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STABILITY ANALYSIS OF THE MOLTEN-SALT 
RFACTOR EXPERIMENT 

S. J. Ball T. W. Kerlin 

I 

r 

A detailed analysis shows that the Molten-Salt Reactor 
Experiment is inherently stable. It has sluggish transient 
response at low power, but this creates no safety or opera- 
tional problems. The study included analysis of the tran- 
sient response, frequency response, and pole configuration. 
The effects of changes in the mathematical model for the 
system and in the characteristic parameters were studied. 
A systematic analysis was also made to find the set of 
parameters, within the estimated uncertainty range of the 
design values, that gives the least stable condition. The 
system was found to be inherently stable for this condition, 
as well as for the design condition. 

The system stability was underestimated in earlier 
studies of MSRE transient behavior. This was partly due to 
the approximate model previously used. The estimates of 
the values for the system parameters in the earlier studies 
also led to less stable predictions than current best values. 

The stability increases as the power level increases and 
is largely determined by the relative reactivity contribu- 
tions of the prompt feedback and the delayed feedback. The 
large heat capacities of system components, low heat transfer 
coefficients, and fuel circulation cause the delayed reac- 
tivity feedback. 

1. Introduction 

Investigations of inherent stability constitute an essential part of 

a reactor evaluation. This is particularly true for a new type of system, 

such as the MSRE. The first consideration in such an analysis is to de- 

termine whether the system possesses inherent self-destruction tendencies. 

Other less important but significant considerations are the influence of 

inherent characteristics on control system requirements and the possi- 

bility of conducting experiments that require constant conditions for ex- 
tended periods. 
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Several approaches may be used for stability analysis. A complete 
study of power reactor dynamics would take into account the inherent non- 

linearity of the reactivity feedback. It is not difficult to calculate 
the transient response of nonlinear systems with analog or digital com- 

puters. On the other hand, it is not currently possible to study the 
stability of multicomponent nonlinear systems in a general fashion. The 

usual method is to linearize the feedback terms in the system equations 

and use the well-developed methods of linear-feedback theory for stability 

analysis. 

Nyquist plots) or root locus for stability analysis. 

nonlinear transient-response calculations and linearized frequency-response 

and root-locus calculations. 

This leads to the use of the frequency response (Bode plots or 

This study included 

The stability of a dynamic system can depend on a delicate balance 

of the effects of many components. This balance may be altered by changes 

in the mathematical model for the system or by changes in the values of 
the parameters that characterize the system. Since neither perfect models 

nor exact parameters can be obtained, the effect of changes in each of 

these on predicted stability should be determined, as was done in this 

study . 
The transient and frequency responses obtained in a stability analy- 

sis are also needed for comparison with results of dynamic tests on the 

system. The dynamic tests may indicate that modifications in the theo- 
retical model or in the design data are needed. Such modifications can 
provide a confirmed model that may be used for interpreting any changes 

possibly observed in the MSRE dynamic behavior in subsequent operation 
and for predicting, with confidence, the stability of other similar 

sys tems . 

2. Description of the MSRE 

The MXRE is a graphite-moderated, circulating-fuel reactor with fluo- 
ride salts of uranium, lithium, beryllium, and zirconium as the fuel.’ 

The basic flow diagram is shown in Fig. 1. 

enters the core matrix at the bottom and passes up through the core in 

channels machined out of 2-in. graphite blocks. 

The molten fuel-bearing salt 

The 10 Mw of heat 



3 

ORNL-DWG 65-9809 

PUMP PUMP 

RADl ATOR 

Fig .  1. MSRE Basic Flow Diagram. 

PUMP PUMP 

RADl ATOR 

Fig .  1. MSRE Basic Flow Diagram. 



generated in the fuel and transferred from the graphite raises the fuel 

temperature from 1175°F at the inlet to 1225°F at the outlet. When the 

system operates at lower power, the flow rate is the same as at 10 Mw, 
and the temperature rise through the core decreases. 

travels to the primary heat exchanger, where it transfers heat to a non- 

fueled secondary salt before reentering the core. 

salt travels to an air-cooled radiator before returning to the primary 

heat exchanger. 

The hot fie1 salt 

The heated secondary 

Dynamically, the two most important characteristics of the MSRE are 
that the core is heterogeneous and that the fie1 circulates. Since this 

combination of important characteristics is uncommon, a detailed study 

of stability was required. 
fective delayed-neutron fraction, to reduce the rate of fie1 temperature 

change during a power change, and to introduce delayed fuel-temperature 

and neutron-production effects. The heterogeneity introduces a delayed 

feedback effect due to graphite temperature changes. 

The fuel circulation acts to reduce the ef- 

The MSRE also has a large ratio of heat capacity to power production. 
This indicates that temperatures will change slowly with power changes. 

This also suggests that the effects of the-negative temperature coeffi- 

cients will appear slowly, and the system will be sluggish. This type 

of behavior, which is more pronounced at low power, is evident in the 

results of this study. 

Another factor that contributes to the sluggish time response is the 
heat sink - the air radiator. An approximate time constant for heating 

and cooling the entire primary and secondary system was found by consider- 
ing all the salt, graphite, and metal as one lumped heat capacity that 

dumps heat through a resistance into the air (sink), as indicated in Fig. 
2. 

of about 1200°F and a sink temperature of about 200°F, the effective re- 
sistance must be 

For the reactor operating at 10 Mw with a mean reactor temperature 

1200°F - 200°F = loOoF/Mw 

10 Mw 

Thus the overall time constant is 
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R E A C T O R  HEAT C A P A C I T Y  12 Mw.sec/OF 
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Fig. 2. MSRE Heat Transfer System with Primary and Secondary Sys- 
tem Considered as One Lump. 
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Mw. see 12 OF 

For the reactor operating at 1 

OF x 100 = 1200 see 

= 20 min . 

Mw, the sink temperature increases to about 

400°F. 
power to keep the fuel temperature at 1225°F at the core exit. 

case the resistance is 

This is due to a reduction in cooling air flow provided at low 
In this 

1200°F - 400°F 
1 M w  

and the overall time constant becomes 

= 80O0F/Mw , 

Mw. see "F x 800 - = 9600 see Mw 12 O F  

This very long time-response behavior would not be as pronounced with a 
heat sink such as a steam generator, where the sink temperatures would 

be considerably higher. 

3 .  Review of Studies of MSRE Dynamics 

Three types of studies of MSRE dynamics were previously made: 

(1) transient-behavior analyses of the system during normal operation 
with an automatic controller, (2) abnormal-transient and accident studies, 

and (3) transient-behavior analyses of the system without external con- 
trol. 
control mode, for low-power operation, or in a temperature control mode 

at higher powers .2  

trol for large changes in load demand indicated that the system is both 

stable and controllable. The abnormal-transient and accident studies 

showed that credible transients are not dangerous. 

The automatic rod control system operates in either a neutron-flux 

The predicted response of the reactor under servo con- 

3 

The behavior of the reactor without servo control was initially in- 

vestigated in 1960 and 1961 by Burke.4-7 A subsequent controller study 

by Ball8 in 1962 indicated that the system had greater inherent stability 
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. 

than predicted by Burke. 

for the two cases. 

ferences both in the model and in the parameters used and will be dis- 

cussed in detail in Section 6. 

Figure 3 shows comparable transient responses 
The differences in predicted response are due to dif- 

There are two important aspects of the MSRE's inherent stability 
characteristics that were observed in the earlier studies. First, the 

reactor tends to become less stable at lower powers, and second, the 
period of oscillation is very long and increases with lower powers. 

shown in Fig. 3, the period is about 9 min at 1 Mw, so any tendency of 

the system to oscillate can be easily controlled. 

is self-stabilizing at higher powers, it would not tend to run away, or 
as in this case, creep away. The most objectionable aspect of inherent 

oscillations would be their interference with tests planned for the re- 

actor without automatic control. 

As 

Also, since the system 

4 .  Description of Theoretical Models 

Several different models have been used in the dynamic studies of 

the MSRE. Also, because the best estimates of parameter values were modi- 

fied periodically, each study was based on a different set of parameters. 

Since the models and parameters are both important factors in the predic- 

tion of stability, their influence on predicted behavior was examined in 

this study. Tables 1, 2, and 3 summarize the various models and parameter 

sets used. 

Table 2 indicates how each part of the reactor was represented in the 
three different models, and Table 3 indicates which model was used for 

each study. The three models are referred to subsequently as the "Re- 

duced, '' "Intermediate, '' and "Complete" models, as designated in Table 2. 
The models are described in this section, and the equations used are given 

in Appendix A. The coefficients for each case are listed in Appendix B. 

Table 1 lists the parameters for each of the three studies, 

Core Fluid Flow and Heat Transfer 

A typical scheme for representing the thermal dynamics of the MSRE 
core is shown in Fig. 4 .  
additional explanation. It was desired to base the calculation of heat 

The arrows indicating heat transfer require 

c 
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Table 1. Summary of Parameter Values 
Used in MSRE Kinetics Studies 

Parameter Burke 
1961 

Ball 
1962 

Present 
Study 

Fuel reactivity coefficient, "F'l -3.3 x 
Graphite reactivity coefficient, -6.0 x LO'5 "F- 1 

Fuel heat capacity, M w .  sec/OF 4.78 

Effective core size, ft3 20.3 

Heat transfer coefficient from 0.02 

Fraction of power generated in fie1 0.94 

Delayed power fraction (gamma 0.064 

Delayed power time constant, sec 12 

Core transit time, see 7.63 

Graphite heat capacity, Mw.sec/"F 3.7'5 
Nuclear data 

fuel to graphite, Mw/"F 

heating) 

Prompt-neutron lifetime (sec) 0.0003 

Total delayed-neutron fraction 0.0064 

Effective delayed-neutron 0.0036 
fraction for one-group 
approximation 

one-youp approximation, 
sec- 

Effective decay constant for 0.0838 

Fuel transit time in external 14.37 
primary circuit, sec 

transit time, see 
Total secondary loop coolant 24.2 

-2.8 x 
-6.0 x 10-5 

4.78 
24.85 
0.0135 

0.94 

0.064 

12 

9.342 

3.528 

0.00038 

0.0064 

0.0041 

0.0838 

17.03 

24.2 

4 . 8 4  x 10-5 
-3.7 x 

4.19 

22.5 
0.02 

0.934 

0.0564 

188 
8.46 

3.58 

0.00024 

0.00666 

(0.0036) a 

(0.133)" 

16 .7'3 

21.48 

a Six groups used; see Appendix B for individual delayed-neutron 
fractions ( B )  and decay constants (X). 
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Table 2. Description of Models Used 
in MSRE Kinetics Studies 

Reduced Intermediate Complete 
Model Model Model 

Number of core regions 1 9 9 

Number of delayed-neutron groups 1 1 6 
a Dynamic circulating precursors No No Yes 

b Fluid transport lags First Fourth-order Fure 
order Pad& delay 

Fluid-to-pipe heat transfer NO Yes Yes 

Number of heat exchanger lumps 1 1 10 

Number of radiator lumps 1 1 10 

Xenon reactivity No No Yes 

In the first two models, the reduced effective delayed-neutron a 
fraction due to fuel circulation was assumed equal to the steady- 
state value. 
explicitly (see Appendix A for details). 

order approximation is 1/(1 + 7 s ) .  The fourth order Pad6 approxima- 
tion is the ratio of two fourth-order polynomials in zs, which gives 
a better approximation of e-"' (see Appendix A). 

