
transport code  t h e  energy and s c a t t e r i n g  angle  of 
neutrons ine las t ica l ly  sca t te red  or produced i n  
(n,2n) react ions.  Both evaporat ion and level-  
exci ta t ion theory a r e  used  for i n e l a s t i c  sca t te r ing .  
In evaporat ion theory the  s c a t t e r i n g  i s  isotropic  
in  t h e  center-of-mass s y s t e m ,  and i n  leve l  exc i ta -  
tion theory the  s c a t t e r i n g  from e a c h  leve l  c a n  b e  
anisotropic  or isotropic. T h e  subrout ine u s e s  
evaporation theory t o  d e s c r i b e  both the  neutrons 
emitted isotropical ly  i n  (n,2n) react ions.  

References and Notes 

‘Abstract of ORNL-TM-1221 (in preparation). 
’Central Data  P r o c e s s i n g  F a c i l i t y ,  Oak Ridge 

Gaseous  Diffusion Plan t .  

5.10 TECHTRAN - A LOAD-AND-GO COMPILER 
FOR PROGRAMS WRITTEN IN DATA-SHEET 

FORMAT 

J. W. Wachter R. T. Santoro 

T h e  TECHTRAN program provides  a method of 
computation i n  which t h e  numerical d a t a  and t h e  
mathematical s t e p s  t o  be  performed a r e  presented 
t o  a computer in  a da ta -shee t  form nearly ident ica l  
t o  that  used  when a d e s k  ca lcu la tor  or s l i d e  rule  
i s  employed. TECHTRAN input  c a n  be  prepared 
by persons without computer exper ience  af ter  they 
have been briefly ins t ruc ted  in  t h e  conversion 
of convent ional  data-sheet  notat ion to a form s u i t -  
a b l e  for punched-card input  to t h e  computer. 
TECHTRAN, moreover, introduces cons iderable  
time s a v i n g  into routine ca lcu la t ions  normally 
performed on t h e  d e s k  ca lcu la tor  and h a s  t h e  
added advantage of rapid evaluat ion of s u c h  func- 
t ions a s  s i n ,  c o s ,  log,  exp,  s q u a r e  root, e tc .  
Also  gained a r e  the inherent  accuracy  of t h e  
computer, opt ions for plot t ing the  resu l t s ,  produc- 
tion of da ta  cards  for input  t o  other  computer 
programs, and a n  orderly d isp lay  of resu l t s .  

TECHTRAN input  is des igned  t o  u t i l i ze  e x i s t i n g  
convent ions of da ta -shee t  layout. F igures  5.10.1~1 
and  b show t h e  s imi la r i t i es  i n  appearance  of a 
d a t a  s h e e t  prepared for desk-calculator  computa- 
t ion and for TECHTRAN. E a c h  TECHTRAN c01- 
umn is ten  charac te rs  wide. T h e  f i r s t  da ta -shee t  
column ident i f ies  the  l i n e  as  conta in ing  column 
des igna tors  (*COLS), cons tan t  des igna tors  (*CON- 
STANTS), column headings  (*HEAD), e tc .  T h e  
convent ional  da ta -shee t  forms have  been changed 
somewhat  t o  comform to e x i s t i n g  computer sym- 
bols: Thus ,  column des igna tors  1 ,  2 ,  and  3 become 
C1,  C2,  C3,  e tc . ,  and 1 x 2 becomes C 1  * C2,  
3 4 2 becomes C3/C2,  e t c .  Program s t e p s  may 
u t i l i ze  most s tandard  FORTRAN library funct ions 
(EXP,  ABS, LOG, SIN, COS, etc.) a s  wel l  as  
cer ta in  s p e c i a l  func t ions  which perform s u c h  oper- 
a t ions  as summing a column, squar ing  and summing 
sequent ia l  row e lements ,  generat ing a column of 
evenly s p a c e d  va lues ,  and the  like. T h e  des igna-  
t ion “*XEQ” indica tes  the  end  of t h e  program 
and d a t a  and t h e  point at  which computation of 
t h e  miss ing  e lements  of the  d a t a  s h e e t  c a n  b e  
performed. 

E a c h  l ine  of TECHTRAN is transferred to a 
s i n g l e  punch card ,  and t h e  resu l tan t  card  deck  
forms the  d a t a  of a program wri t ten in  FORTRAN 
11. T h e  program opera tes  as a load-and-go com- 
pi ler  i n  reducing columnar program s t e p s  t o  equiv- 
a l e n t  a r rays  of a d d r e s s  i n d i c e s  and  numerical 
operation codes .  All program s t e p s  a r e  compiled, 
and improperly written s t e p s  a r e  flagged. All  
columns of the  d a t a  s h e e t  a r e  executed  up  t o  the  
l a s t  column entered or t o  t h e  f i r s t  erroneous pro- 
gram s t e p .  Fol lowing  execut ion ,  all or iginal  
and derived d a t a  columns a r e  publ ished in  data-  
s h e e t  form (Fig.  5 . 1 0 . 1 ~ ) .  

S ince  TECHTRAN is intended for programs which 
may b e  executed  only once,  a t ten t ion  h a s  been 
focused on s implif icat ion of d a t a  entry t o  prevent  
errors  and on maximum retr ieval  of information 
when errors  occur. F o r  example,  within a data-  
s h e e t  column, all b lanks  are ignored and charac te rs  
may b e  lef t -adjusted,  inc luding  exponents  of 
numerical cons tan ts .  A key-punching error in a 
numeric d a t a  f ie ld  d o e s  not prevent  compilation 
or execut ion of preceding and following da ta ,  
but affects only t h e  number i n  which i t  a p p e a r s ,  
which i s  s e t  t o  zero. Many computational types  
of error (e.g., t h e  s q u a r e  root of a negat ive  num- 
ber) a r e  guarded a g a i n s t  and  a r e  flagged. Execu-  
tion, however, cont inues  at  the  s t a r t  of t h e  next  

. 
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O R N L - D W G  65-10475 

A t  
DAMPED OSCILLATION FOR RCL NETWORK I = A , e  sir 

A ? =  R / 2 L  = -3 
A 3 =  27rf = 2 0 0 0 r a d  

8 3 '  

(0) CONVENTIONAL HAND 
WRITTEN DATA SHEET. 
(ITALICS DENOTE RESULTS 
OBTAINED FROM A DESK 
CALCULATOR) e I (amps) t ( sec )  

