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CONCERNING THE MOMENT PROBLEM

G. G. Johnson

1. INTRODUCTION

By the moment problem for the real number sequence c¢_, ¢ . and the interval [0,1], one means the

problem of determining a real-valued function ¢ on [0,1] s;ch tlhat c, :fol jfdd, n=0,1,2,.... The
integrals involved are ordinary Stieltjes integrals, and j is the function such that j(x) = x for each number
x. If each of fand g is a function, then fg denotes the function h so that h(x) = f(x)g(x) for all numbers
x for which f(x) and g(x) are defined. If nis a positive integer and f is a function, then f is the function
A so that A(x) = [ {(x)]" for all x for which Kx) is defined.

A motivation for studying the moment problem lies in functional analysis. Fredetic Riesz has shown
[1]* that every bounded linear functional T on the set C‘[O,I] of all continuous functions on [0,1] has a

representation Tf = [} f da, where ais of bounded variation on [0,1]. One way of establishing this re-
0 g

sult was found by T. H. Hildebrant and I. J. Schoenberg in 1933 [2]. Given a bounded linear functional

T on C[O At they considered the moments Cyr Cpo v en sy where c,= Ti", n=0,1,2.... Then, a function
¢ of bounded variation was found so that c, =f01 jfdp,n=0,1,2,.... Ineffect, the moment problem
for Cyr Cyr »+- Was solved. It was then shown that this function ¢ gave a representation for T; that is,

Tf:joI f dep fo‘r all fin C[o,l]’
It is felt that the results of this paper make a contribution to extension theory for unbounded linear
functionals on c[o,x]'
In this paper, the theory of Bernstein polynomials is used extensively. In fact, the motivation for
the present work is based on some considerations of Bernstein polynomials. If fis a function on {o,1]
n (N t
and n is a positive integer, the nth Bemnstein polynomial associated with f is Bi(x) =3 < >[<—> x'{1 -
t=0\¢ n
)"0 SxS1. Suppose ¢ is a function on [0,1], ¢(0) = 0, and c, =f01 jfdé, n=0,1,2,.... Suppose
0<x<1. Then,

¢(x) = ~f} & dh , where

heo) 1if0-§t§x,
t) =
0 if x<t=1.

An integration by parts gives
(%) =f01 hde .

A Kk [n k k+1
The nth Bernstein polynomial associated with h is Bn(y) =3 ) yi - y)“"‘t where x €| —, .
= n n
(See Fig. 1.)

¢

One might expect that ¢(x) is ‘‘approximated’’ by

fol B: d¢é , which is

*
The numbers in square brackets refer to the Bibliography at the end of this paper.
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since c_ =f01 j"dp,n=0,1,2,.... Hence, for each 0 < x < 1, one might expect that ¢(x) is ‘““‘approxi-

k [N\ n—t/n — ¢ , k k+1
p> <> ) < } )(—1)’ c,,p Where x 5{_, > .
0 1 n n

t=0 Mt/ i=¢

]

mated”’ by

k n— — t ,
Define step functions ¢, ¢, ... on [0,11by ¢, (0) = O and & (x) = 3 (") z'(" ‘ )(—1)'ci+t if
=0 \t/ 1=0 1

k k+1
X 5[ N (0,1] for each positive integer n (see Fig. 2). Note that the step function sequence

n n
¢1, ¢2 ... is defined in terms of Cys Cpsvve s
heuristic considerations lead one to expect that the step function sequence ¢’1’ ¢>2, N
Felix Hausdorff

Hence, given a real number sequence Cor Cprvvvs

so formed

might approximate some function ¢ on [0,1] such that c, =f01 jfdp,n=0,1,2,...

[3] in 1921 used these step functions to give necessary and sufficient conditions on a sequence
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Fig. 1. lllustrating Bernstein Polynomial of a Simple Step Function.
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Fig. 2. lllustrating Definition 5 of an Associated Step Function,
n

.. in order that there be a function ¢ of bounded variation on [0,1] which generates the moments
Cyr € Hubert S. Wall [4] stated and settled the moment problem for nondecreasing functions ¢ on
{0,1]; I. J. Schoenberg [11] studied the completely monotonic case.

Higher dimensional moment problems are treated in Shohat and Tamarkin [12] as well as moment
problems for the half line and the entire line. Also, necessary and sufficient conditions are given so
that the moment problem on [0,1] has a solution ¢(f) =f0t ¥ (u) du, where ¥ ¢ Lp[O,l], p> 1 as well as
a solution () =f0t ¥ (1) du, where ¥ is bounded on [0,1]. Ahiezer and Krein [13] treat various problems
on [0,1] in greater detail than Shohat and Tamarkin. It should be noted that the results given, above all,
deal with moment sequences which are generated by functions of bounded variation.

James H. Wells in [6] gives the following necessary and sufficient condition in order that there be

a quasi-continuous function ¢ on [0,1] which is a solution to the moment problem: (1) There is a number

M > 0 so that
§<n>nit<n—t>( 1)1-
—1)’c,
t=0 \t/ 1=0 \ | i+t

and (2) if x € [0,1] and € > 0, there is a number § > 0 such that, if x - §<z<w<xorx<z<w<x+§,

<M, 05i%n, n=1,2,3,...,

then there is a positive integer N such that, if n > N,

<E€E.

n4<p=<=nw y i=0 nz=p<nw

l z C)nff’(n - P>(— l)ici+p + 2 <Z>’:=2-OP <n - p> (- l)ici-i-p

1 1




Since a quasi-continuous function is not necessarily of bounded variation (but all functions of bounded
variation are quasi-continuous), Wells’s result represents a departure from the study of moment sequences
generated by functions of bounded variation. This paper gives a second contribution to the moment problem
in the nonbounded variation case. Local properties of the sequence of step functions noted above are
studied. These results are then applied to extend the study of moment problems beyond the quasi-

continuous case.

2. SOME PROPERTIES OF BERNSTEIN POLYNOMIALS

Definition 2.1. Suppose f is a function on [0,1] and n is a positive integer. The statement that Bi is

the nth Bernstein polynomial associated with f means

n [0 t
Bl(x)= 3 ( >f<_>x‘(1 —x)"~tif x €[0,1] .
t=0 ‘t n
The proofs of the following three theorems can be found in [5] Chapter 1 and are omitted here.

Theorem 2.1. Suppose f is a bounded function on [0,1] and x is in [0,1]. If f is continuous at x, then
lim Bfl(x) = f(x). If f is continuous on [0,1], then this relation holds uniformly on [0,1].
n_)mTheorem 2.2. Suppose f is a bounded function on [0,1] and x is in (0,1). If f has a discontinuity of
the first kind at x, then lim Bi(x) =l [f(x—-) + f(x+)].

Theorem 2.3. Iffis I:a_):ondecreasing (nonincreasing) function on [0,1] and n is a positive integer,

then Bﬁ is nondecreasing (nonincreasing) on [0,1].

Definition 2.2. In the case

define Bi = QL
Theorem 2.4. (Wells [6].) If € > 0 and 0 < d = 1/2, there is a positive number N such that, if n is an
integer greater than N and z is in [d, 1 — d],

1-Q%(x)<e if 05xSz—d,
and
QZ(x)< e if z+dSxS1.
Theorem 2.5. 1f0Sy Sz =1 andn is a positive integer, then QY (x) s QZ(x), x €[0,1].
Proof.

n n n
0500~ $(7)xa —or= it e{—y, V“) :

t=0 n n

and

nz n nz nz*1
Q% (x)= 3 ( >xf(1 —x)"tif ze [_, > .
n t=0 ‘ n

=0 n



n

Since y < z, -n—y s nz, and hence n, S n,. If n, =n, then Qi(x) = Qr’:(x). If n <n_ then Qi(x) = QI}:(X) +

n

z n
T < > x'(1 = x)"~% Since ji1 — j)"~!is nonnegative on [0,1]1if 0 = ¢ < n, it follows that QZ(x) 2 Qr’:(x)
t:ny+1 t
if x €[0,1].

Theorem 2.6. If each of a, b, and c is a number in [0,1] such that a hS b, and if n is a positive integer,
then

VEQS = Q@) ~ QS(b) .

Proof. If c is in [0,1] and n is a positive integer, Qs is nonnegative and nonincreasing on [0,1].

