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ABSTRACT

A theoretical determination was made of the number distribution of

photons emitted from a semi-infinite dielectric slab irradiated with

electrons at an arbitrary angle of incidence. It was found that this quantity

contains contributions from radiation generated by the induced electric

polarization of the dielectric medium (transition radiation), and by multiple

small-angle scattering of the electron on scattering centers assumed to be

randomly distributed in the dielectric medium (bremsstrahlung). Inter

ference effects between these two types of radiations are also exhibited.

Theoretical spectra were generated for plane foils of copper, silver,

and gold irradiated by electrons at normal incidence and were compared with

available experimental data. Good agreement was found at the higher

electron energies (~1 00 keV), but the agreement was not as good at low

electron energies (-25 keV). This discrepancy is felt to be partly due to

uncertainties in the theoretical expression used for the mean square

scattering angle and partly due to the fact that the foils used in obtaining

the experimental results are too thick to satisfy the assumptions of the

present theory.

Numerical theoretical results corresponding to the electron irradiation

of plane foils of silver at various angles of electron incidence were also pre

sented. An intense "peaking" of the emitted radiation around the wavelength

viii



-1
A = 3230 A was noted as the electron approached grazing incidence. The E

energy dependence of this radiation identified it as bremsstrahlung. Com

parison of these results with recent experimental data shows fair agreement,

but further work is necessary before conclusive interpretations can be made.

It is proposed that the irradiation of metals at oblique angles of

incidence be studied thus providing a valuable means of studying optical

bremsstrahlung generated near the surface of the irradiated medium. Data

obtained in such experiments may yield results concerning the mean square

scattering angle which could provide some insight on the effective electron-

ion interaction potential in solids.

IX



I. INTRODUCTION

The study of the emission of light from electron irradiated materials

has long been of interest to physicists, having its origins in the early

experimental investigations by Rontgen, Stokes, and Thomson of the then

unexplained cathode rays. Subsequent studies divided naturally into two

general areas of investigation, one being concerned with the effects of

cathode rays on certain materials and resulting in Rontgen' s discovery of

X rays in 1895, while the other was concerned with the intrinsic properties

of the cathode rays leading directly to J. J. Thomson' s discovery of the

electron in 1897. The former area of interest—with certain aspects of

which the present work is concerned—led to the now well-known phenomenon

of bremsstrahlung, i. e., radiation emitted as a result of the "braking" of

an electron by scattering in a medium.

A. Bremsstrahlung

In an excellent review of the early theoretical and experimental work

2
dealing with the continuous X-ray spectrum, Webster emphasizes the

importance of the application of the then new quantum heat radiation theory

of Planck to more general radiation problems as a possible means of

explaining the observed continuous X-ray spectrum, and to thus demon-

3
strate the validity of the new quantum theory. Kramers used this method



to explain the absorption of X rays and the continuous X-ray spectrum by

obtaining an approximate solution to the problem of the possible radiative

processes which may occur when a free electron of given velocity approaches

4 5
a positively charged nucleus. Later Mott and Temple extended Kramer' s

work by solving the wave equation for the scattering of charged particles by

a Coulomb force and found that the quantum scattering cross section agreed

exactly with the well-known Rutherford classical result for intermediate

2 6
values of Ze /hv. In 1931 Sommerfeld presented the first complete

quantum mechanical description of the bremsstrahlung process, a work which

has since been extended by many writers, perhaps the best known treatment

7
being that of Bethe and Heitler. By combining the classical collision

electrodynamics of a charged particle with a nucleus and the uncertainty

principle of Heisenberg, one can obtain the Bethe-Heitler scattering cross

section in a non-rigorous, semi-classical, but physically understandable

8
manner.

9
More recently Gluckstern, Hull, and Breit derived expressions for

the differential scattering cross section and its polarization dependence,

working in the same approximation as did Bethe and Heitler; and Gluckstern

and Hull integrated this result over the direction of the scattered electron

to obtain the photon angular and energy distributions. A generalization of

Sommerfeld' s earlier results to include relativistic effects has recently

been given by Kulenkampf, Scheer, and Zeitler. It must be pointed out,

however, that almost all of the existing work has been devoted to the high



energy, i. e., X-ray end of the photon spectrum while very little attention

has been devoted to the optical region which is of primary interest in the

present work.

The effect of multiple scattering of electrons on isolated scattering

centers in a medium has been considered by many writers with varying degrees

12
of application. Bethe, Rose, and Smith derived a Boltzmann diffusion

equation describing the development in time of an initial electron configu

ration and obtained results for multiple scattering in thick plates in terms

13
of the cross section for single scattering. Williams considered the

relativistic scattering of electrons and cosmic-ray particles including the

important effects of the shielding of the nuclear charge by the atomic

electrons and the finite size of the nucleus, but—as Goudsmit and Saunder-

14 .
son point out—a comparison of his results with the experimental data

. . . . 14
indicates a consistent discrepancy. Goudsmit and Saunderson employed

certain properties of Legendre polynomials to present a theoretical treat

ment o£ multiple scattering which yields more nearly exact results and

showed that the scattering depends in a sensitive way upon the atomic

screening. Snyder and Scott utilized a different approach to the multiple

scattering problem, considered small-angle scattering by a screened potential

2 -r/a
field of the form V(r) =(Ze /r)e and showed the transition from the

multiple scattering region to the long single scattering tail. Lewis con

sidered the multiple scattering problem in an infinite homogeneous medium

and obtained results for the spatial and angular distribution, while still



17 18another treatment is given by Moliere ' for the case of small angle

multiple scattering in which the scattering is described in terms of a single

scattering parameter x / which is characteristic of the scattering atom.

The evaluation of this parameter is performed using Moliere' s earlier

19
results on the single scattering by a Fermi-Thomas potential in the

20
second Born approximation. Nigam, Sundaresan, and Wu, however, have

argued that Moliere' s approach is incorrect and present expressions for

21multiple scattering in the second Born approximation by solving the Dalitz

relativistic formula for an electron interacting with a screened atomic field.

22Recent experimental results on multiple scattering of heavy ions show

agreement with the theory of Moliere as opposed to those of Nigam et al.

The author points out that previous results involving the multiple scattering

of relativistic electrons and positrons for which the parameter

a ~ (2iZ2 '̂'"37l3 never exceeds 0. 6 are not adequate to allow a clear distinction

to be made between the theories of Moliere and of Nigam et al. but that

for the heavy ions he has considered a ranges from 2. 9 to 30. 8, thus providing

23a check of the second Born approximation formulae. Reed and Nodvik

apply the Dalitz formula for the second Born approximation—following the

20
method of Nigam et al. —to the case of a potential involving the sum of

three Yukawa-type potentials and obtain good agreement with the experi-

24mental results of Hanson, Lanzl, Lyman, and Scott.

In contrast to the thorough investigation of bremsstrahlung from iso

lated scattering centers, very little work has been done in which the effects



of the medium upon the generated photons—i.e., refraction at the boundary,

absorption by the medium, and coherency effects—have been considered.

Gol'dman and Andreev give theoretical results for the electric field

intensity of the photons generated by multiple scattering in the presence of

a medium, i. e., including the effects of the boundary. A general con

sideration of the emitted radiation due to bremsstrahlung and transition

radiation (discussed later in this chapter) by an electron penetrating a plane

semi-infinite dielectric medium at normal incidence and experiencing

scattering encounters on randomly distributed ion centers is presented by

27
Ritchie, Ashley, and Emerson. These results are contained as a special

case of the present work. Numerical results pertaining to normally incident

electrons will be presented.

In addition to bremsstrahlung, other possible radiation effects which

must be considered in the present work are the radiation due to polarization

effects of the electron on the dielectric medium, i. e., Cerenkov radiation,

transition radiation, and plasmon radiation. One now reviews the major

contributions to the understanding of these processes.

B. Cerenkov Radiation

It is now well known that a charged particle moving in a medium with

a velocity greater than the phase velocity of light in that medium will be

accompanied by an emission of radiation. Despite the fact that the theory

of classical electrodynamics necessary for the explanation of such an effect



28was known at the turn of the century—indeed, as is pointed out by Frank,

such eminent physicists as Kelvin (1901) and Sommerfeld (1904) had noted that

electromagnetic radiation should be emitted by a charged particle moving

with a velocity greater than that of light, but due to difficulties presented

by the aether theory of that day and the later restriction of Einstein' s

relativity to velocities less than that of light, these ideas were abandoned —

29it was not until 1937 that Frank and Tamm presented a satisfactory

theoretical explanation of the weak radiation experimentally observed by
30

Cerenkov and which now bears his name. Actually, this weak radiation had

31
previously been noticed by Madame Curie in 1910 in the course of her

researches with radioactivity, and had first been studied in a systematic

32 33 34
manner by Mallet ' ' who placed radioactive sources in or near trans

parent bodies and noted the emission of a faint bluish-white radiation.

Mallet studied this phenomenon and was the first to discover that the

radiation spectrum was continuous, thus lacking the characteristic line

spectrum typical of "fluorescence", and hence was an entirely new pheno

menon. However, Mallet attempted no explanation of the physical processes

involved in this emission and for some unknown reason his experimental work

30
was forgotten. It remained for Cerenkov to rediscover this radiation

during his experiments on the gamma-ray irradiation of pure liquids, and he

also concluded that it represented a new phenomenon. Vavilov proposed an

explanation based on the process of bremsstrahlung but untenable difficulties

soon became obvious. Cerenkov continued his experimental investigations and



concluded that the radiation was emitted by secondary electrons generated

36
by the impinging gamma rays. He later confirmed this view by means of

37
electron irradiation and also noted the now well-known asymmetry of the

38
emitted intensity with respect to the incident particle direction. The

first mention of this new radiation in the American literature was in a

39
letter by Cerenkov which included the first photographs clearly illus

trating the asymmetry of the emitted radiation. It was at this same time

29
that Frank and Tamm theoretically described this phenomenon by con

sidering the classical electrodynamics of a uniformly moving electron in a

dielectric medium and obtained the essential properties which are now called

the Cerenkov relations, i.e., that a minimum velocity exists, 6 . = 1/n,
mm

where n is the index of refraction of the medium, below which radiation is

not possible, and that the radiation is emitted into a cone making an angle

9 with the incident particle direction, Q being given by the well-known

equation, cos 9=1/ pn. In addition, they derived an expression for the

energy radiated per unit frequency interval per unit path length in the

medium given by

ij-r-i^'-T*).
40

Tamm later presented a more general theoretical treatment in which he

extended the previous work to consider certain aspects of the wave front

41and the time duration of the radiation pulse. Ginsburg included the quantum

mechanical effects of recoil due to photon emission by employing the



Schrodinger equation to obtain the quantum expression for the radiation output

from a non-relativistic electron with no magnetic moment, and also employed

the Dirac electron theory to obtain the exact relativistic result, including

magnetic moment effects. As would be expected—since the Cerenkov effect

occurs only for high energy particles and since the photons emitted are in the

visible range, i.e., are of low energy—the quantum corrections are very small.

Perhaps because of the weak intensity of the emitted radiation, it was not

until after the perfection of the photomultiplier tube as a light detector that

the Cerenkov effect experienced extensive application, especially in the field

of high-energy physics. It has been shown by Beck43 and later by Garibian44

that a general consideration of the radiation emitted by an electron in pene

trating a dielectric medium will yield the contribution of Cerenkov radiation

when the particle velocity is permitted to be greater than the phase velocity

of light in the medium. Thus, further consideration of Cerenkov radiation

in the present work is contained as a special case of the more general tran

sition radiation which will be discussed shortly. One now presents a brief

discussion of another type of radiation arising from polarization effects in

the medium, i. e., the characteristic energy radiation due to collective

plasma oscillations.

