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TIME SCALING IN ANALOG SIMULATION OF NUCLEAR SYSTEMS
L. Robert Beardsley and BE. R. Mann

ABSTRACT

Changes in the time scales of reactor simulations are
studied. It is found that such scale changes permit more
accurate simulation by restricting operation to those fre-
guencies best handled by analog computer systems. Short
computer runs (as from compressed time scales) are found to
require more precise potentiometer settings. As part of the
investigation, the inaccuracies introduced by linearizing the
reactor kinetic equations are measured. These errors are
found to be negligible when reactivity perturbations are
restricted to values of less than 0.02%.

INTRODUCTION

Analog computer components can restrict the frequency range over
which acceptable simulation of nuclear systems can be expected. Investi-
gation of the stability of a reactor model may require the use of forc-
ing functions with frequency components extending over many decades.
Determination of the frequency response of the system for frequencies
below 0.005 cps is time consuming, and because of the long time required
for a measurement the leakage currents in the integrators may intro-
duce unacceptable errors.

For frequencies above about 2 cps, servo components, such as multi-
pliers and some readout devices, cannot follow the signal reliably. The
mechanical inertia of these components proves to be the limiting factor
in their frequency response characteristics. Thus, the frequency range
over which the analog computer will operate reliably is limited by the
characteristics of its servo components in the high frequency region
and the leakage currents and amplifier instability in the low frequency
region.

Between these two regions of computer unreliability lies the fre-
gquency range in which the analog simulation represents the mathematical
model with high fidelity. To extend the range of reliable simulation
the time scale of the computer problem can be changed so that simula-

tion in the high and low frequency regions may be made with the computer




operating in a machine-time frequency range in which performance is
reliable. It is often desirable to compress a simulation of a two-
hour reactor run into a few minutes on the machine and, similarly, to
expand a 0.1 sec excursion into a machine run of 10 sec or more. To
change the time scale in a convenient manner, we make the change in

decade intervals.
METHOD

To evaluate the technique of using variable time scales, we chose
a model for which the results could be easily obtained without the use

"

of an analog computer. This model is a "point reactor," as defined by
the kinetic equations given below. The delayed neutron constants are
those given for 235U by Keepin' (see Appendix E), and the mean prompt

neutron lifetime £ is assumed to be 100 pysec. The kinetic equations

are g
a (1-B)k-1 o
ap _ ~piR-L -\
=
and
de kB.p
i _ i _ _
& 4 ey (2-7)

These equations are nonlinear because both involve kp, a product of two
dependent variables. To evaluate the frequency response of a model with-
out the uncertainties due to nonlinear computing elements, the model is

linearized. The linearized model is given by the eguations

(1-8)p 6k 6
%% = o - BV x, (8)
1 1

£ £
i=]

1. R. Keepin and T. F. Wimett, Nucleonics 16 (10), 86-90 (1958) .




and

T E%Y.. =A%+ -—Bip——-i;ﬁ , (9-14)
where

Y =P TP, and X, =ey Tel (15)

These equations (see Appendix B for development) represent the non-
linear model only at the gquiescent point where p = Pyr 4 T Cio? and
k = 1. However, the linear nuclear network can be made to simulate
the nonlinear model to any accuracy that may be required in the neigh-
borhood of po if the size of the neighborhood is chosen suitably small.
The network resulting from the linear model has the same delayed neutron
branches as the nonlinear network, the difference being only in the
driving function to these branches. In the nonlinear network this
driving signal is pék, while in the linear network it is poék. The
disturbing function 6k is assumed to be a sinusoidal variation in the
multiplication factor k. This sinusoidal function is limited in this
apalysis to a machine-time freguency range of 0.05 to 0.5 cps to ensure
that the frequency characteristics of the computer components do not
affect the simulation. The input signal of the networks (Figs. 1 and 2)
is the disturbing funection 6k, and the output signal is the variation
in power, p — pO = y. The frequency response of the networks can be
specified in terms of gain and phase shift. The gain is y/poék, or the
fractional variation in power per unit change in the multiplication
factor. The phase shift of the nuclear network is defined here as the
angle by which the variation in power y lags the disturbing function &k.
The time scale of a network is dependent on the time constants of
the time-dependent components, principally integrators and differen-
tiators. Thus, in changing a nuclear network time scale, only the time
constants of the integrators need be changed since no differentiators
are used. $Since the optimum decade is taken as 0.05 to 0.50 cps,

frequencies in this decade are simulated in a unity time scale where
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Nonlinear Reactor Kinetics, Time Scale = 1.0



