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ABSTRACT

In Hgo—ice, in contrast to such crystalline moderators as beryllium
and graphite, the ratio of the inccherent scattering cross section to the
coherent scattering cross section is relatively large for all neutron
energies. Therefore, despite its crystalline nature, ice should behave
more like an amorphous medium than like crystalline beryllium cor graphite.
Thus the persistent spectrum-change effects that prevent establishment of
a single-exponential decay following injection of neutrons into a small
body of the moderator should be absent in ice, permitting the measurement
of the diffusion parameters in ice by the method of time-dependent neutron
diffusion. The present work was designed to test this hypothesis experi-
mentally, and to measure the parameters vZa, the absorption frequency;
(vD), the diffusion coefficient; and C, the diffusion cooling coefficient,
assuming asymptotic spectra to be attained.

A series of accurately shaped uniform-density ice cylinders were
therefore prepared by methods developed in the course of the work, and
these cylinders were subjected to repeated neutron pulses from a 300,000
eV. deuteron accelerator using a deuterium target. The resulting decay-
ing leakage flux was detected and its time-behavior examined by use of an
eighteen-channel time-base analyzer. Analysis of the results reveals
that asymptotic spectra are established, and therefore the diffusion
parameters could be obtained.

The absorption frequency was found to be independent of temperature
over the experimental range of -50 to —850C. This was expected in view

of the (1/v) behavior of the absorption cross section. The value of vZa
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H)(2,200 m. /sec.) - (3%1.5 T g‘g) x 1072 b. in good

corresponds to oa(
agreement with other measurements.

The diffusion coefficient was found to vary linearly with absolute

temperature according to the eguation

(vD)(T°K) = [(0.047 + 0.202) + (0.01225 + 0.0087)-(T9K)] x 10* em.? sec.”t .

A small discontinuity in (vD) across the phase-boundary, inferred from
this result, is explained in terms of known scattering cross sections.

The diffusion cooling coefficient was found, within large error
limits, to fit either a linear or exponential model. The latter 1s of the

form
c(T) = (1.047 + o.175)T5/2

The values of C suggest that the energy~transfer parameter Mé is independent
of temperature in the range measured. No large discontinuity in C across
the phase boundary could be inferred from these results, in disagreement
with results by two other investigators. Theoretical reasons for the ob-

served behavior are suggested.






CHAPTER T
INTRODUCTTON
I. GENERAL BACKGROUND

The interaction of thermal neutrons with non-fissioning matter
can be characterized by any one of many possible sets of parameters
whose complexity depends on the sophistication of the model employed.

In addition to the 'microscopic' parameters which are usually given in
cross sectlon form (for example absorption cross sectilon, 0,5 total
scattering cross sections GS(E), various partial scattering cross sec-
tions such as Uinc and g, the incoherent and coherent scattering cross

oh

section and GS(E'*E, 5, Q) (the cross section for scattering from energy

L

E', direction 5 to energy E and direction 5) there have been defined
various 'macroscopic! or ‘integral' parameters such as the macroscopic
cross sections, parameters relating neutron transport to the gradient
of the neutron density, expressed variously as D, the diffusion coeffi-
cient, L, the diffusion length (defined by L = /572;) or Xtr the trans-
port mean free path (given by Xtr = 3D) and higher-order 'integral!
parameters such as the diffusion cooling coefficient, C, and other
terms deriving from transport models.

The diffusion parameters have been experimentally determined for
many materials, especially those termed moderators. Moderators are
materials characterized by high values of the moderating ratio (ZS €/Za)

where ZS and Za are the macroscopic scattering and absorption cross

1
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sections and & is defined as <£nﬁi > and is thus the mean logarithmic
2

energy loss per collision (Glasstone and Edlund, 1952, see pages 143-
145,

Three broad methods for measurements of the diffusion parameters
have been employed. The oldest, 'classical' method involves the use of
a localized steady-state source of thermal neutrons whose spatial vari-
ation in a large sample of the material is then determined. ZExamples
of this type of measurement are the graphite experiments of Duggal and
Martelly (1955) and Richey and Block (1956), the beryllium work by
Gerasava et al. (1955), and the work in light water by Wilson, Bragden,
and Kanner (194h4), by Berthelot, Cohen, and Reel (1947), by Rockey and
Skolnick (1960), and by Reier and deduren (1961); as well as many others.

More recently the diffusion parameters have also been measured
by the analysis of the changes with time in the neutron density due to
a time-dependent source. Two types of experiments in this category may
be distinguished. 1In one, a time-dependent (usually sinusoidally vary-
ing) thermal source generates a wave-like neutron density whose propa-
gation through the medium is then observed (Weinberg and Wigner, 1958,
page 212). Raievski and Horowitz (1955) and Droulers, Lacour, and
Raievski (1958) measured the amplitude attenuation of the waves in
graphite as a function of frequency. ILater this method was extended
by Perez and Uhrig (1963), who made measurements of both amplitude
attenuation and phase lag in such wave propagation in various moderators.

The second type of time-dependent experiment for the determina-

tion of the diffusion parameters is the so-called ‘'pulsed-neutron



diffusion method' or 'time-dependent neutron diffusion method,' which

is employed in the present work and bears more detailed discussion.
IT. FIRST-ORDER THEORY OF TIME-DEPENDENT NEUTRON' DIFFUSION

In order to clarify the terminology to be used in discussing
early work with the pulse-neutron technique 1t seems desirable to give
at least a very simplified statement of the theory underlying the time-
dependent diffusion experiments at the outset. We assume, then, a
finite-sized volume of the moderator in question, characterized by an
absorption cross section Za cme'and a diffusion coefficient D cm.
Assuming further a one-speed neutron population of density'n(;,t) at
speed v, we write the source-free differential equation according to

the diffusion-theory model as:

20( ) v n(F,t) - valEh) 3, - (1)
It 1s also assumed that space and time are separable, i.e.
n(;,t) = N(;)T(t), and that the flux vanishes at the boundaries. The

initial density may be written as

n(7,0) = a, F,(7) (2)
i
where i represents the triplet of indices identifying each term in the
triply infinite series representing the expansion of the arbitrary

initial spatial distribution in terms of the appropriate orthogonal



functions Fi(;)'

The solution then is

_ 2 }

n(r,t) _.Ejai Fi(r) exp {—[vZa + vD Bi]t (3)
i

where Bi, is the eigenvalue corresponding to the i'th eigenfunction in

the expansion of the spatial initial distribution. It will be observed

that the solution consists of a sum of exponentlally decaying terms,

each with a characteristic decay constant

A, = vE_ + DB . (1)
i a i
It is generally true that in the denumerable set of eigenvalues B?
there must be a smallest one. The term with ki corresponding to this
eigenvalue will then decay least rapidly, and will, in fact become the

asymptotically dominant decay. That is to say, using J for this index

Lim n(7,t) = a. ¥ (7) o~ (2, + (WD) Bi)t . (5)
00 Jd o J

It will be shown below that in general Ef increases with the
indices, i, so that the asymptotic mode 1s, it turns out, the so-called
fundamental mode which is the one having no nodes in the interior of
the body, and which is therefore everywhere non-negative in the interior.
The wvalues of Bi depend only on the geometric dimensions of the test

body and not on its properties, except for a small extrapolation



distance effect which will be discussed belowe.

If, therefore, the decay constant A (when the index is omitted
the fundamental eigenvalue case is to be understood) is experimentally
determined for a variety of B2 values of the same material (differing
in either size or shape or both) then Equation (4) may be regarded as
a linear equation of A as function of Bg.

As shown in Figure 1, Xa = vZa is given by the intercept of
A at B2 = 0, and the slope of the curve corresponds to (vD). On the
same figure the dependence of the volume of material on the buckling
(by buckling is meant the q_uantityB2 defined above) is also shown to

emphasize that the volumes of the test material required for measurc-

ments close to zero buckling become very large.
ITI. HISTORICAL REVIEW OF PULSED NEUTRON METHOD

With this much of an introduction to the time-dependent diffusion
method some of the previous work in this field will now be briefly
reviewed.

The earliest work involved interest in neutron time-of-flight
spectrometers for measurements of absorption cross sections in the near-
thermal region. In 1941 Baker and Bacher used a square-wave modulation
of the ion source of a small cyclotron to produce a pulsed neutron
source in an adjacent paraffin block in which the target was embedded.
In order to calculate the effective time-shape of the thermal neutron
burst leaving the paraffin block they calculated the correction to the

Ytrue lifetime' (i.e. the absorption lifetime (VZa)_l caused by
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A(sec”h)
V(cm3)
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Figure 1. First-order dependence of decay constant, A, and
material volume, V, on the fundamental mode buckling, BE. Scales

are arbitrary.



diffusion of the neutrons out of the block. The paper quotes an un-
published calculation by Placek which gives the current from an infinite

slab of thickness 2a, with a uniform source throughout the slab as

e—(l + n2r2

j = (const.) Xﬂ 55 (6)

N odd 1l +nr

Al

where r is given by r = ﬂL/Qa, and T = l/(vZa). By substituting

1
L = (D/Za)2, the exponential term becomes

2
7= (D/z )
2
- % (1 + n2r2 = —t[vZa + ng(vza) ——Z;E—E— ] = —t[vZa + Bn vD] (7)
where
2.2
BE _nn (8)
n )—\‘—8.2

In the year 1942 Manley, Haworth, and ILuebke actually measured
the exponential growth and decay of the thermal neutron population in
a water tank for the first time, in order to obtain the absorption
cross section of hydrogen. They alternately turned the ion source in
a deuteron accelerator on and off and used a linear oscilloscope sweep
to obtain, by photographic means, the time distribution of pulses
oObserved in a BF3 counter immersed in a large tank of water (4h-cm.-
diam., SM-cm.-high). No attempt was made to separate the spatial
distribution into modes, but a correction for diffusion was attempted

as follows. An approximate solution for the source-free case with an



initial density distribution N(x) was obtained of the form:

N(x,t) = N(x)e-(vza - D %—)t (9)
where the double prime denotes the second space derivative. These
workers attempted experimentally to find a point in the tank where the
spatial distribution would have an inflection point, i.e. a point where
N = 0. Since N**(x) = VeN(x) = BEN(X) the decay at such a point would
be equivalent to the fundamental mode decay in an infinite body since
effectively B2 = 0 at that point. However, it is clear now that when
an asymptotic distribution is attained no such point exists, and at
earlier times its location will shift as the relative amplitudes of the
various modes alter in time. In this work, also, the measurements were
restricted, by intensity considerations, to times of about 200 usec.
after turning the source off, which is certainly too short for the
purpose of attaining a time-invariant spatial distribution. Nonetheless,
due to the fact that the tank was large,their reported value Oa(H) =
0.33 b. ("b." will be used for barn = 10_21'L cm.g) is in good agreement
with modern values.

A somewhat similar experiment was performed by Rainwater and
Havens (1946) in 1943, but not published, due to security aspects until
the later date. Thelr paper states that diffusion theory was applied
to calculate the 'delayed thermal emission' from the paraffin source

used for the time-of-flight experiments, but no quantitative results

of the calculations are presented.



In 1953 Von Dardel and Waltner measured the neutron-proton cap-
ture cross section using a pulsed-neutron method with neutrons from a
deuterium (heavy ice) target in a deuteron accelerator.

They avoided the problem of modes and leakage by using a very
large vessel, 97 cm. by 97 cm. by 107 cm. with a central target, and
measuring the variation of the neutron density with time at a large
number of locations in the water.

Using the many measurements they thus found, in effect, the

integral

n(t) = [ a(%,t) ar (10)
vol.
to average out the changing shape of the flux distribution. Their
value of the hydrogen absorption cross section was oa(H) = 0.321 +
0.005 b. at 2.2 x lO5 em./sec. velocity.

In 1954 Scott, Thompson and Wright employed the pulsed neutron
method to determine the absorption cross sections of hydrogen, boron,
and silver, the latter two by dissolving salts of these materials in
water. They measured decay values over a buckling range from 0.06 cm.
to 0.18 cm.—g and extrapolated the A vs.B2 curves to B2 = 0 to obtain
vZa. As a neutron source they employed a uranium target bombarded by
electrons from a betatron to produce (y,n) and (y,f) neutrons. No
discussion of higher modes is given; the experimenters merely waited
until apparently pure exponential curves were observed. They obtained

a value of 0.525 + 0.0l cm. for Xtr corresponding to D = 0.175 cm. and
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a hydrogen absorption cross section of 0.323 b. for a neutron velocity
of 2.2 x lO5 cm./sec. This is apparently the first use of the pulsed
neutron method to measure a value of the neutron diffusion coefficient
of a moderator.

In 195k Von Dardel published an extensive paper treating in
detail for the first time the slowing down and thermal diffusion of
neutrons in finite moderators. This paper was supplemented, later in
the same year, by a paper together with N. G. Sjostrand (Von Dardel and
Sjostrand, 1954). Von Dardel specifically recognized that the velocity
dependence of the diffusion coefficient would lead to a shift in the
spectrum of the asymptotic neutron population in a finite medium.

Von Dardel termed this effect "diffusion cooling"; it appears as one or
more correction terms to the first order equation for A in B2 introducing
terms of at least the order Bu. Von Dardel demonstrated the change in
the effective temperature of the leakage neutrons directly by measuring
the neutron transmission through a 1/v filter.

Since that time many investigators have applied this method to
various moderators, and much theoretical work has been done to interpret
the results.

For example, graphite was studied by Beckurts (1957), Kichle and
Beckurts (1959), Antonov et al. (1955), and deSaussure and Silver (1957).
Beryllium was investigated by Campbell and Stelson (1956), Antonov et al.
(1956), Komoto and Kloverstrom (1958), Andrews (1960), and deSaussure
and Silver (1958, 1959). Andrews (1960) and deSaussure and Silver

(1959) also investigated the temperature dependence of the diffusion
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parameters in beryllium. Andrews covered the range l9oC. to 20500. and
deSaussure and Silver measured from SOOOC.to —lOOOC. The results of
this work will be discussed in detail below since they bear on the
present investigation. It is characteristic of these measurements in
all the materials that they tend to agree well as to the absorption
mean life and the diffusion coefficient, but disagree seriously con-
cerning the magnitude, or even existence, of the diffusion cooling
coefficient and higher order terms.

Pulsed experiments in heavy water have been reported by Sjostrand
(1959), Ganguly et al. (1963), Kussmaul and Meister (1963), and Daughtry
and Waltner (1965). Measurements of the diffusion parameters by the
pulsed neutron method have also been performed in beryllium oxide by
Komoto and Kloverstrom [unpublished, quoted by Andrews (1960, page 197)1,
Remanna et al. (1955), and Joshi et al. (1965); in paraffin by Dio
(1958,1959) and Klichle (1960a); in 'Dowtherm A' by Kiichle (1960b); in
zirconium hydride by Meadows and Whalen (1962); and in polyethylene by
Sjostrand, Mednis, and Nilsson (1959).

Pulsed-neutron measurements in water have been among the most
intensively pursued right from the very beginning, due to the practical
interest in water as a reactor moderator, its ready availability and
convenient liquid state, and the inherent interest of its composition.
As was discussed above, water was used in some of the very early work
as medium for the measurement of the hydrogen-proton absorption cross

section, and as a moderator and diluent for absorption cross section

1Registered Trademark for a mixture also called Diphyl.
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measurements of dissolved substances.

Von Dardel!s first work to obtain the diffusion coefficients
directly included measurements in water (Von Dardel, 1954). Since then
a number of other investigators have pulsed water to measure the dif-
fusion parameters. In several instances the effect of temperature on
D and C has been obtained in the domain from room temperature upwards.
Room-temperature water measurements have been performed by Bracci and
Coceva (1956), Lopes and Beyster (1961), Bretscher (1962), Dlouhy and
Kvitek (1962), and Von Dardel and Sjostrand (1954). The temperature
dependence of the diffusion parameters in water was investigated by
Dio and Schopper (1958), Kichle (1960a, 1960b), and Antonov et al.
(1960).

Three measurements on ice also have been published. One, inter-
estingly enough, is included in Von Dardel’s (1954) first paper; how-
ever this paper gives only a crude measurement of the variation of
decay period with temperature in a single ice body having a shape
intended mainly for transmission measurements and hence not very suit-
able for decay measurements. The ice was in a copper tank, and contained
a 3.2-cm.~-diam. hole in which the target was located, seven copper
plates, 0.05-cm.-thick uniformly spaced, and a copper cup into which
the detector could be inserted. Measurements were performed at 980K.,
and then, while the ice was warming up, further measurements were
performed. Figure 2, taken from Von Dardel's paper (1954) shows the

results obtained. Von Dardel states
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Figure 2.

VonDardel (1954) p. 76.
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Asymptotic decay rate of the neutron intensity as a
function of the absolute temperature of the moderator obtained by
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. we find that the leakage rate is roughly proportional
to the absolute temperature. This is in qualitative agreement
with the temperature dependence of the diffusion length gquoted
by Fermi (1946):

L = 2.64 + 0.0061(T - 273) cm. (11)
which . . . will lead to a diffusion coefficient which is roughly
proportional to the absclute temperature, since the mean life
for absorption 1s temperature-independent.”

The second reported pulsed-neutron measurement in HEO-ice was
made by Antonov et al. (1962), who reported the ratios of the diffusion
coefficients and diffusion cooling coefficients obtained in ice at OOC.,
-8OOC., and -19600. to those obtained in water at OOC. Using another
report published by Antonov et al. (1960), absolute values for these
quantities can be assigned from his work, though the error limits are
large. A third measurement involving ice is the work of Dlouhy and
Kvitek of the Czechoslovak Academy of Sciences (1962), who measured
the diffusion parameters in water at 20°C. and at OOC., and in ice at
0°c. However, the Letter to the Editor reporting these results contains
little information on which to base an appraisal of the methods employed.
Table T lists all the pulsed-neutron experiments performed in HEO by
other experimenters.

The results of all the investigations in water will be discussed
in detail in Chapter V, in comparison with results of the present work.
A review article by Beckurts (1961), provides a good general review of
the pulsed-neutron experiment field. More recently, symposia at

Brookhaven (1962) and at Karlsruhe (1965) provided comprehensive surveys

of the state of the field.



BUCKLING AND TEMPERATURE RANGES INVESTIGATED

BY VARIOUS EXPERIMENTERS IN HéO

. a
Experimenter

——

Buckling Range

Temperature Range

VonDardel, 1954

Scott et al., 1954
VonDardel and Sjostrand, 1954
Antonov et al., 1955
Campbell and Stelson, 1955
Ramanna 93 g;;, 1955
Bracci and Coceva, 1956
Dio and Schopper, 1958
Kichle, 1960

Antonov et al., 1960

Lopez and Beyster, 1961
Bretscher, 1962

Antonov et al., 1962
Dlouhj end Kvitek, 1962
DedJuren, 1965

P31, Bod, and Szatmiry, 1965

19 cm. cube

!
LM
(@]
(o)XY
1
Q
B
|
L]

0.11 cm. -

0.08 em.”® - 1.10 cm.”?

0.0l em.”® - 0.59 em.”?

~0.00 em.”® - 0.60 cm.”®
not given

~0.09 em.”® - 0.79 em.?

0.031 em:® - 0646 cm.™?

not given

8%k, - o°c.
and room
room
room

23%¢c. - 80°C.
room
room
room
19°%¢c. - 75%C.
22%. - 80°¢.
-196%. - 286°c.
26.7°¢C.
26°C.
-196°%c. - o°c.
0°%c. - 20°¢.
23°¢.

209¢.

a .
References to these values

will be

found in the Bibliography.

Gt
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Iv. THE ASYMPTOTIC SPECTRUM PROBLEM

At the outset of this discussion it will be well to define
several terms which will be used with specific denotations throughout
this discussion. When low-energy neutrons scatter by interaction with
either a single nucleus, or with a system of scatbering centers, then
the process may be divided into two types, inelastic, and elastic. By
inelastic processes i1s meant any process whereby the kinetic energy of
the neutron changes. No change in the internal state of the scattering
nucleus is implied, as 1s the case where the term 1s used at higher
energies. The change in energy may be due to the translational energy
taken up by the recoiling scatterer, or the scattering may change the
internal state of a scattering molecule. TInelastic scabtering can also
result from a scattering process whereby a neutron either gives up or
receives a quantum of vibration energy from a crystalline lattice, that
is to say, phonon exchange. Bragg scattering off a plane of scattering
centers in a crystal on the other hand is strictly elastic, since the
mass of the lattice 1s in effect infinite, so that the momentum transfer
involves no energy transfer. One may also divide scattering processes
into incoherent and coherent types. These are different in that, in
the former case the phase shifts are random so that all cross-terms
vanish upon averaging; in the latter there is interference of the
scattered wave amplitudes. It is easy to show that there is a minimum
energy (or maximum neutron wave-length) with respect to any set of
lattice parameters, beyond which coherent scattering is impossible.

This minimum energy is called the Bragg cutoff, below which only
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incoherent scattering processes are possible.

With these terms in mind, we now turn to a consideration of the
effect of neutron velocity distribution on the first-order derivation
given above. ©So far the discussion has assumed that at some instant in
time the neutrons in a moderator, though arbitrarily distributed in
space, all possess a single scalar speed, v, which would after that
time remaln unchanged. However, if the neutrons undergo any inelastic
scattering, and if there is no absorption, then, in an infinite medium,
the neutrons will, after a sufficiently long time, have the Maxwellian
distribution as a consequence of the energy equipartition law, regard-
less of the details of the scattering processes. (See for example
'Kinetic Theory of Gases', (Present, 1958), pages 72-77.) 1In velocity

terms this Maxwellian distribution is given by

Iin 2 —vg/vg
v© e

n(v) dv = o dv (12)
v VE:S
where v is the most probable velocity,
2kT
vy —A/'jg— ; (13)

T is the temperature in Kelvin units, k is Boltzmann's constant, and
m is the neutron mass. The equivalent distribution function in energy

units is

n(E) dF =T£T)‘—37§ o BT g (1)
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The principle of detailed balance on the energy transfer cross

sections states
£, (BE7) M(E) = =_(B™-E) M(E") (15)

where M(E) is the neutron density at energy E in a Maxwellian spectrum,

and

£ (EE") = 2n Vﬂ £ (E~E]8) sin 6 46 (16)
o

where 0 is the angle through which the neutron is scattered. That is
to say, ZO(E*E') is the total scattering cross section from energy E to
energy E*. This detailed balance condition (Nelkin, 1960) which applies
strictly 1f there is no absorption or leakage guarantees that if the
energy transfer cross section is nonvanishing the energy spectrum of
the neutrons will, given sufficient time, become like that of the
moderator atoms with which the neutrons are in contact.

In this situation (infinite medium, no absorption) there will be
a true persisting asymptotic spectrum of neutrons with a Maxwellian
velocity distribution. This is, indeed, the only condition under which
a true asymptotic Maxwellian spectrum exists for infinitely long times
(neglecting the free-neutron decay). TIf absorption is present, then
not only will the spectrum decay in time, but in general it will not
remain Maxwellian. In one particular case, however, the spectrum can

be Maxwellian, even in the presence of absorption. This is the case if
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the absorption has a l/v energy dependence. In that case, 1f the distri-
bution M(v) is Maxwellian at time t, then the absorption rate at velocity

v, defining @(v) to be the total neutron flux at velocity v, is:

o v
O

R(v) = o(v) Za(v) = Ny M(v) v N, —éﬁ———g =Ny N, v o M(v) (17)

g
o "a,

where NN and NA are the densities of the neutrons and moderator atoms

respectively, vo is a reference velocity and Ga’o is the microscopic
absorption cross section at that velocity. The absorption 1s then
proportional to the neutron spectrum amplitude at every velocity, and
the spectrum is not distorted by the absorption. In this case, then,
the spectrum will remain Maxwellian or become Maxwellian asymptotically.
However, unless vZa is small compared to (1L/7), where T is a measure of
the time required to approach energy equilibrium, the population of
neutrons will decay more rapidly due to absorption than it approaches a
Maxwellian energy distribution so that the neutron flux amplitude will
have effectively vanished before energy equilibrium is attained.

There 1s also a 'quasistable' situation in which an asymptotic
spectrum 1s attained which is more or less distorted from the Maxwellian
spectrum of the moderator atoms. This occurs if a constant source of
neutrens of higher energy is present which compensates for the absorp-
tion losses (Weinberg and Wigner, 1950, pages 332—377). In that case
an asymptotic spectrum will be established. However, since the neutrons

are subject to absorption during the thermalization process, the low

end of the population will be relatively attenuated, and the equilibrium
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spectrum will be distorted, with its peak shifted upward. This is the
so-called ‘'absorption hardening' effect met in reactor physics. If the
absorption is weak the shape of the spectrum will not change materially,
and the effect is mainly an upward shift in the effective temperature
plus a "tail" proportional to 1/E at the high-energy end. However, if
the absorption is strong, or has strong resonances the spectrum dis-
tortion can be large.

Another, in the present instance, more interesting factor that
can affect the equilibrium spectrum is the effect of leakage in a finite
medium. The leakage term in the diffusion approximation is proportional
to D, which generally increases with neutron velocity, and to v. So the
faster neutrons will leak more rapidly than the slower ones, leaving
the remaining distribution at a lower mean energy than that of the
moderator atoms. This is the diffusion cooling effect, which adds a
negative term of the order of B)Jr to the first-order solution of the
diffusion equation [Equation (4)]. The magnitude of the energy shift
for a given B2 depends on the velocity dependence of D and on the effec-
tiveness of the energy exchange mechanisms that transfer energy from
the moderator to the neutron population to compensate for the cooling
effect. In the absence of any energy transfer and under the assumption
made regarding the velocity dependence of D the spectrum would 'cool!
continuously as long as any neutrons remain, since the faster component
of the spectrum would at every time leak faster. If energy exchange
scattering is present, then an equilibrium distribution may result when
the two competing processes of diffusion cooling and energy exchange

heating are in dynamic equilibrium.
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Again, however, the time for such an equilibirum to be attained
must be shorter than the neutron lifetime against leakage and absorp-
tion, or the neutron population will have decayed to the vanishing
point before equilibrium is attained.

deSaussure and the present author (deSaussure and Silver, 1959;
and Silver, 1962), in the process of investigating the diffusion param-
eters of beryllium metal found that atlow temperatures and large
bucklings the measured slope of the time-decay of the neutron population
underwent continuous change over times as long as were accessible to
measurement. (These times are limited by the available intensity of
the pulsed neutron source and the counting background above which the
decreasing count rate must be measured.) Figures 3 and 4 show the
observed effect in two beryllium parallellepipeds. It will be observed
that the effect is more pronounced with large buckling (small dimensions).
Figures 5 and 6 show the apparent change in decay frequency in a beryl-
1ium block over longer periods of time, at ESOC. and at -2500. The
explanation, proposed by deSaussure (1962), rests on the particular shape
and temperature dependence of the elastic and inelastic components of the
scattering cross sections of beryllium, as calculated by Bhandari (1958),
and shown in Figure 7. The transport cross section Gtr = Gs(l-ﬁ), where
i is the mean cosine of the scattering angle, has typical Bragg peaks
due to backward scattering of neutrons whose wavelength matches the
spacing in a crystal plane. A very large peak at about 0.0068 eV.

and several other peaks, are seen. The elastic scattering is only

weakly temperature dependent. The inelastic contribution to the
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scattering is also shown, and may be seen to be much smaller, at the
energy of the peak, than the elastic component; however, the inelastic
component of the scattering cross sections is strongly temperature
dependent, as will be shown below. The very high peaking of the trans-
port cross section 1s due to the strongly nonisotropic, and in fact
dominantly backward scattering of neutrons of the energy corresponding
to the elastic scattering peaks. At the 0.0068 eV. peak the inelastic
component of the transport cross section is smaller by a factor of about
40 than the total cross section. The neutrons of that energy, then, may
be considered to be a population with a very high probability of elastic,
large-angle scattering, which in effect means small D, and a relatively
small probability of scattering out of that energy per unit time. Since
the energy-exchange mechanism is very ineffective for such neutrons,

and the leskage losses are also low, these neutrons tend to persist as

a separate, long-lived, subpopulation whose density continues to grow,
relative to that of the total population, as time progresses. These
"trapped! neutrons, will therefore, be present in changing proporticn,
leading to changing measured effective decay periods. At high tempera-
tures the higher inelastic cross section makes the "trap" much less
effective. In an infinite beryliium moderator the spectrum would
eventually become Maxwellian despite the cross section ratio, assuming
the absorption were low enough, since the inelastic cross section does
not vanish. However, in a small block, the spectrum continually
sharpens as it decays, as the trapped neutrons become a more and more

dominant component of the total vopulation.
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deSaussure (1962), showed, on the basis of a variational calcu-
lation, that an upper bound exists for the asymptotic beryllium decay
frequency (not necessarily the least upper bound) of magnitude A = (5.8 +
17.6 B2) sec.—l which lies below the measured values obtained by vari-
ous experimenters at large bucklings, demonstrating that the measured
values do not represent asymptotic spectrum measurements.

If the measurement is performed before an asymptotic decay is
established then the measured diffusion parameters would be expected
to vary with such factors as the waiting time after the neutron injec-
tion, the background against which counting was done, and the mathemati-
cal method for fitting the data to an exponential decay. Figure 8,
taken from deSaussure's, shows that, though the data of various
workers agree well at small bucklings, there are serious discrepancies
at large bucklings, with some points lying well above the calculated
upper bound.

Jha (1960) has calculated the equilibrium spectrum in several
small beryllium assemblies, using the correct transport cross section,
and has shown that sharp peaks in the spectra occur. Recently Gaerttner,
Daitch, and Fullwood (1965) have published experimental results demon-
strating that in beryllium with B22O.0075 cm._2 asymptotic spectra are
not established and that progressive peaking of the flux at the locations
of the transport cross section maxima occurs.

If this explanation for the trapping effect is valid, then all
crystalline materials in which energy domains with large ratios (Otr)/

(o

inel ) exist should exhibit such effects. Whereas a crystal with
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much smaller elastic cross sections, i.e. small Bragg (coherent) scat-
tering, should not exhibit such trapping behavior.

The scattering cross section for a bound atom scattering inde-
pendently, i.e. with no coherent effects, cannot be measured directly;
however, its magnitude can be found from measurements of the free-atom
scattering cross section in the range of 10 to 20 eW, where binding
effects are negligible. Since the incoherent 'hard-sphere' scattering
is energy independent, applying a mass correction to the free-atom
scattering cross section produces the 'bound-atom! scattering cross

section, , which an infinite-mass atom with the same hard-

Obound-atom

sphere radius would possess:

5 (a +1)°
bound-atom :

o]
free-atom A2

(18)

In the absence of any mechanisms for inherently incoherent scattering,
such as isotopic scattering or spin-dependent scattering, only the
potential scattering cross section op = hﬁRz exist, all of which can
contribute to the coherent scattering. In the absence of such effects,

then, one expects that (o (A + l)E/A2 should be equal to o

free-atom coh.’

the measured coherent cross section. Beryllium is such a material;

o is quite flat from about 1.0 eV.to 30,000 eV. at 6.1 b.
free-atom

This gives 0bound—atom

= 7.53 + 0.07 b. (Hughes and Schwartz, 1958). The

= (10/9)2 x (6.1) = 7.5 b., which agrees with
the measured o
coh

scattering in berylliium is then free of inherent incoherent scattering

sources, except for the 'thermal diffuse! scattering from the lattice
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displacements due to thermal agitation, which are strongly temperature

dependent. This incoherent component may be observed directly as

o} -0 for Be at 0.002 eV. which is below the Be Bragg cutoff
tot. abs.

energy of about 0.005 eV. The temperature effect is shown in Table IT.

The situation in hydrogen is very different. Here o the

coh.’
cross section component capable of coherent scattering effects, is
(1.78 + 0.02) b. (Stehn et al., 1964). This is much less than
% oundoston = (79.6 + 0.4) b. (Stehn et al., 196L), indicating that
there is a large inherent source of incoherent scattering in hydrogen,
which is due to the spin incoherence of the randomly aligned proton
spins. There is also a contribution to the incoherent cross section
due to the isotopic mixture of lH and 2H, but the latter is so low that
this contribution is negligible.

For a monoatomic scattering material of spin i there are two
scattering amplitudes, a, and a_, depending on whether the compound spin

of neutron and nucleus is (i + %) or (i - %). Thus the ccherent scat-

tering amplitude will be (Hughes, 1953, pages 262-264):

Qcon. TP 71 TET T A (19)

which 1s simply the average using the statistical weight ratio of

(i + 1)/i for the formation probabilities of the compound nucleus with
(i + 3) and (i - 3) respectively. Since the scattering at thermal
energles 1is purely s-wave scattering one has

o = kx® sin® 6 . (20)
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TABLE II

TOTAL CROSS SECTION AND INCOHERENT CROSS SECTION
IN BERYLLIUM FOR NEUTRONS WITH ENERGY
0.002 eV AT DIFFERENT TEMPERATURES

Temperature o)

(°K) (bafns) %ine. = °r
100 0.059 0.050
300 0.55 0.53
440 1.16 1.15

aThe values of o, are taken from the figure on

T
page three of Hughes and Schwartz (1958).
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And since the scattering amplitude a = (A sin Go)one has simply

)2 _ LJ-JT( 1+ 1 + i )2. (21)

9 = b (a 57 + 1%+ TET ¥ 1 8-

coh. coh.

The total scattering, on the other hand, is given by the sum of the

weighted scattering intensities

Tiot., = 51+ 12— (22)

Subtracting the coherent part leaves

_ i+l 2 i 2 /i+l i '\2}
ine. ~ b [21 T e N N BT s
1+ 1 2
=k reye (e - al) (23)

In hydrogen 1 = %, giving a 3:1 weight ratio in favor of a, .,

and the measured values of the scattering amplitudes are (Sutton
et al., 1947; Schull et al., 1948)

0.522 x 10" “en.

o
1l

a = -2.34 x lO_lgcm.

which yields a bound-atom coherent cross section of 1.28 b. and a bound-
atom total cross section of 79.0 b. in good agreement with the measured

values quoted sbove.
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It would therefore be expected that the 'trap! effect which was

observed in crystalline beryllium should be absent in crystalline H 0,

2
since there would be no energy range with the large ratio of Gtr/cinc
found in beryllium. Although some Bragg scattering in an ice crystal
will occur since there is a coherent cross section, the much larger

incoherent scattering, should be dominant and thus prevent any signifi-

cant trap effect.
V. GOAL AND SCOPE OF THE PRESENT WORK

The motivations of this experiment were, then, to determine
whether asymptotic spectrum neutron populations would be established
in finite ice bodies in the buckling and temperature ranges accessible
to measurement and, if so, to determine the neutron diffusion parameters

carefully within that range. Although many measurements in H.O0 liquid

2
had been performed there were, at the time this work was begun, no

reported results for the crystalline state of H.O except for the very

2
crude measurement by von Dardel described above and a single measured
point by Antonov et al. (1962b), at liquid nitrogen temperature. To
date the only additional data available are the publications by Antonov
et al. (1960a, 1962), and by Dlouhy and Kvitek (1962) which were
mentioned above. No information about the variation of the diffusion
parameters in ice in the temperature range of 0°c. to -lOOOC. has been
published heretofore.

The following procedure was therefore undertaken: (1) make a

number of suitably shaped ice bodies in which the neutron die-away can
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be observed, (2) prepare a suitable pulsed source and detector system
for measuring the time decay of the thermalized neutron populations
resulting from injection of neutrons into the ice bodies, (3) obtain
sufficient amounts of data to permit careful evaluation of the decay
behavior, (4) develop or find suitable analytical methods for extract-
ing the desired decay period from the data, (5) establish, by measure-
ments with various bucklings and temperatures, whether an asymptotic
spectrum can be obtained soon enough to permit measurements, (6) deter-
mine the proper extrapclation distances to employ in calculating the
bucklings, (7) fit the decay parameters to a power series model in B2
to obtain the diffusion parameters, and (8) compare the results, as far
as possible, with other measured and calculated data.

The equipment available, which will be described in more detail
in the appropriate sections below, consisted primarily of a 300,000 V.
power supply, a deuteron accelerator, an 18-channel time-base analyser,
and a two-stage refrigerated test chamber with inside dimensiong of
about 20 in. by 20 in. by 20 in., capable of being cooled to —9OOC.
Several additicnal components and modifications to existing equipment

were developed or procured during the course of the work.



CHAPTER IT
THEORETICAL CONSIDERATIONS
I. THE BOLTZMANN EQUATION

In order to provide a foundation for the equations used to des-
cribe the neutron transport in the particular case pertaining to this
work the general equations governing the neutron density will be
exhibited, and the various assumptions, simplifications, and approxima-
tions will be specifically introduced. The discussion is based mainly
on the treatment by Weinberg and Wigner (1958), and makes extensive use
of the derivations by Davisson (1957).

Certain assumptions can be made at the outset. First, it is
assumed that neutron-neutron interactions are negligible. FEven in high-
flux reactors where the neutron flux may be as high as lOlu cm."2 sec.-l,

the neutron density is only of the order of 5 x 106 neutrons/cm.3, which

is a factor of lO_lLL smaller than the proton density in water (N(H)H o™
2

6 x 1022 protons/cm.3). In the present work the neutron density is
lower by another factor of at least 10_5, so if the neutron-neutron
cross sections do not exceed those for neutron-proton interactions by
many orders of magnitude, and they should not be very different, then
the number of neutron-neutron interactions is negligible compared to
the number of neutron-proton interactions to extremely high degree. It

is also assumed that the neutron is free between collisions. Since the

neutron has neither electric charge nor electric dipole moment, the

36
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only forces that could affect it between collisions are gravity and
inhomogeneous magnetic fields. (The latter because the neutron has a
nonzero magnetic dipole moment.) It is assumed that no inhomogeneous
magnetic fields are present, so that only gravity remains as a possi-
bility. However, in water the neutron life-time 1s of the order of
200 psec. so that the effect of gravity would only displace a neutron

by about 2 x lO-5

cm. even in an infinite medium, which is negligible
compared to the system dimensions.

It is also assumed that the mechanics may be treated nonrelativ-
istically, and that neutron orientation effects are of no significance.

The complete description of the neutron population requires not
only that the density at every point in space (x,y,z) E';, be known,
but also requires knowledge of the velocity of each neutron. One is
then dealing with a six-dimensional phase space, which can be defined
in terms of sets of six variables, such as (x,y5z,vx,vy,vz) or (x,¥,2,
E,6,p) = (7¥,E,0). This latter representation will be employed in this
discussion.

The fundamental quantity to be defined in terms of these variables

may be chosen to be the directional flux which is defined as follows:

M1

f(;,E,a,t) dT df dE = the number of neutrons in the volume element dr
about ?, having energy between E and E + dE, moving into the element of
solid angle dﬁ about 5, at time t, multiplied by their scalar speed

v = (2E/m)%. By d0 is meant (sin © a9 dp), where 8 and ¢ are spherical

coordinate angles.
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Then the neutron density is defined as

n(r,t) = [[(1/v)e(7,E,0,t) a& a8 (2k)

and the total neutron flux is defined as

it

3(r,t) = [[£(7,e,8,t) a& a0 . (25)

In these definitions fde da is to be understood to mean

Y

7

[fa& @@ = aE sin 8 do dp. (26)

1
O —A
08

)

The Boltzmann equation describes the change, with time, of the
neutron density in phase space. The local density at ; will change in
two ways. One, because the neutrons "stream" i.e., move in straight
lines from their instantaneous positions, and two, because of colli-
sions, resulting in either change of angle and energy, or in absorption.

The streaming leaves E and 5 unchanged. It results in a current
9 f(;,E,ﬁ,t). The neutron density 1/v £(¥,E,0,t) is reduced by the

divergence of this current:

£(7,E,0,t)

1l

<l

1 2 3
(;.' f(r,E,Q,t)(l) 'g'{-:

o

- V(8 £(7,B,8,1) = -8 % £(r,8,0,8)  (27)
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The subscript on the del operator signifies that differentiation
with respect to the space variable, rather than the angle variables, is
intended, and the subscript (1) on the left term is a reminder that this
expression gives only one of two contributions to this term.

The second term-%E (% f(?,E,a,t)(g) is due to the collisions which
may change the vector velocity, (E,ﬁ) or may cause the neutron to be
absorbed.

Such a process changes (E,0) but leaves r unchanged. There are,
four contributions to this second type of change, 1) scattering into
the phase-space volume element (dr,dE,df), 2) scattering out of the
volume element, 3) absorption, and U4) source neutrons.

Thus, for example, the number of neutrons scattered into the

phase-space volume element (dr dE dR) per unit time is given by
JT(,E7,87,1) ZS(?,E'*E,?Si»Q,t) a@®* 4o (28)

where Zs(?,E'*E,S'*Q,t) is the macroscopic cross section for scattering
neutrons at ;, with initial energy E® moving initially in direction.a'
to a final energy E and final directionia.

The number of neutrons absorbed and scattered out of the element

per unit time is similarly given by
T {f(?,E,?ﬁ,t) [zs(?,EHE’,E—'?f',t) + Za(;,E,t):‘] aE’ an’ (29)

where Za(r,E,t) is the absorption cross section for neutrons of energy

E at ?, at time t. However
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JE(,B,8,t) = (¥,B-8",0-07,t) aE’aQ” = £(7,E,q,t) £ (7,B,t)  (30)

where Zs(r,E,t) is the total scattering cross section for neutrons with

initial energy E at T at time te So we may rewrite expression (29) as
£(r,E,0,t) [2,(r,E,t) + £ (r,E,t)] (2%a)

It is assumed that no (n,2n) processes occur and no fission, so
that scattering and absorption exhaust the neutron interaction possi-
bilities. This also eliminates the complication of processes that occur
at time t and give rise to neutrons at time t°>t, which is the case with
delayed fission neutrons.

With these expressions the Boltzmann equation may be written as:

1 3f(E,0) - - - [ g
o2 . - i
Y = - v £(8,0) + 3(8,0) - £(E,Q) ZS(E) + Za(E)J +

[£(&7,0%) ZS(E‘*E,E'dﬁ) aB‘an’. (31)

In this equation the variables r and t, which occur in f, ZS, Za’ and
S have been suppressed. S(r,E,,t) is defined to be the number of
neutrons, due to an external source, which appear at ; at time t with
energy I moving in direction 5.

If the medium is isotropic, i.e. if IdE dﬁ ZS(;,E'*E,ﬁ'*Q) is a
function only of T and E’, and if the neutrons are in thermal equili-

brium with the medium (this implies %, = 0 and no sources) then the
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time-derivative and divergence terms of the Boltzmann equation vanish

and one has, from expressions (28), (29), and (31)
£(7,E,0) £ (F,E8",046°) = £(7,5°,8") 5 (¥,5-1,07-0) (32)

This is the so-called equation of detailed balance (Weinberg and Wigner,
1950, page 222). As shown, it holds, strictly, only for the case of no

absorption and equilibrium.