C. Plasma Radiation

45
In 1930 Rudberg performed his pioneering experiments dealing with

the characteristic energy loss spectra of electrons bombarding solid targets



and inspired renewed theoretical interest in an attempt to describe the

46
physical processes involved. Rudberg and Slater experienced some success

by suggesting that the characteristic energy losses were due to discrete

absorption of energy by the tightly bound core electrons of the bombarded

47 48 49 50
medium through interband transitions. Bohm and Pines, ' ' > £n an

extensive series of articles extending the earlier work by Bohm and Gross

on plasma oscillations, describe another means of characteristic energy

absorption in which the conduction band electrons of a medium absorb energy

through collective oscillations at a characteristic frequency w which has come
P

52to be referred to as plasma oscillation at the plasma frequency. Ferrell

employed the Bohm-Pines theory to interpret the experimental results of

53
Marton and Leder on the scattering of electrons by a thin gold foil in which

he (Ferrell) gives the angular dependence of characteristic electron energy

losses. An excellent review of the progress toward an understanding of the

54
characteristic electron energy loss spectra is given by Pines.

In 1957 Ritchie derived the angle-energy distribution of a fast electron

traversing a thick metal foil and losing energy to the free conduction band

electrons of the material. This distribution includes both the characteristics

of the collective interactions described by Bohm, Pines, and Ferrell and the

individual interaction of Rudberg and Slater, and in addition describes a

short-lived loss at the frequency u> / Jz which has come to be called the sur

face plasmon frequency. Ferrell proposed a means of observing the plasma

losses when he predicted that the conduction band electrons undergoing



10

collective oscillations should emit radiation at the plasma frequency oj .

57 52
Ritchie and Eldridge have since shown that the plasma theory of Ferrell

is contained in the more general transition radiation theory thus confirming

the physical methods employed by Ferrell in deriving his distribution

functions. One now presents a brief discussion of the main progress in

developing the general transition radiation theory.

D. Transition Radiation

The phenomenon which has come to be referred to as transition radiation

and which arises due to the induced electric polarization of a medium by an

58
impinging charged particle was first described by Frank and Ginsburg who

considered the radiation emitted when a fast electron passes from a medium

of dielectric properties given by e into a medium of different dielectric

properties given by e . They showed that this radiation was not a result of a

change in the velocity of the electron but was due to induced polarization of

the media. They further asserted that in the case of a fast electron moving

from vacuum into a metal that the transition radiation intensity would be

larger than the optical bremsstrahlung associated with the slowing down of

the charge. It was also shown that in the special case of an electron moving

into a perfect conductor the emitted radiation would be identical to that of

the sudden collapse of a dipole, i.e., the annihilation of the electron and its

image charge at the surface of the conductor. Since this early work of Frank

and Ginsburg there has been an almost continual theoretical interest in this
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phenomenon which has played an important role in the theory of metals.

43Beck obtained the rigorous solution for the field of a point charge moving

uniformly from a vacuum into a homogeneous dielectric medium. He found

the characteristic transition radiation solution for large velocities and, in

addition, found the characteristic Cerenkov cone for velocities greater than

c/n, the phase velocity of light in the medium. This same connection

44
between transition radiation and Cerenkov radiation was derived by Garibian

by considering the radiation emitted by a charged particle emerging from a

59 ....
dielectric medium into a vacuum. Askar'ian proposed transition radiation

as a method of generating millimeter length radiowaves by "bunches" of non-

relativistic electrons impinging upon a metallic surface. Fainberg and

Khizhniak in considering the energy loss of a charged particle passing

through a dielectric found that there is an increase in the intensity of the

radiation when the dielectric is divided into layers. Garibian analyzed the

transition radiation emitted when a charged particle penetrates a large

number of dielectric slabs separated by vacuum spaces and showed that the

increased intensity could be peaked either in the forward or backward

direction by a variation of the spacing of the dielectric slabs. He proposed

62
this as a possible method of detecting relativistic particles. Pafomov

obtained the angular distributions of the transition radiation emitted by a

charge moving normally into a finite slab from vacuum. He showed that in

the case of an infinite slab his results reduced to those of Frank and

Ginsburg. Another consideration by Pafomov of the transition radiation



12

emitted from an electron irradiated finite slab is given in which he considers

both the case of the entering charge and the emerging charge and also takes

into account the absorption of the medium. A similar consideration has also

been given in a paper by Garibian and Chalikian. Garibian computed the

energy loss by a charged particle traversing a finite slab and found that the

energy loss due to transition radiation is important at high energies. In

anticipation of the application of transition radiation as a fast particle

detector and as a generator of short waves, Barsukov derived the spectral

and energy distribution of radiation produced in waveguides by ultra

67 68
relativistic particles. Garibian and Korkhmazyan present results of

their considerations of the transition radiation emitted by a charged particle

incident on a dielectric slab at an arbitrary angle of incidence. Similar

results are derived in the present work by a somewhat different method in

69
Chapter 3. Garibian has derived the spectral distribution of the radiation

emitted by a charged particle moving through the interface of two media and

has included the effect of multiple scattering; however, the effects of the

boundary and of the medium on the multiple scattering have not been con

sidered. Many other special aspects of transition radiation have been

considered such as the radiation emitted by a moving charge in an inhomo-

geneous medium, resonance effects in a laminar medium, and the tran-

72
sition radiation in a plasma. An excellent qualitative review of the

28
properties of Cerenkov and transition radiation is given by Frank. Ritchie

57
and Eldridge present a generalization of the theory of the transition
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radiation emitted by a normally incident charged particle traversing a finite

dielectric slab in which the wave properties of the incident charge are

employed in the Born approximation. As was previously mentioned, these

authors show that their result contains the plasma radiation results of

52
Ferrell. In addition they consider the case of the thick foil in which case

58
their results reduce to the earlier Frank-Ginsburg formulae, the thin

foil, and a brief treatment of the effect of an oxide film which may be

present on the dielectric surface. The most recent considerations are those

27 73
of Ritchie, Ashley, and Emerson. ' In the first paper the radiation

generated by bremsstrahlung and transition radiation produced by an electron

traversing a semi-infinite dielectric medium at normal incidence is investi

gated from a macroscopic dielectric approach, a consideration which is con

tained in the present work for the special case of normal incidence. In the

second paper the transition radiation is investigated from a microscopic

approach which emphasized the individual events which occur when an

energetic charged particle traverses a thin dielectric and obtained results

consistent with those of the first paper.

E. Scope of the Present Work

In view of the valuable contribution of the theory of transition radiation

to the explanation of the emitted radiation from electron irradiated metals

and the comparatively recent theoretical considerations on the simultaneous

generation of bremsstrahlung and transition radiation which have been
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presented, it is of value to present in detail the general considerations

involved in the determination of the photon yield from such physical pro

cesses—especially those in the visible region. The essential validity of a

macroscopic dielectric approach which contains the contributions due to

Cerenkov radiation, plasma radiation, and the radiation due to interband

transitions of the tightly bound core electrons has been demonstrated.

Therefore, for the purpose of the present work, one assumes that the

properties of the irradiated dielectric material are adequately described in

terms of a complex, frequency dependent dielectric constant of the form

e(ui) - e (oj) + ie (co). In Chapter II one employs this assumption to derive

a general expression for the distribution of photons emitted by a charged

particle passing from a vacuum into a medium of dielectric properties

characterized by the dielectric constant e(o;). A particular physical situation

is then considered which treats the passage of a charged particle at an arbi

trary angle of incidence from vacuum into the dielectric medium and which

includes the radiation due to polarization effects and due to bremsstrahlung

caused by scattering on randomly distributed scattering centers. Numerical

results are obtained by considering various values of the parameters involved

and are compared with experimental results in Chapter IV.



II. ELECTROMAGNETIC THEORY

A model has been proposed by which one may calculate the photon yield

in the far zone resulting from the passage of a charged particle through a

vacuum into a medium described by a complex dielectric constant of the form

e(w) = e,(^) + ie ((jo). It is the purpose of this chapter to develop the elec-
J. C*

tromagnetic equations necessary to the determination of the photon number

2
distribution (d N)/(du)dfi) which represents the number of photons emitted

per incident particle per unit frequency interval per unit solid angle in the

direction specified by the angles ® and $.

A. Maxwell' s Equations; Vector Potential

The moving charged particle is described by charge and current

densities p(r, t)andj(r, t). Assuming homogeneous, isotropic, non-

permeable media, one writes Maxwell' s equations in the well-known form,

V*HCr,0 =4Sjc^o +±djptft) (2.1b)

V'Dcr,t)^4irPcr,t) (2.ic)

One also has the constitutive relations between the field vectors (with \i = l

15
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in non-permeable media).

D(?O = 6(tt0 E^O (2.2a)

5<?,t>= W(r,t> . (2.2b)

Contained, of course, in Equations (2.1) is the equation of continuity of

charge,

V-JtfO - *£*& - O. (2.3)
In the usual manner one defines the electromagnetic vector potential A(r, t)

with the equation,

Btf^>« VxMrtO . (2.4)

B. Hertz Vector; Wave Equation

Compact results can be obtained using the Hertz vector II (r, t) defined,

74in a manner similar to that given by Stratton, by the equation,

AC?,t) = *&> *![<?& (2.5)
dt

Equation (2. 4) becomes

B<fjo= t^?|.[vx7rc^)j (2.6)
which when substituted into Equation (2.1a) yields the curl equation

Vx [l(^) ♦ l£? *?<*>] = O.

This equation is satisfied identically by the gradient of a scalar potential
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0(r, t) defined through

EC^, +1^ ^ZC?,t) =- V*Cr,t; . (2.7)

Further, since 0(r, t) is arbitrary as long as it satisfies a homogeneous

wave equation, one can write

<(>(r^) = -V.Tfcr,t). (2.8)

Then, from Equations (2. 7) and (2. 8) one has the relationship between the

electric field vector E (r, t) and the Hertz vector n(r, t), i.e.,

E<r,t) =V[7-ffa*>] - ^ 0("'f) (2,9)
One proceeds to derive the wave equation in the Hertz vector by employing

the polarization vector P(r, t) such that the equation of continuity (2. 3)

is satisfied identically, viz. ,

J<^)= 4xC?'° (2-10)

P<?,t) = -V.p<r,0# (2-n)

Then, using Equations (2. 2a), (2.2b), (2. 6), (2. 9), and (2.10) in Maxwell1 s

equation (2.1b), one obtains the non-homogeneous wave equation connecting

the Hertz vector and the polarization of the medium;

7x[7«Tfojt)] - 7[v-if<?^ - ^ f|<fU) =|g> P<?,« H
which becomes, using the vector identity for the triple vector product in

rectangular coordinates,
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^n<r,o - *£?£trf'"=-3£p<fc>. (2-i3)

C. Fourier Transformations

Employing the powerful methods of Fourier transformation, one can

reduce Equations (2. 6), (2. 9), and (2.13) to ordinary differential equations

involving only the z-coordinate dependence. One assumes conditions which

allow transformation of all quantities according to the Fourier pair;

-• -i -*

CO to to

F(C,»te)= <W*.Jj*M« F(f.t) c-*^*»lV,i)t (2.15)
-«» -«• -«*

Equation (2.13), upon transformation, gives:

Similarly, Equation (2.10) becomes

After performing the indicated operations in Equations (2.16) and (2.17), one

combines the results to obtain the transformed wave equation,
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One now transforms Equation (2. 9) and obtains [with 6 =(xk + yk - cot)]
x y

+€(u) coX f

Anticipating the application of boundary conditions, one finds it convenient

to separate Equation (2.19) into component form. One writes

+h^t^""1'*^]?+ <Cw)f»^tn,<su|oeiSJ=o <2-20>
with similar expressions for the y and z components which, after one per

forms the indicated operations, become;

Ex=^fcxTTx^k,V ^h *°"y£ TTX (2.21a)

E2= ^[ik.TT.* ik,V ^] *^fX. (2.21c)

Equation (2. 6), using Equation (2.2b), is transformed and one has

hU^iOe"5- e&> ^[7xtfc«,-»lx)C^] =0 (2.22)
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which, written in component form, is

with similar expressions for the y and z components. Performing the dif

ferentiations, one finds;

H, =-*f«U^--"«*Tll] (2-24b)

Mx =-i f e[*t,Tr, - ^ k, TT,] _ (2-2*0

D. Rotation of Axes

Now, to simplify the evaluation of conditions at the interface between

two media, one chooses a coordinate system in which the x' axis coincides

_» —

with the resultant of the T and T components. In this system J (r, t)—and
x y

therefore II (r, t)—have only two components, the x' and z components. A

simple rotation of axes in the xy plane yields the desired results with the

transformation equations between the primed and unprimed systems being

obtained from Figure 1.