In the third model, the transient equations were treated 

-?S bThe Laplace transform of a time lag, T,  is e . The first 

Table 3. Models Used in the  Various 
MSRE Kinetics Studies 

- .~ ~ 

Study Model Used 

Burke 1961 analog (refs. 4-7) 
Ball 1962 analog (ref. 8 )  Intermediate 

1965 frequency response Complete 

1965 transient response Intermediate 

1965 extrema determinationa Reduced 

1965 eigenvalue calculations Intermediate 

1965 frequency response with Comp 1 et e 

Reduced 

extrema data 

The worst possible combination of pa- a 
rameters was used as described in Section ?. 

. 
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transfer rate between the graphite and the fuel stream on the difference 

of their average temperatures. 

stirred tank" in the fuel stream is taken as the fluid average temperature. 

Thus a dotted arrow is shown fromthis point to the graphite to represent 

the driving force for heat transfer. However, all the mass of the fluid 

is in the lumps, and the heat transferred is distributed equally between 

the lumps. Therefore solid arrows are shown from the graphite to each 

fluid lump to indicate actual transfer of heat. 

The outlet of the first lump or "well- 

This model was developed by E. R.  Mann* and has distinct advantages 
over the usual model for representing the fluid by a single lump in which 

the following algebraic relationship is used to define the mean fuel tem- 

perature : 

T inlet + T outlet 

2 
F F T mean = F 

The outlet temperature of the model is given by 

T outlet = 2T mean - T inlet . F F F 

Since the mean temperature variable represents a substantial heat 

capacity (in liquid systems), it does not respond instantaneously to 

changes in inlet temperature. Thus a rapid increase in inlet temperature 
would cause a decrease in outlet temperature - clearly a nonphysical re- 
sult. 

model avoids this difficulty. 

With certain limitations on the length of the flow path, g Mann's 

The reduced MSRE model used one region to represent the entire core, 

and Lhe nuclear average temperatures were taken as the average graphite 
temperature (r ) and the temperature of the first fuel lump (7 The 

nuclear average temperature is defined as the temperature that will give 

the reactivity feedback effect when multiplied by the appropriate tem- 

perature coefficient of reactivity. 

) .  G F1 

The intermediate and complete models employ the nine-region core 

model shown schematically in Fig. 5. Each region contains two fuel lumps 

~ 

Vak Ridge National Laboratory; now deceased. 
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and one graphite lump, as shown in Fig. 4.  This gives a total of 18 lumps 
(or nodes) to represent the fuel and nine lumps to represent the graphite. 

The nuclear power distribution and nuclear importances f o r  all 27 lumps 
were calculated with the digital code EQUIPOISE-3A, which solves steady- 
state, two-group, neutron-diffusion equations in two dimensions. 

Tests were made on the E R E  full-scale core hydraulic mockup'' to 

check the validity of the theoretical models of core fluid transport. 

salt solution was injected suddenly into the 1200-gpm water stream at the 

reactor vessel inlet of the mockup, and the response at the reactor outlet 

was measured by a conductivity probe. The frequency response of the sys- 

tem was computed from the time response by Samulon's method'' for a sam- 

pling rate of 2.5/sec. 
theoretical models are computed from the transfer function of core outlet- 

to-inlet temperature by omitting heat transfer to the graphite and adding 

pure delays for the time for fluid transport from the point of salt in- 

jection to the core inlet and from the core outlet to the conductivity 

probe location. A comparison of the experimental, one-region, and nine- 
region transfer functions is shown by frequency-response plots in Fig. 6. 

Both theoretical curves compare favorably with the experimental curve, 
especially in the range of frequencies important in the stability study 
(0.01 to 0.1 radians/sec). 

nitude ratios at frequencies as low as 0.1 to 1.0 radians/sec is due to 
a considerable amount of axial mixing, which is to be expected at the 
low Reynolds number of the core fluid flow (-1000). This test indicates 

that the models used for core fuel. circulation in the stability analyses 

are adequate. 

A 

The equivalent mixing characteristics of the 

The relatively large attenuation of the mag- 

Neutron Kinetics 

The standard one-point, nonlinear, neutron kinetics equations with 

one average delayed-neutron group were used in all the analog and digital 

transient response studies. 

other studies. 

values of nuclear importance for each of the 27 lmps were used to compute 

the thermal feedback reactivity. 

Linearized equations were used for all the 

In the studies of a nine-region core model, weighted 

Six delayed-neutron groups and the 

. 
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dynamic effects of the circulation of the precursors around the primary 
loop were included in the complete model. 

Heat Exchanger and Radiator 

The lumping scheme used to represent heat transfer in both the heat 

exchanger and the radiator is shown in Fig. 7. 
two lumps are used to represent each fluid flow path. 

intermediate models both used one section as shown. The complete model 

used ten of these sections connected sequentially. 

As with the core model, 
The reduced and 

Fluid Transport and Heat Transfer in Connecting Piping 

The reduced model used single well-stirred-tank approximations for 
fluid transport in the piping from the core to the heat exchanger, from 
the heat exchanger to the core, from the heat exchanger to the radiator, 

and from the radiator back to the heat exchanger. Since the flow is 

highly turbulent (primary system, Re M 240,000; secondary system, 
Re fi: 120,000), there is relatively little axial mixing, and thus a plug 
flow model is probably superior to the well-stirred-tank model. 

order Pad6 approximations were used in the intermediate model and pure 

delays in the complete model (see Appendix A). 
ing and vessels was also included in the complete model. 

Fourth- 

Heat transfer to the pip- 

Xenon Behavior 

The transient poisoning effects of xenon in the core were considered 

only in the complete model. The equations include iodine decay into xe- 
non, xenon decay and burnup, and xenon absorption into the graphite. 

* 

Delayed Power 

In all three models, the delayed-gamma portion of the nuclear power 
was approximated by a first-order lag. 

. 
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5. Stability Analysis Results 

Data were obtained with the best available estimates of the system 

parameters for analysis by the transient-response, closed-loop frequency- 

response, open-loop frequency-response, and pole-configuration (root 
locus) methods. 

that (1) comparison of the results provides a means of checking for com- 

putational errors; (2) some methods are more useful than others for spe- 
cific purposes; for example, the pole-configuration analysis gives a 
clear answer to the question of stability, but frequency-response methods 

are needed to determine the physical causes of the calculated behavior; 

and (3) certain methods 'are more meaningful to a reader than others, de- 

pending on his technical badkground. The differences between the results 
and earlier resultskm7 are discussed in Section 6, and the effects of 

changes in the mathematical model and the system parameters are examined 
in Section 7. 

The advantages in using various analytical methods are 

The results show that the MSRE has satisfactory inherent stability 

characteristics. Its inherent response to a perturbation at low power 

is characterized by a slow return to steady state after a series of low- 

frequency oscillations. This undesirable but certainly safe behavior at 

l o w  power can easily be smoothed out by the control system. 2 

Transient Response 

The time response of a system to a perturbation is a useful and 

easily interpreted measure of dynamic performance. It is not as useful 
in showing the reasons behind the observed behavior as some of the other 
methods discussed below, but it has the advantage of being a physically 

observable (and therefore familiar) process. 

The time response of the reactor power to a step change in k was eff 
calculated. The IBM-7090 code MATEXP12 was used. MATEXP solves general, 

nonlinear, ordinary differential equations of the form 

(1) 
dx 
dt 
- = Ax + &(x) x -I- f(t) , 
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. 

where 

x = the solution vector, 

A = system matrix (constant square matrix with real coefficients), 

U ( x )  = a matrix whose elements are deviations from the values in A 
[thus M(X) x includes all nonlinear effects], 

f(t) = forcing function vector. 

The A matrix was developed for the intermediate model and resulted in a 
59 x 59 matrix. 

eff 
The transient response of the neutron level to a step change in k 

of +0.01$ is shown in Fig. 8 for initial power levels of 10 and 1 Mw. 
The slow response is evident. 

actor takes longer to return to steady state in a 1-Mw transient than in 
a 10-Mw transient. 
(i.e., the system is stable). 

Figure 8 also clearly shows that the re- 

It is also clear that the power does not diverge 

It should be emphasized that this transient analysis included the 

nonlinearities inherent in the neutron kinetics equations. The fact that 

the results of the other analyses presented below, which are based on 

linear models, agree in substance with these results verifies the adequacy 

of the linear analyses for small perturbations. 

Closed-Loop Frequency Response 

The closed-loop transfer function is defined as the Laplace trans- 

form of a selected output variable divided by the Laplace transform of 

a selected input variable. If the system is stable, it is possible to 

replace the Laplace transform variable, s ,  with jw ,  where j =d-T and 
w is the angular frequency of a sinusoidal input. 

G(w), evaluated at a particular w is a complex quantity. 
of G ( w )  physically represents the gain, or the ratio of the amplitude of 
the output sinusoid to the amplitude of the input sinusoid. The phase 

angle of G(w)  represents the phase difference between the input and out- 

put sinusoids. A logarithmic plot of amplitude ratio and phase angle as 
a function of w is called a Bode plot, or frequency-response plot. 