ORNL DWG. 65-7977

6500 .1000
1
1008
+10p o6k 4}
___"Q,_om_ 11 6k
ke S
1 1
:1 \ } +(yp,,8k)
Y = 1
1
10 1
.
-po 1|40
.127 .flgg
32 42
= ‘f? 1% T 100 .127
66 33 \\&E~ 1 i!a ‘2’
1 138 — 1
1 N 0% T 100 .37
31 <3|
10 10085 ,115 L @ 1@5
28
ﬁ?\z'_(’; / ﬁ_l—_l 115
20 \\Ef; 1
| 26 4
0265 N 1]
3 / 1555
—(2)- Bl o
1005 .140 20 .200
(15) 00943 1 ‘;> |
830 N 110
~ 012 7, .700 10
\29~ 1 )
100082  ,387  .1Q0 \5{
55)—(56) Qe2h7
270 | 6, \J/\LO_I .100 1935
100031 01\\\\\/“‘] 0905k1

Figure 2.

Linearized Reactor Kinetics, Time Scale = 1.0



machine time and prototype time are the same. The frequencies greater
than 0.5 cps are simulated in time scales of 10, 100, and 1000 (machine
time longer than problem time), and those frequencies below 0.05 cps

are simulated in time scales of 0.1 and 0.01 (machine time shorter than
problem time). This combination of time scales and frequency choice
provides a six-decade range of problem freguencies from 0.0005 to 500 cps,
which may be simulated by a machine time frequency range of 0.05 to

0.5 eps. To obtain these time scales, in decade intervals, the integrator
time constants are varied from 100 times to 0.00L times the real-time
values. The circuit configurations used in making all these changes in
time constants are too numerous to discuss in complete detail, but the
nuclear network for unity time scale is given in Fig. 2, and the varia-
tions in the branch which simulates the second delayed neutron group are
given as a typical example in Appendix G.

The gain of the nuclear network is obtained from the ratio of the
amplitudes of the two voltages y and poék. The phase angle ¢ is obtained
by delaying the &k voltage through a phase shifter whose delay constant
is adjusted so as to match the delay through the nuclear network. With

this condition satisfied, the delay constant is given by

A = HKM/J, (16)
where H, K, and J are input gains in the phase shifter circuit of Fig. D-la
(Appendix D) and M is the coefficient of the potentiometer. The phase

angle ¢ is determined from
¢ = tan~! w/A. (17)

The derivation of these equations is given in Appendix D.

A Lissajou pattern showing the variable y as a function of delayed
8k was obtained by means of a Variplotter. The nuclear delay constant
was taken to be that value of delay which gave the same shaped curve
for y ve delayed 6k as was obtained for y vs y. The characteristics of
the plotter were such that this pattern was not a single straight line
but rather a pair of straight, parallel lines approximately 3/32 in.

apart with small curves to close the ends.
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Normally a Lissajou patterh shows that two variables such as y and
the phase shifter output are in phase or 180° out of phase when the
pattern is a straight line. The two parallel line configuration caused
by some eccentricity of the Vériplotter apparently was equivalent to
the straight line configuration one normally expects when the two vari-

ables are in phase.

RESULTS

The frequency characteristics of the linear network were compared
with those of the nonlinear network. The linear network data showing
experimental gain and phase shift are plotted in Figs. 3 and 5 respec~
tively, and the deviation of the experimental data from the analytic
calculations are plotted in Fig. 4 and 6. The experimental data and
analytic values are tabulated in Table 1. The analytic values were

obtained from equations

1—-8+4A C
. ..B—A fw + C
b T (18)
o+ c B—A
and
|5 | = Yo . L8448 ng-—8—cos g, (19
Pok!" DA o + C T e ’

which are derived in Appendix A. The deviations of the experimental
results from the corresponding analytic values, Figs. 4 and 6 and

Table I, are generally less than 0.20 db for gain, with extremes of
+0.43 and ~0.47 db. The phase angle deviation was generally less than
0.3°, with extremes of +1.13° and —0.50°. The deviations at the lowest
frequency point of 0.0005 cps are —0.16 db and —0.05°. To achieve these
particularly small deviations the amplifiers were rechecked for null,
the potentiometer settings were rechecked, and if necessary, adjusted
just before data were taken for each frequency in & given decade. The

time scale was 0.0l. The measured quantities at 0.05 cps contained
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TABLE I