\ i

X

x' = x cos IS. + js'mrf (2.25a)

\ ^^^ ^'= <j cosift - xsintA (2.25b)

^ )tfl /f-J* kx'= k.xCo«> 2ft -»• ka Sir? 1& (2.26a)

Fig. 1. - Rotation of Axes j^, - (^ c0«> ^ _ kx Si n ifl (2. 26b)



Also from Figure 1 one has
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J* =" J*' COS & (2- 27a)

J„ « wk »in I* (2.27b)
n-'4lCObtf = JX(J* + X)" * (2.28a)

'3

sin rf =I,(J* +Jj)"V (2.28b)

Then, employing Equations (2. 25) and (2.26), one finds that

exp i(xk + yk - cot) = exp i(x'k , + y 'k , - cot) and a Fourier transformation

in the primed frame of Maxwell' s equations in the primed frame yields

results identical to those already derived (remembering that now

ny,(k\ w|z)=0).

E. Boundary Conditions

One applies the well-known conditions of continuity of the tangential

components of the electric and magnetic field vectors at a boundary which

require (in terms of the Fourier components):

Ex',= Ex'j. (2-29a)

EtfrE,i (2.29b)

HX',= Hx'a. (2- 29c)

M„',= Htf* (2-29d)

where the subscripts 1 (2) refer to the medium below (above) the z = 0 plane.

Using Equations (2. 21) and (2. 24) in the primed system and remembering
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that n ,(k' tolz) = 0, one writes (with e. = 1 for a vacuum);
y ' 1

^vfcivTT.', *K"""] = ulstkAi* kM (2'30b>

-i £ (x ic,. TTtl) = -* e f (- k3. TT„ ) (2.30c)

-* f tfi^x', -***-\] =-> «^-U^-ilwTTa] . (2.30d)

Solution of this system of equations is straightforward and yields concise

relations to be satisfied at the boundary. From Equation (2. 30c) one finds

TTw=«TTxx . <2-31a>
which when substituted into Equation (2. 30d) yields

Equation (2. 30b) is solved for (oil J/(dz) which is then substituted, along with

Equation (2. 31a) into Equation (2. 30a), giving

TTx^eTlx-x. (2.3ic)

Then, rewriting Equation (2. 30b), one has, in Equations (2. 31), the four

requirements on the Fourier components of the Hertz vector which must be

satisfied at the z = 0 boundary.

^*'"TCx, «• f-JU. =^K*TTx'» * Ie1*** . (2-31d)
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F. Form of Solution to Equation (2.18)

One knows from classical electrodynamics that the radiation field

behaves as an outgoing spherical wave; therefore, only that part of the

general solution of Equation (2.18) which represents such a wave form is of

interest in the present topic. However, the general solution of Equation

(2.18) must still be found in order that the constants appearing in the homo

geneous solution be evaluated. Further, since the radiation is to be observed

in medium 1, that solution which applies to the lower (z < 0) half-space is of

primary interest. Equation (2.18) in medium 1 is written

<fTJl<Z^u)_ v»fJ(ft<Bl0 =_tti5flt h, (2.32)

Let us assume, for purposes of generality, that the transform of the

desired radiation field solution of Equation (2. 32) can be written in the simple

form,

TTo^u) =i! Av eyz + i A2 evz (2.33)

where v =k/ + k/-co/c,x'isa unit vector along the x' axis, z is a
x y

unit vector along the z axis, and A , and A are constants to be evaluated.

According to Equation (2.14) in the primed reference frame, one writes

« • «

TT cr; t) =(anf4 J]\ K- is- «*« (x'Ax. *tAtv
~40 —& "00

exp[x (x'kK, +l'k.i-*oi) -f VZJ (2. 34)
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the integration of which, applicable to the far zone, can be obtained by the

"saddle-point" method described in the next section.

G. Saddle-Point Evaluation of Integral (2. 34)

To apply the "saddle-point" method (method of steepest descents)

described by Margenau and Murphy and others, ' one writes the inte

grals over the k' variables in the form

i=[f^,,k,)e^^^;^; (2.35,
where

•f <kx., ky)= k^kj (x'4x< +2/U) (2.36)

and

3<kx. kv) =*(x1 kx. - V^0+ (k.% kv - *£)'**• • (2.37)
One sees that for large values of |z| (corresponding to the far zone) the

imaginary part of the exponent in Equation (2. 35) causes rapid oscillations

in the integrand which would be expected to contribute both positive and

negative values to the integral. One finds that the major contribution to the

integral under these conditions comes from the neighborhood of the point of

stationary phase, the so-called "saddle-point", where the real part of

g(lc , >k /) is largest and the imaginary part is stationary. It is shown in

Reference 75 that the Cauchy-Riemann equations locate this saddle-point

(k , > k , ) at the point where the first partial derivatives of g(k , > k ,)
xoyo xy
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vanish simultaneously, i. e.,

Wxo=0 5 (2.38)

Having found the saddle-point, one expands g(k , >k ,) about that point and
x y

evaluates the integral in the neighborhood of the saddle-point, thus

where terms in the small quantities (k , - k , ), (k , - k , ) of order higher

than the second are neglected (Reference 77 shows that the exact result

must be obtained by the inversion of series method, however for present

purposes the above approximation suffices). By Equation (2. 38) the second

and third terms in Equation (2. 39) vanish. One now makes the substitutions

k , = k / e , k , = k , e P where - II < a < II and - IK (3 < II, and expands
x x o y y o

the exponentials neglecting higher ordered terms in the small quantities a

and (3 to obtain

(lev- kx.G) - ^.4 kacV,

(k<a' - lSo) = -if S'« •

Equation (2. 39) becomes

3(kx. /cv) = }0*o,kv.) - iW<t+ 6^ *ty)

(2. 40a)

(2. 40b)

(2.41)
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where

A-i.aite. *=^v ^^$4f«>
One also finds that dk ,/k , - ida and dk ,/k , = id|3, therefore the integral

x x' y y

becomes

1= j/W,kVo) e9(Kx'°>k^exP[-i(A«<% Bp.%- iCf)]^ Jp (2.43)

where the function f(k ,, k ,) has been evaluated at the saddle-point and the
x y

limits - II to n on a and (3 have been replaced by - mto oo since a. and (3 are

small in the neighborhood of the saddle-point. The integrals over da and dp

are of the form

J? -o.xx ± t* 1/1. fc/W

-a>

and Equation (2. 43) is then given by

I =-k^ k,.0 (*' Ax« +zA,) e3(kfc'-jis'-Vir)(A©-Cx)"16, (2-45)
where A, B, and C are given by Equation (2. 42). Performing the operations

required by Equations (2. 38) and (2. 42), one finds

**•.= $X,C*/aWS-**)"'*' (2.46a)

K* =^<i'(xX+V^^)"'/9' (2'46b)

&= kioC^^z^as-yVx^/^*1)"^ (2.46d)
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C= k*. kVo *'«,' C- * )•' CX'% 3'V rx)~'*• (2- 46e)

3<"*'., k^^f <*,fc* S^**/*. (2.46f)

Substitution of the above values into Equation (2. 45) yields

I = -A £ Z (*'
c

The Hertz vector Equation (2. 34) describing the far zone fields is

TT, <?;*)=•

d0

g;C,£^I*̂ ^wt^^H12-48)

H. Transformation to Polar Coordinates

The form of Equation (2.48) immediately suggests the transformation

to spherical polar coordinates which one now performs with the aid of

Figure 2. Here ®is the angle between the - z axis and the observation

direction vl , and $' is the azimuthal angle between the x' axis and il.

Fig. 2. - Transformation to Polar Coordinates
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One has then;

TTe = TTX, sin ©cos$' - Hi cos <3>

W&- ITx* cos<S>cos|' -v TTz *'" ©

TT|'= - Hy sin £ #
Also, one writes;

Hence, in component form, one obtains;

TLa-u£25® U* yfo'wflQKj'i•- ^ftQexj»UCgg-«^)l (2.49a)
-00

00

Tf0=-*£2^j<l"f («*©**S,Aai,+ *>^)£5cl*i2±!dil (2.49b)
ClTT)

<»

TTa' = X££1® [<Luj f£ sin $' Ax- e*p fc^*-"*^. (2.49c)* 07Tr7v J c x "x £

One has, for the transformation of the k'' s

j<V = ^ S<V? <g> cosg' (2.50a)

{< , = 2t s/*<8> sing' . (2.50b)
•J £

I. Determination of the Field Vectors from II(r, t)

One is interested in determining the number of photons emitted in the

direction of observation defined by the angles 0 and $'. Therefore, considering
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these quantities to be fixed, the components of the electric field that are of

interest are found immediately from Equation (2. 9), i. e.,

E^fllT® (2.51a)

ES'=£lT*\ (2-sib)
Also, keeping only terms of order 1/R one finds (keeping the direction fixed)

H(S, =-f»TTft (2.52a)

Hf"= *CTU . (2.52b)
Using Equations (2.49b) and (2.49c), one has the field components perpendicu

lar to the photon propagation direction u_,

CO

. exp [1 (% R- vi )} (2.53a)
-a»

CO

** =' H«' w" k [*" £ A*'"'" ^VW**^] • p- 53b»

J. Poynting Flux and Number Distribution

The energy flux, given by the Poynting vector, is

<3(.rtt) =ipE^)X H<*U> (2.54)
from which one finds the radial component S :

R

Se = £CEeH$. -EgH9). '2-55>
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In the usual manner the energy radiated per unit solid angle is found to be

j)£«&*xf(E*Mr-E*H.).tt <2-56'
which becomes, using Equations (2. 51) and (2. 52)

eo «o «o

M =S. [*u> hj [U «£ ^ 11 b*< CoS®eoi$'* A?*'tn<8>\ +
JL& 4* L L L C c n— CD —CD *> CD

+ IA*' 5/A7 f j ^ e C C05 <S) . (2. 57)

Now, using the well-known Fourier representation of the Dirac delta function

(2. 58)
-co

and the fact that II(-co) = II (co) for the physical situation under consideration

one finds for Equation (2. 57)

eo

Q

The intensity distribution [dI(co)]/dn, as usually defined, is found from

Equation (2. 59) to be

45^=<LJ-*£® a£ %\4x.c* +c<»§'+Agsifi0l+ /*«• */*//*/(2.60)

which one divides by the photon energy hco to obtain the photon number dis

tribution

£4 =̂ - 4 i IAy co, ®c<»§ *Az*'» ef+ IAx> *>» iTl (2.6i)
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Defining the plane of emission as that plane containing the normal to the

dielectric medium (the z axis) and the direction of photon emission il,

Equation (2. 61) is divided (using Figure 2) into a number distribution of pho-

2 2
tons polarized parallel to (d N||)/(dcodQ) and perpendicular to (d NJL)/(dcodQ)

the plane of emission. One has

dill! =iSll®. a£ IAv. cos <S> cos $ + A, *''« <8> I (2. 62a)
Aula air* c* r* '

JUcUl 1F7T c^T" r / •
(2. 62b)

Using Figure 3 one transforms back to the original xyz reference frame with

the relations

Fig. 3. -Transformation to xyz Reference Frame

Ax, cos $' = Ax cos 1 + AH */« $

Ax. s/'n £ '= 4X */tff - A<3 <:©s £ .

Then under this transformation Equations (2. 62) become

(2. 63a)

(2.63b)

£0*1 = £2*!® ^/Ls«&«*f+Al«ii.#) + Az5/W(S>/ (2.64a)
jtoAci d-wT c
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£Hk . S»L* <£ | Ax Sin $ - L co, $ I (2.64b)

K. Summary

One has obtained the inhomogeneous wave equation connecting the Hertz

vector with a source current density, has determined the boundary conditions

on the components of this quantity, and finally has expressed the photon

number distribution in terms of the constants appearing in the radiation

solution to the wave equation in the Hertz vector. One now considers a

particular physical situation under which a dielectric medium is irradiated

by charged particles, and describes the resulting emitted radiation.



