

DIAGNOSE, a Routine to Debug FORTRAN Programs
J. A. Thompson
June 25, 1965

The amount of time spent in debugging a program often
exceeds that spent in designing and coding. Errors wﬁich oceur
during the execution of the program and which de not immediately
halt the execution are especially hard to find. Three of the most
common of these errors occur when the programmer uses:

1) erroneous subscripts,

2) wvariables which have not had values assigned to them,

3) erroneous do-loop parameters.

A program, DIAGNOSE, is designed to detect these errors.

If one of the three types of errors occurs during execution
of the program the execution is halted, an error message is written
on the standard output unit, and the error return is taken for
dumping purposes. The error message consists of statement number
identification, variable name, and the type of error. Statement
identification is of the form STATEMENT N + n, where "N" is a state~
ment number from the Fortran-63 program and. "n" is a relative count
forward from this statement. This identification is consistent with
Fortran-63 diagnostics except that the first statement of a progrem,
if unnumbered, is considered to be STATEMENT O + 1. Further identifi-
cation is éiven in the form STATEMENT IS IN NAME where NAME is ﬁhe

name of a program, subroutine, or function.

OAK RIDGE NATIONAL ABORATORY LIBRARIES

(TR

3 445k D549284 7

I

The following paragraphs explain what conditions are
considered as errors and what variable and error information will be

written on the standard output unit.

Erroneous Subscripts

Before any operation is performed with a subscripted variable
(exce;bt input/o‘utput operations) the diménsions and subscripts are
checked to see if they are undefined, less than or equai to zero, or
greater than 32,767. Any one of these conditions is considered an
error and one of the following messages is written.

1) SUBSCRIPT NO. n IS UNDEFINED ON NAME

2) DIMENSIfN NO. n IS UNDEFINED ON NAME

3) SUBSCRIPT NO. n IS .LE. ZERO on NAME

4) DIMENSION NO. n IS .LE. ZERO ON NAME

5) SUBSCRIPT NO. n IS TOO LARGE ON NAME

6) DIMENSION NO. n IS TOO LARGE ON NAME
vhere NAME is the name of the subscripted variable and "n" is the
position of the subscript.

Examples:

1) PROGRAM XAMPLEL

DIMENSION X(50), ¥(50)

DO 1 I=1,50
J=1=1
X(J) = 0.

1 Y(J) = 0.

END

“5-

The execution of the above program uﬁder DIAGNOSE would cguse the
following message to be written on the standard output unit:
STATEMENT O + 5, SUBSCRIPT NO. 1 is .LE. ZERO ON X
STATEMENT IS IN XAMPLEL
2) PROGRAM XAMPLE2
COMMON X(50),Y(50),I
I‘ = 10 |
CALL SUBL(X,N)
END
SUBROUTINE SUBL(A,N)
COMMON X(50),Y(50),I
DIMENSION A(N)
A(I) = 3.14
END
The above program would result in the following message:
STATEMENT O + 3, DIMENSION NO. 1 IS UNDEFINED ON A
STATEPENT IS IN SUBL
After the dimensions and subscripts are individually checked
the computed suﬁscrip‘c is checked against the product of the dimensions.
If an error exists thé following mes‘sage is written:
SUBSCRIPT ON NAME EXCEEDS DIMENSIONS
Exa,mp_le: o
PROGRAM XAMPLE?
DIMENSION X(10,2,4)
DO 1 I = 1,100
1 X(I) =0 |

END

The following message would be written:
STATEMENT 1 + O, SUBSCRIPT ON X EXCEEDS DIMENSIONS

STATEMENT IS IN XAMPLE?

Trying to Use Varisbles Which Have Not Had Values Assigned to Them

DIAGNOSE checks the value of any variable which is involved
in an arithmetic, masking, or logical operation not within a subscript.
The values of replacement variables (variables on the left hand side
of a replacement symbol), varisbles which are actual parameters of
call statements, and variables which stand alone on the right hand
side of a replacement symbol are not checked.

Examples

Let FUNCTN be & Fortran function; let SUBRTINE be a Fortran
subroutine; let X,Y, and Z be in dimension statements; let A,B,C,I,J,M,
and N be simple variables:

1) A = B*C-FUNCTN(M,N)

The values of B and C are checked.
2) X(I,J) = A¥B+FUNCIN(M,I*J/N)
The subscript of X is checked.
The values of A,B,I,J, and N are checked.
3) X(I,A+STNF(Y{I,7))) = A |
The subscript of X is checked;

LY B =¥(1,J) - A*SINF(X(I,J))

The subscripts of Y and X are checked.

The values of Y(I,J) and A are checked.

5) IF(N-M) 1,2,3 (1,2 and 3 are statement numbers)
The values of N and M are checked
6) CALL SUBRTINE(X(I,J),A,B,Y(I,)-1.)
The Subscripts of X and Y are checked.
The value of Y(I,J) is checked.
If 1t is determined that the varieble being checked has not
had a value assigned to it the following message is written:
__N_Al\;__m IS UNDEFINED
Exﬁmple:
PROGRAM XAMPLEL
READ 1,A,B
1 FORMAT(5Fio.7) |
ROOTL = (-B + SQRTF(B*B-L.*a%C))/(2.%A)
END : :
The execution of‘this program would cause the following message to be
printed:
STATEMENT 1 + 1,C IS UNDEFINED

STATEMENT IS IN XAMPLEM

Erroneous Do»loop‘Parameters

Before the execution of any do-loop each nonconstant parameter
is checked to see if it i1s undefined, negative, or greater than 32,767,
If such is the case one of the following messages will be written:

1) NAME IS UNDEFINED

2) NAME IS NEGATIVE

3) NAME IS TOO LARGE

-8-

Exafuple:
PROGRAM XAMPLES

DIMENSION X(50),Y(50)

DOLI=L1,N
x(1) = 0O.
1 Y(I) =o0.

