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ON THE BOUND STATES OF AN ELECTRON IN THE FIELD
OF A PERMANENT ELECTRIC DIPOLE

J. E. Turner’ and Kenneth Fox*
ABSTRACT

The problem of the quantum mechanical interaction of an electron
with a permanent electric dipole finds application in studies of
electron interactions with polar molecules and in certain solid
state models. The problem also has intrinsic interest in that it
represents a relatively simple physical system about which not
much is known. Most of what is known about the system is
contained in the 1960 paper of Wallis, Herman, and Milnes in
which the Schrodinger equation was integrated numerically to
obtain the dependence of the ground- and several excited-state
energies on the value of the dipole moment. The smallest value
of the dipole moment for which these calculations were made
was D= 0.840 ea, = 2. 14 x 10-18 esu-cm, which is larger than
values for a number of important molecules (e.g., H20, D;0,
NHj, HCl, etc.).

The present report gives some additional results for the
electron-permanent dipole system. (1) An exact analysis based
on Hamilton-Jacobi theory shows that electronic bound states
exist classically for arbitrarily weak dipoles. (2) A quantum
mechanical analysis using a trial function of the form
¥=-exp(- ozrt)(CoY00 +C,Y,g), where Cy, Cy, @, and t are
variational parameters, Yypand Y;, are S- and P-state angular
momentum eigenfunctions, and r is the electron's radial
coordinate, shows that a bound state exists in the field of both
a point dipole and a finite dipole (in the limit of very weak
binding) with a dipole moment as small as 1,65x10~18 esu-cm.
This is lower than the smallest value of Wallis et al. (3) A
semi-classical argument based on the uncertainty principle
suggests that there is a minimum value of the dipole moment
required to bind an electron., A rough estimate indicates that
the minimum value may be D = 0.2 x 10-18 esu-cm,

THealth Physics Division, Oak Ridge National Laboratory.

Depar tment of Physics, University of Tennessee.




I. INTRODUCTION

This report contains calculations and results on the problem of the
bound states of an electron (or other charged particle) moving in the field
of a finite dipole.® Apparently this system, which is complicated by the
non-central nature of the force field, has not been solved either classically
or quantum mechanically for arbitrarily small dipole moments.

The reasons for our interest in this problem are the following:

(1) Interactions between electrons and molecules are studied by means
of swarm experiments in which electrons diffuse through gas molecules.?
Recent experimental results® on diffusion cross sections in mixtures of
certain polar molecules with ethylene are in disagreement with the
theoretical predictions.*»® To account for this discrepancy, it was
suggested® that electrons might be captured into bound or quasi-bound
states by the polar molecules.

The capture probability for this process was calculated® and qualitatively
accounts for the discrepancy. This calculation, in which a variational wave
function was used for an electron in the field of a point dipole, led to an
investigation of other variational wave functions for the point and finite
dipoles, as described in Sections III and IV.

(2) Recently the energy eigenvalues of an electron moving in the field of
a finite dipole were calculated by numerical integraton of the Schrodinger
equation.” These calculations were done for dipole moments only as small
as2.14 x 10718 esu-cm; convergence in the numerical solutions became poor
below that value. It is important to know whether bound states exist for
smaller values of the dipole moment., The dipole moments of many important
molecules (such as HpO, HS, NH3, hydrogen halides, NO,, CO, etc. ) are
beyond the range of the existing numerical calculations. Furthermore,
there is the fundamental question implied by Wallis et al.:” Can an electron

be bound in the field of a dipole with an arbitrarily small moment?



(3) The present work is an exploration into the domain of singular non-
central potentials, about which relatively little has been written. (An
impor tant study of singular central potentials in quantum mechanics has
been made by K. M. Case.®)

(4) Understanding the interaction of electrons with polar molecules,
such as water, is of potential biophysical significance. The interaction of
a charged particle with a finite dipole may also apply to cer tain models in
solid state physics and to the motion of a charged particle in the field of a

relatively massive particle-antiparticle pair.”
II. CLASSICAL MOTION OF AN ELECTRON IN A DIPOLE FIELD

Both the classical and quantum mechanical equations of motion for an
electron in the field of a finite dipole are separable. In this section we
analyze the classical bound states of the electron and in the next section the
quantum mechanical states, It is shown that there will always be a bound
state classically no matter how small the dipole moment is, although it is
not clear in the quantum mechanical case whe ther the same is true.

In Fig. 2-1 we represent an electron of charge -e in the vicinity of a
dipole centered at the origin O of coordinates with its charges +q and -q
located, respectively, at the positions z = +a and z = -a. The magnitude of
the dipole moment is D = 2ga = qR. The cylindrical coordinates (p, ¢, 2) of
the electron are given in terms of the cartesian coordinates (x,y, z) by the
relations x = pcosy, y = psing, and z = z. The Hamiltonian of the electron
is invariant under rotations of the coordinates about the Z-axis and hence
is cyclic in the variable ¢. The motion of the electron will thus be
characterized by the conservation of angular momentum about the Z-axis.
We can, therefore, transform the problem of the electron's motion from
three dimensions to two dimensions, viz., to motion in a rotating plane
through the Z-axis. Furthermoare, as shown explicitly below, the two-

dimensional problem is separable in elliptic coordinates.
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Fig. 2-1. Spherical and Cylindrical Coordinate Reference Systems. The
dipole moment is D = 2ga = gR.




We write expressions for the potential and kinetic energies of the
electron in elliptic coordinates, define conjugate momenta, and write the
Hamiltonian describing the motion of the electron. Next the Hamil ton-
Jacobi equation, which is separable in these coordinates, is formed. Finally,
we write the phase integrals, which determine the classical orbits without

a detailed numerical solution of the problem,

Elliptic coordinates (£, 1) are defined in Fig. 2-2 by

i+ Vg

(12§ <o)

i\

- g

(2-1)

]
o
1
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NS
A
</

”z

where r, and r, are the distances of the electron from the charges +q and
-g. In three dimensions surfaces of constant ¢ and n define, respectively,

ellipsoids and hyperboloids of revolution. The potential energy of the

electron is

Vegelr - %) (2-2)

. LR
! 2 (2-3)

R -

}’z = -E—' (é q)

so that the potential energy in elliptic coordinates is
4ge 7
= . 2-
V R ﬁl - ,72 . ( 4)

In cylindrical coordinates the kinetic energy of the electron is

+ 2

T = —,':'"(,0 +fz¢z *iz) , (2-5)
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Fig. 2-2. Elliptic Coordinate Reference System. The dipole moment is
D = 2qa = qR.



where m is the mass of the electron and the dots denote differentiation

with respect to time. From the geometry in Fig. 2-2 and from Eq. (2-3) we
write the equations relating (p, z) and (£, 7n):

2 2

reo= p v (z2-a)* = a*(E+7)

it =pt L (z+a) = ai(E-7)7 (2-6)