I I I I 
0.005 1 -0.015 1 40 I 0.474 1 0.985 1 0.174 1 f7.10 
0.010 1 -0.030 1 20 1 0.342 1 0.970 I 0.331 1 33. !9 
0.015 ! -0.045 1 30 1 0.500 ! 0.956 ~ 0.478 I 47.80 

0.025 -0.075 7t.07 
0.030 -0,090 0.913 0.791 79. f5 

. I 0.030 -0.090 1 60 . 1 0.866 1 0.913 1 0.791 1 79. f5 

L 

I 'AWPEC C S C l L L A l l O N  FOR R-C-L NETWORK 0 9 / 2 3 / 6 5  

c 2  
c I .e2 

c 3  
EXP(C2I 

0.9R51 I 
0.9704 5 
O.9560r 
0.94176 
0.92774 
0.9 1392 

0 .88692  
rl.87377 
0.8607 I 
0.84789 

0.8228 5 
O.RI050 
0.79852 
0.78663 
Q. 7749 2 
0 . 7 6 3 3 8  
0.7520 I 
0.74082 
q.72979 
0.7 I 8 9 2  
0.7082 2 
n.6976'1 
0.68729 
0.67.70 C 

0.90032 

D . R ~ W T  

c 4  
C I * A 3  

C S  
S I N l C 4 J  

C 6  
r 5 s c 3  

0.17106 
3.35191 

0.60535 
0.71J69 
3.791u9 
0.84603 

0 .E7372 
0.821763 
0.79676 
0.72337 

0 . 4 7 ~ ~ 0  

0.87345 

0 .  63133 
0.52103 

0 . 2 6 ~ 4  
0. 13456 

-0.  I 3n59 

0.39926 

O . ? 1 8 5 1  E-C6 

-0.2 5337 
-0.36489 
-0.4621 I 
-0.54253 
-0.6042 I 
-0.6 4 5 R 4  
-rJ.66677 

c 7  
C6+PI 
I l e M P S l  (c) 

17.1063 
35.1912 
47.7999 
6C.5355 
71.0693 

TECHTRAN COMPUTER 
OUTPUT SHEET 

. 
ROU 

I 
2 
5 
4 
5 
6 
I 
tl 
9 

I (1 
I 1  
12 
13 
14 
15 
I 6  
17 
16 
I 9  
23  
2 1  
? L  
2 3  
2 4  
2 5  
2 6  

io.ccncc 
20. cccc 
3o.rncc 
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Fig. 5.10.1. ( a )  Conventional Handwritten Data Sheet; ( b )  T E C H T R A N  Coding Sheet; (c)  T E C H T R A N  Computer 

Sheet. 
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data-shee t  row. More s u b t l e  computational errors  
c a u s e  termination of execut ion,  a printout (in the 
usua l  data-sheet  form) of the  resu l t s  obtained up 
to that  point, and  a s k i p  t o  the  next  TECHTRAN 
job. 

In i t s  s imples t  and most e a s i l y  learned form, 
TECHTRAN involves  one  operation per column, 
us ing  cons tan t  or column designators ;  however, 
more sophis t ica ted  forms a r e  p o s s i b l e  and addi-  
t ional  flexibility c a n  b e  obtained by s p e c i a l  control  
cards .  F o r  example, t h e  s ta tement  *CALL P G P L O T  
(1,7) c a u s e s  a print-plot of t h e  va lues  of column 
7 v s  t h o s e  of column 1, as  shown in F ig .  5.10.2, 
where column headings s e r v e  a s  a x i s  labe ls .  
Additional s ta tements  produce internal  tab les  of 

t h e  columnar d a t a  so tha t  s u c c e e d i n g  program s t e p s  
may u s e  va lues  obtained by a forward or backward 
interpolation of t h e  tab le .  Derivat ives  or in tegra ls  
of the  tabulated va lues  a r e  also made ava i lab le .  
Other opt ions c a u s e  generation of t a p e  input  to  a 
Benson-Lehner  plot ter ,  punching of d a t a  i n  s tand-  
ard formats, and read-in of d a t a  c a r d s  u s i n g  rou- 
t ines  common to other  computer programs. 

In order t o  simplify t h e  u s e  of TECHTRAN, 
s p e c i a l  d a t a  s h e e t s  are in  preparation which c a n  
b e  submit ted direct ly  t o  t h e  Central  Data  P r o c e s s -  
ing  Fac i l i ty  a t  t h e  Oak Ridge G a s e o u s  Diffusion 
P l a n t  for processing.  Also ,  a manual descr ib ing  
TECHTRAN programming and i t s  capabi l i t i es  and 
opt ions wil l  b e  publ ished.  

Fig. 5.10.2. Pr int-Plot  Damped-Oscillation Problem. 
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5.11 DWB DEUTERON STRIPPING 
COMPUTER PROGRAM’ 

W. R.  Smith 

T h e  DWB program descr ibed  here  c a l c u l a t e s  
(d ,p)  and (d,n) s t r ipp ing  angular  c r o s s  s e c t i o n s  
with t h e  inclusion of nuc lear  optical-model poten- 
tials and  Coulomb interact ions.  The Q va lue  is 
restr ic ted t o  va lues  greater  than -2.226 M e V .  

Provis ion is also made for approximating the  
finite-range n-p interact ion,  t h e  deuteron polar- 
izabi l i ty ,  and the nonlocal i ty  of t h e  nuclear  forces .  
T h e  program is s e t  up t o  run on a CDC 1604-A 
computer, but should b e  e a s i l y  adaptab le  to  other  
computers us ing  FORTRAN. 

Reference 

‘Abstract of ORNL-TM-1151 (June 10, 1965). 

