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1

CONCERNING THE MOMENT PROBLEM

G. G. Johnson

1. INTRODUCTION

By the moment problem for the real number sequence c , c , ... and the interval [0,1], one means the

problem ofdetermining a real-valued function </> on [0,1] such that cn =jj j" c/0, n = 0, 1, 2, . . . . The
integrals involved are ordinary Stieltjes integrals, and ;' is the function such that ;'(x) = x for each number

x. If each of f and g is a function, then ig denotes the function h so that n(x) = f(x)g(x) for all numbers

x for which f(x) and g(x) are defined. If n is a positive integer and f is a function, then f" is the function

h so that n(x) = [f(x)]n for all x for which /(x) is defined.

A motivation for studying the moment problem lies in functional analysis. Fre'de'ric Riesz has shown

[1]* that every bounded linear functional T on the set Cr i of all continuous functions on [0,1] has a

representation 77 = J1 i da, where a is of bounded variation on [0,1]. One way of establishing this re
sult was found by T. H. Hildebrant and I. J. Schoenberg in 1933 [2]. Given a bounded linear functional

Ton Cr -i, they considered the moments cQ, c^, ... , where cn = 77", n = 0, 1, 2 . . . . Then, a function
0 of bounded variation was found so that cn = (J ;'" d<f>, n =0, 1, 2, . . . . In effect, the moment problem
for c , c , . . . was solved. It was then shown that this function 0 gave a representation for T; that is,

Tf=j* t d<f> for all fin C[Q ty
It is felt that the results of this paper make a contribution to extension theory for unbounded linear

functionals on Cr i.

In this paper, the theory of Bernstein polynomials is used extensively. In fact, the motivation for

the present work is based on some considerations of Bernstein polynomials. If / is a function on [0,1]

and nis a positive integer, the nth Bernstein polynomial associated with f is Bn(x) = 2 ( Kl-) x* 0- -
x)n_t, 0 = x = 1. Suppose cf> is a function on [0,1], 0(0) = 0, and cn =J* j" dcf>, n = 0, 1, 2, . . . . Suppose

0 < x < 1. Then,

0(x) = - f! (J3 dh , where

f 1 if 0Stix,

[O if x<f^l .

An integration by parts gives

0(x)=/o1ftrJ0.
h k (n\ t \k k+\\

The nth Bernstein polynomial associated with h is B (y) = 2 \ ) y\l - y) where x e —, I •
n t=o h/ Ln n /

(See Fig. 1.)

One might expect that 0(x) is "approximated" by

So Bn d<t> ' which is

The numbers in square brackets refer to the Bibliography at the end of this paper.



since cn =/o1 ;" dcj>, n=0, 1, 2,
mated" by

=/; 2( ) 2 . (-D';'c/0
* (=0 \f/ /=0 \ I /

* /n\ n-r /n - t\ ,

•£(,)•?.(•• )(-1)c»"
. . Hence, for each 0 < x < 1, one might expect that 0(x) is "approxi-

x e

k /n\ n-t In — t\
2)2 . (-l)'c,, where x e

k k + l
— t

n n

Define step functions 0t, 02> ... on [0,1] by 0(0) =0and 0 (x) =2 (] "j' (" ') (- l)'c, if
"* *+a «=oVi=oV i /

D (0,1] for each positive integer n (see Fig. 2). Note that the step function sequence

. Hence, given a real number sequence c , c , . . . ,i . . . is defined in terms of c , c ,

heuristic considerations lead one to expect that the step function sequence 0 , 0 , ... so formed

might approximate some function 0 on [0,1] such that cn =f* j" cf0, n =0, 1, 2, . . . . Felix Hausdorff
[3] in 1921 used these step functions to give necessary and sufficient conditions on a sequence

ORNL-DWG 65-5571

Fig. 1. Illustrating Bernstein Polynomial of a Simple Step Function.
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Fig. 2. Illustrating Definition 0 of an Associated Step Function.

c , c , ... in order that there be a function 0 of bounded variation on [0,1] which generates the moments

c , c , ... . Hubert S. Wall [4] stated and settled the moment problem for nondecreasing functions 0 on

[0,1]; I. J. Schoenberg [11] studied the completely monotonic case.

Higher dimensional moment problems are treated in Shohat and Tamarkin [12] as well as moment

problems for the half line and the entire line. Also, necessary and sufficient conditions are given so

that the moment problem on [0,1] has a solution 0(0 =J' l'(u) du, where *P eL [0,1], p>1as well as
a solution <f>(t) =/' ^(u) du, where I* is bounded on [0,1]. Ahiezer and Krein [13] treat various problems

on [0,1] in greater detail than Shohat and Tamarkin. It should be noted that the results given, above all,

deal with moment sequences which are generated by functions of bounded variation.

James H. Wells in [6] gives the following necessary and sufficient condition in order that there be

a quasi-continuous function 0 on [0,1] which is a solution to the moment problem: (1) There is a number

M > 0 so that

k ti\n-t tl -
2 2 .

(=0 \f/ 1=0 \ 1
(-D''cm <M , O^i^n , n = 1, 2, 3,

and (2) if x e [0,1] and e > 0, there is a number 8 > 0 such that, ifx —S<z<w<xorx<z<w<x+i5,

then there is a positive integer N such that, it n > N,

h (Tr?n^<^p~nw \p/ i—Q
(-DW

nz—p^nv p/'-u
(-dS+p < e



Since a quasi-continuous function is not necessarily of bounded variation (but all functions of bounded

variation are quasi-continuous), Wells's result represents a departure from the study of moment sequences

generated by functions of bounded variation. This paper gives a second contribution to the moment problem

in the nonbounded variation case. Local properties of the sequence of step functions noted above are

studied. These results are then applied to extend the study of moment problems beyond the quasi-

continuous case.

2. SOME PROPERTIES OF BERNSTEIN POLYNOMIALS

Definition 2.1. Suppose /is a function on [0,1] and n is a positive integer. The statement that B is

the nth Bernstein polynomial associated with / means

Bfn(x) =J (") IWx'(l - x)"-< if xe[0,1]
The proofs of the following three theorems can be found in [5] Chapter 1 and are omitted here.

Theorem 2.1. Suppose f is a boundedfunction on [0,1] and x is in [0,1]. // f is continuous at x, then

lim B (x) = f(x). // f is continuous on [0,1], then this relation holds uniformly on [0,1].

Theorem 2.2. Suppose f is a bounded function on [0,1] and x is in (0,1). // f has a discontinuity of

the first kind at x, then lim Bf(x) =— [f(x-) + f(x+)].
"-*00 n 2.

Theorem 2.3. If f is a nondecreasing (nonincreasing) function on [0,1] and n is a positive integer,

then B is nondecreasing (nonincreasing) on [0,1].

Definition 2.2. In the case

f(x)

\=x<z,

0 z=x^l,

define B{ = Oz.
n c n

Theorem 2.4. (Wells [6].) If e > 0 and 0 < d = 1/2, rhere is a positive number N such that, if n is an

integer greater than N and z is in [d, 1 —d],

1 - Qz(x) < e if 0^x^z-d,

and

Qz(x) < e if z + d^x^l

Theorem 2.5. Zf0 = y = z = l and n is a positive integer, then Q^(x) = Qz(x), x e [0,1].

Proof.

and

Qyn(*)= i{ jx'(l-x)"-' if ye

ez(x)= 2Z C)*'(i -x)"-( if
(=0 xl'

z e

n n ,,
y y +1

n

n n .
Z 211



n n

Since y = z, — ^ —, and hence n ^ n . If n = n , then Oz(x) = Qy(x). If n < n , then Qz(x) = Qy(x) +
n _ y z y z' ^nv ' *nv 7 y z' *rnv ' ^nv '

/n\

2 ( ) x'(l - x)"-'. Since ;'(1 - ;)"-' is nonnegative on [0,1] if 0 = t =n, it follows that Qz(x) = Qy(x)
r=n +1 \f/ n n

if x7e[0,l].
Theorem 2.6. // each of a, b, ancf c is a number in [0,1] such that a = b, and if n is a positive integer,

then

V^=QC(a)-Q».

Proof. If c is in [0,1] and n is a positive integer, Qc is nonnegative and nonincreasing on [0,1].

3. ALGEBRAIC PROPERTIES OF A SEQUENCE OF STEP FUNCTIONS

Definition 3.1. Suppose c , c , c , ... is a real number sequence and n is a positive integer. The

statement that 0 is the nth step function associated with c„, c , c , . . . means that
' n r 0 1 2

0n(O) = 0

and

k ln\ n-t In — t\ .
<£„(*) = 2 2 . K-D!ci+( ^ x e(0,l],

(=0 \(/ 1=0 V 1 I

where k is the nonnegative integer such that x is in
ln\n-tln - t\

by the rth step of 0 , one means I j 2 ( . K~ *),+(' tn^s number is denoted by S (r). The sequence
0 , 0 , ... is called the associated step function sequence for c , c , c , ... or when it is clear, simply

the associated step function sequence. Theorems 3.1 and 3.3 can be found in [3].