III. TRANSITION RADIATION AND LOW-ENERGY

BREMSSTRAHLUNG, ARBITRARY INCIDENCE

27
One wishes to generalize the methods of Ritchie, Ashley, and Emerson

to include the case of non-normal incidence of the charged particle. One

assumes a classical point mass of charge Ze traversing a space consisting of

a vacuum (e = 1, z < 0) and a dielectric medium [ e(co), z > 0]. The charged

particle moves with a velocity given by v(t) which is directed at an angle

8. measured with respect to the normal to the dielectric medium (the z

axis). It is further assumed that the particle is undeviated in the vacuum

2
but experiences small angle scatters ( <0 ) t « 1) on randomly distributed

scattering centers located in the semi-infinite dielectric (thickness

t » X ). The energy loss experienced by the particle as it traverses

this space is assumed to be small compared to its initial energy. The

geometry of the present situation is shown in Figure 4.

Fig. 4. -Geometry-Transition Radiation and Low-Energy Bremsstrahlung

33
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The charged particle crosses into the dielectric at the origin with its

velocity v(t) making an angle 9. with the z axis. The projection of this

velocity onto the plane vacuum-dielectric interface is taken to define the x

27
axis. One must modify the approach of Ritchie, Ashley, and Emerson

somewhat in order to correctly match the field vectors at the z = 0 boundary.

One assumes a current density J (r , t) due to the passage of the charged

particle—at some angle 9(t ) with the z axis—through the z = z plane. One

then finds the Hertz vector II (r, t) resulting from the reaction of the

medium to this current density, matches it at the z = 0 boundary to deter

mine the arbitrary constants, and finally integrates (corresponding to a

coherent sum) over the entire space - co to °° to obtain the total radiation

field specified by n(r, t). One then proceeds according to Chapter II to

2obtain the photon number distribution (d N)/(dcodQ) for a particular scattering

history and to average this quantity over all possible scattering conf igura-

2tions to obtain the quantity of interest <(d N)/(dcodQ)>.

A. Current Density and Fourier Transform

One writes the current density in the form

t

J0C£,t> =Uv«)i(JQ- lt«'>Jt') (3.1)
-oo

where Ze denotes the charge and v (t) the velocity of the particle, and r is

the position at which the current density is to be determined. By using the

assumption of small energy loss by the charged particle one considers the

velocity of the particle to have a constant magnitude v = |v I and to be
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directed along an instantaneous unit vector u(t). In the x 'y 'z ' reference

frame—where the z ' axis is the original undeviated direction of the charged

particle—one writes the velocity as

jr(t) = lr(x' sin S(t)co*>$a) + §'sin 9(€) sin j>(t) + z.' cos 9<v) (3. 2)

where 0(t) and <£(t) are the instantaneous polar and azimuthal angles, respec

tively, of the particle. Then, in the xyz reference frame one has the

expressions

V^t) = V- (sin 6Ct) Cob $(t) COS £• + cos $it) a/« 9A ) (3. 3a)

v^Ct) - v- iin Get) safety (3.3b)

VzCt) =4- (co*> Q(t) cob £• - sirt QCt) co% fat) sin Gj. ) ^ (3. 3c)

Using the assumption of small angle scattering one writes sin 9(t) = e(t) and
2

cos 6(t) s: [1 - 1/2 9 (t)] in which case the velocity components are written

vx(t) = v[^^t)cos<^ + (1 - v^e**)) s//7 sA (3. 4a)

Vlt) - V Qu<^ (3.4b)

4fz(t) = v[(l- 'ASaj) co<, <% - 0x(t) sin £•] (3. 4c)

where one has used 9 (t) = 9(t) cos 0(t), 9 (t) = 0(t) sin <6(t), and
X y

2 2 29 (t) = 9^ (t) + 0 (t) for convenience of notation. Writing Equation (3.1) in

component form and performing the Fourier transformation prescribed by
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Equation (2.15) one obtains—the integrations over dx and dy being simplified

by the delta functions—
co t ^

J (k «>lO =Z-e (*u)"H I**<*> «p[-x (k^fa"') '̂ +k^fa9(t')Jti%
ox J -eo .i.ox

-eo

t

*i(zo-Af§<<i<i'iJ£') AfJtt (3.5)

with similar expressions for J (k, colz ) and J (k, oj|z ). The quantities
oy ' o oz ' o

u (t), u (t), and u (t) are obtained from Equations (3. 4). To solve this
x y z

equation one must find the zero of the argument of the remaining delta

function, i.e. , using the expression for u (t) one must solve the expression
¥•

iu)t

P. 36 EQUATION (3. 6) The integrand should be multiplied by e .

in an approximate manner by iteration. To do this one lets z = vt cos 8. and

puts this result back into Equation (3. 6) to obtain

P. 36 EQUATION (3. 7) Sign of second term in square brackets in the integral
should be positive.

-oa

. ^/cob Oji = O (3- 7)

which yields the approximate zero for +-v>- J -1' ~ . egral should

the right hand side: Zq/v cos &
tan 9 . p Q (z' /vcos 9.) dz

w. l— e (z /v cos 9.) J »x^ 0' x
(k sine.--) vcos e. x o ..

... „„.^xxj.xt;b rne result to obtain^L^u-ieB rne result to obtain
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•^Kj-^S^j^e^ 0.9a)

.Jii•£*?[-(%-***»*)<k,]e (3. 9c)

where

P. 37 EQUATION (3. 10) Add the following to the expression for 6
z /v ^:os 9 . , /

2 o i dz
(k sin 6 - a,/,,) tan 9.6 (z /u cos 9.) f 9 (z ' /u cos 9. —

x x l xv o r J xv o i cos 6.

-eo Q. -e©

-co

Zo/vCOh&J.

In accordance with the assumption of small angle scattering one expands the

quantity e and keeps only terms such that |j | will contain terms no higher

than second order in 9. One obtains

(3.11a)



38

J0, (2,-ta.)-ZrCnrf* SCg*> «P [«• (*- Kxi,„«,)^J (3.iib)

*<*,»l».).Zffrrf* &"*-*<****&<* Rg-*««frflgfc1 (3.11c)

where

- * 5/>7 ^. a^V;- 1- */)/ 4 /ta;->£ (t*fa$j)a6$ k(B) (3.12a)

+Xcos% Qcax) +Jt co* ^ /}<<» - ^(uftosdi^ihS; fa) (3.12b)

and

"5 ^ Zf^ClL/^lgL-. (3.13a)
- Zo/fcojA,a f 1 / Zo/do*A,

P. 38 EQUATION (3. 13b). Add the above term to the expression for B(9 ).

.a> WCf+

One has considered the 9(2 /v cos 9.)' s to be prescribed functions of z thus
o i n

™s-x ~(.. V Replace the third term inside braces, i. e. ,p. 38 EQUATION-t^^^ Replace
Ycos2e., by Y-
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dropping the v dependence in the arguments. One may now use these expressions

for the Fourier components of the current density to obtain the field

II (k, co |z) resulting from the charged particle' s "motion through the z = z

plane. For simplicity of notation one writes

J00?«U.> =[£•»• J,. (*>'*.) +J*, Jop(<^i29)]iU-2.) (3.14)

where J (k, colz ) is the component of J in the xy plane, i.e., the resultant

of T (k, co |z ) and T (k, co |z ), and J (k, co |z ) is the component along the
Joxv ' o' Joyv ' o' opv ' o' b

z axis where ux and U|| are unit vectors along these directions.

B. Solutions to Wave Equations

The wave equations connecting II (k, co|z) and J (k, co|z ) in both media

are found from Equation (2.18) to be

£^oi _V^Tfoi =-A[ux J^t dn Jop] ^(I-Z.) (3.15a)

0/* - v'*^"-^t^ J-*a* *» J'p^1-^ (3-15b)
where the subscript 1(2) refers to the vacuum (dielectric) and where

V*= k* -. K\ - «* (3.16a)

and

A» ^^ (3-17)
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One must solve Equations (3.15), apply the required boundary conditions

obtained from the continuity requirement on the electric and magnetic field

vectors, and integrate over all space to obtain the Fourier component of the

total radiation field. One notes that while the charged particle is moving in

medium one, i. e., z < 0, there is no source present in medium two and the
o

right side of Equation (3.15b) is zero. A particular solution to Equation

(3.15a) is found by the Green' s function method described in Appendix I.

Hence one writes the general solutions to Equations (3.15) when z < 0—as
o

ff.A-M= *M*M+& J^k^h 5„Lv£ Jj'%-^)

Hoi(Z,<»*i)= <Jxgx,eVZ **» b^e""1. (3.i8b)

In the same manner one notes that while the charged particle is moving in

medium two, i. e., z > 0, there is no source present in medium one and

hence the right side of Equation (3.15a) is zero. The particular solution to

Equation (3.15b) is found in the same manner as before and one has—for

z > 0—
o

ff^ (K.ouiz) =£x X^e* +£„ A^e*1 (3. i9a)

The tilde is used over these constants to differentiate them from the A' s

appearing in the radiation solution of Chapter II since now one finds that
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integration of the particular solution in Equation (3.18a) will yield a radiation

term (see Appendix I).

C. Evaluation of the Constants in Equations (3.18) and (3.19)

One must now apply the requirements imposed by the boundary con

ditions, given by Equations (2. 31), to Equations (3.18) and (3.19) in order to

evaluate the constants in these equations. The constants obtained from

Equations (3.18) will be employed in the integration of II 1 while the charge

is in medium one, i. e. , when integrating from - co to 0, and the constants

obtained from Equations (3.19) will be used in the integration of II . while the

charge is in medium two, i. e., when integrating from 0 to <». From

Equations (3.18) and (2. 31) one obtains

K+it>J<*/Lo~ 6&^ (3-20a>

vAx, -4^s/Z0 =-^&-L( (3-2°b)

A a- A. T &°Z° - & ft (3- 20c)

^ -1WVt° - -»'D*.+^V K- & J«.e• 1•(3-20d>
Using Equations (3.19) and (2. 31) one has the results

^»a«lA»*A*Vf,,vl (3-2Ia)
V/La =6[-V' QH+ •£• J«» e"' **] (3. 21b)
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A«» ««t6,„l*£iJ^ «-""*•] (3.31c)

vKs -** Ah --** BV&VA5+ '̂6V &V"V21d)
These two sets of equations are solved in a straightforward manner to yield

the constants

a _ A Cv-v') T W.
Aa> - a7 737*3 J*s>e (3>22a)

A/, =7^-o [<*-^} J_ 4. ^xO-fe) T 1e^0 (3- 22b)

when z < 0, and
o

7 A T -»'z0
Mj-a ~<vT>P) J°H (3.23a)

M"* <*+y) LJopa. * (WVJI)- -U*J e (3.23b)

when zq > o. Only those constants applicable to the vacuum solution, i. e. ,

IT^k, co |z), are given since one is concerned with the photon yield observed

in the vacuum. It is now an easy matter for one to use these constants in

Equations (3.18) and (3.19) and to integrate over dz to obtain the Fourier
o

components of the total radiation field. One obtains the results

it ,- IA\ {sal j e<""*♦«**.. . £.,co»&l +

+

eo

Zo

^)J-W -jz. e (3.24a)
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'V. - \(ve-v) LJ ~aST- -V,e Jz«" Tv" c^osl^o

-co

« f**,(—> T e-(tf',M*—'̂ S^t JX.K e*1 P.24b)

where one has incorporated the exponential dependence of the J components

given in Equations (3.11) in the quantity a = i(co/v - k sin 0.) and the quanti-

ties J .» J > J » and J are now the coefficients of this exponential in

Equations (3.11). The second term in the brackets in Equation (3. 24a) comes

from that part of the integral over the particular solution A/2v J e

which represents the transform of an outgoing spherical wave and hence con

tributes to the total radiation field (see Appendix I). The second term

inside the brackets of Equation (3.24b) arises from the same considerations

in the z component.