5.1 2 GEN ERALlZ ED HAUSER- FESH BACH 
NUCLEAR-SCATTERING COMPUTER 

PROGRAMS’ 

W. R. Smith 

T w o  programs, one  (ORNL-TM-1117) written in  
CDC 1604 symbolic  machine language and t h e  
other  (ORNL-TM-1234) written i n  FORTRAN, a r e  
ava i lab le  which compute t h e  s c a t t e r i n g  angular 
distribution and integrated c r o s s  s e c t i o n  for any 
two-particle nuclear  react ion by making u s e  of 
t h e  Hauser-Feshbach theory modified t o  include 
spin-orbit coupling. T h e  f i rs t  code  is limited by 
the  mathematical methods employed to a maximum 
of 16 part ia l  waves  i n  any one channel .  T h e  
s e c o n d  code  is present ly  set up  to include a 
maximum s p i n  of 5 and up t o  31 part ia l  waves ,  
but t h e  methods employed a r e  general  and t h e s e  
restr ic t ions c a n  be  relaxed by al lot t ing larger 
s torage  blocks t o  cer ta in  var iab les  in  t h e  program. 
T h i s  la t ter  program also conta ins  as opt ions a 
Porter-Thomas width-fluctuation correct ion and a n  
approximate nonlocal  potential. T h e  input required 
by t h e  programs is t h e  charge ,  mass ,  s p i n s ,  parity, 
and optical-model parameters  for all channels  
through which the  compound nucleus  c a n  decay.  

References 

‘Combined a b s t r a c t  of ORNL-TM-1117 (May 
1965) and ORNL-TM-1234 (in preparation). 

5.13 DATA-REDUCTION PROGRAMS 
FOR THE CDC 160-A COMPUTER’ 

W. E. Kinney 

A s e r i e s  of programs have been written for proc- 
e s s i n g  t h e  d a t a  from t h e  neutron-scat ter ing c r o s s -  
s e c t i o n  experiment (Sect. 1.1), which a r e  accumu- 
la ted i n  a n  ND-160 4096-channel ana lyzer  and 
punched on paper  tape.  T h e  programs a r e  written 
i n  FORTRAN for t h e  CDC 160-A computer t o  
correct  for walk and to report t h e  corrected da ta ,  
and a r e  linked by a s imple  cha in  routine written 
for th i s  problem. T h e  f i r s t  l ink reads t h e  ND-160 
paper t a p e s  and normalizes and subt rac ts  back- 
ground. T h e  second link s e l e c t s  the  case t o  b e  
walk-corrected from a library of cases and a l s o  
a l lows  t h e  inser t ion of comments for identification. 
Link 3 computes  the  amount by which e a c h  channel  
is t o  be  sh i f ted  in  cor rec t ing  for walk,  while  
l ink 4 performs the  correct ion i t se l f  and pr ints  
t h e  resul t ing spectrum. T h e  f i f th  link condenses  
the  channel  s h i f t s  and corrected spectrum, pr ints  
i t ,  and then computes  and pr ints  t h e  posi t ion,  t h e  
maximum count ,  and t h e  ful l  width a t  half maximum 
of s e l e c t e d  peaks .  Link 6 punches on paper t a p e  
the  corrected spectrum, i f  desired.  

A typical  running time to correct  and report a 
sample-in less background, a s tandard-in less 
background, and the  background a lone  is 30 min. 

Refer en ce 

IAbstract  of ORNL-TM-1208 (in preparation). 

5.14 FOURIER ANALYSIS OF UNIFORM 
RANDOM-NUMBER GENERATORS’ 

R. R. Coveyou R. D. MacPherson’ 

A requis i te  for t h e  s u c c e s s  of Monte Car lo  cal- 
cu la t ions  is a quick method for t h e  generation of 
a s e q u e n c e  of numbers which a r e  e s s e n t i a l l y  
uniformly and independently dis t r ibuted on t h e  
uni t  interval. Many methods a r e  known for pro- 
duc ing  t h e s e  s e q u e n c e s  of requis i te  uniformity. 
Whether output s e q u e n c e s  produced by s u c h  meth- 
o d s  have  sa t i s fac tory  independence propert ies  
has not been known. T h i s  ques t ion  c a n  be  reduced 
to tha t  of determining the  degree of uniformity of 
t h e  dis t r ibut ion of n-triples of s u c c e s s i v e  members 

. 
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of the output s equences  within i t s  n-dimensional 
unit cube ,  We have developed a measure of inde-  
pendence for s u c h  sequences .  T h e  tool used is 
the  theory of f ini te  Fourier s e r i e s ,  the form of the 
Fourier transform appropriate to  the d i sc re t e  range 
and finite cyc le  length imposed by digi ta l  compu- 
tation. 

Number theoretic methods a r e  used  for a priori 
ca lcu la t ion  of figures of m e r i t  for spec i f i c  gener- 
a tors  taken from widely used  c l a s s e s  of such  
generators.  

In many ins t ances ,  unsa t i s fac tory  s t a t i s t i c a l  
performance had been observed for cer ta in  methods 
of generation. In each  c a s e ,  the method used  
here  h a s  predicted (or explained) such  abnormal 
performance. T h e  random-number generators cur- 
rently used in  ORNL Monte Car lo  codes  are  found 
to  be reasonably sa t i s fac tory ,  although improve- 
ment is poss ib le .  

References and Notes 

‘Abstract of ORNL-3866 (in preparation). 
2Summer employee. 

5.15 NUMERICAL SOLUTION 

FORMULATION WITH SEVERAL CONSTRAINTS’ 
OF THE LAGRANGE-MULTIPLIER 

F. B. K. Kam F. H. S. Clark 

A program h a s  been written in  FORTRAN for the  
CDC 1604-A computer for numerical so lu t ion  of 
the Lagrange-multiplier method with seve ra l  con- 
s t ra ints .  T h e  program, XTREME, is an  ex tens ion  
of MAX (ref. 2) and c a n  dea l  with up to 25  inde- 
pendent variables.  I t  f inds  an extreme va lue  for 
an objec t  function s u b j e c t  to  a number of equal i ty  
cons t ra in ts ,  a t  most  one  less than the number of 
independent variables.  All  second der iva t ives  of 
the objec t  function and the  cons t ra in ing  functions 
must e x i s t  everywhere in  the domain of compu- 
tation. 

References 

‘Abstract of ORNL-3846 (in preparation). 
2F. H. S. Clark and F. B. K. Kam, A Genera l ized  

One-Constraint Lagrange Multiplier Numerical For- 
mulation, ORNL-3742 (June 1965). 