A transfer function, 
The amplitude 

The relationship between the frequency response and the time response 

due to a sinusoidal input is useful conceptually and experimentally. How- 

ever, it may be shown that the Bode plot for a linear system also provides 
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qualitative stability information that is not restricted to any particu- 

lar form in input.13 This information is largely contained in the peaks 

in the amplitude ratio curve. High narrow peaks indicate that the system 

is less stable than is indicated by lower broader peaks. 

The closed-loop frequency response was calculated for N (neutron 
level fluctuations in megawatts) as a f’unction of 6k (change in input 

The MXFR code (a special-purpose code for the MSRE frequency- keff ) .  
response calculations; see Appendix C) 
for this calculation. The results for 
Fig. 9. Fewer phase-angle curves than 

to avoid cluttering the plot. 
Several observations can be based 

and the complete model were used 

several power levels are shown in 

magnitude curves are shown in order 

on the information of Fig. 9. 
First, the peaks of the magnitude curves get taller and sharper with lower 

power. This indicates that the system is more oscillatory at low power. 

Also the peaks in the low-power curves rise above the no-feedback curve. 
This indicates that the feedback is regenerative at these power levels. 

Also, since the frequency at which the magnitude ratio has a peak approxi- 
mately corresponds to the frequency at which the system will naturally 

oscillate in response to a disturbance, the low-power oscillations are 

much lower in frequency than the 10-Mw oscillations. 

cillation range from 22 min at 0.1 Mw to 1.3 min at 10 Mw. 

The periods of os- 

Figure 9 shows that the peak of the 10-Mw magnitude ratio curve is 

very broad and indicates that any oscillation would be small and quickly 

damped out. The dip in this curve at 0.25 radians/sec is due to the 25- 
see fie1 circulation time in the primary loop [i.e., (2T radians/cycle)/ 
(25 sec/cycle) = 0.25 radians/sec] . Here a fuel-temperature perturbation 
in the core is reinforced by the perturbation generated one cycle earlier 
that traveled around the loop. Because of the negative fuel-temperature 
coefficient of reactivity, the power perturbation is attenuated. 

?“ne relatively low gains shown at low frequencies can be attributed 

to the large change in steady-state core temperatures that would result 

from a relatively small change in nuclear power with the radiator air 
flow rate remaining constant. This means that only a small change in 
power is required to bring about cancellation of an input 6k perturbation 

by a change in the nuclear average temperatures. 
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. 

Open-Loop Frequency Response 

A simplified block diagram representation of a reactor as a closed- 
loop feedback system is shown in Fig. 10. The forward loop, G, represents 
the nuclear kinetics transfer function with no temperature effects, and 
the feedback loop, H, represents the temperature (and reactivity) changes 
due to nuclear power changes. 

The closed-loop equation is found by solving for N in terms of 6k: 

N = G Gkin - GHN 

o r  

G 
1 +GH 

- -  - N 

The quantity GH is called the open-loop transfer function, and represents 
the response at point b of Fig. 10 if the loop is broken at point b. 
Equation (2) shows that the denominator of the closed-loop transfer func- 
tion vanishes if GH = -1. Also, according to the Nyquist stability cri- 

terion, the system is unstable if the phase of GH is more negative than 
-180" when the magnitude ratio is unity. 
loop frequency response contains information about system dynamics that 

are important in stability analyses. 

Thus it is clear that the open- 

A useful measure of system stability is the phase margin. It is de- 

fined as the difference between 180" and the open-loop phase angle when 
the gain is 1.0. 

found in suitable references on servomechanism theory.13 

cation, it suffices to note that smaller phase margins indicate reduced 
stability. 
a phase margin of at least 30" is desirable. 
indicate lightly damped oscillation and poor control. 

dicates an oscillating system, and negative phase margins indicate insta- 

bility. 

A discussion of the phase margin and its uses may be 
For this appli- 

A general rule of thumb in automatic control practice is that 
Phase margins less than 20" 

Zero degrees in- 

The phase margin as a fbnction of reactor power level is shown in 

Fig. 11. 
30' at about 0.5 Mw. 

at 0.1 Mw. 

The phase margin decreases as the power decreases and goes below 

However, the phase margin is still positive (12") 

These small phase margins at low power suggest slowly damped 
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oscillations, as has been observed in the transient-response and closed- 
loop frequency-response results. 

of power level is also shown in Fig. 11. 
Figure 12 shows Nyquist plots for the open-loop transfer function, 

It is clear that the unstable condition of 

The period of oscillation as a function 

GH, at 1.0 Mw and 10.0 Mw. 

(lGHl = 1 and phase angle -180") is avoided. In order for the phase mar- 
gin to be a reliable indication of stability, the Nyquist plot must be 
"well-mannered" inside the unit circle; that is, it should not approach 
the critical (-1.0 +jO) point. 

have peculiarly in approaching the origin, they do not get close to the 

critical point. 

Although the curves shown in Fig. 12 be- 

Pole Configuration 

The denominator (1 + GH) of the closed-loop transfer function of a 
lumped-parameter system is a polynomial in the Laplace transform variable, 
s . 
are the poles of the system transfer function. 

the eigenvalues of the system matrix A in Eq. (1). 
ficient condition for linear stability is that the poles all have nega- 

tive real parts. 

the complex plane and the dependence of their location on power level. 

The roots of this polynomial (called the characteristic polynomial) 

The poles are equal to 

A necessary and suf- 

Thus, it is useful to know the location of the poles in 

The poles were calculated for the intermediate model of the MSRE 
(see Section 4 ) .  

59 X 59 matrix used in the transient analysis. The calculations were 
performed with a modification of the general matrix eigenvalue code Q3l4 
for the IBM-7090. The results are shown in Fig. 13 for several of the 
major poles. 
It is clear from Fig. 13 that the system is stable at all power levels. 
The set of complex poles that goes to zero as the power decreases is the 
set primarily responsible for the calculated dynamic performance. 

imaginary part of this set approximately represents the natural frequency 

of oscillation of the system following a disturbance. 

oscillation decreases as the power decreases, as observed previously. 

The matrix used was the linearized version of the 

A l l  the other poles lie far to the left of the ones shown. 

The 

The frequency- of 
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6. Interpretation of Results 

Explanation of the Inherent Stability Characteristics 

A physical explanation of the predicted stability characteristics 
is presented in this section, and an attempt is made to explain the rea- 

sons for the changes in inherent stability with power level. The reasons 

for the behavior are not intuitively obvious. Typically a feedback system 

will become more stable when the open-loop gain is reduced. The MSRE, 

however, becomes less stable at lower powers. In the discussion of open- 
loop frequency response (Sect. 5 )  it was noted that the forward-loop 
transfer function G represents the nuclear kinetics (N/6k) with no 
temperature-feedback effects, and from the equations (Appendix A), the 

gain of G is directly proportional to power level. 
"typical" but has the characteristics of what is known as a "conditionally 

stable ' I  system. 

Thus the MSRE is not 

The MSRE analysis is complicated further by the complexity of the 

feedback loop H, which represents the reactivity effects due to fuel and 
graphite temperature changes resulting from changes in nuclear power. A 
more detailed breakdown of the components of H is given in Fig. 14. 
core thermal model has two inputs, the nuclear power N and core inlet tem- 
perature Tci, and three outputs, nuclear average fuel and graphite tem- 
peratures T* and T*, and the core outlet temperature Tco. 

ternal Loops" represents the primary loop external to the core, the heat 

exchanger, the secondary loop, and the radiator. All the parameters are 
treated as perturbation quantities or deviations from their steady-state 
values. Also the radiator air flow rate is adjusted SO that with a given 

steady-state power level, the core outlet temperature is 1225°F. This 

means that the feedback loop transfer f'unction H also varies with power 
level. 

This 

The block "Ex- 
F G 

If we look at the effect of perturbations i.n power, N, on the core 
inlet temperature, Tci, we can see that the effects of different air flow 
rates are only apparent at low frequencies, as in Fig. 15, which Bhows 
the Bode plots fo r  T ./N at No = 1 and 10 Mw. It is important to note 
that at low power and at low frequency, the magnitude of the temperature 

change is large, and it lags the input N considerably. 

e1 

For example, 
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at No = 1 Mw and w = 0.0005 radians/sec, the magnitude ratio is 170°F/Mw 
and the phase lag is 80". The block diagram of Fig. 14 indicates that 
the nuclear average temperature perturbations in T* and T* can be con- F G 
sidered to be caused by the two separate inputs N and Tci. 

the open-loop transfer function T*/N (with Tci constant) is 5.0"F/Mw at 

steady state, and there is little attenuation and phase lag up to rela- 
tively high frequencies, as in Fig. 16, which shows the open-loop transfer 

functions of the nuclear average temperatures as functions of N and T . 
Returning to the example case of No = 1 Mw and w = 0.0005 radians/sec, 
we note that the prompt feedback effect of 5"F/Mw from T$/N is very small 

compared with temperature changes of the entire system represented by a 

For example, 

F 

ci 

T ./N of 170"F/Mw at -80". (Note that Tg/Tci = 1.0 at 0.0005 radians/sec.) c 1  
The important point here is that for low power levels over a wide range 

of low frequencies, the large gain of the frequency response of overall 
system temperature relative to power dominates the feedback loop H, and 
its phase angle approaches -90". 

The no-feedback curve in Fig. 9 shows that at frequencies below about 

0.005 radians/sec, the forward-loop transfer function N/6k (open loop) 

also has a phase approaching -90" and a gain curve with a -1 slope (i.e., 

one-decade attenuation per decade increase in frequency). 
and H having phase angles approaching -90°, the phase of the product GH 
will approach -180". 
under these conditions, the system would approach instability. From the 

Bode plot of Fig. 9, it can be seen that at a power of 0.1 Mw, I GH I x 1.0 
at 0.0045 radians/sec (22 min/cycle), since the peak in the closed-loop 

occurs there. At lower powers and consequently lower gains G, IGH I ap- 
proaches 1.0 at even lower frequencies, where the phase of GH is closer 
to -180". This accounts for the l e s s  stable conditions at the lower 
powers and lower frequencies. 