Theorem 3.1. // n is a positive integer, if t is an integer, and if 0 = t = n, then

k k + 1
< t <. If t is an integer and 0 = t = n, then,

Proof.

s„(t) =
sn+1(t) sn+l(t + i)

n + 1

t

n + 1

t + 1

Sn+1(r) S„ +Ia +1) ntl_(/n +1_,

, )i-lyc^+n,l{n-t){-1)'c^n + 1

t

n + 1

r+1

2
i=0

n+l-f/n + 1— t\ i n-t In — t\
ct+ 2 ( . )(-l)'ci+,+ 2 ( _. )(-D'cit(+1

n-t In + 1 — t

n — t

c + 2
/=0 t t,I",)-rr)j
n — t —

c + 2
1= 0

1

|r;:r')-r;
t

1=0 \ 1

n-t In — t

(-D'^W,

=c<+ 2( . )(-D'Tici+m+ 2nr. j(-D'ci+(+1
;=o \ i + 1 / (=o V i '

C-D^W,



n-t-1 /n — t\ .,,

n-r/n - r\ .

r.-l /n - t\ .

s„«>

Theorem 3.2. // each of m, n, r, and s is a nonnegative integer such that m > r = s ancfm —r + s

n = 0, then

, n \ /s \ 1 n r-s-i (m - r + s - k + t\ /r - s - 1 + k - t\

1 m-r+s r /m —r+s— k + t\ /r —s —1+k —t^

'm) kJ+1JF-. ( t JU-s-1 )Sm(k)"
If s + l=£ = m —r+s, then

rn\ r /m-r + s-fc-t-A/r-s-1+i-f

r / ,=o \ f A Jt-s-1

A special case, when m = r + 1, was proved by Hausdorff in [3].

A proof of Theorem 3.2 is omitted since only the special case is used in this paper and the only

available proof of Theorem 3.2 is very long.

It is remarked, however, that a study of the formula in Theorem 3.2 led to many of the results of

this paper. In every such case, however, a shorter argument independent of Theorem 3.2 was found.

Theorem 3.3 If n is a positive integer,

(D VX = 2 |snC0l ,
t=o

and

(2) Vl0 = V'0 ., .

Proof. Statement one is true since the right side of (1) is the sum of the absolute value of "jumps'
of 0 . To show that (2) is true note that

V^n = 2 |S„(0|



n

2
(=0 0

Sn+I« Wf + 1>

n

2
(=0 0

\sn+1(t)\ \sn+i(t + 01

/n + l\ ' /n + lN

-\ t 1 (t+l)

|sn+1(0)| + 2 |sn+1(0l

(T) r;1
=|sn+1(0)| +|i|sn+1(0l +|sn+1(n +i)|

= F0^n+1 •

Theorem 3.4. For each nonnegative integer rt,

!£,Jo *" d*k =Cn '

This theorem is attributed to MacNerney by Wells, and a proof can be found in [7].

+ |Sn+1(« + l)|

Theorem 3.5. For each positive integer n,

n \ n-t /n—t

(2) lim fc Q* d0k =0n(x) if x e[0,1] ,
k-a>

and

(3) lim -/J 0fc dQ* =0n(x) if x e [0,1)

Proof. The proof of statement one follows directly from Theorem 3.4 and the definition of S (t). To

show that statement two is true, note that

n "n n+1
X X

Sn^x) = 2 S„(0 if x e
(=0

n

(=0 /c-<*> rfu \(/ i=0 \ / /

n (o,i]

N'ji+r

x /n\ n_t In — t

fc-CD " (=0 \f/ /=o \ / /

.h» /o <?„X <% 'fc-X



since Qx = 2* (V(l - ;)""' = 2 {) "f' f" ^ (- l)';'i+'- To establish that (3) is true, note that,
n (=o V f=o W /=o V i /

on integrating (2) by parts, one has that lim [0^(1)0^(1) - 0/f(O)g*(O) -/J 0A dp*] = 0n(x). Since
0(0) =0, Jfc =1, 2, ... , and Q*(l) =0if V? 1, n=1, 2, ... , it follows that lim f1 0k d<2* =-0n(x) if
0^x<l.

4. PROPERTIES OF A BOUNDED SEQUENCE OF ASSOCIATED STEP FUNCTIONS

In this and the following two sections, it is assumed that c , c , ... isa real number sequence such

that the associated step function sequence 0,, 0 . ... is uniformly bounded on [0,1].
• <n (n\lt\ I lTheorem 4.1. // each of n andt is a nonnegative integer such that 1 + t =—, fhen I 11 —j II— —

n \ /t + l\t+1 / t + lN"-1-1

t+ijl—J I1 —/ • a i ,+ /a +2V+1
Proof. If a is a positive integer, ll+— I <[1+ I , andl <l I . Inverting,

a+1\a+i / Q \a \ a) \ 1 +a/ \ a I \a+l
< ( - ) . Hence, if d is a positive integer,

a + d

a + 2 j ya+l,
a+d

Therefore,

<

a+d+1/ \ a + 1

Suppose n is an integer so that n—a —l=a + l, i.e., —= a + 1. Then,

n -a-l\"-a-i
<

n —a / \a + 1

Hence, (a + l)a(n - a - l)"-*-1 < aa(n - a)""3"1 and

/m (a + l)a (n - a - I)""3"1 /n,aa(n-a)f

W na+i n"-a-1 Wna nn~6

./.-n/^vv,,^-',,, n__
a + 1 / \ n / \ n / \a/ Vn / \ n

and hence,

if —= a + 1, since
2

Theorem 4.2. // each of n and t is a positive integer, 0 < t < n, then

l l it

„N/»+1v-/1_-iy--<1 ., , .,..
Qi.a + 1/ \ n / \ n / ^a' \n / \ n

\a)\a+l) \a +l)'

^ «;)'('-:"" t\ /. t\ (X\ /, t x"-1
- 1 --) ~

,1
--

n/ V n/ W \ n/



Proof. By Stirling's formula,

and hence,

Proof. Let A

(=o \j/ \n

yj2nnnne~n < n! < \/2~\/2nTnne-" ,
V~2

\ln 77 n e

t) t\(n-t)\ y/ilr't'e-1 y/(n - t)n{n - t)n-'e-n+t

1

similarly for the remaining portion.

Theorem 4.3. There is a positive number A such that

,n-t

-, and

n /n\ /t
2 , , ,

t=o \t/ ^n

' / t
±\ 1 > A\/n for n = 1, 2, 3, ...

and £

/32tt

n + l\ I k

n i \ n

for n = 2, 3, . .. . By Theorems 4.1 and 4.2,

2 ('"](-] (1--) >C»+l)l"V-) (1
n-k

k/\n/

ri-fc

4\ltrn

4(>~)G)(-r
\/« n+1 > Vn"

4vV /FT * \ 4\/V
n /_ 1 -

V n \ n.

Theorem 4.4. There is a positive number B such that

<BVH"forn = 1, 2,il* '-;

22 + 20\/2 > n
Proof. Let B = ——, and for each integer n = 4 let the sequence k . = —T

\/F 2'

f , where —— < /— =— By Theorems 4.1 and 4.2,

ioevr^'cx^-r

1

2

3 3

\A77-

for i = 1, 2,

r32;;



10

t\ kni2-' inXft^ I t^n-'2\ YOH (l-^J+-21 t=k \t/\n/ V nl t=iT\t/\n
tl , z nt 3

1--J +...
n,

+X,C)0Vr ^--nnvr-'
k t -l

z (")(-t=o \il \n

t , t ,n—r
1 --

n

^2 [Jt - it + 1] i ,1 n,l n,2 J \ft
n,2

n,2/ \ n

t=k \r/\n
n,t *•

n-/c

1 -
n,2

d\/t A n'3 / k
n,3 n,3

rt-k
n,3

+t*n.2 -i +*„., +in* 1 -
n,3/ \ n n

n

n,i+l \ / n,i +l \
1 1 ++ [fc . _ 1 _ k .x + 1]

n,i n,i+l J
n,/+l/ \ "

B-.--'-'..'-+i1 u;„)^
".«.

n

n-/c

"»'_

"<<

+[*„., -i ♦«}*'{»...-'...♦«,,£
A „ / kn,2 / n,2

[*- ,-*.J /—n,2 n,3
' 77n

' n,3 / n,3

+[* •-* -4.J /"•' n'I +1 yjnn

+[* , , - k . ] I—n,t —1 n, r J / „n n \J nn

'n,i+l / n,i+l

Ij^(l-J±
n n

n n

+ . ,

n,t



Note that

[k . - k ._l_< + 1]
n,i n,i + l

Tin

for i = 1, 2, . . . , t — 1.

Hence,

i0(-r=o W \n

n-f

^2

k .x / it . x
n,i+l 11 _ n,/ +1

11

+ 2
nni + 12' 2

f -1
n

+ 2
/n" 10

n.in /= 1 V 77 , r, l

if+i

IE fn 'n-1 1
'-+10 /— 2 -= "£

r 10 10
i + — + — +

L v/2 x/4

10 AT

1 -

^2 /-[l+10(l +\/2)]=5V^.
77

/ \ / t \ ^ / t\ ^""^
Theorem 4.5. There is a positive number C such rha( |S (t)| - C( }(— ) (1 ) for each posi

tive integer n and 0 = t = n.