GAIN AND PHASE LAG OF POINT REACTOR KINETICS

Simulated

Fre%g:ncy Gain, Decibels Phase Lag, Degrees

Analog Analytic Deviation Analog Analytic Deviation

0.0005 71.62 71.78 - .16 83.5 83.55 - .05
0.0010 65.83 66.04 - .21 77.4 77.75 - .35
0.0015 62.57 62.91 - .34 72.8 72.84 - .04
0.0020 60.37 60.84 - W4T 68.9 68. 74 + .16
0.0030 57.89 58.18 - .29 62.5 62.30 + .20
0.0050 55.18 55.35 - .17 54.0 53.77 + .23
0.0100 52.25 52.36 - .11 45.4 44,27 + 1.13
0.0150 50.50 50.80 - .30 40.9 40.18 + .72
0.0200 49.37 49.73 - .36 38.5 37.43 + 1.07
0.0300 48.14 48.30 - .l6 33.7 33.29 + W4l
0.0500 46.57 46.'76 - .19 15.2 _27.29 - 12.09
0.100 45 .34 45,36 - .02 18.9 19.05 - .15
0.150 45.26 44..85 + WAL 16.3 15.40 + .90
0.200 44,96 44 .56 + .40 13.8 13.38 + W42
0.300 44..09 44,23 - 14 11.2 11.17 + .03
0.500 44,06 43.94 + .12 9.4 2.8 + .02
1.00 43.86 43.70 + .16 9.6 9.25 + .35
1.50 43.61 43.59 + .02 11.9 10.81 + .09
2.00 43,47 43.50 - .03 13.7 12.86 + .84
3.00 43.23 43.29 - .06 18.8 17.41 + .39
5.0 42,64 42.73 - .09 26.5 26.45 + .05
10.0 40.75 40.79 - .04 bée 7 béi 24 + 46
15.0 38.42 38.75 - .33 55.0 55.50 - .50
20.0 36.59 36.92 - .33 63.0 62.69 + W31
30.0 33.63 33.9% - .31 71.2 70.99 + W21
50 29.43 29.82 - .39 78.5 78.31 + .19
100 23.92 23.93 - .01 84.2 84.09 + W11
200 17.83 17.95 - A2 87.1 87.04 + .06
300 13.86 14.43 + W43 88.1 88.03 + .07
500 9.83 10.00 - .17 - 88.85 88.8L + .04
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large errors probably because errors were made in setting the frequency
of the disturbing function. These data were discarded because of the
large error of =12.09°.

As in a real reactor, stability is measured by the rate of random
increase or decrease in the power. This rate of change may be made
extremely small, and the reactor is then said to be stable. However,
if no control devices are in operation, the power may continually
increase or decrease at a rate sufficiently small so as not to be
detected until the normal observation time intervals are lengthened
by factors of 10 or 100. This same situation exists in the analog
simulations. Finding the quilescent power P, constant for several minutes
does not mean that there will be no upward or downward trend in periods
of 10 or 100 times as long. To obtain stability over these longer
periods, the simulation must be set up so that the prompt multiplication
factor is precisely 1 — B, where B is taken to be the sum of the six
delay fractions ZBi.

The low frequency drift described above is in part due to the
magnitude of the ratio £~§E~'which is the gain of the system. Since
this ratio is higher forothe low frequencies, Fig. 3, than for the high
frequencies, the computer coefficients must be set with greater accuracy
for measurements made in the low frequency range. Time scaling merely
allows the measurements to be made more guickly and thus prevents
inaccuracies due to inherent computer component drift.

The instantaneous power perturbation of the nonlinear model is
compared with that of the linear model in the Lissajous patterns of
Fig. 7. The scales for these curves, with the zeros as shown, were
obtained by subtracting the quiescent power po from each instantanous
power p. The nearly linear 45° pattern for 6k = 0.020% indicates that
for this input there is almost no difference in the values of power
obtained from the two networks. In contrast, the patterns for larger
disturbing functions indicate a nonlinear network error which increases
as 6k becomes larger. When 8k is 0.112%, the ratio of the rate of
increase of power in the nonlinear network to that in the linear network

varies from approximately 1/8 to 8, in comparison with only a few percent
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deviation from unity for 8k = 0.02%. This comparison indicates that the
linear network reliably represents the nonlinear model for 8§k<0.02%,

and is compatible with our assumption (Appendix B) that 6k<<B, where

B = 0.65%.