D. Photon Number Distribution

Equations (3. 24) represent those parts of the Hertz vector solution

which, when Fourier transformed to obtain IL(r, t), have the characteristics

of the radiation field. Hence the considerations employed in Chapter II can

be used to obtain the photon number distribution for a particular scattering

history by identifying the quantities inside the braces in Equations (3. 24a)

and (3. 24b) with the constants A , and A ,> respectively, appearing in
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Equation (2. 33), i. e., one now has

A , = {Term inside braces, Equation (3. 24a)} (3. 25a)

and

A = {Term inside braces, Equation (3. 24b)} (3.25b)
z L

One substitutes these values into Equations (2. 62) to obtain the photon

number distributions

JZfL ~air*** ]>v LCv+V)H*.Sm *€ JZ* cicosfl-oJ

(3. 26a)

and

C05

, Jo5, CO«><% CO&l'l + A-__ fjdS.C0*5 e
, -(i>'coS<Z'

>3L
-a,<%.)

-00

7T" )J*V
(3.26b)
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where the variousparameters entering these equations must have their

respective values in spherical polar coordinates. Using Figure 3 on page

one obtains

Joi.CO<,$' = Jox_COSl +J Sm£ , -t =1,*. (3.27a)

Jos. Sinl'= J^.s'nJ- Jau .cot i , ,c«l,A. (3.27b)
^ '3 *.

Since there is no scattering in medium one, 9(z /cos 9.) = 0 and J -, J -,

and T , are obtained from the coefficients of the exponential term in
Jozl

Equations (3.11). The integrals over medium one, i. e., from - co to 0 can be

performed easily since they are of zeroth order in e(z /cos 9.). Then using

the coefficients for J n, J _,, and J , obtained from Equations (3.11) with
ox2 oy2 oz2

9(z /cos 9.) / 0, performing the integrations involving zeroth ordered terms

in 9 (z /cos 9.), and collecting terms one obtains

+ T„ (zo/u*&) -f 71, (W<w£)r

In the same manner the integrations in the parallel component are per

formed and one has

(3.28a)
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Ale H(v*cosft +oOm >*
catT)^ L«*-. v»c<?s*4 v'«js<0—<*

"IvcobS^ + <>< +

op

5), COi> <% 5/* ® + KM +(:x^)(€-1)0.^*1 C(flc^s I,-cos ?+&,*'>

•e" "$* ot +W<**> - V*.*»*;J (3.28b)

where

TrJ*»&£il# L AMm*^4 *'Jz* (3.29a)

eo

j s . ^^S/.^ [(j-Q^Jce^) +.6(5^ + i AOf^^MM

(3.29b)

<©)•

(v'cotA-tf)
£!ih . 5/Vt (9,- s;» (9 fe^ y^j ;c-g^ x'Jtu

(3.29c)
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<x>

+

C+&zU0/cosSA)/{(6)e "** Z'jZo (3#29d)

2 . .
and where A(9) and B(p ) are given by Equations (3.13). Equations (3. 28) are

written in the above form to illustrate the fact that the photon yield con

sists of terms which are independent of 9(z /cos 9.) and which represent

transition radiation contributions, terms involving simple integrations of

9(z /cos 9.) which represent the contributions due to bremsstrahlung, and

finally terms T-.., T .., T , and T which arise from the expansion of the

exponential in the current density given by Equations (3. 9), and which repre

sent interference between the two types of radiations.

E. Averaged Photon Number Distribution

The analysis of Equations (3. 28) is performed by converting to inte

grations over the particle' s initial direction, i. e., along the z ' axis where

one considers the scattering law to be sufficiently peaked in the forward

direction to enable one to treat the deflection 9 (z') as a two dimensional

vector at right angles to the z ' axis. Employing these considerations one
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evaluates the absolute squares of the magnitudes given in Equations (3. 28)

2
and keeps only those terms of order 9 (z') or less to obtain the photon yield

for a particular scattering history. This quantity must be averaged over

all possible statistically independent scattering histories to obtain the

2
averaged photon yield <(d N)/(dcodQ)). One performs this average in the

following manner.

The charged particle is assumed to travel undeviated in vacuum along

the z ' axis, to penetrate the dielectric to a distance z' where it experiences

its first scattering encounter after which it is deviated into the direction

specified by the angles 9, and <fi , to proceed along this new direction to a

depth z ' where it experiences its second scattering event after which its

direction is spcified by the angles 9 and <p , and so on through the semi-

infinite dielectric medium. It is further assumed that the path of the

charged particle between successive scattering events is a straight line.

The trajectory of the charged particle during such a scattering history may

be described by the set

ZA> !> K (3.30)

- . :

where z ' is the z ' coordinate of the particle at the instant it experiences

its k^-b scattering, 9, is its polar angle after the k^1 scatter, and $, is its

azimuthal angle after the kth scatter.
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Now, one lets y represent the probability of a scattering event per unit

length in the dielectric, i. e., y is the inverse mean free path length of the

charged particle in the dielectric medium and is written

r= N\*(e) dUi (3.3i)

In Equation (3. 31) N is the number of scattering centers per unit volume and

cr(9) is the differential cross section for single scattering—assumed to be

strongly peaked in the forward direction allowing one to consider 9(z') to be

a two dimensional vector 9(z') perpendicular to the z ' axis. The probability

of a scatter into the solid angle dfi about 9 is then given by

f(6) Jil = f\| <r<fi»f~' (3-32)

One writes the probability for occurrence of the scattering history specified

by the set (3. 30) in the form

i i

pcz^^Jk'JUl,, Tie *" k'1yK f(\e«-K))K (3-33)
K.= |

7 ? ~?

where j9, - 9, 1| = 9, + 9, -, - 2 9, 9, , cos (<j> - cp ). The terms in this

infinite product have their usual interpretations, i. e., e is the

probability that the charged particle will traverse the distance (z ' - z ' )

without scattering, ydz ' is the probability that a scatter will occur within

dz' about z ' and p( | 9, - 9, 1|)d 9, is the probability of scattering into the

angle d 9, about 8, - 8, ,. In order to consider all possible statistically
K. K. K.—A
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independent scattering histories one integrates this probability, i. e., one

performs the operation

The analysis of Equation (3. 34)—using Equations (3.28) converted to inte

gration over dz '—is a lengthy process with the major steps being given in
K.

Appendix II. One writes the following results:

2
1. Perpendicular Polarization <(d Ni)/(dcodQ))

/i» KU \ . Z»« ftV f\Ti*+ T" <?*>' +

where

(3.35)

rftrcosfr-r + 1 lj/^.^1 (3.36a)

^• =5' +f" '̂""l*;a Rr*»%<os*-tsinSf+ r*«»** ""'tft <3'36b)

- (V*'"**' <**!- ?*''» &)*+**&''**'&• S''**$ 1 (3.36c)
(Y+fir cos 6U ) •*

2
and where £ ' = - i co/cp((3cr cos 9- +y), y = (1 - P sin© cos a sin9.), ot - e /he,
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2 1/2
P = v/c, [i = cos0, cr = (e - 1 + |j. ) , with e(co) being the complex frequency-

dependent dielectric constant of the semi-infinite medium through which the

2
charged particle moves, and <0 ) is the mean square scattering angle per

unit length in the medium. The terms in Equation (3. 35) have straightfor

ward interpretations with the first term inside the braces representing

those transition radiation photons having their electric vectors polarized in

a plane perpendicular to the plane of emission (defined by the z axis and the

direction of photon emission), the second term inside the braces containing

those bremsstrahlung photons having this polarization as well as interference

terms between the two radiations arising from first order terms in 9(z'),

and the last term inside the braces representing interference terms from

second order terms in 9(z '). One can show that the transition radiation

term in Equation (3. 35) is identical with that of the same polarization

obtained by Korkhmazyan by a somewhat different approach, and also that

for normal-incidence (9. = 0) Equation (3. 35) reduces to the previously

27
derived result of Ritchie, Ashley, and Emerson. One further notes that

in the case where the plane of incidence (defined by the velocity vector of

the charged particle and the z axis) and the plane of emission coincide

($ = 0, $ = 180°) there are no perpendicularly polarized transition radiation

photons and thus no interference terms. In this case T .. = 0, T., = 1 and
ol II

one notes that the bremsstrahlung radiation shows roughly a (cos 9.)

dependence on the angle of incidence and hence increases rapidly as one

approaches grazing incidence (9. ~ 80°). This is easily understood since more
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scatters will occur within the observable distance \ than in the case of
opt

normal incidence, resulting in a larger photon yield.

In the special case of non-relativistic electron velocities one has

P « 1, y = 1, and Equation (3. 35) reduces to

k'4»M fl Z^/sV" ( ' +_si„+& $>»*$) <<A (3# 37)
C3S/ 7T»o> U^<r/» 4 /?« [-> £<T<os<9,]

where the various quantities in the above equation have the values given

after Equations (3. 36). One notes that the transition radiation component

is unimportant for low electron velocities and that the perpendicular

polarization component consists entirely of bremsstrahlung with a (cos 9.)

dependence on the angle of incidence.

2. Parallel Polarization <(d N|,)/(dco dn)>

.3- />* *( T/> <<3)*>j

(3. 38)

where

_si'h&co>$ + X^cai^-eY , ' ]g*iL*»lff? (3 39a)
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P. 53 EQUATION (3. 39c). Replace last term o£ equation, i.e., 0:

Y cos 8., by y . -)

The various quantities entering these equations have the same values as given

after Equations (3. 36). Now, the terms in Equation (3. 38) have the inter

pretations under which the first term inside the braces represents those

transition radiation photons having their electric vectors polarized in the

plane of emission, the second term represents bremsstrahlung photons and

COS$
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first order interference terms, and the last term represents interference

between the transition radiation and bremsstrahlung arising from second

order terms in e(z '). Again one can show that the transition radiation term

in Equation (3. 38) is identical with that of the same polarization obtained
/ Q

by Korkhmazyan and that at normal incidence (9- = 0) Equation (3. 38)

reduces to the previously derived result of Ritchie, Ashley, and Emerson

58
which contains the earlier results of Frank and Ginsburg. One notes that

the bremsstrahlung radiation term again shows the approximately (cos 6^

dependence on the angle of incidence.

Again, for the special case of non-relativistic electrons one has

(3 « 1, y=l, and Equation (3. 38) reduces to

27

(3.40)

where

T, = -(.'~6) co<> £ sin ® (3.41a)

^ =
^_ + «:-\)0-M9)

9-

U+tf' (jA+tX^+r) fe

+ a sin %coi <% $ih <9

(fe-OCi.^*) iy/e.i05K +^^A^^{| (3.4ib)
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P. 55 EQUATION (3.41c). Delete cos2 6. in the last line of the equation.

which again shows that the parallel polarization component consists of tran-

... 2
sition radiation (with a cos 0. dependence on the angle of incidence), brems-

strahlung (with a [ cos 9.] dependence), and interference effects between

these two types of radiation.

F. Mean Square Scattering Angle Per Unit Length and Optical Constants

In order to generate theoretical spectra from Equations (3. 35) and

(3. 38), one must determine the quantities (® ) and e(w) for use as input

data. One now briefly discusses the values employed for these quantities

in the numerical analysis which is to follow.