Solving for p and z in terms of ¢ and n and performing the time

differentiations, we obtain

cZ

T (s ) o], e

The momenta conjugate to the coordinates (£, 7, ¢) are defined by the

;
£ |

following partial derivatives:

Pe '% = ma*(* -7%)

ST L par(etlpt) —2 i
Pr = = mat( ”)|-ql (2-8)
Py = 2T = ma* (&' - )(1-7%)¢ .

d¢p

Writing the kinetic energy in terms of these conjugate momenta gives for

the Hamiltonian, H=T + V,

-1 [ 2 2 zy\_ 2 { | 2 'ZJ_C_

(2-9)

This expression is consistent with that given for the hydrogen ion-molecule

Hg, for which both electric charges on the Z-axis in Fig, 2-1 are positive.®

Hamilton' s canonical equation bcp = - 3H/3 ¢ implies at once from Eq. (2-9)

that Py is a constant of the motion since ¢ does not appear explicitly in the




Hamiltonian. We are left with treating the motion in terms of £ and n.

The Hamilton-Jacobi equation is obtained from Eq. (2-9) by writing E in
place of H for the total energy and 3W/3¢ and 3W/3n in place of the momenta
bt and P % The quantity W is Hamilton's characteristic function. It gene-
rates a canonical transformation from (£, ) and their conjugate momenta
(pé., pn) to. new variables for which all the momenta are constants of the
motion. We treat W as a function of £, n,and the new conjugate momenta.

Thus we obtain from Eq. (2-9)

2 2
I S - S AN

2ma*\ 2% zZma o

(2-10)

We assume that W is a sum of two functions, W = wg(g) + Wn(n), where Wg
and W77 depend only upon the single coordinate shown (and the new momenta).
The first bracketed term in Eq. (2-10) then depends only on the coordinate

£ and the second term only on 7. This equation can be valid for all values of
the independent variables (¢, ) only if the two bracketed terms are both
constant. Denoting the values of these terms by the constants + K gives for

the separated form of the Hamilton-Jacobi equation

(%‘—:) - Zme’ (K ‘;:—,;r- EE?)

(2-11)
2 2 Z
WY  _zma f o P ! _poz_ 2%
(an) l—"?"( K= Zmat - En a ’7)~
It follows that
_ oW _ A4-z2ma’E 4 2 z
P€—3§ = it (‘€ +CE —A)
(2-32)

V-Zma

an l

Py = ('q+577 +Cn*-Bn - A)



where the quantities A, B, and C are given by

A=K _ _Pa_
E 2ma*E
B = - %2& (2-13)
aE
— K
C =1- =
and satisfy the identity
2
A+l-C = ——T¢ (2-14)
ZmalE

The motion of the electron takes place in ranges of values of ¢ and 5 for
which the momenta in Eq. (2-12) are real. For bound states of the electron
in the field of the dipole, E <0 and hence the quantities in parentheses in

Eqg. (2-12) cannot be negative. That is,

Fl&) = -E° +CE - A =0
(2-15)
Gm =z -n*+Bn*+Cn* -Bn-A =z0.

The classical motion takes place between the real zeros of F(¢) and G(n) in
regions where the functions are positive or zero.

We first analyze the behavior of F(¢(). The positive zeros of this

= JC - /c* 4
—J;:ﬁ+m

function are

§,

(2-16)

§2
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It is implicit in Eq. (2-16) that C>0 and sz 4A in order that 1 and £, be

real. From Eq. (2-13) the condition CZZ 4A can be expressed as

2 2
Pe o _L< |+ _K_) . (2-17)
-2ma*fE 4 £

Since ¢ > 1 by our definition of coordinates [Eq. (2-1)7], we require that
F (%) have its positive zeros not smaller than one. This requirement can be

expressed as

5‘2 =_'z_(C-~/C1—-4A) z . (2-18)

This inequality gives

C 2 2 .,.,,[c‘_q.A > 2. (2-19)

Since C =1 - K/E, Eq. (2-19) implies that ~-K/E > 1; in addition, Eq. (2-13)
implies that A > 1. If we carry Eq. (2-19) further, we find that
A+1-C=>0, as already implied for E <0 by Eq. (2-14).

The extrema of F(£) are obtained by solving

dF _ _48% +2¢8 =0, (2-20)
d§
which has the roots £ = 0, + \/-(—3—/—2- Clearly ¢ = 0 is @ minimum since
dZF/dg2 = 2C>0 at this point, Furthermore, F(0) = -A <-1. Also
E=+ J/C/2 are maxima since dZF/ng = -4C <0 at these points;
F(+,/C/2)= (C%/a) - A>0.
The form of F(¢) is illustrated in Fig. 2-3 for a case of physically
allowed motion. The function is symmetric [F(¢) = + F(-¢)] and
F(+ ») = -« The classical motion takes place in the range g1_<_g§g2 in

which F(¢) > 0, as indicated by the shaded region in this figure.
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Fig. 2-3. Analysis of F(£). The classical motion of an electron in the

field of a dipole takes place in the shaded interval.
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For small binding energies the roots {; and £, have a simple form.

Writing
[ K \2 K Py
2 _ _ A AN L4 _
C-4A = (\ E)+4(E+2ma’&') ) (2-21)
we obtain for small E
K Pe
2 ~s L4
-4 = -] - - ) 2-22
¢ A E ma*K (2-22)
To this order, the roots are
pz
N
2ma“K
(2-23)

&
g ~ }__'_‘._._?"__
= - £ 2ma*K

AsE -0, £y o and so the electron orbit extends to great distances.
For P = 0, £1 = 1 and the electron orbit crosses the dipole axis between

the charges. For Py # 0, the point of closest approach is not on the dipole

axis.

The function G(n) in Eq. (2-15) is the sum of an even and an odd

function:

G7) = GgIm) + Go(7) (2-24)
with
Ge(n) = -m* +Cn*-A

(2-25)
Gom = Bnln*-1).
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which is shown as one of the dashed curves in Fig. 2-4, is

The function G

El
identical to the function F, above, and hence has zeros at n = igl and

n=+ 52. The function Gy(n) has zeros at n= 0, +1. The slope of Go(n) at
the origin is - B, which by Eq. (2-13) is negative for E< 0, The extrema of
Gp(n) occur at n = + I/JE; GO(- 1/J§)= +2B/3J§ is a maximum, and

Gol(t+ 1/./3) = -2B/3./3 is a minimum. As 7 -+, Gyg~+a The shape of
the function Gy(n) is shown by the other dashed curve in Fig. 2-4. The sum
G(n) is shown by the solid curve. As seen in the figure, the region
-1<n<+1, which contains all kinematically allowed values of 7, contains
bound orbits only when the value of B is so large that G(7n) has two real
zeros for -1 <n<0.