IT. THE SPHERICAL HARMONIC EXPANSION OF THE BOLTZMANN EQUATION;

REDUCTION TO DIFFUSION THEORY

In order to simplify Equation (31) and specify the terms, it is
useful to expand the angles in spherical harmonics. For this expansion
it will be assumed that the medium is constant in time, i.e. that ZS
and Za do not depend on t. Where they are not needed the coefficients
; and t will be suppressed in this discussion to simplify the notation.

Turning first to the scattering cross section, it is to be noted
that ZS depends only on E, E”, and the angle eo between O and 5’. This
is based on ﬁhe assumption that neither the neutrons nor the nucleil are

rd

polarized or oriented. So cos O = 00" = (cos 8)(cos 67) + (sin )
(sin 87)(cos (@ + @ 7)).
Expanding the angular dependence of ZS in Legendre polynomials

one writes

’ =2, N ,
£, (E™E,0%0) = ) s,(E™E) P (cos 8 ) (33)
z
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where the coefficients sZ(E'ﬂE) give the relative magnitudes of the
terms in the expansion. WNote that, in the case of infinitely heavy
stationary nuclei (incoherent elastic scattering), the coefficients
sz(EﬂE') are zero unless E = E”, and also due to the form of the
legendre polynomials, if the scattering is isotropic, that is, equally
probable for all directions, then all the terms sz(EﬂE') are zero
except the term for £ = 0. It may be noted further that the total
scattering cross section, which is obtained by integrating over all

final angles o and all final energies E, becomes:

TC

(o)
‘£ dx’ sz(E-*E') Cj) ot sin 8 a8_ P (cos 8 )

ZS(E) =

= 1]

= lx I SO(E“E') dr”’ (34)
)

The directional flux, f(;,E,a,t) and the source term S(?,E,a,t)
are also expanded in spherical harmonics, but they must be expanded in
the harmonics of the space angles © and ¢. (Note: the angle 90 between
.5 and 6' is not the same as the polar angle 8.) The expansions may be

written as (Jahnke and Emde, 1945, page 115):

© yi
— — N — -

£(r,B,0,t) = /. fz’m(r;E)t) Pz’m(Q) (35)

f=0 m=-{
and

® ))

S(3,E,0,t) =3 ) s, (%,B,t) P, (9) (36)

dm LT L L,m 777 L,m
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where

2 i
sin O I +nm d os  BO-1
(Q) = ot (ol 2 ((z . m% } (e z-m) - (37)

£ 2 (d cos ©)

The P, m(ﬁ) are the so-called ‘'associated spherical harmonics!. Upon

J
integrating the expansion of £(r,E,Q,t) over all angles, it is found
that all terms except that for [ = O vanish. Therefore, the total flux

at energy E, at location ?, at time t is given by:
- — — — -
£(r,B,t) = [ an £(r,B,0,t) = br £ (T,E,t) . (38)
2

The assoclated spherical harmonics are orthogonal functions:

O Lige
f PE’,m'(Q) Pz,m(Q) dq - 20 + 1 6Z,£' 6m,m' ' (39)

Thus, if the directional flux is multiplied by cos 6 and integrated over
all solid angles the result is
— — — IHT —
J aq £(r,E,Q,t) cos 8 = = 1 ofr>Es8) (4oa)
2
since Pl O::Ei = cos 8 and by orthogonality (Equation (40a))all other
2

terms vanish. But Equation (40a) is just the expression for jz(?,E,t),

the z-component of the neutron current vector. Similarly

.
i

f a0 £(r,E,0,t) cos 6 sin P

[ 4% £(+,8,9,t) sin @ sin g (10b)

[N
1]
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Performing the integrations, and using the orthogonality condi-

tions one obtains for the £ = 1 term:
fl)_l(r,E,t) Pl,_l(Q) + fl’l(r,E,t) Pl,l(Q) + fl’o(r,E,t) Pl’O(Q) =

- 1 iy . - 1 ip . - _
fl,-l(r’E’t) 73 e sin 6 - fl,l(r’E’t) 75 ¢ ' sin 0 + fl,O(r’E’t) cos O =

3 3.7
=03 (v,E,t) . (k1)
So one may write
© f
£(r,B,0,t) = = £(r,E,t) + 135 Q-3(r,E,t) +z Z £y (7B 8) Py ()
I=2m=-} (ko)

Introducing these expansions into the Boltzmann equation one
arrives (by multiplying each term by P, m(Q)* and integrating) at the
2

following form of the Boltzmann equation:

1 afﬂ,m(r’E’t) _ r\/(£+2+m7(l+l+m7 e % z+1,m+1 i afJz+l,m+l\
v ot L. 22+3 ox 2 Yy ’
/(z+1 m)(4+2-m) /1 af£+l)m-l ) i Toa1 m-l)
21+3 \Z OX 2 .
/U-m 1)(4-m) G of e 1m+l 1 af/l—l,m+l
24-1 2 ax 3 Yy
/U+m)(z+m 1) 7 1 ofy_ -lm-1 i af!—lzm-l
24-1 Nl dx 2 3y
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e .
, LU (FFT) of ) il,m ACEDCED R R |

24+3 dz 20-1 Y
b oL o . ) -
* ST g fz’m(r,E ,t)s,(E-E)E" - 2(E) fl,m(r’E,t)
* S!,m(E) : (43)

where Z(E) = Za(E) + ZS(E) and all variables not needed have been
suppressed.

Note that the £'th term of the expansion of the scattering cross
section affects only the L'th-order terms of the directional flux dis-
tribution. So if, for example, the scattering is spherically symmetric
[ZS(EﬁE') = SO(EﬂE')] then only the equation for fo,o contains an
integral term.

The first order theory presented in Chapter I was based on the
assumption that the neutron population could be approximately treated

as one-velocity. Making this assumption the Boltzmann equation simpli-

fies considerably:

£(¥,E,0,t) - £(%,8,1t)
(4k)

2(T,E,0,t) » =(r,0,t), ete.

The Boltzmann equation thus becomes:

o_
T

<l
Q)

£(7,0,t) + ﬁ-v; £(7,0,t) = [ a7 £(=,07,t) Zs(z,a'*ﬂ)

+ 8(%,0) - 2(x) £(r,0,t) (hs)
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This equation can be expanded in spherical harmonics just as
before, except that the coefficients now are not functions of energy.

The expansion yields, for each term

l a - -
S f (r t) + [A]l = z 5T z m(r,t)sz - 2(r) fl’m(r,t) + Sz,m
(46)
where A represents the term in the brackets in Equation (h3), except
that the fﬂ n are not functions of energy.
2

The same arguments as in the energy-dependent case can be applied

to yield

& = Lt (L472)

where @t is the total flux, and

1S -hﬂl . _ b
=57 (£ =F) 105 I, = =75 (£ g4y 13 I, =57 15 5 (47D)

where‘3 = JX 1+ Jy 3 +=IZ h is the total vector current.
To obtain the diffusion theory approximation one begins by
neglecting all terms greater than £ = 1.

Iooking first at the £ = O form of Equation (43) one finds

1 %5,0 ! 1 Ty 1 1,1i> R T G I 1, 1,0]
v ot 2\\ ax T dx 75\ ay oy d7
= hnfo’o s, - o(r) fo,o + So,o (148)
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put =(r) = ZS(;) + Za(;) = hﬂso + I (see Equation (34)) and

aF ar af a1 ar
171 %M, O 1,10 %101 1o } =
)3 |75 "S5 " "o/ " 7E\"oy T "oy T 52 )= v ()

by Equation (41). So Equation (48) pecomes:

02

17t -
— —— Ve = -
St Vd 5,0 +58 (48a)

The equation for £ =1, m = O is:

5] ) 3

i T R of T T T
1°1,0 0,0 : ( 2,1 2,-1  .° 2,1 .%2,-1\ 2,0]
7 ot T oz +‘%{J3/2 ) * . TSy 2 0%

i s. - % F (50)

Since the diffusion theory assumption is based on the neglectability

of terms with £ > 1, the I = 2 terms are dropped. This gives

37
17z 19 g
v t3m T3 % T (502)
or, solving for JZ
L 3d 38
Lz 1 TN b
I, =\& 5 +§§'z—>/<§‘ SRR (5or)

Now if p, the mean cosine of the scattering angle, is defined as



) I dq’ cos eo zs(6~6') s bns
b= e = = (51)
[ ar s _(20”) o s

then

BJ
1 1 t 1
T TR - S \& at 3 az‘> é& Bt S 3E ) (52a)

The equations for £ =1, m = -1 and £ = 1, m = 1 similarly give the

expression

3 D%
- _(3__x t 1
Jx - <¥ 3t * ax.> 3(Z - nzs) (52b)
BJ
_ /3 t
Jy "\ at ay > TZ - p.Z ) (52¢)

Combining the three components of Equation (52), one has

~

9

&,

1
Tt V®£> 3(% - Bz)

el
1]
'
<jw
/|

The diffusion theory equation is obtained by assuming further

—

that g% << = 3 V@ and therefore neglecting the term gg Then
g -1
J_3Z_MS e, . (53)

This has the form of Fick's Law (Fick, 1855) where the term 505 % = =D
S

is defined as the diffusion coefficient D in the diffusion approximation.
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Sos
J:-Dvét. (54)

Substituting this expression in Equation (MB) and assuming that
no source 1s present, gives the equation:

1 a@t
St - ve(Dve) = -5 8, . (55)

In the one-velocity theory @t = nv, so in terms of neutron density
this expression becomes:
on(r, )
_Eg%LE_ - Ve(vDV(n)) = - Zavn . (552)
In a homogeneous medium, D is independent of ;, so the equation

can be expressed as

2(r,8) _ (vp) P (3,t) - v n(,t) (56)
which is Just the first order equation used in the arguments of Chapter I.
To summarize, the one-velocity diffusion-approximation equation
was obtained from the general Boltzmann equation by the following assump-
tions, (1) the neutrons are all of the same scalar velocity, v, (2) the
directional flux distribution is sufficiently close to isotropic so that

terms with £ = 2 in the harmonic expansion can be neglected, (3) the
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material is homogeneous and isotropic, and (4) the term &L can be neglec-

ot
ted, because the change of neutron population with time is relatively
slow. More sophisticated models, which remove some of these restrictions,
will be considered later. However, it is convenient here to point out
one aspect of assumption(h). In general, solving the spherical harmonics
expansion of the Boltzmann equation by truncating after terms of order k
in £ one obtains the Pk approximation to the transport equation. Any
such solution is not exact because, as we have seen in the case where
£ =0and £ =1, the streaming term expression contains derivatives of
fz + 1w and neglecting these is an approximation. In addition, the

diffusion theory equation is not the true P, approximation to the

1
Boltzmann equation, because of the neglect of the term % %%. Including

this term, Weinberg and Wigner (1958) point out, leads to a second-order

equation in time:

2
2D g on _ °n -
= Btg + (1 + 3Dza) % = (vD) v°n vZa n (57)

which 1s the 'telegrapher'!s equation'! whose solutions are retarded in
time so that a sudden local perturbation spreads with a finite velocity.
Physically, this is true of course, because finite-velocity neutrons
diffuse with finite velocities. Only in the limit of infinite wvelocity,
zero diffusion coefficient, and zero absorption cross section, does the
Pl approximation solution rigorously reduce to the diffusion approxi-

mation solution.
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Thus, the diffusion approximation is a valid approximation to the
Pl solution of the Boltzmann equation if any perturbations that occur

are slow compared to the time it takes a '"neutron wave'!, i.e. the effect

of the disturbance, to traverse the system under consideration.

ITI. SOLUTIONS OF THE ONE-VELOCITY DIFFUSION EQUATION,

AND OPTIMIZATION OF EXPERIMENT GEOMETRY

Before returning to the transport equations for more detailled
solutions including velocity spectrum effects and nonisotropic scat-
tering kernels, the solutions of the one-velocity diffusion equation
in finite cylinders will be considered since they suffice to determine
several significant design parameters for the experiment. Equation (56)
is to be solved in cylindrical geometry. The V2 operator in cylindrical

coordinates has the form

2 2
2 19 ) 1 9 )
Ceim s s s (58)
r  ab o}

The usual assumption that the variables are separable is made:

n(r,8,t) = a(r) ©(e) z(z) T(t) . (59)

With the origin of coordinates at the center of one plane face
of a right circular cylinder of height H and radius R the following

boundary conditions are assumed:
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n(r = R,6,z,t) = 0 (60a)
n(r,8,z = é&,t) =0 (60b)
n(r,8,z,t) = n(r,8 + 2xn,z,t) (60c)
n(r,8,z,t = 0) = no(r,e,z) (60d)

Conditions (60a) and (60b) state that the flux vanishes at the bound-
aries. Actually it is the return current which vanishes. However, as
will be discussed later, the zero current condition can be equated to
a zero-flux condition at an imaginary boundary beyond the actual
boundary of the finite body. The boundaries at R and H are, therefore,
to be understood as extrapolated boundaries which are a distance §H
and 8R beyond the physical vacuum interfaces.

Condition (60c) is the continuity condition for a complete
cylinder, and condition (60d) gives the arbitrary spatial distribution
of density at some time t = O.

Substituting Equation (58) into Equation (57) and dividing by

(vD) n(r,6,z,t) one obtains:

Oy ER ) - [ 2 D) e B
(61)

where k is a constant to be determined. Primes denote differentiation.

The right hand equation yields

k_-—_.—-..———:—-—z—(,l)2 (62)
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with wi another separation constant. Therefore, 2”7 = - wi Z with the
soclution
Z=Acosw z+Bsinw z. (63)
n 2 ngng
Applying boundary condition (60b) gives A = O © =< . Souw =-—5
H

where n = 1,2,3, ... . Similarly the 0-dependence can be separated:

2 2 2 P rd P4
tn 2 r Q- e 2
I‘gk+ H2 r —-—@'——-I"Q—'——"@ = -V (61")

where - v2 is a separation constant. The right-hand equation has

solution

® = C cos vO + D sin v@ . (65)

Boundary condition (60c) requires v to take on only the integer

values v = £ = 0,1,2,3, ... This leaves the Q-equation in r:

r~ Q" +1r Q° + (a2r2 - 22) Q=20 (66)

where

I (67)
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The solution is
o(r) = E Jl(ar) + FYz(ar) (68)

where Jz(ar) and Yz(ar) are Bessel functions of the first and second
kind of order f. Since %}g Yﬂ(ar) = o for all £, F = 0. Boundary

Vv where v is the
L,m f,m

m*th zero of the JZ Bessel function. Therefore, one writes for the

condition (60a) requires Jl(aR) = 0 or aR =
values of a

2y o =20 (69)

ﬂgng vi m 2
= + = . 0
k 2 2 By m,n (70)
Bi . 1S defined as the (2,n,m)-mode buckling of the cylinder.
b At

The t-equation (left side of Equation (61)) then has the solution:

- ol
T = exp {-Evza + (vD) Bﬂ,m’n t (71)

The initial distribution no(r,e,z) can be expanded in the same
orthogonal functions as the space part of the solution, since it obeys

the same boundary conditions:
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no(r,e,z) =y

. nnz .
sin —~ Jl(az,mr) [Cz,m,n cos 18 +'D£,m,n sin £087] (72)

where the amplitude factors Cz,m,n and Dz,m,n specify the initial
distribution.

By assuming that the neutron source is an external point source
the form of Equation (72) can be simplified by choosing the 8 = 0
plane so that the source lies in this plane. Then, by symmetry, 8(8) =

®(-8) or
C cos £8 + D sin £(6) = C cos £(-6) + D sin £(-8) . (73)

But cos(-6) = cos(®) and sin(-8) = -sin 8. Therefore, D = O with this

assumption, and the full solution hecomes:

i

e (74)

. 1T 2 B
n(r,6,z,t) :v;: Cl,m,nSln(jﬁZ) Jz(az)nr) coslb exp{—[vza + vD Bn,m,zjé}'

The nature of the solutions is then a triply infinite sum of terms each

of which 1s associlated with an exponential decay with decay frequency

2
f,m,n

= vZ_+ (vD) B . (75)

{,m,n
Since the bucklings increase with increasing indices [f,m,n the higher
modes (for which f,m,n are greater than 0,1,1) will decay faster than
the fundamental mode, and, whatever the initial spatial distribution,

after sufficient time has elapsed the remaining amplitude of the
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fundemental mode, relative to that of all the higher modes, will become
as large as one wishes. The fundamental mode is that for which each
index has its lowest allowed value, i.e., { =0, m =1, n=1. 1In
practice, however, there is not an unlimited time available to wait for
the higher modes to die away to sufficiently low levels. In particular,
the lowest of the higher modes will be the most troublesome since they
will decay relatively much more slowly than modes with still higher
values of the modal indices.

It is, therefore, particularly desirable to maximize the differ-
ence in the buckling between the fundamental mode and the lowest
detected higher mode. Two mechanisms are available to optimize this
difference, one is use of symmetry considerations in the location of
source and detector so as to avoid excitation of some modes by symmetry
and avoid detection of others by detector placement at nodal points and
the other is optimization of the cylinder proportions. With respect
to the former, it will now be shown that either all 3 "first higher
modes", i.e., (0,1,2), (0,2,1), and (1,1,1) can be effectively eliminated
or, all I = 0 modes and all even modes in m. The latter of these two
will be shown to be preferable.

If the detector is placed at the center of one plane face of
the cylinder, then only those radial modes (Jl) that have non-zero

amplitude at r = O will be detected. However, all J, modes except for

J/

JO have O-amplitude at r = 0. Therefore, this position eliminates all

modes with £ > 0, including the (1,1,1) mode.
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By placing the source on the central plane, i.e., at z = g, all

modes are eliminated which have a node at L since symmetry requires an

2}
equal number of neutron above and below this plane. That is, all modes

. ./ nx . . nx
for which 51nk<ﬁ—¢g> = 0 are eliminated by symmetry. Sln'?? = 0 for
n = 2,4,6, ete.

This placement of source and detector was used in all experimental
measurements. The allowed indices are then [ = 0; m = 1,2,3, ... ;
n=21,3,5, ««. « Henceforth the buckling under these symmetry conditions

will be designated as B2 = hg + tg, where
m n m

2

2
2 ngﬂg 2 Vo m
he = and t° = —22 | (76)
n H2 m R2
2
Vv

0,2 _ (5.5201)2

= 5.269.
2 (2.4048)°

2,2 2,2
Note that h3/hl = 9 and tz/tl =

v
0,1
The optimum shape for a cylinder is thus that shape which maxi-
mizes the two lowest nonfundamental bucklings Bg 1 and Bi 3¢
2 J

For a given fundamental mode buckling

no

2 _x_

B = T (77)

+

s}
':Uml <
o N

it 1s clear that either one of the two first higher mode bucklings can
be made as large as one desires by decreasing the respective cylinder
dimension. However, this will decrease the other of the two disturbing
bucklings since the other dimension must be increased to keep the
fundamental buckling the same. The optimum shape is thus the one for

which
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2 v2 v2
B "By o it =T a (78)
? ? H R H
Defining S = I _H e rinds S = 0.894 for the optimum cylinder

2R D

proportions. With this proportion the ratio of buckling iss

32 B2

_gLi = L3 = 3.78

B2 B2 L] .
1,1 1,1

In order to determine the effects of less-than-optimm cylinder

B BS
shapes the ratios _EL— and —EL— were computed as functions of S and are
B B

1,1

shown in Figure 9. ™’ 1,1

It is possible to find a detector position such that all 3 first
higher modes are suppressed. This position is on the plane surface at
the position shown in Figure 10, on the nodal line for { = 2 at a

distance from the center equal to R(v In this case, however,

o,l/vo,e'

the higher mode suppression is less advantageous. Since not all higher
I-modes are suppressed by this position choice there are three first

higher modes to consider: (2,1,1), (0,3,1), and (0,1,3). The effect

2

. 2 2 2 2 2
of 5 on the ratios B /B B l/B 12 and BO,l,S/BO,l,l was

2,1,170,1,1° 70,3, 0,1,
computed and is shown in Figure 11.
The optimum shape here is slightly longer and thinner since in
this case the optimum value of % is 0.9795. However, the buckling
ratio is only 3.49. This position is also less advantageous because

the leakage flux 1s smaller, and because the position depends on the

extrapolation distance and hence the temperature.
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/2 2
////”” By /81

3.78

/// 0.894

BUCKLING RATIOS

2 2
Bh3ﬂﬂj

0.5 0.7 0.9 1.4 1.3 1.5 1.7 1.9
7,
D
Figure 9. Ratios B /B2 and B /B2 as functions of H/2R
’ 1,2/°1,1 %,1/°1,1 ©
where H and R are the extrapolated height and radius of the cylinder,
. 2 22,2 2 2
respectively, and Bm,n = #n"/H vm,n/R .
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NODES FOR 8-FUNCTION

Jo lap)

FIRST ZERO
/ iiCOND ZERO
/

DETECTOR
POSITION

/ S

Yo,0 __ 2.4048
0 Yo,2 5.,5201

7«lETECTOR
K

= 0.4356

S
N

SOURCE —»s

N

Figure 10. Position of detector for suppression of all three
lowest higher modes.
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BUCKLING RATIOS
¢}

2 2
0.1,3 /50,4,1

3.0 et |
”’,,—:::>F:

/[

{ 0.97395
o]
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 14
h2r
. ) 2 2 2 2 2 2
Figure 11. Ratios BO,B,l/BO,l,l’ BO,l,B/BO,l,l’ and BEJlJl/BO}l’1

as functions of H/2R, where H and R are the extrapolated height and

radius of the cylinder, respectively, and B2 - ngng/H2 + /Rg.
1,m,n l,m
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It is perhaps worth emphasizing that the ratios described here are
buckling ratios, not decay frequency ratios. The A's also include the
term vZa. In the present series of experiments vZa constituted between
17 percent and 83 percent of the total decay frequency. The large
proportions go with small bucklings, of course. Therefore, the higher-

mode effects are apt to be more troublesome in large geometry than in

the smaller cylinders.

IV. SPECTRUM EFFECTS

Consideration will now be given to the effect of the nonuniform
neutron velocity on the present experiments. The main source for these
considerations is the work of Beckurts and Wirtz (1964). The spectrum
effect will be treated first in the diffusion theory approximation,
using a series expansion in the energy.

In diffusion theory approximation the balance equation is:

1p(r,B,t) _ z (E) o(7,E,t) + D(E) Vo(T,E,t)

v ot B
+ f z_(B™-E) o(r,B",t) & - 5 (B) ¢(¥,E,t). (79)
It is assumed that the flux is separable, i.e.
o(r,Est) = ¥(rst) o(BT) . | (80)

If the Equation (79) is integrated over all energies one gets
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L) _ 5 y(Fe) + b AuE,e) (81)
v
the averages V, ia and D are spectrum-weighted averages. A balance

equation for the energy density:

E n(;,t) = [ % w(E,;,t) EdE ; (82)
o

can be obtained by multiplying Equation (79) by E and integrating over

energy, with the result:

<if =i

3y (7, t 2 - = o -
_ﬂégi-l = -2 E_y(r,t) + DBy v(x,t)

[00]

450 [ 5,m) om) @ - 2 (5) o(®) | @

’ (83)
where
[ E £ (E) o(E) aE
E, - = (8L)
[ 2,(B) o(E) &
and

[ee]

[ E D(E) o(E) aE
E =2 (85)

D )
[ D(E) ¢(B) &
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»

Note that if Za(E) goes as % then E_ = E; this will be assumed to be

true. The last term in Equation (83) can be rewritten as
[o o BN 0o}
[ [ @£ £,(E-E) o(E") aBaE’. (86)
o O

If one multiplies Equation (81) by E and subtracts it from Equation (83)

one obtains:

2 © o
B%(E-E):

D (E’-E) ZS(E'*E) o(E") ar’aE . (87)

r
o ©

In a Maxwellian spectrum at the temperature of the moderator the
right-hand expression of Equation (87) is zero because of the detailed-
balance principle. But in a finite medium the left-hand side cannot
be equal to zero (except in the physically unrealizable case where D(E)
is proportional to 1/v, thus making ED = ). Thus, in a finite medium
the spectrum will not be a Maxwellian at the temperature of the moder-
ator. In a infinite medium on the other hand, the vanishing of the

2
term,jft guarantees that in the absence of a source the spectrum is a
Maxwellian at the temperature of the medium, regardless of the energy
dependence of D(E).

It will now be assumed that the spectrum in such a case can be

considered to be a Maxwellian at a shifted temperature T % TO. Then

E = % ¥ T, and
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j’ ED(E) —Ee o 2/XT gg i
B = (kT) = oxT 4 k7t & é; D (88)
r D(g) —E E/RT n
(kT)
cince T E/&r D _ 2D 1 E_ _-B/kT
( D= fD(E) (kT) s gE st 5! E D(E) e dE

where the differentiation is with respect to the neutron temperature).

If, further, lE:EQl << |, which is the case in HEO for reasonable
o ,
bucklings, then one may expand @(E) in a Taylor series about T = T,
end, keeping only 2 terms, obtain:
T-T
E -E/kT E
o(8) = —E5 BT _y(m) + 2 (B~ - 2) m(®) (89)
2 T kT
(kT) o o
Then
[ee] o] l
[ [ (& 8) 5 (2-8) o(8") aEaB' = 5 K(T-T)-N-,  (90)

o O

where N is the number of atoms per unit volume and M2 is a measure of
the mean squared energy exchanged per second by collisions between a

neutron and the scattering atom, given bys

(kT 2 r FOO(E'-E)2 M(E") o (E™E) dE”dE

=

P f f(E'E +E° - 2EET) M(E) o (E™-E) dEd_E . (91a)
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Making use of the principle of detailed balance M, can also be

2
written as:
2 . w; , P ’, »
M, = ——= [ [E(E°-E) M(E") o_(E"-E) daE’aE . (91p)
o s
(kT )" o o
o
Combining Equations (87), (88), and (90), one obtains
_ Y%y kT dgnd 1
DT—é-(l+2m) =—2'k(T-TO) NM2 (92)
or, since T~ T
o)
d fn D
Tl syt PamT (93)
T T Ty N M )
0 2

In the case of the asymptotically decaying neutron population
one can write ¥(r,t) = R(T) e yhere R(r) is the fundamental-mode

eigenfunction of V2 R + B2 R = 0, with the proper boundary conditions.

2
Thus zwi = - B2 and Equation (93) becomes
d in D
T-1, W "
7 - DB N M (9%)
o} 2

so that T is less than To and diffusion cooling occurs.

The solution of Equation (81) is

x=aza+m32. (95)
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L 1 - e ==
If, as 1s being assumed, Za o« — then v Za vZa = ao. The term
Dv depends on the spectrum and on B ( see Equation (94)). Expressing

Dv(T) as a Taylor series expansion about T,, and keeping only two terms:

Bi(r) = Bo(r,) + (1 - 7.) DT

(96)
and defining E%(To) = (VD)O and
o)
one gets DV = (VD)O + 0B® from which it follows thats:
A = o + (D), 52 4 cpt (98)

To eliminate the derivative d(VD)
that

77~ in Equation (97) one notes

- abv =2 av -- dD
TDﬁ_:TD a—'f-*-TDVEf'

(99)

But v = a /T, so the first term on the right becomes:

=2 =2 -=2
%z%aﬁz%‘ N (993)

The second term can be expressed as:
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Putting these expressions into Equation (99) one gets:

=D -
- afv WD 4 inD
TDg =5 (L +2 7%

so that, making this

0 -2
vD d In D
C= 2T, (1+25727) -

Alternatively C

C=% §M2 %? +avb g 52 2)2 =7 §M2 %; tV g fg T
But
ddii 7=V g %E 7+D3 jﬁ 5=V 3 32 5+ DT %%
_o_d _Dra __%ab By
Ad4nT 2T d4InT 2
sO
ab dvD vD

<1

dinT dinT 2

can be expressed in different form:

substitution in Equation (97) one obtains:

(990)

(99¢)

(1.00)

(101)

(102)

(102a)
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and

@ 7 o ADop (103)
T ¥ WM, ‘d In T’ °

Beckurts and Wirtz (1964) present calculated values of C for

d 4D _

water at 20°C. They assume that TIoT " 0.5. Using Nelkin's model

for water (see below) to calculate M, they find Mg(Nelkin) = b5.5 v./

2
: bl -1
hydrogen molecule. This leads to a value of C = - 3.4 x 10 em. ™ sec.

If 1t is assumed that the hydrogen atoms form a free gas of mass 1.0,

then the equation for M

becomes:
2

8 os(bound atom)

M. =
a(1 + 1/a)7/2

2

. (10k4)
Inserting this value into the equation for C one obtains:

C = - 2.650 x lO3 cm._LL sec. l.

Assuming that the hydrogen nuclei are rigidly bound to free
water molecules one would obtain an effective "heavy gas" with A = 18,

and then

C = - 4,250 x lO3 cm._11L sec._l .

Beckurts and Wirtz (1964), have shown that expression (103) can

also be obtained without the explicit assumption that the diffusion-
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cooled spectrum shape remains Maxwellian, by expanding the spectrum in

an orthogonal expansion

o®) =) an 2w . (105)

With this expansion in the associated Laguerre polynomials of

the first kind, Ih(l)(E%_)’ a linear, homogeneous system of equations
o]

for the AmAiS obtained:

x? V. A = 52 ) D, A Y LA . (106)
_ aim m L: m m LJ im m
m=0 m=0 m=Q

The V., Tactors were evaluated by Hafele and Dresner (1960). The Dim

depend on the energy-dependence of D. If D is independent of E then

Dy, = (m + 1) 8im * (107)

The Lim depend on the scattering kernel. For the case of a

heavy gas scatterer

Ly, = - m{m + 1) § Z, 6y (108)
My
However, even for an arbitrary scattering law Lll = 5 since the scat-
tering-kernel dependence is in the M,. Purohit (1961) and Takahashi

(1962), have published general expressions for the Lim'
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Solving these equations to the 2nd order in the polynomial

expansion one obtains, for C:

o 0,0
o= Do (Vol 2 _ -D (75 VT) _ ° 7 (109)
Voo 11 Voo 2N, 2NM,

which is the same as the wvalue found by assuming the spectrum to remain

d fn D

Maxwellian, for the case where T T

=0, i.e., where D is a constant.

V. BlL COEFFICIENT IN ONE-VELOCITY Pl APPROXTMATION

Having observed that taking the spread of neutron velocities
into account produces higher-order term in the A vs (BE) equation, it
will now be shown that the effect of transport theory, even in the one-
velocity, consistent Pl approximation also gives rise to such terms.

It has already been pointed out that the elementary diffusion
approximation equations rest on neglecting the term d&/dt in the first
order expansion of the one-velocity transport equation, and that reten-
tion of this term results in the 'telegrapher's equation’ (Equation
(57)) which is of second order in the time derivative.

Let a homogeneous medium with no absorption and no source be
assumed. Then one may separate the time and space part of the neutron

flux and expand the spatial part into appropriate orthogonal functions:

o(7,t) =) 8k (¥) T,(¢) (110)

n
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The equation in the time variable is then:

2 2

v
=3B, T, (111)

ry3 v

Tn+—:-5T

,
n

2 . . : . .
where Bn is the eigenvalue of the n'th term of the spatial equation,
i.e., of the n'th mode buckling, and where primes denote derivatives.

Assuming for T(n) solutions of the forms:
T (t) = ea" (112)

one obtains the characteristic equation

2 v v 2
xn——ﬁxn+3—3n_o (113)
which has two solutions:
Kn,l N
} L+ X (1 - 1207 B)P (11L)
kn 5 D — 6D n *
J

However, for large times only the smaller one will be significant; and
only the fundamental-mode buckling term (n = 1) is significant. For

this asymptotic case, then, of large t, the decay frequency becomes

A = %’-ﬁ [1-(1 - 12 D° Bg)%'] (11k4a)
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which can be expanded in powers of B2 as follows:

2]3LL - 18(vD) D5B6

A = (vD) B 4 3(vD) D cee (115)

thus an effect in higher orders of B2 does exist in the P. approxi-

1
mation, for one velocity. DNote that this effect is of opposite sign
than the diffusion cooling effect. It will also be noted that, if

B > —X _ there are no real solutions of Equation (113) which suggests

nooyop?

that 1n very small systems no exponential time decay of the neutron
flux exists. However, such a system has dimensions of the order of

xtr and thus diffusion theory would not be applicable.

VI. THE ENERGY-DEPENDENT TRANSPORT THEORY DIFFUSION COOLING

Having seen that both energy-dependent diffusion theory and one-
velocity transport theory give rise to higher-power terms in the A vs B2
equation, the method of the full energy-dependent transport theory will
now be outlined. Details will not be given. This treatment is that
of H. Honeck (1962), who has made numerical calculations of the diffusion
cooling and B6 terms based on the analysis to be presented.

The transport equation for one-dimensional geometry, no scurce,

homogeneous medium, and isotropic scattering can be written as:

1 3f(x,E,u,t) Of(x,E,u,t)
faniiudil St Seath 2l Mol SRS, - iadadl Salat St Kok Bt A
o 3T Zt(E) £(x,E,p,1t) M BX’

l > +1 ’ ' d d rd
+3[ T 5 (B-E) £(x,B%,p",4) a8 ap”  (11%)
O -1
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where the angular dependence in this one-dimensional model is reduced

to one angle, the anglemade with respect to the x-axis, and the equation
is in terms of u, the cosine of the angle. It will be assumed that the
spectrum has attained equilibrium, and that the neutron population is,
therefore, decaying exponentially. This assumption is expressed as:

£(x,E,1,t) = £(x,E,p) e . (117)

With this provision the transport equation becomes:

+1

)\ - » L L4 L
[5,(8) - §) 2(oBu) = - w§ + 3 [ [ 2 (58) £(x,8"0) an’ap’.
o -1

(118)
Before going further, it is interesting to note that this equa-
tion implies an upper limit on the eigenvalues. f(x,E,u) is always
2 0. Also the inscattering double integral on the right must be = O.

S0, in the infinite medium case, where F

ox
Zt(E) -A/v=0o0r \ < (th(E)min). Nelkin (1963), has shown that

even in the case where gg # 0 the ineguality holds. In crystalline

= 0, it follows that

moderators such as Be or graphite this limitation is a practically
realizable one, because coherent scattering (Bragg scattering) is
significant. In that case (th(E)min) occurs just below the Bragg
cut-off, and this value of vZa(E) determines the upper bound on i.
. _ 3
For example, in B (VZS)min = 3.8 x 10

that for values of B2 > Bf

-1 .
sec. Q’(vzt)min' This says

,» Where Bi is defined by
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A= 3.8 x lO3

sec.”l o vz + D2 4 0B 4 ... (119)
a c c

Equation (116) has no solution, that is, no asymptotic spectrum will

exist. However, in HQO (VZS) mip OCCUrs for very high energy and is of

the order of 3 x lO5 sec._l so that asymptotic spectra should exist

for, practically, all bucklings.

In ice, even though it is a crystalline solid, the relative
magnitudes of Uinc./ocoh. should cause the coherent scattering to be
relatively unimportant so that, as in water, asymptotic spectra should
be established. The confirmation of this supposition is one of the
objectives of this work.

To return now to the discussion of the transport equation and
its asymptotic spectrum solutions. Equation (118) cannot be reduced
to a simple integral equation because of its space dependence. 8o a
Fourier transformation is performed:

£(B,E,1) = [ F(x,E,n) e rax . (120)

The transformed transport equation then becomes:

® 1
)\ rd d r'd d
(2,(B) - 2) £(B,E,p) = 1Bue(B,E,n) + 3 [ [ 5 (B™-E) £(B,E",) dB"au’ .
O -

(121)

Then integrating over angles:

1
»(B,E) = ,J"l £(B,E,p) du (122)
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one obtains:

o(B,E) = ‘l{ x} F £ (E-E) o(B,E”) aE" . (123)

Z(E -=
So far, the assumption has been made that the scattering is
isotropic. However, the nonisotropy can be taken into account by using,
instead of ZS(E'*E), a Legendre polynomial expansion of the anisotropic
scattering cross section. Honeck (1962), has performed a direct numeri-

cal integration of Equation (120) using the Nelkin model for water
(adding a free gas kernel with mass 16 and cs = 3.76 b. to account for
the oxygen scattering) using terms up to £ = 3 in the expansion for the

anisotropy of the scattering. He finds values of

(vD) = 3.753 x J_OlF em.S sec.”
C =-3.130 x lO3 cm.LL sec._l
F = 2.700 x lO2 cm.6 sec. T

where F is the coefficient of the B6 term.
Equation (123) can also be solved analytically, by making a

power-series expansion. Equation (123) is written in the forms:

{B/tan_ = (e ) x> -z (E)} ¢(B,E) = L ¢ (124)

where L is the "thermalization operator" defined by



T

[eo]

Lo = [ £ (BE) (B,E") a&” - £ (E) o(B,E) . (125)

Then the flux is expanded in a power series in B2:

o(B,E) = M(E) + Bgcpg(E) + Bucpu(E) + e
(126)

and A\ = (vD)O B - CBLF + FB6

These series are inserted into Equation (124), the first term
in the brackets is also expanded, and the coefficients of like powers
of B are set separately equal.

From the zero-order term one obtains:

f 3—%@7 M(E)dE

[ %7 M(E)dE

(127)

(vD), =

which is the expected result that D = X tr/3. More interestingly, the

next order yields:

o (vD) - y (o),
) H v T 32i(E)] #p(P)aE N:ﬁzzsiE)J[(lszs(E) - jue)as
-C= +
[ u(E) .Fm-;l, M(E )dR (128)

The first term is due to the energy-spectrum effect, which could have
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been obtained by a similar power expansion of the diffusion equation.
The second term is the transport effect. Honeck has calculated the
diffusion cooling effect in HEO by means of this expansion using numeri-
cal integration and, again, the Nelkin model to the same order in the
angle-expansion as for the direct integration. His results for H.0 at

2

QOOC. are as follows:

Do = 3.746 x lOu cm.2 sec._l

Cp = - 3.052 x lO3 cm.LL sec._l

Cp =+ 0.17h x 100 em. sec.”T

C = Cp + CT = - 2.878 x lO3 cm.u sec.” T
2 6 -1

F = 1.80 x 10" cm. sec.

It will be observed that the transport part is only 0.057 times
as large as the spectrum part of C, and that the B6 term coefficient
is very small, as was confirmed for ice in the present experiments

where no effect in B6 could be detected.
VII. THE BXTRAPOLATION DISTANCE

The boundary conditions assumed in all the equations discussed
in either diffusion or transport theory are that the neutron flux (or
the neutron density) vanish at the boundary. Since this is clearly not
the case at the physical medium-vacuum interface, it is required to
find the location of an imaginary surface, so located that the vanishing

of the flux at this surface is equivalent to the actual conditions of
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neutron leakage from the true surface.

In monoenergetic diffusion theory, assuming one-dimensional
geometry, the neutron vector current J = - DV can be broken into two
partial currents in the plus-x and minus-x directions (Glasstone and.

Edlund, 1952, see pages 92 to 96):

A
tr o
-t 6

ey
Il
=16
+
rlg
o% 1Y)
218

, (129)
o) tr ,0
STt &

X

ol

Iy ='§ -

If the point under consideration, X, = 0 1s a vacuum boundary
(or the boundary between moderator and "black" absorber) then
A
- treoey
J = % + —5.(ax)o = 0. Therefore, the slope of the flux at the surface

is %g = ﬂgig « Assuming a linear extrapolation one would then have a

tr
linear extrapolation distance d = 2 A, .

3 Ttr

Since the diffusion theory is not valid near such a boundary,
the linear extrapolation distance is more accurately given by a Pn
approximation to the one-velocity transport equation. Weinberg and
Wigner (1958), show that in the limit of high-order approximation, for
a very weak absorber, the linear extrapolation distance would be
d = 0.71045 Atr.

However, this 1s strictly wvalid only in the case of a single
velocity, isotropic scattering, plane surfaces, and no absorption.

Moreover, since the modal flux shapes are curved (cosines or Bessel

functions) the use of linear extrapolation distances is not quite
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correct but tends to overestimate the correction.
In order to make sultable corrections to apply to the experiment
analysis, including the effects of the velocity distribution and surface

curvature, the effective dimensions were obtained by the relation

H + 2(0.7104 (3D) P(Bg)

sl
1

(130)

tol
I

R +. (0.7104% (3D) Q(BE)

where P(BE) and Q(Bg) are correction factors for the plane and curved

surfaces of the cylinders respectively.

The factors P(ﬁg) and Q(BE) were obtained from the results of
Gelbard and Davis (1962), in which they performed computations with a
multi-group thermal neutron computer program using the empirically
adjusted Radkowsky bound-hydrogen scattering kernel (Radkowsky, 1950)
(see below). They solved the slab and spherical-geometry cases in the
P3 approximation and the cylindrical geometry case in both P, and

1

diffusion-theory approximations. Interestingly enough they find that

—

neglecting both the %% term and the P3 corrections in the diffusion
approximation gives rise to compensating errors, which make the result

more accurate in the diffusion approximation than in the P, approximation.

1
Gelbard and Davis first show that the diffusion parameters
obtained in their calculations using the Radkowsky kernel are in agree-

ment with experimental results for water.

The decay constants for slabs of various thicknesses, L, were

then calculated and the augmentation distance d(BE) was obtained by



81

2 1,z
a(B%) =5 (- L) - (131)
The calculations also produce a value of

D(Bg) = i;g1§g§fiz§§ . (132)
[ %p(e,5)aE
For very large slabs (B2 = 0)Equation (132) gives D(0) = (%) (VD)O.
The ratio d(Bg)/3D(O) = d(Bg)/Xtr(O) then gives the numerical ratio
between extrapolation distance and transport mean free path. Figure 12
shows the values of d(Bg)/Ktr(O) as function of B-.

Tt is to be noted that in the O-buckling limit 4(0) = 0.76 Mips
rather than 0.7104 Xtr' This value also agrees with that found by
Nelkin (1960) who made a variational-method calculation using the model
D(E) « v and also obtained d ~ 0.76 Mgt

For use in the present work H(Bg) was calculated by the relation
2 L 2
H(B7) = 3 - 24(B7) , (133)

using the values of Figure 12 for d(Bg). Then the correction factor

o A8/, (0)
P(E7) = T
0.7104

This correction was then applied to each value of H by way of Eguation

was plotted versus H(Bg) as shown in Figure 13.

(130).
Gelbard and Davis also give values for d(Bg) in infinite cylinders,
and curve Q(Bg) was obtained for cylinders in the same way as P(Bg) was

obtained for slabs. As expected, for large dimensicns the cylinder
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values become identical with those for the slab since the curvature of
the surface becomes negligible in the limit. DNote that the distances
d(Bg) are not linear extrapolation distances, but rather what Gelbard
and Davis call "augumentation distances," which are just the distances
to be added to the physical dimensions to yield the proper buckling for
pulsed-neutron experiments.

