





PROGRAM  OPERATTION

The input to the program and the definitions  of the symbols are given
in Tgble 1. Several control. options are specified by making certain input
parameters positive or negative. These options, other information perti-
nent to the operation of the program, and the forms of the optiecal-model

potentials are described below.

Control Cptions and Other Information
The maximum number of channel types (T) which may be simultaneously
included is 10; the total number of channels (T,i) of all types and
energies is 600.
In running the program the parameters corresponding to a given type
of particle (group 1) are read in, followed by the parameters for each
level of that type (group 2). To terminate the reading of level parameters,

a number N > 10°% is placed after the last (J, Then additional "type"

T)i'
parameters (group 1) are read in, unless previously Z7 had a negative sign,
whereupon the energy (group 3) is read. After group 3 is introduced, the
computer proceeds to calculate the cross section, after which, if E was
positive, another group 3 is read in. If E was negative, then the
calculation starts anew with the reading of additional group 1 parameters,
and so on as before. However, if the last Mi was negative, then the program
running terminates at this point.

Three additional options are .available. If, when reading group 3,
T2 is negative, then the sign and value of E replace the parity and spin
of particle type To and level is. In this way the spin and parity of a

single level can be changed without repeating the whole calculation. The

next item read in will be another group 3, which, again, may be either a new
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Table 1. Order of Input Parameters and Definitions

Group .
Number Parameters Format
1 7Z ‘ Z dJ iy} R a
I MI T MT I max o] (8E10.3)
R! a' +3 v v W AV AW
) -— 50
2 Q1 +(J )1 Q2 +(JT)z2 ... Q +(J ) o« +1.000E+0k4 (8E10.3)
3 E Ts is (1E10.3,213)

Parameter Definitions:

I
T

iy}
L max

SO
W, AW

T2

iz

Denotes the incident (or light)‘particle in the channel.

Denotes the target (or heavy) particle in the channel; also
used to denote the channel itself - in this sense the maximum
number of T's asgsimilable by the program is 10.

Charge
Mass, in amu.

Spin; for J, the sign preceding the parentheses indicates
whether the parity 1s positive or negatlve, (note also that
Jy cannot be greater than 1).

The maximum angular momentum in the channel is AﬂmaX(E m+ Q )

1/2

A suggested value for neutrons is A4 MT)1/3 and for
max

protons Adpos = %(MT)1/5,
‘ 1/3
F

The real potential radius is ROMT

Real potential diffuseness in F.

/3 &

The imaginary potential radius is R’Mﬁ

Imaginary potential diffuseness, in F.
Fraction of surface-peaked imaginary potential.

Spin-orbit potential, in MeV.

The real potential depth is V + AV(Ecm + Qi) MeV.
The imaginary potential depth is W + AW(ECm + Qi) MeV.
Denotes the channel relative energy index.

Q-value, in MeV, of channel (T,i) with respect to channel (1,1);
the program can handle a maximum of 600 (T,i) channels. Negative
(E o + Q ) +values are automatically bypassed in the calculations.

Bambardlng energy, in MeV, in the laboratory system.
Particle type index number for the observed channel.

Excitation level index number for the observed channel.
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E or a new (J depending on the sign bf To. The calculation proceeds

T)i’
as before, when a positive Tp is dntroduced,

If W is negative, then the penetrabilities for all the levels of the
current particle type are printed 6ut in the order first of increasing j,
then increasing 4. Thus for spin-l/2 particles the order for the penetra-
bilities Tﬂj is TO;l/B Tl,l/2 Tl,5/2 TE,B/Q T2,5/2, etc. A heading identifies
the channel to which the penetrabilities belong by printing the correspond-
ing values of T and I.