Proof. By Theorem 3.5, S(t) =lim f1 ("W - ;)"""' d<f> . If 0i t<n, \S (t)\ =lim I/1 0 dfVfl.
" k-*° \t/ ft-00 W

;)""'!, since [(1 - ;')"-f] (1) =0 if 0=t<nand 0a(O) =0if a =1, 2, ... . For each positive integer

l/o ^a rfCVd - ;)n_1 =fio^C)^1 - •')n~'' Where Bo =l^iWl if x£[0'1] and ' =I- 2, ••
( W(1 —/')" has a maximum point at —, is increasing on 0, —, and is decreasing on —, 1

a,

Now

and

t
n-t

;'(l - if (0) =

<

^l _»"-'] (1) if 0<t<n. Hence, V\ (") ;< (1 - ;)""' 2̂QQ (l

It follows that |S (0| = C

Hence, |Sn(0l^2BoQ(^) (l -^
/n\/tV I t\"-t

1 -
i/ \n

if 0 ^ t < n. Also, IS (n)| = |C I ^ IB . Let C

if 0 = t = n and n = 1, 2, ... .

Theorem 4.6. There is a positive number Dso rhat V* 0n = D\/n"for n =1, 2,

Proof. By Theorems 3.3, 4.4, and 4.5,

n — t

u r=o (=o W \n
1 -- ^ B • Cyjh~= Di/n

2B_
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Theorem. 4.7. Suppose a andb are numbers, 0 = a < b = 1, and e > 0. There is a number N > 0 so

that if n is an integer greater than N, there is a number M > 0 so that, if m is an integer greater than M,

then Vb0 < Vb+ec0 + e.
a?n a— eT"m

Proof. If a = 0 and 6 = 1, then the result follows by Theorem 3.3. Suppose a = 0 and 6 < 1. Let B

be a number such that B = |0.(x)| if x e [0,1] and i = 1, 2, . . . . Let d be a number such that 0 < d < e,

b + d< 1, d< 6, and d< 1/2. By Theorem 2.4, there is a number N' > 0 such that, if n > Wand z 6 [d,

1 - d], then

1 _ g»z(x) <— ifO^x^z-d,
4fi

and

Oz(x) < — ifz+d^x = l.
45

/V - 1 ., „ -,
Choose A7 > Wsuch that > 6. Let n be an integer greater than N. By Theorems 3.2 and 3.5, there

N

is a number M > 0 such that, if m is an integer greater than M, then

Fo60n- 2 IftCVtt-an-'<ty < — where 6 e
2

n. n. + 1
0 b

Hence, K° 0 <- +
0 V" 2

'(1 - ;)"-' d0„ Note that

b

+ 2
r=0

(1 - ;)"-' N>„

"b

+ 2
f=0 /~ 0 :(1 - ;)n-' d0n

Osince I );' (1 —;')" is nonnegative on [0,1] t = 0, 1, 2, . . . , n. Integrating each term in the sum by

parts and recalling that t = n, < n, one has that this last expression is less than or equal to

/0b+d 2 ("Vd - /)"-' |d*J +"I {I0m(6 +d)\ (")(b +d/[l - (6 +d)]"-'
f=0 v</ (=0 I \{/

By definition, 0^ = 2 (fj'Q- - J)"~'- Since 0=Q6(x) ^1and |0 (x)| <Bfor xe[0,1], the above be-
(=0 \f/ " m

comes

=Fo+d <f>m +*&> +cO +B2o r£+</ (")/'(l - ;)"-' =̂ +d 0m +2*0* (6 +d) .
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Since ( );'(! —;')" *is decreasing on
t

-,1
n

and 6+ d>^ and hence V^ H;'(l - j)n~' ^
n)(b+ d)'[l - (6 +d)]"-' for 0^t=n, one has that 2* vl+rl ("V(l ~')""' =

1=0 6+d\f loC)(6 +d)'[1-
(6 + d)]n_( = 0°(6 + d). Since 6 e [d, 1 - d] and n> N, Q°(6 + d) < —, and hence 2

4B t=i

<#„ <F„ 0 +-. Therefore, K° 0 < V° a 0 + e, and, since 0 < d < e,
0 ~m 9 ' 0 ~n 0 rm ' '

Vbd>< Vb+e 0 + e ,
0 vn 0 vm '

KCMi-fr-'

and similarly for the case 0 < a and 6=1.

Now consider the case 0 < a < 6 < 1. Let d be a number such that 0<d<e, 0<a —d, and 6 + d < 1.

By Theorem 2.9, there is a number N'> 0 such that, if n > Wand z e [d, 1 —d],

1 _ Oz(x) < if C^x^z-d,
n ' 16B

and

Qz(x) < if z + d = x ^ 1 .
16B

1 N - 1
Choose N > N such that — < a and 6 < . Let n be an integer greater than N. By Theorems 3.3

and 3.5, there is a number M> 0 such that, if m is an integer greater than M,

where a e

Hence,

n n+1
a a

Note that

V 0 - 2
f=n +1

jl Q,<(i - ,r-' #n

and 6 e
nb nb+1

^vj., u[,)'*-*-''*•

f=n +1
z,1 n^i-i)-'^ 2

t=n +1

/oa-dQ.,(1_;r-,^

b

+ 2+
t=n +1

S^yyv-'T-'***
b

+ 2
r=n +1

/^ Q^i - i)n-^a



14

Integrating by parts and recalling that 0 < ng = t = nfa < n, one has

a

=A (K(a - d)| 0(a -d)( [1 - (a - d)]n_'+ |/oa+d *» <") i* a-/)"-'
a

<=nr+iV <=" +1 v<'
a «

=25 "| H (a - d)'[l - (a - d)]"~( =2fl[0*(a - d) - Qa(a - d)]
t=n +l\|/

na + 1
, 0< f ^n.anda - d< — , and so Fa-d(" )/•'(! -/)since (1) I )jt(l - ;')" ' is increasing on

t

0,-
n

Therefore,

Similarly,

b

2
t=n +1

/oa_d ( /Ai-;T-^0m <25
2e

Io73

"b

t=n +1
ti^y *~If'' *+n e

<—.

4

e

4~

"Va - d)< [1 - (a - d)]""' for ng <t=n, and (2) Q*(a - d) - Qa(a - d) =̂ |+i (")(a ~d)' ^~(a
e e

d)]"-'. Now a e [d, 1 - d], 6 e [d, 1 - d], and n >N, and hence, 0£(a - d) < — and Qa(a - d) <—

sn-t <

Since ( );' (1 —;')" t is nonnegative on [0,1], t = 0, 1, . . . , n,

t= n +1 ' V ' ' f~n T1 H '
a a

Ja —d vn vn ' ^m' a —d "m '

n , \

since Qb - Qa is by definition 2 ( )/'(! - J')""'. and since °=<?„<» - <2*(x) =1for xe[0,1].
a

The above results combined give

Vb 0 <l+i+ ?*+<* «£ +-=e+Fb+d.0 .a ^n ^ 4 a—d ^m ^ a—d "m
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Vb 0 < e+ F
a ^ n a—fc T'm

Theorem 4.8. Suppose a , a , ... is a bounded real number sequence such that, if a , a , ... is

a subsequence converging to a number p, a + , a + , .. . converges to p. Then [x|x is a sequential
limit point of a subsequence of a , a , a ,...} = C is a continuum.

Proof. Since a , a., ... is bounded, there is a set C. It is clear that C is closed and bounded.
0 1

Suppose C is not connected, i.e., C = A \J B, where A and B ate disjoint and closed. Consider two

numbers a and 6 in A and 5 respectively. Suppose 6 > a. If [a, 6] - C, A and 6 are not disjoint. Hence,

there is a number p in [a,6]\C. Since p 4 C, there is a segment (u,v) containing p, no point of C, and,

at most, a finite number of terms of a , a , . . . . Let N be a positive number such that, if n is an integer

greater than N, a 4 (u,v). Let n be the least positive integer greater than N such that an = v and

a . = u. That there is such an integer n follows from the facts that 6 > v > u > a and that each of a
n+l ° 0

and 6 is in C. Consider the sequence a , a , . . . , where, for each positive i, n. + 1 is the least posi

tive integer greater than n. such that a = v and a , = u. Since a , a .... is a bounded sequence,
i nj+1 ni+i J ° '

so is a , a , . . .. Hence, some subsequence a , a , . . . converges to a number q = v since an = v,
oi mo m i mi

i = 0,1, 2, . . . . By hypothesis, a +,, a +,,-•• also converges to q. This is a contradiction, since

<T < 0 1
a . = u < v = q for i = 0, 1. 2, . .. . Hence, C is a continuum,
n+i ^

Theorem 4.9. // x is in [0,1], fhen C = {y|y is a sequential limit point of a subsequence of 0t(x),

(x), ...! is a continuum. t 4\n-t
ln\ t \ I t\2

x,, ...,«,* w..„..uuu.. ItixltVl A"-'
Proof. By Theorem 4.5, there is anumber Bsuch that |Sn(0| B\)\^j \l~~) - By Theorem

4.2, if 0 < t < n, then

2 1

Hence,

<0
' ^/nr/i

. 26 1
IS^COl ^— ——=—^ if 0<r<n

From Theorem 3.2 (special case),

^.(^l)-^(^)=-^TS»*'('+1)-
and

/f+l\ / t \ n-t
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Also, 0n(O) = 0 and 0n(l) = cQ, n = 1, 2, . . . .

