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ON THE BOUND STATES OF AN ELECTRON IN THE FIELD

OF A PERMANENT ELECTRIC DIPOLE

J. E. Turner* and Kenneth Fox*

ABSTRACT

The problem of the quantum mechanical interaction of an electron
with a permanent electric dipole finds application in studies of
electron interactions with polar molecules and in certain solid
state models. The problem also has intrinsic interest in that it
represents a relatively simple physical system about which not
much is known. Most of what is known about the system is
contained in the I960 paper of Wallis, Herman, and Milnes in
which the Schrb'dinger equation was integrated numerically to
obtain the dependence of the ground- and several excited-state
energies on the value of the dipole moment. The smallest value
of the dipole moment for which these calculations were made
was D= 0. 840 eaQ = 2. 14 x 10"18 esu-cm, which is larger than
values for a number of important molecules (e.g., H2O, D2O,
NH3, HC1, etc.).

The present report gives some additional results for the
electron-permanent dipole system. (1) An exact analysis based
on Hamilton-Jacobi theory shows that electronic bound states
exist classically for arbitrarily weak dipoles. (2) A quantum
mechanical analysis using a trial function of the form
Y= exp (-art)(CoYQQ + CjY^q), where Cq, C^, a, and tare
variational parameters, Yqo and Yjq are S- and P-state angular
momentum eigenfunctions, and r is the electron1 s radial
coordinate, shows that a bound state exists in the field of both

a point dipole and a finite dipole (in the limit of very weak
binding) with a dipole moment as small as 1.65 x 10"^ esu-cm.
This is lower than the smallest value of Wallis et al. (3) A
semi-classical argument based on the uncertainty principle
suggests that there is a minimum value of the dipole moment
required to bind an electron. A rough estimate indicates that
the minimum value may be D = 0. 2 x 10~*8 esu-cm.

Health Physics Division, Oak Ridge National Laboratory.

Department of Physics, University of Tennessee.



I. INTRODUCTION

This report contains calculations and results on the problem of the

bound states of an electron (or other charged particle) moving in the field

of a finite dipole. x Apparently this system, which is complicated by the

non-central nature of the force field, has not been solved either classically

or quantum mechanically for arbitrarily small dipole moments.

The reasons for our interest in this problem are the following:

(1) Interactions between electrons and molecules are studied by means

of swarm experiments in which electrons diffuse through gas molecules.2

Recent experimental results3 on diffusion cross sections in mixtures of

certain polar molecules with ethylene are in disagreement with the

theoretical predictions.4'5 To account for this discrepancy, it was

suggested3 that electrons might be captured into bound or quasi-bound

states by the polar molecules.

The capture probability for this process was calculated6 and qualitatively

accounts for the discrepancy. This calculation, in which a variational wave

function was used for an electron in the field of a point dipole, led to an

investigation of other variational wave functions for the point and finite

dipoles, as described in Sections IE and IV.

(2) Recently the energy eigenvalues of an electron moving in the field of

a finite dipole were calculated by numerical integration of the Schrodinger

equation. 7 These calculations were done for dipole moments only as small

as 2. 14 x 10"1° esu-cm; convergence in the numerical solutions became poor

below that value. It is important to know whether bound states exist for

smaller values of the dipole moment. The dipole moments of many important

molecules (such as H2O, H2S, NH3, hydrogen halides, N02, CO, etc.) are

beyond the range of the existing numerical calculations. Furthermore,

there is the fundamental question implied by Wallis ejb al. :7 Can an electron

be bound in the field of a dipole with an arbitrarily small moment?



(3) The present work is an exploration into the domain of singular non-

central potentials, about which relatively little has been written. (An

important study of singular central potentials in quantum mechanics has

been made by K. M. Case.8)

(4) Understanding the interaction of electrons with polar molecules,

such as water, is of potential biophysical significance. The interaction of

a charged particle with a finite dipole may also apply to certain models in

solid state physics and to the motion of a charged particle in the field of a

relatively massive particle-antiparticle pair.7

II. CLASSICAL MOTION OF AN ELECTRON IN A DIPOLE FIELD

Both the classical and quantum mechanical equations of motion for an

electron in the field of a finite dipole are separable. In this section we

analyze the classical bound states of the electron and in the next section the

quantum mechanical states. It is shown that there will always be a bound

state classically no matter how small the dipole moment is, although it is

not clear in the quantum mechanical case whether the same is true.

In Fig. 2-1 we represent an electron of charge -e in the vicinity of a

dipole centered at the origin O of coordinates with its charges +q and -q

located, respectively, at the positions z = +a and z = -a. The magnitude of

the dipole moment is D = 2qa = qR. The cylindrical coordinates (p, cp, z) of

the electron are given in terms of the cartesian coordinates (x, y, z) by the

relations x = pcoscp, y = psincp, and z = z. The Hamiltonian of the electron

is invariant under rotations of the coordinates about the Z-axis and hence

is cyclic in the variable cp. The motion of the electron will thus be

characterized by the conservation of angular momentum about the Z-axis.

We can, therefore, transform the problem of the electron1 s motion from

three dimensions to two dimensions, viz., to motion in a rotating plane

through the Z-axis. Furthermore, as shown explicitly below, the two-

dimensional problem is separable in elliptic coordinates.
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Fig. 2-1. Spherical and Cylindrical Coordinate Reference Systems. The

dipole moment is D = 2qa = qR.



We write expressions for the potential and kinetic energies of the
electron in elliptic coordinates, define conjugate momenta, and write the

Hamiltonian describing the motion of the electron. Next the Hamilton-

Jacobi equation, which is separable in these coordinates, is formed. Finally,
we write the phase integrals, which determine the classical orbits without

a detailed numerical solution of the problem.