The region of allowed classical bound-state orbits is indicated in the
£-n plane in Fig. 2-5. The orbits lie in a volume defined in three dimensions
by rotating the cross-hatched area about the dipole axis. Classically, the
orbit is contained in the upper half-space with 1 < 1< <)< and
-1< M, <n<np< 0; the electron cannot enter the lower half-space (n > 0).

Bound orbits exist for all values of the dipole moment. The radicand in

P, 1s

~2ma*EGly) = 2ma*En* . 4mgean(n*-1)

(2-26)
~2ma*(E-KIN? - 2ma®K - P, .

In the limit of very weak binding, E - 0 and
* 2 2 2 2
~2ma*EGM) > 2ZmeDn(n™1) + Zma*K(n*-1) - Py (2-27)
where we have written D =2ga. For any value of the dipole moment the

right hand side of Eq. (2-27) —and hence G(n)—can be made positive by
choosing Py = 0 and K sufficiently small, The only restriction on K is that

it be larger than |E|, but this is readily satisfied for E - 0, The parameters
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G(n)=GE('f7)+Go(v))j

CLASSICAL
MOTION

Fig. 2-4. Analysis of G(n). The classical motion of an electron in the

field of a dipole takes place in the shaded interval.
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Fig. 2-5. Three Dimensional Region of Classically Allowed Orbits
Contained in the Volume Generated by Revolution of the Cross-Hatched Area

about the Dipole Axis.
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q and a characterizing a given dipole are fixed. In classical physics, the
binding energy of the electron is a constant of the motion that can always
be made as close to zero as desired by choosing suitable initial conditions.
In this way we conclude from Eq. (2-27) that any dipole can bind an electron
classically. It is not known whether this result holds quantum mechanically.
The argument in Section V based on the uncertainty principle suggests that
a minimum value of the dipole moment may be needed.

Detailed classical solutions can be obtained by using action-angle

variables. The action variables are the phase integrals

Ty = § Bt

Tq = § a7

(2-28)

As seen from Eq. (2-12), the momenta Pt and P, are square roots of
rational fractions of fourth-degree polynomials. Except in special circum-

stances, therefore, the action variables are elliptic integrals.

[II. QUANTUM MECHANICAL BOUND STATES OF
AN ELECTRON IN A FINITE DIPOLE FIELD

A. Review of Numerical Calculation by Wallis et al,

We will review briefly the work by Wallis, Herman, and Milnes” on this
problem. The Schrodinger equation for the motion of an electron is, in the

notation of Fig, 2-2,

2

z e e

(_..E_V _ <% +_i)\1, =E§ (3-1)
zm v £

where{ and E denote the electronic wave function and energy. Elliptic

coordinates are introduced as in Eq. (2-1). If a product wave function of

the form P = L (£)M(n)8(¢) is assumed, the Schridinger equation is separable
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into the ordinary differential equations

Lle-od) 22V E@)e + A - 2510 -0

o] G (S -4 - 2w -0

d-—-z—- +mz§ ::O,

dcpz (3-2)
The quantities m and A are separation constants and a = n?/me? is intro-
duced to indicate atomic units (a.w ) explicitly., Withq = e, p2 = -—‘]i RZE,

and with energy and length expressed in units of eZ/Zao and a_,, the equations

o’
of Wallis et al. are obtained,

The normalized single~valued solutions of the ¢-equation are
3 () = (Zn)—%exp (+ img), where m is a positive integer or zero. The solutions
for the £~ and n-equations are expressed as series in orthogonal functions.
The numerical coefficients satisfy three-term recursion relations.
Requiring that the series converge on the appropriate intervals leads to two
equations involving continued fractions. The simultaneous solution of these
equations gives the energy eigenvalues.

The ground-state energy has been calculated for values of R from
30 a, u, down to 0. 84 a., u. corresponding to dipole moments D from 76 to
2.136 (in 10-18 esu-cm). The electronic binding energy decreases mono-
tonically as the dipole moment decreases. Because the convergence of one
of the continued fractions becomes poor for R less than unity, the energy
levels in the range R < 0. 84 a. u. were not calculated. On the basis of these
numerical calculations, no conclusion was drawn on the question of whether
the electronic binding energy goes to zero at some finite value of R.

In an earlier notel! Handler estimated the ground-state electronic

energy with a reported accuracy of about 10%. These estimates are



18

inconsistent with the monotonically decreasing behavior of the binding energy
as a function of dipole moment found by Wallis et al. Handler's work is not
described in detail; it is difficult to reconcile his results with those of the
later extensive numerical calculations.

The dipole moments of water and many other molecules fall into the
comparatively unexplored range D < 2.136 x 1018 esu-cm. In the remainder
of this section we describe calculations for finite dipoles and, in the next

section, for point dipoles.

B. Variational Calculations

A trial wave function was used to describe an electron in the field of a
finite dipole. The function consists of an S- plus P-wave angular part and
a hydrogen-like radial part. The expectation value of the Hamiltonian is
calculated and minimized. This minimum expectation value can be made
zero by the proper choice of dipole moment. Since the true energy of the
system is smaller than that given by the variational procedure, a dipole
moment larger than that given by the solution of <H>min = 0 will give an
energy less than zero, i.e., a bound state, For the type of variation wave
function used, this procedure is shown to give the same minimum dipole
moment needed for binding as that obtained for the point dipole in
Section IV.

We write the Hamiltonian in spherical coordinates shown in Fig. 2-1L

The potential energy V = eq (1/x; - 1/rq) becomes

£
<
Vo= "Ze%z A Py (cos 6) (3-3)
£ odd y

where r_ and r,, are the smaller and larger of r and a, and Pk(cose) is the

Legendre polynomial of order k. The operator corresponding to the kinetic
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energy is
_ .hl. 2 _ k), 2 rtl 02 L _3::]
T =-2mV = zm |l vl s ,me (’m )+r Ssint0 3] .

(3-4)

We take for a variational wave function -krl(r &) = g(r)Y(6y), where

2
?(r) = 2(%:) exp(— —%E—) (3-5)
and
Y(ep) = CoYpple9) + C Y5 (00). (3-6)

The Y Em( &p) are orthonormal spherical harmonics satisfying the equation

[ w5 (50 )9) + —*"—'z + ﬂf*')]Y (69) = (3-7)

sind 20 sintd 3¢
The radial function is normalized, so that
J¥rop Birogrde = ICol "+ 1CH1" (3-8)
We impose the condition
IColz + ,Cllz = L (3-9)
To calculate (T) we first consider TT(r 6w). From Eq. (3-4) we have

Tarop) =2 [Yeph L0 2)3M - ZF3MY,e009)] 10
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Then

{T?

g E'E*(retp)T J(répdde

= -5 j-y*(r)Y‘("?’)[Y(O‘P)T';::;4;("1;‘:‘,,)9(') - %‘Q(V)Ym “"P)] dt

(» -
-;?—n ( lCo|l+lC,|l)j; ?*(r)i(rli)g(r)dr

hlel"j“* _
+ 2L [ grmgmar (3-11)

The radial integrals are elementary, and the result is

2 2
Ze

Go

(T» = (1 + 4|C,|z). (3-12)

Next we calculate
<V :jsP*(recp) V @ ro¢)de

x %
= -Ze%fg*(r)[C: Yo’:)(e‘?) + C, Ylo(e‘P)]

£
Z__ :fn Pll(“’e)g(")[coYoo(e‘P) + C(Y,o(mp)] dt.