Suppose x e (0,1); 0x(x), 02(x), ... is a bounded number sequence. Suppose 0 (x), 0 (x), ...
o 1

converges to some number p. Note that

l^n.+l00 ~^"/X)| |̂Sn,+lWl' Where X£
k k+1

n . + 1 n. + 1

Hence,

l0„+1(x)-0n(x)|
26

\Mn,- +1) /~T"
if0</r<n.+ l

1 --
n+1 \ n. + 1

Therefore,

I0n+1(x)-0n«| =
VH-n

26

n: + 1
1 --

n; + 1

If0<d<x<l-d, then there is an integer N > 0 so that, if n> N,

k k
d<-and 1 - d> 1

n n

Let / be a positive integer such that, if i > /, n. > 6. Then,

26

k / k
'77 (L

n. + 1 \ n. + 1

26

^/nd(l - d)
so, if D

25

jnd(l - d)

D
then |0n +1(x) - 0n (x)| <~p=- Hence, 0n +1(x), 0n +1(x), . . . also converges to p. By Theorem 4.8,

i i \n. "o i

C is a continuum.

5. LOCAL PROPERTIES OF A BOUNDED SEQUENCE OF

ASSOCIATED STEP FUNCTIONS

Theorem 5.1. Suppose x is in [0,1] and for each number e > 0 there is a number 8 > 0 and a number

N> 0 such that, if y is in [0,1], |x —y| < 8 and n is an integer greater than N, then |0 (x) - 0 (y) | < e.
Then lim 0 (x) exists.

n-»oo

Proof. Note that 0n(O) = 0 and 0n(l) = c0 for n = 1, 2 ... . Suppose x is in (0,1) and eQ > 0. Let
6 be a number such that 6 I \0/.(x)| £or x e [0,1], i = 1, 2, ... . Let e= e /(85 + 2). By hypothesis,



17

there is a number 8, 0 < 8 < 1/2, and a number A7 > 0 so that y e [0,1], | x —y| < 8, and n> N implies

| 0n(x) - 0n(y)| < e. Let d = S/3. By Theorem 2.4, there is a number W> 0 such that, if w> Wand

z e [d, 1 - d], then

1 - Qz(t)< e if0^r=z-d,

and

Let n and m be integers so that m> n > W. By Theorem 3.5,

I'M*)-</>„«! = lim J^kd[Qxm-Qxn]
/t-*oo

If fc is a positive integer, then

if z + d = f = 1 .

x-d

^kdlQxm-Qxn] * J ~ ^^Q^-Qnx] + / *kc/[0*-O*] + j _^kd[Qxm-Qxn]x + d

x-d

1

'x + d

Note that

* 5[^-dg^+ F*-dOx]^ 6[l-0*(x-d)+l-0x(x-d)] = 5[e+ e] = 2£S,

using Theorem 2.6 and the fact that 1 - Ox (x - d) < e and 1 - Ox(x - d) < e. Hence,

Similarly,

, x-d

/ <^[0*-en]

J+d<^[e*-ox]
x + d

< 2e5.

< 2e5.

For each positive integer w and each number t in [x —d, x + d], let // (O =0 „,(') —4>w(x\ Then,

-x + d

x-d

x + d

/ ^/c^*-^] + / ^^^w^-^]
x-d

.x + d

'x-d

.x + d

/ „ /^u>*-ox] + / rf**w d[g„-g;]
'x-d

r max n |»t(0|vx +5[Ox - Qx] + ^(xXOx-Qx]
x + d

x-d
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Because ^Qx = Vl0Q* = 1, FX^[QX - Qx] $ 2. Also, |Mfc(t)| = |0k(r) - 0 ,(x)|. If * >ff, | A**(01 < e
if f e [x - d, x + d]. Since m> n > W, x e [d, 1 - d], then

1 - Qx (x - d) < e ,

1 - Ox(x - d) < e ,

Qx(x+d)< e,

and

it follows that

Hence,

°*(x + cO < e ,

g*(x+ rf)- 0*(x+ c/)| < 2e,and|gx(x-d)-Ox(x-d)| < 2e

|£>*d[<£-<K]I"* x—d
< 2e + 6[2e + 2e] = 2e + 4e6 ,

if k > A7. Finally,

/>*<rto»-g;] < 2e5 + 2e + 4eS + 2e5 = 2e + 8e6

if k > N, m> n> Wfrom which it follows that | 0m(x) - 0n(x)| < eQ if m> n > W. Hence, 0 j(x), 02(x),
is a Cauchy sequence and therefore converges.

Suppose [a, 6] is a number interval and /„, fv .. . is a sequence each term of which is a function on
[a,6].

Definition 5.1. The statement that fQ, flt ... left slants at x in (a,6] means that for each number
e> 0 there is a number /, a = / < x, so that, if / < d < x, there is a number N> 0 such that, if n is an
integer greater than N and / = u^ v= d, then | / (u) - / (v) | < e.

Definition 5.2. The statement that fQ, fx, ... left slant converges at x in (a,6] means there is a
number Lx so that, if e > 0, there is a number 1, a= 1< x such that, if / < d < x, there is a number N > 0
so that, if n is an integer greater than N and / = 6 = d, \ f (6 ) - L \ < e.

There are entirely similar definitions for "right slant" and "right slant converges."

Theorem 5.2. Suppose xis in (0,1] and 0v 02, ... left slants at x. Then 0 v 02, ... left slant
converges at x.

Proof. If e> 0, then there is a number /, 0= / < x, and a pair of increasing number sequences
dQ, dlt ... and N0, Nv ... so that

(1) / < d,. < x , i = 0, 1, 2, ... ,

(2) lim d. = x ,
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(3) if / S u = v = d; and n is an integer greater than Njt then | 0n(u) —

0„(v)| < £•

There is a number sequence <1A , a sequence of number sequences J Jd*i

of increasing positive sequences \ IN1)- ^ so that

, and a sequence

and

fci

r=l

(1) 0<lt<lt+1 = dto<dto+l , f=l, 2

(2) di<dUi<* i=0, 1, 2, ..., r=l, 2, ....

(3) lim dj = x r = 1, 2, ... ,
j—*oo

(4) lim /. = x ,

(5) x-/t< 1/2,

(6) for each positive integer £, if /f = u= v= d' and n is an integer
greater than N1., then | 0n(u) - 0n(v) | < l/t=e(.

lt + dl
For each positive integer t, let y, = and 8( = min < - 7( x - y,

' 3

>h+< < - h 5 3 ,
Now,y,-S(^ = /,+ d<>Oand(l-S,)-y,= l x - y, x 2

-y,= 1 - y, > 0,
3 ' 3 3 '

since y,<x. Hence, yt e[St, 1- 8t] for f=1, 2, ... . Also, /, - (y, - 5,) =/, - l~ 1, +-<) =-(/, - d') <0
\ 8 8/8

and d'0 - (yf +8t) =d'Q - i-l-° - 8t =-2-1—f - 8, >0. Hence, /, <yt - 8t <y, +8, <d'0, for t=1, 2, ... .
It is clear that lim yt = x. By Theorem 2.4, there is for each positive integer t a number W, > 0 such

r->oo '

that, if w> Wt and z e [8,, 1 - 8t],

< ., <1 - <?z(y) < e, if 0 = y = z - 8, ,

and

Qz(y) < £, if z + 8, = y = 1 .

For each positive integer f, there is for each positive integer i less than t, a unique integer r( . so that

<,.-! =<<< •

For each number d'r , there is a corresponding integer A7' . For each positive integer r, let K. = 1 +
t, i t.i
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max W,, W., ... , W,, A7,1 , N2r ,. ...N1'1 . Let 6 be a number such that 5 ^ | 0,.(x)| if x e [0,1],
f, 1 f, 2 t,t-l

'=1,2 J
85 + 4

Suppose e > 0. Let L be a positive integer so that e > . Consider the number sequence

0fc O^X 4>k (^2^' ••• • Suppose each of mand n is an integer, m> n > L. Then, | <f>k (y ) —
12 m

<t>k (y„)l = 10* (ymW* (y„)l + \4>k (yn)-<f>k (y„)|. Since *m>;v" ,/n</m <ym <
n m m m n m ,n

<? < d" , and /„ <y„ <d" ^ d? , then |0fc (ym) - 0^ (yn)| < en. By Theorem 3.5,

\<t>k (yn)-0k (y„)| = lim

For each positive integer a,

ti^dlQl" -Qln]
m n

So"' "4>.d[Qk" -(£"]
m n

fft.dlQl" -Ql"]

-y T ° y y

m n

/y +8 0a dlQl" -Ql"]
m n

Note that

.y _S/. y _ o y y

o" n0a^kn -P."]
m n

=S^o" hn\-Qln -Qykn]-B[VV0n SnQykn+V0n ~"nQkn]y ~ ft y

m n

By Theorem 2.6, v\n K<?k" =1- qI" (yn - 8„ ), and ^" ^O*" =1- <^n(yn - 8„). Since
mm n n

yn e[8n, 1-SJ and *m ^ *n >Wn, it follows that 1- <&> (y„ - 8„) <e„ and 1- ^"(y,, - S„) <e„.

It follows that

Similarly,

_S y y

m n

Jo" "^a^fc" -0,"] <2£n5 fora=l,2,...

/ +s ^^k"-0k"]
Jy + s m n

< 2e 6 for a = 1, 2, ... .