In the present work the aluminum-ice interface was considered to
be a black boundary. However, some neutrons may scatter from the
aluminum or the cadmium back into the ice. However, a conservative
calculation assuming (1) neutrons normally incident on a plane inter-
face, and (2) half of all scattered neutrons scatter through 180° (the
other half forward) shows that the return probability reduces to 0.003.

The outer ice surfaces were, therefore, treated as vacuum interfaces.

VIIT. SCATTERING KERNELS; THE NEIKIN KERNEL

In many of the discussion presented so far the analysis of the
equations requires that a specific form for ZS(E'*E,B'*a) be used to
evaluate the parameters. 1In a real sense the physics of the entire
neutron transport theory resides in this scattering "kernel", and the
various experiments measuring macroscopic and extensive parameters
also must, finally, reduce to their connection with the basic physical
interaction of neutrons with nuclei through the effect of the scat-
tering kernel.

As has already been stated, the scattering kernels in most

crystalline solids have contributions from two sources, the incoherent
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component, due to interactions with single scattering centers, and
coherent effects due to constructive and desctructive interference of
scattering amplitudes caused by the regular spacing of the scattering
center in lattice regions.

However, in hydrogen the inelastic scattering is dominant by
far so that only the incoherent scattering processes are important.

The question then arises as to the scattering kernel in ice,
assuming incoherent scattering only. Under the incoherence assumption
the only difference between water and ice would be the hindrance that
the solid-state bonding offers to those motions that are available in
the liquid state. Therefore, the scattering kernel for the liquid
state will now be briefly considered.

A number of "experimental" kernels have been used which rest,
not on the physics of the water molecule, but on agreement between
numerical results with experiments. Of these only the "Radkowsky
prescription" will be mentioned (Radkowsky, 1950). Essentially the

Radkowsky prescription consists of treating the Po and P. components

1

of the numerical transfer matrix (specifying neutron transfer cross
sections from group 1 to group (i + k) in a given multigroup structure)

as those for free protons, and treating the P_ matrix as diagonal

3
(i.e., no group transfer) using values chosen so that the values of
— m

> L 28ree with those obtained by a code using experimental data.
This method is useful for numerical calculations, such as those used

by Gelbard and Davis and can give good results, but offers little

insight into the fundamental processes. This prescription is
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equivalent to assuming an energy-dependent effective mass, which is
fitted to the experimental energy dependence of the scattering cross

section by the formula

o5 () = [0 /(L +m )T% . (13%)

Nelkin has constructed a model for scattering in water which
vields excellent agreement with most macroscopic measurements.(Nelkin,
1960).

The basic assumptions of the Nelkin model are that the water
molecule can perform vibrations, hindered rotations, and hindered
translations. It is assumed that the various degrees of freedom carry
out simple harmonic oscillations. Nelkin starts by assuming that the
motion of the scattering proton is a superposition of normal modes
described by harmonic oscillator coordinates and obtains the exact

scattering kernel:

% E  _-iet /=
o(E ,E,8) = (—5) JF [ e a®T,t) dt (135)
0 8 2 E
i 0 -®
where 0y = 81.2 b. is the bound-hydrogen cross section € = (E—EO) is

the energy transferred in the scattering,'i is the momentum transferred,

T is the absolute temperature and

N
a(K,T,t) = <exp [Z (R:’-ép)2 f(wp,T,t)]> (136)
p=1
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where
flw,T,t) = [(n + 1)(e ™% 1) + n(e™®*.1)7/20

n = [e_w/T—lﬂ_l, Ep is the amplitude and wp the frequency of the p'th
normal mode.

The normal modes of motion are then approximated as follows:
the frequencies of internal vibration are assumed "free", i.e., the
same ag those of the vapor molecule. The translation and rotation are
assumed to be those of the rigid molecule.

The translation is treated in the high-energy limit, i.e., as
as "free". DNelkin points out that in a solid lattice the translation
motion about the mean position gives rise to a purely elastic scattering
component which decreases with increasing momentum transfer as exp(qﬁgug)

where

3

o) (kee) (138)

p=1

and u2 is the mean square displacement. Nelkin states that most of

the contribution to u2 is due to translation, and that thus the measured

value of u can be used to give a crude measure of the Debye temperature

for the translational motion. For a Debye frequency distribution ug ise
2 3 g

u” = —2—F[ o coth(v/2T) dv (139)
2 M85 5
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where ® is the Debye temperature. For w2 = 0.1k x 10_16 om.® (the
measured value) one obtains a Debye temperature of 0.011 eV. This
characteristic energy associated with the hindrance of translational
motions 1s small enough so that the translational motions can be con-
sidered free. This gives a q function equivalent to that of an ideal
monoatomic gas of mass 18 at temperature T

(k%2 (it + Tt2) (1k0) |
q ~ e

So the treatment of translation, where the main difference
between liquid and solid would appear is essentially based on the
assumption that translation can be considered as free, even if the
translations are treated as "normal modes" applicable to a solid.

The hindered rotation is replaced by torsional vibration with
a single frequency wr, which was treated by Krieger (see Nelkin, 1960).
The averaging over orientations in this case, as for vibrations, is
done by approximating the averaging over orientation of a product of
terms corresponding to different normal modes by a product of averages.
The equivalent mass of the molecule for this vibration mode is taken to
be 2.32 (as shown by Krieger and Nelkin, 1956).

Based on experimental evidence of a peak in the energy distribu-
tion of 90O scattered cold neutrons which correspond to an energy
increase of 60 meV., the value hmr = 0.06 eV.was used. The value of a,.

used is given as
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for each energy range of incident and final energies. Thus, between
0.01 and 0.15 eV. incident energy, translations are assumed to be free
and only elastic vibrational transitions are exactly treated. Between
0.20 and 0.48 eV. the excitation of the 0.205 eV. vibrational level is
properly treated and the approximate form of Equation (142) is used for
rotations. Between 0.15 and 0.20 €V. the parameter choice for the
vibrational motions depends on the final neutron energles, and above
0.48 ev. the dq vibration is treated as free-atom motion and the excita-
tion of the 0.48 eV. vibration level is considered.

This treatment of the scattering kernel has been used to calcu-
late many quantities measurable by experiments. For example, the total

cross section

op = 0, + rr o(B_,E,0) dEAS (1hk)
is compared with experiment in Figure 14 and seen to agree very well.

The Nelkin model leads to a wvalue of M2 = 91.6 per molecule at room

temperature in HEO'
IX. NUMERICAL CALCULATIONS OF THE ICE DIFFUSION PARAMETERS

S0 far the discussion of the methods of calculation has not
found direct application to the case of ice. However, in the discussion
of the Nelkin kernel it was pointed out that the nature of the kernel
was such that water was treated as an 'ice~like'! material in that

diffusive transport of the molecules was neglected, and the free-atom
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Figure 1h. Comparison of total scattering cross section for HEO
as calculated by the Nelkin model and experimental values.
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2
o K
q. = exp (K /Mr)f(wr;T:t) A2 EXP [_ oM.

- (it + Er tg) ] (141)

where Er = [n(wr/T) + 3] w, = 0.036 €V. This is based on an expansion
of f(wr,T,t) in powers of t, keeping only terms up to quadratic since
for sufficiently large energy transfer only small collision times
matter.

The vibrational energy states in the wvapor are known to be
0.205 €V., 0.U7h eV. and 0.488 eV. (Herzberg, 1950). The orientation
averaging 1ls again done as before, and the simplifications are made that
the two higher levels are treated as degenerate and that the vibrations

are not assumed to be thermally excited. This leads to

2 - 2
_ - K -iw.t ! ( K -iw t B
Ay = 9 B = &P [EMGDl (7717 -1) | exp 3w, (77727 -1) |
(1h42)
where aw, = 0.205 eV. and Aw. = 0.481 eV. The effective mass for

1

vibration, MV = 1.95

2

energy of the incident neutron the scattering approaches the free-atom
scattering.

The total g is then assumed to be

For convenience in numerical calculations it is further assumed

that the excitation of only one of the modes has to be treated properly
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approximation used for the translational motions was based on a consider-
ation of the binding in a solid, rather than taking specific liquid
effects into account. It will be further shown in Chapter V. that

cold water does have distinctly solid-like characteristics, and that
according to Singwi and Sjdlander (1960), a molecule executes, in the mean,
some 10 vibrations at a "lattice positior'in water before diffusively
moving to another location.

According to a model by Gossman (1962), water near freezing is
treated as a saturated solution of ice in liquid, with 85 per cent
of thevolume in ice-like states. (See Chapter V.)

Therefore, it would be expected that the Nelkin-kernel method
would provide reasonable good calculations even for solid ice, as long
as the temperature was not so low that the available energy-transfer
modes become very restricted.

M. J. Ohanian (1963; also Ohanian and Daitsch, 196L4), has solved
the time-dependent thermalization problem with a discrete energy
(multigroup-like) numerical method both by direct integration of the
Boltzmann equation, using a Taylor expansion, and by a modal expansion
of the neutron density in terms of the eigenfunctions of the Boltzmann
operator. One of his objectives was to study the effect of the choice
of scattering kernel on the asymptotic spectrum in both the infinite
medium and finite media. As specific scattering models he used the
mass-1, Wigner-Wilkins hydrogen gas model (Wigner and Wilkins, 19LL)
and the Nelkin model with an improvement due to Goldman and Federighi

(1961), which consists of detailed consideration of the amount of
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energy transferred in the scattering process. Since the kernels are

too complex for analytical treatment Ohanian developed numerical methods,

coded for computer use, for calculating such quantities as time-depen-

dent, steady-state, and asymptotic spectra in finite and infinite media.
Two methods for solution are used. One is a direct integration

of the time-dependent Boltzmann equation, by expanding the density in

a Taylor series about t = to’ keeping only one term since &t << 1:

Px(E,t  + 8t) = x(B,t_) + 6% é¥§%Lil't =0 (145)

where X(t) is the symmetrized neutron density given by

x(t) = mrEyt - (146)

N(E,t) is the total density of neutrons with energy E a time t. For

the infinite medium problem

X(E,t)

STy = o = PME ) + (B, t) (147)

where P 1s the Boltzmann operator defined by:

Px(E,t) = jw {K(E*-E) - v[zs(E) + Za(E)] §(B-E7)} x(E/t) ar”,
(148)

Q(E,to) is the symmetrized neutron source,
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S(E,to)

CE ) = —my (149)

and.

[z (E-E) v /M(E")]

K(E™-E) = K(EE") = 7E) (150)

is the symmetric scattering kernel. So, if the neutron density and the
source are known at time to’ then the spectrum at later times can be
obtained in successive small time steps, using the spectrum at each
time point as source for the next step. If the source is a delta
function in time and the flux is assumed zero for t < to’ one obtains

simply:

N(E,to + 8t) = /M(E) ¢(E) 8t = S, é(E-EO) 8t

N(E,to +26t) = /M(B) [(1 + 6tP) X(E,to + 6t)] (151)
151

N(E,to + k6t) = /M(B) {(1 + 8tP) x[E,tO + (x - 1) 8t7% .

Similarly, in a finite medium the solution for the k'th time interval

would be

N(E,to + két) = /M(E) {[1 + 8t(P - vD(E)B?)] x[E,tO + (k - 1) 8t]1

(152)
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For the second solution method the symmetrized transport equation

éﬁ%%LEl = - [2 () + 2 (B)] vx(E,t) + [ K(m'-8) X(5%) a8 + ¢(3,0)

(153)

is used, and its homogeneous part is assumed to be expressible as:

| 8

X(E,6) =) ay (B) e™n® . (15%)

=1

I

Putting this into the homogeneous part of Equation (152) gives,

for each term:
Py (E) = - Ay (E) .

Ohanian shows that, as was discussed in an earlier section, xn(o) =
[GZS(E)]min is a limit point for the spectrum of discrete eigenvalues.
Therefore, the set of discrete eigenfunctions ¢n(E) is not infinite,
and hence not complete, and a modal expansion involving only the
discrete modes, is not possible. Continuum eigenvalues must be
included also:

a o)
x(E,t) = E: an(d)¢n(d)(E)e_xn( )t + f a(C)X¢(C)(E,k)e_K

1 [vZé(E)]min (155)

(C)t dx(c)

Ohanian then sets up a discrete-energy model suitable for numerical

integration, in which Equation (147) becomes



96

(4 = () aB)(X) + (¢) (156)

where (X) and (C) are column matrixes, (AE) is a diagonal matrix, and

(P) is a square matrix with diagonal elements:

J
pe-) = o ez |
1177 L s, 000 " Pa ) TE, (157)
l%ﬂ L 1
and off-diagonal elements: Pij = Kij' A similar equation (analogous to

Equation (153)) results in the finite medium case:

S (x) = [(B)-(1)] (aB)(x) + (©) (158)

where (L) is a diagonal matrix with £ = v D(E )Be.
nn n''n

The direct solution in the discrete-energy case procedes as

before so that

() o q = [(1) + 86(P)(aB)] (x), + 8t(C), (159)

where the subscripts refer to times (to + k6t) and [to + (k + 1)8t].
Similarly, a modal-expansion solution exists in the discrete-
energy presentation.
Ohanian then develops a method for solving the finite-medium
problem by a perturbation method in terms of the infinite-medium eigen-

functions. The finite medium eigenfunctions and eigenvalues are given by
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[P - vD(E)E"] 0_(E) = 7,8 () (160)

whereas the infinite-medium case has the equation:

Py (B) = -2 ¢ (E). (161)
As expected, for B2 = 0 the two problems become identical so that
n = wn and Kn = 7n' 50, expanding using the standard perturbation
technique:

o+ A (O) + a (E)Bg + a (L’L)Bl‘L +
n n n

~
It

(162)
o =y +0 (B2 Lo (M)gh
n n n

assuming vy = & = const. Putting Equation (162) into Equation (160)

and equating like powers of BE, givess:

Py = - M (163a)

(2) 2)
[P+ ] B -an(

+ VDY (163b)

rp e ]o (M) -an(h) b+ VDGH(E) _an(e) en(g) (163c)

Equations (163b) and(163c) represent the first and second order

perturbations.
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Since the ¢m form a complete orthonormal set both Gn(c) and

o (¥

can be expanded in terms of them (remember that the set wn may

contain continuous eigenvalues):

(2) _F
6, =) C.¥. (164)
n=1
(3) _
en _2 dnmwm (165)
n=1
Using Equation (164) the first-order perturbation becomes
N N _ o, (2)
"L Cnm%mwm * Xn L Con¥m T B by + VDY, (166)
m=1 m=1

Multiplying this by wk and integrating over E, using the orthonomality

glves:

(2)

- = - . 6
C (A = 2) a, et [ vo ¥ dE (167)
Considering the normalization, one obtains then:

_ (0) 2 2
7, =0+ )+ BT [ vy “aE

(168)
i [ vDy 4 aE

2
0=V, + B ; 1) T0)
m#n (xn - Xm )
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In a similar way, the second-order perturbation is expanded in

the eigenfunctions wm to give:

(0) 2 u{f (hmn)g'
Yo = o+ Xn + B hmn + B /. ©) ©) (169)
(n -\ )
nFm n m
where
b= f vDy b dE . (170)

It should be noted that an(g) and an(u), the coefficients of the B2
and Bu terms, are given exactly by the first-order and second-order
perturbations, respectively. For the lowest eigenvalue (asymptotio
spectrum at long times) 7., one obtains:

a (2) = I VIMAE = vD = (vD)

1 (171)

o

and

o0

M) =) rwary @®a - e . (172)
m=2
Note that this solution was developed in the diffusion approximation
so that a transport-theory component of C, CT must be added C = CD + CT
(see Equation (128)).
Ohanian calculated vD and C_ using the discrete-energy represen-

D
tations of Equations (171) and (172):
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J
D, =/ vJ,D(EJ.) M(Ej) AEJ. (171a)
J=1
J J
cp=-) | ) v.D(B) ME) ¥ () 68 j2/ O (ar2e)
D=L L ViR 3 YplEs) OB | m &
m=2 j=1

CD was computed using the improved Nelkin kernel. The transport part

of C, CT’ was computed using the discrete-energy representation of

Equation (128):

J J
< 1 " (vD) 4o M(E,)
C, = T ) ( - M(E.) AR, |/ AE, .
T e 2 152 (E.) hi jAL o, 3
=1 3z, . (Ej) s'J J j1 9

Ohanian calculated the values of vD and C for two of the ftempera-
tures used in the present experiment. The results will be given in

Chapter V. and compared with the experimental results.



CHAPTER IIT
THE EXPERIMENT
I. THE EXPERIMENTAL ARRANGEMENT

The source of neutrons for the present work was a Cockecroft-
Walton type accelerator capable of a maximum accelerating voltage of
500,000 volts.2 The high voltage source was a SAMES (Societé Anonyme
des Machines Electrostatiques, Grenoble, France) power supply which
operates on the principle of the induction generator. An insulating,
hollow, rotating cylinder is spun in a high-pressure hydrogen atmos-
phere, and static charge is placed on its outer surface by induction
at one point of the rotation, and removed at another. The control
system permits operation at any intermediate voltage up to the maximum.
From the power supply the voltage 1s led, by means of an insulated
cable, to the secondary side of a 1:1 isolation transformer(made by
Beta Electric Corpy) whose secondary coil is insulated both from ground
and from the primary coil by sufficient oil-bath insulation to with-
stand a potential difference of 500,000 volts. The primary of this
transformer is connected to a source of 60 cps., 115 V. current. The
output of the secondary, therefore, carries the same alternating volt-

age, but is biased to the high voltage. Figure 15 shows the power

2The accelerator was designed by F. Glass and F. Duncan of the
ORNL Instrumentation and Controls Division and built by the Instrument
and Controls Division of ORNL. The pulsed ion source is of a type de-
signed by King and Parker (1955).
101



102

Figure 15. Isolation transformer and 300,000-volt power supply.
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supply and the isolation transformer. The A.C. power supplies the var-
ious circuits in the ilon source of the accelerator.

In the ion source (designed by W. N. Good and J. H. Neiler, ORNL)
the particles to be accelerated, in the form of a gas, are fed into the
vacuum system by means of a controllable leak (a temperature-controlled
palladium plug). The gas is ionized by a radio-frequency field produced
by an rf.-oscillator, and the positive ions are driven towards the tar-
get by an extraction voltage. Near the base of the glass ion-source
bottle the lons are partly focused by a magnetic lens, and some of them
then pass through a small aperature into the lens section. In this
section the particles pass through a two-stage electrostatic lens system
(the Einzel lens) powered by two Beta Electric Corp. Model 206 30-kV.-
D.C. power supplies located in the ion source. At the exit from the lens
system the particles constitute a well-collimated beam with an energy

3 electron volt or 1.5393

ranging from 1.0- to 3.0-keV. (1 keV.= 1.0 x 10
X lO-9 erg.). The particles then pass between a pair of deflection
plates and then through an aperture into the accelerating tube, which
consists of a series of 16 equally spaced equipotential planes (metal
discs) with central holes. By means of a series arrangement of 50-
megohm resisters connecting the plates the total accelerating voltage
is divided into 16 equal steps.

This arrangement of equipotential plates and resisters serves as

a series of focusing lenses which keep the beam focused and aligned down

the center of the accelerating tube.
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In order to produce a pulsed source of neutrons the accelerator
beam must be capable of being rapidly turned on and off. In this ma-
chine, the primary pulsing device consisted of the pair of deflecting
plates mentioned above, located just beyond the outlet of the Einzel
lens (King and Parker, 1955). One of these plates could be charged to
six hundred volts from a power supply in the ion source head. When a
600 V. potential difference exists across the two plates (one is
grounded, the other swings 600 V. positive) the ion beam is deflected
and thus prevented from passing through the following aperture into the
accelerating tube system. Thus, a square-wave signal applied to the
deflection plates produces a pulsed beam, which 1s off when the plates
are charged, and on when the plates carry no voltage.

There are in general three alternative methods to maintain the
necessary synchronism between the pulsed source and the detecting equip-
ment. For one, the accelerator can be free-running (i.e., have an
internal frequency source) and one may then detect the leading edge of
each particle burst and use it as a timing signal for the detector sys-
tem, alternatively one may have a separate timing system which sends a
signal to the accelerator to initiate each pulse at the proper time
(and perhaps also to terminate each pulse) or the deflection may be
made on the accelerated beam. The first system has the advantage that
no communication with the high-voltage terminal is required during the
experiment. However it is then necessary to have access to the ion
source to change the frequency of duration of the pulses. The second

system is in principle completely operable from the control station;



105

however it requires that the timing signal bridge the potential gap
from ground to the ion source voltage. The third method suffers from
background due to the deflected accelerated beam.

The second alternative was chosen for the present equipment. The
timing and logic circultry forms part of the ground-potential analyzer
system. From it a pulsing signal consisting of a square-wave pulse which
directs both the turning on and the turning off of the accelerator beam
is transmitted across the potential gap by an X-band-radar transmitter
and recelver system. Figure 16 shows the ion source and the transmitter
in positione.

The Palladium-leak heater voltage, the extraction voltage, the
magnetic lens voltage and the two focusing lens voltages are each con-
trollable from either of two control stations (one in the target area
and one at the analyzer station behind the shield) by means of a three-
component selsyn system for each. One selsyn of each triplet is mounted
at the ground-plane plate of the accelerator and 1s directly coupled to
a variac inside the ilon source by means of an insulating rod. In this
way the beam can be optimized and focused directly while the high volt-
age 1s on, and adjustments can be made behind the shield during opera-
tion to maintain the desired neutron production rate. The system des-
cribed here was designed by F. Glass and H. Todd of the ORNL Instrument-
ation and Controls Division.

Figure 17 is a diagram of the relative locations of the items of
equipment used in this work. The vacuum system components, consisting

of a mechanical roughing pump, two stages of oil-vapor diffusion pumps,
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head and radar transmitter.

i0n source

Accelerator

Figure 16.
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plus a liquid-nitrogen cold trap between the pumps and the vacuum sys-
tem were located near the ground-plane. The diffusion pumps could be
by~passed to rough-pump the system initially. An ion-gauge type vacuum
gauge also was located at this point, and used as the main pressure
determining device. After opening the system approximately one hour
was required to attain the operating pressure range from 1 x 10-8 to

3 x 10_8 torr.

The beam arrangement in Figure 17 (page 105) was dictated by the need
to keep space available for other experiments during the time of this
work. The accelerator could be swiveled as shown and thus used for
other experiments. The long drift path of the accelerated ions made it
desirable to install a guadrupole electrostatic focusing lens in the
beam tube in order to counteract the tendency of the beam to spread due
to focusing inadeguacies and space-charge effects. The impingement of
the beam produces considerable outgassing, and due to the long narrow
shape of the beam tube sizable pressure gradients could thus arise be-
tween the target and the vacuum pump of the system. In order to prevent
excessive defocusing due to this pressure, a secondary vacuum system was
located, as shown, near the target end of the drift tube.

In the following sections a number of components of the experi-
mental system will be described in more detail, together with calcu-
lations and experiments performed to develop these items for use in the

present measurements.
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The time analyzer and switching circuit. The time analyzer,

shown in Figure 18, was designed by F. Glass and built by the Instrument
and Controls Division of the QOak Ridge National Laboratory. It consists
of a control circuit and nineteen scaler circuits plus the needed power
supplies. The basic timing source is a sine-wave generator capable of
frequencies from 16 cps. to several megacycles. This sine-wave signal
is amplified, clipped and differentiated to produce & series of evenly
spaced short time-marker pulses with a repetition rate equal to the
frequency, f, of the sine oscillator. These pulses are shown on line 1
of Figure 19. The frequency of the time-marker pulses was continuously
monitored by a Berkley Model 5500 Universal Counter and Timer which used

an internal oven-controlled Piezo crystal as an accurate clock.

Thiss instrument was checked several times against a freaquency
standard over the period of the experiments and found to be stable
within one part in lOLL over periods of many months. With this meter it
was determined that the repetition rate of the time marker pulses would
drift randomly by about 0.01- to 0.03 per cent per hour depending on
temperature stability of the experimental room and on voltage fluct-
uations of the supply voltage. However the frequency was manually
adjusted within 0.0l per cent at least once in every two hours, so that the
mean deviation of the frequency from the nominal value was no more than
0.02 per cent, and most usually no more than half that amount for any

given run.
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Figure 18. Time analyzer, including frequency meter, logic
circuit, scalers, and DD2 amplifier.
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Figure 19. Time sequence of time analyzer: (l) time marker
pulses, (2) beam-on time, (3) scaler-on time, (4) master gate circuit,
and (5) thermal-neutron count rate in detector.
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At the beginning of a run, the first time-marker pulse causes a
signal to be transmitted to the accelerator turning the beam on. The
beam then remains on for a period of time M/f = M(At) where M is an
integer between 1 and 99 manually selected by a pair of decade switches.
In Figure 19 (pagelll) the neutron burst is shown for the case where
M = 2. As will be seen below, in the present experiments the values
of (At) were set in the vicinity of one~fourth of the decay period of
the neutrons, and the beam-on-time was usually set at 3(At) or L(At).
When the beam is turned on the thermal neutron density in the funda-

>\t), where A is the ther-

mental mode rises approximately as Ns(l - e
mal neutron decay frequency and NS is the saturated neutron density in
the ice cylinder that would be attained if the source were left on in-
definitely with the same intensity it has during the pulse. Thus the
peak neutron density in the ice block just after the end of each neu-
tron pulse was of the order of (1 - e-l) NS= 0.63 Ns' This choice of
burst width [M(At) =~ 1/A1 is close to optimum since much longer pulses
would yield increasingly less additional density, and for much shorter
pulses the yield would be almost proportionately less. Line 4 in
Figure 19 (pagelll) shows the neutron density schematically.

The time analyzer and logic equipment utilized Burroughs MO-10
beam switching tubes, used in series pairs to provide eighteen time
channels. With only eighteen time channels availlable these had to be
used to best advantage in finding the asymptotic decay constants of the

neutrons in each ice cylinder. It would be useless to collect data

before the establishment of the fundamental-mode neutron population.
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The circuit was therefore designed to allow a waiting time N(At) (where
N could be selected to be any number from 1 to 99) after the initiation
of the neutron pulse. After the waiting time the control circuit gates
the 'channel 1' scaler open for a time approximately equal to (At) after
which the channel 1 scaler is gated shut and the channel 2 scaler gates
on for the same length of time. In this fashion all eighteen scalers
are gated open in sequence, thus collecting data over a time interval
18(At). Immediately upon the closing of the eighteenth time channel
the next neutron burst is initiated and the cycle repeats. Line 3 of
Figure 19 (page 111) indicates the gating operation of the scalers.
Initially the switching of the MO-10 tubes caused the opening
and closure of the scaler gates directly. The switching-over time is of
the order of three microseconds. However non-uniformities in the switch-
over times introduced channel width errors of the order of one psec.
which amounts to ~ 5% for the shortest channel widths used. The chan-
nel widths were measured by keeping the accelerator on full time (by
disabling the pulsing receiver) but cycling the time analyzer normally.
Under these conditions the neutron flux in the ice cyrinder is saturated.
and the neutron leakage rate becomes constant in time. Therefore each
channel should count the same number of counts in a given large number
of sweeps except for statistical variations. Figure 20 shows a typical
result for five runs, in each of which 100,000 counts per channel were
collected. The observed relative counts are shown for each channel, as
well as a histogram of the distribution and the Gaussian curve of the

expected spread, assuming only random counting statistics to be operating.
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five runs are shown. On the right the summed distribution is also
shown together with the normal distribution curve expected for counting
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It is apparent that there were systematic channel differences and the
over-all spread is far greater than would be attributable to statistics
alone.

To combat this problem an additional gate circult was installed5
which closes approximately one usec. before the switching occurs and
remains closed for 4.5- to S-psec., thus blanketing the variable switch~-
over interval. Line 4 of Figure 19 (pagelll) shows the operation of
this master gate circuit schematically. Figure 21 shows the results
of four test runs, collecting 100,000 counts per channel in each run,
after installation of the master gate circuit. The distribution now
comes much closer to the expected distribution, and most of the system-
atic channel width variation has been eliminated. Any remaining differ-
ences were most probably due to small differences in the dead-time of
the scalers. Figures 22 and 23 show the distribution of total counts
for a much more extensive series of tests using the improved circuit.

No evidence of width variations appeared, so 1t may be concluded that
the channel widths are uniform to within l/M per cent.

The elghteen scalers each have a display capacity of 9,999 counts
plus an optional additional undisplayed decade scaler so that 99,999

counts can be collected in each.

5This circult was also designed by F. Glass of the Instruments
and Controls Division of Oak Ridge National Iehoratory.



116

2.0
3 16
» UNIFORM RANDOM INPUT OF
E o2 {100,000) COUNTS PER CHANNEL;
s ~— + { STANDARD 4 TRIALS. CHANNEL WIDTH = 50 psec.
8 DEVIATION N ! | | | ‘
0.8 N ; | | 1 i
I O |
S s o EXPECTED DISTRIBUTION
4 ( h %\\\-5 1\
& 04 \ . — 3 , —
3] p . . 4 * o . ~e—— ;
¢ —+
S o Jleeseiotelets o PN ——
b= 0 9 - . — e
° —
s b0 Talved [T, AESESESS
—04 [~ .
2 4. 1.1 TR |
= ° > i
g -o0s8 \ !
; N ~~OBSERVED DISTRIBUTION
e —12
—
<
>
o -6
o
—20
| 3 5 7 9 4 {3 45 47 190 Of 02 03 04 05 06 07 08 09 10
CHANNEL NUMBER RELATIVE NUMBER OF COUNTS

Figure 21. Distribution of number of counts collected in each
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four runs are shown. On the right the summed distribution is also shown
together with the normal distribution curve expected for counting
statistics. Data taken with master gate circuit. (See text).
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per cent distribution is 34, 14, and 2 per cent.
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The detector and amplifier system. Various detector types have

been used in pulsed-neutron work. The first used were BFB-filled
ionization counters (Von Dardel, 1954). These have good discrimination
against gamma rays and adequate sensitivity. However they are not very
localized, and may therefore introduce significant counting delay errors
caused by flight time of the neutrons into and in the tube (Pal, Bod,

and Szatmary, 1965). Fission chambers have also been used. They are
excellent for gamma discrimination but tend to have low efficiency, and
may introduce errors due to thermalization of the fission neutrons.

Their use has been mainly confined to multiplying systems (Mbyer, 1965,
and Weale et al., 1965). In the present work a 6LiI(Tl) crystal together

with a RCA 6355 photomultiplier was used as detector. The advantages are

very high efficiency and very localized detection.

Scintillation crystals tend to be sensitive to gamma rays, but

by making the crystal thin (0.3 cm.) the gamma background was kept accept-
ably low. The 6Li(I) crystal functions by the reaction (Ashby and Catron,
1959) én + gLi - ga + iH + 4.79 MeV. The two charged particles give
up their kinetic energy in the crystal producing fluorescence. The ab-
sorption cross section of 6Li is 945 b. which gives %, (1iI) = 18.0 em. "t
of which 17.2 cm.—l is due to 6Li. Thus 95.6 per cent of captures are in
6Li and in a 3 mm. thick crystal, assuming normal incidence, 99.4 per

cent of the incident neutrons are captured. For oblique incidence the

capture probability is even higher.
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Most of the data collection was done with a 1.0-in.-diameter crystal.
However, after a long period of use, the bonding between the aluminum
cladding and the glass cover on the crystal failed due to the severe
thermsl stressing and cycling encountered in the present work, and the
crystal was destroyed by cracking and absorption of moisture. Since
higher counting rates were needed for the smallest ice cylinders the
replacement crystal had a diameter of 1.75 in. The crystals were ob-
tained from Harshaw Chemical Co. already canned in an aluminum container
with one glass face. This glass face was optically bonded to the end-
window of a 2-in. photomultiplier tube and then taped onto the tube with
black plastic tape, both for mechanical support and for light-tightness.
Using the single-channel analyzer of the amplifier (see below) a count-
rate vs. pulse-height curve could be obtained for each crystal. This

was done, at least roughly, at frequent intervals to find the best pulse-
height discriminator level for gamma discrimination. The pulse height
output of the crystal-photomultiplier combination was markedly tempera-
ture dependent, being a factor of 2.37 higher at -80°C. than at -5°C.
Therefore the setting of the pulse-height discriminator needed to be
adjusted at each temperature. Figure 24 shows two typical pulse-height
spectra obtained with the 1-in. crystal. In both a large number of small
pulses 1s seen, which is due to low-level noise and gamma rays. These
rapidly decrease in number with increasing pulse-height; the dashed con-
tinuation below the peak is a rough estimate of the counting rate due to
gamma rays, based on interpolation of the points above and below the peak.

The distinct peak in each curve is the neutron response. The larger of
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the neutron peaks in Figure 24 is seen to be somewhat irregular. This
is attributed to cracking of the crystal, which caused the light output
to vary from different regions of the crystal, so that the neutron re-
sponse was actually split into several peaks with somewhat different
positions. In the case of the one-inch crystal, by the time its use

was discontinued, there were two very distinct peaks, shown in the lower
curve of Figure 24. The relatively much higher number of small-amplitude
pulses In the latter curve is due to the fact that this count was ob-
tained using an Am-Be neutron source, which has a high production of low
energy gam rays. The two spectra are each normalized to unity at 5
volts pulse height. For both cases the setting of the pulse height
selector chosen on the basis of these data is shown.

Figures 25 and 26 show the effect of the temperature and the volt-
age applied to the photomultiplier on the location of the peak of the
neutron-caused pulse amplitude distribution in the pulse height spectrum.
The effect of voltage on the pulse-height is quite large, so a stable
power supply(Hemner Electronics, Inc. Model N 401) was used. This supply
had an output voltage stable to within about 5 volts at 1000 V. over
several months.

The pulses from the photomultiplier were amplified in a DD2
double~differentiating linear amplifier (Fairstein, 1962). Figure 27
reproduces oscilloscope traces showing the shape of the output pulses
from the amplifier. The DD2 1is equipped with a 'single channel analyzer'
capable of discrimimating those output pulses which lie in a 'window'

whose width can be adjusted from O to 10 volts, and whose lower edge can
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Figure 27. Oscillloscope traces. Upper trace shows the output of
the DD2 amplifier. Lower trace shows the output of the PHS circuit of
the DD2.
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be set anywhere from O volts to 100 volts. For each such pulse a uniform-
sized output pulse is emitted by the single-channel analyzer circuit. An
alternative method of using the DD-2 discrimimator circuit, the so-called
integral mode, dispenses with the window, and emits a constant pulse for
each input pulse larger than the magnitude H described above. The DD-2
was used in this mode to collect all the experimental decay information
in the present work.

In order to establish the maximum allowable count-rate in the
analyzer it was necessary to know the total dead-time losses from all
sources that would occur due to pulses arriving too soon after a prev-
ious pulse to be detected. The dead-time was therefore measured in one
of the 18 channels, by using two neutron sources separately and together,
and measuring the count-rate. For this experiment the snalyzer switch-
ing was disabled so that all counts were gated into scaler No. 3. Appen-
dix A gives the derivation of the dead-time equation and the calculation
of the result. The result was (6.03 + 3.28) wsec. This dictated the
maximum allowable count rate in channel 1, the fastest-counting scaler.
Since the actual counting rate in each channel is (18 + N) times as
large as the observed mean counting rate, the true counting rate must
be no more than 2,000 cts./sec. to keep the dead-time loss in the first
channel to less than 2 per cent (Appendix A). For N = 10 (it varied
from 8 to 12 in the experiments), one obtains a maximum mean counting
rate of 100,000 counts in 1408 sec. or 23.5 minutes. A working rule was
therefore adopted by which the count rate was adjusted so that a 'full

count, i.e., 100,000 counts in channel 1, was collected in not less than

half an hour.



127

Secondary pulse deflection system. It was observed early in the

use of the accelerator that during the times when the beam was nominally
cut off by the ion-source deflection voltage, a certain amount of beam
would nevertheless be accelerated to the target and produce neutrons.
Such a background current is serious even with an off/on beam ratio of
only of the order of 1.0 x 1072 to 1.0 x lO-u (these were the best
values attainable using the primary deflector only) because the back-
ground current is 20 to 50 times more effective in producing counts
than the pulse current, due to the fact that the neutron density is not
saturated during the beam-on time and decays further by at least a
factor of 10 before counting is even begun. The off-current neutrons,
on the other hand, are in equilibrium with their source intensity and

suffer no such attenuation.

Three sources of beam background were recognized. One is the
true background current consisting of ions which are scattered by the
residual gas in the system, or by solid surfaces in the lens area, so
that they are deflected into the acceptance cone of the accelerator
aperture, and of atoms of residual gas ionized by electrons accel-
erated back up the potential gradient. Another source,which at times
consisted of large portions of the deflected beam, was due to the dis-
charge of the deflection plate potential by excessive impinging beam
current. Thus, by certain combinations of settings of the control volt-
ages the deflected ions could be extracted in a partly focussed beam

despite the action of the deflection system.



128

A third source of background was due to occasional failure of the
pulse transmission system due to noise pick-up. To eliminate such back-
ground sources a secondary deflection system was added to deflect the
accelerated beam in the drift tube. This system operated in synchronism
with the primary pulser, controlled by the same signal which is trans-
mitted by the radar transmitter to the ion-source. Figure 28 shows an
end view of the deflector section with the deflection plates, which are
15 inches long. The electronic equipment was designed by R. J. Scroggs
of the ORNL Instrumentation and Controls Division.

By making use of the secondary deflector system the relative back-
ground dropped by factors ranging from 5 to 20. Figure 29 shows two runs,
made with the same ice cylinder, under the same conditions, except that
in one case the secondary deflector was not used.

A1l the large-buckling cylinders (cylinders 6, T, &, ... 12) were

measured using the secondary deflector system.

The test chamber. The experiments made use of a two-stage refriger-

ation unit with integral test-chamber which was manufactured by Coolley,
Inc. of Cincinnati, Ohio, and rated to -100°C. The test volume is 24 in.
by 24 in. by 30 in. in size, and the walls are 5 in. thick. An internal
fan and baffling plate serve to force air over the cooling coll, and
circulate the air in the chamber.

The inner walls of the refrigerated chamber were lined with Boral

(a dispersion of boron in aluminum) 0.25 in. thick to minimize the effects
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Figure 29. Effect of post-acceleratign deflector on observed
neutron decay in ice cylinder Number 7 at -5 C.



131

of the wall. To determine the neutron reflection effect of the refrig-
erator walls pulsed-neutron measurements were performed on a plastic
cylinder both inside and outside the refrigerator. Figure 50 shows the
result. No discernible effect due to wall-scattering was noted. How-
ever, later analysis on cylinders with more rapid decay showed slight
effects that may be attributable to wall scattering, but are masked in
the test shown by being too close to the main decay period. The experi-
ment in the refrigerator yielded a measured decay constant of (1.337 +
0.003) x 101L sec.'l, and the test outside gave (1.334 & 0,005) x 10')+ sec.
The temperature inside the refrigerator was 20.5°C., and outside it was
20.0°C. Correcting the result inside for the temperature difference
(assuming vZa to be constant, and (vD) to be proportional to the temper-
ature) gave an adjusted result inside the refrigerator of (1.330 I .006)
X lO4 sec.-l which agrees very well with the result outside.

The small effect, later attributed to wall-scattering, apparently
gives rise to a period of the order of 1.0 x lO4 to 1.8 x lO4 sec.-l; its
effect was not observable in the test described here.

The temperature in the refrigerator was maintained at the desired
level by means of a Copper-Constantan thermocouple exposed to the air in
the test chamber in the vicinity of the ice cylinder. The signal from
this couple was recorded by a Brown strip chart recorder which also served
as control device. The motion of the pen carriage on signal from thé
balancing potentiometer actuated a relay which turned the second-stage

refrigeration unit on and off as required.
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The thermocouple and chart recorder were calibrated against pre-
cision thermometers on several occasions, and found not to have drifted
by more than 1.0°C. over several months in the worst case. In order to
be certain that the temperature in the ice cylinders was uniform through-
out and in equilibrium with the ailr temperature in the test chamber, an
experiment was performed using the largest ice cylinder (cylinder 1).
A hole was drilled into the cylinder to its central point, and a second
thermocouple was frozen into this location by adding water to fill the
drill hole after insertion of the thermocouple. The signal of this
thermocouple was recorded on a separate Brown recorder. Figure 31 shows
the result obtained in a full-range test, i.e., cooling rapidly from -T°C.
to 87°C. The air temperature required 220 minutes to change, and the
temperature in the center of the ice cylinder attained a temperature
within 0.5°C. of the average air temperature in 420 minutes (7 hours).
In the data-taking process every temperature change in an ice cylinder
was made overnight, i.e., at least 10 hours before the measurement was
begun. Since the temperature accommodation in the smaller cylinders
would be more rapid than in the largest, 1t was concluded from the test
that, when the fan was working, all measurements were carried out at the
average temperature indicated on the air-temperature thermocouple recorder.
Since the refrigerator could not reliably attain temperatures lower
than -90°C. the temperature limit for this work was fixed at -85°C., which
could always be reached with reasonable dispatch and maintained even in

high ambient temperatures.
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The walls of the refrigerated chamber are plerced by four pene-
trations. Two of these are at tlemidpoints of the two facing side walls,
and are 4 in. inside diameter each. A third, of the same dimensions, is
in the center of the roof, and a much smaller penetration, intended for
thermometry, was located in a side face near the bottom. The top hole
was used to introduce the thermocouple and the electrical leads to the
detector; one side hole was used for the beam tube, and the others were
plugged. The excess area of the holes being used was plugged with wad-
ding of thin plastic sheet, which showed good temperature insulating
properties, and was not susceptible to water-logging.

Inside the test chamber the lce cylinder was placed on an alumi-
num plate covered with boral, which was supported by three adjustable-
height 'Cenco Lab-Jacks.' These were adjusted to bring the symmetry plane
of the ice cylinders to the midplane of the refrigerator, where the beam
target was also located. The detector was positioned with a clamp-stand
inside the volume. Figure 32 shows a typlical experimental setup inside

the refrigerator.

The target. With this type of accelerator the choice of useful
target material is limited to either deuterium or tritium. The targets
used 1n this work were prepared by B. J. Massey of the ORNL Isotopes
Division (Massey, 1957) using silver and tungsten as backing materials.
The latter has the advantage of much higher yields. Performance tests
were made to determine the yields of neutrons from both types of targets.