(3-13)
The only non-zero contribution to (V) from the sum over k comes from
Pq(cosp). This follows from the S- plus P-wave character of the wave

function. Carrying out the angular integrals, we find
* ©o
4e ok v
<V> = -T_S-kRe(CoC( )j 3 (l“) —<_2 ?(r) fzdr ) (3—14)
o L

where Re(z) means the real part of the complex quantity z. The radial

integral is expressed as the sum of two integrals:
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S- 3*(r);r;_?(r)rzdr +S ?"(r)—g—',_ ?(Y)thr. (3-15)
o (-3

These integrals again are elementary, and when substituted into Eq. (3-14)

give

VS = _E_fizf_zi.‘.‘: Re(coc;‘)[, C e (1ax +-'5_-x,z)] g

a

where » = ZZa/a0 >0,

We minimize (H) = (T) + (V) with respect to the variational
parameters Cy and C;. The quantity (T) is positive. The quantity in
brackets in (V) is also positive. Therefore, as far as the phase of Cyand
C1 enter, (H) will have its lowest numerical value when C0 and C1 have the
same phase. Thus we can take Cj and Cq to be real without loss of

generality, so that

{H) = -—a- (|+4CZ) Zre%% COC,[‘ x(|+'x.+ L ):l (3-17)

We replace Cjy by +/'1- Cf and set the partial derivative of (H) with respect

to Cq equal to zero. The solution of this equation is

2
C, =

* Za (3-18)

|
F)
V/éaz-f-pz

where a = Z e /Za and B = 2J3 eqa_ [1-e™1+xn +— " )]/aZZ Since

either choice of sign in Eq. (3-18) gives the same value for the second term
in Eq. (3-17), the first term in Eq. (3-17) requires that we take the lower

sign for a minimum value of (H). Then

<H>min = 3x —é-/ 16d2+ﬁz _ (3-19)
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For B sufficiently large <H>min is negative, corresponding to a bound
state, The condition that (H);, be negative is g > /20 @. This can be

written

2Lo 2 z
ZBe%ao[ _ T e, ( 2Za 2Z%* ] > Z e?
= l-e (1« rvgiia )| = Jzo 2z B2

We analyze Eq. (3-20) by assuming a = a and solve for g/e to obtain
3 -27 2 -
%Z%’—%Z [|_e (|+ZZ+ZZ)] ' (3-21)

The right-hand side of Eq. (3-21) goes to J15/8 as Z goes to zero, and
to infinity as Z goes to infinity. Furthermore, it is a monotonic
increasing function of Z. This demonstrates that there will be binding
if Z is small and q/e > JE/S, which is the lowest value of g/e
obtainable for a = a,. The corresponding value of the dipole moment is

o

Dyin = 2 (+/15/8) eay = 2.46 x 10718 esu-cm. The fact that the right-hand

min
side of Eq. (3-21) is a monotonic increasing function of Z formalizes the
intuitive conclusion that the "weaker" the bound state, the smaller the
dipole moment required to achieve that binding.

An alternative approach to Eq. (3-20) is to set q = e and solve for
a/a,. Now the unknown appears in the exponential. However, for Z
approaching zero, i.e., for very "weakly'" bound states, the value of the
dipole moment required is again found to be D ;. = (J_1_5/4)eao.
We next show how the product 2aq representing the dipole moment

can be brought in explicitly in Eq. (3-20). In the radial part of the vari-
ational wave function, Eq. (3-5), we replace Z by Zq/e. Then Eq. (3-20) becomes

2%a 2 z2 2
203 e*a, - eaf( |, 220¢  2Z-a%gN)| > 20 Z7¢°
a*Z €ea, eta? 2a,

(3-22)
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If we make the substitutions D =2aq and d = ea , and simplify, we get

SEY 1 7%p? Iis 2°D°
|-e (l+ +==5 ) 2 .

(3-23)

When Z approaches zero, Eq. (3-23) has the solution D/d = (./15/4), as before.
A lower value of D,,j, can be obtained by starting with a more general
variational wave function than that used in the preceeding calculation. We

take Ip(r 8w) = g(r)Y(6ep) as before, but now

t
g(r) = n exp (-axr®) (3-24)
where « and t are variational parameters, and n is a normalization constant.

The angular function Y(6y) is the same as in Eq. (3-6). The normalization

condition
f ¥ (rop) & (vbp) dz = | (3-25)
becomes

2 * - t
{nlz( Icolz + |C|‘ )5 e 2ok r¢dr = | (3-26)
o

Using the substitution

|
t x \t
X = 2ar , or r (E:() , (3-27)

we can write the integral in Eq. (3-26) as

I _l_?f -X %" -28
;(Za) A e X dx . (3-28)

The integral in this expression is I'(3/t). The gamma function I'(¢) is defined
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for all ¢ > 0 by the integral

Qo

r'(g) ':‘S e " x dx (3-29)

0

and satisfies the recursion relation

rs+1) = 51'(L). (3-30)

Then we obtain for the normalization constant, after imposing the condition
Eq. (3-9), |
317
t(2za)*
3
r')

where we have assumed n to be real.

(3-31)

We proceed to the variational calculation, omitting some details since
this calculation is similar to the earlier one. To calculate (T) we first

write

2mr*

t
TP(rog) = ok {Coe—ar [at2r2t _at(t+) ¥ ] Yoo lee)
~att 2,2 2t t
+Ce Lx®¢2F - xt(t+1)r —Z]Ylo(ﬂﬁp)}.