3. ALGEBRAIC PROPERTIES OF A SEQUENCE OF STEP FUNCTIONS

12 Cprven is'a real number sequence and n is a positive integer. The

statement that gbn is the nth step function associated with Cyr

¢ (0) =0

Definition 3.1. Suppose Cyr ©

» Cyr +-. means that

and

=5 ()8 ("7 ) viey,, it xe0al,

=0 ‘\t/ i=0 1

k k+1
where k is the nonnegative integer such that x is in [—, > . If t is an integer and 0 S¢S n, then,
n n
n\ n—t -t -
by the tth step of g’)n, one means< > > < . )(—1)‘ci+t; this number is denoted by S (f). The sequence
t/ i=o0 1

by g’)z, ... is called the associated step function sequence for Cyr €41 C . or when it is clear, simply

42 Cpr v
the associated step function sequence. Theorems 3.1 and 3.3 can be found in [3].

Theorem 3.1. Ifn is a positive integer, if t is an integer, and if 0 St S n, then

A [Sas® S, E+1)
S“(t):<t>‘:n+ a1 }

S

n—t (/m+1—t¢ n -t v
Soet E’o {( i >—-< i >] (1) 1Ci+t+1
nete1 |+ 1 =t n—t 4
=Ct 1=20 [( i1 >—< ; >} (-1) 1Ci+t+1




Nnete1 /N — 1t
=c,+

i +
AL A

ne=t/n — 1t i
=ct+1=21< . >(—1) it

1

= (e,

=0 \ |
S_(8)
()
t ey
Theorem 3.2. If each of m, n, 1, and s is a nonnegative integer such that m >t Zsandm —r+s 2 s

nio,then
& <n> & <s> 1 n r—i——l m-r+s —k+t <r—s—1+k—t>S @
m \m/ *\:i/ (F) k:zs:ﬂ t=0 t k—-s-1 m
r
1 m—r+s r m—-r+s—k+t r—s—1+k——t>S @
- (;) k=§+1 t:zr:—-s t k-s-—-1 m*
r

Ifs+1§k§m—r+s,then

m r MmM~r+s—k+t\/r—s—-1+k—t
<r>=z§o< t )( k—s-1 )
A special case, when m = r + 1, was proved by Hausdorff in [3].
A proof of Theorem 3.2 is omitted since only the special case is used in this paper and the only
available proof of Theorem 3.2 is very long.
It is remarked, however, that a study of the formula in Theorem 3.2 led to many of the results of

this paper. In every such case, however, a shorter argument independent of Theorem 3.2 was found.

Theorem 3.3 If n is a positive integer,

M Vig, = Z 15,0,

and
(2) Vie Sy!
0¢)n o¢n+1 :

Proof. Statement one is true since the right side of (1) is the sum of the absolute value of “‘jumps”’

of ;6“. To show that (2) is true note that

Vi, = % Is (0|
t=0




<n> Sn+1(t) . Sn+1(t +1)
(n + 1> <n + 1>

<1 () 5pe®] 15,1, D)
= 2 . +

e
(o),
/n+ 1 + 1
")

=15, O] + tﬁ IS, (Ol +1S_, (a+ D)
=1

IS, 4, (0] + 21 1S, +18,, (@ + 1)

- 1
- V0¢n+1 :

Theorem 3.4. For each nonnegative integer n,
lim [0 " dp =c, .

k —®

This theorem is attributed to MacNemey by Wells, and a proof can be found in [7].

Theorem 3.5. For each positive integer n,

n~—t -t A
@ s fr(V)E (7)) eoit e -8,

k00 i=0 1

@ lim [!QXde, = ¢,(x) if x €[0,1],
Kk 0

and

3) ii_.n; -fol ¢, dQX = ¢, (x) if x €[0,1).

Proof. The proof of statement one follows directly from Theorem 3.4 and the definition of S (f). To

show that statement two is true, note that

n. n_+1

¢ (D=3 SO if xe [—x, ) N ©,1].
t=0 n n

¢ ()= % lim 1 <f:> "3 <n-.—f>(_1)iji+z dep,

t=0Q k—® =0 1

lim fol E’; <n> ni-:t <n — t) i l)ijiH quk

k~—® t/ i=o0 1

lim fol 0y dy »

kX



n

nce 0% = 3 (Mift — == F (N F ("7 =1 To establish that (3) i h
since Q) = ¥ . - = r?o , 120 . (=1)Yj'""". To establish that (3) is true, note that,
=0 = = 1

on integrating (2) by parts, one has that lim [¢>k(1)Qr’f(1) — qSk(O)Q:(O) —fol by dQﬁ] = gbn(x). Since
K~
¢, 0)=0,k=1,2,...,and Q;‘(l) =0ifx#1,n=1,2, ..., it follows that lim fol by dQﬁ =~ (x) if
k=00
05x<1.

4. PROPERTIES OF A BOUNDED SEQUENCE OF ASSOCIATED STEP FUNCTIONS

¢, ... 1s a real number sequence such
0’ 71

. is uniformly bounded on [0,1].

In this and the following two sections, it is assumed that ¢

that the associated step function sequence ¢, ¢,, .-

n n\ /t\" ty\ 2t -
Theorem 4.1. If each of n and t is a nonnegative integer such that 1 +t s K then <t> <—> <1 — -> >
n n

< n )<t+1>”1 <1 t+1>“*t"1
tel . . o 1\? 1 \te a+1\° a+2\2'
Proof. If a is a positive integer, <1+—> < <1+ > , and > < . Inverting,
as+1\att a a a l+a a a+1
< . Hence, if d is a positive integer,
a+?2 a+1
at+d atd a a
— < .
<a+d+1> <a+1>
n
Suppose n is an integer so thatn—a—12a+1, i.e.,—2-§a+1. Then,
n—a-1\n—a-t a \?
—_— < .
n—a a+1

Hence, (a+ 1)(n —a — 1)"~2~! <an - a)"~¥~! and

<">(n _a (a+1)* (0 —a-1""a7! <<n) a? (n - a)"~® .
a

a atl n—a-—1

n n a n—a

n n

Therefore,

OEDED (-5 06 (-3 |

n a+1 at+i1 a+1 nNea—1\ n a\? a n—a
() (-5 OR) (-
a+l n n a/\ n n,
n -
if=2 a+ 1, since <n> S < . >
2 a/\a+1 a+1

Theorem 4.2. If each of n and t is a positive integer, 0 <t <n, then

and hence,

= I T Y T




Proof. By Stirling's formula,
1
7_2 2n7 n"e™ " <n! <\/2\2n7 ne"",

and hence,

n

|

n n! 2\/n7 nle”
O
( > n - o) twtle=t Jln = Dr(n — )t—te— M

b LD a-g

similarly for the remaining portion.

and

Theorem 4.3. There is a positive number A such that

(! £\t
£<n><_> 1—_ >Avyn forn=1,2,3,....
t=0 \t/ ‘n n

n
and k = [5] forn=2,3,.... By Theorems 4.1 and 4.2,

Proof. Let A =

V327

A -8

vn n+1 > vn 1 — 3
a7 % K\ 47 L2 327
n —<1——> 33
n n

Theorem 4.4. There is a positive number B such that
t

> C)(i) <1 _i\)n—t <Bymforn=1,2,....

t=0 n n
22 + 202 S n
Proof. Let B=————, and for each integer n 2 4 let the sequence k, .= 7 fori=1,2,...,
77 ?
n n. n
t , where — < [—= . By Theorems 4.1 and 4.2,
n t t
2 n i 2 n—1




10

k
kﬂ,3 - kn,a
1 -
n n
k
. n,i+
kn,i+1 > ik <
n

n—-k
1 —

3
+ ..
n

n,
k n—k, i+
n,it1

4 1
+ [k, , _1+1]}§2 [k, , -k, ,+1] I~
kn,z n,2
S (-B)
n n
4 1
* [kn 2 = kn,a] 7; *
yar
n,3 n,3
n <1 - n
4 1
* [kn,z n,it1 - t.
T ) S ,
n,it1 n,i+1
1 - >
n n
4 1
+ [k k] — + k




11

Note that

(& + 1] _4_

-k
n,i n,iti

2t 2it

fori=1,2,...,t —1,

n

Hence,

no/a\ /t\" t“—f< - t =1 = 10 -
S0 (2,

< n
=2\/:[1+10(1+ﬂ)]=3\/5.
m

t

t £\t
Theorem 4.5. There is a positive number C such that ISn(t)l sc <n> <—> <1 - —> for each posi-
t/ \n n

tive integer n and 0 StSn.

n . n .

Proof. By Theorem 3.5, S (1) = lim f0’< >j‘(1 - )"tdg,. 0S5 t<n, |S (0 = :ug lfol b, d<t>]'(1—
k t -
j)”_'l, since [1 -~ H""A)=0if 0 St<nand ¢, 0)=0ifa=1,2,.... Foreach positive integer a,
]fol b, d<">j'(1 - j)“-‘[ s BOV(’)<n>j‘(1 — )", where B 2| 0] if xef0,11andi=1,2,.... Now
t t t t
%1 — H"—!has a maximum point at —, is increasing on |:0, —], and is decreasing on [— , 1} , and
n

()ita -j>“”tJ(0>=[<r:)f'(1 )0 < ¢ <n. Hence, V! () (l_j)n-tgzno Gﬂ )
¢ n—t n
_> . Hence, |S ()| $2 B, <t>
t

t t ¢ n-t¢
. < - < -
- (;) <1 - ;) if 0 = ¢t <n. Also, |Sn(n)| = |Cn| =2B . LetC= 2B
t t

t
0-

/

n ne¢t
It follows that [Sn(t)l §C< ><—> (1 —-—> if0StSnandn=1,2,....
t

n n

Theorem 4.6. There is a positive number D so that V(l) b, S Dyn forn=1,2,....