Elliptic coordinates (£, 77) are defined in Fig. 2-2 by

R

rx - r

^ R

n - »x. -\

(2-1)

where x1 and r2 are the distances of the electron from the charges +q and
-q. In three dimensions surfaces of constant £ and v define, respectively,
ellipsoids and hyperboloids of revolution. The potential energy of the
electron is

V =*eK - M).
From Eq. (2-1) we have

r» " T
(4 - •?)

so that the potential energy in elliptic coordinates is

V R 4*-7* •
In cylindrical coordinates the kinetic energy of the electron is

/ • 2 2*2 * 2 ^

(2-2)

(2-3)

(2-4)

(2-5)
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R=2a

D=qR

Fig. 2-2. Elliptic Coordinate Reference System. The dipole moment is

D = 2qa = qR.



where m is the mass of the electron and the dots denote differentiation

with respect to time. From the geometry in Fig. 2-2 and from Eq. (2-3) we

write the equations relating (p, z) and (£, 77):

r. = p
I

r* =^2 W*-a,)2 = a'« -?)* (2-6)

Solving for p and z in terms of £ and 77 and performing the time

differentiations, we obtain

T^fe'-ri£+̂ )Hr->)0-vl)iz]. (2-7)
The momenta conjugate to the coordinates (£, 77, cp) are defined by the

following partial derivatives:

»8 l |z- I

?, . *r. =„»*(«*_ ^-i-j (2.8)

Writing the kinetic energy in terms of these conjugate momenta gives for

the Hamiltonian, H = T + V,

(2-9)

This expression is consistent with that given for the hydrogen ion-molecule

H2, for which both electric charges on the Z-axis in Fig. 2-1 are positive.9

Hamilton' s canonical equation P = - BH/9cp implies at once from Eq. (2-9)

that p is a constant of the motion since cp does not appear explicitly in the



Hamiltonian. We are left with treating the motion in terms of £ and 77.

The Hamilton-Jacobi equation is obtained from Eq. (2-9) by writing E in

place of H for the total energy and BW/d£ and 3W/d?7 in place of the momenta

Pt and p . ^° The quantity W is Hamilton' s characteristic function. It gene

rates a canonical transformation from (£, 77) and their conjugate momenta

(Pt> P ) to new variables for which all the momenta are constants of the

motion. We treat W as a function of £, 77,and the new conjugate momenta.

Thus we obtain from Eq. (2-9)

(2-10)

We assume that W is a sum of two functions, W = W>(£) + W (77), where Wt

and W depend only upon the single coordinate shown (and the new momenta).

The first bracketed term in Eq. (2-10) then depends only on the coordinate

£ and the second term only on 77. This equation can be valid for all values of

the independent variables (£, 77) only if the two bracketed terms are both

constant. Denoting the values of these terms by the constants +K gives for

the separated form of the Hamilton-Jacobi equation

(2-11)

It follows that

Tt°*t**0£-[-i? +cf-A)x
(2-12)



where the quantities A, B, and C are given by

E 2maz£

R =^ -i^e (2-13)
a£

_ K

and satisfy the identity

Q = I - -K-

A+ | _ C = 3^__ (2-14)
2ma2E"

The motion of the electron takes place in ranges of values of £ and 77 for

which the momenta in Eq. (2-12) are real. For bound states of the electron

in the field of the dipole, E <0 and hence the quantities in parentheses in

Eq. (2-12) cannot be negative. That is,

Ftf)= -** +C!*- A * 0
(2-15)

Gfy) = -<n4 +Bti3 +Crjz - Btj - A >0 .

The classical motion takes place between the real zeros of F(£) and G(r]) in

regions where the functions are positive or zero.

We first analyze the behavior of F(£). The positive zeros of this

function are

*• =^yc-v^r
4%

*x =7?y^+ Vc2-4A
(2-16)
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It is implicit in Eq. (2-16) that C>0 and C2> 4A in order that ^ and £2 be
real. From Eq. (2-13) the condition C2> 4A can be expressed as

—— £ t( i * if) • (2"1?)-2mazF + V *'

Since £ > 1 by our definition of coordinates [Eq. (2-1)], we require that

F(£) have its positive zeros not smaller than one. This requirement can be

expressed as

I,2 =.i-(c-VFT^) 2 |.

This inequality gives

C > 2 +VCZ-4A > 2 .

(2-18)

(2-19)

Since C = 1 - K/E, Eq. (2-19) implies that -K/E > 1; in addition, Eq. (2-13)

implies that A > 1. If we carry Eq. (2-19) further, we find that

A + 1 - C > 0, as already implied for E <0 by Eq. (2-14).

The extrema of F(£) are obtained by solving

4L = -At? +2C$ = 0 . (2-20)

which has the roots ij = 0, + kJ C/2. Clearly £ = 0 is a minimum since

d2F/d£2 = 2C>0 at this point. Furthermore, F(0) = -A <- 1. Also

I = + JC/Z are maxima since d F/d£ = -4C<0 at these points;

F(+ 7C/2)= (CT/4) - A >0.

The form, of F(£) is illustrated in Fig. 2-3 for a case of physically

allowed motion. The function is symmetric [F(£) = + F(-£)] and

F (+ oo) = - co. The classical motion takes place in the range £ <£ <£? in

which F(£) > 0, as indicated by the shaded region in this figure.
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F(f)
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CLASSICAL

MOTION

Fig. 2-3. Analysis of F(£). The classical motion of an electron in the

field of a dipole takes place in the shaded interval.
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For small binding energies the roots ^ and £2 have a simple form.

Writing

v^ =Ji^W^li^S) , (2-21)

we obtain for small E

z.

VC*-4A = " 1" -F- \c • V-ZV

To this order, the roots are

2ma*K
(2-23)

**• V E" 2ma*K

As E -> 0, £? -^ a> and so the electron orbit extends to great distances.

For p = 0, £i = 1 and the electron orbit crosses the dipole axis between

the charges. For p^ / 0, the point of closest approach is not on the dipole

axis.