(3-32)

Then

o0
2 oyt
(T7 = -ini* 2 S‘ e * " (1c*+1c1*)
0

2
-[dzt2r2t —dt{f+‘)rt] - z2]c)l }dr. (3-33)

Using the change of variable Eq. (3-27), we can express the integrals as
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gamma functions defined in Eq. (3-29):

142
2 2 2 t L 4+
1 -2 L (e e ) [t ()T (2 +D)
£ 21C,1* G
wted) )] - 2L}
(3-34)
This expression can be simplified by means of the identity Eq. (3-30) for
- gamma functions, and by Egs. (3-9) and (3-31):
- 2 2 rl L
{TY =.ll.(2d)t. (t).(t+4.+8|cAz)_ (3-35)
STE
t

We can begin the calculation of (V) with Eq. (3-14) and substitute for
g(r) from Eq. (3-24). The radial integral is expressed as the sum of two

integrals:
o t 19 o t t
-dar -V -a&r -xXY
J’ n*e rne r*dr +j n'e 2 ne vidr . (3-36)
0 a o r

Applying the transformation Eq. (3-27) to the variables in Eq. (3-36), we

obtain

- - deg iz L
vy = 5 Re(C,C, )InI :

% zaa.t " . L
v -x -l P\t X =l
'["a_'z(z_a) £ e x dx+ a(ﬂ) J te Xt dx -

2xa
(3-37)
In the process of minimizing (H) = (T) + (V) we can take Co and Cy

real, as before, without loss of generality. Then we obtain, using the



explicit value of \nlz,

2 () qeq C,C
{H) = 11 2a)t. (t+1 +8C, ) - ¥ 2ozl
8m r(2) Boe3)
-t de't z
[ endan i’

a0

It is convenient for the following calculations to write

{HY =/u.(t+|+8C,z) -vCJi-c?

where p. and v can be read directly from Eq. (3-38), and C0 = 1 - Cf .

-x .1~
e "Xt dx|.

(3-38)

(3-39)

We set the partial derivative of (H) with respect to C1 equal to zero

and solve for Cl2 (i and v are independent of Cl):

2

C, =

L
z Nédu* +v*

For a minimum value of (H) we take the lower sign. Then

2 2
CHY :Iu(t+5-~3_”‘__)_ v
min 464’,«.2*-77' 2¢64-/u"+ v

M (t+5)- ";:‘/64/uz+uz' :

(H) jnin 1S negative provided

Ty64utev® > p(t+5)

which can be expressed as

V > 2pf(t+1)(t+9)

(3-40)

(3-41)

(3-42)

(3-43)

Substituting the values of p and v into Eq. (3-43), simplifying, and dividing




through by a, we obtain for the condition that (H) . be negative

% 2aa’ . oo %
! - z- ~X -1
Slal | eratrea] et
o Raa
ea !
> %';‘f r‘('T_-_')‘J(-t‘.wl)(t‘:+‘ﬂ . (3-44)

We solve this inequality by first replacing t1 by k, where k is an integer
larger than one. This is justified because we will later consider the solution
in the limit of very small t corresponding to very large k. In this limit we
consider k to be a very large integer, with no loss of generality. With

t71= k, Eq. (3-44) becomes
X oo

, ‘3{5. 2aa® . A1
?(;;) j e—xx4ﬂ.-'dx+S e X dx

Y 2aa®

yE Lopm)(La)(5+9 - (3-45)

|6 %a.

The integrals in Eq. (3-45) are now elementary and the left hand side becomes

. -2 w < (Zaa.i)!-u
e—zaal[g(zdaz) (R-1)---(2+1) +(4£—l)‘.ll Iy ] )
4K -1
(3-46)

Now « is a variational parameter whose value we have not yet specified.
We take o to approach zero. In this limit the only term in Eq. (3-46) which
survives is simply (k-1)! Then Eq. (3-45) becomes

(R-1)! > ’,’: ;:’f F(ﬂ)‘[(';k+|)(-é+9) . (3-47)
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Since I'(k) = (k- 1)!, we can express Eq. (3-47) as

D

1]

2ga > 4_'__3'__;_0._9 (%+I)(—'§+9) . (3-48)

In the limit of very large k, D (3 J§/8)eao = 1,65 x 10718 esu-cm.

min ~
To summarize, it has been shown by a variational calculation that a

dipole moment as small as 1. 65 x 10~ 18

esu-cm gives a bound electronic state
for the finite dipole. By comparison, the dipole moment of water is

1. 85 x 10~18 esu-cm, and the lowest value in the calculations of Wallis et al.
is 2. 14 x 1018 esu-cm.

In Section IV we solve the point dipole problem and find the same
minimum dipole moments for the corresponding variational wave functions.
This result is plausible because in the limit of small Z, i.e., very weak
binding, the wave function falls off slowly at large distances and so the
dipole appears localized in a very small region. One may conjecture that for
any variational wave function, the point dipole solution gives the same D i,
as for the finite dipole. This would have the practical effect of reducing

the amount of calculation required to solve the finite dipole case for a given

variational wave function. However, we have not as yet proved this conjecture.

IV. QUANTUM MECHANICAL BOUND STATES OF AN ELECTRON
IN A POINT DIPOLE FIELD

A, Separability of Wave Equation

We start with the Schrddinger equation, Eq. (3-1), for the motion of
an electron in the field of a finite dipole. The potential energy function is
V = eq(1l/r, - 1/xq), in the notation of Fig. 2-2. The point dipole is defined
by letting R go to zero and q to infinity in such a way that the dipole moment
D =gR remains finite. The potential energy becomes V = -eD cosg/r2,

(where g and r are spherical polar coordinates in Fig. 2-1), which is still

non-central.
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The Schrddinger equation for the point dipole is separable in spherical
polar coordinates. This permits the use of spherical harmonics Ym(ecp)
which have convenient and familiar properties. Writing the Laplacian in

spherical polar coordinates, we have for the Schridinger equation
ﬁz[ L3 (.2 | 3 (.pn2
e d a—— mmm— r ——— A —————— —— ——
rz °r ( )r) + 250 39(5'"939)

! 37 _ eDcosb _ L
r’sin?@ a<pz] rZ E } Q(VG‘P) 0.
(4-1)

Consider a solution of the form

J(roe) = Z F(r)Y (Otp) (4-2)

where the fj&(r) are radial functions to be determined. (Note that the
Hamiltonian does not couple states of different m). Substituting this

solution into Eq. (4-1), and multiplying by —Zmrzﬁ'lz, we get
d/,223 l d o
9 ° — in6 & —_—
[br(r ar) * Sin6 20 (s e/t sin?0 dp*

oo
+ KcosO + ﬂzrz]_z 'FR(V) Y!m(efP) = O)
=0 (4-3)
where we have introduced the parameters K = ZmeD/h2 and kZ = ZmE/hZ.
(Note that we can also write K = 2D/ea, and K& = ZE/aer.) Using Eq. (3-7)

for the spherical harmonics and substituting in Eq. (4-3) results in
oo 3 23 2 2 £ Y
Z[S’r(" 5;) L2+ 1) + KeosO + R r [ £,(0) ‘M(th):(). (4-4)
2=0

*
To get a purely radial equation, we multiply Eq. (4-4) by Yﬂzm(ecp) and
integrate over the angular variables. The result, after simplification by

means of the orthonormality properties of the spherical harmonics, is
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[L(rt8) - 204D + &3] e

(2+m)(2-m) (2em+D(2-m+1) 1=0
K{ (204 N(z2-1) ﬁ-l(r) * »\/—(21+3)(2f+|) ﬁm(r) :

(4-5)

Equation (4-5) represents an infinite set of coupled equations for
£=0,1,2, ...; [f_1(r) =0]. The (cose)-dependence of the potential results
in £, 1(r) being coupled into the equation for f z(r). If the dipole moment
is zero, K = 0, and Eqg. (4-5) reduces to the radial equation for a free
particle with angular momentum quantum number ¢. It is interesting to
consider the quantum mechanical problem for the central counterpart of the
non-central inverse-square potential, If we set cosg= 1, the potential
term can be combined with the centrifugal term to produce a coefficient
[K- (g + 1)]. The solution of the latter case has been treated in detail
in ref, 8.