Proof. By Theorems 3.3, 4.4, and 4.5,

t tn——

Vo dn= 15,00 5c 5 (1) (5) (1-2)

t
SB.Cyn=Dyn.
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Theorem. 4.7. Suppose a and b are numbers, 0 Sa<bs 1, and € > 0. There is a number N > 0 so
that if n is an integer greater than N, there is a number M > 0 so that, if m is an integer greater than M,
then V:¢n < VZ:EE b, t+ €

Proof. If a =0 and b = 1, then the result follows by Theorem 3.3. Suppose a=0and b<1. Let B
be a number such that B 2 lgbi(x)] if x€[0,1land i=1, 2, .... Let d be a number such that 0 <d < €,
b+d<1,d<b,and d <1/2. By Theorem 2.4, there is a number N "> 0 such that, if n > N"and z € [d,
1 - d], then

€
1 — Q%(x) <— ingxéz-—d,
02 <=
and

€
Q%(x) < —ifz+dSxS1.
A< 3

Choose N > N “such that > b. Let n be an integer greater than N. By Theorems 3.2 and 3.5, there

is a number M > 0 such that, if m is an integer greater than M, then

c n, nb+1
<§whereb6\—, >

n
t

Vi — tngbo |j'0‘< >j‘(1 - )t de |

3
=3

n
0\

e T
Hence, Vg b, <E+ t§0 1< >J't(1 -t qumI . Note that

¥ fo <n>1"(1 _jrtdg, | F [ o <n>i’(1 - "t dg ]
=0 170 \¢ Ml = Y0 t m
n
gy n 5 cp4d (M)t n—t
+ 2 fbﬂd( )j‘(l —irtdg, |$ 2 f0 0N, )= |, |
=0 ( =0
g n
. n .t Nt : . .
since . il =5 is nonnegative on (0,11 ¢t =0, 1, 2, ..., n. Integrating each term in the sum by

parts and recalling that ¢ s n, <n, one has that this last expression is less than or equal to

n

b+d  [P).¢ ~n—t " n ¢ n—t
L g (")ita - =t aa, | + 2 {18,060+ ) (’)<b+ A1 = b+ d)

(
[, b, d (:')f‘<1 — it , }

nb n
By definition, QZ = 20 (t)jt(l — )"~ Since 0 S Qg(x) 1 and |¢m(x)| < B for x € [0,1], the above be-
=

comes

+

n

< b n\ . .

SVt e, +BONb+d)+ B ¥ Vll)+d< )1‘(1 — )Tt VBt g L 2BOE (b4 d).
=90 t
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n
n n

<t>(b+ D1 - (b + )"~ ! for 0 £t < n, one has that 2 Vb+d <nt>j‘(1 —j)”_‘§ zb <IZ> (b + Dl -

=0
n
' <t>j'(1 -yt

m t t A n—t <
Since < >j (1 — )" % is decreasingon |—, 1| and b+ d >-—- and hence Vb +d <t ifa -7 =
n

n

€ b
b+ DI"~* = Qb + d). Since beld, 1 - dandn>n, Qg(b +d)< e and hence ¥

=0

€
b +d b b+d .
< V0 qu +§. Therefore, V0 qﬁn < V0 qu + €, and, since 0 <d <¢,

do_

b b+e
Vo b <Vy &+ €,
and similarly for the case 0 <aand b = 1.
Now consider the case 0 <a < b <1, Let dbe a number such that 0 <d< ¢, 0<a—-d, and b+ d<1.
By Theorem 2.9, thete is a number N> 0 such that, if n > N"and z € [d, 1 -~ d],

€
1-Q%x) < if C5x52z~d,
Q.(x) 168

and

€
QZ()<E if z+dSx31.

1 1
Choose N > N “such that v <aand b < . Let n be an integer greater than N. By Theorems 3.3

and 3.5, there is a number M > 0 such that, if m is an integer greater than M,

T NI
t“n +1 IO ( ])
‘n, n_+ 1 n, m,+ 1
whereae[—, )andbe[ , >
n n n n
Hence,
Vo, < <>"1—'""d |
oPn . M . fo{)ifa-pr=tde,
Note that
g —-d t
1 an > a—- < >] 1 ])n-— d
t—n +1 fo <>]( 2 t=n§+1 fo ¢ P
n n
5 b+d< > 5 1 <">.z Nn—t
1- ja=ptTtde, |
* t=na+1 a—d 7 t=n§+1 fb+d t m
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Integrating by parts and recalling that 0 <n,_ S¢S n, <n, one has

1,

oa—dC')jt a — jyn=t d¢m\

t=n_ +1
a

VAN

J34 6 d(() i@ =

}

5 {lowe ol - arr

t=n +1
a

5 3 (Na-oli-@-ares 2 va=a(M)ja - ot

t=n_ +1 t
a

S2B % <"> (a - d)'[1 — (a = D" S 2B[Q%a — d) — Q%a — d))
hnaﬂ t

n_+1
a

n t n
since (1) < >jt(1 — j)*~!is increasing on [0,—J, 0<tSnanda—-d< ,and so Vi_d< >jt(1 —Hrt b
t n n t

n

<n>(a — &1 - (a - &))" for n, < t<n, and (2) Qg(a —-d) — Qz(a —d) = i <n>(a - d)ifl ~(a-—-
t 1M

t=na+
€ €
D"t Nowaeld 1—4dl, beld, 1—d], and n > N, and hence, Qg(a - d)< T and Qz(a —d) < 5"
Therefore,
ap n 2¢ €
a~d ot -t
1 - fo! <2B | —| =—.
t=n€+1 ‘[0 <¢>] -7 ¢m‘ [163} 4
Similarly,
" n €
1 .t 1 —j n—t d. —.
t:n}a:ﬂ fb+d <¢>] -7 Pl < 4
. ny\ , —{ : .
Since ita-mn is nonnegative on [0,1], t=0,1, ..., n,
t
1y

b+d (1 t(l nn—t o4 < fbtd b m 1 nn—t | g
amd \, ) =) ¢>m-a_dt2ﬂtj(—1) |de_ |

t=n_+*1
a

= L2310y - oV de, | SV, ¢,

n

since QP — Q2 is by definition § . it = !, and since 0 = Q8(x) - Q2(x) £ 1 for x €[0,1]
n n t=n +1 \t D = ¥n\X n"l U

The above results combined give

€ € €
b - b+d s b+d
Va¢n<2+4+Va__d¢m+4—6+Va_d m "
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Since 0 < d < €,
b bte
Vo, <e+V, b -

Theorem 4.8. Supposea_, a_, ... is a bounded real number sequence such that, ifa_ ,a_ ,...1s
0 1 n1 n2

a subsequence converging to a number p, a_ a . converges to p. Then {x|x is a sequential

+17 %n 417 "
1 ,

limit point of a subsequence of aa;,a . } = C is a continuum.

g 8y e
Proof. Since gy @y e is bounded, there is a set C. It is clear that C is closed and bounded.

Suppose C is not connected, i.e., C= A |J B, where 4 and B are disjoint and closed. Consider two
numbers a and b in A and B respectively. Suppose b > a. If [a,b] ¢ C, A and B are not disjoint. Hence,
there is a number p in [a,b]\C. Since p ¢ C, there is a segment (u,v) containing p, no point of C, and,

at most, a finite number of terms of a,, a Let N be a positive number such that, if n is an integer

e
greater than N, a ¢ (u,v). Let n, be the least positive integer greater than ¥ such that a_ 2 v and

0
a, 4 £ u. That there is such an integer n follows from the facts that b > v > u > a and that each of a
0
and b is in C. Consider the sequence I I where, for each positive i, n, + 1 is the least posi-
0 1
tive integer greater than n. such that a Zvanda + S 4. Since a ,a., ...is a bounded sequence,
! T+ 4™ 01

so is @y s 8y g eee Hence, some subsequence a, ,a, ,...convergestoa number g 2y since a, 2 v,
0 1 m m, m,
i=0,1,2, ... . By hypothesis, a, ,,,a, ,,...alsoconverges toq. This is a contradiction, since
m m
< < . 0 . .
a =u<v=gqgfori=0,1,2,.... Hence, Cis a continuum.
n_ +1
m,
1

Theorem 4.9. If x is in [0,1], then C = ly|y is a sequential limit point of a subsequence of ¢ (),

é . (x), ...} Is a continuum. ; .
2 < n\ [/t
Proof. By Theorem 4.5, there is a number B such that lSn(t)l =B <t> <; 1 -— . By Theorem
n
4.2, if 0 < t <n, then

Hence,

From Theorem 3.2 (special case),

bony <n—%> - 4, <i>=—t++11 S, (t+ 1),

and

t+1 t n—t 1
Cnty <n+1>—¢”<;>=n+1 Saer 41
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Also, ¢n(0) =0 and an(l) =c,,n= 1,2,....
Suppose x € (0,1); ¢, (x), ¢2(x), ... is a bounded number sequence. Suppose o, (%), b, ), ...
0 1

converges to some number p. Note that

6, ()= SIS, ®)], wh £ kel
x) — x)| = , where x € , )
n,t1 n, n,+1 n,+1 n,+1

Hence,

<_ 2B 1 ,
|¢"1+1(x) - ¢‘ni(x)‘ = if0<k<n +1.

Vr(a,
ey /nii1 <1_ni1:1>

Thetefore,

2B

1
Va+1 & K
‘/<”i+1> <1—”i+1>”

If 0 <d<x <1~ d, then there is an integer N > 0 so that, if n > N,

|65 4,00 = b, (O] =

k k
d<—andl-d>1--.
n n

Let I be a positive integer such that, if i > I, n;> B. Then,

2B < 2B 2B
X k = SO, if D= — ,
T 1 - Vrd(l - d) Vadd — d)
n;+1 n,+1

D
then |¢ni+1(x) — ¢ni(x)| <?. Hence, ¢n0+1(x), ¢n1+1(x), . . . also converges to p. By Theorem 4.8,

v,

C is a continuum.