If 8 is positive, then a surface-peaked Woods-Saxon derivative imagin-
ary potential is employed; if negative, the surface-peaked potential is of
the Gaussian form, and, in addition, in calculating the Woods-Saxon volume
component of the potential the diffuseness a' is replaced by 0.692"' in
order that fhe volume and surface potentials have approximately the same

taper widths. Control options are summarized as follows:

Parameter Value Program Action
+ZI Read another group 1 after termination of group 2 reading.
-ZI Proceed to group 5 after reading group 2.
+MI Start over at group 1 after termination of group 3 reading.
-MI End calculations after termination of group 5 reading.
Qi > 10° Terminate group 2 reading.
+(JT)i Parity of (JT)i is positive.
-(JT)i Parity of (JT)i is negative.
+h Read another group 3 at end of cross-section calculation.
-B ' Return to beginning (group 1) at end of cross;section
calculation, unless previous MI was negative.
+T's E is interpreted as bambarding energy.
=To E and its sgign are interpreted as replacing the spin and
parity, i(JT)i, of level T = Tp, 1 = iz.
+3 The imaginary potential has the form
(1 - 8)(Woods-Saxon) + S(Derivative)
-5 The imaginary potential has the form
(1 - 8)(Woods-Saxon) + S(Gaussian)
-W Print the penetrabilities for all levels of the type

particle to which W corresponds.




Optical Model Potential Form Factors

The form factors are functions of the two constants radius (R) and

diffuseness (a) and of the variable radius (r):
Woods-Saxon: fWS(R,a) =1/ {l + exp [(r—R)/é]} .

ot e L
Derivative: fD(R,a) = -lLg dx-fws .

exp {L[(r-R)/a]2 } .

f E)’z .
ws

i

Gaussian: fG(R,a)

2
T

Q-leJ
=

Spin-Orbit: fSO(R,a) = -

For spin-l particles the spin-orbit form factor agrees with that
used by Robsonl but is twice the one employed by Satchlejc‘.2

The meaning of the parameter S can now be stated more explicitly:

if S is positive, then thé imaginary potential form factor is

f(R',a') = (1 - S)fW_S(R‘,a‘) + SfD(R‘,a‘) 3

if S is negative, then

f(R',a') = (l-ls];)fws(R’,O.69a')+‘Sl fG(R‘,a')

The Coulcmb potential, when present, is the potential of a uniformly

charged sphere having the same radius, ROMTl/B, as the real potential.



The input parameters are reprodﬁced on the printed output, together
with headings which identify the wvarious output quantities. The different
reaction channels are indexed by integers according to the identity of the
two particles in each channel, designated type (with index name T) and for
each type according to the excitation energy (with index name i). Both
T and i start with the value 1 and correspond in sequence to the order
of the input data. The incident (or initial or bombarding) chennel must
always correspond to T = 1, 1 = 1. The particular channel for which a
cross-section calculation is desired is called (Ts,iz). If Ts =1, in = 1,
then the program computes compound-elastic scattering. The end result of
a calculation is the integrated cross section and also the center-of-mass
differential cross section from © = O to 900 in 10° intervals (this is the
same as the cross section from © = 180 to 90°). From © = O to 80°, the
angular distribution is relative to that at 90°. Only the 90° cross section
is in absolute units.

To use the program on the Oak Ridge CDC-1604 computer the cards illus-
trated in Table 2 must be present in the front of the program deck in the
order shown. The first card is obtaingq in the computer room at the front
desk. The user should supply his own ;ame and account number on cards 1
and 2. After the number of minutes specified for "maximum execution time"
(first card) have elapsed, the run is aborted. Aﬁy other number can be
substituted here. The program can be run with only the FORTRAN 62 monitor

system of the CDC-160k.



Table 2

Cards in Front of Program Deck
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Calculational Method

The calculational method makes use of the Hauser-Feshbach theory5
modifiedLL to include spin-orbit coupling.

Hauser-Feshbach Cross Sections.

Let 3 be the spin of the compound nucleus and n be its parity. Con-
sider a certain channel with incident particle I and target particle T.
Call this channel K. Then 3 is formed by Jjj vector coupling in the follow-

ing manner:
L d —

+ 3. =3 . (1)

K
The coupling is to be done in such a manner that parity is conserved. For

brevity of notation, let SK = (JI)K and J, = (J In the upcoming develop-

T)K'

ment the calculation of the integrated and differential cross sections will
be revealed in an "unfolding" order; that is, quantities will usually be
defined in terms of subsequent equations and recursion relations. Let

K = 1 be the bombarding channel, K = 2 the observed channel, k the wave

number, and TquK the penetrability in channel K for partial wave LK and -
J .
total spin jK' The BVKSK (LKJKJ) are angular momentum coupling coefficilents

p)

which are calculated by means of a recursion relation” for Racah coefficients

5

ahd ‘an explicit expression” for Clebsch-Gordon coefficients. The Pv are
Legendre polynomials and are calculated by recursion. The Hauser-Feshbach

integrated and differential cross sections are calculated as follows:

14 AO
g =

k32(23, + 1)(281 + 1)

do(8) _ 1 .V AP (cos@) ,
i Lk2(2J9 + 1)(281 + 1) ): vy



where
JlSl : 252
2J+l)
= ) ooee L) By Ganam L) 8y
JT ﬁlJl , Laje
BJKS(L‘J) = V(L3Vs)V(J3VT, )x
v\ = VAW A a2
J
BOKS(ﬁJJ) =1, V(advc) = 21/2 ¥,
Z = "y
VHL T (2a-v) (2a-V) (2a+v42) (2a+V42)
Zo =1,
- b'd v = 5 2
Yo = @) (53 + V) ¥, - (37) (ha+1-v2) (hd+1-v3)Y
Y =1,
Yy = -x P
a = a(a+tl) ,
X = 2[.6 g-a] ’
% _ [ (244+V+1) (24-V+1) (2V43) ]l/EX
Av+l V+l (2£+v+2)(2£ v)(2v-1) L,v-1
Xﬁo =1

and, in addition,

1 7
PV+1 = Txﬁij'[(2v+l) cos® Py -V PV-lJ

P.=1 ,

P1 = cosb .

Va1’

2



In the above, D__ = E: T, . 1s the sum over all penetrabilities with
JT ,CKJ

K, 4,3 K
>TK’YK
subscripts which can be coupled to form a compound state with spin J and
parity T in the manner of Eg. 1. The above calculational scheme is simple
in all respects except onéf determining which terms to include in the sums.
The way in which this is accomplished is outlined now. The routine to be
described applies to the calculation of the Bv. Similar routines were used
four times in the program.

To begin, calculate VmaX(J,E) in a manner similar to that shown below
for VmaX(J,K). Set K = O.
1. Add 1 to K. If K*2, go to the next section of the program. If not,

calculate J = Jmin max [|Sl—J1‘, |82—J2l] and,

J. min [(L1481471), (4atS2HT2)] .

max

1l

2. Set YmaX(J,K) =0, IfJd=4J __, go to step 1. If not, calculate

max
J = dpin = ‘JKFJl
and
Iy = WD [(JKgJ),(szax+ sK)] .

5. If 3> ., add 1 toJ, set NmaX(J) = min [Vmax(J,E), VmaX(J,K)] ,
and go to step 2. If not, calculate Lmin—l = |j—SKl-l.and

zmax = min [(j+SK), @K maxd -

L, Add 1 to 4-1. If 4 > Lmax’ add 1 to j, and go to step 3. If not,
set ¥ . = O and determine ¥ = min [2J,23,2£,vﬁaX(J,2)] and

(3,K) = max[vmax(J,K),Vma J

v
max X
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JK
5. Ifv.>v___, g0 to step k. If not, calculate By (&33) ,
add 2 to ¥, and go to step 5.

an is summed in an analogous manner except that the routine ends with
Ix
step 4, the calculation of Yoax 18 deleted, and also the parity ﬂK(-) is
determined in order that the penetrability Tzv:_ can be correspondingly

KUK
added to either an even-parity sum or an odd-parity sum. The sums

)

/J, and are performed in this manner also, that is, separate sums
£1di1 £oo

ate made for even and odd parity.
Optical-Model Penetrabilities.

The solution xzj of the scattering radial Schroedinger equation has
for boundary conditions that it vanish at the origin and that it be propor-

tional asymptotically to the function

Fz-BZj(Fﬂ-iGz) s
where Fz and Gz are, respectively, the regular and irregular Coulomb wave
functions and sz is a houndary matching constant. The latter is obtained
by requiring the solution with zero value at the origin to be proprotional
to the asymptotic solution at two~points exterior to the nuclear potential.