Another form of solution we consider is
P(rog) = fr)Glew), (4-6)

where f(r) and G(9¢) are unspecified functions except for their arguments.
With this trial solution, Eq. (4-1) is separable into the following radial and

angular equations:

[£22) +&r* —y]F0) =0 (4-7)
and
[s.-:.a 36 (5n035) + Keos® + 7 + ;7;:?5'3%2} Glogp) = 0, (4-8)

where v is the separation constant.

We will treat two special cases of Eq. (4-8). First we consider

Glop) = } Cp Vym(oP) . (4-9)

220
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This is equivalent to taking a single radial dependence fz(r) = C £(r) in
Eq. (4-2). In fact we may substitute this directly into Eq. (4-5) and use
Eq. (4-7) to get

[y __f(,“)]c,f(r) + K[jgzx))((:!-—r?; Co

am+ D(g-m+1)
* 4/(1(;"1»,2)((21':1)' Cour ],C(.-) = 0. (4-10)

Since this equation must be satisfied for all r, we get a three-term recursion
- relation for the coefficients C ). This relation is just Eq. (4-10) with the
function f(r) removed.

Second, we consider
Glog) = glo) h(p) (4-11)

i e., @(recp) = f(r) g(8) h(y). The separated Schrodinger equation then is

jd;("z;d;) + R%r? - 7] f(r) =0 (4-12)
! d (sined b* _
- [sine a6 (5n83p) + Kcosb +7 - sin® 0 Jgt =0 (4-13)
2
(j-;z+ EZ)h((P) = 0 , (4-14)

where v, b, and ¢ are separation constants.

The single-valued solutions of Eq. (4-14) are

! (€
hy) = — % £=0,%I
fzm ' ’

The solution of the radial equation depends on the value of the separation

*2,... . (4-15)

constant y. This constant is determined, however, by the solution of the

S
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g-equation. Equation (4-13) can be transformed by the substitution x= cos§
into

2

%[('-*2)3—31 + (Kx - = +7)7 =0, (4-16)

Yy —-X
This equation is of Sturm-Liouville form. Z

B. Variational Calculations

We give explicit results for a trial function of the form of Eq. (4-2)
consisting entirely of S- and P-wave angular momentum eigenfunctions. This
concentrates the probability density of the electron in the half-space con-

taining the positive dipole charge. We take

P(rég) = CoFo(") Yoo(aio) + Clﬂ(r)Ylo (6¢) . (4-17)

The radial functions are taken to be normalized by

[-"-4 2 oo
(e ke = [ 1R rdr = 1, (4-18)
0

o

. &
and thus the normalization J“I’ Qd'r = 1 implies

2 2
I, +1C,1 = 1. (4-19)
We choose the radial functions
e--oxrt
'Fo(r) = Ko o
(4-20)
-art
e

In order that these functions be normalizable, we require that t >0, p < 1/2,
q<1/2, >0, and p > 0. The adjustable variational parameters are C,, Cy,

a, B P94 and t. The same power t of r was used in the exponentials in
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order that the integrations below could be made in terms of tabulated
functions. It will be seen later than the minimum value of the dipole
moment needed to give a negative value of the energy depends principally on
the parameter t.

It is convenient to divide the Hamiltonian in Eq. (4-1) into the

following terms:

b
H=—-;ﬁ'—:0(r)+ g—(z—f—%)_—ﬁ + V (4-21)
m
where
3 2 9
Ocr) = >t Y ESE (4-22)
. _Decosh
Vo =-=3 ’ (4-23)

and the ¢2(£+1) term is determined by Eq. (3-7). The expectation value of
@(x) is given by

(o) = [P0 g ridrda

co 2]
- ICollyo F:O’(r)For‘dr + lCllIS; £romfrtar.
(4-24)

The functional dependence of the first integral on @ and p is the same as
that of the second integral on 8 and q, and so we need work out only one of

them. From Eqs. (4-22) and (4-20) it follows that

it * _2art 2t-2p
§£romfrrar =il | € [att?r
0 0

vat(zp-t-0rt 2 L pp-Nrfldr

(4-25)
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The right-hand side can be expressed in terms of gamma functions. Using

the substitution Eq. (3-27), we obtain
\ 1? =¥ {-2P

X)G;o*o(")’%'zd" ,KOI( J; e"‘[?zz:)zzx“ T

¢t l+—|-_-—t3—P' _‘;z_P =1
+—z-(Zp—f—l)X +p(p-|)x t X dx.

(4-26)

| From Egs. (3-29) and (3-30) it follows that Eq. (4-26) can be written

j-c%*ﬁ(r)ﬂr‘dr=!—£‘~z( 3 [4 2+ tp)(l '_ZP)F‘("ZP
0

)]

z —
=l (O™ p (2 [t 1-2pd2p-1) 4+ plp-D]

(4-27)

+= (zp-t ‘)(' 2'),-'(';21') v plp-)[ (=22

The second integral in Eq. (4-24) is given by this function with @ and p
replaced by B and q. Since the integral Eq. (3-29) diverges for ¢ <0,
Eq. (4-27) implies that p <1/2 and q <1/2, a requirement already imposed
through the normalization of £3and f;.

Only the P-state wave function contributes to the expectation value

of the second operator in Eq. (4-21), so that g(¢ +1) =2 and

00
2(g+1) _ 2[ 2
(D) - 2lcl ] I£,]"dr

2 _2prt
= zlc, "Ik 5' e i o .
(3 (4-28)

With the help of the substitution Eq. (3-27), with a replaced by B, we
obtain =29

+ ll'K'l ! ‘ —
<1(frt') > = 2|CL | (;ﬁ) r(- tz% . (4-29)
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From Eq. (4-17), the expectation value of the third operator in Eq. (4-21)
is given by

(V2

S x Ak
"Dej(cofo Yoo Cifi Yo ) w:f (Co'FoYoo + CI&Ylo) rdrda

Xk
—DQ(C:C.S-Fo*‘F.dFS.YooY,ocosed_rL + complex conjugot&!)