SUMMARY

The problem of extending the useful frequency range of the analog
computer in solving nuclear reactor problems has been attacked by
scaling time in the nuclear network to permit operation in the machine-
time frequency range most favorable to the analog components. The
experimental results show that, for the smaller compressed-time scales,
the precision of certain coefficlents must be increased to satisfy the
requirement that, with no disturbing function, EBi =B and k = 1.

The random values obtained in the deviation of experimental from
theoretical results indicate that the errors are not related to the
the simulated, or problem, frequency or to the time scale. The ranges
of the deviations are from +0.43 to —0.47 db and from +1.13 to —0.50 deg.
These small errors in the gain and phase shift indicate that the simula-
tion represents the linear model with acceptable fidelity over a fre-
quency range of six decades. In the comparison of the nonlinear with
the linear network response for values of 0k<<B, the differences are

too small to observe.
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APPENDICES
A. A DERIVATION OF THE BQUATIONS OF GAIN
AND PHASE SHIFT OF THE NUCLEAR REACTOR

Beginning with the integrator of a delayed neutron group, the

simplified circuit is

i

-2 /71'\—78;,8 /
W/

bi

where Ai is the delay constant. The differential equation of this

circuit of the ith group is

—dbi/dt = -\ Ay

db,/dt + A\,b, = A.a = A, cos wt (A1)
1 - 1 1

where it is assumed that "a" is a unit sinusoidal function

a = (1) cos wt (A2)
Then bi must be of the form

b, = A, cos wt + C, sin wt (A3)
1 1 1

where the constants Ai and Ci are to be deternmined. The time derivative

of this equation is

dbi/dt = -0A, sin wt + wC; cos wt (A4)
Substituting Eqs. A2, A3 and A4 into Eq. Al results in the equation

~wA, sin wb + «C, cos wt + A,A, cos wt + A.C, sin wb = A. cos wt
1 1 1 1 i 4 1
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Equating cosine terms and eliminating cos wt gives the equation
wCi + XiAi = A, (A5)

i
Then equating sine terms and eliminating sin wt gives
oA+ Mpi==0 (A6)
Solving Egqs. A5 and A6 simultaneously for Ai and. Ci results in
=3 2/f .2 2
A, %./(w + N ) (A7)
= 2 2
cy Aiw/(w + Ay ) (A8)
Substituting Eqs. A7 and A8 into Eq. A3 gives
A ® A w

= — ) i .
bi = 'g*:*izg— cos wt + “&Z”I”X;I sin wt

This is the output of the integrator. In the network of Fig. 2, the
voltage fed to integrator 35 from this circuit is (y + poék)Bibi (and
the powers of 10 to keep the scales correct). The total feedback from

all delayed neutron groups to integrator 35 is
hN = by i
(v + Ibﬁk) B0y (y + poék) [MBiAi cos wt + ¥B,C, sin wt ]

For simplicity in the remainder of this derivation, it is assumed that

A = ZBiAi (A9)
and
C = EBiCi (A10)
Then
EBibi = A cos wbt + C sin wt (All)

Equation All represents the total delayed neutron rate with a unit

input signal--(1) cos wt.
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The linearized equations (8-14) are multiplied by 4 and rearranged

and are given here for convenience:

4 dy/at = -B (y + P 8k) + P8k + TLA X,
) dxi/dt = B, (y + p 8K) -4h;x,
The variables y and 8k are assumed to be
y =y, cos uwt (AL2)
8k = A cos (wt + ¢) (AL3)

where ¢ is the phase angle by which 8k leads y. Then

dy/dt = -wy_ sin wt (AL4)
o]

When these functions are gubstituted for their variables in the first

linearized kinetic equation, it takes the form

—zwyo sin wt = B[yo cos wt + pda cos (wt + @) ]
+p A cos (wt + @) + Ewkixi (A15)

From Fig. 2, again 1t will be noted that the driving function to the .

delayed neutron group circuits is (y + po 8k) instead of the unit func-

tion given in Eq. AZ2. .