The function G(t7) in Eq. (2-15) is the sum of an even and an odd

function;

G(-n) = GE<i?) + Go'7?) (2-24)

with

(2-25)

G0(ri) » Btj^2-!).
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The function GF, which is shown as one of the dashed curves in Fig. 2-4, is

identical to the function F, above, and hence has zeros at 77 = +£ and

77 = + I . The function Gq(t?) has zeros at 77 = 0, +1. The slope of Gn(77) at

the origin is -B, which by Eq. (2-13) is negative for E < 0. The extrema of

Gq(t7) occur at 77 =+ 1/^3 ; Gq(- l/*/3)= +2B/3^3 is a maximum, and

Gq(+ 1/^3 )= -2B/3,y3 is a minimum. As 77-> +«>, Gq -> +co. The shape of

the function Gq(t7) is shown by the other dashed curve in Fig. 2-4. The sum

G(?7) is shown by the solid curve. As seen in the figure, the region

- 1<77<+1, which contains all kinematically allowed values of 77, contains

bound orbits only when the value of B is so large that G(t7) has two real

zeros for - 1 <ri < 0.

The region of allowed classical bound-state orbits is indicated in the

£-77 plane in Fig. 2-5. The orbits lie in a volume defined in three dimensions

by rotating the cross-hatched area about the dipole axis. Classically, the

orbit is contained in the upper half-space with 1 < £-.< £ < £? <°° and

~ •*- S ^? < ^ —^1 < ^5 the electron cannot enter the lower half-space (77 > 0).

Bound orbits exist for all values of the dipole moment. The radicand in

p is

-2mazEGtlij) = 2molE^4 +4m£ea?f (*»?*-1)

-2ma.l(£-K)>72 - 2malK -f>£
(2-26)

In the limit of very weak binding, E -» 0 and

-2rnaxE"6(-ri) -* 2mePr7f^-i) + ZmaK(rix-\) - -p* t (2-27)

where we have written D = 2qa. For any value of the dipole moment the

right hand side of Eq. (2-27) —and hence G(?7)—can be made positive by

choosing p = 0 and K sufficiently small. The only restriction on K is that

it be larger than IE |, but this is readily satisfied for E -» 0. The parameters



CLASSICAL
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G(t7)=Ge(t?)+G0('7)

Fig. 2-4. Analysis of G(t?). The classical motion of an electron in the

field of a dipole takes place in the shaded interval.
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17 =0

Fig. 2-5. Three Dimensional Region of Classically Allowed Orbits

Contained in the Volume Generated by Revolution of the Cross-Hatched Area

about the Dipole Axis.
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q and a characterizing a given dipole are fixed. In classical physics, the

binding energy of the electron is a constant of the motion that can always

be made as close to zero as desired by choosing suitable initial conditions.

In this way we conclude from Eq. (2-27) that any dipole can bind an electron

classically. It is not known whether this result holds quantum mechanically.

The argument in Section V based on the uncertainty principle suggests that

a minimum value of the dipole moment may be needed.

Detailed classical solutions can be obtained by using action-angle

variables. The action variables are the phase integrals

J| =j ?£ ^
(2-28)

As seen from Eq. (2-12), the momenta p*. and p are square roots of

rational fractions of fourth-degree polynomials. Except in special circum

stances, therefore, the action variables are elliptic integrals.

III. QUANTUM MECHANICAL BOUND STATES OF
AN ELECTRON IN A FINITE DIPOLE FIELD

A. Review of Numerical Calculation by Wallis et al.

We will review briefly the work by Wallis, Herman, and Milnes7 on this

problem. The Schrodinger equation for the motion of an electron is, in the

notation of Fig. 2-2,

(3-1)

where Ip and E denote the electronic wave function and energy. Elliptic

coordinates are introduced as in Eq. (2-1). If a product wave function of

the form $ = L (£)M(?7)§(cp) is assumed, the Schrodinger equation is separable



17

into the ordinary differential equations

^-^] 4i(fJ (|̂ )^ ^ - ^11 =o

The quantities m and A are separation constants and a = h /me^ is intro-
2 1 2duced to indicate atomic units (a. u. ) explicitly. With q = e, p = -— RE,

and with energy and length expressed in units of e2/2a and aQ, the equations
of Wallis et al. are obtained.

The normalized single-valued solutions of the cp-equation are
_i

$(cp) = (2tt) s exp (+ imcp), where m is a positive integer or zero. The solutions

for the £- and 77-equations are expressed as series in orthogonal functions.

The numerical coefficients satisfy three-term recursion relations.

Requiring that the series converge on the appropriate intervals leads to two

equations involving continued fractions. The simultaneous solution of these

equations gives the energy eigenvalues.

The ground-state energy has been calculated for values of R from

30 a. u. down to 0. 84 a. u. corresponding to dipole moments D from 76 to

2. 136 (in 10" 1° esu-cm). The electronic binding energy decreases mono-

tonically as the dipole moment decreases. Because the convergence of one

of the continued fractions becomes poor for R less than unity, the energy

levels in the range R < 0. 84 a. u. were not calculated. On the basis of these

numerical calculations, no conclusion was drawn on the question of whether

the electronic binding energy goes to zero at some finite value of R.

In an earlier note11 Handler estimated the ground-state electronic

energy with a reported accuracy of about 10%. These estimates are
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inconsistent with the monotonically decreasing behavior of the binding energy

as a function of dipole moment found by Wallis et al. Handler' s work is not

described in detail; it is difficult to reconcile his results with those of the

later extensive numerical calculations.

The dipole moments of water and many other molecules fall into the

comparatively unexplored range D<2. 136 x 10"18 esu-cm. In the remainder
of this section we describe calculations for finite dipoles and, in the next

section, for point dipoles.

B. Variational Calculations

A trial wave function was used to describe an electron in the field of a

finite dipole. The function consists of an S- plus P-wave angular part and

a hydrogen-like radial part. The expectation value of the Hamiltonian is

calculated and minimized. This minimum expectation value can be made

zero by the proper choice of dipole moment. Since the true energy of the

system is smaller than that given by the variational procedure, a dipole

moment larger than that given by the solution of (H) . = 0 will give an

energy less than zero, i. e., a bound state. For the type of variation wave

function used, this procedure is shown to give the same minimum dipole

moment needed for binding as that obtained for the point dipole in

Section IV.

We write the Hamiltonian in spherical coordinates shown in Fig. 2-1.