In terms of sz, the penetrability T,. is

23
Tys =u@e5%-[meg&ﬁ2+(ﬁps“)2j}.

Let Xﬁj be the solution which vanishes at the origin and r; and rs be two
radii outside the nuclear potential. Then sz is determined, és described

above, by solving the equation
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X‘f;j(rl) Fﬁ/(rl) - BIJJ[FZ(I‘]-)_ i Gz(rl)]

Xeglra ~ Fra - BgslFy(ra) - iGy(ra) ]

ij is generated stepwise from the origin by means of the approximate re-
cursion relation

[12 - 10 o(x)] %)~ & r-0) Xy 2-8)
o T+8)-

'ij(r+6f =

where

8% (om A L+1
CEERS - TN CIE 2},

E = the center of mass energy,
m = the reduced mass,
Vﬂj = the sum of the Coulomb, spherical nuclear, and

spin-orbit potentials.

In the above, sz

the egquations must be treated accordingly.  In order to avold an infinite

and hence, g, xzj, and sz are complex guantities and

a(0), the following algorithm is employed to start the solution at the
origin:

xgs(=0) = 0, a(-8) =0, x, (0 =2075(141), .

and
O'

1

a( 0
This is equivalent in the present method to having x2j<C» = 0 and

_12,1072C (1+1)
X (8 = =g
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Xﬂj is generated outward to the radius Rb+6, where Rb is the larger of ROM;:IL,/5
+ Oa and RSM%/B + 9a'. In the present calculation, & = 0.15 f. The boundary
matching i1s carried out at the radii rg = Rb and ro = Rb + 6,

To obtain Coulomb functions at r; and rs in a universally valid manner
is not straightforward. An asymptotic power series can always be used,
given a sufficiently large radius, but in order to prevent having to
generate the interior solution to unnecessariiy large radii, with a conse-
quent loss of computer time, it is desirable to have a scheme valid at any
radius. Let recursion in 4 be called "vertical" and recursion in r be
"horizontal." As reasonable methods for obtaining F, and G,, we have
inward and outward recursion in r, upward and downward recursion in £,
an asymptotic power series in 1/kr, and a power series in kr valid either
near the origin or for large 4 but which is often not an accurate method
for obtaining GL‘ Both FZ gnd %L obey the same horizontal and vertical
recursion relations, so that any error which enters represents an admixture
of, for instance, Gy, in the recursion of Fz. However, if in this case Gz
rapidly decreases as the recursion progresses, the error incurred in generat-
ing Fﬂ is continually damped out. Below a certain radius and above a certain
4, F£ decreases rapidly. The opposite is true for Gz. Thus one wants to
recur Fz outward and downward and Gg inward and upward.

In a scheme not used in the present calculation, we generated Fi, and
Fis by the kr power series and Go by the 1/krﬂpower series. If either of
theése series or both of them were not sufficiently convergent at ri and ro,
they Werelgenerated at the limits of the valid ranges of the respective
series and Fz was then recurred outward, and Go inward, to ri and rs. Then

Fﬂ was recurred downward. GL was recurred upward in terms of the Fz by means
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of a relation which employs GZ—l’ FZ—l’ and Fz to obtain GL' The vertical

recursion relations and the power series are éummarized in an article by
Froberg.6 Thirty-one terms were used in the kr series and 16 in the asymp-
totic series. The radius was picked such that the maximum powered term was
less than 10 © of the zeroth-powered term.

The method used in the Hauser-Feshbach program differs from the above
method when the kr power series for F14 does not converge sufficiently at rs.
In that case, Gi and Fo are calculated in the same manner as described above
for Go. Then Fi is found in terms of Fg, Go, and F;. Finally, the Fz and
G'e are separately recurred upward. This 1s done on the assumption that if
the kr power serilies 1s not convergent for El4 at rp, then the Fz do not
begin to decrease rapidly when below Fi4, and hence upward recursion in FZ
is safe below £ = 15. This method has shown good agreement with the other
method in a number of trial comparisons.

The Coulomb phase shift Og, needed for the asymptotic series calcula-

tion of Gg and Fg} was generated in the manner shown below:

2 i, .
c(TD:%BJFn,@nO(_nJFZ (=) sin (21 - 1) B
30

T, ’
i=1 i

c%-l = 0, - arctan <};¥) ’

where
B = arctan —ﬁ€>
51 ?
o = (961 + )2,
t1= 12a 3

t2 = 5@(21‘,1 b



1k

tg = % @®ty

J

O(2t3

=

—

NN

t4=

o
S
2
N
N
il

ts
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