1. Mean Square Scattering Angle Per Unit Length

As was pointed out in Chapter I, there are many theories concerning

the multiple scattering of electrons from which one may deduce the quantity

of interest to the present work. One has chosen to briefly discuss three

theories appropriate to the present work in order to illustrate the choice of

the final expression employed in Chapter IV.
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16
a. Lewis; Born Approximation. -Lewis has considered the multiple

scattering problem in an infinite, homogeneous medium by expressing the

solution to the diffusion equation—electrons diffusing through some medium

with boundary conditions corresponding to a single electron moving in the +z

direction and incident at the origin—in terms of an expansion in spherical

harmonics. In the small angle approximation his results yield

<©*>= A-ki JS (3.42)

where k is determined from the spherical harmonic solution of the diffusion
Xj

equation. In the special case of the Born approximation, i.e., a potential

V(r) = (Ze /r) e , one uses Lewis1 expression (15 ') for k with I - 2 to
Xi

obtain

where N is the density of scattering centers, Z is the atomic number of the

2
scatterer, r is the classical electron radius, 8 = v/c, and a. - e /he =1/137

o

is the fine structure constant. As expected the scattering is more important

for high Z materials and for low electron energies.

b. Nigam, Sundaresan, and Wu; 1st and Znd Born Approximations. -

20
Nigam, Sundaresan, and Wu have given a derivation of multiple scattering

14
in which they have combined the exact theory of Goudsmit and Saunderson

2lwith the single scattering cross section of Dalitz for electrons scattered

by a screened atomic field. Their results, accurate to the 2nd Born
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2
approximation, can be used to obtain the quantity <0 > . Ritchie, Ashley,

27and Emerson give, in the small-angle approximation,

<®V !?*• (3-44)
20

where Q is given by Equation (56a) of Nigam et_al. One finds

\® ?t ^ llwUz*» *.0-|sV»l
9-

L_ -+. !_
4- l*

+ilZ^jfc fXli!W)VJ+*"»)] j (3. 45)
where again N is the density of scattering centers, Z is the atomic number

2
of the scatterer, r the classical electron radius, a - e /he =* 1/137 is the

o o

fine structure constant, p = v/c, a - Z a , and fi = 0(1) is a parameter of

21
order one (1) arising from the screening in the Dalitz cross section and is

to be chosen such that the exponentially screened field is the closest

approximation to the actual field V(r). In the present comparison for gold

we have used \i = 1. 8 in accordance with the agreement with experiment cited

20
by Nigam et al. In the first Born approximation one neglects terms in

2
(3. 45) containing the parameter a = Ze /he to obtain
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which differs only slightly from the results obtained from Lewis. The

2 .
factor Z in Equation (3. 43) is now replaced by Z(Z + 1) since scattering off

atomically bound electrons is included in (3. 46), the differences in the

slowly varying logarithmic terms of (3. 43) and (3. 46) are minor and finally

2 .
the term involving p in (3. 46) will be negligible at low electron energies.

c. Integration Using Cross Sections of Lin. - The exact definition of

the mean square scattering angle per unit length is given by

<<S>»^ =NJ0* J£ dR (3. 47)

where N is the density of scattering centers, 9 is the angle of scatter in a

single event, and dcr/dQ is the differential scattering cross section for

single scattering of electrons. The theoretically determined cross sections

78
for gold (Z = 79) of Lin, calculated from the Hartree potential for mercury

79(Z = 80) fitted by Byatt, were used to perform a numerical integration

of Equation (3. 47) for various energies. This integration was performed

through the Romberg integration method described by Bauer, Rutishauser,

80
and Stiefel which applies a linear transformation to the trapezoidal rule to

obtain a rapidly convergent series of approximations.

The above mentioned theories have been evaluated numerically for gold

at energies of 50, 100, 120, 188, 200, and 400 keV (since Lin' s cross sections

were quoted for these energies) and are represented graphically in Figure 5.

One observes at low electron energies (T < 200 keV) that the results obtained

by integration of Equation (3. 47) are approximately a factor of 2 greater than



2
o

z
w

3

IT
UJ
0.

UJ
_l
o
z
<

<
u
</>

UJ
or

3
o
(A

Z
<
UJ
2

1X10*

59

30 40 50 60 70 80 90100 200 300 400 500 600

ELECTRON ENERGY (KEV)

Fig. 5. - Mean Square Scattering Angle Per Unit Length - Gold



60

20
the results of the 1st Born approximation of Nigam_et_al., Equation (3. 46),

while the results from Lewis, Equation (3. 43), are approximately mid-way

between these two extremes. One further notes that the results in the 2nd

20
Born approximation of Nigam et al. are appreciably higher (factor of ~ 2)

at low energy than their 1st Born approximation indicating that higher Born

approximations are indeed important for low energy electron scattering.

Because it yields results differing only slightly from those obtained from the

cross sections of Lin, the expression (3.43) was used for the numerical

evaluations which follow in Chapter IV.

2. Optical Constants n and k

The dielectric constant e = e(co) must be determined for the several

materials of interest in order to generate theoretical spectra from Equations

(3. 35) and (3. 38). One has chosen to employ experimentally determined values

of the reflectances r and r —the reflectance of light of wavelength X with
s p

the electric vector normal to and parallel with, respectively, the plane of

incidence. From Fresnel' s equations the relationships between n, the

refractive index, k, the extinction coefficient, and the reflectances r and
' ' s

v, 81r are given by

r<^

">»

• &

{. (.<*+X I<)a_ s/iiV] + <oS ^
(3. 48a)

- \ At

[(rt+Ak) - $i»*<P] - (m+M cos <f j (3< 48b)
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where cp is the angle of incidence of the light measured with respect to the

normal to the plane reflecting material. Hence, the experimental determi

nation of r or r or a combination of both (unpolarized light) enables one to
s p

calculate the optical constants n and k. From these data the dielectric

constant can be computed using the well-known relationship

6(UJ) = [*l C~) +jL KCuj>] (3. 49)

82Reflectances determined experimentally by Ehrenreich and Phillip for

silver, by Minor for copper, and by Philip for gold have been used to

obtain the optical constants n and k for input data in the present work.

These values are shown graphically in Figures 6, 7, and 8.

G. Summary

The photon yield from a dielectric medium through which a charged

particle has penetrated has been determined in terms of the angle of particle

incidence 9., the geometry of observation (angles 0 and $), the scattering

2
properties of the medium <® ) , and the optical properties of the medium

e(co). One now generates theoretical spectra for various materials and com

pares the numerical results with available experimental data.
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IV. RESULTS AND CONCLUSIONS

To better facilitate the comparison of numerical results obtained

from the present theory with experimental results, the general expressions

for the photon number distributions <(d N)/(dcodQ))i, n given by Equations

(3. 35) and (3. 38) with Z = -1 for electrons have been converted to photon

2
intensity distributions <(d W)/(dAdQ))x, \\. Explicitly one has performed the

transformation (using the chain rule of differential calculus)

/c£W\ _ (arrcAft) M*M V (4 X)

and where now the quantity co in Equations (3. 35) and (3. 38) must be replaced

by its equivalent, 2 IIc/A. The use of the theoretical expression of Lewis

2
for the mean square scattering angle <0 ), and of the experimentally

determined reflectances r and r from which the optical constants for the
s p

various materials were obtained—as discussed in Chapter III and illustrated

graphically in Figures 5, 6, 7, and 8—enable one to generate theoretical

spectra which can be compared with experimental values. All numerical

calculations were obtained using the Control Data Corporation 1604A digital

computer.

A. Results

After performing the transformation to a wavelength dependent photon

65
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intensity given by Equation (4.1) the resulting forms of Equations (3. 35) and

(3. 38) for a given material of dielectric constant e(A) and scattering properties

2
(0 ) are functions of wavelength A, angle of electron incidence 9., angle of

photon emission 0, angle of azimuth $, and electron kinetic energy T. The

numerical analysis is broken up into two groups of data the first being

obtained for normal electron incidence, 9. = 0, and the last for non-normal

incidence, 9. 4 0.

1. Normal Incidence

In the case of normal incidence the azimuthal dependence goes out and

2
one obtains the various distributions of the photon intensities ((d W)/(dAdQ))x,

by varying one of the remaining parameters A, T, or 0 while keeping the other

two fixed. This has been done for various materials in the wavelength region

A= 2500 to A= 5500 and the results are given below for copper, silver, and

gold.

a. Copper. -Using the optical constants for copper from Figure 6 the

theoretical spectral distribution, angular distribution, and energy dependence

of the emitted radiation from an electron bombarded copper slab have been

determined and are shown in Figures 9, 10, and 11. In each case, figures

labelled (a) show the photon intensity due to parallel polarized photons while

figures labelled (b) show the intensity due to perpendicularly polarized pho

tons. In Figure 9 one notes that the perpendicular component of the photon

intensity which is entirely due to bremsstrahlung (9b) is several orders of
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magnitude lower than that shown for the parallel component (9a) which con

tains contributions from both transition radiation and bremsstrahlung. An

investigation of the energy dependence shown by Figure 10 shows that the

parallel component of the photon intensity has the linear dependence upon

electron energy T characteristic of the transition radiation (except for a

slight deviation at energies T < 25 keV where an upward trend can be noted

due to low energy bremsstrahlung) while the perpendicular component shows

the 1/T dependence expected of bremsstrahlung. Figure 9b also shows the

effect of the absorption of the medium upon bremsstrahlung photons where

the departure of the spectrum from the usual continuum in the vicinity of

o

3100 A can be seen to correspond to a decrease in the extinction coefficient

85
k in Figure 6. Experimentally determined points by Emerson et al. are

shown for the parallel component and one sees that the theoretical values are

lower by approximately a factor of 2. 5 at T = 25 keV (open circles) and a

factor of 1. 5 at T = 100 keV (closed circles). One must note, however, that

these experimental points were obtained from transmission experiments

o

using a copper foil of thickness 1270 A and as such does not strictly conform

with the theoretical approximations of a semi-infinite medium. The effect

of back scattered electrons due to large angle scatters and the reflection

of photons from the second foil surface would be expected to contribute

radiation which may account for some of the discrepancy. The angular dis

tribution of the emitted radiation is shown in Figure 11 where one notes that

the parallel component (transition radiation) shows a maximum at the
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emission angle of approximately 50 while the bremsstrahlung component is

strongest in the backward direction 0=0. No experimental values are

available at present for comparison of the angular distributions or the per

pendicular components. Summarizing, one finds that the spectral distribution

o

for copper in the range A= 2500 to 5500 A and for electron energies from

T = 25 to 100 keV consists of two distinct components, one (perpendicularly

polarized) due to low energy bremsstrahlung and the other (parallel polari

zation) primarily due to transition radiation, the interpretation of the

parallel component being accomplished with the aid of the angular distribution

and the energy dependence of the emitted radiation.

b. Silver. - The optical constants from Figure 7 were used to obtain

the theoretical spectral, energy, and angular distributions of silver which

are shown in Figures 12, 13, and 14, respectively. The spectral distribution

differs from that of copper in that for the parallel component (Figure 12a)

one now observes a rapid decrease in photon intensity to a minimum at ~3200 A

o

followed by a sharp peak at ~ 3320 A which "tails off" into the typical 1/A

continuum. The effect of the absorption of the medium upon the brems

strahlung photons is more apparent in the perpendicular component (Figure 12b)
o

where one now notes a sharp peak in the neighborhood of 3270 A (the extinction

coefficient k is seen from Figure 7 to have a small value in the region 3100 to
O

3300 A). Again the agreement between the theoretical spectrum and the

85experimentally determined points of Emerson et al. is poor for low energy

T = 25 keV but within a factor of 1. 5 at an energy of T = 100 keV. The
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experimental points were obtained from transmission experiments using a

thin silver foil of 710 A thickness. The energy dependence of the photon

intensity, shown in Figure 13, again shows the almost linear dependence of

the parallel component (where now the 1/T dependence of the parallel

polarized bremsstrahlung is more apparent below T = 20 keV than in the case

of copper; this is to be expected since silver has a higher Z value than

copper) for energies greater than 20 keV again identifying this component

as primarily transition radiation, while the perpendicular component (Figure

13b) again shows the typical 1/T bremsstrahlung characteristics. The angular

distributions of the emitted radiation shown in Figure 14 are very similar to

those of copper except that the peak emission of the parallel component for

silver is in the neighborhood of ®=30°. One also notes that for small angles
o

©< 5 the photon intensity decreases with increasing energy leading to the

conclusion that for observation in this area the parallel component of brems

strahlung competes with transition radiation. The angular distribution of the

perpendicular component is seen to be similar to that of copper.

c. Gold. -The theoretical spectral, energy, and angular distributions

for a thick gold slab—using the optical constants from Figure 8—are given

in Figures 15, 16, and 17, respectively. One notes the typical l/\ "tailing off"

of the spectrum in Figure 15 with a few humps in those areas corresponding to

a decrease in the extinction coefficient k of Figure 8. The intensity of the

parallel component is again larger than that of the perpendicular component

by at least an order of magnitude. The linear energy dependence of the



7
6

(1
_

N
V

ia
V

a
3

iS
,.IA

J0
1

.N
O

a
i0

3
"l3

A
e

0|)
A

ilS
N

S
iN

I
N

O
iO

H
d

CO
«

S
«

fc"
-X

Q
O

o
°-

O
-1

ro
0q;

g
8

o
"

'I
><

C
D

(X
)

O
fU

J
•

o

I
•

I
I

'
I

I
I

I
L

_l_
O

l
C

O
f
-
C

D
I
O

^
l
O

C
M

(l-N
V

iava3iSl.W
D

,.N
O

ai03"l3•*«)
A

ilSN
3iN

I
N

O
iO

H
d

co

V
fC

j
N•
iHUmi—

i

o
Q

J

P
m

Oc

UH3o
•
H

Q
J

T
3

•
iHOc1—

1

T
j

r
-
H

C
"3

Q
J

C
L

,
SMQ

J

go

P
m

^
•
—

-
.