With both G 

If the magnitude ratio of G were such that lGHl = 1.0 

At the higher powers, lGHl approaches 1.0 at higher frequencies 
where the effect of the prompt thermal feedback is significant. For ex- 

ample, the peak in the 10-Mw closed-loop Bode plot of N/6k, Fig. 9, occurs 

at 0.078 radians/sec. 
(Fig. 15) compared with a T*/N of 4.4 at -15" (Fig. 16). 

the prompt fuel temperature feedback term has a dominant stabilizing effect. 

At this frequency, I Tci/N I has a value of 2.0 
Consequently, F 
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6k prompt N 
- -  - F 

in 6k aF ( 8k/ O F  1 TFx - 
closed loop open loop 

and 

The net 6k vector is the sum of the input and feedback vectors. For the 
1-Mw case, 6k net is greater than 6k - this indicates regenerative feed- 
back and shows up on the closed-loop Bode plot (Fig. 9) as a peak with a 
greater magnitude ratio than that of the no-feedback curve. 

in' 

The increased stabilizing effect of the prompt fuel temperature term 

in going from 1 to 10 Mw is also evident. 
diminished effect of the graphite at the higher frequency. 

These plots clearly show the 

In both cases, too, the  plots show that a more negative graphite 

temperature coefficient would tend to increase the net 6k vector and 
hence destabilize the system. 

Interpretation of Early Results 

The previously published results of a dynamic study performed in 
1961 predicted that the MXRE would be less stable than is predicted in 
this study. This is partly because of differences in design parameters 

and partly because of differences in the models used. These differences 

were reviewed in Section 4 of this report. 
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The most significant parameter changes from 1961 to 1965 were the 
values for the fuel and graphite temperature coefficients of reactivity 

and the changes in the fuel heat capacity. 

the new fuel coefficient is more negative, the new graphite coefficient 

is less negative, and the fuel heat capacity is smaller than was thought 

to be the case in 1961. A l l  these changes contribute to the more stable 

behavior calculated with the current data. (The destabilizing effect of 
a more negative graphite temperature coefficient is discussed in Section 

Table 1 (Sect. 4 )  shows that 

7. ) 
The most important change, however, is the use of a multiregion core 

model and the calculation of the nuclear average temperature. 

single-region core, T* is equal to the temperature of the first of the 

two fuel lumps or the average core temperature (in steady state), In 

the nine-region core, T* is computed by multiplying each of the 18 fuel- 
lump temperatures by a nuclear importance factor, I. 
region model, the steady-state value of T*/N (with Tci constant) is only 

2.8'F/Mw compared with 5.0°F/Mw for the nine-region core model. 
difference occurs because in the nine-region model, the downstream fuel- 

lump temperatures are affected not only by the power input to that lump 

but also by the change in the lump's inlet temperature due to heating of 

the upstream lumps. This point may be illustrated by noting the differ- 

ence between two single-region models, where in one case the nuclear im- 

portance of the first lump is 1.0 and in the other case the importance 

of each lump is 0.5. As an example, say the core outlet temperature in- 
creases 5"F/Mw. 

In the 

F 

F 
In the single- 

F 
This 

The change in T* for a 1-Mw input would be F 

In the first case 11 = 1.0 and AT1 = 2.5"F, so AT; = 23°F. In the sec- 

ond case, 11 = I2 = 0.5, AT1 = 2.5"F, and AT2 = 5"F, so AT* = 3.75"F, or F 
a 50% greater change than in case one. For many more lumps, this effect 

is even greater. 
A s  was shown above, the prompt fuel reactivity feedback effect was 

the dominant stabilizing mechanism at both 1 and 10 Mw, so the original 

single-region core model would give pessimistic results. 
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7 .  Perturbations in the Model and the Design Parameters 

Every mathematical analysis of a physical system is subject to some 

uncertainty because of two questions: 

and how accurate are the values of the parameters used in the model? 

influence of changes in the assumed model were therefore investigated, 

and the sensitivity to parameter variations of the results based on both 

the reduced and complete models was determined. An analysis was also 

performed to determine the worst expected stability performance within 

the estimated range of uncertainty of the system parameters. 

How good is the mathematical model, 
The 

Effects of Model Changes 

The effects of changing the mathematical model of the system were 

determined by comparing the phase margins with the reference case as 

each part of the model was changed in turn. The following changes were 

made : 

1. Core Representation. A single-region core model was used in- 
stead of the nine-region core used in the complete model. 

2. Delayed-Neutron Groups. A single delayed-neutron group was 

used instead of the six-group representation in the complete model. 

3. Fixed Effective B ' s .  The usual constant-delay-fraction delayed- 

neutron equations were used with an effective delay fraction, B, for each 
precursor. The effective p was obtained by calculating the delayed- 

neutron contribution that is reduced due to fluid flow in the steady- 
state case. This i s  in contrast to the explicit treatment of dynamic 
circulation effects in the complete model (see Appendix A). 

4 .  First-Order Transport Lags. The Laplace transform of a pure 
-TS delay, e , was used in the complete model. The first-order well- ' was used in the modified model. 1 t- 7s' stirred-tank approximation, 

5. Single-Section Heat Exchanger and Radiator. A single section 
was used to represent the heat exchanger and radiator rather than the 

ten-section representation in the complete model. 
6. Xenon. The xenon equations were omitted in contrast to the ex- 

plicit xenon treatment in the complete model. 
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The results are shown in Table 4 .  The only significant effect is 
that due to a change in the core model. The results for the one-region 
core model indicate considerably less stability than for the nine-region 

core model. This difference is due primarily to the different way in 

which the nuclear average temperature of the fuel is calculated, as was 

discussed in detail in Section 6. 

Table 4 .  Effects of Model Changes on Stability 

Change in Phase Margin 
from Reference Case" Phase Margin 

( d - 4  Model Change (deg) 

At 1 Mw At 10 Mw At 1 Mw At 10 Mw 

Reference case (complete 41 99 
model) 

One core region 27.5 56.5 -13.5 -42.5 
One delayed-neutron 38 (b ) -3 

Fixed effective B ' s  40 98 -1 
group 

First-order transport 41 100 0 
lags 

-1 
+1 

Single-section heat 41 98.5 0 -0.5 
exchanger and radiator 

Xenon omitted 41 100.5 0 +1.5 

'Reference case is complete model with current data. An increase 
in phase margin indicates greater stability. 

bNyquist plot does not cross unit circle near frequency of oscil- 
lation. 

Effects of Parameter Changes 

Frequency-response sensitivities and pole sensitivities were cal- 

culated. Frequency-response sensitivities are defined as fractional 

changes in magnitude or phase per fractional change in a system parameter. 

The magnitude frequency-response sensitivities were calculated for sev- 

e r a l  important parameters with the MXFR code (see Appendix C) for the 
complete model. The sensitivities were obtained by differences between 
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the results of calculations at the design point and those of calculations 

with a single parameter changed slightly. The results of these calcu- 

lations are shown in Fig. 18. Calculations were also performed on the 

system with the reduced model with a new computer code called SFR (Sensi- 

tivity of the Frequency Response). 

phase sensitivities for a general system by matrix methods. 

lation was restricted to the reduced system representation because of 
the large cost of calculations for very large matrices. 

this calculation are given in Fig. 19. In Figs. 18 and 19, a positive 
sensitivity indicates that a decrease in the system parameter will de- 
crease the magnitude of the frequency response. 

versed for negative sensitivities. 

This code calculates magnitude and 

This calcu- 

The results of 

The situation is re- 

The sensitivities shown in Figs. 18 and 19 can be used to estimate 
the effects of possible future updating of the MSRE design parameters 

used in this study. In addition, they support other general observations 

obtained by other means. For instance, Fig. 19 shows that the sensitivi- 
ties to loop effects, such as primary and secondary loop transit times, 
are important relative to core effects. This indicates that the external 

loops strongly influence the system dynamics, as was concluded in Sec- 

tion 6. 
Similar information may be obtained from pole sensitivities (or 

eigenvalue sensitivities). 

of a system pole due to a fractional change in a system parameter. The 

sensitivity of the dominant pole (the pole whose position in the complex 

plane determines the main characteristics of the dynamic behavior) is 
usually the only one of interest. 

These are defined as the fractional change 

The dominant pole sensitivities for a number of system parameters 

are shown in Table 5 for power levels of 1 and 10 Mw. These results may 

be used to estimate the effect of future updating of the MSRE design 

parameters, and they also furnish some insight as to the causes of the 

calculated dynamic behavior. For instance, it is noted that the sensi- 

tivity to changes in the graphite temperature coefficient is only about 
one-fourteenth the sensitivity to changes in the f’uel temperature coef- 

ficient at 10 Mw. At 1 Mw, the graphite effect is about one-third as 

large as the fuel effect. This indicates that a decrease in power level 
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Table 5. Pole Sensitivities 

. 

-- 1x1 ah 
l h l  ax 

Parameter = x (see footnote a) 

At 10 Mw At 1 Mw 

Fraction of power that is prompt 

Neutron lifetime 

Fuel temperature coefficient of reactivity 

Graphite temperature coefficient of 

Fraction of power generated in the fie1 
Graphite-to-fuel heat transfer coefficient 

Fuel heat capacity 

Moderator heat capacity 
Fuel-salt heat exchanger heat transfer 

Fuel transit time in core 
Fuel transit time in external primary 

Secondary-salt heat exchanger heat transfer 

Secondary-salt loop transit time 

Secondary-salt radiator heat transfer 

Heat exchanger heat capacity 
Effective precursor decay constant 
Time constant for delayed gamma emission 
Total delayed-neutron fraction 
Effective delayed-neutron fraction 

reactivity 

coefficient 

circuit 

coefficient 

coefficient 

-0.944 

0.00944 

0.858 

-0.0627 

-0.328 
0.0434 

1.024 

-0.616 

0.0157 

-0.606 

0.659 

O.OWO8 

-0.305 

-0.0155 

0.00745 

-0.304 

-0.00858 

0.0103 

-0.788 

-2.515 
0.0129 

1.701 

-0.493 

0.561 

0.177 

1.315 

-0.359 

0.254 

-0.787 
0.804 

0.449 

-2.622 

-0.0754 

0.00969 

-0.726 
0.0536 

0.159 

-0.221 

a A is the real part of the dominant pole. The values are 
-0.01865 for 10 Mw and -0.001818 for 1 Mw. 