The potential energy V = eq (l/r2 - 1/r^) becomes
a

v * -*etL Hfr P**"**), (3-3)

where r< and x> axe the smaller and larger of r and a, and Pv(cos 9) is the

Legendre polynomial of order k. The operator corresponding to the kinetic
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energy is

T--£ ^=-£ [&n)+pb-iMft)*ris*\]
(3-4)

We take for a variational wave function $(recp) =g(r) Y(9cp), where

3

,fr> - z[Z?**p{-%) (3-5)
«0» " "O

and

Y0><p) = C0Y00(e^) + C(Ylote*0. (3-6)

The Y^m^^ are ortnonormal spherical harmonics satisfying the equation

&=-.£(*•£) +,~^ $ *i«*')]Ytatef) =0. ,3-7,
The radial function is normalized, so that

J §*(r9(p)fy(rQcp)d-c - \C0\ +IC,I . (3_8)

We impose the condition

/c/+ \c,\z =i. (3_9)

To calculate <T> we first consider TJj(recp). From Eq. (3-4) we have

T$(r9<p) =-^(^.±y£)f(r) - !£• f(r)\l0[99)j (3-10)
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Then

<T> = J $*(rd<p)T$(r0<p)c/r

+*!l£ii!T*ycr)jfr)dr . (3-11)

The radial integrals are elementary, and the result is

<T> =-^( I+4|C,|2).
Next we calculate

(3-12)

<V> nj"$*(re?)V$(rty)dr

Zl -TT7 Pftf"»«jfr)[C6Yoo(^) +C,Y10^<p)]dr
(3-13)

The only non-zero contribution to (V) from the sum over k comes from

P2(cos9). This follows from the S- plus P-wave character of the wave

function. Carrying out the angular integrals, we find

<V> =-~*Ke(C0OJ ?*Cr)iLf<^r*dr, (3-i4)

where Re(z) means the real part of the complex quantity z. The radial

integral is expressed as the sum of two integrals;
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oo

^J*{r)^Cr)Y^r +$..?& f*i(r)rlLdr- (3"15)
These integrals again are elementary, and when substituted into Eq. (3-14)

give

<v>=-2^^RefC0cDfl-e-*(l^+i^)], (3-16)

where n = 2Za/a > 0.
o

We minimize (H) = <T> + (V) with respect to the variational

parameters Cq and C,. The quantity <T> is positive. The quantity in

brackets in (V) is also positive. Therefore, as far as the phase of Cq and

C, enter, (H) will have its lowest numerical value when Cn and C, have the

same phase. Thus we can take Cq and C. to be real without loss of

generality, so that

<H>S&(\+4C*) - 1&€WCo%-i*{\+7l+±tlzJ\. (3-17)
2a„ a%L L J

We replace Cq by J\-C^ and set the partial derivative of (H) with respect
to C-, equal to zero. The solution of this equation is

Cf = i ± Z* > (3-18)

where a =Z2e2/2a and p=Zjl> eqa [1 - e_K(l +k+j K2)]/a2Z. Since
either choice of sign in Eq. (3-18) gives the same value for the second term

in Eq. (3-17), the first term in Eq. (3-17) requires that we take the lower

sign for a minimum value of (H). Then

<H>™,-„ =3«-ift<*+iz . f3-1')
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For (3 sufficiently large (H) -is negative, corresponding to a bound

state. The condition that <H>min be negative is (3 > ^20 a. This can be

written

ZZa.

We analyze Eq. (3-20) by assuming a = aQ and solve for q/e to obtain

f2 i/F z3 [i- e"2Z( •+2Z +2z2)]"' • (3"21)

z~z
• (3-20)'-e--('♦«£♦*{?*)]**£

The right-hand side of Eq. (3-21) goes to ^15/8 as Z goes to zero, and

to infinity as Z goes to infinity. Furthermore, it is a monotonic

increasing function of Z. This demonstrates that there will be binding

if Z is small and q/e > ^15/8, which is the lowest value of q/e

obtainable for a = aQ. The corresponding value of the dipole moment is

Dmin =2(^15/8) eaQ =2. 46 x 10-18 esu-cm. The fact that the right-hand
side of Eq. (3-21) is a monotonic increasing function of Z formalizes the

intuitive conclusion that the "weaker" the bound state, the smaller the

dipole moment required to achieve that binding.

An alternative approach to Eq. (3-20) is to set q = e and solve for

a/a . Now the unknown appears in the exponential. However, for Z

approaching zero, i.e., for very "weakly" bound states, the value of the

dipole moment required is again found to be Dm£n = (,/l5/4)eao.

We next show how the product 2aq representing the dipole moment

can be brought in explicitly in Eq. (3-20). In the radial part of the vari

ational wave function, Eq. (3-5), we replace Zby Zq/e. Then Eq. (3-20)becomes

zBeza0 I _ p ea0 / | + J + —^_jr 1
2

Za.

2

azZ i

(3-22)
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If we make the substitutions D = 2aq and d = ea and simplify, we get

,_e-?fl +» +zV) > JTFZV (3-23)

When Z approaches zero, Eq. (3-23) has the solution D/d = (^15/4), as before.

A lower value of Dmjn can be obtained by starting with a more general

variational wave function than that used in the preceeding calculation. We

take ^(rBcp) = g(r)Y(9cp) as before, but now

y(r) - n exp(-ocrt) (3-24)

where a and t are variational parameters, and n is a normalization constant.

The angular function Y(9cp) is the same as in Eq. (3-6). The normalization

condition

y $*(r©9) $ (r9<p) dr. =I (3_25)

becomes

oo

Nx(IC.I* +|c,lE)j e-'^Vdr =I (3-26)

Using the substitution

x = 2«r* . or r =(£)* , (3-27)
t

we can write the integral in Eq. (3-26) as

3 _ oo 3 _,
e"X X* dx . (3-28)*(£)*{

0

The integral in this expression is r(3/t). The gamma function T(£) is defined



for all £ > 0 by the integral

.00

^ f -x £-1
f (£) = \ e x dx

0

and satisfies the recursion relation

ru + \) = £T(£)

24

(3-29)

(3-30)

Then we obtain for the normalization constant, after imposing the condition

Eq. (3-9),

It

n =

rtV J

1

"2

(3-31)

where we have assumed n to be real.