* * *
= —-2De Re(Co ¢, S"CO f drSYoo Yo cos B dn-
(4-30)
where Re(z) denotes the real part of the argument z. The quantity cosg has
non-vanishing matrix elements only between angular momentum states Yym

for which the ¢'s differ by +1. The integral over angular coordinates in
Eq. (4-30) gives

r i r3)
* 3 2 . \
Bd.ﬂ- = ——j GCIQJ‘ d T e—— -
§ Y0¥, e08 aw ) 05 62mESE) 2P = (4-31)
The integral over the radial coordinate is
oo
¢
* * —(x+B)r _
) 5‘4:0,(." dr = Koknfo e P ey, (4-32)
. This has the form of Eq. (4-31), which gives
* B
* _ Ko Ki ( ' ) t \-P-% i
j.FoFldv = = o r‘( T ) (4-33)

The divergence of the integral Eq. (4-32) for p + q >1 requires that p +gq<1.
This condition is satisfied since p <1/2 and q <1/2. From Eqgs. (4-30), (4-31),
and (4-33) we have

(W)=~ 222 Re[C:C,K:K.%(“iP) T ()] (4-34)
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ok
Substituting Eq. (4-27)—with the analogous expression for [‘fla(r)flrzdr—,
o
Eqgs. (4-24), (4-29), and (4-34) into Eq. (4-21) gives for the expectation value

of the energy of the electron
-Z.P

(H) =- {M—(z“\ (' ZP)[ (£+1-2p)2p-1) + p(p-1)]
R sc.IZIK,l‘(I.E)';Ej

2 l -
2 l_fi_l?iﬁi(;;) o r (=28)
l-tw

(2[4 12920+ 5301

r(=5)]

In minimzing (H), we make the magnitude of the last term in Eq (4 35)a

1
- z}e Re[CoC KoK ‘t(d P) (4-35)

large as possible. With respect to the phase of the product ct CIKO C1

this is accomplished by making that phase zero. Since the term in question

is the only place in (H) where phases enter, we can take C,, C,, K, and K

oo 1
to be real without loss of generality. Making the substitutions C% =1- C%

and Dem/h2 = D/eao, we write for Eq. (4-35)

#* 2/, '-':—ty 1-2p 1 ]
(H)__.th{Ka(.l_“) (2 L5 (t+1-2p)i-2p) + PUI-P)

b2k T () G e 1= 25X - 29) + 300~ 9)

1~2p

K )Tl"( )('(t+|-zP)(l—zp)+p(...p))_,_ZKf(;l?)"-—:'zr.(_._:t_z}]

-rP-3
ea,ﬁ [ M IJ l(o(-.-p ( t ) .
As a function of Cl’ (H) can be written

z
M) = -;-:1—‘%—(‘4 + BC,l - DFC,\/ |- Clz ) (4-37)

(4-36)
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where

1-2p

(2,) ¢ F'( ")[4(*:*' 2p)(1-2p) + P(l-P)] (4-38)

>
1

1-2

t-2%
B = k() P(SlSew-2p0-29) o 50-9)]

-2

=2p
k(=) T (e 1200204 pG-p]

+2K‘(—) &l (“z ), (4-39)
1-p-9
4K, K, t 1-P-8
Faplee) (e, )

and D and C1 are the same as before. It follows from Eq. (4-37) that the
electron energy (H) will be negative and hence there will be a bound state for

the electron for values of the dipole moment

A+BC;
FC ! =€}

D > (4-41)

To minimize the dipole moment that will just give a bound state, we set

aD/acl = 0 and solve the resulting equation for C,. Differentiation gives

1
2

sD _ FCAi-c* -28C, - (A+8CHF[Ai-c? - Jl—c‘] (4-42)

aC, cml (I—C‘f)

Setting the numerator equal to zero and multiplying through by 41 - Cl2 /F

gives

2BCX(1-c?) - (A+BCH)(1-2¢7) =0. (4-43)

S



38

The terms in CII drop out and we are left with

Cl(2A+B) -A =0,

(4-44)
A positive value of the dipole moment results from the positive root
¢, = J=2— . (4-45)
! 2A+B

Substituting this root into Eq. (4-41) gives

AB
A+ ZA+B

D >
'/A+e f‘ 2A+B

With the help of Eqs. (4-38), (4-39),

= 2 /h(a+8) . (a-46)

and (4-40), we obtain
ea 3 (x+ B) i
2K, K, (__L:i)

J_T:;}- [_(f-o-l—ZP)(l—ZP) + P("P)]

R - , 4
-K,('{PT) 2t r‘(‘ tzi)[z(tﬂ-zz,)(l-zc&) +q(1-%) +z]

l--p—& 1-2pP \=-2

-2 =23
- ea;rg (x+8) ¢ (;';) 2t (_z_lz) Zt

(=2 ()
r(=f-¥

{[(t+l -2p)(1-2p) + 4p(1-P)][ (% +1-2¢)(1 -29) 4 4¢(1- 3)+8]}

Nl-

We recall that in the definition, Eq. (4-20), we require that o, B, and
t be positive; p and q are each less than one-half. For p=q=0, o = and
t =1, and Eq. (4-47) simplifies considerably. In this case the trial function
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is identical with that used in ref, 6, which gave the minimum value of the

dipole moment

€ea.i3 -18
Doim = 8" (2)(2+8) = e_a;ﬁ = 2.46 x|10  esu-cm, (4-48)

Forp=q=0, =8, and t #1, Eq. (4-47) gives

D > gz(;i_?ﬁt”)(h” . (4-49)

The smallest value that this quantity can have for t > 0 approaches the
limit (as t - 0),

-18
D, = S&é_\’!_—"_ = 1.65 x10”' esu-cm . (4-50)

This value is smaller than the smallest value 2.14 x 10718 esu-cm in the
numerical calculations of Wallis et al. 7 The results expressed in Egs. (4-49)
and (4-50) are the same as those obtained in Section IIl for the finite dipole
in the limit of very weak binding [see Eq. (3-48) and the subsequent remarks].
Since the actual ground-state energy with the dipole moment of Eq. (4-50)
will not be greater than the value zero obtained with the trial function, this
result establishes rigorously the existence of bound states for a point dipole
with D as small as 1. 65 x 10"18 esu-cm. No additional improvement was found
for other choices of p and q and for o # (.

In summary, the original trial function, as defined by Egs. (4-17) and
(4-20), shows rigorously that a bound state exists for an electron in the
field of a point dipole with a dipole moment as small as 1. 65 x 10"18 esu-cm.
The above detailed calculations show that this minimum value of the dipole
moment results when the following simplifying assumptions are made: C_ and

0

C, are real, p=q= 0, and o =p. The trial function then becomes simply

1

—art
P(rog) = € ar [COKO 00(69) +C,K,Y,o(9¢p)] ) (4-51)
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and the requirement given by Eq. (4-49) assures binding. It is seen that the
smallest value D_ ;. = 1.65 x 10718 e su-cm is obtained by letting t » 0. The
wave function is then spread over large distances in the half-space containing

the dipole' s positive charge.