5.16 NONNORMAL DISTRIBUTIONS 
OF THEMEANCOMPUTED 

FROM SAMPLE CHARACT ERlSTlCS’ 

F. H. S. Clark N .  A. Be tz2  

I t  is assumed,  for distributions of the  mean only,  
that  two d is t r ibu t ions  a re  equiva len t  provided tha t  
their  f i r s t  moments and the  absolu te  va lues  of 
their  s econd ,  third, and fourth cen t r a l  moments 
are equal .  (This  assumpt ion  makes no d is t inc t ion  
between d is t r ibu t ions  which are mirror images 
of each  other about the  mean.) Subjec t  to  th i s  
assumption, a method is given for computing the 
distribution of the mean in  units of the es t imated  
s tandard  deviation when the  coef f ic ien ts  of skew-  
n e s s  and kur tos i s  of the  population are known. 
T h e  coef f ic ien ts  of s k e w n e s s  and kur tos i s  of the  
sample  are  taken  a s  e s t ima tes  of t h e s e  quant i t ies  
for the  population. References  a re  given to  assess 
the  confidence l i m i t s  a s soc ia t ed  with s u c h  esti- 
mates.  

Computed d is t r ibu t ions  of the  mean, in  es t imated  
standard-deviation un i t s ,  a r e  given for a represen- 
ta t ive s e t  of sample  cha rac t e r i s t i c s .  

References and Notes 

‘Abstract  of a paper to  be  submitted to Nuclear  
Sc ience  a n d  Engineering. 

‘Mathematics Division. 

5.17 SIGNIFICANCE ARITHMETIC 
FOR FORTRAN’ 

W. R. Burrus B. W. Rus t ’  

T h e  FORTRAN s t a t emen t  X # 193./71. - 272./ 
1001. h a s  a true va lue  of 0.0000284093.. , but a 
single-precision FORTRAN computation (27 bi t  
fraction) y ie lds  0.2813339-04 (us ing  an E13.7 
output FORMAT) due t o  l o s s  of s ign i f icance  when 
subtracting. When the number of s ign i f i can t  d ig i t s  
is ques t ionable ,  t he  s a m e  problem may be  run in  
both s ing le  and double precision. T h i s  is incon- 
venient because  programs must  be  modified and 
because  double precision requires twice  as much 
s to rage  space .  We have  implemented a s imple  
a l te rna t ive  due  to  Golds te in3  for keeping  track of 
the  amount of s ign i f icance  i n  floating-point num- 
bers by representing them in unnormalized form. 
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Programs may b e  written i n  ordinary FORTRAN IV, 
and t h e  s ign i f icance  operat ions implemented by u s e  
of the ALTER feature  of the  loader. Some problems 
and appl icat ions of s ign i f icance  ar i thmetic  a r e  
d iscussed .  

References and Notes 

'Abstract  of ORNL-TM-1249 (in preparation). 
'Central Data  P r o c e s s i n g  Fac i l i ty ,  Oak Ridge 

3M. Goldstein, Significance Arithmetic on the 
Gaseous  Diffusion Plant .  

ZBM 7090, NYO-9190 (May 1, 1962). 

5.18 THE USE OF MATHEMATICAL 
PROGRAMMING FOR SOLVING SINGULAR AND 

POORLY CONDITIONED SYSTEMS 
OF EQUATIONS' 

J. Replogle '  B. D. Holcomb' 
W. R. Burrus 

I t  is well  known tha t  Fredholm integral  equat ions 
of t h e  f i rs t  kind frequently lead  t o  s y s t e m s  of 
s ingular  or poorly condi t ioned equat ions.  Then  
there  a r e  many so lu t ions  which s a t i s f y  t h e  s y s t e m  
of equat ions Ax = b within a spec i f ied  nonzero 
error. Many a d  hoc  techniques  have  been used  t o  
obtain usefu l  solut ions.  In t h i s  paper, w e  obtain 
rigorous upper and lower bounds for t h e  so lu t ions  
(or l inear  funct ions of t h e  so lu t ions)  by making u s e  
of addi t ional  information which may b e  ava i lab le  
about  t h e  solut ion.  T h e  e f fec t  of t h i s  information 
is t o  reduce the  size of t h e  poss ib le  solut ion s p a c e .  
W e  show how t h e  u s e  of monotonicity, smoothness ,  
or nonnegativity r e s t r i c t s  t h e  solut ion of a problem 
introduced by R. Bellman. 

References and Notes 

'Abstract of paper  t o  be  submit ted to  t h e  Journal 
of Mathematical Analysis and Applications. 

'Central Data  P r o c e s s i n g  Fac i l i ty ,  Oak Ridge 
Gaseous  Diffusion Plan t .  

3R. Bellman, R. Kalaba,  and J .  Lochet t ,  Dynamic 
Programming and Ill-Conditioned Linear Systems, 
Memorandum RM3815PR (December 1963). 

5.19 A SIMPLE ALGORITHM FOR COMPUTING 
THE GENERALIZED INVERSE OF A MATRIX '  

B. W. Rus t '  W. R. Burrus 

T h e  generalized inverse  of a matrix is important 
i n  a n a l y s i s  b e c a u s e  i t  provides a n  ex tens ion  of t h e  
concept  of a n  inverse  which a p p l i e s  to all matr ices .  
I t  also h a s  many appl ica t ions  i n  numerical ana lys i s ,  
but is not widely used  b e c a u s e  the  e x i s t i n g  algorithms 
a r e  fairly complicated and require cons iderable  
s torage  s p a c e .  We have  found a s imple  ex tens ion  
of the  convent ional  orthogonalization method for 
invert ing nonsingular matr ices  which g i v e s  t h e  
general ized inverse  with l i t t l e  extra  effort and 
with no addi t ional  s torage  requirements. T h e  
algorithm g i v e s  t h e  generalized i n v e r s e  for a n y  
m by n matrix A ,  including t h e  s p e c i a l  case 
when m = n and A is nonsingular a s  wel l  as  
t h e  case when m > n and rank ( A )  = n. In t h e  
f i rs t  case t h e  algorithm gives  t h e  ordinary in- 
v e r s e  of A. In t h e  second case t h e  algorithm 
yie lds  t h e  ordinary leas t - squares  transformation 
matrix (ATA) - 'A  and h a s  t h e  advantage  of avoiding 
the  loss of s igni f icance  which r e s u l t s  in  forming 
t h e  product A T A  expl ic i t ly .  

References and Notes 

'Abstract  of paper submit ted t o  t h e  Journal of the 

Central  Data  P r o c e s s i n g  Fac i l i ty ,  Oak Ridge  
Association for Computing Machinery. 