We proceed to the variational calculation, omitting some details since

this calculation is similar to the earlier one. To calculate (T) we first

write

T$(r&<p) -

Then

<T>s-.ni*£J[ e-2rtrt{(ic/+ic/)

\«Hzrzt -*t(f +i)rt] -2|C,|2}dr.

(3-32)

(3-33)

Using the change of variable Eq. (3-27), we can express the integrals as
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gamma functions defined in Eq. (3-29):

<T>.-«nl*AX{(|C.lMCl*)[-1t(^f*f<U**)

(3-34)

This expression can be simplified by means of the identity Eq. (3-30) for

gamma functions, and by Eqs. (3-9) and (3-31):

<T> = ^(2^)^liL;.(t +U8|C,}Z). (3-35)
2m

?li)
We can begin the calculation of (V) with Eq. (3-14) and substitute for

g(r) from Eq. (3-24). The radial integral is expressed as the sum of two

integrals:

J n*e it«e rMr + I n*e itne rldir. (3-36)
-'o a o* r

Applying the transformation Eq. (3-27) to the variables inEq. (3-36), we

obtain

(3-37)

In the process of minimizing (H) = <T> + (V) we can take CQ and C,

real, as before, without loss of generality. Then we obtain, using the
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|2explicit value of |n j ,

[iferj e-x*".u ♦•<*>*) e-.*--J
2* a*

(3-38)

It is convenient for the following calculations to write

<H> =/x(t-H+8C,*) -VC,J\-C? (3-39)

/ 2"where [i and v can be read directly from Eq. (3-38), and C- = //l - C-, .

We set the partial derivative of <H) with respect to C equal to zero
2

and solve for C, (jjl and v are independent of C..):

C\ = -L + *>L . (3-40)

For a minimum value of (H) we take the lower sign. Then

= /*(-t +S)-±J64/Ax+i/Xm (3-41)

<H)rn£n is negative provided

jj64/**+»z >/^Cf+5) {3_42)
which can be expressed as

^^

1/ > 2>*/ft+ !)(* +*) • (3-43)

Substituting the values of u. and v into Eq. (3-43), simplifying, and dividing
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through by a, we obtain for the condition that (H) • be negative
JL 2<tci? oo

_1
We solve this inequality by first replacing t by k, where k is an integer

larger than one. This is justified because we will later consider the solution

in the limit of very small t corresponding to very large k. In this limit we

consider k to be a very large integer, with no loss of generality. With

t"1 =k, Eq. (3-44) becomes
. x3tr3eccii r°° ,

o ^2 ora1

!^«Jii¥?' —>

The integrals in Eq. (3-45) are now elementary and the left hand side becomes

4 A-1

(3-46)

Now a is a variational parameter whose value we have not yet specified.

We take a to approach zero. In this limit the only term in Eq. (3-46) which

survives is simply (k- 1).' Then Eq. (3-45) becomes

'*-'>'> ffr ™^i*')Gr') • ^
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Since T(k) = (k- 1).', we can express Eq. (3-47) as

J> =*,a >£f*/(i - .)(* -9) (3-48,
In the limit of very large k, Dm£n = (3 V3/8)eaQ = 1.65 x 10" esu-cm.

To summarize, it has been shown by a variational calculation that a
—18dipole moment as small as 1. 65 x 10" esu-cm gives a bound electronic state

for the finite dipole. By comparison, the dipole moment of water is

1. 85 x 10~18 esu-cm, and the lowest value in the calculations of Wallis et al.

is 2. 14 x 10"18 esu-cm.

In Section IV we solve the point dipole problem and find the same

minimum dipole moments for the corresponding variational wave functions.

This result is plausible because in the limit of small Z, i. e., very weak

binding, the wave function falls off slowly at large distances and so the

dipole appears localized in a very small region. One may conjecture that for

any variational wave function, the point dipole solution gives the same Dm£n

as for the finite dipole. This would have the practical effect of reducing

the amount of calculation required to solve the finite dipole case for a given

variational wave function. However, we have not as yet proved this conjecture.

IV. QUANTUM MECHANICAL BOUND STATES OF AN ELECTRON
IN A POINT DIPOLE FIELD

A. Separability of Wave Equation

We start with the Schrodinger equation, Eq. (3-1), for the motion of

an electron in the field of a finite dipole. The potential energy function is

V = eq(l/r2 - 1/r-jJ, in the notation of Fig. 2-2. The point dipole is defined

by letting R go to zero and q to infinity in such a way that the dipole moment

D = qR remains finite. The potential energy becomes V = - eD cos9/r ,

(where 9 and r are spherical polar coordinates in Fig. 2-1), which is still

non-central.
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The Schrodinger equation for the point dipole is separable in spherical

polar coordinates. This permits the use of spherical harmonics Y. (9cp)

which have convenient and familiar properties. Writing the Laplacian in

spherical polar coordinates, we have for the Schrodinger equation

Consider a solution of the form

oo

(4-1)

$(r9y) =£f/r)Y*m(e^> (4"2>
Z-.o

where the f ^(r) are radial functions to be determined. (Note that the

Hamiltonian does not couple states of different m). Substituting this

solution into Eq. (4-1), and multiplying by -2mr /ft2, we get

OO

+Kcos0 +*zrz]H{Jr)YtJe<p) = 0,
(4-3)

2 2 2
where we have introduced the parameters K = 2meD/h and k = 2mE/h .