For each positive integer 6, let fib(t) = 06(O - 06(yn) for f e [yn - Sn, yn + 8n]. Then,

y+S y y y+S yy

/ " , " 0a rftOlT - 0k"l - / " Va +0a(yn) ^" " Qk" 1
•'V — ft m n ^V —ft m n'y -8

n n
m n

-y + S y y
f " / ^adlQkn-Qkn]

y — ft m n
n n

J " " 4»ai7B)d[Qk" -Qk«]
m n

\na(»\vyn-sn[eln -ol"]
te[y - S , y + S ] n n m

n n ' n n

0a(yn)[^n -gk"i
m n

y+S

y -8
n n
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+ s

Now, V£Qkn = V>Qkn = 1, and hence, V_s"[Qkn - Qkn] = 2. Since /„ < y„ - S„ < yn + Sn < d",
m n n n m n

max | /x (0| < e if a > /V" Furthermore,

fe[y -8 ,y +5 ]

tt*n - %"]
m n

y+S

y ~S
n n

^l" -QVknHyn +Sn)
m n

[Qln -QlnHyn-8n)
m n

=qI" (y„ +sn) +0*"(y„ +5n) +1- Qykn (yn - Sn) +l - 0k"(yn - 8n)

Since km~lkn> Wn, 0=yn - Sn, and yn +Sn = 1, it follows that

<V(yn + 8n)<en'

0*n(y„+s„><e„.

i-0k"(yn-5n)<en.

and

1 - 0fc"(y„ - Sn) < en

Hence,

• y +;
/"„S" 0a ^<V - ^"1 < 2£n +BK + £n + £n + £n ^=**n +4B£n

if a > A^, and so

/>.^n-oIn]
m n

< 2en6 + 2en + 4en6 + 2en6 = 8enS + 2en

if a > N£.

Finally,

85+3
I^k (ym) ~ 0/c (yn) I < en + 8enfi + 2en = (85 + 3)en = < e as n > L. Hence, the sequence

m n n

4>k (y j), 0^ (y2)> •• • converges to some number Lx.

It now will be shown that <f> v 02, ... left slant converges to Lx at x. Suppose e > 0; there is a

number MQ > 0 so that, if n is an integer greater than MQ, \<f>k (yn) —Lx\ < e/6. There is a positive



22

integer t so that, if each of 6 and c is a number /( = 6 = c = df and n > Np | 0 (6) —0 (c)| < e/6. There
is a number M> MQ such that, if m is an integer greater than M, lf < y —8 , and 1/rn < e/246. If d is

a number such that 11 < d< x, there is a positive integer h such that d=d'h and 8m + ym< dlh. Let

N = Nh + W' , where W' is as before. Suppose n is an integer greater than A* and 1( = 1= b = d. Then,

I0nW - *-x I= I0nW - 0n(ym) +^n^J " 4>k (ym> + 0. (O - ^x I

^I0n(6)-0n(ym)| + |0n(ym)-0k (ym)| + |0k (yj-^xl
m m

Since 1{ < ym < d'h, 1(S b= d^ d£, and n> /v£, it follows that | 0n(6) - 0n(ym)| < e/6. Also, | 0fc (yj
m

Lx | < e/6 since m> M. By Theorem 3.5,

l . _ y _y„

0k (yj-0n(ym)l = li" / ^a ^r - ^nm 1

For each positive integer a,

J' <^a ^0*" - <£"] =/„""" " ^a ^ " ^" ]
0 m 0 m

Note that

fY™ *m<f>ad[Qykm -Ql™]
0 m

/" ",*.<W-enm]
y — ft *"

m m

.y„- -8

5V m[C>fcm - Qnm ] § 6 [F0m «-gA

/.. . « <^a "10
y +

m m

y y* m ry m

+^--8-^» ]=[i _Qy« {Ym _8m) +! _0^(7bi _5J]

by Theorem 2.6. Now, 1- ^m(ym - SJ <em, and 1- (?^m(ym - 8m) <em since n>Wm, km >H^,

and ym e [8 . 1 - Sj. Hence,
m L m

, y -<

/0m m0arf[Qfcm-Qnm]
m

< 2emB. If ^a (0 = 0a(O - 0a(ym) for t e [ ym - 8m, ym + Sm ], a = 1, 2 then

Ma+0a(ym)d[Q^-^]

< 2e 6. Similarly,

m m
•'y+S n

/,
y + 5

m m 0arf[^m-^m]
y„-s„

/y + ft y y

. "a d^k
y„-s

m m ^ d[a m- o m] /ym+sSm^(ym)^m-^mi
m m

max lMa(0|<mlh^m-^nm^
te[y _8 ,y +8 ] mm m

0a(ym)^m-O
+ 8

y -8



Note that

and

23

Qkm(ym + sj < ^ .

i-tV^-^X^,

^nm^m + 5m)<em,

1 - Q (y + 8 )< e ,
vn wm m' m '

since * >Wm,n> W. and ym e [Sm, 1 - 8m]. Hence,

[Qk" - QBml < nym= Qkm (ym + sm) + 0 m(ym + Sm) + 1 - 0 "(ym - sm)
m m7 ^ m v J tn m-

+ 1 - Qnm(ym - 8m) < em + em + em + em = 4em .

Also, Vy'"ll'"[Qykm - QVnm] =2since 7^™ =V^"1 =1, and
mm m

max l/^gCO I < £/6 if a > A^ sine
<£Lym-Sm,ym+S ]

l. < y - 8 < y + 8m< dl. It follows that
t Jm m J m m n

m m' m m

m m

< 26em + -+ 45em + 26em = -+85em if a > Nl .
mo m mo m n

Hence,

e e e 2e 2e 85 2e e
|0(6)-L |<_ + _+8Se +-=—+ 85em = —+ — <_ + _=e
IV"V x' 6 3 m6 3 m 3 m 3 3

if n > N and / = 6 = d. This completes the proof of the theorem.

There are entirely analogous results for the right side.

Theorem 5.3. // x is in (0,1) and0 02, . . . both left and right slants at x, rhen there is a number

L and a number R so fhar lim 0n(x) = \[LK + RXL

Proof. Since 0 02, ... both left and right slants, there is by Theorem 5.2 (and the entirely

analogous results for the right side) a number Lx and a number Rx to which </> v 02, ... left slant converges

and right slant converges respectively. Let 5 be a number so that 6 > | 0I(x)| for x e [0,1], i = 1, 2, . .. .
If e > 0,there is a number sequence lQ, 1v . .., a number sequence rQ, rv . . . , and a positive integer

NQ, Nv ... so that

;o ~ xl = lro ~ xl '
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0S /. < /.+ i <x< r. +1<r,. = l for i =0, 1, 2, . . . ,

lim ln = x = lim rn ,
n~*<x> n~*oo

Ni+1>Ni for i = 0, 1, 2, ... ,

< .< a< < „ < ^ <if m> Np 1Q S> a = 6 = /., and r^c^^r,,

l0Ja)-0m(6)l <e'

l0m(c)-0mW)|<e,

l0,»-£-xl<e.

I0m(c) - /? I < e .

Letd=|/o"x|,u=-° +X--" r°, and v = —-—. There is a positive integer t such that d + u <lf and r, < v —d.
16

For each positive integer n, | 0n(x) - \[Lx +Rx]\ = %|20n(x) - Lx - #x | S V2|0m(u) - Lx +0m(v) -
*xl + 14l0J"X0m(v)-20n(x)|.

If m> Nt, then |0m(u) - Lx \ < e and |0m(v) - Rx \ < e. Hence, |0n(x) - %[Lx + Rj \ < e +

!/2 I0m(°) + 0m(v> - 20nW I• By Theorem 3.4,

0,>) + 0,»-20n(x)|= lim / *kd[Qum +Qm-2QXn]

By Theorem 2.4, there is a number W0 > 0 such that, if w>WQ and z e [d, 1 —d],

1 _ Q^t) < £ ifO^f^z-d

and

Cz(0<e ifz+d^f=l.

By Theorem 2.2, there is a number Wx> 0 so that if w> H^ then | 1/2 - Qx(x) | <-. Let W= WQ + Wr

For each positive integer £> W, there is a number a( and a number 6, such that

(1) lt < at < x < bt < rt ,

(2) |Cx(a,)-l/2| <e,
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and

(3) | Qx{bt) - 1/2 | < e .

Let n be an integer greater than W. For each positive integer k,

/a">*d[o» +o;-2o*]

ro~d*kdVQm +Qvm-2Qx]

u-ci

/ n^d[Qm + Qvm-2Qx]

Note that

Soa~d<f>kdlQm+Qm-2Qxn]

, v + d

L **<*<& +Qra-2Q*nl

^ BVTdVQa + Qv - 2QX]0 LVm vm vmJ

j\*kdVQl+Qm-2Qx]
v + d

±B[Vu-dQUm+vu-dQVm +2vrdQxj

= 6[1 - QJ> - d) + 1 - g> - d) + 2(1 - <?x(u - d))]

by Theorem 2.6.

If m> W0, then 1 - Q^(u - d) < e and 1 - ^(u - d) < e . Since n> IV, 1 - <?x(u - d) < e. It
follows that

C ^kd[Qm +Qvm-2Qxn] <46e for k= 1, 2, ...

Similarly,

Now,

v + d

Let /ifc(0 =0k(O - 0k( u- d) for each positive integer kand t e[u - d, u+d]. Then,

= / S" ^ « +Qm - 2QXJ + j *" 0,(u - d) d[Ql +Ql - 2QX]

< 46e for k = 1, 2, ... .