5. LOCAL PROPERTIES OF A BOUNDED SEQUENCE OF
ASSOCIATED STEP FUNCTIONS

Theorem 5.1. Suppose x is in [0,1] and for each number € > 0 there is a number 8 > 0 and a number
N> O such that, if yis in[0,1], |x —y| < & and n is an integer greater than N, then ¢, () - b (¥)| < €.

Then lim ¢ (x) exists.
n-oc

Proof. Note that ¢ (0)= 0 and ¢, (1)=cyforn=1,2.... Suppose x is in (0,1) and €, > 0. Let
B be a number such that B 2 |¢;(x)| for x €[0,1],i=1,2,.... Let €= €,/(8B + 2). By hypothesis,
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there is a number §, 0 < § <1/2, and a number N > 0 so that y €[0,1], | x — y| <95, and n > N implies
|$,(x) —¢,(y)| < e Letd=35/3. By Theorem 2.4, there is a number W > 0 such that, if w> W and
z€[d, 1 = dl], then

[1FaN

1-Q%2t)<e if05tSz-d,
and

Of (1) < e fz+dStS1,

Let n and m be integers so that m> n > W. By Theorem 3.5,

€)= 6,0 = tim | [ 6, 10}, - 03]

|

If k is a positive integer, then i
|4, s dtox, - 031

+ +

SRR AR

[ pedlon-ox1|«|f, oudlon-0i1] i

Note that

X— x—d
£ o dtox - 01| S S 1w 1at0% - 0311 S BV 0% ~ 03]

S Blvx=d0x 4 vx90X15 Bl1 - Q*(x —d)+ 1 - QX(x — d)] £ Ble+ el =2¢B,

using Theorem 2.6 and the fact that 1 — Q% (x — d)< € and 1 — Q;(x — d) < €. Hence,

< 2€B.

x—d X X
j; ¢kd[Qm"Qn]
Similarly,

< 2€B.

S, ez - 03]

For each positive integer w and each number ¢ in[x — d, x + d], let P ()= (t) = (x). Then,

x+d

S i dlQy - 03]

x+d
I e 640 07, - 0]

+

x+d x+d
: fx—d b dlO7 = O 1) + fx_d ¢ (0 dlOy, — 0]
S omax g OVETAI0% - 0214 | gutlol - 021] "
tE[X—-d,x‘i’d] k Px—d m n k m n X —
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Because V0% = Vo0X = 1, ViT4[0% — 0X1 5 2. Also, [, (t)| = |¢p(®) = ¢ ()| k>N, |, (D] < €
if t elx—d x+d]. Sincem> u> W, x €[d, 1 — d], then
1-0l(x-d)< e,
1-0¥x—-d)< e,
QX(x+d)< €,
and
Orx+d)< €,
it follows that
|Qn(x+ d) — QF(x + d)| < 2¢, and | Q% (x — d) - QX(x — d)| < 2¢ .

Hence,

< 26+ B[2e+ 2€] = 2¢ + 4¢€B ,

\ x+d d[ " x]
|fx—d¢k Qm_on

if k> N. Finally,

< 2B + 2€ + 4€B + 26éB = 2¢ + 8€B

| S, s dlez - 0z

if k>N, m> n> W from which it follows that |¢_(x) — ¢ (x)| < €, if m> n > W. Hence, ¢ 1), ,(), ...

is a Cauchy sequence and therefore converges.

Suppose [a,b] is a number interval and fo, f
(a,5].

Definition 5.1. The statement that fy, £,y «.. left slants at x in (a,b] means that for each number

1» -+« 1S @ sequence each term of which is a function on

€> 0 there is a number I, a< [< x, so that, if [ < d < x, there is a number N > 0 such that, if n is an
integer greater than N and I $ u S v S d, then | f() - f,(0)] < €.

Definition 5.2, The statement that fy, f,, ... left slant converges at x in (a,b] means there is a
number L _ so that, if € > 0, there is a number I, a < I < x such that, if I < d < x, there is a number ¥ > 0
so that, if n is an integer greater than N and 1< b < 4, | £,(6) - L | <e

There are entirely similar definitions for ““right slant’’ and “‘right slant converges.”’

Theorem 5.2. Suppose x is in (0,1] and ¢, ¢,, ... left slants at x. Then¢ , ¢, .. left slant
converges at x.

Proof. If €> 0, then there is a number I, 0 [ < x, and a pair of increasing number sequences

d,,d,,...and Ny, N, ... sothat

(1) 1<d;<x, i=0,1,2,...,
2) }im d=x,
oo
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and

(3) if1SusS v S d; and n is an integer greater than N, then | ¢, (u) —
(;Sn(v)l < €.

o0

There is a number sequence {It}

t=1

o0
o0
, @ sequence of number sequences {{d‘t} } , and a sequence
i=0
t=1

o0

o0
of increasing positive sequences { {Nf} } so that
i=0
t=1

1) 0<1,<1,,,Sd<d*t, t=1,2,...,

= 2 di<d,  <x i=0,1,2, ..., t=1,2,...,

it1

@ limdi=x t=1,2,...,

oo

@) lim I, =x

{00

’

) x-1,<1/2,

and
(6) for each positive integer ¢, if I, Susyvs df. and n is an integer
greater than N;, then | ¢, (1) — b,V < 1/t=¢,.

df)—yt x—yt}

e Iy + dy
For each positive integer ¢, let Ve= 5 and St = min 3 P 3

t t
L+d d—1,

0 5 3 X — X 2
> t . > Ve
Now, y, — 6, = > - =§It+§d0/0and(1—8t)—yt=1— —yt=1—§—§yt>0,
) < 5 3, 3
since y, < x. Hence, y, €[8,,1-6,] fort=1,2,.... Also, It_(yt_St):It_<§It+§do =§(1t—df))<0
- d d' syza Jlrde o -l oo 1 5 8, <d, fort=1,2
and d - (y, + 8, = 0T T T ¢ = 2 ¢> 0. Hence, I, <y, —0,<y,+06,<dy, fore=1,2,....

It is clear that lim y, = x. By Theorem 2.4, there is for each positive integer ¢ a number W, > 0 such

t—s0

that, if w> W, and 2z 6[5“ 1 —St],
1-Q%y)<e, 05ySz-3,,
and
QZ(y»)<€e ifz+d,SyS1.

For each positive integer ¢, there is for each positive integer i less than ¢, a unique integer r, ; so that

i < gt i
d, ._1=d0<dr .
t, i t, 1

For each number djt , there is a corresponding integer Nﬁt K For each positive integer ¢, let K, = 1 +
sl s
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max[Wl, W2,...,Wt,1Vr1 ,er ,...,Nﬁ—l ] LetBbeanumbersuchthatBZ|¢;i(x)| if x €[9,1],
t

. , 1 t,2 t,t—1
I = 1, 2, cee e

8B + 4

Suppose € > 0, Let L be a positive integer so that € > . Consider the number sequence

¢ 7D by (y5), ... . Suppose each of m and n is an integer, m>n > L. Then, | ¢, (y,)—
1 “2 m

D (T s | b (Fm) — b G| + [y (v,) — @y (y,)]. Since k,>N? 1. <I, <Y <

m,n

dj <di ,andI <y, < d’gg d® ,then|¢, (y,) =, (y,)] < €,. By Theorem 3.5,

m,n m,

I ¢km(-yn) - ¢kn(yn)| = nli_.rzo

Ji $a O - 0

For each positive integer a,

(VAN

[ e, dloy - 0.7

-3
[ g, 4100 - 017

yn+ 8Y‘l yn yn
+ fyn~8n ba d[ka - an] +

[ 5, $adlo - 00|

Note that

4 _8 yn yn yn—sn yn ynHBn yn
BV," [0 — 0”1 S BlV, 0" +V 0."1.
m n m n

A

0 0

yn-grl yn yn

Jorm 6. dlo) - 0,7
-3 y V=8, ¥ Y ,

By Theorem 2.6, VZ" "QZ" =1-0,"(y,~0,)yand V," "0, "=1-90,"(y,—9,) Since

y Yn
Y, € [5n, 1—-5_] and k. 2 k, > W_, it follows that 1 —~ Qk:(yn -0,)<¢€,and 1 — ka(yn - 0,) < €.

n

It follows that

<2€nB fora=1,2,....

-
fo " ¢, dlO," ~ Q"]

Similarly,

1 Y Y
‘fy L, PadlO — 0| <268 fora=1,2,....

For each positive integer b, let p, () = ¢, () — p,(y,) for t € [yn =8, ¥, + 3n]. Then,

yn+8n Yn Ya
ij -3 (/)a d[ka—an]

b
L7 e+ #r L0 - 0]

n n

3

< yn+8n Y Yn yn+ n Yn Yo
= fy s Ky d[ka—an] + fy s ¢a (yn) d[ka“an]
yn + Sn yn yn yn yn yn + Sn
< max L 01V, " s"0" = 0.7 + | ¢, (y 0" — 0,") 5
ts[yn—Sn,yn+Sn] "o - " " B RC I
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14770 1~V yn+8n Ya Ynm < . n
Now, Voka= VyQ," =1, and hence, Vyn_sn[ka - an] = 2. Since I <y, -8, <y,+38,<dg,

n

max |u, ()| < €if a> Nj. Furthermore,

te[yn_sn,yn+8n]

yn+8n S N
yn"'sn B

[0, — 0,71

[0, ~ 0" (y, +8,)

[0," = 0x "1 (y, - 8,,)

y y
SOOI (3, 48+ 00y, + 8.0+ 1= 0, (v, =80+ 1 — Q" (y, = 8,) -

; > < < H
Since k =k >W,,0=y —§ ,andy, +35, =1, it follows that
yn
0" (¥, +6)<¢€,,
yn
Qk (Yn + 8,,)< En s

.Yn
1—Qk (Yn—5n)<€n,
and
Yn
1-0,"(y,=06)<¢€,.