? 2(Note that we can also write K = 2D/ea0 and k = 2E/aQe .) Using Eq. (3-7)

for the spherical harmonics and substituting in Eq. (4-3) results in

Lttr(rX& -*<*+ 0+Kcos0 +«V2J^(0Y,m(^) =0. (4-4)
*

To get a purely radial equation, we multiply Eq. (4-4) by Y / (9cp) and

integrate over the angular variables. The result, after simplification by

means of the orthonormality properties of the spherical harmonics, is
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[ /(1**0(1-m) f (r) /(l»»,^0(f-m*Xr (r)L
(4-5)

Equation (4-5) represents an infinite set of coupled equations for

I = 0, 1, 2, ... ; [f_i(r) = 0]. The (cosg)-dependence of the potential results

in f »+ -t(r) being coupled into the equation for f (r). If the dipole moment

is zero, K = 0, and Eq. (4-5) reduces to the radial equation for a free

particle with angular momentum quantum number a. It is interesting to

consider the quantum mechanical problem for the central counterpart of the

non-central inverse-square potential. If we set cosg = 1, the potential

term can be combined with the centrifugal term to produce a coefficient

[K - i{i + 1)]. The solution of the latter case has been treated in detail

in ref. 8.

Another form of solution we consider is

$ (r&(ff) = f(r)G(*<*0, (4-6)

where f(r) and G(9cp) are unspecified functions except for their arguments.

With this trial solution, Eq. (4-1) is separable into the following radial and

angular equations:

[i(r%4) +*V2 -y]f^ =0
and

where y is the separation constant.

We will treat two special cases of Eq. (4-8). First we consider

t*0

(4-7)

(4-8)

(4-9)
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This is equivalent to taking a single radial dependence f .(r) = C ,£(r) in

Eq. (4-2). In fact we may substitute this directly into Eq. (4-5) and use

Eq. (4-7) to get

Since this equation must be satisfied for all r, we get a three-term recursion

relation for the coefficients C *. This relation is just Eq. (4-10) with the

function f(r) removed.

Second, we consider

G(6<p) = g(9)U(tp) (4-ii)

i. e., ip(r9cp) = f(r) g(9)h(cp). The separated Schrodinger equation then is

[£(r*£) +<V-7]f(r) =0 (4-12)

tai. £(s,"°a) - kco.9 +r - -£jh& -o (4-i3)

(j^z +^C?) =0, (4-14)
where y, b, and e are separation constants.

The single-valued solutions of Eq. (4-14) are

hty) =-J_ el£(P ^ e =CtljIZ,.. (4-15)

The solution of the radial equation depends on the value of the separation

constant y. This constant is determined, however, by the solution of the
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9-equation. Equation (4-13) can be transformed by the substitution x= cos9

into

This equation is of Sturm-Liouville form. 12

B. Variational Calculations

We give explicit results for a trial function of the form of Eq. (4-2)

consisting entirely of S- and P-wave angular momentum eigenfunctions. This

concentrates the probability density of the electron in the half-space con

taining the positive dipole charge. We take

$(r6<p) = C0f0(.r)Y00(&<p) + C,f,(r)Yio(ey). (4-17)

The radial functions are taken to be normalized by

J |f0(r)| r*dr =j |f,(r)|Vdr s |, (4-18)

and thus the normalization M$ $dT= 1 implies

\C0\ + |C,I = I. (4-19)

We choose the radial functions

p-ar*

<>> =K» -77-

f,(r) =K,^-.
In order that these functions be normalizable, we require that t > 0, p < 1/2,

q < 1/2, a > 0, and (3 > 0. The adjustable variational parameters are Cq, C-,,

a P» P> <1> and t. The same power t of r was used in the exponentials in

(4-20)
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order that the integrations below could be made in terms of tabulated

functions. It will be seen later than the minimum value of the dipole

moment needed to give a negative value of the energy depends principally on

the parameter t.

It is convenient to divide the Hamiltonian in Eq. (4-1) into the

following terms;

H= -£.0r(r) + M±ll£ + \i (4-2i)
2m zmr

where

»M'^*H , <«2)

w _ Decosfl
V rz ' (4-23)

and the l(JL+l) term is determined by Eq. (3-7). The expectation value of

&(x) is given by

(0M> =j~$Vr)ij>r2drd.a.
oo r°°-- lc/|of>Mfor'd, +\cf\o r?9Mf,r*ir.

(4-24)

The functional dependence of the first integral on a and p is the same as

that of the second integral on (3 and q, and so we need work out only one of

them. From Eqs. (4-22) and (4-20) it follows that

J">r>f.r'dr. =|K/re-2art|y^"-2P
Jo ° v Jo

-Mxt(2P-t-i)rt-zp +p(p-0r"2'>]dr

(4-25)
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The right-hand side can be expressed in terms of gamma functions. Using

the substitution Eq. (3-27), we obtain

0

J f0(T(r)f0rdr =-^ fej J e [(Mf*
o o

+ t(2p-t-l)x + * +p(p_,-)x * JX~'dX-
(4-26)

From Eqs. (3-29) and (3-30) it follows that Eq. (4-26) can be written

Jff>*.rMr . M'fef'LlV^OO *̂ )r(^)
+ib,-t-o(^)f(^) +p<P-or(^)]

(4-27)

The second integral in Eq. (4-24) is given by this function with a and p

replaced by (3 and q. Since the integral Eq. (3-29) diverges for £ < 0,

Eq. (4-27) implies that p < 1/2 and q < 1/2, a requirement already imposed

through the normalization of f q and fj.

Only the P-state wave function contributes to the expectation value

of the second operator in Eq. (4-21), so that Z(z + 1) = 2 and

=zic,iiiK1frV'rV'tdr
With the help of the substitution Eq. (3-27), with a replaced by B, we

obtain z z [Z±±
(g^y.&A^LLfe)' r(^*).

(4-28)

(4-29)
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From Eq. (4-17), the expectation value of the third operator in Eq. (4-21)

is given by

<V> =-l>e\(cU\%^y*X*)c-^i(C0^\0 -, Cf.Y.oV^rd*-

=-Delc^jfof.dt-j YMYlD cos 0d-O_ +complex conjugate)

=, -2DeRe(c*C, J>/f, d^Y* Y10 cos 9d-n. ,
(4-30)

where Re(z) denotes the real part of the argument z. The quantity cos9has

non-vanishing matrix elements only between angular momentum states Yj£m

for which the i? s differ by + 1. The integral over angular coordinates in

Eq. (4-30) gives

Cy*Y cos&d-A- = —J ios29>in&cl8\ dtp • -L- . (4-31)

The integral over the radial coordinate is

CO J.