The results of these calibrations are included in Appendix B.
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Figure 32. Interior of refrigerated test chamber with ice
cylinder and detector in place.
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With a tritium target containing 500 pgrams of 5H, using 300,000
eV. deuterons, the yield was about 2.5 x lOT neutrons per second per upA.
of beam current. With a similar deuterium target the yield was about

>

2 x 107 neutrons per second per uA. of beam current. The reactions pro-

ducing the neutrons in the two cases are (Ashby and Catron, 1959):

2.~ 2,5 1 3 _

HT+9E 0+ 2He (qQ = 3.27 MeV.)
3 1 L _

fH +qH - n  + JHe (Q = 17.58 MeV.)

The reactlions are isotropic in the center-of-mass system, but are some-
what forward peaked in the laboratory due to the deuteron kinetic energy.
Non-relativistic calculations show that with the D-T reaction the for-
ward fraction of neutrons is 0.524 for 0.1 MeV. deuterons and 0.541 for
0.5 MeV. deuterons. With the D-D reaction the corresponding fractions
are 0.643 and O.T742.

In the course of the experiments the average beam current varied

>

from about 10 pA. to 150 yA. At 3 x 107V. this represents a power dissi-

pation in the target of 3 to 45 watt, on a target area of the order of

1 cm.2.

To prevent overheating the target was provided with a water cool-
ing system shown in Figure 53. Water circulating behind the foll kept
the target cool encugh at all operating power levels.

Due to the much higher neutron yileld, the initial experiments util-

ized a tritium target. However, with such a target an objectionably large
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Figure 33. Target disassembled to show the water cooling provisions.
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background was observed, which could be attributed neither to background
beam effects nor to electronic noise sources.

A measurement of the time behavior of the background over relatively
long time periods was made since it appeared to persist for several sec-
onds after a given run was terminated. A manual set-up was devised employ-
ing two scalers both connected to the DD2 PHS output. A toggle switch-
ing arrangement was devised to gate one scaler open and the other one shut
alternately. Then, after operating the accelerator for about one minute,
successive 10-sec. counts were taken in alternate scalers until no further
decay of the activity was observed. Figure 34 shows the result obtained
from summing the data of 8 such runs. The measured decay period is
(0.0885 : 0.0062) seo."l, which is equivalent to a half-life of (7.83 :
0.55) sec., The mechanism probably responsible for this activity is as

follows: 14 MeV. neutrons react with the oxygen of the water to form

16,1 16 1 16
N (On + 8O lp + 7

N) (Ashby and Catron, 1959). l6N decays with
a T7.32 sec. half-life (which agrees, within the error, with the observed
half-1life). This reaction has a threshold at a neutron energy of 10.2k4
MeV., and a resonance peak in the cross section of 84 mb. at 11.8 MeV.
(Stehn et al., 1964, p. 8-16-5; De Juren, Stooksberry, and Wallis, 1962).
The Q of the reaction is -(9.60% 2 0.013) MeV. (Ashby and Catron, 1959).
The decay of the l6N with beta and gamma emission can cause counts in

two ways. One is by direct gamma pile-up in the crystal and the other is
1

by producing neutrons by the reaction vy + iH - lH' + in with the natural

deuterium component of the water. This reaction has a Q value of -2.23% MeV.
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(Ashby and Catron, 1959) so it is quite accessible to the 6.13 MeV. gemmas
from the Nl6 decay. In order to decide which mechanism was dominant in
producing this background effect the following rough calculation of the
(Yy,n) neutron yleld was made. It is assumed that neutrons of 1h MeV. will
be removed below the threshold for (n,p) reaction by scattering in hydro-
gen, (n,a) reaction in oxygen, (n,y) reaction in oxygen, or the (n,p)
reaction. Elastic scattering in oxygen is neglected since it will not
change the neutron energy much. The cross sectlons are as follows at 14
MeV.:

(1) hydrogen scattering, 720 mb. per atom or 1440 mb. per H,0
molecule (Bratenahl, Peterson, and Stohring, 1958)

(2) (n,y) in oxygen, 250 mb.(Stehn et al., 196k4)

(3) (n,¢) in oxygen, 300 mb. (Bormann et al., 1963)

(4) (n,p) in oxygen, 45 mb. (DeJuren, Stooksberry, and Wallis, 1962)

Thus 2.2 per cent of the neutrons make a first collision to produce the
n,p reaction. Assuming a thick water medium and a neutron source inten-
sity of 5 x 108 neutrons per second, the production rate of l6N is

1lx lO7 per second. The decay rate is of the same magnitude. About T4
per cent of the decays are accompanied by gamma emission with gammas of
6.06 MeV., and 7.12 MeV. (Ajzenberg-Selove and lauritsen, 1959). For
photons of such energy the deuteron photo-disintegration cross section

is about 1.5 mb. (Blatt and Weisskopf, 1952). The abundance of deuterium

in water is 0.015 per cent (Sullivan, 1956). Assuming that the gammas

traverse a water layer 10 cm. thick, the number of neutrons produced is of
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the order of 1.5 per second. Since the observed background was much
higher, it must be due mainly to gamma detection by the 6LiI detector.

With this mechanism in mind, it was attempted to eliminate the
background by using D-D neutrons, since the energy of these neutrons
(about 2.5 MeV.) is below the threshold energy for the (n,p) reaction.
Indeed, when the experiment was repeated with a deuterium target the
long-lived decay was completely eliminated, and the observed background
dropped by a factor of about 20 in the test decay investigated.

As a result of these experiments all messurements in ice in this
work were carried out with D-D neutrons, even though the available
intensity was thereby seriously diminished.

Satisfactory deuterium targets can be made by merely placing a
metal foil (silver is a useful material due to its high thermal con-
ductivity) at the target position, and irradiating it with the deuteron
beam. The deuterons driven into the foil by the beam then act as tar-
get nuclel for impinging deuterons. Howevey in the present work pre-
deposited targets supplied by ORNL Isotopes Division were used (Massey,
1957). In both cases the yield, after some hundreds of hours of oper-
ation will be the same, but initially the prepared targets have an
advantage of about a factor of three (after operating each about ten
hours).

An undesirable corollary of this drive-on target effect is that,
at the locations where the accelerated deflected beam strikes the walls
of the vacuum system, or baffles placed for the purpose, a target is

bullt up, which produces neutrons during the off-time. In the present



143

work this problem was not overly severe, since the ion-source deflector
prevented most of the deuterons produced during the off-phase from being
accelerated.

II. ICE CYLINDER PREPARATION

The geometries suitable for use in a pulsed-neutron search for
diffusion parameter values must be (1) of simple shape to permit ready
calculation of geometric bucklings, and (2) of compact shape, both to
minimize the volume of material required for a given buckling, and to
maximize the difference between the decay constant of the fundamental
mode and those of higher modes. The ideal shape from these points of
view would be a sphere. However, the practical difficulties in pro-
ducing accurately shaped spheres are sufficlently great to make this
a very unattractive proposition. Cylindrical and near-cubical parallel-
epipedal shapes are next best. The latter are most frequently used
where solid moderators are involved because assemblies of various buck-
lings can then be easily put together using smaller building blocks of
parallelepipedal shape. In the present instance, however, where each
test body had to be produced as a separate entity the cylindrical shape
appeared most attractive. First, because the volume-to-buckling ratio
is somewhat more advantageous, and second, because the cylindrical wall
is less likely to suffer deformation due to internal pressures gener-
ated during freezing than would be the case with thin plane container
walls in a parallelepipedal vessel. Also, the ease of producing accur-

ately shaped cylinders on a lathe argued for this choice.
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Early trials. For the purposes of this experiment it was neces-

sary that the ice cylinders be accurately dimensioned and of uniform den-
sity. The dimensional accuracy is needed to permit accurate buckling
calculations, and the density must be uniformsince the diffusion param-
eters are sensitive to it in various degrees. The term an is directly
proportional to the density; the term (vD) is inversely proportional to
the density and C is proportional to the inverse cube of the density.
Therefore, to be able to compare results with results in water the
density needs to be accurately known, and to obtain accurate parameters
the density must be uniform for all cylinders.

It was found that simply placing a container of water in the test
chamber was unsatisfactory because it produced ice with non-uniform den-
sity and with an irregular top surface. The non-uniformity in density
was due to voids formed in the ice because of the evolvement of gases
dissolved in the water. Since the solubility drops as freezing takes
place these gases form bubbles which are trapped in the forming ice.

In ordertodetermine the extent of the density differences the apparatus
described in Appendix D was set up. The results of density measurements
on ilce samples are also gilven there. It was found that ice cylinders
produced by simply freezing exhibited density inhomogeneities of the
order of 10 per cent. The shape irregularities were due to expansion

of the water during freezing, which caused stress cracking and surface

distortions.
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ATter extensive trials two procedures were adopted which proved
satisfactory. One was used for the large cylinders, and the other for

the small ones. These will now be briefly described.

large cylinders. UFor each of the four large cylinder diameters

a plug was constructed with a diameter 0.5 cm. smaller than the diameter
of the corresponding ice cylinder. A diagram of one of these plugs is
shown in Figure 35. The plugs consisted of a hollow brass cylinder
about four inches high. Inside each plug was a water reservoir commun-
icating with the water volume of the cylinder through a small tube which
extended down through the center of the plug about three inches. A
spiral of copper tubing was soldered to the bottom plate of the plug.
This spiral was connected to the water line to permit circulation of
water through the spiral during the freezing process. Each plug was
fitted with three adjustable supports by which it could be levelled at
the desired height in the aluminum cylinder in which the ice was to be
frozen.

The water was first de-gassed by boiling for two to three hours
under a layer of paraffin sbout two inches thick. This paraffin served
both as ailr seal filling the space between plug and cylinder wall, and
as heat barrier, to prevent excessive heat transfer from the bottom of
the plug to the water. In the absence of such a layer freezing would
not occur at all even at -50°C. The plug was then lowered into the
cylinder far enough to force paraffin into the crack between the wall
and the plug. This caused some water to rise into the expansion volume.

This water was covered with a layer of mineral oil to prevent reabsorption
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of alr. The assembly was then placed in the freezer and frozen until
solid. The plug was then removed, the paraffin taken off, and the small
hole left by the reservoir tube filled with distilled water and re-
frozen. Any other small surface irregularities were also removed by
adding a small layer of water to the top surface and refreezing. The
surface was then covered with aluminum foil to prevent sublimation of
the ice, and 0.03-in.-thick cadmium sheet was placed all around the
cylinder. A hole was left in the cadmium at the center of the flat

surface at the top to permit neutrons to enter the detector.

Small cylinders. Since it did not appear reasonable to make

plugs as described for the small cylinders a different process was de-
veloped, which used vacuum, rather than boiling to remove dissolved
gases. A diagram of the apparatus used 1s shown in Figure 36. These
cylinders were formed in hollow, open aluminum cylinders with initial
length about 10 cm. greater than the final height. The aluminum con-
tainers used for the small ice cylinders were turned on a lathe to be
accurately round and thin~-walled. The bottom was closed by placing

the cylinder on a glass plate and pressing Apiezon "Q'" Sealing Compound

around the edge of the cylinder thus forming a seal between the cylinder

and the plate. A flange with vacuum connection and neoprene seal was
made to attach the cylinder to the vacuum system, as shown in Figure 36.
On the same vacuum system were two other flasks, one containing water to
approximately twice the volume required for filling the cylinder to
the desired height and the other containing sufficient mineral oil to

form a layer in the cylinder several centimeters thick. The system was
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then pumped on for several hours through a cold trap consiting of a U-
shaped tube immersed in a dry ice-acetone mixture. During this time
approximately one third of the water in the flask would be lost to the
cold trap.

After the degassing was completed water was transferred by grav-
ity from the flask to the cylinder to a height about 2 cm. greater than
desired for the final cylinder. Then oil was similarly transferred onto
the top of the water to form a layer about 4 cm. thick. The cylinder
was then disconnected from the vacuum and frozen at ~5°C. until solid.
Then the temperature was gradually lowered to -80°C. At this temper-
ature the sealing material was brittle and the glass base plate could
be removed by a sharp blow, leaving the bottom ice surface flat and
smooth. The oll on top of the water was also virtually solid at this
temperature. The cylinder was then (still at -80°C.) sawed off at
about the desired height with a band saw, thus removing the oll layer
and the top ice portion including the irregular surface. The sawed-
off surface was then accurately faced off on a lathe to produce at plane
surface parallel to the bottom. Occasionally small ice chips were broken
out of the machined face. These were easily repaired by filling with a
drop or two of distilled water. The exposed end surfaces were then
covered with aluminum foll which was taped to the aluminum cylinder
wall, and the entire cylinder was covered with Cd, except for a hole at
one end to permit neutrons to enter the detector.

A total of 12 cylinders were made by these two processes and used

in the experiments. Table III gives the dimensions of these cylinders.
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TABLE ITIT

DIMENSIONS OF THE ICE CYLINDERS
USED IN THE EXPERIMENTS

Cylinder Height Radius
Number (cm. ) (em. )
1 2k.95 + 0.31 15.13 + 0.17
2 18.54 + 0.20 12.55 + 0.12
3 25.30 + 0.22 10.035 + 0.10
i 21.27 + 0.18 10.035 + 0.10
5 16.51 + 0.13 10.035 + 0.10
6 16.05 =+ 0.12 7.325 + 0.0k
7 10.44 £ 0.06 5.575 + 0.025
8 9.069 + 0.05 4,190 + 0.02
9 6.400 + 0.040 4.001 + 0.015
10 4.196 £ 0.040 5.550 £ 0.03%2
11 7.520 £ 0.040 3.073 + 0.012
12 7.188 + 0.027 2.858 + 0.012
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III. DATA COLLECTICN

The procedure adopted for collecting the experimental data will
be described here. The objectives were (1) to assure alignment of the
beam on the target to maximize neutron production, (2) to make certain
that all the detecting and analyzing equipment was functioning properly
throughout the data-collecting time, (3) to make certain that the time
allowed for higher modes to decay and for spectrum adjustments to occur
would be sufficient, (4) to minimize the background, (5) to adjust the
count-rates for the maximum consistent with tolerable dead-time effects,
and (6) to collect a sufficient amount of data for good statistics.

The procedure was as follows: Before placing a new ice cylinder
in the refrigerator the beam target was temporarily replaced by a quartz
viewer and the beam alignment was checked. The cylinder and detector
were then positioned and the refrigerator was set at the desired temper-
ature and left at least 10 hours to allow the temperature in the ice
cylinder to stabilize at the set point. Then with the beam on contin-
ucusly at low level neutrons were produced to permit testing of the
detector equipment and setting of the pulse-height-discrimination level.
A series of counting runs were then made with the beam still on contin-
uwously in order to check the uniformity of the channel widths. If these
were uniform within 0.5 per cent the beam would be pulsed and a series of
short test-runs performed to determine the optimum selection of pulsing
parameters. The scheme used for this was as follows: First the walting

time between the end of the neutron pulse and the opening of scaler 1
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would be set at 3(At) sec. and the frequency adjusted so that the decay
rate amounted to about a factor of 4 in 4(At) sec. Then the beam inten-
sity at a neutron pulse width of 2(At) was increased as much as possible
and the waiting time increased until the counting rate in scaler No., 1

(channel 1) was at the desired level of 10”

counts in 30 to 40 minutes.
Three or four "full-count runs" (lO5 counts in channel 1) were then
made with these settings and the total counts per channel as well as
the differences between adjacent channels were plotted to verify that
the decay was exponential.
The advantage of plotting channel differences lies in the fact
that it not only eliminates the flat background, but also exaggerates
the effects of the presence of components other than a single exponential.
Assuming that the decay consists of a single exponential term plus

a flat background, one may write for the counts collected in channel n

after P cycles:

c_ = A_P(At) RUIGL /A B P(At) (173)

where AO is the count-rate in counts per unit time at t = O minus the
background and BO is the counting rate due to the background. One then

has

) re—nk(At)

-(n+1)r(at) 17l
C - C,q =AC, = PA (8% e ] (17h)

or

ac, = PAO(At) [1 ) e-x(At)] e-nx(At) _ A,e-nx(At) (175)
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With the parameters chosen as described CE/ClZZ 0.75, so that (Cl - 02) =
0.25 Cl' So, if, due to mode or slowing-down effects, Cl is in error by
X per cent, then the error relative to (Cl - CE) is about 4x per cent.

If the plot of the difference data yielded no evidence of devia-
tion in the first channel, then the walting time was increased by an
additional 2(At) sec. beyond the last point at which a detectable error
existed. For example, if the test run with a waiting time of T(At) sec.
showed the first two channels to deviate from a single exponential, the
waiting time was increased to 11(At) sec. The burst width would then
be increased to give the desired count rate in the first channel.

However, in no case was the burst width greater than 5(At) sec.
because with n = 1/4(At), further increases would increase the back-
groynd with relatively little additional gain in the count rate of the
early channels.

A further provision was imposed. Careful tests with a small
cylinder at -85°C. showed that there was no detectable change in decay
after a minimum of 170 pysec. of waiting time after the burst. There-
fore, no shorter waiting times than 170 psec. were used, even though,
with the smallest cylinders, about 120 ysec. sufficed to satisfy the
other conditions.

In the case of the smallest ice cylinders it was not possible
to achieve the desired count-rate, while still fulfiliing the conditi ons
imposed on the frequency, waiting time, and burst width. In these cases
the lower counting rate was accepted. In the worst case it required

about 70 minutes to obtain one full count.
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In order to ascertain that no beam-pulsing failure occurred
which would adversely affect data gquality, and as a general check of
the proper functioning of the system, a long-counter beam monitor loc-
ated about 150 cm. from the target was used to detect fast neutrons
(see Appendix C for long counter calibrations).

If, during any run, the count-rate exceeded the rate corresponding
to lO5 counts per 30 minutes by a factor of 1.3 or more the run was dis-

>

carded. For every ice block and temperature a minimum of 7 x 107 counts

in channel 1 were thus collected. In most cases the number was between

2 and 1.2 X 106 counts. Thus a total of about 4 x 108 counts

9 x 10
were collected in this experiment.

(In the case of cylinder 9 only, the run intended to be made
at -45°C, was actually made at -50°C. The correction of this one point
to the -45°C. temperature is discussed in the section on data processing. )

The most widely varying factor from run to run, other things being
equal, was the relative magnitude of the background. This problem was
largely solved by use of the secondary deflection system. However the
earlier (large-cylinder) data do have gquite variable backgrounds. The
attempt toc minimize this background was always made; however, the rel-
ative magnitude of the background depended in a complex nonlinear way
on all the settings of the console beam-controls so that a true maximi-
zation of burst yield, together with minimization of the background was
not possible.

Appendix C lists the observed counts for each cylimder and temp-

erature, in the second column of each table.



CHAPTER IV

DATA REDUCTION AND ANATLYSTS

I. EVALUATION OF DECAY FREQUENCIES FROM THE DATA

The first task to be undertaken in the data reduction process
was to choose appropriate methods for analyzing the data, and for
extracting the value of the decay frequency. In the previous section
the methods of obtaining the raw data were described and the basls for
choosing the waiting time was described. If the waiting time is
sufficiently long then the data should contain only a single exponential
and a background. The analysis of such data has been discussed by
Pelerls (1955) who gives exact calculation methods for estimating the
parameters and thelr errors when statistical errors in the observed
counts are present. However, this method is not applicable if other
types of perturbations than normelly distributed errors with zero mean
are present.

Cornell (1956) developed a method for analyzing data consisting
of combinations of exponentials. However, in this analysis each point
is equally weighted, so that it applies strictly only if an infinite
number of counts are collected at each point so that counting statistics
becomes negligible.

Numerical methods can be used to fit data to any analytical model,
with arbitrary weights for the data points, using the method of least

squares. In this method the quantity

155
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2 .\ 2
g= = ? [Yj - f(a:LJ a5 Bg5 e a N (176)

is minimized. Here Yj is the observed number of counts in the jth

channel, f(a a ooy an, j) is the calculated value of the model

17 e

function for the jth channel where a_, a a aren parameters.

1 Bor oty

The least-squares method consists of making successive modifications to

a set of initial-guess parameters ao

1 @

0] 2
5y +e+» & SO as to reduce S .

In effect one is searching for the lowest point on the n-dimensional
surface whose equation is Equation (176).

Such a procedure is generally carried out on a digital computer
(in the present case on IBM-7090 ) since the numerical work is enormous.

Unfortunately the Sgﬂsurface may, in general, have more than one

-

. . 2 .
any small change in one or more of the a; increases S ', that is at such

local minimum (a local minimum is a point Sg(ai, a ey aé) such that

a minimuam:

é—i =0 for i =1, 2 n
N s 2, eeey
(177)
Sg[ai, aé, ce e, (ai + éai), ceey an] > Sg(ai, aé, ce e a;)

when 6ai is a small change in ai). There 1s no guarantee that the
minimum found is the "true" minimum, i.e., the smallest one. In principle
a different choice of initial parameter estimates may lead to convergence
at a different one of the local minima. For the work in the present

instance a general nonlinear least-squares fit program written by Busing
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and Levy (1962) was used. Various tests were performed to gather
information about the convergence characteristics under the conditions
arising in the present work.

In the previous section the methods of obtaining the raw data
were described and the basls for choosing the required waiting time was
presented. Assuming that such a waiting time has been employed the data
collected should contain only a single exponential decsy and a flat
background. The first analysis method employed to obtain the decay
constants (based on this assumption) was that of Cornell (1956) fitting
the data with three independent parameters. Appendix E gives the Cornell
method formulas as they apply to the present case of a fit to a single
exponential and a flat background. This estimation method was coded for
the IBM-7090 computer, and the values of the parameters and their
variances were computed for the sets of data obtained from ice cylinders
Number 2, 3, 4, and 5 at each temperature. In order to determine
whether the decay was indeed fitted adequately by a single exponential,
each of these twenty setls of eighteen-point decay data was analyzed
using five different data-point subsets. As discussed in Appendix E,
the number of channels must be a number divisible by three. Therefore,
the analysis was done in five ways for each set, using all eighteen,
channels, and using the four fifteen-channel sets 1-15, 2-16, 3-17, and
4-18. 1In this way different time segments of the decay curve were
analyzed in order to determine whether a consistent trend of change
with time would be observed. The presence of such a trend would be

evidence of the presence of another decay component. Figures 37, 38,



158

6.5 i I
CYLINDER NUMBER 2
(.26 %)
6.4 ¥ ‘,/ -5°C. ___
1 [
— T
6.3 1 j (4.45%)
i T _—] -2s°c.
1 /() J
[ 1-/Q
y ¢
J_ = .
6.2
- T T
'd 1 J (1.54 %)
® A
T - 45°C.
° 6.1 ,A/
> A 4\/ 4
Q -
5 / L T
=) 1 4
3 Iy 1
w \ (2.24 %)
w 6.0 P -65°C. —
3 T 1 J/
g \

5.9
|

L | (0.81 %)
5.8 ~-85°C, — |

5.7

5.6

{-18 4-15 2-16 317 4-18
PORTION OF DATA ANALYZED
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39, and 40 show the results obtained by this analysis. (The values of
the decay frequency are obtained by Equation E-15 and the errors shown
are the square root of the variance obtained by Equation E-23 in
Appendix E.)

It is clearly seen that a consistent trend toward increasing
decay frequenciesbwith time appears when the fifteen-channel analyses
beginning with Channels 1, 2, 3, and 4, respectively, are compared. In
the figures the per cent increase in the decay frequency obtained from
the analysis of Channels 4-18 compared with the value obtained from the
analysis of Channels 1-5 is shown in parentheses. The mean change is
0.89 per cent, which is smaller than the error bars, but which by its
consistent appearance suggests a systematic cause. It 1s significant
that in the two instances where a given cylinder at a particular tem-
perature was measured with two different waiting times (Cylinder 3 at
-45°C. and Cylinder 5 at -85°C.) the increase is observed in each run
but does not continue over the pair of runs. In Cylinder 3 the mean
values of the decay frequency in the two runs are 6.336 x 10° sec. t
and 6.337 X 10° sec.-l, respectively, and in the case of Cylinder 5
the respective mean values are 6.480 x lO5 sec._l and 6.491 x lO5 see. T,
The mean change in the averages for the two cases is thus only 0.09
per cent which is quite small compared to the Aifference observed
between the first and last analyses taken from one set of decay data.
This suggests strongly that the effect is caused by some aspect of the

data collection or analysis, and is not a reflection of a true change

in the neutron decay with time. If such a change were really taking
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place, then one would expect that the results for a run with longer
waiting time would be still larger than the last result obtained from
the run with shorter waiting time.

It is also interesting to observe that the effect represents a
steepening of the slope with time. If this effect were due to the
existence of several spectral groups (as was the case in beryllium)
(Silver, 1962), the most persistent mode would become more dominant,
leading to a decrease in decay frequency with time.

It is readily seen that no combination of exponential components
of positive amplitude will result in a steepening slope. In such a
case the relative contribution of the slower-decaying components will
continue to increase with time, leading always to a decreasing slope.
The only possible way of arriving at a steepening slope 1s by means of
a component with negative amplitude, or if the decay is nonexponential.

In view of these observations, considering the direction of change,
the effect of walting time, and the temperature-independence of the
magnitude of the effect, the following explanation was proposed.

If there are counting losses due to dead-time effects, then the
number of counts lost per unit time is given by Equation A-1k4 of

Appendix A as:
. . 2
Counts lost per unit time = TR™ . (178)
So the number of counts observed in the nth channel is given by

C ~a (bt) + o (At JenB(at) T[%(At) + o (ot e B (88 )]2 .
(179)
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Now, assuming that ao(At) << al(At)e_nB(At) (which is valid for

the cases under discussion), we may write

At )e—nB(At) i 2 -2nB(At) . (180)

C, ~ a (at) +a( (o (8t )]

So the effect of dead-time 1s to introduce a negative-amplitude
mode with twice the decay frequency as that of the fundamental.

To determine the effect that such a higher mode has on the
observed decay, the following considerations are useful.

Let the normalized neutron density equation be given by:
N(t) = e M | geeM (181)

where a is the ratio of the amplitude of the higher mode component of
the decay relative to that of the fundamental decay at t = 0, )\ is the
fundamental mode decay constant, ¢ is the ratio of the two decay con-
stants, and the background is considered negligible. (If the higher
mode is due to dead-time then ¢ = 2 as shown above.) In the absence of

the higher mode the slope of the decay is given by
d
8 == [in N(t)] = -x . (182)

If the higher mode is present then we have

-\ + acke<l-c)xt
1 o ll-C )AL

S(t) = % [tn N(t)] = (183)



165

or

S(t) = %lil - ace-<l"C )M’] i anen(l—c Mt
n=0

= >{l + (1 -¢) z anen(l-c>m] . (184)
n=1

So

s(0) = -A %—:——39 : (185)

With the condition that a <<1 (experimentally it is found to

range from 0.005 to 0.04) we may drop higher terms and write
S(t) ~ -x[l + (1 - c)a.e(l'c ”‘t:] . (186)

The difference in waiting time for an analysis beginning with
Channel 1 and one beginning with Channel 4 is of the order of 1/)\ sec.

So a useful measure of the rate of change of the slope 1is given by

R Lot e

Figure 41 shows a plot of (R - 1) as function of a for various
values of c¢. It is seen that for a = 0.01 and C = 2 a 0.6 per cent
change of slope over four channels would result. Figure 42 shows a
plot of the Cornell method decay frequencies obtained with an artificial
set of data without any statistical errors, which consisted of a

fundamental mode and a double-frequency negative term with 0.03 initial



166

0.1 —

0.05 AN

/
7
y o

0.02

P4

0.01 N\, <

0.005 AN A

0.002 \
| \\/ \\\\

0.001

AN
0.0005 /= RATIO OF SLOPE AT #= ¥ TO \\
- SLOPE AT #=0
| @ = RATIO OF AMPLITUDE OF HIGHER MODE \
TO THAT OF FUNDAMENTAL MODE
¢ = RATIO OF DECAY CONSTANT OF HIGHER
0.0002 MODE TO THAT OF FUNDAMENTAL MODE

0.0001 ‘ ‘ ’
0.1 0.05 0.02 0.01 0.005 0.002 0.004

a

Figure 41. Plot of (R-1) versus a for various values of c, where
R, a, and ¢ have the definitions shown in the figure.



167

: ] ‘
1.OO>\O ®

{

yee 20D _ hon gn =e’%'
AO=DECAYCONSTANTOFTHE
FUNDAMENTAL MODE
n=4
—
5{ TO
'c?) he3 n =18
z TO $
8 n=A7 I
g -
S s |
O 0.99 >‘o N =16 e
D e L.
Ll
T
5 n= i 1070
L—J) T TO y____ e—-)\onAl _ 0.036'_2)‘0,’Af
< f)=15 -n
) =e "4 -003e¢
,<’ 1
Q/
Y
0.98 )‘o
0 Z3W Z3W Yaxg Mo
' WAITING TIME

Figure 42. Results of Cornell-method analysis on an artificial
set of decay data, without statistical variance, constructed from the
equation N(t) = e - 0.03 e %, The "channel widths" are 1/ (4rg)
sec. wide, and each analysis extends over fifteen channels. The decay

constant of the pure fundamental mode is shown for comparison.
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relative amplitude. The channels were taken to be (1/4 XO) sec. wide.
It is seen that the result is just the sort of small increase in apparent
decay constant which was observed in the analyses of the experiment by
the three-parameter Cornell method. In this instance the Cornell method
analysis using eighteen data points gave a result of 0.988 xo, and the
mean of the four fifteen-channel analysis results is 0.989 ko. So in
this case an error of the order of one per cent would be made by
ignoring the presence of the faster-decaying component. Thus, the
results with the test data are in good agreement with the hypothesis
proposed for the observed effect.

In order to analyze the experimental results in accordance with
these considerations, the Cornell method was abandoned and a nonlinear
least-squares fitting method was used instead (Busing and Ievy, 1962).

The model used was of the form

B -P.n(At)
Cn—P +Pge3 +Pu_

e-cP
1

sn(ae) (188)

where Cn is the number of counts in the nth channel. In the cases at

hand there were four parameters to be fitted; the background, Pi, the

two amplitudes of the decay terms, P_. and Ph’ and the fundamental mode

2
decay frequency, P5.
taken to be 2.0. The weights of the data were assumed to be solely due

The ratio, ¢, of the two decay freguencies was

to counting statistics.
The results of the three-parameter Cornell analysis were used as

input parameters. In order to be sure that the choice of the initial
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guess would not affect the final values a test was performed in which a
case was run with sets of input parameters in which one parameter was
taken to range from 0.1 to 10 times the correct value, keeping the other
three input guesses at about the correct value. In each case the code
"pulled in" to the correct value over the entire range of input parameter

guesses, except for parameter P,, the decay frequency parameter. In this

5
. . true
case correct convergence was obtained in the range 0.3 (P5 ) to 5.0
(P;rue) Outside this renge the code did not converge at all within the

small (9) number of cycles allowed for convergence. In no case did
convergence to a wrong value occur. Since in all actual cases the
converged values were within only a few per cent of the input parameters
it was concluded that error in input parameter choice of a single
parameter could not lead to false convergence. A somewhat more limited
test was also performed to assess the effect of simultaneous erroneous
choices of several input parameters. Again it was found that no

combination of wrong choices of parameter P., P

1 iy and Ph would lead to

wrong convergence. And the limits of convergence of parameter P5 were
about the same as above, even with other parameters erronecus by a

factor of ten.

Fach set of decay data was then analyzed with this code and this
four-parameter model: (1) using all eighteen channels, (2) using the
four partial sets 1-15, 2-16, 3-17, and 4-18, and (3) using only
even-numbered or odd-numbered channels. In each case the variation of
the value of P3’ the decay frequency, was examined for evidence of

consistent change. Table IV gives a sampling of the results obtained by
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TABLE IV

RESULTS OF FOUR-PARAMETER ANALYSIS ASSUMING DOUBLE
DECAY FREQUENCY FOR THE SECOND DECAY COMPONENT

o]

-5°¢C. -25°¢. -45°¢. -65°¢. -85°¢.
Cylinder
1-18 5.886 5.72k4 5.635 5.579 5.443
1-15 5.900 5.729 5.642 5.582 5.460
2-16 5.890 5,722 5.652 5.586 5.429
3-17 5.883 2.132 5.639 5.560 5.432
4-18 5.885 5.721 5.618 5.584 5.417
Cylinder
1-18 6.745 6.585 6.413 6.266 6.096
1-15 6.754 6.610 6.391 6.264 6.096
2-16 6.748 6.578 6.420 6.280 6.074
3-17 6.765 6.576 6.431 6.241 6.143
4-18 6.726 6.604 6.422 6.263 6.10k4
Cylinder
1-18 7.321 7.121 6.888 6.825 6.493
1-15 7.306 7.134 6.847 6.823 6.551
2-16 7317 7.132 6.910 6.782 6.546
3-17 7.342 7.155 6.987 6.850 6.478
4-18 7.369 7.109 6.961 6.802 6.493
Cylinder
1-18 8.829 8.468 8.214 8.052 7.593
1-15 8.829 8.47h 8.217 8.054 74566
2-16 8.826 8.479 8.220 8.037 7.579
3-17 8.869 8.464 8.233 8.052 T1.672
4-18 8.791 8.461 8.179 8.057 7.650
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TABLE IV (continued)

5% _25°¢. _45°¢, -65°¢. -85%
Cylinder 8
1-18 16.668 15.899 1k.915 14,341 13.310
1-15 16.72% 16.001 1h.952 14.383 13.319
2-16 16.628 16.345 14,921 14.300 13.232
3-17 16.583 15.707 14.856 14,375 13.318
4-18 16.662 15.652 14.860 14.307 13.311
Cylinder 11
1-18 23.401 22,335 21.118 20.299 18.297
1-15 23.520 22.487 21.248 20.460 18443
2-16 23.270 22.348 21.092 20.197 18.282
-1 23.098 22,21k 20.925 20.078 0%
4-18 02,764 21.843 20.476 19.00% R IREA
Cylinder 12
1-18 25.107 23.788 22.441 21.715 19.866
1-15 25.603 24,098 22.602 21.913 19.960
2-16 2k .902 23,723 22.181 21.677 19,760
3-17 24.012 234395 21.99k4 21.396 19,603
4-18 22.377 22.390 21.639 20.063 19.%20
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this method, and Figures 43 and 44 show some plots of the decay frequency
as a function of the channel number with which the analysis is begun.

For the cases of the large cylinders (Number 1 through about
Number 8) the method of correcting by use of a second period with twice
the frequency of the fundamental mode works very well. The variations
are only of the order of the uncertainties, and there is, more important,
no consistent trend toward either increasing or decreasing period with
increasing waiting time. It may, therefore, be concluded that the
dominant perturbing effect is indeed due to a period of about twice the
fundamental, and the hypothesis that this is a dead-time effect appears
to fit the observed facts. The mean ratio of IPM/PQI for the twenty-
five cases representing the five largest cylinders at each of the five
temperatures was 0.019 + 0.006. This is in good agreement for the
estimate of two per cent dead-time loss in Channel 1 at the counting
rate selected for the experiments, described in Chapter III. It may
be pointed out here that "normal" dead-time corrections would have been
difficult to apply in this work because the counting rates for each
channel are different, and often also varied significantly during the
data collection time.

In the smallest cylinders, however, particularly with Cylinders
Number 10, 11, and 12, the situation was far less satisfactory. There

appeared to be a relatively large change in P, in going from analysis

3
of Channels 1-15 to the analysis of Channels 4-18, which became worse
when a second periocd of twice the fundamental frequency was fitted to

the data than with only a single exponential. The effect here is a



173

7.5
NO. 5, —5°C,
S —————] NO. 5, —25°C.
7.0
/ NO. 51 _45°C.
Id /\ NO. 5’ _65°C_
@
1)
m
©
=
(@]
Z 6.5 —— NO. 5, —85°C
o)
o
w
08
[V
>
<1
(@]
w
[aa]
6.0
NC. 4, =50 i
: !
|
NO. 1, —25°C. |
a
NO. 1, —45°C. |
NO. 1, —85°C,
|
5.5 j
1-15 2-16 317 4-18

CHANNELS USED IN ANALYSIS

Figure 43. Calculated decay frequency versus channels used in
the analysis for cylinders Number 1 and 5, based on four-parameter
least-squares analyses assuming a negative-amplitude seccond decay
component with twice the decay frequency of the main decay.
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Figure 44. Calculated decay frequency versus channels used in
the analysis for cylinders Number 8 and 12, based on four-parameter
least-squares analyses assuming a negative-amplitude second decay
component with twice the decay frequency of the main decay.
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decrease of decay frequency with time, rather than an increase. Of
great interest is the fact that for a given buckling the effect is
largest at the highest temperature as may be seen in Table V, which
shows the per cent decrease in the measured fundamental mode decay
frequency (obtained by use of the four-parameter model with double
frequency for the second component ) in going from analysis of channels
1-15 to analysis of channels 4-18,

It will be seen that the effect is serious for Cylinders 11 and
12 and the more so at high temperatures. It was, therefore, necessary
to understand the cause and find a rational method for determining the
best value of the decay frequency.

The fact that the effect is most apparent at high temperature,
i.e., when the decay frequency is highest, points to a perturbing
component which has a longer persistence than the dominant "fundamental"
decay. This 1s also consistent with the observation that the apparent
change is made worse by attempting to fit these data with a second
component of higher frequency, and hence shorter persistence; and is
also supported by the fact that the change is an apparent decrease of
the measured decay frequency.

IT such a lower-frequency mode 1s present which is independent of
the temperature, then one would expect that the higher the freguency
of the main decay, the sooner the small lower-frequency "background"
becomes relatively important, and hence the more apparent it becomes
at a given time after the neutron burst. In Cylinders 11 and 12 the

data at each temperature were measured with the same waiting time, and
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TABLE V

PERCENT DECREASE IN CALCULATED DECAY PERIOD
FOR ANALYSES OF CHANNELS 4-18, RELATIVE
TO ANALYSES OF CHANNELS 1-15

. Cyligder Cyliider Cyligder
-5 0.9% 3.8% 12.8%
-25 0.0% 2.9% 7.1%
-45 1.2% 3.8% | 4.3%
-65 0.1% 2.7% 3.9%
-85 0.2% 3.1% 2.8%
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precisely this effect was observed. To test this hypothesis artificial
decay curves were constructed, without statistics or higher modes.
Figure 45 shows the decay curves that were obtained this way between
150 and 550 psec. after t = O for five decays of 12, 18, 21, 2k, and

27 X lO5 sec:J} respectively, adding to each a component with 6.0 X

5

10 sec._l frequency and an initial amplitude of 0.2 per cent of the
amplitude of the main decay, plus a flat background of 0.02% of the
initial amplitude of the main decay. Table VI shows the values for the
decay frequency obtained by a Cornell analysis over the time intervals
150 to 400 psec., 200 to 450 psec., 250 to 500 psec., and 300 to

550 psec. These time intervals and frequencies correspond closely to
those that were used in the measurement of the smallest cylinders. In
these actual cases the analysis extended from 140 psec. after the pulse
to 520 psec. after the pulse, and the frequencies of the main decay are
just in the range chosen for the artificial data.

The results in Table VI correspond precisely to the effect
observed with the real data. As long as the main decay frequency is
less than about 22 x lO5 sec.-l no significant change in the calculated
decay frequency is observed with increasing waiting time, but above that
the change rapidly becomes very large. The explanation is that, if the
main decay is rapid enough, then the slower 'background decay' becomes
dominant in the last channels even though its initial amplitude is very
small. As may be seen from Figure 45 the curvature introduced by the

presence of the extra decay frequency is very small, and virtually

indetectable by inspection despite the absence of statistics even
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TABLE VI

EFFECT OF A SMALL DECAY COMPONENT WITH IOW FREQUENCY ON MEASURED DECAY
FREQUENCY IN THE PRESENCE OF BACKGROUND. TEST WITH ARTIFICIAL DATA

Mnalysis Interval Main Decay Frequency
12 psec. 18 usec. 21 psec. 24 usec. 27 wsec.
150 to 40O psec. 11.99 17.80 20.67 23.27 25.51
200 to U50 usec. 15%99 lg:g% 23:;% ggzi% 2?:%2
250 to 500 psec. ot gt 5 .24 21 5
11.96 17.40 19.09 18.59 15.0k4

300 to 550 psec. 0.2% 2.2% 7.6% 20.1% 41.0%

The upper figure of each entry i1s the value obtained for A by a three-parameter
Cornell Analysis of the artificial data shown in Figure V. The lower figure is the
per cent decrease relative to the value found in the first time interval.

6.T
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where the effect on the calculated slope is of the order of 50 per cent.
This is due to the presence of flat background which masks the effect
of the added frequency.

However, by the method of plotting the differences between
adjacent channels, 1t was possible to perform a graphical separation of
the extra decay in a few cases where the waiting time was long enough.
Figure 46 shows the datg including the difference curves, for cylinder
10 at -65OC. The lower curve shows the difTerences in the ccunts in
adjacent channels. By extending the asymptotic slope of the difference
curve (obtained from the early channels) it appears that the last
difference points lie systematically above the asymptote. Plotting this
deviation in the last few channels the points shown near the top of
the figure were obtained. The best straight line through these points
(only subjectively determined ) yields a slope corresponding to

5

(9.2 + 2) x 10 sec.-l for this background decay frequency. Figure 47

shows tThe same analysis for the case of cylinder 10 at —4500. In this
case a slope of (8.6 + 1.5) x 10° sec.”! was obtained.

It appears, in view of the investigations described here, that
a very small amplitude mode (with initial relative amplitude <0.0025)
is present in the data, which is neither detectable, nor has an
appreciable effect on the decay frequency of the large and intermediate-
size ice cylinders, but which needs to be corrected for in the case of

5

-1
those cylinders whose decay frequencies are above about 20x 107 sec.
Thus, a method was needed for extracting the main decay from the

experimental data for these cases.
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Since the Busing least-squares code is quite general it seemed
quite natural to use this code to determine directly the amplitude and
frequency of the "background mode' by fitting the experimental data to

a model of the form:

=P + Pee'PBH(At) + Pue_P5n(At) (189)
Accordingly the data from the smallest cylinders were fitted to this
five-parameter model with the Busing code. The results initially were
very disappointing because in most instances the code falled to converge
at all. In a few cases convergence was obtained after very large
numbers of iterations (between 40 and 100), but in most instances, even
after 100 iterations, the code failed to converge.

Since it was not certain whether the convergence difficulty
could be ascribed to the nature of the model or whether it was due to
tue presence 1in the data of an unsuspected component of different
shape, a set of artificial data consisting of two exponentials, and
including normally distributed random counting errors was constructed.
Appendix F gives the details and results of that test. It is clear
that, even in the absence of any other factors, such as other modes or
non-normal counting variations, it is difficult to fit the data to five
parameters simultaneously. The results with the actual experimental
data were even more discouraging than those with the artificial data
since convergence was obtained in only about 40 per cent of the cases
attempted, and usually only for those attempts with the longest waiting

time, in which most of the data collected were not used, and in which,
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therefore, the accuracy obtained for the main decay frequency was
relatively poor.