Hence,

+38
(AN AR i

yoos <2en+B[en+en+en+en]:26n+4Ben

if a>N" and so

0’

< 2¢,B+ 2¢ + 4¢ B + 2€nB = 8€nB + 2€n

|, a0 - 0
ifa> N\

Finally,

8B+ 3
|¢k (yp) — b (Y,,)] < €, +8€6,B+2¢c, =(8B+ 3)€n = - < €as n> L. Hence, the sequence
m n ’

by (¥, by (¥,), ... converges to some number L.
1 2

It now will be shown that ¢ , ¢,, ... left slant converges to L, at x. Suppose ¢ > 0; there is a

number M > 0 so that, if n is an integer greater than M, ]¢>kn(yn) - L,| < ¢€/6. There is a positive
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integer t so that, if each of b and ¢ is a number /, Sphses dit and n > Nﬁ, |, (b) — b (c)] < €/6. There

is a number M > M such that, if m is an integer greater than M, I, <y, -9, and 1/m< ¢/24B. f dis

m?

a number such that /, < d < x, there is a positive integer h such that ds d; and §_ + y,, < d;. Let

N = A’V;l + W_,, where W_  is as before. Suppose n is an integer greater than N and I, = IS b5 d. Then,
(B =L |=|p, ) — b (y.)+b.(yp) —bp () +b, (y.)—L,|
1608 = bo(ya)| + [ 6,0m) = b ) [ +165 () = Ly |-

Since I, <y < d;, 1 Sps4gs dﬁl, and n > N;, it follows that | ¢ (b) — ¢, (v, )] < €/6. Also, |, (y,) — -

L | < €/6 since m> M. By Theorem 3.5,

(1, O = o) | = lim | [, 10,7 — 07

For each positive integer a,

s

. _35
.Iol b dloy" - 0| ([T g, MO - 0,7

! 5
j;/ym+ m¢a d[Ql}:m _Q:m]

~3
m m

+ +

fl

Yt

5 Pa d[tam - Q:m] .

Note that

BY, [ka B Qnm] s BLV, Ok

m

174N

-3
[7m 7 g, dlo)m - ol

-8
VT M - Qi (8 )+ 1 - 0 (y. ~5.)]

m m’

by Theorem 2.6. Now, 1 — Q:m(ym ~0,)<¢€,, and 1 — sz(ym -0,) <€, sincen>W_, k >W

y -8
andy_ €[5 ,1- Sm]. Hence, J'o T, d[QZm - Qim] < 2¢_B. Similarly,

1 ym
fym+ Sm ¢a d[ka B

y
Qnm] <2 B. Mfp (O=¢ ()—¢ (y)fortely, -6,y +6_1 a=12, ..., then

+8 +5
fyy"'_s " ¢, dlo," — 0" = fyy’”_s "+ b (v, ) dlo,™ ~ 0]

m m

<l pymtin Y y vy to y y
SO T dlo T = 0 [T T (v Lo — 0,
Ym—sm m Ym—sm m
yo*8 oy Yo y Y1l Ymt 8
s max e O1V," "0 ™ = 0,." 1+ 1 (v )10, - 0, m
te[ym-—Sm,ym+5m] m m m m Ym=m
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Note that
ym
01 " (v +8,) < €.,
ym
1-0,"(y -8 )<e_,
ym
Qn (ym+8m)< Em ’
and

y
1-0,"(y, +0,) < €y »

since k,_ >W,_,n>W_,andy_ €[5 ,1-3_ ] Hence,

Ym ym ym+5m ym ym ym
lo," - 0," §Qk (Y + 0 )+ 0 (v + 0,0+ 1 =0, (y,, —3.)
m ym.— m m m
ym
+1—Qn (Ym—5m)<5m+€m+6m+5m=45m
Al V}’m+5m[ Y m Ym]< . 1A m 1A m o .
so, y_ -5 ka - 0,7 = 2 since VOka =V3i0. ™ =1, and max lp, (O] < €/6 if a> Ny sinc

te[ym—Sm,ym+ Sm]

l,<y =8, <y,+8, <dj. Itfollows that

yaton Y m Yo € € . ¢
j;’ _s ¢a d[ka"Qn ] <2BEm+3-+ 4Be  + 2Be, = -é-+SB€m ifa> N, .

Hence,

6B — L. | € € 8B € 2¢ aB 2¢ 8B 2¢ €

- <=+ =+ € +—=—"+ € =—+4 —< —+4+—=¢€
n x 6 3 m6 3 mo3 m 3 3
ifn>Nand 1< 55 d This completes the proof of the theorem.

There are entirely analogous results for the right side.

Theorem 5.3. If x is in (0,1) and ¢ 1 bg - .- both left and right slants at x, then there is a number

L  and a number R so that x}i_.moo @, (x) = 1/2[Lx + Rx].

Proof. Since ¢, ¢, ... both left and right slants, there is by Theorem 5.2 (and the entirely
analogous results for the right side) a number L and a number R to which ¢, ¢, ... left slant converges
and right slant converges respectively. Let B be a number so that B> | ¢ (x)| for x €[0,1},1=1, 2, ....
If € > J, there is a number sequence [, I, ..., a number sequence ry, ry, ..., and a positive integer

N,N,...so0 that

llo—x|=|r0—-x|,
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< - < .
0=1,<l;, <x<r, <=1 fori=0,1,2,...,

lim I[,=x=lim r

1
n—oo n—co n

Ny >N, fori=0,1,2 ...,

: < <5 < < . <4<

ifm>N,l=a=b=1,andr,=c=d=r,,
| bm(@ — @, (B)] <€,
| b p(0) — b ()] < €,
l¢m(a)—Lx|<€y
|¢m(c)—Rx|<e.

I,+x Iy + X
u= 7 , and V=T. There is a positive integer ¢ such that d + u <1, andr, <v —d.

For each positive integer n, | 6,(x) — 4{L, + R,J| = %|26,(0 ~ L, — R,| S Ylgb () = L, + () —
R+ bl + ¢, () — 2, (0]

If m>N,, then |¢, (v) — L, | < €and ¢, (v) —R, | < €. Hence, | (x) — 1/2[Lx +R ]| <€+
1/2|¢m(u) + ¢, (v) = 2¢_(x)|. By Theorem 3.4,

| $1a®) + 6, ) = 26,00 = lim ‘f01¢‘k dlot + 0¥, - 20.1| .

By Theorem 2.4, there is a number W, > 0 such that, if w>W, and z € [d, 1 - d],

1-0%(0<e if0StSz-d
and
Qi) <e ifz+dStSL
By Theorem 2.2, there is a number W, > 0 so that if w > W then | 1/2 — Q}(x)| <§. LetW=W_ +W,.
For each positive integer ¢ > W, there is a number a, and a number b, such that
(1) I <a, <x<b,<r,,

(2 |Qf(a,) —1/2| <€,
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and
(3 | 0¥, — 1/2]| < €.
Let n be an integer greater than W. For each positive integer k,

<

fl</>k dlQ% + Q¥ — 207] f"_d¢>k dlQY + @V —20%]
0 0

+ +

b
[ "¢, dloY + QY ~ 20%]

n

7 i dl0f + OF — 203

+ +

vtd
fb ¢, dlQ% + QY — 20%]

n

1
[, $rdlon+ o5 —207]) .