, 
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causes modifications in the dynamic behavior that accentuate the relative 

effect of graphite temperature feedback. It is also noted that the vari- 
ous heat transfer coefficients have a much larger relative effect at 1 Mw 

than at 10 Mw; this indicates that the coupling between system components 

has a larger influence at low power than at high power. 

Effects of Design Uncertainties 

A new rnethodl6 for automatically finding the least stable condition 
in the range of uncertainty in the design parameters was used. A com- 
puter code for the IBM-7090 was used for the calculations. The method 
is described in some deta-il in Appendix D. The least stable condition 

is found by using the steepest-ascent (or gradient-projection) method of 
nonlinear programming. 

The quantity that is maximized is the real part of the dominant pole 

of the system transfer function (or equivalently, the dominant eigenvalue 

of the system matrix). 

negative values for the real part of the dominant pole, and instability 

is accompanied by a pole with a positive real part. 

involves a step-wise determination of the particular combination of sys- 

tem parameters within the uncertainty range that causes the real part of 

the dominant pole to have its least negative value. If the maximized 
pole has a negative real part, instability is not possible in the uncer- 

tainty range. If the maximized pole has a positive real part, instability 
is possible in the uncertainty range if all the system parameters deviate 

from the design point in a particular way. 

Less stable conditions are accompanied by less 

The maximization 

A key factor in the stability extrema analysis is the availability 
of the appropriate ranges to assign to the system parameters. The ranges 

appropriate for the MSRE were furnished by Engel.17 It was decided to 
use a wide range on the important nuclear parameters (neutron lifetime, 

fuel temperature coefficient of reactivity, and graphite temperature co- 

efficient of reactivity). 

two-thirds and three-halves of the design values. 

assigned by considering the method of evaluating them and the probable 

effects of aging in the reactor environment. The ranges of the 16 system 

parameters chosen for this study are given in Table 6. 

These parameters were allowed to range between 

All other ranges were 
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Table 6. Ranges on System Parameters for Extrema Calculations 

Ranges 

Low Design Value High 
Parameter 

1.6 x 
-7.26 x 

2.4 x 
4.84 x 

3.6 x 
-3.23 x 10'~ 

Neutron lifetime, sec 
Fuel temperature coefficient, 

Graphite temperature coeffi- 

Fraction of power generated 

Graphite-to-fuel heat trans- 

Fuel heat capacity, Mw. sec/'F 

Gr ap hi t e he at c apa c i t y , 
Mw. see/ OF 

Fuel-salt heat exchanger heat 
transfer coefficient, MW/'F 
Fuel transit time in core, 
see 
Fuel transit time in external 
primary circuit, sec 

heat transfer coefficient, 

Secondary loop transit time, 

Heat exchanger heat capacity, 

Effective precursor decay 

Time constant for delayed 

Effective delayed-neutron 

6k/k* OF 

cient, 6k/k. "F 

in fuel 

fer coefficient, M~/"F 

Secondary-salt heat exchanger 

Mw/ "F 

s e e  

Mw. sec/"F 

constant, sec-l 

gamma emission, sec 

fraction 

-5.55 x -3 .yo x 10- -2.47 x 

0.92 0.9335 0.95 

0.013 0.02 0.03 

1.13 

3.4 
1.50 

3.58 

1.910 

3.76 

0.2424 0.1613 0.3636 

6.96 

15.75 

0.1001 

8.46 10.25 

17.03 18.60 

0.1296 0.1686 

21.7 

0.0738 

0.11 

120 

0.0032 

24.2 

0.0738 

0.133 

188 

0.0036 

32.7 

0.4216 

0.15 

27 0 

0.0040 
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The reduced model was used with current parameters for locating the 

least stable condition in the uncertainty range. This gave results at 

a much lower cost than with a more complete model. This was considered 

adequate because other calculations showed that the reduced model predicts 

lower stability than the complete model. The reasons for this were ex- 

plored in Section 6. Experience with other calculations also showed that 

changes in system parameters gave qualitatively the same type of changes 

in the system performance with either model. 

The set of parameters for the least stable condition is listed in 

Table '7. The least negative value of the dominant eigenvalue calculated 
with the reduced model changes from (-0.0187 i. 0.0474 j) sec-l at the de- 
sign point to (-0.00460 ? 0.0330 j) see-' at the worst condition for 10 

Mw. 
(+0.0005'74 F 0.0134 j) see-'. This indicates that instability is im- 

possible in the uncertainty range at 10 Mw but that the reduced model 

predicts an instability at 1 Mw for a combination of parameters within 

the uncertainty range. This condition gives a transient with a doubling 
time of about 1/2 hr and a period of oscillation of about 8 min per cycle. 

For 1 Mw, the change is from (-0.00182 2 0.0153 j) sec-l to 

It is evident that the calculated instability at the extreme case 

for 1 Mw is due to the inherent pessimism of the reduced model (see Sect. 

6). This was verified by using the MSFR code for the complete model with 
the parameters describing the extreme case. It was found that the phase 
margin for 10 Mw was 75" for the extreme condition (versus 99" for the 

design condition), and the phase margin f o r  1 Mw was 21" €or the extreme 

condition (versus 41" for the design condition). 
that the best available methods indicate that the MSRE will be stable 
throughout the expected range of system parameters. 

Thus, it is concluded 

8. Conclusions 

. 

This study indicates that the MSRE will be inherently stable for all 

operating conditions. Low-power transients without control will persist 

for a long time, but they will eventually die out because of inherent 
feedback. Other studies have shown that this sluggish response at low 
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Table 7. Values of System Parameters at the 
Least Stable Condition 

8 

Parameter At 10 Mw At 1 Mw 

Neutron lifetime, see 

Fuel temperature coefficient, 

Graphite temperature coefficient, 

Fraction of power generated in fuel 
Graphite-to-fuel heat transfer 

Fuel heat capacity, Mw. sec/'F 
Graphite heat capacity, Mw. sec/"F 
Fuel-salt heat exchanger heat 
transfer coefficient, &/OF 

Fuel transit time in core, sec 

Fuel transit time in external 

6k/k* OF 

6k/k. OF 

coefficient, MW/ OF 

primary circuit, see 

transfer coefficient, MW/'F 
Secondary-salt heat exchanger heat 

Secondary loop transit time, see 

Heat exchanger heat capacity, 

Effective precursor de cay constant , 

Time constant for delayed gamma 

Effective delayed-neutron fraction 

Mw* sec/"F 

see-' 

emission, see 

3.6 x (H)" 
-3.23 x (H) 

-5.55 x (L) 

0.95 (H) 
0.03 (H) 

1.91 (H) 
3.40 (L ) 
0.3636 (H) 

6.96 (L) 
10.25 (H) 

0.1686 (H) 

21 .? (L) 
0.4216 (H) 

0.11 (L) 

120.0 (L) 

0.0040 (H) 

3.6 x (H) 
-3.23 x (H) 

-5.55 x (L) 

0.95 (H) 
0.02535 

1.91 (H) 
3.40 (L) 
0.3636 (H) 

6.96 (L) 
10.25 (H) 

0.1686 (HI 

21 .? (L) 
0.0738 (L ) 

0.15 (H) 

120.0 (L) 

0.0040 (H) 
~ ~- -~ 

a Letters in parentheses indicate whether parameters are at high 
values (H) or low values (L). 
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power can be eliminated by the control system, which suppresses tran- 

sients rapidly. 

The theoretical treatment used in this study included all known 

effects that were considered to be capable of significantly influencing 

the system dynamics. 

reactor information, system stability will be checked experimentally in 

dynamic tests, which will begin with zero power and which will continue 

through .- . full-power operation. 

Even so, for safety and also for obtaining basic 

t 
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Appendix A.  Model Equations 

I 

Core Thermal Dynamics Equations 

The d i f f e r e n t i a l  thermal dynamics equations f o r  a single-core region 

F i r s t  fue l  lump: 

a r e  given below (see Fig. 5 ) .  

- - m 
K1 K G l  - (TG - TFl) . ( A . l )  ‘F1 (TF1,in - TF1) + P I  ’T + K G 1  -I- KG2 MCpl 

- dTFl 1 
- = -  

dt 

Second f u e l  1Wnp: 

Graphite lump : 

In  these  equations, 

mean fue l  temperature i n  f i r s t  we l l - s t i r r ed  tank, o r  

lump, . O F ,  

time, sec, 

t r a n s i t  (or holdup) time f o r  f u e l  i n  f i r s t  lump, sec, 

i n l e t  f i e 1  temperature t o  f i r s t  lump, 

f r ac t ion  of t o t a l  power generated i n  f i r s t  f u e l  lump, 

heat  capaci ty  of f i r s t  lump, Mw*sec/OF, 

t o t a l  power, Mw, 

f r ac t ion  of t o t a l  power generated i n  graphi te  adjacent t o  

f i r s t  f u e l  lump, 

f r ac t ion  of t o t a l  power generated i n  graphi te  adjacent t o  

second f’uel lump, 

mean heat t r a n s f e r  coe f f i c i en t  times a rea  f o r  fuel- to-  

graphi te  heat t r ans fe r ,  &/OF, 
mean graphi te  temperature i n  sect ion,  

OF, 

OF, 
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- 
TF2 = mean fuel temperature in second Imp, OF, 

T = transit time for fuel in second lump, 

= fraction of total power generated in second Imp, 
= heat capacity of second lump, Mw*sec/OF, 

= heat capacity of graphite, Mw*sec/"F. 

see, F2 
K2 

MCpG 

MC 
P2 

Nuclear importances : 

where 

6k = changes in effective reactor multiplication due to tem- 

perature change in fuel lumps 1 and 2 and the graphite, 
respectively, 

1,2, G 

= importance factors for fuel lumps 1 and 2 and the 'F1, F2 , G 
graphite, respectively; note that 

c (IF1 + IF2) = 1.0 
nine sections 

c (IG) = 1.0 , 
nine sections 

ak E a  = total fuel temperature coefficient of reactivity, 
$ F  

6k/k* OF, 

ak = a = total graphite temperature coefficient of reactivity, q- G 
6k/k* OF. 