However, it was found, both with the real data and the artificisl
data, that holding one of the five parameters, in particular PSj fixed
resulted in rapid convergence of all cases, and reasonable error
assignments for the determination of P,. It may be well to define here

3

and" P_ are the coefficients

P2, PB’ PM’ 5

again the following symbols;: Pl,

of the fitting model

-P At -P AT
¢, - B, + B Ts(0) , p Psnlt) (18 )

where Cn is the number of counts in the nth channel. 22 1s the sum of
the squares of the differences between the observed and calculated
counts in the channels for any given analysis.

The procedure adopted for the analysis of the small-cylinder
dats was, therefore, based on this method. TFor each set of data a
series of four-parameter analyses were performed over a range of

fixed values of the parameter P The case which resulted in the

5
minimum value of the sum of the squares of the residuals was taken to

be the best fit, and the value of P, corresponding to this case was

3

used as the correct value of the decay frequency.

In all the analyses of the two smallest cylinders (11 and 12)
the parameter 22 possgessed a well-defined though often broad minimum
and the choice of the best value of P5 was, therefore, unequivocal.

However, for the larger cylinders the result was sometimes that the

minimum value of 22 occurred for P. = P

2 3’

i.e., the best fit occurred
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if the two decays were of the same slope, so that in effect only one
exponential parameter was found. And in several cases the minimum of

22 occurred at values of P. close to zero or even slightly negative.

5
When P_ is close to zero the "decay term" Pue_P5n(At)

>

a flat background term.

becomes essentially

Indeed, when P5 was <1 X lO3 sec.—l the values of Ph and Py

were usually large, but of opposite sign and such magnitude that the
sum corresponds to the flat background.
Since, from the results for those cases where 22 had a proper

minimum, a mean value of P_ was obtainable, the decsy data for Cylinders

>
8 and 9, as well as some of the data sets for Cylinder 10 were analyzedby

specifying for the value of P. the mean value obtained from the small-

>

cylinder analyses. It was found, however, that in these intermediate-
size cases the amplitude PLL that resulted was very small, and the effect

on P, of making this correction was negligible, amounting to, at most,

5

0.21 per cent in the worse case.

Table VII lists the values obtained for P5

and 12 by the minimum-Z2 method described above. The variliations are

in Cylinders 10, 11,

seen to be large, and the errors associated with the individual values

are also relatively large, since the minima are broad, and difficult to

¥

determine accurately. However, the effect of an error in P_ on P, is

> 5

very small, so that the values of P, are not dependent on an accurate

5

value of P_. Figure 48 shows the variation of P, as a function of P

p) 3 5’

and also the variation of 22 with P5 for Cylinder 12 at —2500. The

method appears, from the figure, to give an extremely sensitive
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TABLE VIT

VALUE OF P, CORRESPONDING TO MINIMUM
SQUARE SUM OF RESTIDUALS

Units of 10° sec.”?

Cylinder Cylinder Cylinder
10 11 12
-5°c. 3.5 7.9 4.0
-25°¢. 4.0 5.5 6.0
-45°¢. 9.5 10.0 8.5
-65°C, 8.3 8.0 4.5
-85°¢. 5.8 4.0 12.0

Mean Value 6.77 x 10° sec.”?!
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four-parameter least-squares analyses of the decay data in cylinder

Number 12, at -25°C.

residuals, versus P_., the "background" decay frequency obtained by
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criterion for choosing the best value of P5' However this is somewhat
spurious. Very small shifts in the values of the counts of the last
few channels have a relatively large effect on the location of the
minimum. A test was performed by varying the value of Cl8 the number
of counts in Channel 18 for this case by ﬁ/ﬁié and iﬁJ@ié. In each
case the curve of P5 versus P5 was shifted only very slightly, but the
location of the minimum of the 22 curve shifted significantly. The
results are shown in Table VIII. This accounts for the large variations
in the location of the minima seen in Table VII (page 186).

Yor the purpose of checking results this method of analysis was
also extended to some of the large ice cylinders. The results supported
the conclusion that a small component of negative amplitude and about

twice the frequency was present. For example, Figure 49 shows the result

obtained for cylinder 1 at —SOC. The minimum in 22 occurs for P_ =

P
15.5 X lO5 sec._l, and the value of P5 corresponding to the minimum is
5.856 x ZLO5 sec.—l. The amplitude, PL|.’ of the second component is

negative, and amounts to 1.54 per cent of the amplitude of the main

component at t = 0. Note that the value of P, corresponding to P. = 2P

3 5 3
is P5 = 5.89 x lO3 sec:._l which 1s in very good agreement with the value
of P5 = 5.886 x 10° sec.”t obtained by the earlier method.

In many cases the analysis of the large-cylinder data by this
method failed, due to the reasons already described. 1In most cases
where the analysis succeeded the results for P5 agreed within the
limits of error with those obtained by the methods described earlier.

Therefore, the large-cylinder decay constants were taken to be those
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TABLE VIII

EFFECT OF CHANGING THE NUMBER QF COUNTS IN CHANNEL 18
OF CYLINDER NUMBER 12 AT -25°C. ON THE VALUES OF
P, AND B, CORRESPONDING TO MINIMUM %°

Value of P at

Clq Best Value of P,
Location of £ Minimum
Ce - 3/Cg = 1L08 24.890 x 10® sec.™* 3.3 x 10° sec.™t
C,g - +Cig = 1486 25.042 x 10° sec.™* 5.2 x 10° sec.”?
C,q = 1525 25.065 x 10° sec.™? 5.9 x 10° sec.™?
CLg +4/Cg = 1561 25.086 x 10° sec.”? 6.8 x 10° sec.”*

1642 25.124 x 10° sec.?! 8.0 x 10® sec.”?!

Clg T WCsg

1l
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obtained by the four-parameter analysis described before.

To summarize briefly, the methods used for obtaining the decay

frequencies from the data were the following:

l‘

Data for Cylinders 1, 2, ..., 6 were analyzed on the assumption
that the only significant source of error was the presence of a
negative-amplitude mode of double the fundamental frequency.
This was checked in some cases by a five-parameter analysis

and found to be valid.

The data for Cylinders 7, 8, and 9 were analyzed by assuming

b, -1

that a "background" decay with P_ = 6.77 x 107 sec. —, (as

p)
determined from the small-cylinder data ) was present. However,
the effect of including this correction was small, and in most
cases the results agreed, within the errors, with the values
obtained by the large-cylinder analysis method. In these
cylinders the effects of the additional decay were almost always
smaller than the uncertainties due to the statistics.

The three smallest cylinders (10, 11, and 12) were analyzed

by a five-parameter model, performing a series of calculations

with a range of fixed values for P In these cylinders,

R
particularly in the last two at high temperatures, the effect
of the "background mode" was clearly evident, and was accounted

for as described.

It may be appropriate to digress briefly here to consider the

cause of the "background decay" observed in the small-cylinder data.

Two possible sources suggest themselves. One 1s back-scattering from
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the refrigerator walls and ground; the other is the accelerator itself.
Although back-scattering of thermal neutrons was largely reduced by
use of cadmium covering on the ice cylinders and the boral inner liner
on the test chamber, a very small effect due to epi-cadmium neutrons

is not eliminated.

A second possibility is that the accelerator itself might cause
such an effect if a very small "tail" were present at the trailing edge
of the pulses. Such a tail would have to have an amplitude of only
0.0002-0.0006 at beam cutoff relative to the beam current in the pulse
to produce the observed effect. Such a tail would be very difficult to
observe directly.

As has already been mentioned, a test was performed inside the
test chamber and out without finding any effect attributable to wall
scattering. However, the decay frequency of the test cylinder was too
low to permit observing such an effect if it were present. In sum, the
problem of the origin of this 'background"decay is not resolved.
However, the amplitude is very low and the effect of this decay component

was adequately correctable.

ITI. ASSIGNMENT OF DECAY FREQUENCY ERRORS

There are two sources of uncertainty in the values of the decay

frequencies, P5'

is due to systematic errors such as the presence of other decay modes,

One 1s due to the counting statistics, and the other

timing errors, channel-width errors, and room-return effects.
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The error assignments applied to the data consisted of three

parts, which were combined by the usual rule

1/2
2 2 e
E(P5) = (Ec + B+ Ey ) s (190)
where Ec is the counting error, or statistical error, Et is the timing
error, and E A is the systematic error.

The errors Ec were obtained directly from the least-squares fit
analyses. The weight assigned to each input channel-count was based on
the counting statistics only. That is, with Cn counts observed in the
nth channel the weight assigned to this number is (Cn>'l. The
variance for each output parameter is calculated based on the propaga-
tion of the input weights.

The systematic errors, Ea, would be absent if the data were a
perfect fit to the model, within the statistics. However, it is clear
from the discussions above, that this is not the case. Two types of
perturbations have been discussed in detail, and one or the other has
been accounted for in the model applied to each set of decay data. But,
while one of these is dominant in any one case, they must both be present,
so that neglecting the other must give some source of systematic error.
In addition, the effects of channel-width nonuniformities have not been
included, though, at least for the early data taken without the use of
the master gate circuit (see Chapter III) such errors may be significant.

As a test of the presence of errors other than statistics the
distribution of residuals was tested. A FORTRAN Code was written to

process the input data as follows. For each set of decay data a
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back-calculation was performed, using the final set of five parameters,
to obtain the set of values Yk in where k designates the twelve cylinder
> &0

numbers, £ designates the five temperatures, and n designates the

eighteen channel numbers. The ratio

(Yk} tn " ck’ Z,n)/[ (Ck, f,n)l/gil (191)

was then obtained for each of the 1080 channel counts. This ratio is
the residual between the observed and calculated value of the channel
count, in units of the standard deviation. The distribution of the
absolute values of this ratio was then computed. Appendix G includes
the flow sheet and listing of this FORTRAN program, which was also used
to generate the Table of Results of Appendix C.

Figure 50 shows the distribution obtained, and the expected
distribution assuming only statistical errors in the data.

It is apparent that the spread of the data is significantly wider
than would be expected on the basis of counting statistics alone.
Examination of the residuals listed in Appendix C shows that most of
this spread is due to the small cylinders. To take these error sources
into account, the following procedure was used.

The noncounting-statistic errors are of two types. One is due
to random channel counting errors, beyond those due to counting
statistics. In order to evaluate these, without the effects of
nonrandom errors such as other modes and room return, each set of data

was divided into two sets. One consisted of Channels 1, 3, 5, ..., 17,
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and the other of Channels 2, 4, 6, ..., 18.

It was found that the results of these two analyses often
differed by more than the error ascribable to the statistics. In order
to estimate the random error not due to statistics the mean of the
absolute values of the differences (averaged over the five temperatures
for each cylinder) was taken as a measure of the total random exrror,
and the counting statistics was then subtracted to get the estimate of

the error due to other random sources. The equation used was

/Vodd Veven \1/2

5
2 + .
1 odd even k k
Bee = [5 z P3(k,£) sk, )@ - \ e ,  (192)

odd even
where P and P th al f th aramet P btained
B(k,l) n 5(k,2) are e values o e parameter 3 o in

using the odd-numbered and even-numbered channels respectively, and
od
v d and Veven are the corresponding variances obtained for parameter

P5 by the least-squares calculation. If

(193)

then Eﬁfy was set equal to zero.

The contribution to the error due to the nonrandom factors such
as room-return and higher modes was obtained by considering the mean
difference between the analysis of Channels 1-15 and 4-18, averaged

over the five temperatures for each cylinder. If no systematic effects

are present, the mean value should be zero. Since it is unlikely that
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the mean value of only five cases would be really zero, this method
yields a conservative estimate of the error. However, in the majority
of cases (eight out of twelve ) at least four of the five differences
had the same sign, so that i1t is probable that a real source of error
existed in these cases. Again, the effect of counting statistics was

subtracted by use of the equation

(

2
571 | ), [Baeny 0390 - By, ) 8]

=1

(194)

i {V(l-l5) + v(L-18 )1/2
2 2

3

from analysis of channels 1-15 and 4-18 respectively, and where

where PB(k’l) (1-15) and Pa(k’l) (4~18) are the values of P, obtained

Vi 4 (1-15) and Vi, (4-18) are the variances of these parameters. In

) J

cases where the difference in Equation (194) was <O the value of Eﬁp%
J

(o)

was taken to be zero. The error E}

i, ¥ due to systematic sources, is

then given by

£0) - e L[5 TT

The timing error Et

(195)

is not directly detectable in the data, but
enters the results directly since P5 is proportional to frequency of
the timing oscillator. The magnitude of the time drifts was discussed

in Chapter III, and was no more than 0.02 per cent over a time of

eight hours, which is the time interval for collection of the data for
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one cylinder at one temperature. To this must be added the uncertainty
in the time calibration of the frequency meter. The frequency standard
used as primary time source was certified to be accurate within

0.005 per cent, and the maximum long-term drift of the local fregquency
meter was found not to exceed 0.015 per cent. A total timing error

of 0.03 per cent was, therefore, taken as a conservative estimate, i.e.,

Et was calculated by:

E_=0.0003 P

X : (196)

All the error calculations were made by the IBM-7090 computer,
using a FORTRAN code called CALER written for this purpose. The flow-
sheet and code are shown in Appendix G.

For the large cylinders the counting statistics, i.e., EC, was
the dominant error, and in many instances either Er or Ep became zero.
However, for the smaller cylinders the sources of error other than EC
became dominant, amounting to most of the error (60 to 80 per cent)
for the smallest cylinders.

The range of errors extends from 0.35 per cent (Cylinder 3,
-65°C.) to 1.80 per cent (Cylinder 11, -85°C.).

Table IX 1lists the final results for the decay parameters and
their associated errors. TFigures 51, 52, and 53 are plots of the decay
parameter as a function of temperature for each of the twelve cylinders.
The variation with temperature is close to linear in all cases, with the

maximum deviation from a linear fit of the order of 4 per cent.



TABLE IX

MEASURED DECAY FREQUENCIES IN ICE CYLINDERS

Cylinder Temperature (°C.)
Number
) -25 -45 -65 -85
1 5.886 £ 0.075 5.724 £ 0.040 5.630 £ 0.052 5.579 £ 0.059 5.443 + 0.035
2 6.478 £+ 0.060 6.387 £ 0.034 6.207 £ 0.038 6.031 £ 0.035 5.890 + 0.061
3 6.745 £ 0.061 6.584 £ 0.048 6.413 £ 0.066 6.266 £ 0.022 6.096 £+ 0.053
4 6.864 + 0.067 6.699 + 0.039 6.584 £ 0.070 6.455 + 0.038 6.226 £ 0.066
5 7.%321 + 0.047 7.121 + 0.051 6.888 + 0.049 6.825 + 0.076 6.493 + 0.072
6 8.829 £+ 0.040 8.468 + 0.060 8.214 + 0.070 8.052 + 0.073 7.593 £ 0.072
7 12.476 £ 0.043  12.112 £ 0.079  11.493 + 0.087  10.997 + 0.076  10.272 + 0.082
8 16.668 £ 0.053 15.899 + 0.101 14.915 £ 0.073 14.341 £ 0.065 13.310 + 0.100
9 20.390 + 0.133  19.258 + 0.110  18.083 + 0.127° 17.307 + 0.132  16.055 + 0.129
10 22.829 £ 0.240  21.409 + 0.172 20.349 + 0.245 19.292 + 0.295 17.772 + 0.189
11 24.3209 + 0.378 22.841 + 0.228 21.669 + 0.258 21.226 £ 0.195 19.07% + 0.34h4
12 26.771 £ 0.383 25.063 + 0.241 23%.662 + 0.229 22.555 + 0.198 20.808 + 0.236

aInterpolated. Measured value at —SOOC. 17.874 £ 0.127.

66T
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ITIT. CALCULATION OF THE DIFFUSION PARAMETERS

The final step in the data reduction, having obtained the decay
frequencies and knowing the cylinder dimensions, is to obtain the
diffusion parameters.

There are two inter-related steps to this procedure. First, a
buckling must be assigned to each cylinder, and then the values of the
decay frequencies (henceforth termed A) are fitted to a power-series
expansion in powers of the buckling to obtain the diffusion parameters.
The two steps are inter-related because the buckling is a function
(because of the extrapolation distance) of the linear coefficient of
the power series in the buckling.

The buckling of a cylinder of dimensions H cm. high and R cm.
in diameter is given by

2 u2

B - 1 5+ © 5 . (197)
[(H + e(H)] [R + e(R)]

The extrapolation distances e(H) and e(R) have the form:
e(#) = 2F_(3D)P (198)
e(rR) = F_(3D)a (199)

where Fe = 0.704 is the extrapolation-distance factor obtained for flat
vacuum boundaries by one-velocity transport theory (Weinberg and Wigner,
1958) assuming pure scattering, i.e., no absorption, D is the diffusion

coefficient, and P and Q are the correction factors (Chapter II).
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The coefficient of the linear term in the expansion

n
2 22 2K
Ve e aB s ay(B5) 4= ) g (57 (200)
k=0
is identified as:
2vo T 1/2
a; = (vD) = — <T—> D . (e01)
N 7o
Therefore,
a. T a
D= -2—0C_ (6,902 x 107) = . (202)

) 2v JT T

Equation @02)is the connecting link between the buckling and
the diffusion coefficient.

In order to solve for the implicit dependence on D an iterative
procedure was devised as follows:

First an estimate of D for the given temperature is made and
the buckling for each cylinder is calculated by Equation (197) at this
temperature.

Then the twelve value-pairs (ki, Bi) are used to perform a
linear least-squares fit to Equation (185) to the desired order in BE.
The coefficient aq is then used to recalculate D by Equation (202), and
the bucklings are recalculated using this new value of D. The least-

squares fitting procedure is then repeated with the new buckling values.

This iterative process is repeated until the values obtained for D agree
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within some predetermined error limit. The convergence criterion used

in the present work was

Dn - Dn+l

<1x10° (203)
The fitting procedure described here was coded for the computer
and the code (BIFIT LEAST SQUARES) is given in Appendix G.
This fitting was done by means of a code BIFIT, which has pro-
visions for explicit inclusion of errors in both parameters. The errors
in the ) values were obtained as described in Chapter IV and the errors

. 2 . . . .
in B are obtained from the dimension uncertainties:

2.2 ool <2 1/2
o <[ o (B o]
{ I L 5 lw4 2;1/2
= (e (sH)" ————=——~ (sR) P (204 )
([H + e(H)] (R + e(R)] |

The code solves this equation at each 32 computation and this
6B2 value is used in the least-squares fitting procedure.

This calculation was applied at each of the five temperatures,
and values of the parameters were obtained for linear quadratic, third-
power and fourth-power fits of )\ versus (Bg), i.e., with n [Equation
(200)] equal to 1, 2, 3, and 4. Table X shows the values obtained for
the coefficients in each of the four fits performed at each temperature.

It was necessary at this point to decide how many terms in the



TABLE X

n

PARAMETERS OBTAINED BY FITTING ) VERSUS B DATA TO VARTOUS ORDERS OF THE SERIES A = Z Eik(B2 )k

k=0
Temperature Parameter Order of Fitting
(°c.)
n=1 n =2 n=23 n=».4

CY (4.655 + 0.036) x 10° (4.485 £ 0.058) x 1¢® (4494 £ 0.094) x 10° ( 4.610 £ 0.149) x 1¢°

2 (3.062 £ 0.020) x 10* (3.298 £ 0.063) x 10* (3.279 £ 0.150) x 1¢* (2,996 £ 0.311) x 10*

-5 a -(3.73% £ 1.113) x 1¢° -(3.090 + 5.641) x 1C° (13.62 + 18.64 ) x 1C°

ay -{0.693 + 5.742) x 10° -(39.87 + 40.88 ) x 13

a, (28.36 + 29.05 ) x 1C°

a, (4.650 + 0.027) x 1¢° (L.445 £ 0.047) x 10° (4.483 £ 0.079) x 10° ( 4.680 £+ 0.118) x 20°

a (2.806 £ 0.017) x 10" (3.137 £ 0.061) x 10¢* (3.056 £ 0.140) x 1¢* ( 2.540 £+ 0.265) x 1¢*

-25 a, -(k.729 £ 0.986) x 107 -(1.831 + 5.071) x 1¢P (29.53 £ 16.02 ) x 10°

a, -(2.967 £ k.926) x 10° -(74.82 £ 34.31 ) x 10°

8, (50.35 £ 23.51 ) x 1C°

a, (4.638 + 0.0%31) x 10° (4.484 £ 0.050) x 107 (h.4k2 £ 0.086) x 10° (L.see £ 0.132) x 10°

a (2.579 £ 0.017) x 1¢* (2.819 £ 0.060) x 10* (2.905 £ 0.150) x 1¢* (2.69% £ 0.292) x 1¢*

-45 a, -(3.432 £ 0.972) x 10° -(6.334 + 5.327) x 10° ( 6.557 + 17.47 ) x 1¢°

a, (2.869 £ 5.034) x 10° -(27.0k = 37.7 ) x 10®

8, (21.15 + 26.61 ) x 10°

&, (4.590 £ 0.026) x 10° (4.463 £ 0.044) x 10° (4.395 £ 0.085) x 10° (4.305 £ 0.142) x 10°

a (2.448 + 0.016) x 1* (2.6L8 £ 0.055) x 1¢* (2.78% £ 0.150) x 10 (3.011 £ 0.313) x 1¢*

-65 a -{2.824 £ 0.877) x 10° -(7.384 £ 5.307) x 10° -(20.79 + 18.57 ) x 1(®

a, (4.553 £ 4.953) x 1C° (35.47 * 40.32 ) x 1P

a, -(22.17 + 28.37 ) x 1¢°

8, (%.597 £ 0.022) x 1¢° (4.499 £ 0.046) x 10° (4.504 £ 0.073) x 10° ( 4.584k £ 0.110) x 10°

a (2.160 £ 0.017) x 1¢° (2.320 £ 0.057) x 10* (2.309 £ 0.132) x 10¢* ( 2.089 £ 0.257) x 1¢*

-85 a, -(2.316 £ 0.920) x 10® -(1.916 £ L.754 ) x ACP (11.75 % 15.56 ) x 1@

ag (0.405 £ L4.504) x 107 -(31.59 + 33.25 ) x 17

g (21.60 + 22.62 ) x 10°

902
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series to use. Hobson, Calame, and Daitch (1963 ) performed a "computer
experiment" (which is free of the problems of errors and statistics)
based on a fairly simple model of neutron transport in water. They used
a Nelkin isotropic energy-exchange kernel and a Goertzel-Selengut-Nelkin
P-1 kernel in diffusion theory and included transport corrections for
the diffusion cooling coefficient. They point out that since the
parameters change as more terms are added, the correct value is the
asymptotic value as the number of terms becomes infinite. However, when
they repeated their calculations with artificial random errors normally
distributed, with mean-square deviations of one half and one per cent,
they found that the accuracy of the coefficients diminishes rapidly as
coefficients are added, and they conclude that one should fit to only a
quadratic in BE.

The present data bear out this conclusion very well. Figure 5k
shows the effect on the coefficients a, and a, as the number of terms
is increased, for the data at -2500. The same behavior is noted at the
other temperatures. There i1s a real change in these two parameters in
going fromn = 1 to n = 2. Thereafter the increase in errors is rapid,
and the errors become so large that the values for ao and al found with
n=5%andn =4 are consistent with those found using n = 2. This is
indicated by the dotted lines in Figure S4 which is a level line at the
value of the parameter at n = 2. Further, the trend is not monotonic
with increasing n in this case, though it is for some other temperatures.
However, in most cases, the values of a, and a_ obtained with n = 2 are

1

consistent with those obtained with larger n within the errors.
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Figure 55 shows the effect of n on a2 and aB. As far as a2 is concerned,
the value obtained with n = 3 is consistent with that for n = 2, though
the size of the error on the n = 3 value makes this of little signifi-

cance. With n = 4 the error in a_, is much larger than the value, so no

2
significance can be attached to this value, although, again, it is
consistent with the value found using n = 2.

Both the values for au have errors much larger than tThe value,
so that no information about the existence of such a term can be
inferred, particularly since the two values have opposite signs. A
value of zero i1s quite consistent with the data. The same holds true

for the single value obtained for a_ by fitting to B8 terms: its error

>
is greater than the value, so that no significance can be attached to 1it.
These results, as well as the calculations by Hobson, Calame,

and Daitch (1965), thus agree that the most suitable choice of a model to

fit the decay data is

2 4
M=a_ +aB +aB . (205)

The column for n = 2 in Table X (page 206) thus lists the final
data from the present experiments. The interpretation of these results
will be treated in the next Chapter.

Figures 56, 57, 58, and 59 are plots of \ versus B with n = 1,
2, %, and 4 at -45°C. PFigures 60, 61, 62, and 63 are plots of the

2 o o] o] o] ‘
curves of A\ versus B~ at -57C., -25 C., -65 C., and -85 C., respectively
with n = 2. In each of these figures the data points and the fitted

curve as well as the asymptote to the curve at B2 = 0 are shown. The
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the equation A\ = a5 + alB2 + agB . The straight line shows the slope
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cross-bars on each data point, both vertically and horizontally,
represent the uncertainties in B2 and A\ respectively.

The bucklings are temperature dependent through Equations (199)
and (202) because of the fact that the diffusion coefficient is tempera-
ture dependent, which affects the extrapolation distance. Table XI
gives the bucklings for each cylinder and temperature. The values are

those obtained by the iterative procedure with n = 2.



TABLE XI

VALUES OF BUCKLING FOR EACH ICE CYLINDER AT EACH TEMPERATURE

Cylinder
-5 -25°¢. -45°¢. -65°¢C. -85°¢.
Number
1 .0393 + 0.0010 .0393 + 0.0010 .0394 + 0.0010 .0395 £ 0.0010 0396 + 0.0010
2 L0618 + 0.0008 .0618 + 0.0008 .0621 + 0.0008 .0621 £ 0.0008 L0624 + 0.0009
3 L0686 + 0.0011 L0687 + 0.0011 L0689 + 0.0011 L0690 + 0.0011 L0693 + 0.0011
Y4 L0745 + 0.0011 0746 £ 0.0011 L0748 + 0.0011 L0749 + 0.0011 .0752 + 0.0011
5 .0875 + 0.0013 .0876 + 0.0013 .0880 + 0.0013 .0881 + 0.0013 .0885 + 0.0013
6 134k + 0.0012 L1346 £ 0.0012 1352 + 0.0012 .1354 + 0.0012 1362 + 0.0012
7 .2469 + 0.0016 2473 £ 0.0016 .2490 + 0.0017 249k + 0.0017 .2514 + 0.0017
8 .3892 + 0.0028 .3899 + 0.0028 .3933 + 0.0029 3941 + 0.0029 3981 + 0.0029
9 .5101 + 0.0031 .5110 + 0.0031 .5161 + 0.0032 5174 + 0.0032 .5233 + 0.0033
10 L5964 + 0.0074 .5978 £ 0.007k4 .6058 + 0.0076 .6078 £ 0.0076 6172 + 0.0078
11 .6519 + 0.0038 .6532 + 0.0038 L6606 + 0.0039 L6624 + 0.0039 .6710 £ 0.0040
12 L7356 = .odus L7571 £ 0.0045 .TH60 £ 0.0046 L7482 + 0.0046 L7586 £ 0.0047

0cc



CHAPTER V
RESULTS AND DISCUSSION

The objectives of the experiments described in this work were (1)
to establish whether an asymptotic spectrum evidenced by constant decay
frequency could be established in ice over the temperature range avail-
able and (2) to measure the diffusion parameters in ice as function of

temperature.
I. ATTAINMENT OF ASYMPTOTIC DECAY

With respect to the former objective, the establishment of an
asymptotic spectrum would be evidenced by an unvarying decay frequency as
the waiting time after the neutron injection is increased. If a "trapping"
effect, like that observed in beryllium were present then the measured
decay frequencies would continue to decrease with time. As has already
been discussed, the analysis of the data for cylinders Number 1 through
8 showed no such effect, rather a somewhat opposite result attributed to
dead-time effects. In the smallest cylinders there was evidence for a
small component with lower decay frequency, which appeared not to depend
on buckling or temperature within the rather wide limits of error with
which it could be determined. Since the time range available for
analyses within one set of eighteen-channel data was rather short, a
series of measurements covering several temperatures and bucklings

were performed with extended waiting times, in order to check on the

constancy of the decay frequency. In each case the shorter waiting time
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is the standard waiting time established as described in Chapter IIT,
and the result is that already quoted for the case at hand. The data
obtained with longer waiting time involved much higher relative back-~
grounds, and fewer counts, both due to the effects of the longer waiting
time.

The results shown in Table XTI confirm the results of the analyses
of the regular data. No effect of changing spectrum is observed. How-
ever, a small slower component which was ascribed to room return or
similar effects has already been subtracted from the small-cylinder data
in the process of the analysis. A trapping effect would also appear as
a small slower decay component, though its magnitude should be sensitive
to temperature. While such a temperature effect was not observed, errors
in the parameters of the second decay mode are large enough so that it
might be possible for a temperature effect on the relative amplitude of
the second component to be masked by the fluctuations. In the cylinders
of intermediate size, such as Number 7 and Number 8, no persistent-decay
effect was observed at any temperature, whereas, if a trapping effect
were present it might be expected to appear at low temperatures in even
intermediate-sized cylinders.

In summary, the data supports the conclusion that there is no
trapping effect, and all the data collected can be understood without
recourse to such an effect. However, because of the presence of the
effect ascribed to "room-return" with the assoclated very large un-
certainties in the amplitude and frequency of the second decay component
fitted to the data, the possibility of the presence of a small trapping

effect is not absolute eliminated.
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TABLE XII

EFFECT OF EXTENDED WAITING TIME
ON MEASURED DECAY FREQUENCIES

Cylinder Temperature Waiting Time Decay Constant
Number (oc.) (usec.) (10° sec.”')
280 6.266 + 0.022

3 -65
440 6.250 = 0.050
280 8.052 + 0.073

6 -65
Loo 7.988 £ 0.082
175 16.668 £ 0.053

8 -5
250 16.642 £+ 0.088
175 1%.310 £ 0.100

8 -85
275 13.357 + 0.121
180 16.085 £ 0.129

9 -50
220 16.177 £ 0.220
140 19.073% + 0.34kh

11 -85
220 18.827 + O.hhkL
140 26.771 + 0.383

12 -5
220 26.801 + 0.543
140 20.808 £ 0.236

12 -85

220 21.107 £ 0.355
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ITI. DIFFUSION PARAMETERS - CCMPARISON WITH

OTHER EXPERIMENTAL RESULTS

It has been shown, at the end of the previous section, that the
decay data do not support assignment of nonzero values to coefficients
in powers of B2 greater than two. Accordingly, the data was fitted to
a quadratic function in B2 and three parameters obtained which are
identified as a_ = WZ;T, a, = ZTFDTTO, and a, = C. Each will be dis-
cussed in turn and its values compared with calculated and experimental

values obtained by others.

The absorption term, vZa. It has been frequently stated that the

absorption cross section of hydrogen for thermal neutrons is proportional

to (1/v). 1If this is the case then oa(v) = ca(vo)(vo/v), and

e8] 00

2 2
ca(vo)-vo L/\ n(v)(1/v) av oa(vo).vo L/ﬁ v eV Jvo v
o o

2
a o 00 ﬁao'

k/\ n(v) dav L/\ v e-vg/vog av

e}

(206)

As a standard, v, is taken to be 2.2 x 1O5 cm. /sec. which is very
close to the most probable velocity at 20°C. (2.198 x lO5 cm. [sec.).
Figure 64 shows the results obtained at each of the five tempera-

tures. The left-hand ordinates show the values of (vZa) and the right-
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Figure 64. Measured values of vZa as function of ice temperature.
The values of o, are indicated on the right-hand ordinate scale in the

table.
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hand ordinates are the microscopic "2,200 m.sec." cross-section values
calculated from them. The errors in the microscopic cross section in-
clude a contribution for the ice density uncertainty. In accordance
with the experimental data the ice density was taken as the theoretical
density. Therefore, allowance was made for an error only in the direc-
tion of decreased density. The error bars in the figure are for the
errors in ag only. If the absorption cross section did not vary as

l/v then the wvalue of a, would vary with temperature. Within the
limits of error of the experiment no such variation is observed, con-
firming the l/v nature of this cross section.

In the present work care was taken to use pure water and the
measurements were extended to small bucklings in order to obtain a pre-
cise value of (vZa). Indeed, the error limits obtained are of the same
order of magnitude as those of the other best measurements of ca(H).

Care was, therefore, taken in computing the error limits. The
sources of error considered were: the errors due to the uncertainties
in the decay constants, the errors due to the uncertainties in the
cylinder dimensions, and the error iun the ice density.

The errors in the decay frequencies are independent for each of
the five values obtained, but the errors dvue to the ice density and the
dimension uncertainties are not. The error contribution due to the
dimension uncertainties was obtained by performing a fit of the A versus
B2 equation with the BIFIT LEAST SQUARES code, assigning zero errors to
the dimensions. The remaining uncertainty in the value of (vZa), which

amounted to about 80 per cent of the total uncertainty was ascribed to
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the uncertainty in the decay frequencies. Thus, the error in the mean

value of ca was computed by

2 2 _1/2
w3 LT [T}
2 _1/2
s {[] o5 ) [] )

(n

where [AT )} is the total error in the value of (vZa) obtained at

temperature Tn’ [Aén)} is the error in (vZa) at temperature Tn, assum-
o}

ing the dimension errors to be zero, (AD) 1s the mean error due to the
dimension uncertainties, and A is the final mean error in the value of
(vZa). The error in the mean value of Ga(H) was then obtained by

(A) (Mol. Wt.) +0p

€ = . o = (7.407 x 10~ )(A)
oo

hﬁp

where e is the error in o, v_ = 2.198 x 107 cm. /sec., P = 0.917 g./cm.5,
NO is Avogadro's Number, and (Mol. Wt.) is the molecular welght per
hydrogen atom equal to 9.0.

The value of Ga(H) obtained is

o, (H) = (%31.5 +5 7 ) x 1072 barns .

2,200 m. /sec.
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The error limits for this parameter are of the same order of magni-
tude as those quoted for this cross section in the literature, so this
experiment can be considered as an independent additional measurement
of Ga(H). The "Barn Book" (Stehn et al., 1964) lists a number of mea-
surements, and gives a recommended value of (332 + 2) x lO"5 barns, in
excellent agreement with the present results. Some other recent measure-
ments include the work of Kay and Harris (1964), who obtained (328 + L)

x 1072 barns, Wynchank and Cox (1963), who found (334.7 + 0.8) barns,
Meadows and Whalen (1961), who measured (335 + 5) x 1072 barns, all
using measurements of the neutron lifetime in water, and Cummins (1957),
who used a pile oscillator and found (%29 + 2) x 1072 varns. Many other
measurements are reported, with generally consistent results. As early
as 1936 Amaldi and Fermi reported a magnitude of 0.31 barn and in 1942
Manley, Haworth, and Luebke found a value of (320 + 20) x 107 barns by

a neutron lifetime measurement.

The diffusion coefficient, (vD). PFigure 65 shows the values

obtained for (VD), as well as the values in ice obtained by other workers.

Results in water useful for extrapolating to 0°C. are also shown. In order

to make direct comparison possible the data in liquid water have been scaled

to the density of ice by the relationship D /D ,., = o./o.  where w, i, and
w/ Tw(d) i/ w

w(i) refer respectively to water, ice, and water of the artificial density

of ice (0.917 g./cm.5) in all the discussion following. The values

of (vD) are consistent with a linear temperature dependence within the

errors and the line shown in the figure is the result of weighted linear
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Figure 65. Measured values of (vD) in ice as function of
temperature. Results of other measurements in ice are also shown. The

results of others in liquid H.O, which could be extrapolated to find

2
(vD) (0°C.) are also shown. The values above 0°C. have been scaled

by 1.0905 to correspond to the same density as that of ice.
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least squares fit about the temperature -45°C. (the center of the range

of measured values). The result is:

(vD) (T°C.) = [(28.46 + 0.28) x 10°

-1

+ (T9%. + 45)(1.22 + 0.10) x 102] em.® sec. (209)

The only other measured values of (vD) in ice are those of Antonov
et al. (1960, 1962) and Dlouhy and Kvitek (1962). The values of (vD) of
Antonov et al. must be obtained by combining results from two separate
papers. In one (Antonov et al., 1960) Antonov published values of the
ratio of values of (vD) and C obtained in water at 0°C. to values in ice

at 0°C., -80°C., and -196°C. The ratios for D found by Antonov are:
(vD)i(OOC.)/(VD)W(OOC.) = (1.0k + 0.02)
(vD)i(-8O°C.)/(VD)W(OOC.) = (0.80 + 0.06)

(vD)i(—l96OC.)/(VD)W(OOC.) = (0.%2 + 0.06) .

The numerical values of the ratio at 0°C. are given, but the ratios
at -80°C. and -19600. are presented only in graphical form and were
extracted from the figure. In order to permit direct comparison with
the present data, these ratios were converted to absolute values by
reference to Antonov et al. (1962) in which a measured value of
(vD)(21°C.) is given, together with a quadratic formula for values at
other temperatures, based on measurements of thirteen temperature points

ranging from 0.5°C. to 286°C. The equation is:
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= (0.9%4 + 0.028) + (0.289 + 0.009) x 10747

L 2

+ (0.106 + 0.003) x 107 T (210)

2 .. .
and the value at 21°C. is (0.355 + 0.010) x 10° cm. /sec. Combining this
number with the ratio values, one arrives at a result of (VD)W(OOC.) =

(33.157 + 1.36) x 10° cm.2 sec. ™S, This leads to:

(vD),(0%C.) = (34.48 + 1.57) x 10° em.” sec.”™

(vD),(-80°C.) = (26.52 ¢ 2.27) x 10” em.” sec. ™

(vD)i(-l96°C.) = (10.62 + 2.32) x 107 em.? sec.”t

However, in the same paper there is also a quoted value of (vD)w(O.BOC.)/
(vD)w(21°o.) = (0.91 + 0.03) Using this ratio a value of (vD)w(OOC.) =

(32.22 + 1.26) x 10° chg sec. ™  1is obtained, which leads to:

(vD)i(OOC.) = (33.51 + 1.35) x lO5 cm.2 sec.—l
(vD), £-80°C.) = (25.77 £ 2.20) x 10° cem.” sec. ™
> -1

(vD), (-196°C.) = (10.31 + 2.19) x 10° em.© sec.

i

1+

Since the latter set of values is based on an experimental point very
close to 0°C. and since it leads to smaller errors in the computed (vD)
values in ice, these values are taken to be the best avallable from the
work of Antonov et al. and are plotted in the figure.

Dlouhy and Kvitek (1962) reported values of (vD) and C. at 20°¢.,

and 0°C. in water, and at 0°C. in ice. Their value of (vD) in ice is:
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(vD)i(OOC.) = (3.46 + 1.0) x lO5 cm.2 sec.“l. The two values found by

Antonov et al. and the value found by Dlouhy and Kvitek in ice all agree,

within the error limits, with the values obtained in the present work.
Considering the behavior of (vD) across the phase transition, both

Antonov et al. and Dlouhy and Kvitek found a discontinuity in (vD) at

0°C. Antonov et al. reported
(vD) (ooc /(VD )(ooc = (0.95 + 0.02)

and Dlouhy and Kvitek report a value for water of (vD)w(OOC.) = (%2.4 +

Z -
1.0) x 107 cm.2 sec. 1 which leads to a ratio of:

(vD), (0°C.) /(VD) ) (09C.) = (0.98 + 0.0k4),

A large number of measurements of the diffusion parameters in water
are in the literature, and these are summarized in Table XIII. Several
of these include values of (vD) over a range of temperatures, so that
the value of (VD)W(OOC.) can be obtained by extrapolation. Specifically
Kuchle (1960), Dio and Schopper (1958), and Von Dardel and Sjostrand
(1954) have made measurements from which the value of (VD)W(OOC.) was ob-
tained by extrapolation. Kuchle reports measurements at 22°C., L0°C.,
60°C., and 80°C. A linear fit was made with his values of (vD) (shown
in Figure 65, p. 229); it leads to a value of (vD)(0°C.) = (35.20 + 0.9)
X lO5 cm.2 sec.—l. Dio and Schopper report results at 1900., h9oC., and
759C. A linear extrapolation using their points yields a value of:
(35.50 + 1.h4) x 107 em.? sec.™t for (vD)w(i)(OoC.). This fit is also

shown in Figure 65.



TABLE XIII

MEASURED DIFFUSION PARAMETERS IN HpO AND IN HoO OF ICE-EQUIVALENT DENSITY

Experimenter and Year™

Method

Temperature
o

(vD) (Ice Density)

—C {Ice Den

(em.* sec.

sity)
BN

Scott, Thomson, and Wright (1954%)
VonDardel and Sjdstrand (1954}
Antonov et al. {1955)

Bracci and Coceva (1956)
Campbell and Stelson (1956)

Beckurts and Kluber (1958)

Dio (1958)

Dio and Schopper (1958)

Kichle (1960)

. Antonov et al. (1961)

Antonov et al. (1962)

Lopez and Beyster (1962}

Bretscher (1962)

Starr and Koppel (1962)

Dlouhy and Kvitek (1962)

Antonov et al. (1962)

Springer et al. (1964)

Pal, Bod, and Szatmary (1965)

DeJuren (1965}

Present Work (1965)

Pulsed Neutron
Pulsed Neutron
Pulsed Neutron
Pulsed Neutron
Pulsed Neutron
Poisoning
Pulsed Neutron

Pulsed Neutron
"

Pulsed Neutron
n

o

n
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"

“
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b
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VonDardel and Sjbstrand report a value at 2200., and a tempera-

ture dependence of (0.0042 + 0.0004) per °C. This yields:

(vD)w(i)(OOC.) = (35.97 + 0.90) x 10° cm.? ﬁec._l.
Combining these extrapolated results with the two values from

Antonov et al. and Dlouhy and Kvitek one obtains a mean value of:

-1

(vD) (09c.) = (35.%2 + 0.71) x 10° em.® sec.

w(i)

With this value and the present result of (vD)i(OOC.) = 33.95 + 0.73) x 100
cm. 2 sec._l, the ratio of (vD) in ice and ice-equivalent water at 0°C.

is:
(vD)i(OOC.)/(vD)W(i)(OOC.) = (0.96 + 0.03) ,

which agrees, within the errors, with the ratios of Antonov et al. and
of Dlouhy and Kvitek.