^

X
T

J
i—

l

oUcQ
J

i—
l

Q
J

>(3

oor
o

£
m

•
i-

i

inc
O

Q
J

O
•
P

a>
C

*
r

l
-
H

C
C

o
o

o
•

1-1
-P

lO
—

.
•
p

o
*

o
<

m
X

—
N•
»

-
i

P
m

o
f

flj
l

<
*

zU
J

•3P
m

L
O

w
-4

_
1

o
u

j
i—

i
Q

J
bb

r
-

<
3

P
m

ro
?

rd

P
m

O
C

M



6
<O

o
O

O
O

o
if)

_
|

ro
O

CM
O

"
"

ii
C

D
®

c5
.<

7
7

OC
M

I
I

I
I

I
I

I—
I—

I—
I—

I—
I—

I—
I

I
1

I
I

I
I

I
I

I
I

L—
J__L_J__1_1_L_L

O
O

C
O

^
C

M
O

C
D

C
O

T
t
C

M

(,.N
V

I0V
a3iS

•,.W
O

•,.N
O

ai0
3

1
3

•A9
jO

I)
A

ilSN
3iN

I
N

O
iO

H
d

o
<O

o
O

Q
O

o
If)

_
l

ro
O

C
M

Q
11

II
II

C
D

®
<

£
-<

I
I

i
i

i
I

I
I

i
I

i
I

i
I

i
i

i
I

i
i

i
I

i
i

i
I

i
i

i
I

i
i

i
I

i
i

i
I

CT>
00

N
C

O
if)

<*•
I
O

C
M

(,.N
V

ia
v

a
3

iS
-,.W

0
-,-N

0
a
i0

3
1

3
-A

9
)

A
ilS

N
S

iN
I

N
O

iO
H

d

88 o0
0

o
•
r
t

O
o>

-P
1^-

JC
<

d
N•
H

>
-

U

°
£

rd
Q

J
i—

i
0

U
J

zU
J

oP
m

Q
J

o
^

If)
zo

urd
i—

i

3

•
r
t

Uc

V
S

1—
1

U
J

T
>

rd
_

J
c

C
U

J
Q

J

N
Q

J
a

o
P

m
^

C
M

j
^
^
t

^

.£
,

t—
i

o

o

ft
o)

hQ
J

CHCoJ.o

o
Q

J
r—

1
o

win

o
>

e
n

•
r
t

o
in

0
9

cQ
J

•
-

4->

O
">

r
-

*

co
•
r
t

•P

h
-
4

>
rd

o
o

£
N

•p

co
*

•
r
t

o
L

U
H

X
zU

J
rd

i—
i

P
m

8
*

oP
m

1

oc
r

o
H

i—
i

Q
J

.—
I

i—
I

N
O

•—
1

rd
IDJO

U
J

rd

•
r
*

P
m

Pm

-
o

i
I

I



oC
M

0
<

q
o

m
_J

O
CM

O
»

"
C

D
C

D
-<

7
8

(
C

^
T

C
M

O
O

O
C

O
I
-
C

M

(i-N
V

iava3iS-,-W
0-,-N

O
ai03"l3-A

9JJO
I)

A
ilS

N
S

iN
I

N
O

iO
H

d

(
n

o
o

r
^
c
o

i
f
)
"
*

"
'
0

1
^

(,.N
V

IQ
V

a3iS
,.W

0
i-N

0
a

i0
3

1
3

^)
A

ilSN
3iN

I
N

O
iO

H
d

o<
J)

o0
0

C
z

o

or
-

oC
O

C
O

Vrd

5
•
r
t

U
J

M
Q

J
C

J
CQ

J
T

J
•
r
t

oci—
i

oC
D

OlO

zoc3I0
.

rd

P
m

T
—

1

3
o

o
O

t—
i

<
r

•
»

h
rd

Or
o

U
J

_
l

C
D

z<

Q
J

MQ
J

P
m

g

O
•xf

C
M

_
^
-
^

r
r
t

X
O(J

o
1co

•
r
t

o

1

inin

HUc<

o0>

en>

o
•
r
t

0
0

in

g
zoC

O
o<
r
1

Q
J

-
PC

oC
D

5U
J

-
prdN

co•p
z

<_l
o

p
rd

X

o
o

t—
1

o
P

m
If)

XC
L

P
m

1

o
u

.
o

1—
1

Q
J

r
—

I

*•
d

U
J

rd
txO

_
)

!M
oto

C
Dz

rd
P

m
P

m



79

parallel photon intensity shown in Figure 16a again leads one to associate this

component with transition radiation while the perpendicular component is

caused by bremsstrahlung. The deviation of the energy dependence shown in

Figure 16a from a linear dependence emphasizes the greater contribution of

the parallel component of bremsstrahlung at low electron energies. The

angular distributions, Figure 17, of the polarization components of the

emitted radiation are very much like those of copper with the parallel photon

o o

intensity being greatest for @~45 to 50 and the perpendicular component

being greatest in the 0=0°, i. e., the backward, direction. The comparison

of the spectral distributions in Figure 15 with the experimental data of

86 °Hammer et al. for a 530-A gold foil again shows the poor agreement at low

electron energies (T = 25 keV) where one would expect scattering of the

electron beam to be important, while the agreement at higher energies (T =

100 keV)—where the transition radiation is more dominant—is excellent. The

discrepancy at low electron energies is more evident in the perpendicular

86
component where the experimental values of Hammer et al. have been scaled

down by a factor of 10 for purposes of comparison. This of course distorts

the comparison of the relative shape of the curves but is used to illustrate

the fact that there is an order of magnitude discrepancy between the

theoretical and experimental spectral distribution of the perpendicular com

ponents. The explanation of this discrepancy must necessarily await further

experimental data with slabs of ma terial which more nearly satisfy the

approximations incorporated in the theoretical evaluation of the small angle
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scattering.

Summarizing the numerical results for tine three materials copper,

silver, and gold—representing low, intermediate, and high Z materials—one

finds that the parallel polarized component of the photon intensity is larger

than the perpendicularly polarized component by at least an order of magni

tude and because of its approximately linear dependence on energy (for

T > 20 keV) is interpreted as radiation due to polarization of the dielectric

medium (transition radiation). The 1/T energy dependence of the perpen

dicular component clearly labels the source of this radiation as being due to

bremsstrahlung from electron scattering on randomly distributed nuclei in

the dielectric. The spectrum of silver differs in that there is a sharp rise

o

in the intensity of the parallel component in the area of 3300 A which has

87
been attributed to an interband transition between the d-band electrons.

The angular and energy distributions are similar for all three materials with

the only differences being the angle of photon emission for maximum intensity.

One now considers numerical results obtained for angles of electron incidence

other than zero.

2. Arbitrary Incidence

In the case of an arbitrary angle of electron incidence (Q. 4 0) the pho-

2
ton intensities <(d W)/(dAdQ))x, yare functions of five variables in addition

to the optical properties of the medium [ through e(X), assumed here to be

2
known from experiment] and the scattering properties (through (© ), assumed



here to be described by the theoretical results of Lewis ). Hence the

dependence of the photon intensities upon these variables can be determined

by holding four fixed while one is varied until all possible combinations are

included. This was easily accomplished on the computer and the numerical

results obtained for silver Z = 47 are presented in Figures 18 through 22. As

before, the figure labelled (a) refers to the parallel polarization component

of the intensity while the (b) has reference to the perpendicular component.

The dependence of the parallel polarized photon intensity" upon the azimuthal

angle $, given in Figure 22a, shows a maximum in the $ = 0 direction corres

ponding to emission in the forward direction of the electron' s motion. This

is to be expected due to the assumption of small angle electron scattering

about the incident electron' s motion as well as relativistic effects. Because

of this maximum and because observation in the plane of incidence is the most

common experimental procedure, the remaining dependences of the photon

intensity have been presented with the azimuthal angle fixed at $ = 0. The

spectral distribution of the emitted radiation is shown in Figure 18 for various

angles of incidence 9.. One notes that as the electron incidence approaches

grazing angles (Q > 80 ) there is a strong peaking of the photon intensity at

0 -1approximately A= 3230 A which is attributed to the (cos 9.) dependence of

the bremsstrahlung terms in Equations (3. 35) and (3. 38), and is due to the

fact that more scatters per incident electron occur within the observable

distance A than at smaller angles, hence giving rise to more photons.

Both polarization components (18a and 18b) show this strong peaking, however
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a slight "hump" is detectable in the parallel component at approximately
o

3314 A which corresponds to the wavelength at the peak of the transition

radiation and hence is attributed to this phenomenon and to constructive

interference between the bremsstrahlung and the transition radiation. This

was determined by making a separate evaluation of a first order approxi

mation to the bremsstrahlung spectrum in which case this "hump" is no longer

evident. The intensity of the parallel component is approximately a factor

of 3. 5 greater than the perpendicular component, which is attributed to the

polarization effect on the bremsstrahlung photons by transmission into the

vacuum at the boundary. The energy distributions of the photon intensities

at the peak wavelength of the spectral distributions are shown in Figure 19

where one notes the characteristic 1/T energy dependence of bremsstrahlung

for both polarization components especially at large angles of electron inci

dence. The dependence of photon intensities upon angle of emission (obser

vation) for the peak wavelength is given in Figure 20 where one notes that in

the parallel component there is a shift of the maximum to smaller angles

(from e ^30 at 9. = 60° to ®^15° at e. = 89°) as one goes to grazing electron

incidence. One would expect this to occur since as the electron incidence is

varied the radiation pattern with respect to the electron motion must move

accordingly. The shift is smaller for the perpendicular component which is

probably due again to the effect of refraction of the photons at the boundary.

The essentially (cos 9^ dependence of the photon intensity upon the angle of

electron incidence is seen in Figure 21 for both polarization components. One
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notes the rapid increase in the photon intensity as one approaches grazing

electron incidence. In Figure 22 where the azimuthal dependence is plotted

one notes that there is a sharp decrease in the parallel component as one

moves away from the plane of emission with a minimum being reached at

approximately $ = 100° after which the intensity gradually rises again. The

intensity in the backward direction is smaller than that in the forward

direction, clearly illustrating the forward peaking of the small-angle scat

tering. One further notes that the perpendicular component shows the

opposite effect, i. e., a gradual increase in intensity until $ = 80 and then

a rapid decrease until $ = 180°. One would probably expect the maximum and

o

minimum to occur at 90 but the effect of refraction of photons at the

boundary modifies this, which is evident from the fact that the angle $ = 100

at the maximum intensity of the parallel component is the supplement of the

angle $ = 80 at the minimum of the perpendicular component.

3. Comparison with Experimental Results

The incentive for the theoretical considerations at arbitrary incidence

was provided by the experimental results reported by Von Blanckenhagen

88 89
et al. and expanded by Boersch_et_al. in which they noted an intense

peaking of the photon intensity for grazing electron incidence on thick silver

o

targets in the neighborhood of X= 3470 A. These workers analyzed their data

into a "bremsstrahlung" component, assumed to be proportional to E and a

transition radiation component, assumed to be proportional to E. They
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concluded from this analysis and from the dependence of the photon intensity

on surface conditions that this peaking was due to the excitation and subse

quent radiation of surface plasmons. Since the radiation due to transition

radiation and that due to bremsstrahlung will experience constructive and/or

destructive interference, the validity of the separation of the experimental

spectrum by energy analysis alone may be questioned. Hence, for a compre-

88hensive comparison with the experiments of Boersch et al. one would prefer

to use data before the energy analysis was made. A comparison of the present

theoretical results, under the reported experimental geometry, with the

88
results of Boersch et al. is shown in Figure 23 (a, theoretical - b, experi

mental) where one notes the similarity of the appearances of the peaks. The

discrepancy between the wavelength at which the theoretical peaking and the

experimental peaking occurs may be attributed to possible differences in the

optical constants used for the theoretical results and those of the actual

81
experimental material. Huebner et al. have reported that the optical con

stants of silver vary with the experimental procedure of foil preparation.