' u-d u-d

* max ,\^k(t)\Vu1d[Q"m + Qvm-2Qx] +
te[u—d,a J

0,(u-d)[^ +^-2gx]|^

[Qu +QV -2QX]
LVm vm vnJ

u-d
Oan) +[1 - On)] +[l-20>„)] +[1 " Q> ~ d^ +tl - 0> - d)] +

[2 - 2Qx(u - d)], 0£(an) < esince u+d</„ <an, and 1- ^(a„) <e, since an <x<rn <v- d. Also,

211/2 - Qx(an) | <2e by the way an was chosen. Since m>WQ, 1- Qun(u - d) <eand 1- QvJu - d) <e.
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Finally, 2 | 1 - ?x (u - d) | < 2e since n > WQ. Hence,

[Ql + Ql-2QXJ
• m c m

u-d

<e+e+2e +e+e+2e=8e.

Since VlQ»m = VlQQm = V>QX = 1, VftQ^ + Qm - 2QX] = 4. Since an < x, there is a positive integer s so
that an < / . Hence, if k > Ns, then max |/^(0| < e- Finally, then,

te[u—d,a ]

Similarly,

Note that

/ "**"[(& +«,-2SJ]
u—d

v + dJ6 ^^^ +Q;-2Qx]

<8e6 + 4e if k > Nr

<8e5 + 4e if k > A7,

a
n

By Theorem 2.6,

=BV [^ +0; - 2^x] ^Bt^"0« +VQ„' +2V(3X] .

V^ = 0>„> - 0>n) < Q°Jan) < e,

and

Vayi =0>„) - ^(6n) ^1- Q>„) +1- QvJbn) <e+e+2e

since u + d < /n < an < x < 6n < rn < v - d and m> W0. Also by Theorem 2.6,

VlyXn =Q>n) ~Qn(bn) ^I1/2 - 0nx(a„) |+|1/2 - Qx(bn) \S e+e=2e ,
by the way an and 6n were chosen. Finally then,

S"<f>kdlQm + Qvm-2Qxn] <5[e+ 2e+ 2e] = 55e .

Hence,

L <t>kd^n\+Qm-WXJ < 4Se + 85e + 4e + 56e + 86e + 4e + 46e = 8e + 29Se

It follows that, if n > W,

, , , . ! rT „ ,. . r n 10e+ 295e|0n(x) - \[Lx +i?J | < e+ V2[8£ +29Se] = = en .

Hence, the theorem is established.
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6. GLOBAL PROPERTIES OF A BOUNDED SEQUENCE OF

ASSOCIATED STEP FUNCTIONS

Theorem 6.1. // rhe hypothesis of Theorem 5.1 holds for each x in [0,1], rhen there is a continuous

function 0 on [0,1] such fhaf cn =j jn d0, n = 1, 2, . .. .
Proof. By Theorem 5.1, lim 0 (x) exists for each x in [0,1]. Let 0(x) = lim 0 (x) for x in [0,1].

n-»co n-»co

Suppose that e > 0 and that x is in [0,1]. By hypothesis, there is a number 8 > 0 and a number N > 0

so that, ify e[0,1], |x - y|<8, and n>N, then |0n(x) - 0n(y) |< e/3. Suppose y e[0,1] and |x - y|<8.
Then, there is a number M>N so that, ifm>M, then |0(x) - 0 (x) |< e/3, and |0(y) - 0 (y) |< e/3.
Hence, |0(x) - 0(y) |< fax) - 0m(x) |+ \<f,Jx) - 0m(y) | + |0m(y) - 0 (y) |<(e/3) +(e/3) +(e/3) =£.
Therefore, 0 is continuous at x.

By Theorem 3.4, lim C j" dd> = c , and hence, lim f 0. djn = c - c .
x-03 •'o * " x-ccTo On

Since lim 0 (x) = 0(x) for all x in [0,1], lim f (0 - 0) d;" = 0 for n = 0, 1, 2, ... by the Bounded

J0 ^ dj" =C0 - Cn "/^Convergence Theorem (Theorem 15.6, p. 71 of [8]). Hence, f <f> djn = c —c or f jn d<f> = c , n

0, 1, 2,

Theorem 6.2. If 0 , 0 , . . . either right slants or left slants except on at most a countable subset of

[0,1], then there is a function 0 on [0,1] such that c = f jn d0, n = 0, 1, 2, . . . .n JQ

Proof. Suppose that d > 0. Let M. be the set to which x belongs if and only if for each 8 > 0 and each

number N> 0 there is a y in [0,1] with ]x —y\< 8 and an integer n > A' so that |0n(x) —0 (y) | > d.
If there is a number x in [0,1] such that 0 , 0 , . . . does not left slant or right slant, let K be the set of

all such numbers x in [0,1].

Suppose that Md is uncountable. Let M'd = M^K. It follows from (Theorem 56', p. 37 of [9]) that
there is a number t in M' such that every segment containing t contains a point of M', both to the left of

t and to the right of t.

Note that r i K. Suppose 0 , 0 , ... left slants at t. Let e = d/2. There is a number /, 0 5 / < t,
so that, if / < 6 < t, there is a number N > 0 so that, if n is an integer greater than N and / = u = v = 6,

|0 (u) —0 (v) | < e. Choose 6 so that M' intersects (l,b). Pick g e M' f] (l,b). Then there is a num

ber r in (/,6) so that |0 (q) —0 (r) | > d for some n > N. This is a contradiction. One gets a similar

contradiction if it is supposed that 0 , 0 , . . . right slants at f. Hence, M . is countable. Let M =
CO

U M . If x £[0,1]\[A/ U K], then the hypothesis of Theorem 5.1 holds, so lim 0 (x) exists. Using
r = i X-.CO

a diagonal process, there is a subsequence 0 ,0 , .. . which converges pointwise on [0,1]. Let
" 1 "2

0(x) = lim 0 (x) for x in [0,1].
X-.CO i

As in the first part of the proof of Theorem 5.1, one sees that 0 is continuous at each point of

[0,1]\[A/ U K]. Since [M \JK] is countable, it follows that 0 is continuous except on, at most, a count

able subset of [0,1]. Since 0 is also bounded, it follows thatJ 0 dj", n = 1, 2, . . . exists.
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Since lim 0 (x) = 0(x) for all x in [0,1], limJ 0n - 0 dj" = 0, n = 1, 2, ... by the Bounded Con-
i—co "i i—a> 0 /

vergence Theorem (Theorem 15.6, p. 71 of [8]). Hence, f 0 dj" = c - c , n = 0, 1, 2, . .. since
Jn o n

lim f 0 d;'n = c - c , n = 0, 1, 2,
J„ ~n •" on

n-co 0 i

It follows (using integration by parts) that

/ ;" d0 =cn, n=0, 1, 2, ...

7. CONVERSE THEOREMS OF SECTION 5

Theorem 7.1. Suppose 0 is a real-valued function on [0,1] such fhat 0(0) = 0 and that c =f jn d0,
^o

n = 0, 1, 2, ... . If 0 is continuous at a number x in [0,1], then the hypothesis of Theorem 5.1 holds at x

and lim 0 (x) = 0(x).
n—co

Proof. Since c = f j" d0, n = 0, 1, 2, . . . , 0 is bounded on [0,1], and hence, there is a number 5
" Jo

so that 6 > |0(x)| if x e[0,l].
e

Suppose e > 0. Suppose 0 is continuous at 0. Let e= ——. There is a number 8, 1/2 > 8 > 0, sorr 0 rr r 5+1

that., if 8 = y = 0, then |0(y) | < e. For each positive integer n,

0 (t)=j1Qt dcf> if t e[0,l] .
o

Integrating by parts and recalling that Qy(V) = 0 if y e [0,1) and 0(0) = 0, one has

St) S + <

for each t e [0,1), n = 1, 2, ... . Let d = 8/2. By Theorem 2.4, there is a number W> 0 such that, if

w > Wand z e[d, 1 - d],

1 - Qz(t) <eif0<t<z-d,

and

<?z (0 < £ if z + d 5 r^ 1

Let n be an integer greater than Wand let 0 < y = d. Then,

I0n(y)l ^j/^dO^j+l/^dOj
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= t^fs] imKW+wK

S eVlQy+ BQy(8)
On "n* '

e+BQan(8)

e+ Be = e

< .. <since by Theorems 2.5 and 2.6, if 0 = y = 8, then

and

VhQy < V1Qy= 1,
On = 0cn '

V\Qy =Qy(S) - Qy(l) =Qy(8) £ Qd(8) < e ,

and similarly for the case x = 1.

Suppose x is in (0,1). Let e = —. By Theorem 3.5, for each positive integer n,
86 + 2

I0n(x)-0(y)! /V ^l - <#

There is a positive number 8 so that 8 < 1/2, 8 <x, x+8 < 1, and, if |x - y | < 8, y in [0,1], then |0(x)
0(y)| < e. Let d = 8/2. There is, by Theorem 2.4, a number W> 0 so that, if z e [d, 1 - d] and w> W,
then

1 -Qz(t)< £if O^r^z -d,

and

Qz(0 < £if z + d= r= 1 .

Suppose n is an integer greater than W, y is in [0,1], and |x —y | < d . Then, by Theorem 3.5,

I0n(x)-0n(y)| rs<t>d[Qx-Qy] SX+Jd[Qx-Qy] .i

"x +
/ , 0 dK ~W

Note that

(~Z<f>d[Qx-Q% BV*-hQx -nv]< b[Vx~ sQx - Vx~ &Qy]
0 Lvn vn ~ L 0 vn 0 vn
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= 5[1 - Qx(x - 8) + 1 - Qy(x - 8)]

< B[e+ e] = 25e ,

using Theorem 2.4 and the fact that 0=x-S = x-d, 0=x-S=y-d, and n > W. Similarly,

.1

x +
S.t*dux»-W <25e.