It is, therefore, concluded that a real discontinuity in the value
of (vD) exists across the water-ice phase transition, independent of the
density change. The result of Dlouh§ and Kvitek would also be consistent
with the opposite conclusion, but since all three independent experiments
find a discontinuity in the same sense with magnitudes consistent within
the errors, the reality of this phenomenon seems to be well established.

The mean results, combining the three ratio values is

(vD (o°c /(vD ) (0%.) = (0.96 + 0.02).
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The diffusion cooling coefficient, C. The results of the present

work for the diffusion cooling coefficient are shown in Figure 66,

together with the results of other experiments in ice and water.

The same sources reporting values of (vD) in ice also supply mea-
surements of C, namely those of Antonov et al. and of Dlouh& and Kvitek.
Dlovhy and Kvitek obtained a value of Ci(OOC.) = -(8.30 + 2.0) x 100
cm.br sec._l. The results obtained by Antonov et al. must, again, be
inferred from reported ratio values, relative to the value in water at
0°C. and the latter in turn must be obtained by making use of a result
reported by Antonov et al. at 219C. and ratio values at other water
temperatures.

Discussing the latter procedure first, Antonov and co-workers

published (Antonov et al., 1961) a value of C in water at 21°C. of:

Cw(2lOC.) = -(4.0 + 1.0) x lO5 cm.u sec. ™t

The same paper lists values of the ratio of ¢ to the value at 21°C. for
a number of temperatures ranging from 0.5°C. to 286°C. Using these ratio
values a linear least-squares fit was performed to obtain the best value

for 0°C., with the result:

CW(OOC.) = -(3.7 + 1.0) x 107 cm.br sec. ~t

In (Antonov et al., 1960) ratios are given for the values of C

in ice at 9°C., -80°C., and -196°C., relative to water at 0°C. The
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Figure 66. Measured value of C, the diffusion cooling coefficient,
in ice as function of temperature. Results of other measurements in ice
are also shown, including results in liquid H20, which could be extrap-
olated to find C (OOC.). The values above 0°C. have been scaled by
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to correspond to the same density as that of ice.
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latter two are reported only in graphical form from which numerical

values were obtained. For ice at 0°C. the ratio measured by Antonov et

al. 1s:
¢, (0%.) /e (0°%C.) = (2.5 £ 0.4) .

Conbining this with the value in water at 0°C. discussed above one ob-

tains a value in ice of:

ci(ooc.) = -(9.2 + 2.9) x 10° cm.” sec.

The ratio values obtained from the graph are:

¢, (-80%-.)/c_(0%.) = (1.65 + 0.25),

oi(—196°c.)/cw(o°c.) = (0.7 + 0.25),
which gives values of
C,(-80°.) = ~(6.0 + k1) x 107 em.” sec.
¢,(-196°C.) = ~(2.6 + 1.1) x 10° cm. " sec.

There are also, in addition to the results of Antonov et al. just
discussed, several other measurements of C for water in the literature.
Again, in order to facilitate comparison with the ice data, the results
in water are scaled to compensate for the density difference. In this
case, since the dimensions of C are (cm. sec._l) = (cm.5 x velocity),
the values of C are proportional to the inverse cube of the density.

Therefore, all the water values are scaled by:
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C1)/C, = (0.917) 72 = 1.297 .

The only other workers reporting values of C for several temperatures,
thus permitting extrapolation to OOC., are Dio and Schopper (1958),
and Kuchle (1960). 1In addition, Dlouh§ and sztek reported a direct
measurement in water at 0°C.

A weighted linear fit using the three values reported by Dio at

L

19°c., 49%., and 75°C., gave CW( )(ooc.) = -(3.8 + 2.5) x 107 cm.t sec.

i
Fitting the four values of Kuchle, at 22°C., 40°C., 60°C., and 80°C. to
a linear model also led to the identical extrapolated value of

C (0°%C.) = =(3.8 + 2.3) x 100 cm.u sec.-l, which, in view of the

w(i)
large errors must be considered fortuitous. The value of Dlouh§ and

Kvitek at the same temperature is -(5.4 + 1.3) x lO5 cm.u sec._l. Com-
bining the four values (those of Antonov et al., Dlouh§ and Kvitek, Dio

and Schopper, and Kﬁchle) a mean value of C at the freezing point in

ice-equivalent water is found to be:

Cw(i>(OOC.) = -(b.5 + 1.1) x 10° cm.u sec.-l.

The results of the present work can be fitted to a linear de-

pendence on the temperature, within the limits of error. The result is
c,(T0c.) = -[(3.43 + 0.32) x 107

+ (T + 45)(2.55 + 1.16) x 10] em. sec.-l,

(211)

which then gives a value at 0°C. of
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¢,(0°C.) = (.58 + 0.84) x 10° em." sec.

It is clear that the present results do not agree, even within
the large limits on the errors, with the values reported by Antonov et
al. and Dlou_h§ and Kvitek. The present results, when compared with the
average value of the parameter C in ice-equivalent water at 0°c. show

only an insignificant discontinuity across the phase transition of
¢ (0°.) /e , . (0°C.) = (1.02 + 0.31
L(0°¢.) /o, 4y(0°C.) = (1.02 + 0.31)

The large uncertainty does not permit the preclusion of a discontinuity
of either sign. However, the very large factor of 1.935 found by Antonov
et al. or of 1.53 found by Dlouh§'and Kvitek does not appear to be con-
sistent with the present results. Although a linear fit is capable of
representing the variation of C with temperature within the limits of
error, there are theoretical reasons for preferring a different fitting

model. This will be discussed further below.
ITT. DISCUSSION OF RESULTS

The result of the present experiments with respect to the absorp-
tion cross section require no further discussion. The 1/v dependence of
the cross section and its magnitude have long been well established, and

the values found here agree with those of previous measurements.
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Diffusion coefficient. With regard to the results of the diffusion

coefficient, there are several aspects which warrant discussion. First,
there is the fact that the diffusion coefficient, (vD), diminishes
monotonically and, within the limits of accuracy of the experiment,
linearly, with temperature. If the linear fitting is extrapolated to

0%K. then D(0%K.) = (0.h47 +2.02) x 10° cm.2 sec. ™. Thus the extrapolated
diffusion coefficient approaches zero, within the limits of accuracy, as
the temperature drops to 0°K. Since v approaches zero also, this 1is to

be expected unless D becomes very large. The reduction of (vD) with
temperature has two components, the change in v and the change in D.
Separating out the change in v, the variation of D with temperature is
shown in Figure 67. Within the limits of error, this curve fits a
straight line also. Clearly it is not possible for both D and (vD)

to vary linearly with temperature (since v is proportional to. /T ),
but the deviations are small enough over the limited temperature range
covered and the uncertainties are of such magnitude that it is not
possible to determine which, if either, 1s exactly proportional to (v)l/e,
that is, proportional to the temperature.

The second interesting question concerns the discontinuity at the
water-ice phase transition. Since D = l/BNcs(l - E) this effect is due
to either a change in g, or a change in (1 - u) or both. There is some
experimental evidence available concerning the change in both the cross

section and the mean scattering angle. Whittemore and McReynolds (1961)

measured the total scattering cross section in water at SOC. and in ice
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at -5°C. as a Tunction of neutron energy using a LINAC neutron source
with time-of-flight methods. Figure 68 shows the results obtained. 1In
additlion to the large effect for very low temperature there is a signi-
ficent difference of opposite sign between the ice and water cross sec-
tions in the region where the spectrum has its maximum, amounting to
gbout 5.5 to & per cent in the energy region from 0.0l to 0.028 ev.,
in which about 65 per cent of the neutrons are, assuming a Maxwellian

spectrum. A graphical solution of the equation,

ag

(ice) L/\M<E) Oéice) (%) a& }:N&péice> (AE)k
k

s
O(waterj

S L/\M(E) Géwater) (E) aE }jN%OQEater) (AE>k
k

= 1.03k + 0.018

(212)

was performed by making use of Figure 68, with the result shown. It is
interesting to observe that for very low incident neutron energies the
scattering cross section in water 1s larger than that in ice. This 1is
also borne out by a result obtained by Heinloth and Springer (1961), who
measured the total cross section per H2O molecule over a wide temperature
range, including the water-ice transition for several incident neutron
energies from 0.018 x 1077 to 0.0%6 eV. The results are shown in

Figure 69 and the appropriate values are entered in Figure 68. 0ddly
enough, these workers did not observe the region of higher ice cross sec-

tion because, as Figure 68 makes clear, their measured initial energies

skip the energy domain between 0.0027 and 0.0%6 eV., which is just the
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energy region where most of the neutrons are, and also the energy region
where the significant difference between ice and water scattering cross
sections is to be found.

With regard to the effect of the phase transition on the parameter
(1L - ), Reinsch and Springer (1961) have measured the "single-differ-

ential"” scattering cross section

o @]
o(8) = L/\ dE' o(E-E',6,T) (213)
o]

for neutrons of initial energies 0.039 and 0.078 eV. in water at 2100.,
and in ice at -150, -559, and -160°C. Figure 70 shows their result.
The most significant aspect of this is that the angular distribution is
almost completely independent of the phase of the material, except for
a small oscillatory region at small angles which appears in ice and not
in water. This small effect is due to the coherent scattering, which
is seen to have little effect, as was expected. Reinsch and Springer
have calculated the mean cosine of the scattering angle, E, obtained

from these measurements and give the following results for E:

Neutron Energy Temperature
-15°%. +21°¢.
0.039 eV. 0.21 + 0.02 0.22 + 0.01

0.078 eV. 0.28 + 0.01  0.27 + 0.01
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Thus, the mean scattering angle at each neutron energy is the same
whether the HEO is in the solid or liquid state.

The implication of these results by Heinloth and Springer, and
Whittemore and McReynolds is clear. The data give support to the con-
clusion that the observed discontinuity in (vD) is real, and that is must
be almost completely due to the change in the total cross section rather
than to changes in the angular distribution; first, because no change in
(1 - ) was observed and, second, because within the error limits the
measured change in Eé is of the right size to explain the observed dis-
continuity. Also, the fact that the coherence effects are observable,
but are small and have no effect on the mean scattering angle, confirms
the supposition that these effects are negligible for the present experi-
ments.

The following reason for the somewhat surprising lack of effect
of the ice bonding on the angular distributions is suggested by Reinsch
end Springer: The scattering cross section o(6) consists of a coherent
and an incoherent part, of which the incoherent part is seen to pre-
dominate strongly. The incoherent part can be divided into an elastic

and an inelastic component. The elastic component is proportional to

the Debye-Waller factor

Wie,T) = e (21%)

where



U

oW = 6kT2 (E + E' - 2./EE' cos6) (1 +

B M(k®) 36T

~ 16 n2u2 sin2 g// %2 . (215)

In this equation ® is the Debye temperature which is = 250°K. in
ice and ~ 120°K. in water near freezing, u is the mean amplitude of the
displacements (in which the translational part is dominant) and A is the
neutron wavelength.

The elastic component thus decreases more rapidly with angle in
water than in ice due to the change in the Debye temperature. However,
the inelastic component of the incoherent scattering, which has a rather
broad, flat maximum at about 600, is larger in water than in ice, because
more levels can be excited (to give inelastic processes) as the Debye
temperature drops. These two effects, Springer and Reinsch suggest,
largely cancel each other and account for the observed fact that the
scattering curves are almost identical in ice and water. This result
also confirms the fact that the additional hindering effect on the trans-
lational motion of the molecules caused by freezing is not important.

It is worth emphasizing here again that the apparent similarity
between water and ice is due to the fact that the liqulid water molecule
behaves largely as though it were bound in a '"quasi-crystal." A model
for water based on this viewpoint was developed by Singwi and Sjolander
(1960), and this view also underlies the Nelkin model, which treats

translational motions in water molecules as normal modes of vibration



2hg

about lattice positions. (Nelkin finds that despite such "binding" in
liquid water the translations can be treated as free.) This quasi-
crystal model is experimentally verifiable by scattering experiments;
for example, Brockhouse (1959) observed an elastic peak in the scattered
neutron spectrum from water. The main part of the low-energy cross sec-
tion comes from translational modes of vibration with periods of the
order of 5 x 10—15 sec., whereas according to Singwl and SjSlander the
mean time a molecule spends at a 'lattice position' is of the order of

5 % lO—12 sec., so that on the average a molecule will execute some ten
vibrations about a lattice position before jumping to another lattice-
like position.

An interesting model for considering this effect is discussed by
Gossman (1962), who speaks of a "Schollenmodell" or "ice-floe" model.
The water is treated as a saturated solution of ice-like domains or
floes. Gossman finds that in water at 0°C. some 85 per cent of the
water must be treated as being in ice-like clumps to account for the

observed scattering of cold neutrons with 0.00018 eV. initial energy.

Diffusion cooling coefficient. The temperature dependence of the

diffusion cooling coefficient, C, may be considered to be due to the
combined action of two mechanisms. In the theoretical discussion of C

the relation was derived

2 —
¢ . D) [1+29(———122§—J. (100)



250

(The minus sign here arises because in this work the Bu term has been

defined as +CBM.)

Nelkin (1958), using a variational calculation and assuming that

A, = K&, obtained the relation

2
¢ - o lax 1/2)" J/x (vD)® (216)

Ve,

where N 1s the atomic density and VT = (2kT/m)l/2.

change with temperature as (l/v)(vD)2 (neglecting density changes) and

C therefore will

also inversely with ME'

Now %tr &« l/ctr = 1/(1 =) o - Beyster, Young, Neill, and Mowry
(1965) have published measured values of p(E) in water. Combining this
information with the scattering cross section data of Whittemore and
McReynolds (1961) shown in Figure 68 (page 243 a curve for Ktr as func-
tion of energy is obtained. This curve is shown in Figure T71. Curves
of Ktr vs. neutron energy calculated on the model xtr = kx B are also
shown, fitted to agree with the experimental curve at 0.02 eV., which is
near the maximum in the neutron energy distribution. The experimental
shape is not in complete agreement with the exponential model, but for
& = 0.5 the fit 1s reasonably good in the most important energy range
from 0.0l to 0.08 eV. It will therefore be assumed that o does not

change with temperature and may be taken to have the value of 0.5.
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The WNelkin expression for C can be made to fit any one experimental
value of C by treating Mé as a free parameter. This was done using the
point at -45°C. which is in the center of the measured temperature range
and where there is a close correspondence between the measured value and

the value of the straight line fit:

(@ + 1/2)° /x [(vD)(-h5%C.) ]
vT(-E5°c.) c(-459C.) N

o]
M2(-M5 c.)

(35.1 + 3.3)b. (217)

To determine the change of M2 with temperature, the value of C was
calculated assuming a temperature-independent value of M2 = 35.1 b. and
taking o = 0.5. TFigure 72 shows a plot of C(T) éalculated in this way
together with the experimental values of C over the measured temperature
range. The curve for C calculated with ithe assumption of a constant value
of M2 is seen to agree quite well with the experimental results. The
calculated curve of C vs. T is not linear, since, assuming that (vD) is

proportional to T, one has

2 2
- (1 cc%D—)-—oc-T——oc 'I'l’5 (218)
T T
and therefore,
ac(T) o

However, the nonlinearity causes a change of only 16 per cent in the
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slope from -5°C. to -85°C. Thus, within the limits of error, the results
support the conclusion that M2 1s unchanged with temperature over the
range measured, and has the value of (35.1 + 3.%3) b. obtained above.
It should be pointed out that the slope of the calculated curve does not
depend on the choice of & but only on the temperature variation of
(l/v)(vD)g. However, the value of M, does depend on this choice.
Figure 73 shows the effect on M, (-45°C.) of the choice of Q.

In view of the large errors in C it is not certain what form of
model is the most reasonable to assume in fitting to the data. A
theoretical consideration of the behavior of the parameter C can, however,
give information on the best choice of model. With (vD) fitted to a

linear temperature dependence in %K. the result is:

(vD)(T9K.) = [(0.047 + 0.202) + (0.01225 + 0.0087).(T°K.)] x 10* em.? sec. ™.

(220)

Since (vD)(0%K.) is zero within the limits of error the assumption that

(vD) is proportional to T appears valid and one may write
(vD) (T°K.) = kT (221)

where K = 122.5 cm.2 sec.-l/(oK.). With this temperature dependence of

(vD) one may vwrite:

k'(vD)2 1 k' Kg T5/2 L -1

(T)l/2 . ME(T) = cm.  sec. (222)

L, (T) ,

c(T) = -

27

where k' = (o + 1/2)2‘/KT0/NVO = 2.248 x 107" with o = 0.5. Then
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v m3/2
M(T) _ k' T
c(m)
where k" = k! K2 = 33.7h x lO_24 cm.6 sec. T (OK-)—B/E, and

a(T) (3/2) k" Tl/2 c(rT) - k" T5/2 fac(T) /aT]
at [c(T) 1°

]

(223)

Note first that, if [dC(T)/aT] = (3/2T)C(T) then Mé(T) is independent of
temperature. Thus, the slope of C(T) at 0°C. which would result from a

temperature~independent value of M2 is calculated to be:

ac(T) ) 4.58 x 107
a7 | = (3/8) ==,

= 25.2 cm.)+ sec.-l/(oK.)
T=0°C.

and at -85°C.:

dC(T)I

5 -
T = (3/2) g;é%g%_;g_ = 18.9 cm.“ sec. l/(OK.)

T=-85°C.
The measured value, from the linear fit to C(T), is

dC(T)I

n 1o
T = 25.5 + 11.6 cm. sec. ~/°C.

exp.

Within the error limits, therefore, the conclusion that M2 is independent
of energy is justified. However Mé represents the energy-exchange cross
section between the neutron and the crystal lattice, and, therefore, as

the temperature approaches OOK., Mé should also decrease, since more and
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more of the inelastic processes by which energy exchange occurs become
unavailable as the temperature decreases. The linear fit of C, however,
would result in increasing values of Mé as the temperature drops, because
of the positive intercept of C(T).

The ratio of two values of Mé can be written as

M(T) v, ( D) C(T - bry
Tt N e S

where a and b are the coefficients of the linear fit for C. Then, using

the linear fit to C in absolute temperature units

C(T°K.) = [(2.45 + 2.65) - (0.0258 + 0.0117)(T°K.)] x 100 cm.h sec.’l,
(225)
one has
(188%%.)
E—-———__——' = 1.15 .
M, (268°K. )

In fact, at T = a/b = 950K., Mé would become infinite, and below
that Mé would be negative. To avold such a catastrophe to Mé, with the
minimum change in the fitting model, it will be assumed that C goes to
zero at O°K. It will, therefore, be attempted to fit the observed

values of C to a model of the form

o(T) = - am®. (226)
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With this assumption Mé(T) becomes

w3 /2

My (1) = = (k/a2) 7(3/2-0) (227)
aT

The requirement that Mé should not decrease as temperature increases leads
to the bounding condition b < 5/2; the requirement that C(T) increase

with temperature implies the bound b > 0. The linearized equation
In [¢(T)] =Ina+blnT (228)

was used to find the optimum parameters a and b from the experimental

) p(1.82 +0.89) b -1

data. The result was C(T) = -(0.178% + 0.101 cm. sec. .
The curve is shown in Figure 72 (page 253). The value of b is outside
the permitted range, though its uncertainty extends well into the allowed

domain. Taking the closest allowed value b = 3/2, a fit was made to

optimize a. The result was:
o(T) = (1.047 + 0.173) /2 . (229)

This curve also is shown in Figure 72. Using this (3/2) power model M,

becomes constant with temperature and its value 1is

/2

=75 = (32.2 + 6.6)D.
2 1.047 T5 2

If the optimum fit is used then the formula for Mé would be
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/2

M, = 0.1785 -0

- 189.2 170y, R

with the results: ME(-5OC.) = 31.4 ., ME(-A5OC.) = 33.%3 b., and
Mé(—850C.) = 35.5 b. The small increase in M, as the temperature is
lowered results, of course, from the too-large exponent on T.

To summarize, the analysis of the temperature dependence of the
diffusion cooling parameter C on the basis of the Nelkin formula suggests
that in the domain measured Mé is independent of energy and has a value
of 34 + 4 b. This value agrees, within the error limits, with the
values obtained by & linear fit to C(T), and also by the two exponential
fits which were chosen to give proper low-temperature behavior of Mé.
This value may be compared with that obtained by Kuchle (1960), who
found (31 + 6) b., using @ = 0.4. Converting this result to & = 0.5
this becomes (39 + 7) b. Mé thus decreases slightly upon freezing as
would be expected. However, with the uncertainties considered, an un-
changed value would also be consistent with the results. Since the total
scattering cross section changes very little between cold water and ice,
any decrease in inelastic scattering, which would be expected from the
somewhat tighter bonding in ice, is at least partly offset by an increase
in elastic scattering. This supposition is in accord with the conclu-
sions of Heinloth and Springer discussed above.

So, within the error limits, these values support the conclusicn
that, contrary to the findings of Antonov et al. and Dlouhf and Kvi£ek,
no large discontinuity in C exists across the phase transition, 1if cor-

rection is made for the density effect.
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IV. COMPARISON WITH OHANIAN CALCULATIONS

By use of the numerical method described in Chapter II Ohanian’
has calculated the diffusion coefficient and the diffusion cooling
coefficient in water at QOOC. and in ice at -SOC. and at-#BOC. The

results at QOOC. were

L 2 -1

(vD)w(QOOC.) 3.47 x 107 em.” sec.

(c), (20%C.) = 2.99 x 100 ent sec.l .

Converting to ice-equivalent density these values become:

3.78 x 10% em.? sec.™t

(vD)w(i)(EOOC.)

11

(C)w(i>(2000.) 3.87 x 100 cm.4 sec.

These results are both in reasonable agreement with experimental results
obtained by various workers, as listed in Table XIII (page 233 ). The
results may also be compared with those of a rather similar calculation

by Honeck (1962) described in Chapter II, which yielded

3.75 % lO4 cm.2 sec.-l

]

(VD)W(EOOC.)

(c)w(zooc.) _2.88 x 10° em.t sec.”t .

1The results to be discussed in this section are unpublished
data transmitted to the author in a private communication from M. J.
Ohanian, and are to be regarded as preliminary values at the time
of this writing (July, 1965).
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The results obtained by Ohanian in ice are as follows:

(v0), (©),
-5°¢. 5.5 x10* em.? sec.-1 5.75 x 100 em.* see.
-25°C. 3.12 X lO4 em.” sec. T 3.57 X lO5 cm.lL sec. T

It is found that for both (vD) and C the three values calculated by
Ohanian are exactly ccllinear after the values in water are compensated
for the density difference by the correction factors previously

described. The equations are:

(vD) = [8.40 + 0.10 (T°K.)]x 105 cm.? sec. (230)

and

(¢) =[2.54 + 0.0045 (1%K.)] x 103 cm.LF sec. (231)

From Equation (230) one may obtain the value (vD)w<i)(OOC.) = 35.7 X

10° em.? sec.”t which agrees well with measured values of (VD)W(OOC.)

but is quite high compared to the ice values cobtained in the present

work. However, the model used by Ohanian does not include any effects
which might produce changes at the phase transition, other than the

change in density which has been compensated for. Thus the observed
discontinuity does not appear. If the Ohanian results in ice are

adjusted to include this discontinuity (a change of -1.47 x 10° em.? sec._l)

the values become:

33.7 % 10° em.® sec. ™t

i

(vD); (-5°C.)

(vD)i(-45OC.) 29.7 x 10° cm.” sec. ™t
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where the primes denote values adjusted as described. These values are
in good agreement with the result of the present work at -500. and in
fair agreement with the value at -MSOC. (The differences amount to
1.04 per cent and L.OL per cent respectively.) Since the calculated
temperature dependence of (vD) is smaller than that found by the
experiments the two values tend to diverge as the temperature decreases.
However even at -85°C. the calculated value is (vD)i(-BSOC.) = 27.2 X
lO5 cm.2 sec.—l using the linear fit to the Chanian values directly, or
(VD)i(-BSOC.) = 25.7 X 10° cm.? sec. ™ if the adjusted value is used.
This compares with the value of 23.7 x lO5 cm.2 sec._l obtained by the
linear fit to the experimental results of the present work. ©So even

in this worst case the disagreement amounts to 7.8 per cent, if the
adjusted value of the computed result is used.

The values for C agree at both temperatures with the measured
values, within the error limits, and the agreement is in fact excellent
at both points. However this excellent agreement is somewhat fortuitous.
The slopes of both (vD) and C with temperature as calculated by Ohanian
are rather different from those obtained by the present experiments,
and the agreement is due to the fact that

1. The cross-over point for the two curves lies at about -40°¢.
accounting for the excellent agreement at -4500., and

2. The experimental result at -SOC. lies well below the fitted
curve, accounting for the good agreement there.

At -2500. where the experimental value lies above the fitted curve the

two results disagree by a little more than the error limits assigned to
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the experimental value. The results for the values of (-C), in units

of 10° cm.* sec.™t are:

Temperature Experimental Value Calculated Value Difference
-5°¢. 3,75 + 1.11 3.75 0.02
-25%¢. 4,73 £ 0.99 %.66 1.07
-45°¢, 3.43 £ 0.97 3.57 0.14
-65°C. 2.82 + 0.88 3.48 0.66
-85°¢. 2.32 + 0.92 3.39 1.07

The two calculated values at -65°C. and at -85°C. were obtained by

linear extrapolation of the Ohanian results, and show that, because of

the much smaller slope the results tend to diverge as the temperature

drops. However, in the range covered by the measurements the agreement

is nowhere seriocusly outside the error limits assigned to the experimental

values. Although precise error estimates for the calculated values are

not availsble, Ohanian estimates these to be of the order of five per cent.
It is interesting to consider the change in M2 to be inferred

from the Ohanian results. Although the rate of change of both (vD)

and C with temperature is substantially less than that observed in the

present experiments, the two differences tend to compensate, so that the

behavior of M, is not very much unlike that deduced from the experimental

2
results. Applying Equation (224):

My (1) (T 1/2{<VD)(T1)12fC<T2)1
w2 (e o e
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one obtains

(e} O
M2(-1+5 c.) ME(—85 c.)

i (seey - %% ey 7 0T

Thus the calculated results imply that M2 decreases as the temperature
drops, although the decrease is not very rapid. Since both (-C) and
(VD) as calculated by Chanian have positive intercepts at 0°K. while Vi
vanishes at this point, it is apparent that M2 would increase without
limit as the temperature approaches absolute zero. In fact the linear
models for (vD) and (-C) lead to a minimum value of M, at about

BOOK. However there is no reason to believe that the linear model

should be applicable at such low temperatures, since the assumptions

underlying the Nelkin model certainly do not hold in this region.
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APPENDIX A
DEAD-TIME CALCULATTION AND EXPERIMENT

Assuming that a second pulse arriving during the dead time of the

first does not extend the dead time one has

R
Bp=T_7R (4-1)

where RT and R are the true and observed count rates, respectively, and
7 1s the dead time. With two noninteracting sources (i.e., neutrons
from source one cannot scatter from source two into the detector, and

vice versa) one has

R R R
1 2 (1+2)
R = R + R = + = ,  (A-2)
T(1+2) (1) T(2) ~ 1 - R, 1-1R, 1- R0
or
Ll - TR(1+2)} <Rl - TRR, + R, - TRle) =
R (L - 1R, - 1R, + t°R.R ) (A-3)
(1+2) 1 2 12
which becomes, collecting terms in powers of T:
“ | RER + 1(- 2R.R,) + (R +R. - R =0 . (A-k)
L2t (1) 12 1 2 (1+2) |

Solving for T:
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2 1/2
1 1 By + By = Req o)
TR VIR " T RER ‘ (4-5)
(1+2) - (12) - 1727(142)
Therefore the "-" sign must be used to reduce Equation (A-5) to:
= = - 7 = =0 (A-6)
(1+2) (1+2)
for 1 = 0 and R(l+2) = Rl + R2- In an experiment performed with two

Am-Be sources (seeAppendix B) the following values were obtained by

gating all counts into channel number 3%:

Ry = 2241.0 + 17.8 cts./sec.
R, = 2L78.7 + 1h.3 cts. /sec. (A-T)
R(l+2) = 5624k + 45.8 cts.sec.

The error assoclated with R( includes a one-half percent contribution

1+2)
estimated as the possible interaction effect of the two source containers.

Substituting into Equation (A-5) one obtains
T = 6.0% usec .

The uncertainty assoclated with this value can be calculated by

the relation
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2 2 _1/2

ot = { >5R)< >(SR) ( (1+2)} {5R(1+2)1

(A-8)

To simplify the notation define

1
Yy =Ry
2 = Ri11p)
/ o) Fue) R?l+2)
U= 1-5— "% *tEgr_ = 98
1 > 1%

2 2 5
31 > _ ax> (y - z)
) =(5) - (8-9)
xy = 2 " xz  yz @ xy
and
2 2

ot

(A 40)

RN
O/lO/
la

no

NS

il

N
1

A4

i
[\S)
=
no
~
= o~
™
[
=
I_J
}_.J
N

Also
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2

2
el ey (i
(1+2) - .02 R 2

o< N
1
I

2
} i 1} . (a1

Substituting Equations (A-9), (A-10), and (A-11) into Equation (A-8) one

obtains o1 = %.28 sec.

A simplification results by rewriting Equation (A-5) as follows:

1/2
1 1 - 1

Xy

(A-12)

and observing that the second term under the radical has the value
(z/xy)(x +y - z) =

0.0667 which is small compared to one. So expanding

the square root and keeping only the first-order term one gets:

z z
¢/ 1 - pv (x +y-2) =1 -7

2Xy (X + y - Z) . (A_:LB)
Substituting this expression in Equation (A-5) gives:
T~ T |1 -1 4 22— (x4 vy - 2) (A-1k)
z 2xy
or
S i (A-15)
2xy

This formulation ylelds the result 1

5.9% usec which agress quite well

with the exact result. Using Equation (A-12)
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87 = [(fé—é—x~ y (8x)° + (fg—:§§ > (8y)° + ( L > (5z)21 )

x'y 2xy

which gives
8t = 3.16 pusec
50
1= (5.9%5 + 3.16) psec ,
by the first-order calculation or ’
1 =(6.03 + 3.28) usec

with the exact calculation. Figure T4 shows the resulting calculated
percent loss in counts as a function of counting rates. The maximum
count rates used in the experiment were of the order of 3,000 c./sec.

At such a rate the dead-time loss is 1.84 + 0.98percent. Therefore, the
error made in assuming the dead-time to be nonextending is negligible.
For, if the dead-time were fully extending, i.e., if a count arriving
during the dead-time following a previous pulse, extended the dead-time
to 1 sec. after the second pulse, then the R(1 - tR) counts arriving
during the fraction (1 - TtR) of the total time cause a dead-time of T sec.
each, while the R(<R) counts arriving during the fraction of time <R
cause an average loss of 3/2 T sec. each. The total time lost is,

therefore, to first order (neglecting higher than triple count clusters)
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Figure Th. Calculated per cent counting loss as function of
counting rate. The error limits due to dead-time uncertainty are also
shown.
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R(1 - 7R)7 + R(1R) —2— T = 1R (1 + % TR> (A-17)

as compared to TR in the nonextendirgcase, which for 3,000 c./sec. would
make the loss (l.OO9)TR and increase the fraction of counts lost from
1.84 percent to 1.85 percent, an entirely negligible change.

The number of counts lost due to dead-time per second is given by:

~ tR_ . (A-13)
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APPENDIX B
CALTBRATIONS OF NEUTRON YTIELDS AND MONITOR RESPONSE

For the purpose of determining the neutron yleld from the acceler-
ator and the response of the long counters used as beam monitors a series
of calibrations, based on use of an Am-Be neutron source of known inten-

sity (calibrated by the National Bureau of Standards), was performed.

I. IEXPERIMENTAL ARRANGEMENT

A small source holder was attached to the accelerator target holder
which permitted placing the Am-Be sources as close as possible to the
target foil of the accelerator. The holder was made of lead, 5/52—in.
thick, so arranged that both the Am-Be neutrons and the accelerator neu-
trons would pass through it to reach the long counters. The purpose of
the lead was to attenuate the copious low-energy gamma radiation from
the Am-Be sources.

Two similar long counters were used, one directly beneath the
target position with its front surface 76.2 cm. from the center of the
target foil, the other on a mobile stand, also at right angles to the
accelerator beam direction at a standard distance of 265 cm. from the
center of the target. The former counter was kept fixed at all times
during the experiment and used as a monitor for those runs in which the
location or orientation of the other counter was varied as parameter.

The two counters are called, respectively, Channel T and Channel II.
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Two types of detectors were used in the experiments with the long

counters. The first is the original type of BF, counter, 1.4% cm. in

>
diameter, surrounded by a l-cm.-thick cylinder of Ceresin wax according
to the Hanson-McKibben, (1947), design, and the second is a replacement
type supplied by the ORNL Instrumentation and Controls Division, intended
for standard use in the future. The latter is a BFB-filled tube, 2.54 cm.
in diameter, surrounded by a Teflon cylinder 0.52-cm. thick. The total
boron content of the new type of detector is the same as that in the
original type. In Channel I a new type detector was used throughout the
measurements, whereas in Channel IT measurements were made with both
types of detectors to determine the relative response rate. Assuming
that the energy response function of the two detector types 1s the same,
the new (larger diameter) BF5 tube was found to count 1.33 + 0.03 times

as fast as the old-style detector exposed to the same flux in the same

long counter body.
II. DEAD-TIME MEASUREMENTS AND CALCULATIONS

The dead times of both long-counter systems were measured using
two Am-Be sources, Nos. 9955 and 21. The dead time was assumed to be

non-extending, which leads to the equation (see APPENDIX A):

2 1/2
1 Npp Npp Ty
T=g— 11 Sl s (B-1)
12 ~ 1 2 1'2

where 1 1s the dead time and Nl’ N,, and ng are, respectively, the count-

2.’

ing rates with one source, the other source, and both sources present.
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The mean value of 1 averaged over both detectors was found to be

(L.18 + 0.83%) x 107 sec. Assuming the dead-time equation to be

O
B~ TR D (8-2)

where Rt is the true counting rate and Ro the observed rate, it follows

that

2 J1/2 ] [F(RO)<6RO)2 ) G(RO)_JJL/z |

(aRO)2 Rg(ax
[ (L -R T)u ¥ (1L - R w)h
o o
-4 L 2 L ) .
where F(RO) = (1 - TRO) and G(RO) = RO(ST) /(1 - ROT) . TFigure 75 is a
plot of Rt vs R, Figure 76 shows F(RO) as a function of R, and Figure 77
shows G(RO) as a function of R . These graphs were used to cbtain the

value of Rt and the errors associated with it.

ITI. SOURCE CALIBRATIONS

The source strength of Am-Be source No. 21 was measured by compari-
son with Am-Be source No. 9955. Both sources were repeatedly measured
in the target location by both counters in various orientations with

respect to the counters. The relative count rate, 1, Was found

Rog55/Fo
to be (0.567 + 0.0027).

The National Bureau of Standards calibrated the Am-Be source No.
9955 and reported the value (4.16 + 0.11) x 106 neutrons/sec. as the inten-
sity of this source. This yields the result that the source strength of

source No. 21 is:
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Figure 75. Plot of the function R = Rt/(l + TRt) versus R,
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where 7 = 4.18 x 10 sec.
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Figure 76. Plot of the function F(RO) =1/(1 - TRO)4 versus R,
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85 = (7.%% + 0.196) x 10° neutrons/sec.

IV. ACCELERATOR SOURCE STRENGTH

The accelerator was then operated with a target containing 526
ug./cm.2 of tritium on a tungsten backing. The neutron detection rate
in the long counters was used to detemmine the absolute source strength
of the accelerator target assuming (1) that the flux at right angles to
the beam direction is equal to the mean flux averaged over all solid
angles, and (2) that the relative neutron detection efficiency for the
14-MeV. neutrons from the D-T source compared to those from the Am-Be
source was 0.85 + 0.075.

Assumption (1) is not strictly valid. Strictly, the flux per
unit solid angle at 900, relative to the mean flux per unit solid angle
is

¢(?90) =\/.l - Vg/vi ’ (B-3)

¢

where v 1s the velocity of the center of mass and Vn is the velocity of

the neutrons relative to the center of mass. Now

where ED is the deuteron energy, Q is the reaction energy, and Mb, MT,
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MN, and Mﬁ are the masses of the deuteron, target nucleus, neutron, and
recoil nucleus, respectively. So
o | My ()

(Vi )%= 2 : (B-5)

My +

In the present case the maximum value of E_ was 0.3 MeV. With this

D

value the result is:

2(90%) (D-D) = 0.986

¢

1

¢(90°)
T

(D-T) = 0.998
So the error made by assumption (1) is negligible.

For the purpose of determining the beam-source strengths only the
detector Channel II (the more distant) was used since the close channel
was subjected to extremely high count rates for which the correction for
dead-time was of the same order as the count rate observed.

The contributions to the quoted errors include: (1) the counting
statistics including dead-time correction errors, (2) the beam strength
uncertainty (taken to be 5 percent, which is the reading error and does
not include any systematic errors of the microammeter circuit), (3) the
long counter energy response uncertainty of 8.8 percent, and (4) the
source calibration error of 2.7 percent. It appeared from the data that
there is an increase in the specific yield, i.e., in the number of neu-

trons produced per second per microampere of beam current at a given beam
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energy as the beam current increases. Figure T8 shows this variation.
The cause of this phenomenon is not certain but most likely is due to
errors in the microammeter calibration in the lowest range, since the
curves seem to level out above about 30 microamperes of beam current.
Accordingly, the values observed at high-beam currents are used as the
correct values in plotting the neutron yield per microamp of beam current
as a function of deuteron energy. This is shown in Figure 79, which also
includes data taken with a deuterium target. The latter data are very in-
accurate since the deuteron concentration on the target was not at
equilibrium when the measurements were made. The energy response of the
long counters was assumed to be the same for D-D (2.4 MeV.) and D-T

(14 MeV.) neutrons. Since the data taken with the highest beam-energy
for the D-D target were taken first and the neutron production continued
to rise, amounting to an increase of about a factor of two over the time
of the data collection, the high-energy points are relatively too low by
about this factor. The dotted line in the figure is a rough estimate of

the true variation of D-D neutron production with voltage.

V. DISTANCE EFFECT OF LONG-COUNTER RESPONSE

With the new-style detector in the long counter at the standard dis-
tance of 265 cm. from the target center, at right angles to the beam, the
response to D-T neutrons was measured to be:

(2.77 + 0.1k4) x 10_6 long~counter counts per Am-Be neutron

_produced, and (2.35 + 0.21) x 10—6 long-counter counts per

1L-MeV. neutron produced.
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of beam current for three beam energies.
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Figure 78. Apparent variation of neutron yield per microampere
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In order to facilitate the use of the long counter as an absolute
monitor at other locations, data were taken at various diatances, always
at right angles to the beam direction, and normalized by the use of data
from the fixed-position monitor. Figure 80 is a plot of the relative
count rate as a function of distance from the source of 1L4-MeV. neutrons.
The distances are measured to the front surface of the long counter. The
l/R2 curve is shown for comparison. The less steep falloff of the actual
curve is ascribable to the fact that the center of detection lies several
inches behind the front face of the counter, and also to the effect of
the divergent geometry of the neutrons when the counter is close to the

source.

VI. ANGULAR DEPENDENCE OF LONG-CCUNTER EFFICIENCY

In order to estimate the effect of misalignment of the long counter
on its counting efficiency and to determine the long-counter shield's ef-
ficieney in discriminating against scattered neutrons from rearward direc-
tions, the angular response was measured. The counter was placed at the
"standard" distance of 265 cm. from the target (target center to front
face) and then rotated about a vertical axis through the approximate
center of gravity of the counter located 286 cm. from the target center.
The fixed monitor counter again served to normalize the count rates.

The results are shown in Figure 81. The "hump" around 90° is
probably due to the larger surface and the effectively thinner hydrog-

enous shield which is interposed in this orientation.



0.8

0.6

0.4

0.2

295

\\
¢\
\T\
1 \
o\
\
\
T\\\ —eo— MEASURED RESPONSE
\ N B o2 RESPONSE -
b
\\
N
\
H
N\
\$
N\
I
\:::?\“\\\
\\\‘ *
<< ‘f
N
\\
'~
\\\\
50 100 150 200 250 300 350 400
DISTANCE (cm)
Figure 80. Relative long counter response as a function of the

distance between front face of counter and D-T neutron source, at =z

right angle to D-beam.

The 1/R®

curve is shown for comparison.

curves are normalized to unity at 20 cm. separation.

Both



RELATIVE RESPONSE

296

1.0 .‘Pf'l T
R
0.8 } T
haN
e
[ \@
06 — T TARGET S~ Tt —
— (f———_ &4 F¥ kf
D BEAM ’
1
0.4 — { 286 cm,
’*e\//
N
0.2 |— B
<i:221LONG
COUNTER
. I
0 20 40 60 80 100 120 140 160 180
8, ANGULAR POSITION (deq)
Figure 81. Relative response of long counter as a function of

its angular position. At 6 = 09, the front of the long counter was
265 cm. from the target center.



APPENDIX C



APPENDIX C
TABLES OF MEASURED AND CALCULATED DECAY DATA

Table XTIV lists the results obtained in the experiments. In each
table the column headed "Observed Counts" gives the total number of counts
obtained in each of the eighteen channels by summing the results of the
several runs.

The "Calculated Counts" column presents the results of a back
calculation using the parameters found by applylng the model

-P_nAt ~P_nAt

- > 5
Cn-—Pl+P2e +P)+e

The methods used for finding the parameters P P_ are

12 P2, veees Pg
described in Chapter III. In some cases PM was found to vanish, within
the errors, so that in those cases only three parameters were used in
the fit.

The last two columns give the standard deviation, which is just the
square root of the number of counts, and the difference between the ob-

served and calculated counts in standard deviation units. That s, the

last column gives the quantity

where No is the observed count number, and NC is the calculated number.
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TABLE XIV

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER | -5 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
] 110u290. 1104576, 1050.9 -0.27
2 752190, 751587. 867.3 0.70
3 5095737, 510306. 713.8 -1.03
4 347340, 346030, 589.4 2.23
5 234447, 234476, B8y, 2 -0.06
6 158480, 158855, 398.1 -0.92
7 107080, 107654, 327.2 ~1.75
8 72860. 73014, 269.9 ~0.55
? 49520. u9591. 222.5 -0.32

10 33347, 33758. 184.0 C.u49
i 23240, 23059. 152.4 1425
i2 15947, 15830. 126.3 0.93
13 13916. 10946, 104.5 -0.29
Iy 7679 . T6Ub, 87.6 0.37
) 5492. 5418, Thel t.00
K] 3925. 3912. 62.6 0.20
17 2862. 2895. 53.5 -0.63
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINCER NUMBER | -25 DEGREES CENTIGRADE
CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS

| 838290. 838505. 215.6 -0.24
2 573160, 577616. 760. 4 0.73
3 396583, 396917, 629.7 -0.52
4 272350, 2723371, 521.9 0.03
5 186850, 186713, 432.3 0.32
5 127383. 127987. 356.9 -1.70
7 8821i10. B7767. 297.0 151
8 60340, 60247. 245.6 Ol
9 Liu30. Lik31., 203.5 0.00
14 285273, 28571. 168.9 -0.27
11 19743, 19785. 140.5 -0.39
12 13700. 13783. 117.0 ~0.69
13 QTu5, 968y, 98.7 0.63
1y 6827. 6884, 82.6 -0.70
) 5059. 4972, T1.1 1.22
16 3677 . 3667, 60.6 Oet7
17 2788, 2776, 52.8 0.23
13 2136. 2167, 46.2 -0.68
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER | ~-45 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERRCR IN STD.