Note that

[ g, dls + 02, - 2051| S BYATI0% + QF - 203

< —d —d —d
= Blvy=dou + V=90, + 2V an]

=B[1-0Q%u~—d)+1-Q¥u—d+21- 05~ d)]

by Theorem 2.6.
If m>W,, then1 - Q2(u — d) < € and 1-Q(u—~d)<e. Sincen>W, 1-Q¥u~d)<e It
follows that

<4Be fork=1,2,....

u—d
|f0 b, dlQ¥ + 0 — 207 ]
Similarly,

1
‘fw(;)kd[o;;w;-zo;;] <4Be fork=1,2....
v

Let p, () = MGES ¢ (u— d) for each positive integer k and ¢ € [u — d, u+d]l. Then,

lf"’_nd ¢ dLOY + QY — 20%]

= ’fa_"d (i + pplu — )1 dQY% + QF — 20%]

S +

3n . _ u v o_ 2 X
fu_dd)k(h d) d[Qm + Qm Qn]

S e L0y, + 05 — 203

¢, (u ~ d)[QY + QY — 207]

" ielataa ] | (D 1V, f O + O, = 203) + -

Now, SQ%(a) +[1 - 0¥ (a)l + [1-20%a)] + [1 = Q(u ~ )]+ [1 - Qp(u — d)] +

[0Y + 0¥ — 20%]

a
n
u—d

(2 - ZQY’;(U -, Qu(a) < esinceu+d<l <ag, and 1-0Q7(a,)<E¢ since a, <x<r, <v-— d. Also,

2|11/2 - Qz(an)‘ < 2€ by the way a, was chosen. Since m > Wy, 1— Qg(u —d)<eand 1 - Q;(u ~d)< e
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Finally, 2|1 — Q¥ (u — d)| < 2€ since n > W . Hence,

a
n <€+ €4+2¢ + €4+ €+ 2 =8¢,

[0 + Q¥ — 20%]

u—

. 1 10V 10 11 Ou v X1 < . : R
Since V Qp =V Q) =V 0r =1, Valou + 0., — ZQn] = 4. Since a, < x, there is a positive integer s so

that a, <I.. Hence, if k> N, then max I[l.k(t)l < €. Finally, then,
lé[u—d,an]

)f"" ¢, dlO% + QY —20%1| <8eB+dc it k>N, .
u—d

Similarly,

vt

J,

d
¢, dlQs + QF —20%]] <8eB+4e  ifk>N_.

n

Note that

bn u v x7( < bn u v x1 < bn u bn v bn x
fa ¢k d[Qm + Qm - 2Qn] = BVan [Qm + 0~ 2Qn] = B[Vanom + VanQn + 2Vanon] :

By Theorem 2.6,
V0% < 0% (a) — QE(b,) < QU (a ) < &
and
VoY = Ol(ay) = QLB S 1 - Qa4 1= Q8 < c v e+ 26
R m\“n
since u + d < In <a,<x< bn <r,<v-—dand m> Wo' Also by Theorem 2.6,
V::Qﬁ = Qn(a,) — QX(b,) S1/2 - Q¥a)| +|1/2 - QX(s,)| Seqe=2e,
by the way a, and b, were chosen. Finally then,

b
fa "¢, dlon + QY —20X1| < Ble+ 2¢+ 2¢] = 5Be.,

Hence,

1
‘j; b, d[Q;I+Qr‘I’1—2Q§] <4B¢ + 8Be + 4c + 5Bc + 8Be + 4¢c + 4Bec = 8¢ + 29B¢.

It follows that, if n > W,

10€ + 29B¢

|¢,(x) — BIL, + R1| < e+ 7[8¢ + 29Be] = €

0"

Hence, the theorem is established.
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6. GLOBAL PROPERTIES OF A BOUNDED SEQUENCE OF
ASSOCIATED STEP FUNCTIONS

Theorem 6.1. If the hypothesis of Theorem 5.1 holds for each x in [0,1], then there is a continuous
1
function ¢ on [0,1] such that c, =f idp,n=1,2,....
(i
Proof. By Theorem 5.1, lim (;Sn(x) exists for each x in [0,1]. Let ¢ (x) = lim (;Sn(x) for x in [0, 11.

n-o

Suppose that € > 0 and that ;_;oso in [0,1]. By hypothesis, there is a number § > 0 and a number N > 0

so that, ify €[0,1], ‘x ~yl|<8, andn > N, then |¢n(x) - ¢, ’ < €/3. Supposey €[0,1] and ’x -y [ < 8.
Then, there is a number ¥ > N so that, if m > M, then |¢(x) — ¢_(x)|< €/3, and |$3) — ¢_() | < €/3.
Hence, |¢(x) — ¢()|< b(x) = ¢ ) [+ 60— ¢ 0+ o) = 0| <(e/3) + (e/3) + (e/3) = <.
Therefore, ¢ is continuous at x.

1 1
By Theorem 3.4, lim fo i" dqsk =c., and hence, limj; (;Sk dji" = Co = Cpr

X=0 X 00

1
Since Ilim ¢ ,(x) = ¢(x) for all x in [0,1], limf (¢, — &) dj" =0 forn=0, 1, 2, ... by the Bounded
0 k-x"0
1 .1
Convergence Theorem (Theorem 15.6, p. 71 of [8]). Hence,j; ¢ dj"" = c, ¢, orj; e c,n=
0,1,2,....

Theorem 6.2, If (;Sl, &, ... either right slants or left slants except on at most a countable subset of

1
[0,1], then there is a function ¢ on [0,1] such that c, :f i"dp,n=0,1,2,....
0

Proof. Suppose thatd > 0. Let M, be the set to which x belongs if and only if for each 8 > 0 and each
number N > O there is ay in [0,1] with x — y|< 8§ and an integer n > N so that |¢n(x) — (;Sn(y)] > d.

If there is a number x in [0,1] such that ¢ , ¢, ... does not left slant or right slant, let K be the set of
all such numbers x in [0,1].

Suppose that M ; is uncountable. Let M) = Md\K. It follows from (Theorem 567, p. 37 of [9]) that
there is a number ¢ in Mc; such that every segment containing ¢ contains a point of Mc; both to the left of
t and to the right of ¢.

Note that ¢t ¢ K. Suppose s b, ... left slants at t. Let € = d/2. There is a number I, 0 Si<y,
so that, if I < b < t, there is a number N > 0 so that, if n is an integer greater than N and [ Sulvs b,
|q§n(u) - ¢n(v)| < €, Choose b so that M(; intersects (I,b). Pick g € M(; N (I,b). Then there is a num-
ber r in (1,b) so that ]gi)n(q) — ¢n(r)1 > d for some n > N. This is a contradiction. One gets a similar

contradiction if it is supposed that (;Sl, ¢>2, ... right slants at t. Hence, Md is countable. Let M =

[es]
U Ml/t. If x €[0, 11\ [M J K], then the hypothesis of Theorem 5.1 holds, so lim ¢, (x) exists. Using

t=1 X =00
a diagonal process, there is a subsequence ¢, ¢, ... which converges pointwise on [0,1]. Let
1 2

¢(x) = lim ¢ .(x) for x in [0, 1].

X =0

As in the first part of the proof of Theorem 5.1, one sees that ¢ is continuous at each point of

[0,1]\[M U K]. Since[M {JK] is countable, it follows that ¢ is continuous except on, at most, a count-
1

able subset of [0,1]. Since ¢ is also bounded, it follows thatf ddi", n=1,2,... exists.
0
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1
Since lim ¢ _ (x) = ¢(x) for all x in [0,1], limf ¢, —¢ di"=0,n=1, 2, ... by the Bounded Con-
i i i 0 i

I—00 I~

1
vergence Theorem (Theorem 15.6, p. 71 of [8]). Hence,f ¢ dji"t = Cyp = Cp 1= 0,1, 2, ... since
0

1
lim fo an. dji” = Cy = Cp 1= 0,1,2,.... It follows (using integration by parts) that

i~

1
foj"qu:cn, n=0,1,2....

7. CONVERSE THEOREMS OF SECTION 5
1
Theorem 7.1. Suppose ¢ is a real-valued function on [0,1] such that ¢(0) = O and that c, =f it do,
0
n=0,1,2,.... If ¢ is continuous at a number x in [0,1], then the hypothesis of Theorem 5.1 holds at x

and lim an(x) = P(x).

1l =00

1
Proof. Since c, =f i"de, n=0,1,2, ..., ¢ is bounded on [0,1], and hence, there is a number B
0

so that B 2 |é(x)| if x €[0,1].

€
Suppose € > 0. Suppose ¢ is continuous at 0. Let €= 5 0 3 There is a number 8, 1/2> 6> 0, so
+

that, if § 2 y 2 0, then |¢(y)|< € For each positive integer n,
1
¢ (O =[ 0 dgift €[0,1].
0
Integrating by parts and recalling that Qr}:(l) =0 ify €[0,1) and &(0) = 0, one has

(0 |=!f0‘¢ !

for each ¢t €[0,1),n=1, 2, ... . Letd=6/2. By Theorem 2.4, there is a number W > 0 such that, if
w>Wandz eld, 1-d,

1-Q%()<eif05tSz~d,
and
Q*()<eifz+dStS1.

Let n be an in teger greater than W and let 0 < y i d. Then,

j(;sqs er‘:i+!f;¢ dQ”

XIS
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1i

8
1 |(6) [V Q¥ + BV (07

(VAN

eV QY + BOY(5)

A

€+ BOIG)

A

€+ Be = €
since by Theorems 2.5 and 2.6, if 0 S y hS 5, then

Sny 1
VOQn é VO

-1,
and
1 < nd
V0¥ = Q¥(3) - 0¥() = 0X(®) S 043y < ¢,
and similarly for the case x = 1.

€
0
+ 2

Suppose x is in (0,1). Let €= 2B . By Theorem 3.5, for each positive integer n,

1
6,00 = 6,00 |=| [ 6 dlo - )1 .

There is a positive number 8 so that §< 1/2, §<x, x + 8 < 1, and, if [x — y|< §, y in [0,1], then |¢>(x) -
ANy | < €. Letd=35/2. Thereis, by Theorem 2.4, a number W > 0 so that, if z €[d, 1 ~ d] and w > W,
then

1_Qyo<eﬁo§t§z—d,

and

QZ(t)<cifz+dStS1.