Uof,^ =KaK,[ e"C**^r K"p-*dr. (4-32)
0

This has the form of Eq. (4-31), which gives

'.-P-t.

Kf.* -V'fe) * r(i^i)-
The divergence of the integral Eq. (4-32) for p + q > 1 requires that p + q< 1.

This condition is satisfied since p < 1/2 and q < 1/2. From Eqs. (4-30), (4-31),

and (4-33) we have

<*>-**^C^^p^t^-)]. ,4-34)
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CO

Substituting Eq. (4-27)—with the analogous expression for £.p|r)f r dr—,
o

Eqs. (4-24), (4-29), and (4-34) into Eq. (4-21) gives for the expectation value

of the energy of the electron

+ic/iKj.1 (j.j'-t* r*(i^*)[i (* -' -x»)(j»- o*%<r 0]}

>|3 r (4-35)

In minimzing (H), we make the magnitude of the last term in Eq. (4-35) as

large as possible. With respect to the phase of the product C„ C. K G.,

this is accomplished by making that phase zero. Since the term in question

is the only place in (H) where phases enter, we can take C^, C., K , and K.

to be real without loss of generality. Making the substitutions C^ =1- c£
2

and Dem/h = D/ea , we write for Eq. (4-35)

+cfciiffl,rli?y[i<t+i -fX>-»») -*• -»>)

__iE_K0K,c,/7^(^)^r(^^)}
Asa function of C., (H) can be written

<H> =-*L(A + BCf - BFC.y I- Cf )
2-t ' (4"37)
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where

A=K.'fe) * r(^)[i(-t*l-*P)Cl-*P) +P(»-P)], (4-38)

B•Kf(^)^(i^l)[-4(t*.-2f)(.-z,) - jo-*)]

+*Kf(^)^r(^>), (4-39)
l-p-fr

r 4K0K,/ I \ t ^f I - P-» \

and D and C, are the same as before. It follows from Eq. (4-37) that the

electron energy (H) will be negative and hence there will be a bound state for

the electron for values of the dipole moment

n s A+BC?D > —== • (4-41)
FC,V>-C,z

To minimize the dipole moment that will just give a bound state, we set

dD/dG. = 0 and solve the resulting equation for C.. Differentiation gives

*D =FcVTcf ZBC, - (A-»*C,*)f[V^C? "7^=fJ (4_42)
*C' " F*C,*(|-C*)

I 2Setting the numerator equal to zero and multiplying through by //l - C-i /F

gives

ZBCf(l-Cf) - (A +BC?)(l-ZCf) =0. (4-43)
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The terms in C. drop out and we are left with

C.2(2A*B) - A -0.

A positive value of the dipole moment results from the positive root

c, = ZA + B

Substituting this root into Eq. (4-41) gives

D >

A +
A-B

2A + B

F rn: rziK
Y2A+B V 2A+

=-|-/a(a+b)
B

With the help of Eqs. (4-38), (4-39), and (4-40), we obtain

eaJS («+CL.
D >

2K,

(4-44)

(4-45)

(4-46)

•KJ^)«y?(^)[7U+i-zV)(..z%)+%(i-t)*2r

^<«^r^(£)""(£)
IP 1-29

•(L(r +«-2p^(i-zrt +4p(t-p)][(i +l-24)(l-Zf)+4<j(l-«)+8]r
1 (4-47)

We recall that in the definition, Eq. (4-20), we require that a, S, and

t be positive; p and q are each less than one-half. For p = q = 0, a = B and

t = 1, and Eq. (4-47) simplifies considerably. In this case the trial function
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is identical with that used in ref. 6, which gave the minimum value of the

dipole moment

*U =^JiVc*)f*-a> =S^jEL =z.46xlO-,8esW-cm. (4-48)
For p = q = 0, a = (3, and t / 1, Eq. (4-47) gives

eoj3
8

D> ^P/(*+D(t-9) . (4-49)

The smallest value that this quantity can have for t > 0 approaches the

limit (as t -> 0),

s f^E. = 1.65 xlO-'8 esu-cm.J>™ = ^J^ = '*5 Xl° eSU-Cm. (4-50)

This value is smaller than the smallest value 2.14 x lO--1-8 esu-cm in the

numerical calculations of Wallis et al. 7 The results expressed in Eqs. (4-49)

and (4-5 0) are the same as those obtained in Section III for the finite dipole

in the limit of very weak binding [see Eq. (3-48) and the subsequent remarks].

Since the actual ground-state energy with the dipole moment of Eq. (4-50)

will not be greater than the value zero obtained with the trial function, this

result establishes rigorously the existence of bound states for a point dipole
-18

with D as small as 1. 65 x 10 esu-cm. No additional improvement was found

for other choices of p and q and for a / p.

In summary, the original trial function, as defined by Eqs. (4-17) and

(4-20), shows rigorously that a bound state exists for an electron in the
-18field of a point dipole with a dipole moment as small as 1. 65 x 10" esu-cm.

The above detailed calculations show that this minimum value of the dipole

moment results when the following simplifying assumptions are made; C_ and

C, are real, p= q = 0, and a = B. The trial function then becomes simply

%(r9<p) = e"*rt[C0K0Y00(<v) +CIK,YI0(^)] , (4-si)
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and the requirement given by Eq. (4-49) assures binding. It is seen that the

smallest value Dmin =1. 65 x10~18 esu-cm is obtained by letting t - 0. The
wave function is then spread over large distances in the half-space containing

the dipole' s positive charge.

V. UNCERTAINTY PRINCIPLE AND BOUND STATES OF
AN ELECTRON IN A DIPOLE FIELD

The following non-rigorous argument, based on the uncertainty principle

and the use of qualitative estimates, suggests that there is a minimum

value of the dipole moment needed to bind a charged particle quantum

mechanically. Consider an electron moving in the field of an attractive

central force that varies as an inverse power of the radial coordinate. The

energy of the electron is given classically by

£ =2? - 4 (5-1)
zm rn

where p and m are the electron momentum and mass, and S and n are positive

constants. A necessary and sufficient condition for binding of the electron

is that E be negative, i. e., that

zmfi > pzrh . (5-2)

If the maximum values pQ and xQ of the classical momentum and radial
coordinate are substituted into Eq. (5-2), then a sufficient condition for

binding is

2m/3 > p0Zr0\ (5-3)

We assume that a very weakly bound particle occupies a volume in phase

space equal to

(4Tf Por* = UTTfO3, (5-4)
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corresponding to the existence of a single bound state. We combine Eqs.