Let ji(t) = 0(0 —0(x) for t in [ x - 8, x + 8]. Then,

/x+s, *dK - <% =r\*dK - w +r'; #*> *kk - cnn

since

and

and

It follows that

<= max M0Wx+_\lQx-Qy] +
t£\_x— otx +OJ

0(X)[CX-Cnn

5 max |»(0| •2+S[Cx(x +S)+<?>;(x +S)
re[x—S,x + SJ " "

+ l-Qx(x-8)+ 1-Qy(x-S)]

= 2e+6[£ + £ + £ + £] = 2£+4Se

|/t(r)| = |0(O-0(x)|<eif |f-x|<8,

VX +\[QX - Qn = VX +\QX + Vx +lQy £ V1Ox + V1Qy = 2 ,
x— SLvn vn x—ovn x— $ n O^n On . '

ex(X + s) < £,

«x + 8) < e ,

1 - C*(x - 8) < e ,

1 - <?x(x - 8) < e

|0n(x) - 0n(y) | < 26e+ 2e + 45e+ 25e= 85£ + 2£ = £Q



31

It remains to be shown that lim 0 (x) = 0(x). In the cases x = 0 or x = 1 this is obvious since
n-co

0 (0) = 0 = 0(0) and 0 (1) = c = 0(1), n = 1, 2, . . . . For each positive integer n,

|0(x)-0n(x)| = 0(x)-/ £>xtf0 0(x)+/n 0d<?x =/ 0<-/o 4>dh / <f>d[Qx-h]

where

Also,

and

h(0
1 if 0 = t = x ,

Oif x< t^ 1 .

f1<f>d[Qx-h] S f <frd[Qx-h] +J Jd[Qx-h]
J r> U J ft "V — ft

/ s0^nx-/>]

/
d[Qx-h] BVX~S[QX - h] ^ BVX~SQX^ B[l - Qx(x-8)] ,

jx+s0 d[Qx - h] =< BVxjQx - h] =< BVx +,Qx =6Qx(x +8)

Let ft(0 = 0(0 - 0(x) for r e [x - 8, x + 8]. Then,

C i>d[Ox-h] < / 0(x)d[Qx-h]
^x—8 "'x—8

JX +%d[Qx-h]
'x-8

0(x)[ex-/>] + max Jri(0|Fx:V<?n-ft]
r e|.x— o,x + oj

6 [Qx(x + 8) + 1- <?x(x - 8)] + max |^(0I • 2
n n <e[x —S,x + M

2e+6[<?x(x + S)+ l-Qx(x-8)]

since |̂ (0 |= |0(O - 0(x) |<eif r e[0,1] and |x - t\<8, and since Vxx^\[Qx - h] SV$QX - h]

V1QX +V1h= 2. Hence, if n > W,
0vn 0

/ 0c/[<?x-h] < 5e+ 2e+ 28e+5e= 45e + 2e= eQ. Hence,

|0(x) _ 0n(x) | < eo ifn> W. That is, lim 0n(x) = 0(x).
Theorem 7.2. Suppose 0 is a real-valued function on [0,1] such rhaf 0(0) =0and cn =j jn d0,

n= 0, 1, 2, . .. . // 0(x-) exisrs, then 0^0^ ••• left slants at x, and 0 ^ 02, ... /eft s/anf converges

at x to 0(x—).
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Proof. Since cn =j j" dcp, n=0, 1, 2, . . . , 0 is bounded on [0,1], and hence, there is a number 5
such that 5 ^ | 0(x) | if x e [0,1]. Suppose e > 0 and let e = —°—

0 ,85+2
< , , b l-x

if0<x-6 = y<x, then 0(y) - 0(x) < e. Let 8 = min —,
\4 4

. There is a number 6 > 0 such that,

By Theorem 2.4, there is a number

W> 0 such that, if w > Wand z e [8, 1-8], then

< * <1 - gz (0 < e if 0 ^ t ^ z - 8 ,

and

£>z (0 < e if z + 8 £ f = 1 .
26 6

Let / = x -, d = x - -, and A' = W. Suppose that 1= u = v= d and that n is an integer greater than N.
By definition,

I0n(v) - 0»1=f1 [Qv - Q»] d0 =/ 0d[0* - Q«]

Now,

f1 0diQl - <?„"]!=< jr" 0d[Ql - q«] +j*-<6/4) 0dfe; - 03 +J1 0dtp; - ^]
x-b x-(6/4)

Note that

rx-6

0
/ 0 d[Qn- -c ^ =sFr [^n - ^ =s ^rx+Fr6 Q$

= B[l - Qv(x - b) + l-Q»(x-b)]

<6[e+ e] = 25e ,

using Theorem 2.6 and the fact that v e [8, 1 - 8], u £ [8, 1 - 8], 0 = x - 6 = v - 8 and 0 = x - 6 <

u —8. Similarly,

.1

/ 0 d[Q^ - 03
Jx-(b/4) " "

< 26e .

Let n(t) = 0(0 - 0(d) for r e [x - 6, x - (6/4)]. Then,

f ^0d[0v-Qu ,x-fD/4; / ( 0(d) d[Q^- 03
x—b

max JK0l^:^/4;[Qnv-^]
te[x-b,x-(b/4)] "

0(d)[?I-O"]
x-fi>/4;

x-6

= 2£+ 6 [£+£+£+£] = 2e+ 46e

n " n
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(1) |/x(0 I= 10(0 - 0(d) |<eifx-6<f<x,

(2) Vx-(b/4> [Qv - <?°] £ V]\QV - Qu] £ VlQv + V'O" =1+1=2,
v ' x — b LV n n On E n On On '

x-f6/4;

x-b

6

<QB\* -fy Q"J^ -^)+ 1-C> -6) +1-Qn"(x -6) <e+ e+ e+ e
L

< 1 n <

(3)

where

Note that

[Qvn - Q$

inasmuch as v + 8 = x = 1, u + 8 = x = 1, 0 = x-6 = x-S, and 0=x-6=u-8. Hence,
4 4

|0 (v) - 0n(u)|< 25e+ 2e+ 45e+ 26e= 2e + 85£= eQ .

Thus, the sequence 0 , 0 , . . . left slants at x.

It remains to be shown that 0 , 0 , . . . left slants at x to 0(x-). By Theorem 5.2, 0t, 02, ... left

slant converges to a number L at x. Hence, it is now to be shown that L = 0(x—). Let n > Wand

u in [/, d]; W, 1, and d were previously defined. Then,

!0n(«) - 0(X-) |= |0„(U) - 0(U) |+ |0(U) - 0(X-) | < £+ |0n(u) - 0(U) |

since 1 = u = d. Also, by definition,

|0 (u)-0(u)| / <?" c/0 - 0(u)

h(t)

-f 4>dQ«+f 0dh

1 if 0 = f ^ u ,
0 if u<tS 1 .

J 0d[Q^-h] rx 60d[Q" - h] +/x+b 0dtp" -h] + r 0dtp" - h]
'x-b

Furthermore,

= f 0 d[Qnu - h]

,i

'x+6

f "0d[Q» - h] ^ 6FX-6[QU - h]= S[l - Qu(x - 6)] ^ Be

<.. «. <since n > W, u e [ 8, 1 —8] and 0=x —6=u —8. Similarly

/. „*"»:-"'x+b

Let fz(0 = 0(0 - 0(d) for t e [x - 6, x - (6/4)]. Then

x-(b/4)

iBe

j~.*/4V».--m r1 d[0" - 6]
x-b x-b

/X-;6/4;0(d)d[On"-6]
x-b
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S max \^t)\Vx^b[Q"n-h]
te[x-b,x-(b/4)] x D n

= 2e+ 6[e+ e] = 2(e+ Be)

0(d)[Q" - h]
x-(b/4)

x-b

(1) |KOl= |0(O-0(d)l<e,

(2) l-^(x-6)<e,

(3) °"(X-^)<£'
(4) VxxZ(b/4)[Qun - h] <V^ +V'h =1+1=2.

Hence, |0n(u) - 0(x-) |<e+5e+2e+26e+5£=3£+4Se<eo. Thus, 0x, 02, ... left slant converges
at x to 0(x-).

There is a similar theorem for right slant convergence.

Theorem 7.3. Suppose 0 is a real-valued function on [0,1] such rhat 0(0) = 0 and c = f jn d0,
n = 0, 1, 2, . . . . /f each of 0(x-) and 0(x+) exisrs for some x in (0,1), rhen 0 ,0 , . .. both left and
right slants at x and lim 0n(x) = 1/2[0(x-) + 0(x+)].

_ n-co

Proof. By Theorem 7.2, 0 , 02, . .. both left and right slants at x and both left and right slant
converges at x to L = 0(x-) and R = 0(x+) respectively. By Theorem 5.3, lim 0 (x) = '/ [L + R ].

nm

It follows that lim 0 (x) = \i[0(x-) + 0(x+)L

8. TWO ADDITIONAL THEOREMS

Two theorems are proved in this chapter. The first gives a derivation of a known result (see, for

example, [3]) by means ofthe theory developed in this paper. The second theorem is new and gives a
connection between Bernstein polynomials and slant convergences.