Suppose n is an integer greater than W, y is in [0,1], and |x —y| < d. Then, by Theorem 3.5,

x—238 x4
(6,09 = 6, S|f 7 g dlof = 0211+ e dlox -0+

X —

1
X _ 0Oy
‘[c+8¢)d[on Qn]

Note that

x—38
[ ¢dlor-01]

SBVETPor - 0¥ S BIVET R0 - Vi oY)
0

n
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= B[1- QX(x - &) + 1—Qﬁ(x~5)]
< Ble+ €] = 2Be,

using Theorem 2.4 and the fact that 0 Sx—-8%x- d 0 Sx-8% y —d, and n > W. Similarly,

1
|L+8¢d[0n - Q) | <2Be.

Let u(t) = ¢(t) — Hx) fortin[x - 8, x + 8]. Then,

f

X =

X

+38
I ;@ dlog - o)

X —

x+3 x+8
ST wdioxr - ol 609 dio) - 0]

HA

max ),u(t)|V§iSS_[Q§ - QZ] +

X _ 0Oy
ceL e 1) $(0[0% - 0]

x+§
x—8

A

max @]+ 2+ BIOXx + 8) + Q7(x + )

tE[x— 8, x+

+1-0 x =8+ 1-0%x - 5)]

S2c+Ble+e+ete] = 2¢ +4Be

since
WO = 1) — ()| < €if |t — x| <5,
VES[QX - Q¥ S VIFRQX + VXY SVIOT L VIO = 2,

and

Ql(x+ ) <€,

Qﬁ(x +8) <€,

1-Q(x~38)<e,

and

1—Q:(x—-8)< €.
It follows that

kb () — ¢, (1< 2Bc+ 2c+ 4Be+ 2Be= 8Be+ 2c = € .




31

It remains to be shown that lim (;Sn(x) = (x). In the cases x = 0 or x = 1 this is obvious since

¢, (0)=0= (;S(O) and (;Sn(l) =c, = ¢1),n=1, 2,.... For each positive integer n,
1 1 1 .
|(x) = ¢, 1= ¢<x>—f01 o d¢!= |¢<x>+f01 ¢ dO7 |= M ¢ d0y ~ f ¢dh‘= (fo ¢ d[Q] — ] t
where
. 1if 0S¢5 x
(0= 01fx<t§1.
Also,

x— 38
[ #dlo;

1]

1
d[o* —hl| <
[l de; ]‘

f ¢d[0 f , @ dloy —all,

X —

f"‘s ¢ dlQ* — h1|S BV*=Y0* —h) S BVITP0X S B[1- Qi(x -8,
0

and

s v} Jfox ~n] S BV! 30:530:(x+3).

1
fm ¢ dIQ* ~ h]

Let p(t) = &(t) — ¢(x) for t €[x — 5, x + 8]. Then,

A48 x < x+8 X X +8 d10% — &
s ator -1 £ | s ato; " walo} - h]
< qS(x)[Q"—h]‘ mex OV 207 ~ &)
ts [x—38,x+8
S BO*(x+8)+1—Q%x—8)]+ _ max ey | - 2
n n :e[x—S,x+5]
<

S 2¢+ B[QXx+ 8+ 1-0Q)(x-d)],

since |p(®)|= |p(t) — d(x)|< eif t €[0,1] and |x — t|< 8, and since VX+S[Q —-nlsvy ;[Qﬁ—hli

V;Q::+V;h=2. Hence, ifn > W, . — hl|<Be+ 2¢+ 2Be+ Be=4Be + 2¢ = €. Hence,

0

|b(x) — ¢ ()| < € if n>W. That is, hm é_(x) = ().
Theorem 7.2, Suppose ¢ is a real- Valued function on [0,1] such that ¢(0) = 0 and c —f i" deb,
n=0,1,2,.... I{ $(x=) exists, then (;S] (;52 . left slants at x, and (;S (;S . left slant converges

at x to ¢(x—).
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Proof. Since ¢ ~f jfdp, n=0,1, 2, , ¢ is bounded on [0 1], and hence, there is a number B

such that B 2 |¢(x) | 1f x €[0,1]. Suppose €, > 0 and let €= . There is a number b > 0 such that,

b 1
— X
if0<x—b<),<x,then I(;S(V) (;5(X)|<€ LetB—mm(

AN

>. By Theorem 2.4, there is a number

W > 0 such that, if w > W and z €[5, 1 — 5], then

1-Q%(t)<eif05¢t52-5,
and

Qz (t)<€1fz+8~t-1

2b b
Letl/l=x—- —,d=x - 5 and N = W. Suppose that ! SuSvSdandthatnis an integer greater than N.

By definition,

4,0) = ,@1-|[" [0} - 031 dg - | ¢ atoy - 0

Now,

T a0 - 0 ¢ di0? — 04

1
‘fo ¢ A0, ~ 0] x—(b/ 4)

< x—~b v
< !fo $dloY -

Note that

lf " g dloy ~0 1) S BVETHIOY - 021 S BIVETRQY 4 VP 01
1]

=B[1—Q:(X—b)+ 1 -Q%x ~ b)]
<Ble+ €] = 2Be,

using Theorem 2.6 and the fact that v €[§, 1 —~ 8], u €[5, 1 -8],0Sx-bSv—56and05x - b
v — 8. Similarly,

< 2Be .

1
d v _ U]
fx_(b/4) ¢dlQ) - 0F

Let u(t) = ¢(t) — ¢(d) for t €[x — b, x — (b/4)]. Then,

J

fx—(b/4) < x—(b/4)

X —

¢ [0} - 0]

udwg—oﬂ<4fff”“¢w>ﬂo;— 04]

< x—(b/4)nv u
= max lu(@®) |V (07 - Y]
telx—b,x—(b/4)] K x—b n n

; l¢<d> 0 - o]

S2 1 Blet e+ e+ €] = 26+ 4Be

x—(b/4)
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since

(D) Jp@® = o) — dd)| < €ifx ~b<t<x,
@ VEP/OM0Y - QS VIQL - QU S VIOV VIQE =1+ 1= 2,

x—(b/4)
x—b

0¥ - 04l

b b
3) §QV<<—Z>+QZ<X—Z>+ l—Q:(x—b)+1—Qz(x—b)< €+ E+ €+ €

n

b b
inasmuchasv+5§x—z§1,u+5gx—z§1,0§x—b§x—5, and 0Sx —bSu— 6. Hence,

]¢n(v) - ¢n(u)[< 2Be+ 2€+ 4Be+ 2Be=2¢ + 8Be= € .

Thus, the sequence ¢l,  J left slants at x.
It remains to be shown that ¢1, ¢2, ... left slants at x to ¢(x—~). By Theorem 5.2, ¢l, ¢2, ... left

slant converges to a number Lx at x. Hence, it is now to be shown that Lx = ¢(x—). Letn> W and

v in [1,d]; W, 1, and d were previously defined. Then,

|6 (@) — S(x=) | S | (@) = () |+ [Bu) — plx=) [ < €+ I () — p(w)]

since I S u S d. Also, by definition,

|p () — $(u) | = }jj@;‘ dp — $(u)| = '_j:¢dog+j: ¢th= Lfol ¢d[o;;_h]’,

where
ho) 1if0§t§u,
) =
0ifu<ts1.
Note that
Y dfot — a1 |S |0 s dtot - al|+ [T g dlot —m1|+ |0 & dlo¥ -]
J(; n - fo ¢ n f—b n J;+b n '
Furthermore,

‘fx_b ¢ dlQ* — bl |S BVX~P[QY — h)= B[1 - Q'(x - b)]  Be
0

sincen>W, uel8, 1-35] and05Sx —bSu—6. Similarly,

1
u_ p]| S Be.
fx+b¢d[0n 112 Be
Let u(t) = ¢(t) — ¢(d) fort € [x — b, x ~ (6/%)). Then,
X— X — X— b
[ g ator —m|g | atos - m|+ )T g dtos -
x—b X — X—
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—(b/4)
< max |;L(t)|Vx+b[Qu h] + ¢>(d)[Q”
telx~b,x~(b/ 4)]
S2es Ble+ €] = e+ Be)
since
(D |u®]= ) - dpd|< €,
@ 1-0%x-b)<e,
u b
@ oplx-7)<e,
and
—(b/4 <pl 17 _ _
@) VI VOE R SVIQU+ Vih=141=2.
Hence, |¢)n(u) — ¢(x=)|< €+ Be+ 2€+ 2Be+ Be=3¢c+ 4Bc < €,+ Thus, ¢)1, ¢)2, ... left slant converges
at x to &(x—).

There is a similar theorem for right slant convergence.

Theorem 7.3. Suppose ¢ is a real-valued function on [0,1] such that ¢(0) = 0 and <, =f01 it do,
n=0,1,2,.... If each of ¢(x—) and ¢(x+) exists for some x in (0,1), tben ¢)1, ¢)2, ... both left and
right slants at x and lim ¢ _(x) = 1/2[¢)(x—) + (x+)].

n—

Proof. By Theorem 7.2, ¢ iy ¢, - .. both left and right slants at x and both left and right slant
converges at x to L = ¢(x—) and Rx = ¢(x+) respectively. By Theorem 5.3, lim b, x)= /[L +R ]
It follows that lim ¢ (x) = 1/2[q5(x—) + px+)l. nawo

n -

8. TWO ADDITIONAL THEOREMS

Two theorems are proved in this chapter. The first gives a derivation of a known result (see, for
example, [3]) by means of the theory developed in this paper. The second theorem is new and gives a

connection between Bernstein polynomials and slant convergences.