NUMBER COUNTS COUNTS DEVIATION  DEV. UNITS
! 718293. 718410, 847.5 -0k
2 497940, 498044 . 705.6 -0. 14
3 3u4810. 34404, 58742 0.70
4 237780, 237790, 487.8 0.u40
5 163810, 16uDy2, uo4.7 -0.56
6 113187, 113139, 3364 0.13
7 77897, 78054 . 279.1 -0.55
8 53870, 53897. 232, 1 -0.07
9 37150, 37274, 19247 -0.63

10 25753, 25842, 160.5 ~-0.57
I 18300, 17982, 134.2 0.15
12 12550, 12579. 112.0 -0.19
13 3928, 8866. OuL5 0.65
Iy 6419 . 6314, 80.1 {431
15 w624, 4560, 68.0 0.93
16 3399. 3356. 58.3 0.75
17 2534, 2528. 50.3 0.12
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER | -65 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
! tu54520., fu54394, 1206.0 0.10
2 1014733, 1014531, 1007.3 0.20
3 706573. 707252, 8u0.6 -0.81
4 4933873, 493490. 702.4 -0.15
5 345573, 345207. 587.9 0.63
b 243153, 242543, 493,1 1.25
7 171563, 171559, bly,?2 C.COo
8 122233. 122523, 349.,6 -0.81
? 88460. 88671. 297 .4 -0.68
13 65270, 65311, 255.5 -0.13
I 49290, 49196, 222.0 O.u5
12 379610, 38081 194.8 -0.59
i3 33375. 30415, 174.3 -0.23
Iy 25306. 25130, 159.1 .10
15 21513, 21486, 1u6.7 0.19
16 18994, 18973, 137.8 0.15
17 17257, 17241, 131.4 0.12
I8 15963. 160u6. 126.3 -0. 66
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER | -85 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 1183550, 1184160, 1087.9 -0.56
2 831880. 83087u. 912.1 141
3 582253, 582136, 763.1 C.15
4 4arv00. 407655, 638.5 .08
5 284930, 285573, 533.8 ~1a19
6 2002603. 200305. bu7.5 -0.08
7 143753, 1y0822. 375.2 -0. 17
8 97ua., 99361. 315.8 1.23
9 70220. 70u478. 265.0 -0.95

19 50163. 50366. 224.0 -0.90
1 36260. 36366. 190.4 -0.52
12 26760, 26622, 163.6 0.88
13 20022. 19841, th1.h 1.28
Iy 15272. 15122, 123.6 1.21
15 11936 11839. 109.3 0.88
16 ?382. 9555, 96.9 -1.79
17 7934, 7966. 89.1 ~0. 36

l8 68“9. 6860. 82.8 ‘_Doiu
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 2 -5 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 820920. 820043, 906.0 0.97
2 639550. 6u0L56. 7199.7 -1.13
3 498393, 499369. 706.0 -1.38
4 389773, 389001. 623.8 Dot
5 303800. 302941, 551.2 le57
6 236010, 235997. 485.8 0.0u
7 184413, iguga0. 429.4 0.91
3 143680, fu3720. 379.1 -0.09
9 112520, 112507. 335.4 0.0u
13 B7960. 88353. 296.6 ~1.30
| 69750. 69672, 26441 0.33
{2 55510, 55232. 235.6 1.22
13 bu0uy, Lul74. 209.9 ~0.14
Iy 35225. 35455, 187.7 -1.23
15 28631. 28798. 169.2 -0.99
16 23543. 23658. 153.4 -0.75
b7 19802. 19689. 40.7 C.80
18 16748, 16625. 129.4 0.95
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 2 ~-25 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 9801u0. 979010. 990.0 ol
2 762390, 762642, 873.1 -0.28
3 593933. 594020. 7168.7 -4,02
4 463887 . 462786. 681.1 .62
5 361020. 360757. 600.8 0.45
b 2823017. 281499. 531.3 1.52
7 220870, 219963, 470.0 1.93
8 172100, 172224, Lik.8 -0.29
? 134853, 135192, 367.2 -0.92

10 106513, 106LTT. 326.4 Oeli
1 83923. Bu2i7. 289.7 -1.C0
12 67010. 66964, 258.9 0.19
13 53498. 53593. 231.3 -0.4i
I 43132, 43233, 207.7 -0.48
I5 35197. 35205. 187.6 -0.05
16 28787, 289856, 169.7 117
N 24281 . 24169, 155.8 0.72

18 20575. 204 36. tu3.4 0.97
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 2 -45 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 1278870, 1277942, 1130.9 0.82
2 1009730, 1009775. 100u4.9 -0.04
3 794233, 796u480. 891.2 -2.51
4 626983, 627592, 791.8 -0.77
5 495240, Lou320. 703.7 1.32
6 391223, 389428. 625.5 2.87
7 306563. 307035. 553.7 -0.8%

8 242343, 242415, 492.3 -0l
9 191710, 191795, 437.8 -0.17
13 152470, 152177. 390.5 0.75
Hl 121220. 121193, 348.2 0.09
12 96630. 96973, 310.9 -1.10
13 78479 . 78050, 280.1 153
Iy 63155, 632170. 251.1 -0.86
15 51149, 51729. 226.2 =257
16 42560, 42719. 206.3 -0.77
17 35763. 35686. 189.1 0.39
18 30539. 30197. 174.8 1.96
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 2 ~65 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 810030. 809699. 900.0 0.37
2 645110, 6L3635. 803.2 1.85
3 508360. 511196, 713.0 -3.98
4 Liu4660. 415926. 636.1 ~1.98
5 323520. 322468. 568.8 1.86
6 257190. 256432, 507.1 1.50
7 205500. 204264, 453.3 2.7k
8 163743, 163099. 404.6 1.60
9 130370. 1306u8. 361.1 -0.77

1a 104110, 105085. 322.7 -3.00
b 8u4Tu0. 8u4959. 291.1 -0.73
12 69110. 69121, 262.9 -0.03
I3 56771 . 56661, 238.3 0.u46
Iy L6640, L6863. 216.0 ~1.03
15 39192, 39158, 198.0 0.17
16 33205. 33101, 182.2 0.57
17 28251. 28340. 168.1 -0.53

13 24741, 24598. 157.3 0.90
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS

AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 2 -85 DEGREES CENTIGRADE
CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS

| 1094153, 1094462, 1046.0 -0. 30
2 874810. Tu27u4. 935.3 0.58
3 693450. 697606, 835.7 .01
Y 55u823. 556336. Tuy.9 -2.03
5 443333, 443664, 665.8 -0.49
5 354483, 353983, 595.4 0.84
7 282u4873. 282715, 531.5 -0.u43
8 226420, 226149, 475.8 0.58
9 181700. 181295. 42643 0.97
1J 145823, 145756, 381.9 0.18
1] 117370, 17613, 342.6 -0.68
12 95500. 95338. 309.0 0.55
13 17637, 77715, 278.6 -0.28
Iy 63808. 63775, 252.6 0.13
15 52u450. 52751. 229.0 -1.32
ib 43943, uy03s6. 209.6 -0.44
17 37127. 37146, 192.7 -0.10
18 318%94. 31700. 178.6 1.09
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 3 -5 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION _ DEV. UNITS
| 950020. 950455. OTU.T ~0.45
2 733230. 732338, 856.3 1.05
3 563490, 563981 . 750.7 -0.65
4 434930, 434374, 659.5 0.85
5 333880. 334796, 577.8 -1.57
6 258777, 258403. 508.7 0.74
7 200070. 199864,  4n7.3 0.48
8 155050. 155045, 393.8 0.02
9 120590. 120752. 347.3 -0.46

10 94090, 94526, 30647 -1.40
N 74720, TULTT. 273.3 0.89
12 59410, 59155. 2u3.7 1.08
13 47402, BTHLB. 217.7 -0.2%
I 38241 . 38504. 195.6 ~ 1. 34
15 31826. 31672, 17844 0.86
16 26637. 2645Y, 163.2 112
17 22494, 22469, 150.0 0.16
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 3 -25 DEGREES CENTIGRADE
CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS

| 733323. 733937, 856.3 -0.72
2 570230. 569222. 755.1 1.34
3 4y 660. yu1232, 664.6 0.66
Y4 341190. 342043, 584. | -1.45
5 264970, 265327. 514.8 -0.68
6 206200, 206083. U54.1 B.27
7 163980. 160384, y01.2 lel?
8 125030. 125164, 353.6 -0. 36
9 97720, 98040, 312.6 -1.02
10 77150. 77160, 277.8 -0.02
Hl 61050. 61094. 24741 0. 14
12 48800. 48735. 220.9 0.32
13 39121. 39230. 197.8 -0.55
4 32078. 31922. 1791 D.87
15 26385. 26304, 162.4 0.50
16 22112, 21985. 148.7 0.86
17 18570. 18665. 136.3 -0.69

18 16038. 16113, 126.6 -0.59
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 3 -65 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
] 973930, 973393, 986.9 O.54
2 762280. 762887, 873.1 -0.68
3 597791. 597912, 773.2 -0.16
4 468080, 468822, 68u4,2 -1.08
5 368500. 367931, 607.0 0.95
6 289690. 289154, 538.2 1.01
[4 227297, 227687. 476.7 -0.83
3 180400 . 179754, L24.7 1e54
9 11813, 142391, 376.6 -1.53

1a 113760, 113276, 337.3 lell
b 20520 . 90595. 300.9 -0.24
12 72880. 72930. 270.0 -0.16
13 58899. 59173. 282.7 -1.13
iy 48291 . LBL62. 219.8 -0.78
15 4172, y0122. 200.4 0.25
16 33723. 33630. 183.6 0.51
17 28555, 28576. 169.0 -0.12

18 24709. 24641, 157.2 D.43
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 3 -85 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 212690, 913332, 955.3 -0.67
2 723323, 720927, 850.3 2.46
3 5673603, 569086 753.2 -2.29
4 4yonN 3. Luouus, 670.4 -0.05
5 354870. 355288. 595.7 -0.69
5 281880. 281257. 530.9 1.19
7 223487, 223093, ur2.7 0.82
8 177333, 177420, L21.1 -0.19
Q 141503, 141572, 376.2 -0.18
10 113360. 113h46. 336.7 -0.25
I 21473, 91384, 302.4 0. 30
12 73730. 74083. 271.5 -1.29
13 60502. 60517. 246.0 -0.06
I4 50063. 49881. 223.7 0.8l
15 Liugs. LiS544., 203.7 -0.29
16 35168. 35009. 187.5 0.85
7 29834, 29887. 172.7 -0.30
18 25834, 25872. 160.7 -0.24
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 4 -5 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 1300023. 1000260. 1000.0 -0.24
2 767520. 766951. 876.1 0.65
3 587670. 587889. 766.6 -0.28
4 4503700. 450796. 671.3 -0.13
5 345810, 3u56028. 588.1 -0. 37
6 266020. 266073, 515.8 -0.10
7 20150903, 20511i7. 452.9 -0.05
3 159323. 158682, 399.1 162
? 122850. 123331, 350.5 -1.35
10 26670, 96429. 310.9 0.79
I 75640, 75964, 275.0 -{.15
12 60650, 604N3a. 246.3 1.05
i3 48534, 48565. 220.3 ~0. 14
1y 39546, 39567. 198.9 -0 i1
15 32535. 32728. 180.4 -1.07
16 27631, 27529. 166.2 0.61
17 235684, 23577. 153.9 0.69
18 20515. 20574, 143.2 ~0.42
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 3 -45 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
1 926973 . 927280. 962.8 -0.32
2 726160. 725188. 852.2 fa15
3 566480. 566930. 752.6 -0.59
4 442970, 443350. 665.6 -0.56
5 346500. 347057, 588.6 -0.94
6 272610, 272149, 522.1 0.89
7 214163, 2139u9. b62.8 Oouv
8 163880. 168774, bifi.0 0.26
9 133660. 133735, 365.6 -0.18

10 106583, 106573. 326.5 O.0u
t1 85893. 85525. 293.1 1.26
12 62200. 69222. 263.1 -0.05
13 56147, 56597. 237.0 -1.90
Iy 46862, 46822. 21645 0.19
15 39183. 39254, 197.9 -0.36
16 33399. 33397. 182.8 0.0t
17 288717, 28863. 169.9 0.C8

18 25447, 25355, 159.5 0.58




515

TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 4 -25 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 1021023. 1021143, 1010.5 -0.12
2 787950. 787531, 887.7 O.u8
3 607160, 607393. 7179.2 -0.29
4 468460, 468755, 684.4 -0.42
5 362030. 362213. 601.7 -0.30
6 280600. 280426, 529.7 0«34
7 217620, 217696. 466.5 -0.15
8 169890, 169612, bi2.2 0.70
9 132760, 132773, 36u4.4 -0.02
10 105020 . 10u560. 324.1 l.45
i 82610. 82958, 287.4 -1.19
12 66210. 66423, 257.3 -0.82
I3 53628. 53768. 231.6 -0.61
Iy putis., Ly08y. 210.0 O.15
15 36712, 36673, 191.6 0.20
16 31090. 31004. 176.3 Dou9
17 26718. 26666, 163.5 80.32
18 23297. 23347, 152.6 -0.33
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER &4 -45 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
! 913003. 9102514 953.9 -0.26
2 704690, 704337, 839.5 O.u2
3 546037, 545571, 738.79 0.62
b 422183. 423253, 649.8 -1.6U4
5 329483. 329070. 57u.0 B.72
6 257233. 256586, 507.2 1.29
7 200233, 200819. 4uyt.5 -1.30
8 157792, 157927, 397.2 -0.33
9 1250u0. 124943, 353.6 0.29
10 99110, 99583. 314.8 ~t.u8
11 80590. 80086. 283.9 1.79
12 65200. 65099. 255.3 C.ul
13 53481%. 53580. 231.3 -0.u43
14 Ly988. biu726. 212.1 le24
I5 37793. 371921, 194.4 -0.65
16 32458, 32691, 180.2 -1.29
17 28642, 286T71. 169.2 -0.17
18 25705. 25582. 160.3 D.77
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TABLE XIV (continued)

ME ASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 4 - 65 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 1112003, 1111963, 1054.5 0.04
2 866593. 865539, 930.9 1.13
3 672380. 6TuLbu., 820.0 -2.53
4 526420. 526435, 725.5 -0.02
5 412133, 411831, 6u2.0 C.u?
) 3240540, 323151, 569.3 1.60
7 254340, 254558, 504.3 -0.43
8 201220 201519. 4hB.6 -0.65
9 i61010. 160516. 401.3 .24

10 1288u0. 128824, 358.9 0.0a7
It 1042473, 04321, 322.9 -0.27
12 85240. 85405, 292.0 -0.54
13 70781, 70782, 266.0 -0.00
Iy 59423, 59484, 2h43.8 -0.26
15 50u17. 50755. 224.5 -1.50
16 43703. Luii2. 209. 1 -t.u8
17 39539. 38802. 178.8 3.70

13 3u626. 34778, 186.1 -0.82
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TABLE XIV (continued)

ME ASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 4 -85 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
] 919303. 919165, 958.8 Ooll
2 719060, 718912. 8u8.0 C.18
3 562353. 562775. T49.9 -0.57
Y4 440663, 4y 10ut. 663.8 -0.57
5 345980 346132, 588.2 -0.26
6 272970. 272140, 522.5 159
7 2148303, 214455, 463.5 0.82
8 168900. 169484, h11.0 -1.40
9 134710, 134426, 367.0 D.79
13 106980, 107095, 3271 -0.33
i 85553, 85789. 292.5 -0. 81
12 69300. 69180. 263.2 0.u48
t3 56030. 56232. 236.7 -0.85
iy 46093. 46138, 2147 -0.21
15 38366. 38269. 195.9 OeuQ
16 32428. 32135, 180.1 163
L7 27130. 27353. 164.7 -1.35
18 23652. 23626. 153.8 O.17
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

o ——— o

CYLINDER NUMBER 5 -5 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
i 782773, 782778. 884.7 -0.01
2 589670. 589271 767.9 0.52
3 443393, 443929. 665.9 ~-0.80
Y4 334740, 334949, 578.6 -0.36
5 253163, 253337, 503.2 ~-0. 35
6 192930, 192278. 439.2 1.49
7 146773, 146627, 383.1 0.39
8 112310. 112513, 335.1 -0.60
9 871403, 87031. 295.2 0.40
10 67920. 68002. 260.6 ~-0.30
H 53853. 53794, 232.1 0.27
12 u2780. 43189. 206.8 -1.94
I3 35397. 35273. 1881 B. 66
4 29u486. 29365, 17t.7 0.71
15 24762 24955, I57.4 ~-1.23
16 21738. 21665, T47.4 De49
v 19512, 19210. 139.7 2.17
18 17176, 17378. 131.1 -1.54
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 5 -25 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 11580260, 1150060. 1072.5 0.19
2 872760. 872368. 934.2 D.43
3 660413, 662006. 812.7 -1.96
4 503u80. 502937. 709.6 0.78
5 3832090. 382815. 619.0 0.63
6 292260. 292196. 540.6 0.13
7 2246403, 223884, LT4.0 1.59
8 171883, 172418, bih.6 ~1.28
9 133590. 133659. 365.5 -0.19
10 194270 104479, 322.9 -0.63
1 82351. 82517. 287.0 -0.58
12 66130, 65989. 257.2 0.58
13 53u465. 53552. 231.2 -0.38
Iy 4y322, L196. 210.5 0.60
15 373393. 37157. 193.2 0.89
16 317u8. 31862. 178.2 -0. 64
17 27866. 27879. 166.9 -0.07
18 2u875. 2u882. 157.7 -0.05
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD LCEVIATIONS

CYLINDER NUMBER 5 -u45 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
1 1065260. 1064082, 1032.1 fall
2 813647, 814591, 902.0 -1.05
3 622093. 624188. 788.7 -2.66
4 479843, 479065. 692.7 .12
5 369300, 368560. 607.7 1.22
6 284390, 284477, 533.3 -0.15
7 221130, 220533, 470.2 1.27
3 172243, 171925, 415.0 C.78
9 134880, 134987. 367.3 -0.28

10 106887, 106923, 326.9 -0.13
1 85723. 85605. 292.8 Oau2
12 69000 . 694 ik. 262.7 -1.57
I3 56658. 571i8. 238.0 -1.94
14 47912« L7781. 218.9 0.60
15 40585. 40692. 201.5 ~-0.53
16 35298. 35308. 187.9 -0.06
v 31330. 31221, 177.0 D.62

18 28272. 28118 16841 0.92
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD PEVIATIONS

CYLINDER NUMBER 5 -65 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
! 1225750. 1226243, 1107.1 -B.45
2 943923. u2616. 971.6 135
3 722660. 724123, 850.1 -l.71
4 556771. 556295. Tu6.2 0.64
5 428413 4W27667. 654.5 lel5
b 328990. 329247. 573.6 -0.u4
't 253230. 254035. 5N3.2 ~leb8
3 196173, 196613, bu2,9 -0.99
9 153410, 152806. 391.7 1.55

10 119713, 119404, 346.0 0. 91
] 94023, 239u46. 306.6 0.25
12 T4393. 74550. 272.7 -0.55
13 59800. 59776, 244.5 D.10
Iy 48648 . L8524, 220.6 0.56
15 39807. 39956. 199.5 -D.75
16 33134, 33433, 182.0 -1.65
i7 2874k . 2846T. 169.5 1.64
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES 1IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 5 -85 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR [N STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 1074470, 1g7y715. 1036.6 -0.24
2 835373 83u892. 914.0 0.53
3 648721, buB919. 805.4 -0.24
Y4 50u6737. 50u4885. 710.4 -0.30
5 394223, 393439, 627.9 1.26
6 307450. 307273. 554.5 0.33
7 240360, 240689 490.3 -0.66
8 189193, 189259, ¥35.0 -0.15
9 149170, 1u9549, 386.2 -0.96
13 1188u0. 118894. 34,7 -0.15
I 95173, 95236, 3(08.5 -0.20
12 76640, 76979 276.8 -1.20
13 62972. 62893. 250.9 0. 32
Iy 52301. 52025. 228.7 1.21
15 Lui23. 43642, 210.1 2.29
16 37359. 37174, 193.3 0.96
7 32149, 32185. 179.3 -0.20
18 27965, 28337. 167.2 -2.23
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 6 -5 DEGREES CENTIGRADE
CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS

I 510053. 510243, THy,2 -D.27
2 359833. 359375. 599.9 0.77
3 252599. 252967, 502.6 -0. 74
4 178270. 178005, u22.2 0.63
5 1253i0. 125241 . 354.0 0.20
6 87710, 88124, 296.2 -1.38
7 622103. 62024, 2u9. 4 B.77
3 43643, 43677. 208.9 -0.16
9 30900. 30782. 175.8 0.69
13 21690. 21721, tuv.3 ~-0.19
I 15209. 15354, 123.3 -1.18
12 108u3J. 10880. 104.1 -0. 34
13 7816. 7738. 88.4 0.89
Iy 5636. 5530. 75.1 1.41
15 3877. 3979. 62.3 -1.63
16 2935. 2889. 54.2 0. 84
17 2194, 2124, 46.8 leu3
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 6 -25 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 492070. 492058. 701.5 0.02
2 349613, 339697. 591.3 -0.13
3 2u88u0. 248769, 498.8 0.16
U 176940, 177107, 420.6 -0.39
5 126430, 126172, 355.6 Dol
6 20073, 89939. 30041 Oeuv
7 63953, 64152, 252.9 -0.78
o] 45660. 45792, 213.7 -0.57
? 32593. 32716. 180.5 -0.66

13 23473, 23y02. 153.2 Q.46
1 16863. 16766. 129.8 D.77
12 12093. 12038. 110.0 0.53
13 8592. B669. 92.7 -0.83
iy 6281. 6268. 79.3 B.17
15 L4571 . 4558. 67.6 0.20
16 3350. 3339. 57.9 B0.20
17 2456, 2470, 49.6 -0.27

18 1848, 1851, 43.0 -0.07
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER o6 -45 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 700030. 700022. 836.7 0.0t
2 506343, 506215. Ti1.6 0.18
3 365010, 365634, 604.2 -1.03
b 264610, 263878. 51Ul 1ol
5 190040, 190336. 435.9 -0.67
) 137463, 137242, 370.8 C.60
7 ?8760. ?89u0. 314.3 -0.55
8 71340, 71325. 26741 0.09
9 51193. 51423, 22643 -0.99
10 37260. 37083. 193.0 0.97
1l 26680. 26754, 163.3 ~0.44
12 19400. 19314, 139.3 0.65
13 13900. 13957. 117.9 -0.u48
! 10099. 10099. 100.5 0.00
15 7332. 7321, 85.6 0.13
16 5359. 5320. 73.2 0.53
17 3863. 3880. 62.2 -0.27
18 2834, 2843, 53.2 -0.17
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 6 -65 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
1 813020, 813037, 901.7 -0.02
2 591860. 591678, 769.3 D.24
3 4293820, u30123. 655.6 -0.u6
4 312790. 312444, 559.3 O. 64
5 225973. 2268hLy, 475.4 -1.82
b 165370, toubuy, L06.7 1.80
7 119600, 119479, 345.8 0.36
3 867h0. 86703. 294.5 0.15
9 62680, 62926, 250.4 ~0.97

13 45610. 45683. 213.6 -0.34
14 33050. 33181. 181.8 -0.68
12 24363, 24117, 15641 .59
13 17579. 17547, 132.6 0.24
Ih 12716. 12785, 112.8 ~-0.61
15 9385, 933u. 96.9 0.52
Ibl 6743, 6833. 82.1 -1.09
I 7 5018. 5020. 70.8 -0.03

18 3737. 3rar. 61.1 0.u49
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 6 -85 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCUL ATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS CEVIATION DEV. UNITS
i 850060. BL960b5. 922.0 De 49
2 6292723, 629744, 793.5 -0.03
3 465060, Loébui2,. 682.0 -1.97
b 345430, 345283, 587.7 0.26
5 256183. 255566, 506.1 1.23
‘b 189163 189176 434.9 -0.01
7 14033727, 140081. 374.7 0.78
3 103493, 103794, 321.7 -0.92
9 77323, 76984, 278.1 o2l
13 57433. 57181. 239.6 1.07
H u2520. 42556. 206.2 -0.15
12 31550. 31758. 177.6 -1.13
I3 23591 . 23786. 153.6 -1.26
by t7r79. 17900. 133.3 -0.91
15 13603, 13555, 116.6 O.ul
16 10214, 103u8. 1011 -1.32
17 8176 7981. 90. 4 2.16
18 6229 6234, 78.9 -0.006
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 7 -5 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 211703, 913400. 954.8 -1.78
2 608260, 604923, 7179.9 4.28
3 399597, ug0oi165. 632.1 -2.90
L4 264480, 264539, 514.3 -0.10
5 173930. 17u827. 417.0 -2.13
6 115330, 115538, 339.6 -0.61
7 76000 . 76379. 275.7 -1.35
8 50580. 50524. 224, 9 B.27
? 3354030, 33458, 182.8 -0.30

13 22370. 22195. 149.6 1.22
11 149730 14763, 122.4 177
12 9893, 9858, 99.4 0.40
13 6677 . 6622. 81.7 0.67
Iy 4609. 4487, 67.9 1.80
15 3043, 3078. 55.2 -0.63
15 2135, 2149, h6.2 -0. 31
17 154, 1535. 39.3 0.22
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 7 -25 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 1131060, 11331 tu. 1063.5 -1.93
2 769203. 765073. 877.0 4.71
3 513713, 514747, 71647 A ELL
4 345950, 345550. 588.2 0.69
5 230650, 231654, 480.3 -2.07
6 155253. 155190, 394.0 O.17
7 103253. 1039u6. 321.3 -2.1h
3 69080. 69645, 262.8 -2.14
? 46773. 46702, 216.3 0.33

10 31490, 31365. 177.5 C.72
i 21560. 21115. 146.8 3.07
12 14290, 14266, 119.5 0.24
13 ?889. 9692. 99. 4 1.98
iu 6778. 6636, 82.3 172
15 4573, 4595, 67.6 -0.32
16 3256. 3232. 57.1 O.u2
17 2269. 2321. 47.6 -1.10

18 1661 1713, 40.8 -1.29
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 7 -45 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 691120. 692228. 831.3 -1.33
2 475860. 473829. 689.8 2.95
3 323970. 323952. 569.2 C.Cu
4 220920. 221318. 470.0 -0.84
5 150830. 151136, 388.4 -0.77
6 102530, 103191, 320.2 -2.Ch
7 70350. 70459, 265.2 -0.40
8 48160. ug812u, 219.5 0.19
Q 33070. 32886. 181.9 1.03

10 22720. 22494, 150.7 1.56
H 15610. 15407. 124.9 1.63
12 10590. 10574. 102.9 0.25
13 7199. 7279. 8L.8 -0.9%4
1y 4993, 5032. 70.7 -0.55
15 3491. 3501. 59.1 -0.16
16 2u22. 2456. 49.2 -0.70
|7 1761, 1744, 42.0 C.39

18 1264, 1259. 35.6 O.lu
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 7 -65 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 565560. 565710. 752.0 -0.28
2 392210. 391476, 626.3 1.18
3 270310. 271035, 5i19.9 ~1.29
b 187950. 1877314, 433.5 8.52
5 129730. 130077. 360.2 -0.95
6 90280 90157, 300.5 Coll
7 62460. 62508. 249.9 -C.i5
8 43750. 43353. 209.2 1.92
9 29950. 30082. 173.1 -C.75
10 208u0. 20885. Iuh.u ~C.28
| 1uus6l. 14512, 120.2 -0.38
12 10150. 10095. 100.7 0.62
i3 7009. 7034, 83.7 -C0.3C
N 4886. 4912, 69.9 -0.38
15 3404, 3uy2, 58.3 -0.66
16 2453, 2u23. 49.5 C.61
b7 1672 1717, ug.9 -1.C9
18 1263. 1227, 35.5 1.C2
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 7 -85 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
I 13903320. 1392699, 1179.1 -2.02
2 996050. 993033. 998.0 3.C3
3 709540, 707241, 8u42.3 2.74
Y 501750. 503318. 708.3 -2.20
5 3563u0. 358027. 596.9 -2.82
6 255750. 254617, 505.7 2.25
7 179670 18i1068. 423.9 -3.3C
8 128710, 128784, 358.8 -0.18
9 9ius50., 91629. 30204 -B.57

10 64980. 65232, 254.9 -C.58
H 46780. Lousgi. 216.3 leli2
12 33490. 33163, 183.0 1.84
13 23881. 23704, 1545 1.15
Iy 17924 . 16987, 130.5 0.28
15 12372. 12217, 111.2 1.39
16 8953. 8830. 4.6 1.29
b7 bu91i . 6425, 80.6 0.81

i8 4495, uriv. 67.0 ~3.32
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 8 -5 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 560090. 560505. Tu8. bl -0.55
2 369235, 368538. 607.6 lel5
3 243385. 243262, 493.3 C.25
4 160975. 161233, 401.2 -0. 64
5 1075u8. i07u400. 327.9 O.45
6 71676, 72018. 267.7 -1.28
7 L83it. L8740, 219.8 -1.95
8 33876. 33415, 184.1 2.51
9 23308. 23321. 152.7 -0.C8

10 16676, 16670. 129.1 C.Cu
1 12214, 12288. 110.5 -0.67
12 9u55. 9u00. 97.2 C.57
13 7573. TL96. 87.0 c.88
Iy 6300. 6241, T9.4 Coe7l
15 5451 . 5414, 73.8 B.49
16 48u45. 4B69. 69.6 -Ce 35
17 4485, 4510. 67.0 -0. 36

18 4203, b273. 64.8 -1.C8
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 8 -25 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
! by 1220. uu2956. 66L.2 -2.61
2 305384. 301404, 552.6 7.2C
3 203227. 204564, 450.8 ~2.597
4 138148, 138712. 371.7 -1.52
5 93733. ouiil. 306.2 -1.23
6 63727. 63980, 252.4 -1.C0
7 43691, 43661, 239.0 C.1u
8 30138. 29974, 173.6 C.9%4
9 20651 . 20762 143.7 ~C.78

10 14569. 14565, 120.7 0.03
H 10601 . 10398. 103.0 .98
12 7628 . 7596. 87.3 C.37
13 5828. 5712. 7643 1e51
Iy 4510, Lyhé. 67.2 0.96
15 3635. 3595. 60.3 0.66
16 2971 . 3023. 54.5 -C.57
7 2538. 2639, 50.4 -2.0!
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TABLE XIV (continued)

MEASURED AND CALCULATED CECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 8 -45 DEGREES CENTIGRADE

CHANNEL CBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS CEVIATION DEV. UNITS
! 580200. 580319. T61.7 ~-C.16
2 397312. 397324, 630.3 ~C.C2
3 273232. 272783, 522.7 C.86
L 187465, 187716, 433.0 ~C.58
5 129741, 129u62. 360.2 g.78
6 89208. 89498. 298.7 -0.97
7 61761, 620u49. 248.5 ~1.16
8 L3uyu8., 43179. 208.4 1.29
9 3a171. 30199. 173.7 -C.16

10 21143, 21267. 145.4 -0.85
I 15122, 15019, 123.0 C.C2
12 10877. 10886. 104.3 -0.C9
13 81u8. 7912, 9C.3 1.95
Iy 5963. 5965. 77.2 -0.C2
15 4602. 4583. 67.8 0.29
16 3614, 3631, 60.1 -C.29
17 2947, 2975, 54.3 -0. 51
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 8 -65 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERRQR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
! 603020. 603354, 7176.5 -0.u43
2 419921, 419153, 6u8.0 1.18
3 29131k, 291732, 539.7 -C. 77
L 2003455, 203333, §51.1 0.27
5 Tul564, 141881. 376.2 -C.84
6 99377 . 99098. 315.2 C.88
7 69099. 69282, 262.9 ~-C.69
8 u8565. 48ug6. 220. 4 C.36
9 33975 33975. 184.3 ~-C.CC

10 23766. 23845, 154,2 -0.51
1 16759. 16771 129.5 -C.C9
12 11840, 11831. 108.8 C.Cv
13 8384. 8381. 91.6 C.C3
Iy 5280. 5971, 7.3 0.2
15 4386. 4287. 66.2 149
16 3037. 3110, 55.1 ~1e3U4
17 23u8. 2289. 48.5 1.23

18 1675. 1714, 40.9 -0.97
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 8 -85 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
1 665800. 666461, 816.0 -C.81
2 L79919. 478389. 692.8 2.21
3 343165, 343749, 585.8 -1.C0
4 246801 . 247321, 496.8 -1.05
5 178417, 1782u40. 422.4 C.u2
6 128928, 128739. 359.1 C.53
7 93317 93263. 305.5 C.18
8 67736 67836. 260.3 -0.38
9 49186, 49610. 221.8 -l.91
10 36707 36544, 191.6 C.85
I 27150. 27178. 164.8 -0.17
12 20783. 20u63. 44,2 2.22
13 15558. 15650. 124.7 -C.73
Iy 12284, 12198. 110.8 0.77
I5 9631 . 9724, 98.1 -0.95
16 7958. 7950. 89.2 C.C9
17 6696. 6679. 81.8 0.22
18 5735. 5767. 75.7 -0.42




339

TABLE XIV (continued)

MEASURED AND CALCULATED CECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 9 -5 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
1 877300. 878292. 936.6 -1.CG6
2 586134, 584152, 765.6 2.59
3 388367. 388623. 623.2 -Coll
4 258029. 258623. 508.0 -1.17
5 171904. 172180 blh.6 -C.67
6 115363, L4695, 339.7 1.97
7 76021 . T6L65. 275.7 -1.61
8 51017, 510u40. 225.9 -0. 10
9 33907. 34130. 18,1 -1.21

10 22661 . 22884, 150.5 -1.48
I 15665. 15404, 125.2 2.09
12 10347, 10429, 101.7 ~0.80
13 7356. 7120 85.8 2.76
Iy 4930. ug919. 70.2 0.15
15 3503. 3455, 59.2 0.81
16 2582. 2482, 50.8 1.98
17 1841, 1834, 42.9 .15

18 1301, 1404, 36.1 ~2.8Y4
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 9 ~25 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS CEVIATION DEV. UNITS
| T18270. ri895u4., Bu47.5 -0.81
2 490123. 488385. 700, 2.u48
3 331149, 331982. 575.5 -1.45
4 225403, 225791, 474.8 -0.82
5 153646, 153644, 392.0 c.COo
6 104kt 104607, 323.1 -C.61
7 71556, 71266, 267.5 1.08
8 48813, 48594, 220.9 0.99
9 33198. 33173. 182.2 Coly

10 22610. 22684, 150.u -C.u9
i 15432, 15549, 124.2 -0.94
12 10657. 10695. 103.2 -0.37
13 7349. 7393. 85.7 -C.51
Iy 5185. 5147, 72.0 B.53
15 3656, 3618. 60.5 C.63
16 266T7. 2578. 51.6 1.71
T 1850. 1871. 43.0 -0.50
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANCARD CEVIATIONS

CYLINDER NUMBER 9 -50 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
I 600010. 601085. T74.6 -1.39
2 420594 . 418906. 6u48.5 2.¢60
3 292924 . 29230y4. 541.2 1.15
4 203268. 204157, 450.9 -1.97
5 142449, 142702, 377.4 -0.67
6 99609 . 99817. 315.6 -C.66
7 70007 . 69869. 264.,6 C.52
8 43616, 48oub. 220.5 -1.50
9 34368. 34324, 185.4 C.24

10 24137, 24102. 155.4 C.22
I 16913, 16956, 130.0 -C.33
12 11988. 11959. 109.5 C.27
13 8818. 8464, 93.9 3.77
14 6015. 6020. 77.6 -0.06
15 4355, 43i1. 66.0 C.67
16 3031 . 3116. 55.1 -1.53
VT 2206. 2280. 47.0 -1.56

18 1723, 1695. 41.5 C.68
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 9 -65 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 507980. 507982. 712.7 -0.00
2 357781. 357825. 598.1 -C.C7
3 252512. 252385, 502.5 C.25
4 177965, 178192, u21.9 -0.54
5 126382. 125909. 355.5 1.33
6 886ub . 89026. 297.7 -1.28
7 63039. 62986. 251.1 C.21
8 Lyuids. uu591i. 210.7 -0.88
9 31681. 31592, 178.0 D.50

10 22517, 22u03. 150.1 C.76
1 16052. 15906. 126.7 le15
12 11180, 11312, 105.7 -1.25
13 8027. 8063. 89.6 -C.4C
Iy 5762. 5765. 75.9 -0.Ch
15 w201. 41u0. 64.8 C.95
16 2941 2990. 54.2 -0.9C
17 2169. 2177 Bé6.6 -0.17

18 1618. 16C1. 40.2 Oe 1




TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 9 -85 DEGREES CENTIGRADE

ERROR IN STD.