In the nine-region core model, the individual regions are combined 

as shown in Fig. 5. The nuclear average fuel and graphite temperatures, 
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reactivity feedback, and core outlet temperatures are computed as func- 

tions of  nuclear power and core inlet temperature f o r  both the analog and 

frequency-response models. 
The core transfer function equations solved in the MSRE frequency- 

response code are as follows. 
Single Core Region. The equations are obtained by substituting the 

Laplace transform variable, s, for - d in Eqs. (A.l) through ( A . 6 )  and 

solving for T 
It is assumed (without loss of generality) that the variables are written 
as deviations from steady state. 

that follow do not contain initial conditions: 

- - dt 
T' and 6k in terms of the inputs T and P 

Fly  TF2' TGt F1, in 

Thus the Laplace transformed equations 

h - 
T =  G 

(A.7a) 

(A. Sa) 
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A - 
TF2 

s + -  
F2 T 

- 
'~1, i n  

L 

(A.9a) 

(A.10) 

(A.ll) 

(A.12) 

Multiregion Core 

The ove ra l l  t r a n s f e r  flmctions for an axial sec t ion  of core cons is t -  

i ng  of severa l  regions i n  s e r i e s  a r e  complicated by t he  f a c t  t h a t  t h e  in -  
pu ts  t o  t h e  upper (or downstream) regions a re  a f f ec t ed  by t h e  response 

of t he  lower regions.  A block diagram i l l u s t r a t i n g  t h e  coupling i n  terms 

of the  t r a n s f e r  functions H14(s) i s  shown i n  Fig. A . l .  

The general  forms o f  t he  coupled equations of n regions i n  s e r i e s  

a r e  

(A.13)  
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O R N L - D W G  65-9828 

C 

CORE INLET 
TEMPERATURE, T,, 

4.1 r - i  H1,2 
--)CORE OUTLET 
TEMPERATURE, Tco 

Fig. A.l. Series Connection of Single-Core Regions. 
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+ (H2,1 H1,2 H1,3 + H2,2 H1,3 H2,3) H3,4 + ... . (A.16) 

- The mean value of the core outlet temperature, %o for m axial sections 

in parallel is 

m 
(A.17) 

where FF 

The total 6k is simply the sum of all the individual contributions. 

was added to the MSRE frequency-response code as an afterthought; conse- 
quently there is some repetition in the calculations. 
tions of nuclear average temperature contributions from each core region 

is the fraction of the total flow in the jth axial section. 
j 

The calculation of nuclear average temperature transfer functions 

The transfer fmc- 

are 

A 

= I J ( s )  z H 6 ( s )  , Tc" 
T~l, in 

G 3  n 

. .  
T* 

(A. 19) 

(A.20) 
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8 

A 

(A. 21) Tc" 
pT 

y = IG J4(s) z H8(s) , 

where the asterisk indicates a nuclear average temperature. 
The equations for the total nuclear average temperatures of the nine- 

region core model are derived the same way as the general equations for 
6k, Eqs. (A.15) and (A.16). The second subscripts refer to the nine core 
regions, as designated in Fig. 5. The equations are 

9 A 

h P, J=1 H B , j  H2,2 H6,3 

+ ('2,5 H1,6 + H2,6) '6,7 -I- H2,8 H6,9 ' (A.23) 

A 

H1,5 H1,6 H5,7 + H1,8 H5,9 ' (A.24) 
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A 

TG 
H6,j $- H1,2 H6,3 

- =  
A 

Tci j=l, 2,5,8 

+ H  H H + H  H . (A.25) 
i,5 i,6 6,7 i,8 6,9 

Neutron Kinetics 

Nonlinear Equations 

Neutron balance: 

dn n 
dt l* i 
- = - [ k ( l  - p,) -13 + Ai ci 

Precursor balance: 

dCi kn Pi 
dt I *  
- = - -  Ai ci 

In these expressions 

(A.26) 

(A.27) 

n =  

t =  
2 "  = 

k =  

B, = 

Bi - 
Ai - 

'i 

- 
- 
- - 

neutron population, 

time, see, 

prompt-neutron lifetime, sec, 
reactor multiplication, 
total delayed-neutron fraction, 

effective delayed-neutron fraction for ith precursor group, 

decay constant for ith precursor, 
ith precursor population. 

For the one-group approximation, the effective f3 in the  precursor 

balance equation was simply the sum of the f3's for the six groups. 

average decay constant 

The 
was calculated from Eq. (A.28): 
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(A. 2%) 

Linearized Equatims with Circulating Precursor Dynamics. 

ferential equation fOY the precursor population in the core is 
The dif- - 

rrate of change] 
of precursor - 
population in J -  I core 

where 

inate formation] of - becay rate of ] 
-in core in core 

reentry by precursors 
core ZL seconds ago 
to a fraction 

of their previous 

rate 

B! = total delayed-neutron fraction for ith precursor group, 
T = core holdup time, sec, 

T = loop holdup time, sec. 

1 

C 

L 
For this treatment, we assumed that the core is a well-stirred tank 

and that the precursor transport around the loop is a pure delay. We 
obtained the linearized neutron kinetics equation used in the frequency- 

response calculation from Eqs. (A.26) and (A.29) : 

. 
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1 - TL ( S +Ai 1 

Ai@ f 

1 - TL ( s +Ai 
l - P B T +  i 

i=l 
s + A i + -  1 T [I-e 

1 ;  c 
- - =  , 

A 0 x R /  ? (A.30) 

where . -  - 
- - steady-state nuclear power, Mw, no - 

ko = steady-state multiplication constant, 

and the circumflex ( A )  indicates a perturbation quantity, that is, 
k(t) = ko + k. 

puted by setting dn/dt and dCi/dt equal to zero in Eqs. ( A . 2 6 )  and 

(A.29): 

A 

The value of the critical reactor multiplication factor k 0 is com- 

Heat Exchanger and Radiator Equations 

The coefficients for the heat exchanger and radiator equations are 

given in terms of time constants and dimensionless parameters. 
tailed discussion of this model is given in ref. 18. 
based on the model shown in Fig. A.2,  are 

A de- 
The equations, 

(A.32) 

( A . 3 3 )  

( A . 3 4 )  
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ORNL-DWG 65-9829 

SHELL s 

\TUBE T 

Fig. A.2.  Heat Exchanger and Radiator  Tube Model. 

- - - - -  

. 

. 
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- n 
s -  - 2 

- 2  n 
dT2 - T ~ )  + - (TT - T2) + - (Ts - T2) , tz" 
- e -  

dt t; (T2,in t; 

where the nomenclature of Fig. 7 applies to the temperatures, T, 
- 

= mean shell temperature, O F ,  
TS 
t* = transport time, see, 

T = heat transfer time constant MC P /hA, see, 
n = section length = hA/WC dimensionless. 

P' 
The subscripts have the following meanings: 

1 = fluid 1 side, 

2 = fluid 2 side, 

T = tube side, 

s = shell side. 

Also, 

h = heat transfer coefficient, Btu/sec ft2 OF, 

A = heat transfer area, ft2, 

M = mass of tube o r  shell, lb, 
C = specific heat, Btu/lb*"F, 
P 
W = mass flow rate, lb/sec. 

(A. 35) 

( A . 3 6 )  

(A.37)  

and 

Since it is the radiator air flow rate that is varied to change the 

load demand, the radiator shell-side coefficients will vary with power 

level. The coefficients listed in Appendix B are for a lW-lb/sec air 
flow rate, corresponding to 10-Mw power removal at design temperatures. 
In all the studies, hair was varied as the 0.6 power of the flow rate, 

and Wair as the first power. 
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. 

The solutions of the Laplace-transformed transfer function equations 

are 

A 

(2 - n ) + nlB 1 
F ,  I - out 

A 

T1, in t p + 2  

D + (2 - n2 - ns) + T ns s + l  ]E 
S 

A 

T2, out - - 
A Y 

T2, in t p + 2  

DE nl + C (2 - 
A T1, out z 1 
T2, in 

2 

t p + 2  

, 

n 
+ (2 -n2 - n s )  A + S 

+ 

S 

A 

T2, out - - 
A 

T1, in 

where 

2 n 
A =  n 

S t * s + n  + 2 + n  - 
s T s + l  

S 
2 2 

1 B =  
T T T1 T1 A z s + 1 + - - -  
T2 'T2 T1 T 

1 n 

t * s + n  + 2 '  C =  
1 1 

D =  
T2 'T2 
T1 T1 

T 

T 
TT2 s + l + - - -  

T 

A 

t p + 2  

(A .38)  

(A .39)  

(A.40) 

(A. 41) 

t*s + n 2  + 2  + n  -n2D- S 
2 S z s + l  

S 
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A 

Tl, out 
h 

. 

9 
- - GIG; 
1 - G ~ G ; :  

2 F =  t * s + n  1 1 + 2 - n l B m  

To compute the  t r ans fe r  functions of an a r b i t r a r y  number of equal lumps 

connected i n  se r i e s ,  we considered f i rs t  the  t r ans fe r  functions f o r  two 

lumps i n  se r i e s ,  as i n  Fig. A.3, where f o r  each lump, 

A 

T2, out 
A 

- T2, out 

G3 - T1,in 
? 

G;G;G~ 
= G; + 

1 - G3Gi ' 

The t r ans fe r  functions for  t h e  two combined lumps a r e  

- - G1G2Gi 
G4 + 1 - G ~ G ~  

T2,in I comb. 

A 

T1, out 
A 

(A.42) 

(A .43)  

(A.45) 

To solve fo r  more lumps i n  se r i e s ,  we s e t  t he  primed f'unctions equal t o  

the  respect ive combined t r ans fe r  functions and repeated the  computation. 
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ORNL-DWG 65-9830 

Fig. A . 3 .  Diagram f o r  Computing Transfer Functions for Two Lumps 
i n  Ser ies .  



. 
Equations f o r  Piping Lags 

The first-order (or well-stirred-tank) approximation used in the 

+educed model, is given by 

- dT 1 - = -$Tin T) 9 dt 

where 
- 
T = mean (and outlet) fluid temperature, O F ,  

= fluid inlet temperature, O F ,  Tin 
T = fluid holdup time, sec, 

and heat transfer to the piping is neglected. 
In the intermediate model, fourth-order Pad6 approximations were 

used. 

for a pure delay: 
They are series expansions of the Laplace transform expressions 

(A.47) -TS 1072 - 5367s + 120,c2s2 - 1 3 . 5 5 ~ ~ ~ ~  + T ~ S ~  

1072 + 5367s + 1 2 0 ~ ~ s ~  + 13.55~'~~ + 7's4 
e M 

The heat transfer to the piping and the reactor vessel was approxi- 
mated by lead-lag networks. 