Gaseous  Diffusion Plan t .  
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5.20 A FORTRAN SUBROUTINE PACKAGE 
FOR LINEAR PROGRAMMING' 

C. Schneeberger W.  R. Burrus 

A FORTRAN program h a s  been  written for l inear  
programming u s i n g  the  symmetric algorithm of 
Talacko. '  I t  is compatible  with FORTRAN 11, IV, 
or  FORTRAN-63 without any  changes .  T h e  main 
regime c o n s i s t s  of two subrout ines ,  TALAKO and 
DIFF.  TALAKO performs t h e  major l inear  pro- 
gramming computation, and D I F F  is a subrout ine 
used  to carry out  the  el iminat ion s t e p  eff ic ient ly ,  
y e t  independently of t h e  language.  Included a r e  
s e v e r a l  auxiliary rout ines  which make it e a s y  to 
unscramble t h e  transformation matrix, t h e  solut ion,  
and t h e  s l a c k s .  



58 

References 

'Abstract  of ORNL-TM-1250 (in preparation). 
'J. V. Ta lacko ,  Taba ios  de E s t a d i s t i c a  24, 

17,  159  (1963). 

5.21 NEUTRON-CROSS-SECTION LIBRARY 

D. C. Irving F. H. S. Clark 
J. Gi l len '  

In view of the frequent u s e  of t h e  0 5 R  Monte 
Carlo code '  for neutron ca lcu la t ions ,  i t  is desir-  
a b l e  to  have a library of neutron-cross-section 
da ta  ava i lab le  for u s e  with 0 5 R .  A s i n g l e ,  central  
library would avoid t h e  dupl icat ion of effort inher- 
e n t  in  the  maintenance of s e p a r a t e  l ibrar ies  by 
the various u s e r s  of 05R.  A cont inuing effort 
will be  necessa ry  t o  keep  the  library up to date .  

A library h a s  been compiled cons i s t ing  of pub- 
l ished neutron c r o s s  s e c t i o n s  for the  following 

elements:  H,  L i ,  B e ,  B, C,  N, 0, F, Na, Mg, AI, 
Si, S, K, Ca ,  Cr ,  F e ,  Ni, Cu,  Zr ,  U, and P u .  A 
small amount of evaluat ion work h a s  been done 
when published evaluat ions did not  adequately 
cover  the region of interest .  T h e  library c o n s i s t s  
of point c ros s - sec t ion  da ta  in the  format used  by 
0 5 R .  I t  is maintained on magnetic tape at both 
the  CDC 1604-A and the  IBM 7090 computer ins ta l -  
la t ions.  T h e  0 5 R  cross-sect ion-handl ing sub-  
routines have  been modified to  make u s e  of a 
library c ros s - sec t ion  tape.  Memorandums concern- 
ing the  con ten t s  of the l ibrary and any revis ions 
or updating are s e n t  t o  a l l  u s e r s  of 0 5 R  at Oak 
Ridge. 

References and Notes 
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'R. R .  Coveyou, D. C.  Irving e t  al., 05R,  A 
General-Purpose Monte Carlo Neutron Transport  
Code, ORNL-3622 (1965). 



6. Radiation Detector Studies (I) 

2Massachuse t t s  Inst i tute  of Technology. 

6.2 DEVELOPMENT OF AN EPITHERMAL- 
N EU T RON SPECTROMETER ' 

T. V. B losse r  R. M. Frees tone ,  Jr .  

In a previous report' a des ign  for a neutron 

6.1 FAST-NEUTRON SPECTROMETER CAPABLE 
OF NANOSECOND TIME GATING' 

L. E. Beghian2  S. Wilenski2 
W. R. Burrus 

spec -  

A fast-neutron spectrometer h a s  been constructed 
which is capab le  of 200-kev energy resolution a t  
1 Mev and can  be  time-gated to  seve ra l  nanosec-  
onds.  T h e  spectrometer is a proton-recoil scint i l -  
lat ion detector.  T h e  neutron spectrum is obtained 
from the detector pulse-height response  by a modi- 
fied leas t - squares  unfolding technique. T h e  re- 
sponse  of the de tec tor  to monoenergetic neutrons 
h a s  been measured and is used  in conjunction with 
a computer code ,  SLOP, for unfolding t h e  neutron 
spectrum. Resu l t s  are presented to ind ica te  the  
capabi l i t i es  of t he  detector.  Unfolded neJtron 
spec t r a  containing 1.0- and  1.3-Mev l ines  are pre- 
sen ted .  T h e  neutron spec t r a  l eak ing  out of a car-  
bon assembly a t  two different time de lays  after the  
injection of a monoenergetic neutron pulse  a r e  also 
presented. 
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T h e  spectrometer e s sen t i a l ly  c o n s i s t s  of a n  iso- 
tropically responding spher ica l  B F ,  proportional 
counter enc losed  in  a concentric spher ica l  boron 
(92.27% 'OB) shield,  plus a conica l  boron collima- 
tor with a 1-in.-diam opening. Pr inc ipa l  dimensions 
a re  shown in F ig .  6.2.2. A ro ta tab le  aluminum 
disk  is placed so that  each  of the  twelve 'OB fil- 
t e r s  which i t  car r ies  can  success ive ly  b e  posit ioned 
in  front of and c lose ly  ad jacent  to t h e  collimator. 
With the  u s e  of two s u c h  d i sks ,  one  of which h a s  
a n  open hole, 24 f i l ters ,  each  of a different thick- 
n e s s ,  a r e  ava i lab le .  Remotely controlled dr ives  

! 

Fig. 6.2.1. T h e  Epithermal-Neutron Spectrometer. 
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and mechanical l inkages  permit scanning  through 
large polar and azimuthal  angles .  

T h e  b a s i c  principle of t h e  d e s i g n  is tha t ,  as  t h e  
th ickness  of t h e  filter is increased ,  various incre-  
ments  of a neutron energy spectrum a r e  a t tenuated 
a t  different ra tes .  Analys is  of the count ing ra tes  
obtained at  all 24 posi t ions should then resul t  i n  a 
descr ipt ion of the incident  neutron spectrum. 