Theorem 8.1. // cQ, c^ ... is a real number sequence such that the associated step function sequence
0,. 02, . . . is of uniform bounded variation on [0,1], rhen there is a function 0 of bounded variation on
[0,1] such that lim 0 (x) = 0(x) for all x in [0,1] and c = f jn d0, n = 0, 1, 2, .. . .

n-co n n Jq
Proof. Suppose 0^ 02, . . . does not left slant for some number x in (0,1]. Then there is a number

e > 0 so that for every number /, 0 = 7< x, there is a number 6, 0 = / < 6 < x, so that if A7 is a positive

number then there is a triple of numbers u, v, and n, where / = u = v = 6 and n is an integer greater than

Nsuch that |0n(u) - 0n(v) |>e. Let 1Q =0. Then there is anumber bQ, 1 <6 <x, so that for every
N > 0 there are numbers u, v, and n, / = u = v = 6„ and n > IV such that \d> (u) - 0 (v) I> e. From

u o ' ' n ' n
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Theorem 4.6, it follows that there are number sequences ld.}._'0, {6.1 , {c .\™_ , {d.\._0, and 1^.!^ such
that

(1) aQ = 0 ,

(2) a. < 6. < x, i = 0, 1, 2, . .. ,

(3) d. = x - 6., i = 0, 1, 2, . . . ,

(4) c. = min [d./4, e/4], i = 0, 1, 2, ... ,

(5) a.+l = x-(d./2), i=0, 1, 2, ... ,

(6) if A7 is a positive number, there is an integer n > N and a pair of numbers u,v, a. = u < v = b{, so .

that |0n(u) - 0n(v) |> £if i =0, 1, 2, .. . ,

and

(7) M. is a positive number so that, if m is an integer greater than M., then

b +c

K ' ; 0 > £/2, i = 0, 1, 2, ... .
a —c "m

i i

Now

/ d\ . x —6 d x + 6 x —b x b b
a _c = x--2 -c ^x a__l = o i=_ + _o+_i>0.
11 \ 2 / l 2 4 2 4 424

Hence, 0 < a - c . Also (6. + c.) - (a. - c.) = 6. - a. + 2c > 0. Hence, a - c. < b. + c., i = 0, 1, 2, ..

Note that

d. x-b. x — b.

(ai+i ~ci+i> - <6i +CP =x- ^ ~c/+i - b- ~c- =x i " ^ " c— - c- = ' - c— - c^/; o i;+li o i +l i

.d. d.x d. d.-d.. b., -6. a., -6. x - (d./2) - 6.> i _ i +1 __i _ i l+l _ i +1 l > ; +1 l _ ____!_' I
~2444 4 4 4

x - (x - 6./2) - 6. x-6
I > 0

Hence, 6. +c. <a.+i - c.+] if i = 0, 1, 2, . . . . It follows that 0 <a. - c. < b. +c. <a.+i - c.+i < 1 if
i = 1, 2, . . . . Let 6 be a number such that 5 > V'0, , &= 1, 2, . .. . Let L be a positive integer so that

0 *f

(L - l)e/2 > 6. Let M= A/ + Af + .. . + M^. If mis an integer greater than M, then

6 +c £
i/ ' '0 > - i = 0, 1, 2, ... , L ,

1 —C r-~
i i

id since 0 < a. - c. < 6. + c. < a.,, - c. . < 1, i = 1, 2, ... it follows that
i i i i i+i i+i
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L b +c

y v ' ' 0 <v1d> < 5
Zj a. —c "/n o^rn
/=1 ' '

L b +c £

But r I/a'_c'0m >(L-1)—> 5: a contradiction. Hence, 0 0 ... left slants at x for all x in (0,1].
i=i ; '' 2

Similarly, 0 , 0 , . . . right slants at x for all x in [0,1). By Theorem 5.3, lim 0 (x) exists for all x in
n~co

[0,1]. Let 0(x) = lim 0 (x). Then, by Theorem 6.2, f j" d0 = c , n = 0, 1, 2, . . . . That 0 is of bounded
n—co n 0 "

variation on [0,1] follows directly from the facts that V^(f>k = B, k= 1, 2, . . . , and lim 0 (x) = 0(x) if x
n—co

is in [0,1].

Theorem 8.2. Suppose f is a bounded real-valued function on [0,1]. // f(x—) exists for some number x

in (0,1], then B , B , .. . left slant converges at x ro f(x—).
e

Proof. Let 5 be a number so that 5 = |f(x) Iif x e [0,1]. Suppose e„ > 0 and let e = °— . There is
< r I i 46+1

a number L, 0 = L < x, so that, if y is in [L,x), |/(y) —/(x—) | < e. Let h = x —L, a = L + (h/4), and

7 = L + (h/2). If a < d < x, let 7c = x - d and c = x - (k/2). (See Fig. 3.) There is by Theorem 2.4 a

positive number W so that, if w > W and z is in [&/8, 1 —(7c/8)], then

1- Qzw(t) <£if0=f ^ z - (*/8) ,

and

Ql(0 <e if z +(*/8) £ f£ 1 .

Let W be a positive number so that 4/W < d —1. Let N = W + W . Suppose n is an integer greater than

IV and y e [7,d]. Then

\f(x-) - B[(y)\ ^-so^-H-sc n-r/(x-)-/ (-)|y'(l-y)

sc. n-r/(x^-Zf-lly'd-y)' S.Cr=n + l

f(x-)-f[-)\y'(l-y)"-t
n,

f(x-) - /

t=n +1

t,* sn —r

y (l -y)
r=0 XV (=n +i \l/

+ 25

n

t=n +l\V



where a £

2 >-^-,2C7^0 V r=n + 1 \ '

0 = y = c . Hence,

nn+l\ lnn+1
a a ' and c £ _£, _£ ) since Q
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••to f(l-;)n-fand 1-^=1-

< <;'(1 _ ;)"-r. But <?a(y) < £ and 1 - <?c(y) < £ since a + - S y ^ 1 and
" " 8

|/(X_) _ 5f(y) | < 26£+ £+ 25£ = 46£ + £= £

if y e [7,d] and n > N. This establishes the theorem.

ORNL-DWG 65-5573

fU-) = Lt

J2 d x

Fig. 3. Left Slant Convergence at x.
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9. CONCLUSION

This work deals primarily with the moment problem for a bounded function on [0,1].

Given a number sequence c , c , . . . one constructs a certain sequence of step functions 0 , 0 , .. .

on [0,1] which are called the associated step functions for c , c .... . It seems natural to try to construct

as some kind of limit of 0 , 0 , ... a function 0 which generates the sequence c , c , ... in the sense

that c^ =J j" d0, n=0, 1, 2, . . . .
Using only the hypothesis of uniform boundedness (Sect. 4) of 0 , 0 , ... , it was found that the num

ber sequence i^o0 ! is a nondecreasing sequence with a rate of growth not exceeding fn [i.e.,

Vx<f) = 0(\fn), n = 1, 2, . . .]. This is considered "small" in view of the following: For a sequence

cQ, c^ ... bounded in magnitude by a number Mone finds that ^0 = M3", n= 1, 2, .. . since V1^ =
n .

2j( )2n-'M =A73", n=1, 2, ... . Arecent result of J. W. Neuberger, (Theorem B, p. 245 of [10])
r=0 V/

states that no two continuous functions f which satisfy an inequality of the form

"-' '" t\ . I Iv-u

?. , (-l)'f{u + i
i / \ \ n

= A/(3 - e)"

for some e > 0 and all u,v in [0,1] have the property that they agree on any subsegment of [0,1]. The

initial expectation that "0((3 - e )")" would be a significant "rate" in the study of moment problems
seems not to be realized.

It is to be noted that for each number x in [0,1] a continuum is produced as stated in Theorem 4.9.

This indicates how closely the sequence 0 , 0 , ... is "knit" together over the entire interval. Theorem

4.7 presents a tool for determining subintervals over which the variation is large. This leads one to

examine the local behavior.

In Sect. 5 some positive results are presented for local behavior which results in convergence at a

point in the ordinary sense or in a new sense. Using the "slant convergence" it was shown that, given

a moment sequence generated by a quasi-continuous function, the following is true: the pointwise limit

of the associated step function sequence converges to a normalized function which also generates the

moment sequence. Hence, the usual procedure of normalization is unnecessary.

Having noted previously the strong dependence of this work on Bernstein polynomials, it is of

interest to point out the strong similarity between certain theorems. Compare, in particular, Theorems

2.1 and 5.1, Theorems 2.2 and 5.3, and Theorems 5.2 and 8.2.

Theorem 8.2 indicates that slant convergence is applicable to problems other than the one settled by

Theorem 5.2.

Section 7 along with Sect. 5 points out that if the moment function 0 has a certain local property, this

property is "carried" by the associated step functions produced by the moments generated by 0.
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One can interpret the results of Sects. 4 and 5 in another sense. If the associated step functions do

not converge at a number x in either the ordinary sense or the slantwise sense, there is extreme oscilla

tion about x, and a continuum is produced at x. This leads one to suspect that if d > 0, the set M . to

which x belongs if and only if x is in [0,1] and the length of the continuum at x is greater than d is

nowhere dense in [0,1] since

lim /1;'"d0fc =cn, n=0, 1, 2,
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