The last term of Eq. Al5 then becomes, for the ith group,

ﬂkixi = Bibi (y + poék)
and

TINX, = [zBiAi cos wt + ¥B,C, sin wt] (y + P, 8k) (Al6)
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Now, if Egq. Al5 is written in phasor notation, cos wt is replaced by (1),

unity, and sin wt is replaced by (-j) and the equation becomes
Jﬁuwb = ~B(yo + pOA cos ¢ + deA sin ¢) + pdA cos ¢
+ Jp A sin ¢ + (yo + pAcos ¢+ Jp, A sin ®) (A-3C) (AL7)
Collecting the imaginary terms and simplifying yields

fwy, = -Bp A sin ¢ + PA sin ¢ + A DA sin ¢ - C(y  + pA cos )

= pdA sin ¢ (-B + 1 + A) -Cy, -C P, cos ¢

(4w +0C) vy, =pA(Ll-B+A) sing -CPAcCos ¢ (A18)
The real terms now simplify to give
0= -B(y, + p A cos ) + pA cos ¢

+ (v, + pp cos ¢) A+ CpAsing

This reduces to

Yo(B-8) /(2 8) = (1-B+A) cos ¢ C sin ¢ (419)

The two variables in Eqs. Al8 and Al9 are gain [yo/(pOA)] and the phase

angle ¢. The simultaneous solution of Egs. Al8 and A19 yields

1-B+A + ¢
B-A LurtC
tan ¢ =
1-gtA _ C
LorC  B-A (A20)
and for the gain in terms of ¢ is
Y
o _ _1-B+A X -
EB& e Sn ¢ - Tc o8 b. (A21)

These last two equations are carried to the text as Egs. 18 and 19.
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B. METHOD OF LINEARIZATION OF KINETIC EQUATIONS

The nonlinear equations of reactor kinetics (1 and 2-7) are repeated

here for reference

6

dp _ (1-B)k-1

at 5 P Ihey
i=1

and
de kB.p
= = - A,C
dt ) i7i

When the variables p, cy and k are Pyr Cio and unity respectively, a
guiescent condition is obtained. Using the quiescent values, these

equations become

dp 6
o _(1-B) -1
at £ P +.%micio
i=1
and.
dclo - Bipo - e
dt §/ i7io

Subtracting the second set from the first set of equations, the result is

Ap-p) (1.5 .1 (1-8)ok(p-p))  (1-B)p 6k 6
Frae p (p-p) + P + 7 +‘%ki(ci—cio)
i=1
and
d(e;-c; ) _ 8;(p-p) . B, ok(p-p ) ) By, Ok A (oo ]
at ) ) ) 1'%1 %50

It is then assumed that
IP-PO|< Ai,]ci-ciol < fp and 16k|< JAY)

that Ai is some small positive number, and that 8k << B.
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Now let y = p-po and X = ci—cio and rewrite the last two equations

as follows:

(1-8)p 8k 6
%% - 2 ) %x T X
i=1
ffl = Eiz" - ALX, + Bipoék
at 4 1 j2

neglecting terms having the product Gk(p—po). Note that the term with
B(p~po) is retained, so that the development is valid only for 8k<<B.
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C. SAMPLE CALCULATIONS
The gain and phase shift are calculated for the frequency of 0.0005

cps. The gain of the network is y/poak where y = p-p . The experimental
data for this point show the simmlation quantities to be

y = 45.7 volts
P, = 30.0 volts
8k = 0.1 x 20v = 2.0 volts

The scale factors of y and b, are the same in the network considerations,
but no value has been established. These identical scale factors cancel
in the gain equation. However, the scale factor for the disturbance
function 8k is 100 volts/2 per cent. Substitution of these values and

scale factor into the gain equation gives

y . 45.7
p 8k = 30 x 2.0 (0.02/100)

= 3810

In order to obtain a reasonable scale for the total range of gain from

3.10 to 3810, a decibel scale was chosen. This scale is linear while

representing a logaritimic scale of gain. The gain in decibels is then
gain(db) = 20 logigp 3810 = 71.62 db

The phase shift is given by Eq. 17 as
¢ = tan™*t w/X

where w is the freguency in radians per second and A is the delay constant
for the phase shifter network of Fig. D-1. The data for this portion of

the freguency response of the network are

A = HKM/J = 1 (10) 0.036/10 = 0.036 sec~?* .
In order to avoid the scaling of time in the phase shifter network, the
calculations are based on the real-time frequency of the sine-wave
generator. For this consideration the frequency is 0.05 ¢ps or