Probably t h e  most unique feature  of t h e  s p e c -  
trometer is i t s  isotropic  BF, proportional counter. 
A s  presently c ~ n s t i t u t e d , ~  t h e  counter  c o n s i s t s  of 
a 3-in.-OD thin-walled copper  sphere  filled t o  a 
pressure of 92 atm with enriched (96% ‘OB) BF,. 
(Copper spheres  were used  simply because  they 
were readily avai lable  a t  the  t ime of construction.) 
Ion col lect ion within the  sphere  is by a double  
+-in.-diam loop of 2-mil-diam tungsten wire, with 

t h e  two loops a t  right a n g l e s  to e a c h  other. By 
us ing  a double-loop col lector ,  so-cal led “end 
ef fec ts”  common to s t ra ight-wire  co l lec tors  a r e  
effect ively eliminated. 

T h e  counter h a s  a ca lcu la ted  eff ic iency of 0.233 
for thermal neutrons,  a high-voltage plateau with a 
s l o p e  of not more than  2 t o  3% over 200 v, and,  
based  upon t e s t s  with a n  Am-Be source  embedded 
i n  polyethylene, a response  tha t  is isotropic  t o  
within 5%. 

T h e  twenty-three ‘OB fi l ters  were cal ibrated by 
t ransmission measurements made a t  t h e  ORNL F a s t  
Chopper Faci l i ty .  T h e  t ransmission d a t a  were 
fitted by t h e  method of l e a s t  s q u a r e s  to funct ions 
of t h e  form 

transmission = e x p  i-[C(E)t + k11, 
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where 

C(E) = macroscopic 'OB to ta l  c r o s s  sec t ion ,  

t = filter th ickness  (obtained from t h e  curve 
fit as  t h e  e f fec t ive  th ickness  of t h e  filter 
and therefore taking in to  account  all errors 
in  the  experimental  determination of 'OB 
th ickness  and density), 

k = a cons tan t  lumping together the  e f fec ts  of 
the aluminum c ladding  of e a c h  f i l ter ,  the  
"B content ,  and any  contamination not 
identified. 

T h e  f i t  w a s  exce l len t  over the  en t i re  energy 
range, and encourages confidence in  t h e  accuracy 
of t h e  cal ibrat ions.  

In connection with t h e  development of the  s p e c -  
trometer a s e r i e s  of Monte Carlo ca lcu la t ions  uti- 
l iz ing t h e  05R neutron transport c o d e 6  were carr ied 
out. T h e s e  ca lcu la t ions  were principally directed 
toward est imat ing the  e f fec t  upon t h e  detector  of 
neutrons that  a r e  sca t te red  back  in to  the detector  
from t h e  'OB shie ld  a t  t h e  rear  of the instrument, 
but severa l  other quant i t ies  were  also est imated.  
T h e  most recent resu l t s  of t h e s e  ca lcu la t ions  indi- 
c a t e  that  for monoenergetic neutrons of 10-ev 
energy approximately 4% of t h e  counts  from the  
detector  wil l  come from backsca t te red  neutrons, 
but for 100-ev neutrons t h i s  va lue  i n c r e a s e s  t o  
5%; for 1000-ev neutrons,  however, t h e  va lue  d o e s  
not increase  further. From t h e s e  resu l t s  it may b e  
concluded that  in  most appl ica t ions  the e f fec t  of 
backscat ter ing wil l  be  effect ively lost within the 
counting s t a t i s t i c s .  T h i s  conclusion i s  in  agree-  
ment with experiments conducted with t h e  s p e c -  
trometer viewing a n  approximately 1/E spectrum 
emanating from a temporary beam tube a t  the  Bulk 
Shielding Faci l i ty .  In t h e s e  experiments  counts  
taken with the back sh ie ld  al ternately in  p lace  and 
removed showed no differences greater  than count- 
i n g  errors. 

The  t ransmission predicted for t h e  'OB f i l te rs  by 
the ca lcu la t ions  w a s  in  exce l len t  agreement with 
the experimental ca l ibra t ions  descr ibed ear l ier .  

T h e  epithermal-neutron spectrometer  is now a t  
the  s t a g e  of final adjustment  and checkout  and i s  
expected t o  short ly  be  put t o  pract ical  t e s t  i n  con- 
nection with neutron-scat ter ing experiments  a t  the  
Tower Shielding Fac i l i ty .  

References and Notes 

' Work funded by Defense  Atomic Support Agency 
under DASA Order EO-851-64. 

2T. V. Blosser ,  Neutron Phys. Div. Ann. Progr. 
Rept. Aug. 1 ,  1964, ORNL-3714, vol. 1 ,  p. 84.  

3Expansion of the b a s i c  concepts  in to  t h e  des ign  
and fabrication of the  f inal  instrument have  been 
principally t h e  work of T. F. Sl i sk i ,  Instrumenta- 
tion and Controls Divis ion.  

4 T h e  counters  were designed and constructed by 
R. K. Abele  and W .  T. Clay of the Instrumentation 
and Controls Division. 

'Made ava i lab le  through the  cooperation of J .  A. 
Harvey, R. C .  Block, and G. G. Slaughter, al l  of 
t h e  P h y s i c s  Division. 

6R. R. Coveyou et at., 0 5 R ,  A General-Purpose 
Monte Carlo Neutron Transport Code, ORNL-3622 
(February 1965). 

6.3 ISOTROPICALLY RESPONDING FAST- 
NEUTRON DOSIMETER' 

T. V. Blosser  

T h e  development of a highly s e n s i t i v e ,  isotrop- 
ica l ly  responding fast-neutron dosimeter  w a s  out-  
l ined i n  a previous report.' Briefly, t h e  goal  of 
th i s  development i s  the  production of a n  instrument 
which wil l  have  a lower limit of sens i t iv i ty  of t h e  
order of 0.02 millirad/hr, which wil l  h a v e  a n  iso- 
tropic response  proportional t o  the  Snyder-Neufeld 
multicollision d o s e  curve,  and  which wil l  b e  u s a b l e  
over a n  energy range from the  epi thermal  region to 
-15 M e V .  

T h e  b a s i c  scheme of t h e  dosimeter  i s  tha t  of a 
relat ively small ,  s e n s i t i v e  thermal-neutron detector  
( a  BF, proportional counter) central ly  embedded i n  
a sphere  of moderating material. Experiments  t o  
d a t e  have  used  moderating s p h e r e s  of 8-, l o - ,  and 
12-in. diameters ,  cons is t ing  ei ther  of pure poly- 
e thylene  or, in  a few experiments, of polyethylene 
with a thin boron-loaded p las t ic  s h e l l  around the  
detector .  