88
The experimental intensities of Boersch et al. are larger than the present

theoretical results by approximately a factor of 5. This same factor of 5 is

88
reported by Boersch_et_al. to be present for the bremsstrahlung at normal

incidence and may be due to large angle back scattering of electrons which is

not considered in the present work, and/or to uncertainties in the value used

, 2 .
for <@ ) in the theoretical calculations. Preliminary calculations on the

radiative de-excitation of surface plasmons by collisions with impurities or
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microstructures at the foil surface lead to an (E cos 9.) dependence of the

intensity of the emitted light. The general trend of the present results on

the bremsstrahlung yield leads one to believe that the reported experimental

results may be interpreted in terms of the (cos 9.)" dependence of the brems

strahlung rather than in terms of the surface plasmon radiation hypothesis.

88
However, the results of Boersch et al. on the dependence of the radiation

yield on the conditions of the surface are not predicted by the present work.

Obviously, more extensive theoretical considerations on this problem are

needed before a definite explanation is possible, but these are beyond the

scope of the present work.

B. Conclusions

Theoretical considerations of the radiation emitted from electron

irradiated dielectric materials for arbitrary angles of electron incidence have

been presented in which one has considered the radiation due to polarization

effects of the electron on the dielectric slab (transition radiation) and the

scattering of the electron on randomly distributed scattering centers (brems

strahlung). Comparison of the numerical results thus obtained for normal

incidence with the available experiments—although these experiments do not

strictly satisfy the theoretical assumptions—show that the agreement for

the transition radiation component (parallel polarization) is good for the higher

electron energies (T =100 keV) but not as good at lower energies (T =25 keV)

due to the increased bremsstrahlung effect, being more pronounced for high Z
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materials. This leads one to conclude that the underestimate of the brems

strahlung may be partly due to the uncertainties in the theoretical expression

used for the mean square scattering angle (® ) which of course is critically

dependent on the screening parameters and potential functions assumed for

the scattering atom, and partly due to the fact that the foils used in the

experiments do not satisfy the present theoretical assumptions. Results

at grazing electron incidence for silver predict a strong peaking of the

bremsstrahlung and would provide an interesting means of studying this

radiation in the optical region to perhaps enable one to determine the quantity

2 .
(® ) from experimental measurements of the photon intensity of emitted

photons from an electron irradiated metal (accompanied by the knowledge of

the optical constants n and k of that material). In this manner one can avoid

the inherent low intensity of the bremsstrahlung radiation at normal incidence

and can observe those photons which are produced near the surface of the

material before the electron beam has reached the diffusion stage. Further

experimental work with thin foils which satisfy the present theoretical

assumptions is certainly desirable.



APPENDIX I

DETERMINATION OF GREEN'S FUNCTION

One solves the wave equation connecting n(k, to|z) with J(k, cj|z) by

employing the well known Green' s function method. Briefly, an equation of

the form

g?<s,«.w_ ,.>^1):4f(1)e^1 (AL1)
dZ* €

has the solution

TfcK^ix) =- —• J$<*'> e^^os^*--*.') hi (ai.2)
-eo

where G(k, a; |z - z ) is a solution of the reduced "unit source" equation

(^ - v'aj4<K,wj7.-z'J = S(l-Zd) . (AI.3)

By elementary methods one knows that the solution of Equation (Al. 3) can

be written

^(£,u»lz-z') = AcV 5t(2-i^ 6e"V StCz-Z.') (AI.4)

where St(z ' - z) is a step function which has the values

Sta-Z)={, z<J, (M.5)
In order that this solution be continuous at the point z = z' one has the

93
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requirement

Ae '̂ = 6e"v'Z'# (ai.6)

Hence, one can write the solution (AL 4) as

^(k^i-l) = AJe st(z'-z) -f e st(t-*'>J (AL 7)

One can now evaluate the constant A by integrating Equation (AL 3) to obtain

f £&Ji - \ 5(l-l'>dL*| . (AL8)
z-e z'-e

This yields

A(-y'e*'- vV1' ) = i . (AI-9)

Hence one has A = - e v /2v' and can write finally

<fcwu-o--£le-v'ft^W-i; ♦ e^'Wiy] <AI-10>
which, employing the properties of the step functions, yields the solution

used in Chapter III

-v'/z-z'l

When, as in Chapter III, f(z) ^ 0 for z < 0 then one must perform the

integration of Equation (AI. 2) over all space. One finds that the solution

IIj(k, (x) jz) contains a term which must be included with the homogeneous

solution of Equation (AL 1)—applicable to medium 1—to obtain the total
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radiation field. Hence one is concerned with an integration of the form

o

-rr -* P C -V IZ-ZM-*--^*-' .TT, (k;,u)|z) = _L J e e\l (AI.12)

which can also be written as

i i '*'..' ° .1 in i

In the first integral one has z' < z and |z - z ' j = - (z - z ') while in the second

integral one has z' > z and |z - z ' | = (z - z '). Then one finds

p f .ul (y+^)i p»Vl-*-(V~^%TT (lc,w/z)=i-j? 1 ->• i-Jilf ?f (AI.14)

Simplifying this equation one finds the result

Now the first term inside the braces of Equation (AI. 15) represents the

transform of the electron' s self-field and does not contribute to the

radiation field. However one sees that the second term inside the brases

does contribute to the radiation field, and hence when employing the Green' s

function method to obtain a particular solution in medium 1, z < 0, one must

add the result of the integration in that medium in order to describe the com

plete radiation field.



APPENDDC II

STATISTICAL AVERAGES

Performing the required integrations in Equations (3. 28) over the inci

dent particle1 s original direction (along the z' axis of Figure 4) one obtains

terms of the form

V0 = C (AH.1)

=/

4tsi
\* C->£(* -* )C <An-3>

and

./ i

%- c, js (e -- ^-r ~; <C **| «« «=U -4^0•

•(i'O^ j (An-4)
where C , Cn, C_, and C_ are coefficients which are independent of scattering

o 1 2 3

angle or path length. These terms must be averaged according to the prob

ability specified by Equation (3. 34). Averaging of the term T) which does not

involve the scattering process yields the term 77 itself. For tl one obtains

96
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eo

C, K:| 7 »fsi tftl

.*'**;, -r'**,.(V ^ - ff' "+') Q* */« f^ «, s/» 4 £ (AIL 5)

Let s, = z' - z' , s, . = z' - z' , and so on, then one can write

K.

< =k* v. +- +V s. = ^s' (AIL6)

and

^ =5**, +S<+'"- V S> =g,SJ (AIL7)

which one substitutes into Equation (AIL 5) to obtain

C' K-.i „

•ft tf *•»
rife

-(c ^ _e *' )(^.eo.)(eveJ.^J (ail 8)

where one has used the relationship 9 • ex = 9 sin 0, ex being a unit vector

perpendicular to the plane of emission. Consider now a typical term in the

angular probabilities, i. e.,

I*r*=n jf^VV.lH^^X^-O^ (An.9)

which, for m > n is written as
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rw„= 5r<»3»>^ \r«l-lv*\- Sfo4-lj^i^xi^).(An.io)

Now let

«X = £*»-." ^-fc (AIL 11)

where

<9 =5 (AIL 12)

Then adding the terms in Equation (AIL 11) and using Equation (AIL 12) one

obtains

*„ =:§ \ •» «L (AIL 13)
and Equation (AIL 10) is - for m > n.

The integrations over terms linear in the a' s yield zero since positive and

negative values are equally probable.
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Then one has

i»,«= Ir^^iJf(iv^.^4-JfdVL'^C <C-«*f- (An-14)

Now when m = n one has

•[(V6i) +^ •£o* +ac^-^x4-^ >] (AIL15)

where one has used 9 = a, + 0 . Neglecting the cross term, which is
n I n-1 to

linear in the quantity a and integration over da will give zero (see page

98), one has

+JfO§iM? IfOs,.,!)^./•» Jf<l«,l)^, (*,-«*) # (An. 16)

Now the second term in Equation (AIL 16) is the average of the projected

2 8 ? 2
angle, i.e., <e' ) which can also be written <0 ) = 1/2 <9 >. Hence one

has

2 2
Now I =0, then I = 1/2 <9 ) and one has the result. I = n/2 <9 >: or in

00 11 nn '

the general case

I„n = rntn (*,») ±<(9*> # (All. 18)

One now writes a typical term in the spatial average as
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5--V\^ Se-^r^.-. Je-~VW^[e

-CC*/ +*a+— +5*„.Jir -1"'*'
- «

For n > m one writes this as

+

J_. 5e-r^-rA)fe''t»(:-r^)-.-k,''5'-'(--^)J«r[-«;?,,')ft'

which one integrates term by term to obtain

*•«•* ',M-+* y** V •*!-** -v*

y«|.4«l-l y**-H y<*\-*M+l y 4M

This can be reduced in a simple algebraic manner and one finds, for n > m

In the same manner one obtains, for n = m

.4* In* 1^J - v-hc'raxr* »«,<') . (AIL20)

Now Equation (AIL 8) can be written in the form

<=i 4*si 4«S/ ^^ *~* * 4Hsi 4fs/
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which becomes

eo 4|-i eo eo

C, »X 'Us, W=/ "4WH £\ltew ™« 4t=/ ** j

Inserting the values given by Equations (AIL 8) and (AIL 9) one can then evalu-

90
ate the resulting sums by using the simple binominal relationships

j£ 7fX^= X(J +JX +!**+•'• +RXK"-*"»« +)= X(»-X)~ j X*<1 (AIL 22)

and

^ X11"'- 0 +X+X*+ '"^XK"V —+ ) « Ci-X)"' j x*0 (AIL23)

to obtain the simple result

otiV r<c5*>
^ =4^ r <AII-24)

2 2.
but y <9 ) = (® ) is the mean square scattering angle per unit length. Using

Equation (3. 35) and Equation (All. 3) for r\ , one has

C* o ' Z,

. ±^XZM-t%'Z~')s\ (AIL 25)
41=/

As before let a typical angular term be given by

i.= Jf oSoae, If(lv^)^- Jf^i-4-,i)4 $!

which, using substitutions similar to Equation (AIL 11) is
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•[i*y + \e^x\* * **,•*«] . (AIL26)

Then neglecting the cross term for the same reason given previously one has

2
Now I = 0, L = <9 > and one obtains the general form

o 1

i„ = <« <e*) (AIL27)
A typical spatial term in Equation (All. 25) is

J =]e-yS;rMe-ys»y^— ]*rS~ rJa„ [e*r (-?>, +V'''+M) +

where the substitutions (AIL6) and (AIL 7) have been used. Equation (All. 28)

can be integrated successively to obtain

T _ ... 7 _ - -—, (AIL 29)

and combining Equations (AIL27), (AIL 29), and (AIL25) one has

<S> =<*>> (,-£,.) 2 <« ("T^rrf . <AIL 30>
Now using the binomial expansion given by (AIL 22) and simplifying one has

<S> - l<£> = <£>* (AIL 31)
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Now the first sum in r/ is of the same form as that averaged in Equation

(AH. 25) except that one now has the projected angle. Hence using (AIL 31) and

2 2the relationship (q' ) = 1/2 (e ) one obtains for the average of the first

term of t]

<f*> _ y<©*> <<©*>,
<> »*?' *r

(AIL 32)

Since one obtains terms of the form f<9 9 )-<9 9 , >1 the average of
1 xn xm xn xm-1 J b

the second sum in rj_ yields zero. Performing all of the required averages in

the manner described above and combining terms one obtains Equations (3. 35)

and (3.38).
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