Li and L2 is described in detail in ref. 9. 
equation is 

The method for obtaining the coefficients 
The general form of the 

A 

LlS + 1 Tout 
-3c 
A 

L2s  + 1 *in 

( A . 4 8 )  

In the complete model, the heat transfer to the piping and the trans- 
port lag were represented by the exact solution to the plug-flow equa- 
tions : 

A 

Tout - T s  -n ./[1+,4 - -  e e  - e  A Y 
( A . 4 9 )  

t 

Tin 
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where 

n = section length = hA/WC 
T = transport lag, see, 

P 

dimensionless, 
P’ 

T = time constant for heat transfer to pipe = MC /hA, see. 
P 

Equations for Xenon Behavior 

Xenon was considered only in the present frequency-response model. 

Th.e following differential equations were used: 

- -  - K1X’ - (Kz + K3Po) XG , dt (A.50) dxc 

- -  a/ - KqI + K5X - KGX’ + K7P , 
dt G 

- =  d1 -K~I + K,P , 
dt 

(A. 51) 

(A. 5 2 )  

where 

XG = xenon concentration in graphite, atoms/cc, 

X’ = xenon concentration in fuel salt, atoms/cc, 

I = iodine concentration in fuel salt, atoms/cc, 

P = nuclear power, Mw, 

6k = change in reactor multiplication factor due to change in 
xenon concentrations, 

Kl-11 = constants. 

Delayed Power Equations 

The equation for total thermal power, PT, includes a first-order 
lag approximation of the delayed nuclear power due to gamma heating: 

dn (n - PT) 
- - -  dt dt T 2 (A. 54) - (1 - Kd) - - dPT 

g 
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where 

= the fraction of flux power delayed, Kd 
n = flux power, Mw, 

= total thermal power, Mw, 
pT 
T = effective time constant for the delayed power, see. 

g 

The frequency response of the thermal power in terms of n is 

h 

PT (1 - Kd) T s $- 1 
- =  
h 

n 
(A.55)  

, 

. 
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Appendix B. Coefficients Used in the Model Equations 

Core Thermal Equations Data 

Study 
K1 K2 KGl KG2 ' F 1  

3.815000 

'F2 

3.815000 

Region 

Burke 1961 
analog 
Ball 1962 
analog 

0.470000 0.470000 0.030000 0.030000 1 

. 

. 
1.533 
2.302 
1.259 
1.574 
2.303 
1.259 
1.574 
2.621 
1.779 

1.386000 
2.083000 
1.13 9000 
1.424000 
2.084000 
1.139000 
1.424000 
2.371000 
1.610000 

4.230 

0.01493 
0.02736 
0.04504 
0.05126 
0.03601 
0.06014 
0.06845 
0.06179 
0.09333 

0.014930 
0.027360 
0.045040 
0.051260 
0.036010 
0.060140 
0.068450 
0.061790 
0.093330 

0.470 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 

1.607 
1.574 
1.259 
3.064 
1.574 
1.259 
3.066 
1.525 
2.983 

1.454000 
1.424000 
1.13 9000 

0.01721 
0.0455 
0.04656 
0.04261 
0.06069 
0.06218 
0.05664 
0.07707 
0.07311 

0.017210 
0.045500 
0.046560' 
0.042610 
0.060690 
0.062180 
0.056640 
0.077070 
0.073110 

0.470 

0.000946 
0.001685 
0 .  GO302 9 
0 .  GO3477 
0.002216 
0.004044 
0.004603 
0.00392 
0.006277 

0.000946 
0.001685 
0 .  GO3029 
0.003447 
0.002216 
0.004044 
0.004603 
0.003920 
0.006277 

0.030 

0.001G81 
0.00306 
0.003131 
0.002395 
0.004081 
0.004182 
0.003184 
0.00583 
0 .  GO4305 

0.001081 
0.003060 
0.003131 
0.002395 
0.004081 
0.004182 
0.003184 
0.005183 
0.004305 

0.030 

1965 frequency- 
response and 
eigenvalue 
calculations 2.772000 

1.424000 
1 .' 13 9000 
2.774000 
1.380000 
2.700000 

4.230 1965 extrema 
determination 

1965 frequency- 
response with 
extrema data 

1.14068 
1.71431 
0.93740 
1.17 195 
1.17513 
0.93740 
1.171 95 
1.95133 
1.32503 

1.1%64 
1.17 195 
0.93740 
2.28136 
1.17195 
0.93740 
2.28300 
1.13574 
2.22210 

0.01518 
0.02783 
0.04581 
0.05213 
0.03662 
0.06116 
0.06961 
0.06284 
0.09492 

0.01750 
0.04627 
0.04735 
0.04333 
0.06172 
0.06324 
0.05760 
0.07838 
0.07435 

0.000695 
0.001237 
0.002224 
0.002531 
0 .  GO1627 
0.002 969 
0.003380 
0.002878 
0.004609 

0.000794 
0.002247 
0.002299 
0.001758 
0.002996 
0.003071 
0.002338 
0.003806 
0 .  GO3161 



Study 

Burke 1%1 
analog 
Ball 1962 
analog 

1965 frequency- 
response and 
eigenvalue 
calculations 

1%5 extrema 
determination 
1965 frequency- 
response with 
extrema data 

Region 

1 

1 
2 
3 
4 
5 
6 
7 
8 
9 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1 

MC 
PI P2 

MC MC 
PG 

(Mw-sec/"F) (Mw. sec/"F) (Mw. sec/"F) 

0.763000 0.763000 3.750000 

0.0188 
0.0638 
0.0349 
0.0436 
0.1080 
0.0590 
0.0738 
0.2970 
0.2014 
0.015100 
0.051200 
0.028000 
0.035000 
0.086600 
0.047300 
0.059200 
0.238000 
0.161500 
0.750 

0.01581 
0.05360 
0.02931 
0.03664 
0.09066 
0.04952 
0.06197 
0.24915 
0.16907 

0.0197 
0.0436 
0.0349 
0.0850 
0.0738 
0.0590 
0.1437 
0.1726 
0.3380 
0.015800 
0.034900 
0.028000 
0.0682 00 
0.059200 
0.047300 
0.115200 
0.138400 
0.271000 
0.750 

0.01654 
0.03654 
0.02931 
0.07140 
0.06197 
0.04952 
0.12060 
0.14489 
0.28370 

0.070 
0.2114 
0.1601 
0.2056 
0.3576 
0.2718 
0.3478 
0.9612 
0.9421 
0.070000 
0.211400 
0.16 0600 
0.205600 
0.357600 
0.271800 
0.347800 
0.961200 
0.942100 
3.58 

0.070 
0.2114 
0.1606 
0.2056 
0.3576 
0.2718 
0.3478 
0.9612 
0.9421 

0.020000 

0.265 X 
0.814 x 
0.609 x 
0.794 x 
1.338 x lom3 
1.031 X 
1.343 x 

3.624 x 
0.0003 92 
0.001204 
0.000900 
0.001174 
0.00197'7 
0.001525 
0.001985 
0.005445 
0.005360 
0.020 

3.685 x 

0.588 x 
1.806 x 
1.35 x 10'' 

2.965 x 
2.287 x 
2.977 x 

1.761 X 

8.167 X loe3 
8.04 x 

IF1 IF2 IG 

1.000000 0. 1.000000 

0.02168 
0.02197 
0.07897 
0.08249 
0.02254 
0.08255 
0.08623 
0.02745 
0.06936 
0.021680 
0.021970 
0.078970 
0.082490 
0.022540 
0.082550 
0.086230 
0.027450 
0.069360 
1.0 

0.02168 
0.02197 
0.07897 
0.08249 
0.06801 
0.08255 
0.08623 
0.02745 
0.06936 

0.02678 
0.06519 
0.08438 
0.04124 
0.06801 
0.08%23 
0.04290 
0.05521 
0.03473 
0.026780 
0.065190 
0.084380 
0.041240 
0.068010 
0.088230 
0.042 900 
0.055210 
0.034730 
0.0 

0.02678 
0.06519 
0.08438 
0.04124 
0.06801 
0.08823 
0.04290 
0.05521 
0.03473 

0.04443 
0.08835 
0.16671 0.12077 

0.09181 
0.1742 9 
0.12612 
0.08408 
0.10343 
0.04443 0 
0.088350 o\ 

0.166710 03 

0.12 077 0 
0.091810 
0.174290 
0.12612 0 
0.084080 
0.103430 
1.0 

0.04443 
0.08835 
0.16671 
0.12077 
0.09181 
0.1742 9 
0.12612 
0.08408 
0.10343 

c 



. 

. 