0.31416 radians per second. The equation of the phase angle is then

ten ¢ = 0.31416/0.036 = 8.73
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and the angle by which the output of the phase shifter lags the input is
¢ = 83.5 degrees

. The analytic solution for the same point (0.0005 cps) is obtained

from the equations which are derived in Appendix A, and are

1-B+A C

tan ¢ = _B-A ' 4wiC (18)
1-g+A  _C
LwtC 3-A
Yo - LBA g o - C_ cos o) (19)
p o LwC BwtC

In this work, the mean neutron lifetime, 4, is taken as 104 seconds.
The total delay fraction is 0.0065 and the freguency being considered
is 0.0031416 radians per second (0.0005 cps). The remaining constants,

A and C, are those defined by equations

6
A =73 B.A, (A9)
gop 1
and
6
C =% B.C, (ALO)
i=L **
where Ai and Ci are given by
A =3 2 2 2
Ay =y J(w? + 2 (A7)
and
= 2 2
c, = Xiw/(u)+ A ) (A8)

The wvalues of Bi and. xi, from the table in Appendix E, together with
the values of £, B8 and w were entered as data in a digital computer

program containing equations A9, Al0, A7, A8, 18 and 19. The analytic
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values of Table I were obtained from this program for all the fre-
quencies indicated. For the frequency considered here (0.0005 cps),

the phase angle is

¢ = 83.5491 degrees
and

Gain = yo/pd& = 3879.87

whieh in decibels is

20 log;o 3879.87 = 71.78 decibels

The deviation in experimental gain then is

i

dev. exp. - analytic

71.62 - 7L.78 = - 0.16 db

The deviation in phase shift is

i

AP = exp. - analytic

11

83.5° - 83.55°

i

-0.05 degrees
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D. A DERIVATION OF PHASE ANGLE IN A PHASE SHIFTER

In order to determine the phase lag in the simplified network of
Fig. D-1 (b) where the amplifier gains are all unity, consider the input
voltage a and the output voltage b. Then the input to integrator 17

is given by
-db/dt = Xa + Ab
Rewriting to eliminate negative signs gives the equation
db/dt + Ab = Aa DL
Now if the input voltage is sinusoidal and of the form
a = (1) cos wt D2
the output voltage b is a sinusoidal function
b =A cos wt + C sin wt D3
where the values of A and C are to be determined. Then
db/dt = - wA sin wt + uC cos wt D’
Substitution of Egs. D2, D3 and D4 into Eg. D1 gives
-0A sin wb + «C cos wb + M cos wt + AC sin wbt = A cos wb. D5
Equating sine terms and eliminating sin wt yields

-pA + AC =0

Then
A =M w D6
Now eguating cosine terms and eliminating cos wt from both sides gives
wC + M = A D7
The substitution of Eq. D6 into Egq. D7 ylelds the equation

c = w/(w? + A?3) D8
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Figure D-1. Phase Shifter Network.
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Substituting this into Eg. D6 results in

A = A% (w? + A3) D9
As an alternate to Eq. D3, the output, b, may be given by

d =D cos (whb - ¢)
where the angle of lag, ¢, is given by

¢ = tan-* (C/A) = tan™t w/A

and the gain, D, is determined from the coefficients of Eg. D3 by the

equation
0,5

D = (A% + ¢’ - M (w2 + A3)
Because the required range of phase shift fequires values of A from
about 0.0l to 100 seconds~!, additional gain is required. This gain
can be obtained only from the amplifiers. In the actual phase shifter
cirecuit of Fig. D-1(a), the amplifier gains are H, J and K and the
coefficient of potentiometer 40 is M. Thus, by adjusting the gains as
well as the coefficlent, the delay constant A may be made to vary over
four decades with accuracies to at least the third significant figure.
The total gain (over the 4-decade range from 0.0l to 100) is then given

by the equation

A = HKM/J

where H, K and J may have the precise values of unity or ten.
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E. NUCLEAR CONSTANTS FOR URANIUM-235

The values of delay fractions and decay constants for the several
groups of delayed neutrons resulting from fissioning of uranium-235, and

which were used in this work,are given in the following Table.