T h e  detector  used  within t h e  s p h e r e s  c o n s i s t s  of 
a 2-in.-diam spher ica l  BF, proportional counter  
containing a double-loop ion co l lec tor  and filled 
to  a pressure of '/z atm with B F , ,  enr iched to 96% 
in t h e  'OB isotope.  In arr iving at  t h i s  choice ,  1 - ,  
15 ' -, and 2-in.-diam counters ,  s ing le-  and double- 
loop ion col lectors ,  and  pressures  of '/2 and 1 a t m  
were s tudied.  T h e  preferred ion co l lec tor  is formed 
as a double c i rcular  loop, or f/z in .  i n  diameter, 
of 2-mil-diam tungsten,  with t h e  loops  perpendicular 

. 
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to  each  other  and concentr ic  with t h e  thin-walled 
copper  sphere  which forms t h e  body of the  counter. 

T h u s  far t h e  s imple configuration of counter  and 
polyethylene sphere  have  been s tudied with 3- 
and 14-Mev accelerator-produced neutrons,  and 
some t e s t s  and cal ibrat ions have  been made us ing  
a n  approximately 1/E neutron beam from the  Bulk 
Shielding Reactor. In the  la t te r  t e s t s  t h e  beam 
w a s  at tenuated by a s e r i e s  of t h e  ‘OB fi l ters  which 
a r e  part of t h e  epithermal-neutron spectrometer  de- 
scr ibed in Sec t .  6.2. 

T h e  optimum diameter for t h e  moderating sphere  
appears  t o  be  about 1 0  in. T h e  u s e  of boron s h e l l s  
around t h e  detector  did not seem to have any effect  
other than a straightforward lowering of all count- 
i n g  ra tes .  However, it is more or less expec ted  
that  some addition to t h e  mater ia l  of the moderating 
sphere  wil l  eventual ly  be  des i rab le  in  order t o  i m -  
prove ( increase)  t h e  response  of t h e  dosimeter i n  
t h e  energy region between 10 and 15 M e V .  Ma- 
t e r i a l s  undergoing (n ,n  ’) or (n,2n) react ions wil l  
be  invest igated for th i s  purpose. 
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6.4 NEW METHOD FOR THE EVALUATION OF 
NEUTRON EMISSION, KERMA, KERMA 

EQUIVALENT, DOSE EQUIVALENT, AND THE 
SPECTRUM BELOW 1 Mev FOR (a ,n )  SOURCES, 

USING BONNER SPHERES’ 

S. K. Mehta2 

Neutron emission ( F ) ,  kerma (K), kerma equivalent  
(Keq), d o s e  equivalent  (DE), t h e  rat ios  K / F ,  
Keq/F,  and D E / F ,  and a n  upper bound t o  t h e  neu- 
tron spectrum below 1 Mev have  been obtained for 
Am-Be, Pu-Be,  Po-Be,  and Am-B neutron s o u r c e s  
by us ing  a modified Bonner-sphere neutron s p e c -  
trometer. T h e  spectrometer  c o n s i s t e d  of 0- t o  12- 
in.-diam Bonner s p h e r e s  and  0- to  3-in.-diam s p h e r e s  
modified by the  addition of boron and cadmium 
covers .  T h e  resul ts  were computed by t h e  OPTIMO 

l inear  programming code,  which s y n t h e s i z e s  optimal 
combinations of t h e  response  of t h e  various s p h e r e s .  
T h e  known smoothness  of the  neutron spectrum 
from each  source  w a s  ut i l ized,  and a n  upper bound 
t o  t h e  spectrum above  5.5 Mev w a s  taken  from other  
measurements, s i n c e  the response  of the Bonner 
s p h e r e s  d o e s  not have  enough variation above  5.5 
M e V .  T h e  response  of t h e  modified s p h e r e s  t o  
monoenergetic neutrons w a s  ca lcu la ted  by assuming 
exponent ia l  absorpt ion below 1 kev  and by Sn 
transport ca lcu la t ions  above  1 kev.  T h e  v a l u e s  of 
D E / F  in  uni t s  of rems neutron-’ for t h e  Am- 
Be, Pu-Be,  Po-Be, and Am-B s o u r c e s  a r e  (3.79 * 
0.23)10-8, (3.72 * 0.28)10-’, (3.84 * 0.19)10-’, 
a n d  (3.75 k 0.21)10-’ respect ively.  T h e  errors  
given refer to  t h e  68% confidence in te rva ls  and  in- 
c lude  all known s o u r c e s  of error. 
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6.5 DIGITAL FILTER FOR UNFOLDING 
PULSE-HEIGHT DISTRIBUTIONS’ 

H. Young2 W. R. Burrus 

A digi ta l  “f i l ter”  computer program h a s  been 
developed which removes undesired spur ious  fea-  
tures  (such as  Compton t a i l s ,  escape peaks ,  e tc . )  
from t h e  response  of a sc in t i l l a t ion  spectrometer. 
T h e  input to the  filter is t h e  d ig i ta l  representat ion 
of t h e  pulse-height dis t r ibut ion,  a n d  t h e  output  
c o n s i s t s  of a d ig i ta l  representat ion of t h e  des i red  
unfolded spectrum. A relat ively c l e a n  Gauss ian  
l i n e  is obtained from t h e  filter. T h e  f i l ter ing pro- 
cedure is s imple  enough t h a t  s m a l l  computers or 
built-in c i rcui t ry  c a n  be  used  on-line to give rapid 
unscrambled resu l t s .  T h u s  far we  have  s imulated 
t h e  f i l ter  off-line and,  by u s i n g  the  respec t ive  
pulse-height d a t a  of R. Heath and of G. Chapman, 
have  demonstrated i t s  capabi l i t i es  with a 3-  by 3- 
in .  NaI(T1) gamma spectrometer  and a n  8- by 12-in. 
NaI(T1) total-absorption gamma spectrometer .  A 
QUIKTRAN3 version of t h e  f i l ter  is given which 
inc ludes  nonlinearity correct ions and rigorous error 
es t imates .  T h e  execut ion t i m e  of  t h e  QUIKTRAN 
program off-line is about  1 sec on t h e  IBM 7090 
computer. 