Theorem 8.1. If Cor Cprven is a real number sequence such that the associated step function sequence
® s ¢, -+ is of uniform bounded variation on [0,1], then there is a function ¢ of bounded variation on
[0 1] such that 11m d) (x) = ¢(x) for all x in [0,1] and c, fol i dé,n=0,1, 2, ...

Proof. Suppose d) d) . does not left slant for some number x in (0,1]. Then there is a number

€> 0 so that for every number I, 0 Si< x, there is a number b, 0 S 1 < b < x, so that if N is a positive
number then there is a triple of numbers u, v, and n, where [ S u S v < b and n is an integer greater than
N such that |¢>n(u) - n(v) |> €. Let l0 = 0 Then there is a number b I < b < x, so that for every

N > 0 there are numbers u, v, and n, 10 Sus b and n > N such that ‘(j) () — d) (v)|> €. From
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and {Miifn such

Theorem 4.6, it follows that there are number sequences {d.}; ", {6.1° | {c1® . {d.}° i o

i’i=0" "Uiti=0r Yitizo? Vili=0’

that
@) a0=0,
2 ai<bi<x,i=0, 1,2, ...,
3 di:x—bi,i:O, 1, 2, ...,
(4) c, = min [dl./4, e/4),i=0,1,2, ...,
(5) ai+1=x—(di/2),i=0, 1,2, ...,

(6) if N is a positive number, there is an integer n > N and a pair of numbers u,v, a, Su<vs b,, so .

that [¢_(u) — ¢>n(v)|> €ifi=0,1,2,...,
and

(7) M, is a positive number so that, if m is an integer greater than Mi’ then

b tc

v, ‘ig{)m>6/2,i=0, 1,2, ....

.—C
1

Now

" d x—-b d x+b x—b x b b
a —c =<x——9>—c Zx— 0 __ 12 0 _ 14 0,-1>0,
! 2 4 2 4 4 2 4

Hence, 0 <a —c . Also(b.,+c)—(a,—c)=b.—a,+2c.>0. Hence,a, -c.<b. +c,,1=0,1,2,....
1 1 1 I 1 1 1 1 1 1 1 1 1

Note that
x—b, x—bi
(alﬂ c”l) (bl+c):x————cl+l—b—01:x— —bl—c”l—cI: ~Ciy, — €
Zii_di+1__a;i:di_di+1:bi+1—bi>ai+1_bi:X_(di/2)f_,?’3
2 4 4 4 4 4 4
:x—(x-b'_/Q)—bi:x—bi>0.
4 8
Hence, bi+ci<ai+l—ci+lifi=0, 1,2, .... Itfollowsthat0<ai—ci<bi+ci<ai+1—ci+l<1if
i=1,2,.... Let B be a number such thatB>V;¢>k,k:1, 2, ... . Let L be a positive integer so that

(L - )e/2>B. LetM = M0 + Ml + oot ML' If m is an integer greater than M, then

b tc €
Vi ig >—i=0,12...,L,
mo2

a —c,
1 1

and since 0 <a, ~c.<b. +c.<a. , —c. <1,1=1,2, ... it follows that
i i i i it1 i+t1
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L b +c 1
Z Va c_¢m<V0¢ <B
i=1 !
L b tc. €
But E Va’_c’ d)m >(L-1) —2-> B: a contradiction. Hence, ¢l, d)2, ... left slants at x for all x in (0,1].
i=1 i
Similarly, ¢1, ¢2, ... right slants at x for all x in [0,1). By Theorem 5.3, lim ¢>n(x) exists for all x in
110
1
[0,1]. Let ¢p(x) = lim ¢n(x). Then, by Theorem 6.2,f jtdeé = c,n=0,1,2 .... That ¢ is of bounded
n—o 0
variation on [0,1] follows directly from the facts that Véd)k SB,k=1,2,... , and lim ¢ (x) = ¢(x) if x

n—w
is in [0,1].

Theorem 8.2. Suppose f is a bounded real-valued function on [0,1]. If f(x—) exists for some number x
in (0,1], then Bfl, Bf2, ... left slant converges at x to f(x—). .

Proof. Let B be a number so that B 2 lf(x) | if x €[0,1). Suppose €, > 0 and let € = 431 1 There is
anumber L, 0 S L < x, so that, if y is in [L,x), [f(y) — f(x=)|< €. Leth=x —L, a=L + (4/4), and
I=L + (h/2). lfa<d<x,letk=x—dandc=x~ (k/2). (See Fig. 3.) There is by Theorem 2.4 a
positive number W so that, if w > W _and z is in [k/8, 1 — (k/8)], then

1-Q%(t)<eif 05t 5z — (k/8),

and
0?2 <cifz+ (k/8)StS1.

Let W be a positive number so that 4/W1 <d-1 LetN=W +W.. Supposen is an integer greater than
N and y €[l,d]. Then

f n t t n— n t n—
|{=) = B0 | = JfGx=) - 2 <t>f<;>y(1—y> ‘= 2 <t> [f(x—)—f <;>Jy‘(1—y> ‘

t=0 t=0

n n

< t - n t
= 2 C) [f(x—)—f(;ﬂ VG Y i B 2 <t>[f(x—)—f<;>]y'(1—y)"-‘
t=0 t:na+1 e

n n
n a

. 2 <"> f(x—)—f<t>Jy‘<1—y>"—' §232<">y'(1—y)"“+c 2 <">y‘(1—y)”"
t=n +1 t/ 1 n t=0 t t=n +1 t

n

+ 28 2 <':>y‘(1 -yt S 2BQA(y) + €+ 2B{1 - QS (»)],
t=n *+1
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n
a

n n_+1 n n +1 n\ ,
wherea ¢ |8, _2 andc € | 5 € since Q2 = =" tand1-0Q°=1-
n n n n n t n

£=0

n n
S ny. o n k
2 <t>lt(1—-])" t < >jt(1—j)"‘t. But Q2(y) < € and 1 — Q(y) < ¢ sincea+—=yS1and
t=0 : t:nc+l t 8
k

0§y§c—§. Hence,

|f(x~) = Bl()| < 2Be+ e+ 2Be=4Be+ = ¢,

ify €[1,d]l and n > N. This establishes the theorem.

ORNL—DWG 65—5573

el 1\ — el M —gma]

fFix=)=1L

a Y d X b

Fig. 3. Left Slant Convergence at x,
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9. CONCLUSION

This work deals primarily with the moment problem for a bounded function on [0,1].

Given a number sequence C,» C,s -+ One constructs a certain sequence of step functions <;$1, <;32, N

on [0,1] which are called the associated step functions for Cyr © It seems natural to try to construct

17

as some kind of limit of <;Sl, <;32, ... a function ¢ which generates the sequence Cyr Cpp --- in the sense
1
mmcn:LJ"mﬁnzo,L2”.”
Using only the hypothesis of uniform boundedness (Sect. 4) of ¢ , &, ..., it was found that the num-~

ber sequence {Vécﬁn}::l is a nondecreasing sequence with a rate of growth not exceeding \/’n‘ li.e.,

Vig, = 0(/n), n=1, 2, ...]. This is considered ‘‘small’’ in view of the following: For a sequence
€y €, +- - bounded in magnitude by a number M one finds that ngsn SM3", n=1 2, ... since V(}¢n =
I
n
2< )2"‘1M =M3",n=1,2,.... Arecent result of J. W. Neuberger, (Theorem B, p. 245 of [ 10])
t
=0

states that no two continuous functions f which satisfy an inequality of the form

LCE 7))

for some €> 0 and all u,v in [0,1] have the property that they agree on any subsegment of [0,1]. The

SME3 - o)

initial expectation that ““0((3 — €)")”’ would be a significant “‘rate’” in the study of moment problems

seems not to be realized.

It is to be noted that for each number x in [0,1] a continuum is produced as stated in Theorem 4.9.
This indicates how closely the sequence b, ®,, ... is “knit’”’ together over the entire interval. Theorem
4.7 presents a tool for detemining subintervals over which the variation is large. This leads one to
examine the local behavior.

In Sect. 5 some positive results ate presented for local behavior which results in convergence at a

‘‘slant convergence’’ it was shown that, given

point in the ordinary sense or in a new sense. Using the
amoment sequence generated by a quasi-continuous function, the following is true: the pointwise limit
of the associated step function sequence converges to a normalized function which also generates the
moment sequence. Hence, the usual procedure of normalization is unnecessary.

Having noted previously the strong dependence of this work on Bernstein polynomials, it is of
interest to point out the strong similarity between certain theorems. Compare, in particular, Theorems
2.1and 5.1, Theorems 2.2 and 5.3, and Theorems 5.2 and 8.2.

Theorem 8.2 indicates that slant convergence is applicable to problems other than the one settled by
Theorem 5.2,

Section 7 along with Sect. 5 points out that if the moment function ¢ has a certain local property, this

property is “‘carried’’ by the associated step functions produced by the moments generated by .
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One can interpret the results of Sects. 4 and 5 in another sense. If the associated step functions do

not converge at a number x in either the ordinary sense or the slantwise sense, there is extreme oscilla-

tion about x, and a continuum is produced at x. This leads one to suspect that if d > 0, the set Md to

which x belongs if and only if x is in [0,1] and the length of the continuum at x is greater than d is

nowhere dense in [0,1)] since

N noa

®
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1
lim i"d$, =c,n=0,1,2,....
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