TABLE E

NUCLEAR CONSTANTS FOR URANIUM-235

Decay Constant Delay Fraction
Group rounded to
Sec™? 5 places
1 0.0127 .00025
2 0.0317 .001.38
3 0.115 .00122
4 0.311 .00265
5 1.40 .00083
6 3.87 .00017

.006500
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F. DISTURBING FUNCTION GENERATCRS

The disturbing function generator used to drive the linear and non-
linear nuclear networks is given in Figure F-1. Since it was felt
advisable to start the disturbing function generator and check the
magnitude of the variation, the function switch FS-3 was used to per-
form the functions of reset, hold and operate for the integrators in
the disturbing function generator. By this technique, it was possible
to verify the amplitude stability of the disturbing function over long
periods without operating the nuclear networks.

The application of the sinusoidal disturbing function &k to the
nuclear networks was made through the second function switch FS-2 which
applied a sinusoidal signal to summer 39. Servo multiplier SM~-3B was
energized by amplifiers 39 and 54 and was positioned by the magnitude
of the quiescent power po , thus providing an output of +10p06k from
amplifier 55 for use in the linear network.

Due to the nonlinearity of the nonlinear network, it was necessary
to introduce a direct current potential identified as Ak whose magni-
tude was found experimentally such that, when applied as part of disturb-
ing function, the quiescent power po in the nonlinear network would be
maintained constant over a period of sufficient length so as to obtain
the required data. This dc potential is a function of the amplitude as
well as the frequency of the disturbing function. The total disturbing
function (8k + Ak) is fed into the motor of servo multiplier SM-4 whose
first potentiometer SM-~4A has, then, for its output +10( 8k + Ak) in the
nonlinear nuclear network.

In order to eliminate the very slight drifting due to inaccuracies
in the settings of the potentiometers in the networks, the shim rod
potentiometers for the nonlinear (N) and the linear (L) networks were
ineluded using potentiometers 78, 76, 77, and 68.

The frequency-determining constants of this sinusoidal source are
the input resistors and the feedback capacitors of integrators 19 and
20, the coefficients of potentiometers 73 and 74 and the gains of summer

7. 8ince the resistance and capacitance of these components are accurate
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Figure F-l. Disturbing Function Generator.
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to 0.0l percent when new, and the coefficients of potentiometers 73 and
74 are accurate to four places by the digital voltmeter, the freguency
errors will be less than about 0.04 percent. The amplitude stability of
the sinusoidal generator was found to be sufficient over a few minutes
providing no feedback from the output of integrator 19 to summer 7 or
the input of integrator 19 was used; however, due to inherent losses

in the components of the simulation, it was necessary to provide feed-
back to overcome these losses. Thus, amplifiers 36 and 59 and ungrounded
potentiometer 72 were included so as to provide a very critical adjust-
ment of amplitude in controlling feedback. Potentiometer 38 in the input
of amplifier 36 was set approximately 0.0l so that the signals to poten-
tiometer 72 were extremely small. This allowed variations of nearly
one-half revolution in potentiometer 72 as a range for trimming the
amplitude of integrator 20 to a constant value of 20 volts over periods
as long as an hour. Potentiometer 65 provided the initial condition
potential of 20 volts and established the amplitude of the disturbing

function generator amplitude.
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G. INTEGRATOR TIME CONSTANTS

Since there are a great many network configurations possible in
order to obtain the several integrator time constants necessary for
changing each of the integrators for each time scale, only an example
is given here. The example given is for integrator 12 which is used
in the delay section of the nuclear network representing the second
delay group. This section of the linear network is given in Figure G-1
for time scales from 0.0L to 100. The coefficients of pobtentiometers
15, 19 and 58 are given decimally with the function of the decay constant
included for potentiometers 15 and 19. Time scale of the integrator is
determined by potentiometers 15 and 19 while magnitude scale factors
are partially controlled by the coefficients of potentiometers 19 and
58. Thus, the coefficient of potentiometer 19 combines time-scale and
amplitude-scale factors. For the very fast (compressed-time) time
scale of 0.01, it was found necessary to reduce the feedback capacitor
in the integrator since the input resistors could not provide sufficient
gain for a 1.0 microfarad capacitor. Due to the pecularities of the
amplifiers available, it was necessary to replace the amplifier used for
other time scales with one which could satisfactorily operate with a
0.1 microfarad feedback capacitor. This amplifier indicated as No. 25
did not have a sufficient number of high-gain input connections to serve
the required purpose. The solution to this complication of hardware
wags obtained by using the summing Jjunction of amplifier 12 as the summing
Junction for amplifier 25. This arrangement provided stable operation
of amplifier 25 with a feedback capacitor of 0.1 microfarad and the high-

gain inputs of amplifier 12,
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