(5-4) and (5-3) to obtain a semi-classical condition for binding, namely

Asi^ >4v^)irr -S.8r."V (5-5)
We next consider the possibility of having a bound state for an arbi

trarily small value of B or X. For the Coulomb potential, n = 1, the

condition Eq. (5-5) is

X > — • (5-6)

For any value of X this condition can always be fulfilled by taking r

sufficiently large. That is, for an arbitrarily weak Coulomb interaction a

bound state always exists (as is well known), although the volume occupied

by the electron becomes very large when the binding is very weak. This

result applies to any other n less than 2. For n = 3, the condition Eq. (5-5)

gives

A > S.8r0 , (5-7)

and the existence of a bound state is assured for all values of Xby choosing

r sufficiently small. Thus, weakly bound states exist in which the electron

stays close to the force center. This result applies to any other value of n

greater than 2.

The case n = 2 is special. The condition Eq. (5-5) gives

A > S.& (5-8)

and one can say only that bound states do exist when X is greater than this

number.

The last finding, based on the above heuristic arguments, may be com

pared to the rigorous result that bound states exist for all values of Awith

n ^ 2, and that a necessary and sufficient condition for binding when n = 2

is that X> 1/4.13 The analysis given above indicates that these results can

be interpreted as a manifestation of the physical meaning of the uncertainty
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principle. To localize an electron in a bound state requires giving it a

variety of momentum components. If the potential is long-range (n < 2),

classical particles with high momenta will always be turned back towards the

center of force. Bound states will always exist (even when the force

constant Bis small) and rQ will be large. If the potential is short-range

(n > 2), classical particles with high momenta will simply be held in close to

the force center and r will be small. The potential with n = 2 appears

neither to be steep enough nor to have a range long enough to assure binding

unless the strength B is above a certain value.

The coefficient 5. 8 in Eq. (5-5) is larger than the value 1/4 obtained in

the quantum mechanical analysis with n = 2. In view of the replacement of p

and r in Eq. (5-2) by their maximum values, this difference is not surprising.

A more realistic coefficient appears if, instead of the above replacment, we

assume that p may be estimated from the uncertainty principle as follows:

(£)%?»•; * *3. <5-9>
Eq. (5-3) then gives as a sufficient condition for binding that

which is close to the known minimum value X = 0. 25 for n = 2.

(5-10)

2If the above arguments for the central potential V = - B/r are applied
2

to the point dipole for which V = -De cos9/r , then A > 1/4 gives, with

cos9 i=al, D > 0. 2 x 10~18 esu-cm. This value of the dipole moment is an

order of magnitude less than the smallest value for which the existence of

bound states was demonstrated with the use of trial functions in Section IV.
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VI. SUMMARY

The analysis of Section II showed that bound electronic orbits occur

classically for arbitrarily small values of the dipole moment.

The quantum mechanical expectation value of the Hamiltonian for the

finite dipole was calculated using variational wave functions. The angular

part of these wave functions consisted of an S- and P-wave. Two radial

dependences were used: the first was hydrogenic in form, and the second

approached the hydrogenic form for certain values of a variational parameter.

The energy was minimized and set equal to zero. For the first radial depen-
JO

dence it was found that for a dipole moment D> (,/15/4)ea = 2.14x10 esu-cm,

there is a bound state. For the second radial dependence, a bound state was

shown to exist for D > (3,/3/8)ea' =1. 65 x 10"18 esu-cm. This is less than the

smallest value for which numerical integration of the Schrodinger equation

has been performed.

The Schrodinger equation for the point dipole is separable in spherical

polar coordinates. Various assumed forms of solution lead to infinite sets

of coupled ordinary differential equations, three-term recursion relations,

or three ordinary differential equations coupled through separation constants.

The last formal solution appears to offer a promising point of departure for

a detailed solution and will be the subject of another investigation.

A variational calculation similar to that performed with the finite

dipole was carried out for the point dipole. The S- and P-state angular

momentum eigenfunctions were used with radial functions that approached

the hydrogenic form for certain values of the variational parameters.

Results similar to those for the finite dipole were obtained, and it was shown

that an electronic bound state exists in the field of a point dipole with a
— -18dipole moment as small as D = (3^/3/8)ea = 1. 65 x 10" esu-cm.

Semi-classical considerations based on the uncertainty principle indi

cate that a bound state exists for a central force of any strength varying
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as r~n (n > 0) except in the case of the inverse square potential, which has

the same radial dependence as that of the point dipole. In this case the

analysis indicates that the dipole strength may have to be larger than a

certain value in order to bind an electron. The numerical value of this

-18minimum dipole moment is estimated to be D = 0. 2 x 10" esu-cm.

Although this result is by no means rigorous, the use of the uncertainty

principle appears to help account in a physical way for the unusual nature of

the inverse square potential.

The numerical results of Wallis, Herman, and Milnes7 are shown together

with those obtained here in Fig. 6-1. The solid curve gives the ground-state

binding energy as a function of dipole moment from ref. 7. These calculations

extend down to the value D = 2. 136 x 10° esu-cm shown as the lowest

calculated D. The dipole moments of a number of molecules are indicated for

-18
reference. The lowest value D = 1. 65 x 10" esu-cm obtained with trial

functions and the estimate of the minimum moment based on the uncertainty

principle are also shown.
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ORNL-DWG. 65-10432

NUMERAL INTEGRATION OF SCHRODINGER EQUATION
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NH,
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Fig. 6-1. Summary of Numerical Results for Ground-State Binding

Energy of an Electron in the Field of a Permanent Electric Dipole.
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