CHANNEL OBSERVED CALCULATED STANDARD
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 845410. 845926. 919.5 -0.56
2 612897. 611453, 782.9 1.84
3 4y 1290, 442437, 66L.3 ~1.73
4 320481 . 320u402. 566.1 Cotk
5 232436, 232181. 482.1 0.53
6 168197. 168347. 410.1 -0.37
7 121907. 122129. 349.2 ~-0.63
8 89082. 886u8. 298.5 1.45
9 64185. 6u387. 253.3 -0.80
10 46898. 46801. 216.6 C.u45
(] 33925, 34052, 184.2 -0.69
12 2u4757. 2u807. 157.3 -0.32
13 18197. 18104, 134.9 0.69
Iy 13369. 13243, 115.6 1.09
15 9710. 9TiI7. 98.5 -0.07
16 6934, 7160. 83.3 ~-2.71
17 5486. 5305. Thal 2.44
18 3921. 3960. 62.6 -0.62
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 10 -5 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
H 417260, 421639. 6u46.0 -6.77
2 267700. 268143, 517.4 -0.85
3 171360, 170861, Lig.O 1.21
4 109310. 109189. 330.6 0.37
5 69850. 7007S. 264.3 -0.84
6 45250. 45251, 212.7 0.C2
7 29510. 29u482. 171.8 B.21
8 19620. 19449, 14041 1.27
9 12970. 13052. 113.9 ~-0.70
10 8890 . 8958. 4.3 ~0.66
i 6300. 6325. 79. 4 ~0.23
12 4650. 4618. 68.2 0.50

13 3499. 3499. 59.2 ~0.CO
Iy 2782. 2754, 52.7 0.53
15 2217. 22u7. 47.1 -0.63
16 1899. 1891. 43.6 0.18
17 17101 . 1633. Gi.h 1.90

i8 1513. 1436. 38.9 1.96
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 10 -25 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
1 1526260. 1529256. 1235.4 -2.u42
2 1044320, 1040539, 1021.9 3.71
3 708730, 709159, 841.9 ~-0.5
4 485870. 484403, 697.0 2.11
5 3306u0. 331907. 575.0 -2.20
6 227790. 228385, 477.3 ~-1.23
7 157910. 158061. 397.4 ~0.37
8 110030. 110243, 331.7 -0.63
9 78080. 77686. 279.4 lolily

10 55490. 55480, 235.6 c.Ccs8
i 40130. 40298. 200.3 -0.81
12 29900. 29885. 172.9 0.09
13 22636. 22712, 150.5 -0.51
Iy 17862, 17743, 133.7 0.90
15 14356. 14274, 119.8 0.69
16 11862. 11829. 108.9 0.3t
17 10054 . 10085. 100.3 -0.30

18 8767. 8821. 93.6 -0.58
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER {0 -45 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
l 1388490. 1389655. 1178.3 -0.99
2 847590, gu5820. 920.6 1.93
3 517080. 517901. 719.1 -1.14
4 321540, 319893. 567.0 2.92
5 198740, 200077. 445.8 ~2.98
6 127020. 127346, 356.4 -0.89
7 82620. 82991. 287.4 ~1.29
8 56090. 55758. 236.8 .40
9 39030. 38873. 197.6 0.83
10 284u0. 28258. 168.6 1.10
t 216u40. 21457, 147.1 1.31
12 16810. 16990. 129.7 -1.35
13 13940. 13961. 11841 -0.18
T4 11773, 11830. 108.5 -0.53
15 10160. 10268. 100.8 -1.07
16 ?100. 9076. 95.4 0.26
17 8124, 8129. 90. 1 -0.06
18 ThiB. 7352. 86.1 C.77
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 10 ~-65 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEVe. UNITS
| 656u40. 657596. 810.2 -1.42
2 411700. 40o8ur. 6L4l1.6 2.90
3 255860. 256546, 505.8 -1.34
4 161950, 161587. 4L02.4 C.92
5 102640, 102675. 320.4 -0.C8
6 65690. 660u46. 256.3 ~-1.35
7 42980. 43198. 207.3 -1.C5
B8 28950. 28880. 170.1 O.u43
9 19820. 19848. 140.8 -0.19

10 14170, 14098. 119.0 C.68
N 10430. 10391. 102.1 C.ub
12 80u0. 7959. 89.7 0.99
t3 6301 . 6329. 79.4 -0.35
Ih 5237. 5207. 72.4 C.u2
15 4354, 4y08. 66.0 -0.82
16 376t. 3819. 61.3 ~-0.9%4
7 3354, 3369. 57.9 -C.27

18 3064. 3014, 55.4 0.92
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 10 -85 DEGREES CENTIGRADE
CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS

! 1008380. 1009560. 1004.2 -1.17
2 652340. 650018. 807.7 2.88
3 418290. 41935y, 646.8 -l.64
Y 271290. 271337, 520.9 ~0.C8
5 176800. 176320. 420.5 lel5
6 115470, 115289. 339.8 C.54
7 75650. 76055. 275.0 ~lel4?
8 50730. 50797. 225.2 -0.26
9 34430. 3y502. 185.6 -0.36
10 24030. 23956. 155.0 C.us
11 17260. 17096. 131.4 1.27
12 12690. 12601. 112.6 C.84
13 9614 . 9621. 98.1 -C.C7
Iy 7643, 7615, 87.U4 0.33
15 6202. 6232. 78.8 -0.39
16 5284, 5250. 12.7 Bel7
17 LS54y . 4524, 67.4 C. 30

18 4003. 3964, 63.3 0«61
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 11 -5 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
1 901020. Q01426. u9.2 -0.43
2 558922. 5580¢98. T47.6 1.10
3 345754 . 346222, 588.0 -C. 80
4 215596. 215354, 4643 £.52
5 134371, 134434, 366.6 -B.17
6 84085. 84332, 290.0 -0.85
7 53116. 53259. 230.5 -C.62
8 34312, 33949. 185.2 1.96
9 21919, 21918. T48.1 0.01

10 14279 . 14400. 119.5 ~-1.01
11 9720. 968u. 98.6 0.36
12 6734, 6713, 82.1 0.26
13 4803. 4830. 69.3 -C.uC
n 367u. 3631, 60.6 B.72
15 2821. 2860. 53.1 -0.74
16 2352. 2361. 48.5 ~0.18
N 2040, 2035. 45.2 C. 12

18 1829. 1819. 42.8 0.23
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 1| -25 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
! 1402060. 1402296. i184.1 -0.20
2 890988. 890057. 9u3.9 0.99
3 564419, 565502. 751.3 ~1.44
4 359817. 359819. 599.8 -C.C0
5 230205. 229u29. 479.8 1.62
6 146503. 146730, 382.8 ~0.59
7 ou204 . ou2uy. 306.9 ~-C.13
8 61171, 60901. 247.3 1.C9
9 39391. 39688. 198.5 ~-1.49

10 26069 . 26164, 16145 -0.59
b 17557 . 17518 132.5 C.3C
12 12029. 11966. 109.7 0.57
13 8394, 8380. 91.6 O.16
4 5963. 60ulk., T7.2 -1.C5
) 4500, 4505. 67.1 ~0.C7
16 3579. 3475, 59.8 leTh
17 2767, 2772, 52.6 ~-C.10

18 2245, 2280. 47.4 -0.73
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 11 -45 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
! 1067350. 1067622, 1033.1 -0.26
2 69u909. 694578. 833.6 0.u0
3 451664, 452468, 6721 -1.20
4 296570. 295281, Syl. 6 2.37
5 193339, 193178, 439.7 C.37
6 126229. 126813, 355.3 ~1.64
7 83412. 836329, 288.8 -C.79
8 55421 . 55521, 235.4 -0.42
9 37156, 37179, 192.8 -0.12

10 25273, 25191, 159.0 0.52
I 17466, 1733y, 132.2 £.99
12 12176 12167, 110.3 c.cs
13 8838. 875u. 94.0 £.9C
'y 6423 . 6485. 80. 1 -0.78
I5 4922. 4966, 70.2 -0.62
16 3925, 3939, 62.6 -0.23
17 3220. 3237, 56.7 -0.29

18 2783. 2750. 52.7 0.62
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TABLE XIV (continued)

MEASURED AND CALCULATED CECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 1 -65 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS CEVIATION DEV. UNITS
| 12006910. 1207784, 1098. 6 -C.8C
2 797187, 795265, 892.9 2.15
3 524360. 524530. 2u.1 -0.23
4 345574 ., 346699. 587.9 —1.91
5 229835. 229770, 479.4 Oaly
6 153113, 152787, 391.3 0.83
7 131704, 102023, 318.9 -1.C0
8 68814, 68484, 262.3 1.26
9 w62u0. u6271. 215.0 -Cetl
10 31615, 31516, 177.8 C.56
1 21820. 21681, 1u7.7 C.9u4
12 15065. 15097, 122.7 -C.26
13 10482, 10667. 102.4 ~1.81
I 7620. 7668. 87.3 -C.56
15 5686. 5624, T5.4 0.82
16 4216, 4219. 64,9 -0.C5
17 3314, 3244, 57.6 1.21
18 2524 . 2561. 50.2 -0.74
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TABLE XIV (continued)

MEASURED AND CALCULATEC CECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 11 -85 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERRCR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 750110, 750244, 866.1 -C.16
2 515346. 5i5438. 717.9 -0.13
3 3547122, 354562. 595.6 C.27
L4 244509 . 244267, 4ou.5 Cou9
5 168828. 168592. L10.9 C.57
6 116292, 116622, 341.0 ~-0.97
7 80701 . 80893. 284.1 -C.68
8 56281 . 56299. 237.2 -0.07
9 39384. 39342, 198.5 0.21

13 27628, 27632, 166.2 -C.C2
i 19583. 19527. 139.9 C.uC
12 13855. 13904, 117.7 -0.42
13 10145, 9991. 100.7 1.53
Iy 7159, 7260. 8u.b6 ~-1.20
15 5402. 5347. 73.5 0.75
16 3943, 4001. 62.8 -£.92
17 3052. 3049. 55.2 C.Cé6

18 2383, 2372. 48.8 0.23
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 12 -5 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
l 762560. 762843, 873.2 -C.32
2 450u62. 4y9735, 671.2 1.C8
3 265540, 266187. 515.3 -1.26
L 158904. 158506. 398.6 1.CC
5 95130. 95255. 308.4 -0. 4l
6 57845, 58033. 240.5 -C.78
7 36150. 36062. 190.1 Calb
8 22911, 23034, 151.4 -C.81
9 I5446. 15254, 124.3 154

10 10606 . 10558. 103.0 O.46
| 7640, 7679. B7.4 -C.u5
12 5825. 5873. 76.3 -0.62
13 4709. 4704, 68.6 C.Cé6
Iy 3894, 3918. 62.4 -C.38
15 3u23, 3362, 58.5 1.Cu
16 2920. 2950, 54.0 -0.56
|7 2583. 2628. 50.8 -C.87

18 2u06. 2365, 49,1 .84
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 12 -25 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.
NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
[ 711120, 710960, 843.3 Cel?

2 433240. 433230. 658.2 0.02
3 2640)38. 264690. 513.8 -1.27
4 162779. 162333, 403,.5 lall
5 100u05. 1001014, 316.9 0.96
6 61833, 62206. 248.7 ~1.50
7 39316. 39078. 198.3 1.20
8 24836. 24919, 157.6 -0.53
9 16164, 16212, 12741 -0.38
10 10797. 10825. 103.9 -0.27
H 7587. Tuby,. 87.1 .41
12 5304. 5343. 72.8 -0.53
13 394, 3983. 62.8 -0.62
Iy 3028. 3096. 55.0 -1.23
15 2587. 2502. 50.9 1.68
16 2067. 2093. 45.5 -C.58
17 1904, 1804. L3.6 2.29
18 1525, 1591. 39.1 -1.70
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD CEVIATIONS

CYLINDER NUMBER 12 -45 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 921990, 923205, 960.2 ~1.27
2 582984 . 580709. 763.5 2.98
3 365418, 366195, 604.5 ~-1.29
4 232043, 231677, u81.7 C.76
5 146123, fu7200. 382.3 -2.82
6 9u567. ou0s52. 307.5 1.68
[ 60225. 6054k, 245.4 -1.3C
8 39594, 39362, 199.0 LI Y 4
9 25951. 25931. 16141 C.13

10 17402, 17382. 131.9 0.15
bl 12007. 11918. 109.6 C.81
12 8360. 8407. 9t.u -B0.52
13 6122. 6138. 78.2 -C.21
1y 4680, 4661, 68.4 c.27
15 3677. 3693. 60.6 -0.27
16 300t . 3053. 54.8 -0.95
7 2623. 2625. 51.2 -0.C4

18 2378. 2337. 48.8 C.85
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TABLE XIV (continued)

ME ASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 12 -65 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 784900. 787520. 885.9 -2.96
2 504456, 502472, 710.3 2.79
3 321624, 320891. 567.1 1.29
4 206902. 205211. 454.9 3.72
5 130722. 131505, 361.6 ~2.17
6 84581, 84534, 290.8 O.16
7 53574. 54591. 231.5 -4.,329
8 35537. 35493. 188.5 C.23
9 23168. 2330u. 152.2 -0.89

10 15341 . 15514, 123.9 -1.40
H 10584, 10527. 102.9 C.56
12 7519, 7325. 86.7 2.24
13 5300. 5260. 72.8 C.55
ty 39u7. 3919. 62.8 C.45
5 3093. 3039. 55.6 C.97
16 2435, 2uSuh. 49.3 -0.38
17 1986 2055. L. 6 =-1.55

18 1795, 1776, 42.4 Colity
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TABLE XIV (continued)

MEASURED AND CALCULATED DECAY DATA WITH STANDARD DEVIATIONS
AND DIFFERENCES IN UNITS OF THE STANDARD DEVIATIONS

CYLINDER NUMBER 12 -85 DEGREES CENTIGRADE

CHANNEL OBSERVED CALCULATED STANDARD ERROR IN STD.

NUMBER COUNTS COUNTS DEVIATION DEV. UNITS
| 987010. 987288, 993.5 -C.28
2 657538, 656921, 8i0.9 0.76
3 437303. 437800. 661.3 -0.75
4 293261 . 292333, 541.5 .71
5 194928, 195662. Lyi1.5 -1.66
6 t30736. 131342, 361.6 -1.68
7 89232. 88u87. 298.7 2.49
8 59666, 59888. 244, 3 -C.%1
9 40628. 40769, 201.6 -0.70

10 28183. 27962, 167.9 1.32
i 19499, 19361, 139.6 0.99
12 13538. 13572. 116.4 -0.29
13 ?665. 9662. 98.3 C.C3
1 7026 7014, 83.8 (SR R
15 5169. 5213. 71.9 ~-0.61
16 3908. 3984, 62.5 -1.23
7 3084 . 3141, 55.5 -1.Cy

18 2662 . 2561. 51.6 1.96
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APPENDIX D
ICE DENSITY MEASUREMENTS

The setup diagrammed in Figure 82 was placed in the freezer. The
balance was an '"'Ohaus" two-pan type capable of an accuracy of 0.05 g. by
using auxiliary weights. The weighing liquid was light mineral oil of

density

P,(20°C) = 0.82 + 0.02 g. /.’ (p-1)

as determined by a hygrometer. At -159C the calculated density was

PL(-15OC) = (0.86 + 0.025) g./cm.5 (D-2)

based on the cubical expansion coefficient of petroleum. Now, if

WA = welght of specimen in air,
WL = weight of specimen in oil,

P, = density of oil,

P = density of specimen, and

V = volume of specimen.

Then

) (D-3)

which gives
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WEIGHTS TO BALANCE YOKE

WEIGHTS TO BALANCE SAMPLE

BALANCE SHOWN DIAGRAMMATICALLY

THIS APPARATUS WAS SET INTO
THE REFRIGERATED TEST CHAMBER.

Diagram of apparatus for measurement of ice sample
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P="P A __ (D-4)

The uncertainty of the oil viscosity was relatively large, but the rela-

tive density of two samples could be determined without this error since:

P(1) W, (1) [w,(2) - wL(z)]
F(

BACKACKEES 1 (0-5)

2)

The weighing process in liquid was made difficult by the relatively
high viscosity of the cold oil which made long balancing times necessary,
and by the fact that opening and closing the freezer door always perturbed
the balance. However, by careful manipulation of the freezer the re-
sults in Table XV were obtained.

The ice samples were suspended from the balance by a thin nylon
fiber which was attached to the sample by simply placing a length of wet
string (about 1- to 2-cm. long) in contact with the ice specimen. The
string immediately froze firmly to the specimen at 45°C. A drop of water
was placed on the string and ice at the contact point to thicken the
bonding layer of ice. No remeasurements on a single sample could be
performed due to the difficulty of removing the oil after immersion.

The ice specimens came from the following sources:

Sample A: Iarge piece from central, top portion of cylinder
15-in. diam, 12-in. deep, frozen without pretreatment.

Sample B: Chip from bottom, outside of same cylinder.

Sample C: Place from white-appearing ''cone" on axis of same

cylinder from =~ 2.5 in. down from top.
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TABLE XV

EXPERIMENTAL RELATIVE AND ABSOLUTE DENSITIES OF ICE SAMPLES

Sample Weight Absolute Dsnsity Density Relative

(g.) (g./cm.?) to Semple F

A 98.7 not measurable™ <0.90

B 42,1 9.12 + 0.30 0.99 + 0.01

C 33.5 8.39 £ 0.38 0.91 + 0.01

D 57.0 9.10 + 0.23 0.98 + 0.01

E 39.9 9.12 + 0.27 0.99 + 0.01

F 41.6 9.24 + 0.28 1.0

aSample A did not sink in the oil bath, so that its density is
less than that of the oil. However, it maintained its location sub-
merged due to the high viscosity. A subjective estimate was made that
the density is very close to that of the oil.



Sample

Sample

Sample

Within

E, and
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D: Chip from top center of a cylinder 10-in. diam, 12-in.
high frozen by plug method (see Chapter II).
E: Pilece from bottom of same cylinder as Sample D.
F: Piece from center of a small cylinder 4.5-in. diam,
5-in. high, grown by method for small cylinders
described in Chapter II.
the error limits the densities of the densest samples (Samples B,

F) agreed with the theoretical density of lce, 0.917 g./cm.5.
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APPENDIX E

APPLICATION OF THE CORWNELL METHOD TO THE MODEL y = ao + ale_Bt

The discussion given here is taken from the paper by Cornell, (1956),
for the case of a single exponential plus background, assuming also that
only one observation of each datum is made.

TLet the observed count in the ith channel be
V. =0 +Q e Ty (E-1)
i o} i

where ao, o, and B are the parameters to be fitted, ti is the ith time
of observation, and € is the error of the ith observatiocn.

It is assumed that the number of observations is an integral
multiple of the number of parameters; i.e., since there are three

parameters
i=0,1,2, veovy, (3n -1) . (E-2)

Purther, it is assumed that the times of observation are equally

spaced, i.e.,

t, = i(At); i=0, 1,2, 3, veve, (3n - 1) (E-3)

where At is the common time interval.
It is also assumed that the €, are normally distributed with equal

variances, Note that the latter condition is fulfilled only if the
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counting statistics constitute a negligible source of the errors. In
fact, this assumption would be strictly true only for an infinite number
of counts obtained. However, in the present work the counting errors are
very significant, and the Cornell method, therefore, gives too much rela-
tive weight to the later channels. However, this applies only to the
calculation of the confidence intervals. The calculation of the parameter
estimates requires only that the €, are distributed with zero mean and
finite variance. Note, however, that if the model is not a perfect fit

to the data the mean of the errors need not be zero, and then the error

in weight assigmnment will alsc affect the calculation of the estimated

parameter values. Let

an-l1
Sq = yl’ q = 1)2)5 ’ (E')‘l')
i=(g-1)n

and let E(yi) be the expected value of Vis i.e.,

-Bt,
E(y,) =a +o e Lo, (E-5)
Then
an-1
E(Sq) = J E(Yi); q= 1,2, , (E'6)
i:(q-l)l’l

50



368

\\
n-1 Bt n-1 Bt
i
E(Sl)=Z {oco+ocle }:noco+oclie
i=0 i=0
anl 'Bti
E(Sg) =no+ oy }i e > (E-T)
i=n
n-1 -5ti
E(S5) = o+ oy Z e
1=2n
./

Defining ti = i(At) and A = e-(A¢)B, one gets, setting the expected value

equal to the observed value,

ng-1
S =nmx +Q i Ai. qg=1,2,3 . (E-8)
q o l : P
i=n(q-1)
Now
ng-1
At = n(e-1) An(q-l)+l + o+ ARet
i=n(g-1)

n
An(q-l) {l FAEAT Lt An_l} o ple VLo A , (E-9)

50
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a (1 - A%
Sl = nao + T & 5 82 = no
alAzn(l - AN
Sp = W~ 3

Then
@ n n n
8, -8, = i—%fK [(1-A7) = a(1-4aM]
and
al n n 2n n
Sp = 8y = o [A7(1 - A7) - a7(1 - "))
Therefore
” SE -n
- g - A
)
or, taking logarithms,
S5, -8
-nln A= 1n Sl - 82
2 3
so that
S, -8
nﬁA‘l::lnSl*__S—2
2 >

S0, designating the estimated

value of B by é:

(E-10)

(E-11)

(E-12)

(E-13)

(E-14)
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S, -5, ¢
! (1 2
5—mln »82"83> . (B-16)
A
To find ao, note that
a. (1 - A"
S, = nd  + L
1 1 -A
n,2
g A (E-17)
(1 -8)(1-4a")
S, -9
= nx_ + 1 n2
1 -A
But
S, - 9 S, - 25, + S
(1 - A% = (1-§ET-SQ>=( ls _28 5> , (E-18)
h 1 2 1 2
SO
(5, - 5,)°
S. = + . (E-19)
1 o} Sl - 282 + S5
and
2
(s S,) '
1[ 17 %2 J
o == |8, - . (E-20)
o n 1 Sl - 282 + 85

In the same way'al is found by use of Equation (E-11) and noting that
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.8 -8 l/n
1-A=1-<—-2-————z (E-21)
S, -5
1 2
and therefore
1/n J 2
S, -8, " N /8, -25 +8
6. = (s. -8.) 1-(——2——5- / L 2__ 23| . (g-22)
1 17”2 5. -5, 5] - 5,

/

A A
The variances of the estimates ao’ al, and Bl are ag follows:

Iet
n-1
2 1 ‘ 2
Polo ) G, -y (-23)
i=0
and let
M :8/2
Then
5 3
VarB—i—Zg (E-2k4)
—1’1 aq » -
a=1

where



372

1
17 (A&%) n{n, - n,)

(ny - 1)
_ 1 ) -
a2 = (At) n(nl _ nz)(n2 _ n5y 7 (E 25)
o = 1
) - (At) n(ﬂ2 = T]5)
s
2 2
Var o = >— b (E-26)
o n q
a=1
where
\
(n 1 )@
by = . 2 2
(ny =25 + n5)

b, = ) - 5 > (E-27)

where
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\
o= 1 . [(1 -0 P - (L - xl/n)]
1l -x
c, = —(—1——)5- nx(1 - 3 (1 - ™) - (1 - 0(1 4 1) /P 1 > (E-29)
x{(1l - x - -
C5 = ;zzl:—;;g ;(l - x) xl/n - 2nx(1 - xl/n)l 5 J/
where
S, - 8
s 51 7 5

It is seen that the calculation of the parameter estimates is
simple, but the calculations of the variances are laborious, though

straight-forward.
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APPENDIX F
CONVERGENCE TESTS ON ARTIFICTAL DATA

In order to determine whether the difficulties with convergence
of the small-cylinder decay data using five independent parameters were
due to the nature of the model to be fitted or to other causes, a set
of artificial decay data of known composition was constructed.

The equation used to construct the data was as follows:

C, =Py + P, exp [- n(At) P5] + Py, exp [- n(at) P5] . (F-1)

The parameters were assigned the following values:

P =2 x 10°

1

6

P, = 1x 10
P5 - 10 x 10° sec."l
P, = 1.0 x 10°

)_‘- .
95 = 15.0 x 10° gec.”t

At = 40 psec.
Table XVI gives the values of Cn andw/E; obtained using these parameters.
Then a table of normally distributed random numbers, with zerc
mean and unit variance, (Dixon and Massey, 1952), was used to construct

five sets of "data" including statistical errors. The equation used was

S, =C + NR./Cn (r-2)

375



TABLE XVI

COMPOSITION OF ARTIFICIAL DECAY DATA FOR CONVERGENCE TESTS

n n(At ), p o (A% JEs n (4t )B, P4e_n(At JE c_ (cné
0 0.0 1,000, 000 0.0 100, 000 1,102,000 1050
1 0.4 670, 320 0.6 54,881 727,201 853
2 0.8 449,329 1.2 30,119 481, 448 69k
3 1.2 . 301,19k 1.8 16,530 319, 724 565
L 1.6 '201,897 2.4 9,072 212,969 461
5 2.0 135,335 3.0 4,979 1h2, 31k 377
6 2.k 90, 718 3.6 2,752 95, 450 309
7 2.8 60,810 4.2 1,500 64,310 253
8 3.2 L0, 762 4.8 823 43.585 209
9 3.6 27, 32k 5.4 452 29, 776 173
10 4.0 18,316 6.0 248 20, 564 143
11 bl 12,277 6.6 136 14,413 120
12 4.8 8,230 7.2 75 10, 305 101
13 5.2 5,516 7.8 b1 T, 557 87
14 5.6 3,698 8.4 22 5, 720 76
15 6.0 2,479 9.0 12 4,491 67
16 6.4 1,661 9.6 7 3,668 61
17 6.8 1,114 10.2 L 3,118 56

9.LE
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where Sn is the channel count number, and NR is a randomly selected num-
ber from the table. The resulting sets of decay data are listed on
Table XVII.

Table XVIII gives the results of five-parameter analyses of these
five sets of data by the Busing-Levy Least Squares Code (Busing and Levy,

1962). The initial guesses of parameters P Pg’ P5’ and Pu were the

1’
-1

correct values, and the initial guess for P_ was set at 17 x lO5 sec.

p)
It will be observed that in this case, with no effects other than
randomly distributed counting statistics, the convergence requires a
large number of iterations in some cases, and fails altogether in many
instances. When convergence does occur, the values found for the
parameters, and in particular for the dominant decay frequency, P5’ vary
significantly from case to case, even though the true data is the same.
In the first set, in the analysis of all eighteen channels a cross-over
occurred, that is, the dominant decay shifted to parameters Ph and P

5

whereas it was initially in parameters P2 and PB.

When the same analysis was used with the set of numbers Cn’ l.e.,
without use of randomly distributed statistical errors, then reasonably
rapid convergence was obtained and parameter values very close to the
correct ones were obtained. These results are listed at the bottom of
Table XVITT.

As stated in the body of the present work, the convergence diffi-
culty was circumvented by performing a series of calculations, holding

P5 fixed for each one at a different value. For this purpose the Busing-

Levy code (Busing and Levy, 1962) was modified to perform automatically



TABLE XVII

FIVE SETS OF ARTIFICIAL DECAY DATA INCLUDING RANDOM COUNTING ERRORS

n 5, S S, S, S
0 1,103,137 1,100, 775 1,101,997 1,101,235 1,101,098
1 726,695 726, 280 726,527 726, 948 727,004
2 480,898 482,070 482,259 481,524 483,045
3 319, 302 320, 584 320, 736 319,554 319,731
4 212,988 212,526 213,164 212,314 214,121
5 141,942 141,859 1k2, 465 141,834 142,335
6 95, 588 95, 440 95, 450 ok, 782 ok, 868
7 6k, 330 64,671 6k, 306 6k, 407 64, 777
8 L3, 464 43,454 43,676 43,781 43,499
9 29,835 29, T3k 29, 705 29, 482 29, 566

10 20,594 20,561 20, 492 20, 761 20, 399

11 1h, koo 14,358 1k, 250 1k, 495 1k, 322

12 10,252 10,37k 10,233 10, 366 10,109

13 7,514 7,569 7,578 7,569 1,523

1k 5,619 5, 705 5,727 5,672 5,826

15 4,525 4,543 4,597 4,512 L, 524

16 3,641 5,750 3,631 3,727 3,708

17 3,068 3,200 3,103 3,003 3,106

gLE



TABLE XVIIT

RESULTS OF FIVE-PARAMETER ANALYSES OF THE ARTIFICIAL DECAY DATA

Data Channels Number of E& Pé Py P, Ig

Set Analyzed Tterations (x 10%) (x 10%) (x 10*) (x 10°) (x 10*)
1-18 b9 0.615 0.006 0.207 11.090 1.042
1-15 69 Matrix Singularity  Occurred No Convergence

8, 2-16 9 2.087 1.071 1.016 5.995 6.360
3-17 4 1.988 1.034 1.006 0.683 1.790
4-18 4 1.967 1.023 1.003 0.787 1.692
1-18 6 2.092 1.019 1.005 0.798 1.515
1-15 31 1.959 8.711 0.981 2.27h 1.269

S, 2-16 57 1.957 3.950 0.917 7.003 1.103%
3-17 79 Matrix Singularity d No Convergence
4-18 17 2.112 1.062 1.013 20.808 5.250
1-18 5 2.059 1.055 1.012 0.446 1.823
1-15 9 2.139 1.073 1.017 0.265 2.285

S4 2-16 8 2.155 1.058 1.015 0.375 1.629
3-17 7 2.058 1.021 1.006 0.783 1.483
4-18 11 2.053 1.059 1.013 1.013 2.620
1-18 66 1.805 2.526 0.853 8.468 1.098
1-15 >100 No Convergence After Maximum  Number of Iterations

S, 2-16 6k 1.771 2.274 0.841 8.719 1.093
3-17 5 1.985 9.680 0.992 1.511 1.513
4-18 6 Matrix  Singularity Occurred No Convergence
1-18 i 2.090 1.058 1.01k 0.406 1.747
1-15 9 2,192 1.079 1.020 0.202 2.307

Sy 2-16 L 2.154 1.067 1.017 0.300 1.7%1
3-17 >100 No Convergence After Maximum Number of Iterations
4-18 9 Matrix  Singularity Occurred No Convergence
1-18 21 1.998 0.996 0.999 1.034 1.489
1-15 18 1.994 0.994 0.999 1.058 1.482

C 2-16 8 1.993 0.991 0.998 1.08% 1.h72

o 3-17 7 1.99k 0.990 0.998 1.096 1.465
4-18 8 1.997 0.994 0.990 1.055 1.480

6L€
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the operation of advancing the fixed value of P5 from case to case by a
given amcount and for a specified number of cases. The value of 22, the
sum of the squares of the residuals was found to vary from case to case

depending on the value of P For each set a minimum value of 22 was

5°
obtained for one choice of P5, and the parameters corresponding to this
fit were chosen as best values. In this fashion the results of Table

XIX were obtained. It will be seen that with this procedure the con-
vergence was very rapid, and even with the test data, in which the second

decay component differed in frequency by only a factor of 1.5 from the

main component, the values found for P, were close to the true values

b,

in most cases. Where the value of P5 differed from the correct value

the statistical weight was also low.



TABLE XIX

RESULTS OF FOUR-PARAMETER ANALYSES OF ARTIFICIAL DECAY DATA, WITH
PARAMETER SEARCH FOR P, TO MINIMIZE SQUARE SUM OF RESIDUALS

Data  Channels  Number of 3 B, P, Weight of P, Value of By Minimumn
Set Analyzed Iterations (x 16®) (x 10°%) (x 10*) F (x 1) (x 10*) yielding Value of I°
(x 10%) Minimum $°
1-18 i 1.971 1.026 1.004 17.9 T 47k 1.70 0.27
1-15 4 1.853 0.979 0.993 6.31 1.220 1.50 0.18
8, 2-16 I 1.984 1.028 1.005 7.20 0.730 1.70 0.33
3-17 4 1.989 1.035 1.006 5.68 0.678 1.80 0.33
4-18 i 1.968 1.02k 1.003 2,91 0.783 1.70 0.3k
1-18 b 2.090 1.015 1.005 10.3 0.832 1.50 0.69
1-15 5 1.949 0.843 0.978 1.63 2.551 1.25 0.81
S, 2-16 10 1.960 0.376 0.913 0.1k4 0.719 1.10 0.78
3-17 4 2.081 1.037 1.008 5.61 0.727 1.80 0.69
4-18 4 2.093 1.052 1.010 8.25 1.084 2.40 0.53
1-18 4 2.057 1.054 1.011 21.7 0.461 1.80 0.55
1-15 L 2.131 1.071 1.018 26.5 0.283 2.25 0.33
S, 2-16 L 2.157 1.059 1.015 6.32 0.361. 1.65 0.31
3-17 in 2.060 1.024 1.007 2.58 0.755 1.50 0.48
4-18 4 2.045 1.053 1.011 6.95 0.801 2.25 0.48
1-18 12 1.808 0.264 0.857 0.38 8.356 1.10 0.95
1-15 5 1.407 1.040 1.062 0.57 0.593 0.65 0.79
8, 2-16 8 1.779 0.851 1.098 0.71 2.486 0.85 0.90
317 i 1.983 0.964 0.992 2.59 1.448 1.50 0.95
4-18 4 1.897 0.945 0.985 1.98 1.794 1.55 1.13
1-18 i 2.090 1.058 1.01k 19.7 0.40k 1.75 1.k2
1-15 I 2.180 1.076 1.019 23,0 0.229 2.15 1.62
S 2-16 4 2.155 1.067 1.017 7.96 0.297 1.75 1.62
3-17 In 2.133 1.077 1.020 10.3 0.379 2.35 1.54
4-18 L 2,014 1.082 1.023 2.85 0.050 0.45 1.53
1-18 8 2.007 1.011 1.002 10.4 0.882 1.50 0.00
1-15 5 2.000 1.000 1.000 6.26 1.003 1.50 0.00
c 2-16 i 1.989 0.985 0.997 3.37 1.151 1.45 0.00
o 3-17 6 1.992 0.986 0.998 2.16 1.136 1.45 0.00
4-18 4 1.997 0.991 0.999 1.65 1.182 1.50 0.00

T8¢
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APPENDIX G

FORTRAN CODES WRITTEN FOR THE DATA ANALYSIS

Two FORTRAN programs were written by the author and used in the
data reduction for this work, and a third code was written for this work
by P. Emmett of the Oak Ridge National Laboratory Mathematics Division
and subsequently modified by the author. These codes are for the IBM-
7090 computer.

The first code, THESDA, was written to produce the table of
Appendix C, and to obtain the distribution of the residuals shown in
Figure 50. The input consisted of a deck of 1080 data cards, one
card for each channel, listing the counts in each channel and a deck of
sixty parameter cards listing the channel widths and the parameters found
for each decay. Figure 8% is a flow chart for THESDA.

The second code, CALER, was written to compute the errors of the
decay parameters, using the equations shown in Chapter IV. Its input

congists of a deck of sixty cards listing the values of P_, with their

5
variances, for the calculations using (1) all eighteen channels, (2) the
even-numbered channels, (3) the odd-numbered channels, (4) channels 1-15,
and (5) channels 4-18, for each cylinder and temperature. Figure 84 is
the flow chart for CALER. The code called BIFT LEAST SQUARES utilizes an
existing code BIFIT as subroutine to calculate the diffusion parameters
from the decay frequencies and dimensions. This code will also be

shown. Figure 85 is the flow chart for BIFT LEAST SQUARES, considerably

simplified.
383
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COMMENT: COMMENT:
THESDA THE ARRAY A (1080 NUMBERS) T=1/(AF)
CONSISTS OF THE OBSERVED v=p THERE ARE 5 » {2
CHANNEL COUNTS - SETS OF THESE
~e DATA. EACH IS ON
w=ry ONE CARD
X=Fq
y=p
N=W 4+ 5
<0
=N
RNI= 35 -0 READ
START}—| =1 S = AW -0.1 -80)= 4 =1
ICOUNT (#)=0 (18 x5 x12)

M=M+1i L=L+1i K=K+

<0 <0 <0 " Y
VS S, S
WRITE HEADING AND -0 - DAKL MY = U e 07T oV ik-0/7
SET TEMPERATURE —~ M-12 L-5 K-18
ACCORDING TO £

P(K.L,M) = A (K,L,M) —D(K,L.Mﬂ

rP(K,L,M)= CUK,L M) /GUK L M)

WRITE DISTRIBUTION 0:‘P(K,L,M)|
TABLE
R{N)TO §(N)=ICOUNT (N}

SET #=10Q +1

COMMENT:
THIS FINDS THE "BIN" OF
ICOUNT INTO WHICH THE VAL-

RESIDUA
F o=|RESIDUAL
UE OF @ | “DEV. l BELONGS

Figure 83. Flow chart of code THESDA.
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CALER

WRITE
KL ERIK L), PLAL)

COMMENT:

PLi, L) 2 NULK L =FP3(1-18)

Ok, 1) & VK, D)= Py{EVEN)
Rk, L) + AWK, 1) = P5(0DD) ERSQ = U\K,L)+ PG + PC +PH
S UK, LY £ A[XTK, L) = Py (1~15)
7K, L) 2 AVOR, D) = Pyta-18)

PH =[00003 £(K,1)]?

PF=Va XUK L)+ YK L}

PE=('/5 5uM)2

Figure 84. Flow chart of code CALER.




READ
CYLINDER
DIMENSIONS,
CIMENSION
ERRORS AND
EXTRAPOLATION
FACTORS

Figure 85.

386

DREEA(i READ CALCULATE
FREQUCE’:\JCIES WRITE DECAY REAO CONSTANTS, B2 AND 882
AND THEIR FREQUENCIES TEMPERATURE INITIAL WITH INITIAL
SS OF
ERRORS GUESS FOR Dg GUESS OF 0
REPLACE Do p ot
WITH Opeyw
WRITE
<0 £2 AND 882
VALUES
WRITE -0 USE BIFIT
CONVERGENCE N—20 TO CALCULATE
FAILED vSa, v0, C, ETC

IF NO MORE GO 70 CALL PLT
CASES, STOP NEXT CASE (PLOT ROUTINE}

Simplified flow chart of code BIFT IEAST SQUARES.
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FORTRAN CODE THESDA

DIMENSION A(18,5,12), D(18,5,12), P(18,5,12), G(18,5,12), ICOUNT(80)
R(80),5(80), ¢(18,5,12)

FORMAT (30X,E12.5)
FORMAT (7E10.5)

FORMAT (1H3/ 10X, 59HMEASURED AND CALCULATED DECAY DATA WITH STAN

1 DARD DEVIATIONS/14X,51HAND DIFFERENCES IN UNITS OF THE STANDARD DE
1 VIATTIONS)

FORMAT (1H)/16X,15CYLINDER NUMBER, I3, I12,1X,18HDEGREES CENTIGRADE/
1H)/ 9X, THCHANNEL, 3X, 'HOBSERVED, 41X, 10HCALCULATED, 3X, SHSTANDARD, 3X

1 ,13HERROR IN STD./ 9X,6HNUMBER, 5X, 6HCOUNTS, 7X, 6HCOUNTS, 5X, SHDEVIAT
1 ION, 3X,10HDEV. UNITS)

FORMAT (1HO, 9X,I2,7X,F8.0,5%X,F6.1,7X,F5.2)
FORMAT (1H1/33X,18HERROR DISTRIBUTION/1HO)

FORMAT (15X,F3.1,4H to ,F3.1,I8,18X,F5.1,4H to ,F3.18)

DO 9 N=1,80 (This DO-loop sets up the bins for
R(N) = (FLOATF(N) }*0.10 calculating the distribution of
s(w) = R(N) - 0.10 residuals)

ICOUNT(N) = O
READ INPUT TAPE 10,2, A

DO 50 M = 1,12 (This double loop reads the

i

DO 50 L = 1,5 parameter deck)
READ INPUT TAPE 10,53,T,U,V,W,X,Y

DO 50 K = 1,18

H

D(K,L,M) = U+V/EXPF(W* (FLOATF(K-1))/T )+X/EXPF(y* (FLOATF(K-1))/T)

¢(K,L,M) = A(K,L,M) - D(K,L,M) (C(K,L,M) are the residuals)



50

61

62
63

ol

65
66

67

68
69

70

100

G(K,L,M) = SQRTF(D(K,L,M)
P(K,L,M) =C(X,L,M)/G(K, L, M)

Q

It

ABSF(P(K,L,M))

N = 10.%Q+1

il

ICOUNT(N) = (COUNT(N )+1

DO 102 M

1

1,12

DO 102 L

i

1,5
WRITE OUTPUT TAPE 9,4
IF(L-1) 61,61,62
(=-5

GO TO 100
IF(L-2) 63,63,64
I-=-25

GO TO 100
IF(L-3) 65,65,68
IF(M-9) 66,67,66
I=-b5

GO TO 100

I= -50

GO TO 100

IF(L-4) 69,69, 70

I - -65
GO 7O 100
I =-85

WRITE OUTPUT TAPE 9,5,M, I

388

(P(K,L,M) are the residuals in units

of G(K,L,M), the standard deviations)

(Here the histogram is "filled")

(This IF takes care of labeling the
case of Cylinder 9 which was measured

at -50°C rather than at -45°C)
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DO 102 K = 1,18

102  WRITE OUTPUT TAPE 9,6,K,A(X,L,M), D(K,L,M), G(K,L,M), P(K,L,M)
WRITE OUTPUT TAPE 9,7

DO 105 N = 1,535 (This DO-~loop lists the distribution
table )
105 WRITE OUTPUT TAPE 9,8,S(N),R(N), ICOUNT(N ), S(N+35 ), R(N+35 ), ICOUNT(

1 N+35)
CALL EXIT

END



50

52

53
58

29
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FORMAT CODE CALER

FORMAT (10E8.5)

FORMAT (1HO,S5X,I16,16,E8.5,5X,E8.5)

DIMENSION P(12,5),Q(12,5),R(12,5),5(12,5),T(12,5),U(12,5)

v(12,5), W(12,5),x(12,5), ¥(12,5), ER(12 5)

DO 50 K = 1,12 (This double DO-loop reads in the
DO 50 L = 1,5 values of P5 end the variances)
READ INPUT TAPE 10,1 P(K,L) U(K,L),Q(K,L),V(K,L) R(K,L),
W(K,L),8(X,L) x(K,L) T(K,L),Y(K,L)

SUM = 0

DO 66 K = 1,12

DO 52 L = 1,5

SUM = SUM+ABSF(Q(K,L) * R(K,L))
PA = (BUM * 0.1) ¥* 2

DO 66 L = 1,5

PB = (V(K,L)+W(K,L)) * 0.5

i

PC = PA - PB PC = (& )2
IF(PC) 53,53,58

PC = O

SUM = 0

DO 59 M = 1,5

SUM = SUM+S(K,M) - T(K,M)

PE = (SUM * 0.1) %% 2

PF

(x(x,L) + ¥(X,L)) * 0.5



62
63
64
65
66

391

PG = PE - PF PG = (E_)
IF(PG) 62,62,63

PG = 0

PH = (P(K,L) ¥ 0.0003) ** s

ERSQ = U(K L) + PG + PC + PH

ER(K,L) = SQRTF(ERSQ )

WRITE OUTPUT TAPE 9,3, K, L, ER(X,L), P(K,L)
CALL EXIT

END
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FORTRAN CODE BIFIT LEAST SQUARES

CBIFIT LFAST SQUARES CODE

C Ee Ge SILVER PROBLEM

C UPDATED VERSION. EXTRAPOLATION DIST., CORRECTION PAR-
C AMETERS ARE CALLED FOR IN BOTH DIMENSIONS,

C 7 NUMEERS ARE REQUIRED ON DIMENSION=-DATA CARDS.

DIMENSION X(10C)YsY(1OD)sDELX(IDOM) sDELY(IND) sH100) »DE
TLHO1OD) sRUIDD) oDELROIDOC) SELCIDD) CAY L IDD) sSEINN) s ANSH
28 )9 XRES(IO0) s YRES(IDD) sELN(8+8) s XLAMB(I00) sERRM(84+8)
33TDEP(8)sR20L1DO0)4OHSQUIND) sDNCUIDD)Y s YC(10T)sEM100)
DIMENSICN A(6),Y2(100)
DIMENSION TABLE(250)sTAB(250)
102 READ INPUT TAPFE 10slsl
NT#N
I “ORMAT(14)
READ INPUT TAPE 1082 (HIJ)sDFELHIJ)YsEMIU) s RIJ)SDELRI(Y)
TsELCJ)Y sDNOCJY 9 J# | 1)
2y J# 191
2 FORMAT(6E1D453E94¢3)
READ INPUT TAPE 1039 (Y(J)sDELYJ)sJ#! 1)
9 FORMAT(2E1245)
WRITE OQUTPUT TAPE 9slBa4s (Y J)sJ#] 1)
B4 FORMAT(IHD IDHOBSERVED Y/ (IH +8F1245))
READ INPUT TAPE 171527
READ INPUT TAPF 1U0s3sDsEPSILO sClsC2e039049C54)
3 FORMAT (7E9473s14)
CSQR¥C3*C3
CSQGRCLH*C 4
CRAIHCSQ3I**2
CQ4HCSQu**2
DO 12 N#l,1
DHSQ(N) # DELH(N)**2
12 R2(N) # DELR(N)**2
5 DO D N#lsl
CAY (N)AFHIN)+C | *D*EM(N)
H2H#CAY (N)*%2
SINY#RIN)Y+C2¥D*EL{N)
S2HS(N)Y*%2
XINY#(CSQ3/H2Y+(CSQ4/52)
10 DELXIN)#2«#SQRTF((CQ3/(H2#H2¥H2) ) %#¥DHSQIN) +(CQ4/(S52%S
12%52))%¥R2(N))
WRITE OQUTPUT TAPE 9|01 s (X{MI)sDELX(MI)sMI#IyI)
gl FORMAT(IHO s 6 X I1HX 9 I5Xs4HDELX/ IH sE12e4536XsE12e5))
K#JI =1
CALL BIFIT(XsYsDELXsDELY s IsKsANSsWSUMeXRESSYRESY
[ELNSERRMy XLAMBs STDEP4NERR)
IF(NERR)7+6,8



6 D2HCS*ANS(2)/SQRTF(T)

22

207

208

3N

PO 22 M#ETSI

YC(M)Y#D,

Lo 22

N#Ly Ji
YCIMYHEYCIMY+ANSIN) % (X (M) **(N=1))
WRITE QUTPUT TAPE 9452055 (YC(M)sONO(M) sM#lwl)
205 FORMAT (IHO s 1 2HCALCULATED Y
,20597X’E,203))
WRITE OUTPUT TAPE 9206+ (ANS(L)sL#I s J1)
206 FORMAT(IHD s 23HCOMPUTED FIT PARAMETERS/(IH
18E12e51))
WRITE OUTPUT TAPE 9,207+ (STDEP(L)YsL &I »JI1)
FORMAT(IHD »25HCOMPUTED PARAMETER ERRORS/(IH
WRITE OUTRPUT TAPE 942084D

FORMAT (3HOD# Fl1245)
EPI#ARSFID2-D) /D2

IF(EPI~EPSILO

D#D2

NTHNT+ |
IFINT-20)595s1)

WRITE OUTPUT TAPE 9,201
FORMAT(35H CONVERGENCE FAILED AFTFR 20 TRIES)
CALL EXIT
WRITF OQUTPUT TAPE 9,202

FORMATI(2IH TOO MANY DATA POINTS)

CALL FXIT
WRITE OQUTPUT TAPE 9,203

FORMAT (25H THE MATRIX WAS SINGULAR.)
0 GO TO

END

102

12092030

393

s OXs JOHIDENTIFIER/(IH &1

2s8F1245))
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