Flow fractions FF in 
all studies were 

FF (1) 
0.0617 

the four 

FF (2) 
0.1383 

69 

sections (nine-region core only) for 

FF (3) FF (4) 
0.234 0.566 ‘ 

Neutron Kinetics Equations Data* 

1965 frequency-response, eigenvalue, and extrema data for decay 
constant A ~ (  see-’) : 

A1 A2 A3 A4 A5 A6 
I_--- 

3.01 1.14 0.301 0.111 0.0305 0.0124 ’ 

1%5 frequency-response data for total delayed-neutron fraction for 
ith precursor group, f3‘- i’ 

si Bz/ fG Pi @; !G 
0.000766 0.002628 0.001307 0.001457 0.000223 

1965 eigenvalue and extrema data for effective delayed-neutron frac- 

tion for ith precursor group: 

B 1  B2 B 3  B 4  B5 p6 

0.000277 0.000718 o.001698 0.000499 0.000373 0.000052 

Heat Exchanger and Radiator Data 

Radiator air-side data given for 10-Mw conditions: heat exchanger 

fluid 1 = coolant, fluid 2 = fuel; radiator fluid 1 = coolant, fluid 2 

= air. 

n l  n2 ns ts” t$ TT1 TT2 TS 
( sec)  ( see)  (see)  (see)  (see)  

Burke l%l and Heat ex- 0.980 0.906 0 1.75 2.24 1.75 1.165 
B a l l  1962 changer 
analogs Radiator 0.0882 0.260 0 7.14 0.01 2.35 19.7 

response, eigen- changer 
value, and ex- Radiator 0.8803 0.2591 0 6.52 0.01 2.35 19.7 
trema determina- 
t i o n s  

response with changer 
extrema data  Radiator 0.983 0.2591 0 5.84 0.01 2.35 19.7 

1%5 frequency- Heat ex- 1.10 1.366 0.1363 2.01 2.29 0.569 0.304 1.14 

1965 frequency- Heat ex- 1.60 1.611 0.1363 1.80 2.29 2.5 1.16 1.14 

*See Table 1 of Section 4 for additional information. 
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Piping Lag Data 

1%5 Frequency 
Response with 

Burke Ball 1965 Frequency 1965 Extrema Response and 1%1 1962 Determinations Eigenvalue Extrema Data 

Core to heat n 
exchanger T 3.09 5.72 5.77 5.77 6.30 

P T 

Heat ex- n 0.155 0.155 0.155 
changer to T 9.04 9.02 

15.15 P core z 
8.67 
15.15 

Heat ex- n 0.27 0.27 
changer to T 5.2 5.2 4.71 
radiator T 6.67 6.67 P 
Radiator n 0.40 0.40 
to heat T 10.11 10.11 8.24 
exchanger z 6.67 6.67 P 

8.67 

4.71 

8.24 

9.47 
15.15 

0.27 
4.22 
6.67 

0.40 
7.38 
6.67 

The coefficients of the lead-lag approximation for f l u i d  heat trans- 
fer to the piping apply to the Ball 1962 analog study: 

Heat Exchanger Heat Exchanger Radiator to 
to Core to Radiator Heat Exchanger 

L1 14.35 5.84 5.58 

L2 16.67 7.69 8.33 

Xenon Equation Data 

Data for 1965 frequency response and frequency response with extrema 
data : 

Kl = 1.587 X lom6 K~ = 2.885 x 
K2 = 2.2575 X Kg 2 . 9  X l om5 
K 3  = 1.654 X 

K4 = 2.84 X 

K5 = 1.0714 X 

K6 = 1.059 X lom3 

K9 = 9.47 X 

K l o  = 3.07 X 

K11 = 1.03 x 

. 

Delayed Power Equation Data 

See Table 1 of Section 4. 



71 

Amendix C. General DescriDtion of MSRE 
Frequency-Response Code 

J 

The MSRE frequency-response code (MSFR) is written in FORTRAN IV 
language for the IBM 7090 computers at the Oak Ridge Central Data Pro- 
cessing Facility. This language has builtin capabilities for handling 
complex algebra that result in considerable savings of programming effort. 

MSFR uses transfer function techniques (rather than matrix methods ) 
It exploits the fact that a reactor sys- to compute frequency response. 

tem is made up of separate components, each having a certain number of 
inputs and outputs, which tie in with adjacent components. 
tines written for each subsystem were useful in other reactor and process 

dynamics calculations. The MAIN program of MSFR performs input, output, 

and supervisory chores, and calls the subroutines. A subroutine called 
CLOSED must be written to compute the desired closed-loop transfer func- 

tions from the component transfer functions. 

The subrou- 

The transfer function approach has several advantages 6ver the ma- 

trix methods : 

1. Input parameters are the physical coefficients of the subsys- 
tems, rather than sums and differences. 

input data easy, it allows the computer to carry out the sum-difference- 

type arithmetic internally. Several matrix type computations for which 
the matrix coefficients were generated "carefully" with long slide rules 
resulted in large errors in the frequency response. 

This not only makes generating 

2 .  The frequency response of distributed-parameter models can be 

computed exactly with MSFR, while most matrix calculations are limited 
to lumped-parameter models. 

3. MSFR calculations are much faster. The 7090 can put out between 
1000 and 2000 frequency-response points per minute for the complete 
model. 

longer. 

Typical running times for current matrix calculations are much 

The matrix technique has the advantages that special programming 

is not required for each different problem, and no algebraic manipulations 

of the equations are required. Also, matrix manipulations can be used 
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for optimization calculations, eigenvalue calculations, time-response 

calculations, and possibly many others, all with the same input data. 

The advantages of both methods were exploited in this study. 
The following subroutines of MSFR have potential as generally use- 

ful packages : 
h A  

1. PWR, which calculates the frequency response (N/6k) of the 
nuclear kinetics equations for up to six groups of precursors, with an 

option for including circulating precursor dynamics. 

2 .  CLMP, which computes the frequency response of a "typical" core 

region (as noted in Appendix A). Inputs are power and inlet temperature, 
and outputs are outlet temperature, nuclear average temperatures, and 6k. 

3. COR9, which calculates the overall frequency responses of the 

MSRE nine-lump core model using CLMP outputs. 
4 .  LHEX, which calculates the transfer functions of a lwnped- 

parameter heat exchanger (as in Appendix A), with an input option for 

solving for up to 99 typical sections in series in a counterflow con- 
figuration. 

5 .  PLAG, which computes the frequency response of piping lags for 

an arbitrary number of first-order series lags, a fourth-order Pad6 ap- 

proximation, or a pure delay, or combinations of these, with heat trans- 

fer to the piping. 

Figure C . l  shows the block diagram used as a guide to compute the 
closed-loop transfer functions. 
are N/6k (closed loop), Nyquist stability information, nuclear average 
temperatures ̂T$& and !?'*/6$, and ?co/& and !?'ci/&. 

Typical outputs of the subroutine CLOSED 
A h  

G 

Several commonly used transfer fbnctions are 

and 
A 

N 

t 
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ORNL-DWG 65-9819 

SECONDARY LOOP 

Fig.  C.l. MSFR Reference Block Diagram. 
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Each of these closed-loop equations can be written as a single 

FORTRAN IV statement, so it is a simple matter to generate different 
functions. An option is also available in MSFR to print out all the 
internal or component transfer functions. FORTMN IV listings, decks, 
and input information may be obtained from S. J. Ball. 

. 
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Appendix D. Stability Extrema Calculation 

J 

For a linear description of a reactor system, the eigenvalues of 
A the system matrix must all have negative real parts for stability. 

technique16 was developed that systematically seeks out the combination 

of system parameters that causes the least stable condition in the 
feasible range (causes the dominant eigenvalue to become as positive as 
possible). 
method to explore the hypersurface that defines the stability index (the 

negativeness of the real part of the dominant eigenvalue) as a function 

of the system parameters. The upper and lower limits on the expected 
ranges of system parameters constitute constraint surfaces that limit 
the area of search on the performance hypersurface. 

This technique utilizes a form of the gradient-projection 

The real part of the dominant eigenvalue is labeled p .  The change 
in p due to small changes in the system parameters, xI, is given by 

where 

@ = incremental change in B, 

+ ... , aB 
OB = el ax, + e2 ax,, 

e = a unit vector, i 
8 = angle between the vectors. 

Thus the maximum change in f3 occurs when 0 = 0; that is, the changes 
in the system parameters are in the same vector direction as the gradient 
vector. It is therefore expected that the greatest change in @ will 
occur when the system parameters change in proportion to their corre- 
sponding elements in the gradient vector: 
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where y is a real positive coefficient whose magnitude is chosen to 

insure that constraints are satisfied. 

It is clear that the calculated values of the components ofVB are 
the key quantities in implementation of this method. The method for 
findingvp can be developed from the characteristic equation for the 
system given in determinant form: 

where 

A = the system matrix, 

s E an eigenvalue of A, 

I = the unit diagonal matrix. 

We now write D with some arbitrary eigenvalue, s k' factored out: 

D = (S - sk) F(s )  = 0 , ( D . 4 )  

where F ( s )  is a nonzero determinant if s k is a simple eigenvalue. 

differentiate Eq. ( D . 4 )  with respect to an element, aij, of the matrix, 

A, and with respect to s: 

We 

We then evaluate Eqs. ( D . 5 )  and(D.6) for s = sk and take their ratio to 

get Eq. ( D . 7 ) :  
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c 

The derivative, aD/aaij, is just the cofactor of a in [A - SI], 
and ?ID/& is the negative of the sum of the cofactors of diagonal ele- 

ments of [A - SI]. 

ij 

Thus Eq. (D.5) may be written 

f=l 

If we choose s 
s is just p. Since a is real, we may write 

to be the least negative eigenvalue, the real part of k 

k ij 

The derivative with respect to a system parameter, xI, is easily ob- 
tained from Eq. (D.9), since the following relation holds: 

We use this in Eq. (D.9) to obtain 

(D.10) 

The usefulness of Eq. (D.lO) rests on the ability to calculate the 
system eigenvalue, sk, to give [A - ski]. 
plished by using one of the standard eigenvalue computation methods, 
such as Parlett’s method” or the Q,R method.14 

This may be readily accom- 

The cofactors in Eq. (D.lO) could be calculated directly with a 

method such as Gaussian elimination. However, this tedious procedure may 
be circumvented by application of a useful theorem from matrix algebra. 

c 
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It is known that the cofactors of parallel lines in a matrix with order 

n and rank n - 1 are proportional.20 Since [A - S,I] is a matrix with 
these properties, the cofactor calculation may be simplified. For in- 
stance, if the cofactors of the first row and first column of [A - ski] 
are calculated, all other cofactors are given by 

- 
‘i j 

‘il ‘lj 
n 

k 1  
(D.ll) 

Use of Eq. (D.ll) to find the cofactors shown in Eq. (D.lO) gives a prac- 
tical method for finding the derivatives $3/ax, needed to carry out the 
gradient-projection step shown in Eq. ( D . 2 ) .  

Gradient methods are useful for finding local extrema for nonlinear 

problems. However, it may be possible for the surface of @ versus sys- 

tem parameters to have many peaks. 
for handling this provlem is to use multiple starts. The computer code 
developed to implement this method is set up to use multiple starts au- 

tomatically. 

The only technique currently suitable 

The procedure for carrying out the maximization from a given base 

point is to recalculate the eigenvalues for several new parameter sets 

specified by steps out the gradient vector. 
system with the largest value of p is then used as a new starting point. 
This is repeated until a maximum within the constrained set of system 
parameters is found. 

me point that gives the 
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