V. UNCERTAINTY PRINCIPLE AND BOUND STATES OF
AN ELECTRON IN A DIPOLE FIELD

The following non-rigorous argument, based on the uncertainty principle
and the use of qualitative estimates, suggests that there is a minimum
value of the dipole moment needed to bind a charged particle quantum -
mechanically. Consider an electron moving in the field of an attractive
central force that varies as an inverse power of the radial coordinate. The

energy of the electron is given classically by

p? V-]
E = m\ - T’—“- (5'1)

where p and m are the electron momentum and mass, and f8 and n are positive
constants. A necessary and sufficient condition for binding of the electron

is that E be negative, i.e., that

zmpg » p*rn | (5-2)

If the maximum values p, and r  of the classical momentum and radial
coordinate are substituted into Eq. (5-2), then a sufficient condition for

binding is
2mg > Pa Fo' . (5-3)

We assume that a very weakly bound par ticle occupies a volume in phase

space equal to

2 3
4—;1) pir: = (zwh) (5-4)
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corresponding to the existence of a single bound state. We combine Egs.

(5-4) and (5-3) to obtain a semi-classical condition for binding, namely

_ 2mp z( 3) n-2 n-z
A= 22 > 47 o o = 58r, . (5-5)
We next consider the possibility of having a bound state for an arbi-
trarily small value of g or A. For the Coulomb potential, n=1, the
condition Eq. (5-5) is
5.8

Yo

A >

(5-6)

For any value of A this condition can always be fulfilled by taking r,
sufficiently large. That is, for an arbitrarily weak Coulomb interaction a
bound state always exists (as is well known), although the volume occupied
by the electron becomes very large when the binding is very weak. This
result applies to any other nless than 2. For n= 3, the condition Eq. (5-5)
gives

A > 58, (5-7)

p)
and the existence of a bound state is assured for all values of A by choosing
r, sufficiently small. Thus, weakly bound states exist in which the electron
stays close to the force center. This result applies to any other value of n
greater than 2.

The case n = 2 is special. The condition Eq. (5-5) gives

A »58 (5-8)

and one can say only that bound states do exist when A is greater than this
number.

The last finding, based on the above heuristic arguments, may be com-
pared to the rigorous result that bound states exist for all values of A with
n # 2, and that a necessary and sufficient condition for binding whenn = 2
is that A >1/4.*® The analysis given above indicates that these results can

be interpreted as a manifestation of the physical meaning of the uncertainty
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principle. To localize an electron in a bound state requires giving it a
variety of momentum components. If the potential is long-range (n <2),
classical particles with high momenta will always be turned back towards the
center of force. Bound states will always exist (even when the force
constant @ is small) and r | will be large. If the potential is short-range
(n > 2), classical particles with high momenta will simply be held in close to
the force center and o will be small. The potential with n = 2 appears
neither to be steep enough nor to have a range long enough to assure binding
unless the strength f is above a certain value.

The coefficient 5.8 in Eq. (5-5) is larger than the value 1/4 obtained in
the quantum mechanical analysis with n = 2, In view of the replacement of p
and r in Eq. (5-2) by their maximum values, this difference is not surprising.
A more realistic coefficient appears if, instead of the above replacment, we

assume that p, may be estimated from the uncertainty principle as follows:
(4 Z 3.3 __ .3 (5-9)
?) Po¥o = h -

Eq. (5-3) then gives as a sufficient condition for binding that

4
3 - -
)= _—-21""25 > () re* =o0usK ", (5-10)

which is close to the known minimum value A = 0.25 for n= 2,

If the above arguments for the central potential V = - B/r2 are applied
to the point dipole for which V = -De cose/rz, then A >1/4 gives, with
cos8 1, D>0.2 x 10-18 esu-cm. This value of the dipole moment is an
order of magnitude less than the smallest value for which the existence of

bound states was demonstrated with the use of trial functions in Section IV.
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VI. SUMMARY

The analysis of Section II showed that bound electronic orbits occur
classically for arbitrarily small values of the dipole moment.

The quantum mechanical expectation value of the Hamiltonian for the
finite dipole was calculated using variational wave functions. The angular
part of these wave functions consisted of an S- and P-wave. Two radial
dependences were used: the first was hydrogenic in form, and the second
approached the hydrogenic form for certain values of a variational parameter.
The energy was minimized and set equal to zero. For the first radial depen-
dence it was found that for a dipole moment D> (JE/4)eao= 2, 14:x10“18 esu-cm,
there is a bound state. For the second radial dependence, a bound state was
shown to exist for D > (3«/-3—/8)ea'0 = 1.65 x 10718 esu-cm. This is less than the
smallest value for which numerical integration of the Schrodinger equation
has been performed.

The Schrodinger equation for the point dipole is separable in spherical
polar coordinates. Various assumed forms of solution lead to infinite sets
of coupled ordinary differential equations, three-term recursion relations,
or three ordinary differential equations coupled through separation constants.
The last formal solution appears to offer a promising point of departure for
a detailed solution and will be the subject of another investigation.

A variational calculation similar to that performed with the finite
dipole was carried out for the point dipole. The S- and P-state angular
momentum eigenfunctions were used with radial functions that approached
the hydrogenic form for certain values of the variational parameters.
Results similar to those for the finite dipole were obtained, and it was shown
that an electronic bound state exists in the field of a point dipole with a
dipole moment as small as D = (3 J§/8)eao = 1,65 x 1018 csu-cm.

Semi-classical considerations based on the uncertainty principle indi-

cate that a bound state exists for a central force of any strength varying
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as r ™ (n > 0) except in the case of the inverse square potential, which has
the same radial dependence as that of the point dipole. In this case the
analysis indicates that the dipole strength may have to be larger thana
certain value in order to bind an electron. The numerical value of this
minimum dipole moment is estimated tobe D= 0,2 x 10718 csu-cm.
Although this result is by no means rigorous, the use of the uncertainty
principle appears to help account in a physical way for the unusual nature of
the inverse square potential.

The numerical results of Wallis, Herman, and Milnes’ are shown together
with those obtained here in Fig, 6-1. The solid curve gives the ground-state
binding energy as a function of dipole moment from ref. 7. These calculations
extend down to the value D = 2. 136x 10718 csu-cm shown as the lowest
calculated D. The dipole moments of a number of molecules are indicated for
reference. The lowest value D = 1. 65 x 10718 esu-cm obtained with trial
functions and the estimate of the minimum moment based on the uncertainty

principle are also shown,
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Fig. 6-1. Summary of Numerical Results for Ground-State Binding

Energy of an Electron in the Field of a Permanent Electric Dipole.
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