8 

. 
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6.6 FAST-NEUTRON SPECTROSCOPY WITH 
ORGANIC SCINTILLATORS' 

V. V. Verbinski 
W. R. Burrus R .  Textor3  

J. C. Courtney' 

Part I 

T h e  proton-recoil sc in t i l l a tor  technique for meas- 
uring neutron s p e c t r a  h a s  been extended to larger  
sc in t i l l a tors  than t h o s e  u s e d  previously; th i s  w a s  
made possible  by tak ing  into account  multiple 
scat ter ing,  charged-particle react ions,  and carbon 
recoi ls .  T h e  main fea tures  are high eff ic iency,  
moderately good resolution, s imple  circuitry, and 
gamma-ray pulse  re ject ion.  T h e  c o d e  used  t o  
ana lyze  t h e  d a t a  w a s  t h e  recently developed 
FERDO code ,  which is b a s e d  on  quadrat ic  pro- 
gramming and u t i l i zes  the  known nonnegativity of 
the  neutron spectrum. T h i s  code  requires  accura te  
responses  to monoenergetic neutrons for t h e  sc in-  
tillator. T h e s e  responses  were obtained by a com- 
bination of ca lcu la t ions  and experimental measure- 
ments as descr ibed i n  P a r t  I1 of t h i s  s e r i e s .  T h e  
code  forms combinations of t h e  count ing eff ic iency 
funct ions for each  channel  of t h e  analyzer ,  so  that  
t h e  resul t ing combinations approximate a n  idea l ized  
spectrometer with t h e  des i red  response  function. 

Part I I  

T h e  response of a 2- by 2-in. and a 5- by 5-in. 
cyl indrical  organic sc in t i l l a tor  h a s  been obtained 
with Monte Carlo ca lcu la t ions  tha t  ut i l ized meas-  
ured light-response funct ions of the  scint i l la tor  
material t o  recoil protons, a lpha  par t ic les ,  and re- 
coil carbon nuclei .  Several  precis ion experiments  
ut i l iz ing t h e  assoc ia ted-par t ic le  technique were 
employed to  check  t h e  absolu te  pulse-height d i s -  
tribution for a uni t  flux and also to  provide da ta  on 

t h e  response of the sc in t i l l a tors  to  carbon recoils 
and alpha par t ic les .  T h e  2- by 2-in. sc in t i l l a tor  is 
e s p e c i a l l y  su i tab le  for neutron spec t roscopy by 
the  method of unfolding pulse-height dis t r ibut ions 
descr ibed i n  P a r t  I of t h i s  s e r i e s ,  but e i ther  sc in-  
t i l la tor  c a n  b e  used  i n  time-of-flight spectroscopy.  
For  t h e  la t ter  appl icat ion,  the  sc in t i l l a tors  c a n  be  
used  direct ly  or  a s  s tandards  of cal ibrat ion for 
sc in t i l l a tors  of arbitrary s i z e  and s h a p e .  
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6.7 USE OF A DIGITAL COMPUTER IN 
TIME-OF-FLIGHT EXPERIMENTS' 

R. Ingle' R.  Gwin L. W. Weston 

A general-purpose digi ta l  computer h a s  been in- 
corporated as  a n  integral  part of a da ta  acquis i t ion 
and process ing  sys tem for use in neutron time-of- 
flight experiments .  T h e  experiments  a r e  designed 
to  measure the  neutron-capture and f i ss ion  c r o s s  
s e c t i o n s  of 235U, 233U,  and 2 3 9 P u  as a function 
of neutron energy. 

A digi ta l  computer3 w a s  chosen  for t h e  time-of- 
flight experiments  b e c a u s e  i t s  data-handling ca- 
paci ty  w a s  greater than that  of a convent ional  
analyzer .  In t h e  appl icat ion of convent ional  an-  
a lyzer  s y s t e m s  to time-of-flight spectroscopy,  the  
channel  width, At, is chosen  to meet t h e  energy 
resolution required by t h e  experiment. T h e  c o m -  
puter w a s  programmed t o  s imula te  a s e r i e s  of 
ana lyzers ,  e a c h  having a channel  width appropriate  
for t h e  energy region covered. Eight  regions were 
used,  with t h e  channel  width changing by a factor  
of 2 i n  s u c c e s s i v e   region^.^ T h e  recording of da ta  
in  th i s  manner greatly i n c r e a s e s  t h e  time range 
which c a n  b e  covered without sacr i f ic ing  energy 
resolution. 

Other advantages  of t h e  digi ta l  computer a r e  the  
increased  flexibility in  t h e  control  of t h e  experi-  
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ments  and the s c o p e  d isp lay ,  which permits a de-  
ta i led  v isua l  inspect ion of the  da ta  during the  ex-  
periment and programmed operat ions on memory 
regions displayed by t h e  s c o p e .  
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6.8 FAST-NEUTRON SPECTROMETER FOR 
REACTOR ENVl RONMENTS' 

V. V. Verbinski M. S. Bokhari2 

A 6Li diode sandwich fast-neutron spectrometer  
h a s  been designed and appl ied to  spec t ra l  meas- 

urements in  t h e  water  sh ie ld  of a pool-type research  
reactor where t h e  gamma flux w a s  as  high a s  l o 6  
r/hr. By us ing  t h e  6 L i ( n , a ) T  react ion having  a 
Q value of 4.78 M e V ,  demanding a co inc idence  
count  between t h e  a lpha  par t ic le  and  t h e  triton, 
and se lec t ive ly  sh ie ld ing  the  diodes,  backgrounds 
from gammas and f a s t  neutrons s t r ik ing  t h e  d i o d e s  
a r e  reduced. In addi t ion,  t h e s e  reduced back-  
grounds a r e  accurately determined by subs t i tu t ing  
a 'Li foil for t h e  6Li s e n s i t i v e  element .  T h e  
spec t ra l  intensi ty  of angular  flux, @(p, r, E ) ,  w a s  
mapped a t  points  near  t h e  reactor and compared 
with t h e  resu l t s  of a neutron transport ca lcu la t ion ,  
with both measurement and ca lcu la t ion  normalized 
to  t h e  same absolu te  neutron source  intensi ty .  
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