The following message would be written:
STATEMENT O + 3, N IS UNDEFINED

STATEMENT IS IN XAMPLED

Operation of DIAGNOSE

The-input for DIAGNOSE consists of Fortran-63 source decks,
binary decks, and data. Into each source deck DIAGNOSE inserts calls
to certain library subroutines thus producing a new Fortran-63 program.
These call statements will not in any way affect the logical flow of
the program and the results up to the point at which the error occurs
will remain the same.

After the new programs are produced they are compiled and
loaded into memory along with the binary decks included as part of
the input. Control is then turned over to these programs to operate
on any data included in the input.

DIAGNOSE makes two passes at each source program. The first
pass coﬁpiles four lists and outputs part of the original program along
with other information on a scratch tape. The four lists are:

1) arrays and their dimensions (VARLIST)

2) all statement numbers (IDLIST)

=-0=

3) terminal statement number of do loops (DOLIST)

4) statement numbers of replacement and call statements
(REPLIST)

Ihe second pass analyzes do statements, replacement statements,
call statements, and if statements. For each statement of these types
DIAGNOSE may insert’call statements to two or more of the following
library subrouﬁines: QQQBUGL,QQQBUG2,QQQBUG3, and QQQBUGL. QQQBUGL
handles identification of the statement being checked, QQQBUGZ2 checks
subscripts, QQQBUG3 checks to see if & value has been assigned to a
particular variable,‘and QQQBUGE checks the variable parameters of a
do-loop. The second pass also adjusts statement numbers so that the
flow of the user's program remains the same.

A more detalled presentation of the workingé of DIAGNOSE
may be found in the flow éhérts following the text. Listings of the
complete program are available from the author; The program decks

are available from the program librarian, R. B. Bullock.

Submitting a Job to DIAGNOSE
| DIAGNOSE may be used in conjunction with the GLORIOUS debugging
feature (see ORCID Memo No. 26). When an error is detected the current
values of the program variables are dumped.
Caution: If the GLORIOUS debugging feature is called for,
tape number 57 is not available to the user.
The following is the necessary ordering of decks submitted

10 be run under DIAGNOSE:

-10-

1) ACOOP Card. The debugging package uses logical unit
numbers 48 and 49 as scratch tape during the first part of its
operation. The user will have access to these tapes, but only as
scratch or output tapes. Forty-eight and forty-nine must‘be defined
as scratch’tapes on the ACOOP card, The G dump option should be
selected. Other tapes and other dump options may be selected as the
user desires.

2) DIAGNOSE

3) Fortran-63 Source Decks. Not all subroutines, etc., of
a program have to be run under the debugging package. Only those to
e checked by DIAGNOSE should be submitted as Fortran-63 source decks.

4) PFINIS Card. A card with the word FINIS starting in
column 10 must appear following the END card of the last Fortran-63
source deck. |

5) Binary Decks. These include subroutines, etc., which
the user does no£ want checked by DIAGNOSE. They must include
QQQBUGL.

6) ACard

7) Data

The above ordering is the same as for a regular compilation~
execution except that no AFTN and AEXECUTE card is included and a

FINIS card must be included.

Further Notes on Diagnose

The intermediate programs produced by DIAGNOSE will require

approximately twenty per cent more memory than the original program.

“1l=

The running times will be on the order of twice as long as that of
the original program. For these reasons the debugging package should
not be used until trouble actually develops. Further DIAGNOSE expects
a compilable Fortran-63 program s0 that all syntax errors must be
corrected before submitting the problem.

If the user can make an educated guess as to which specific
subroutine or group of subroutines is causing the problem he should
submit this group as Fortran-63 source decks, and the rest of the
program aé binary decks. This will cut down on the additional storage

and running time needed by DIAGNOSE.

-t
Do

| MASTER

{DIACMVDSE
\

v
com PILE
TORTRAN ~63
PROGRAMS

Y
LOAD PRoCRamg
LMo mgl‘-m:{‘/ .

V
TRAD J’rua
comTRol TO
useR's
PROCGRAW

13

N

\
DIAGTfjﬁ

RETLIRR

A

SBOES ™,
STATEMLY)T‘\\ 1%
HAVE §
. g
~MumBER 7
1

<

ves v A

STORE DUMBRER
Iny IDLIST

PuTPaT
SCAMNER
P."" .

€5 [PUT TERMINAL
NUWMBER I
SOLTST

YT ATEMENT
7

ALy o s DoLS
RePuacement™, TS STATEMEN

STATEMEVT HAVE A 4
2 pUMBER

PLUT WumBER
LN REPLIST {mrtf,

KL 120

swﬁﬁm%

NP

14

Qe

2< AND

TOLICATORS

b

RETWRY

u

SEANVER
2 4

L4

SAVE PROGRAM
M AME

B&

SCAMNMNE R

L

Is

~ MDA ETATEMET
RETURN i ’<\&e’.‘c,kﬁt<’,i}‘f'1;\):>
~. ~ e

\\.

~.

Comp

oR

OIMEVELoN

STATEMENST
iy

i ves

10N

aAne

GET ARRAYS

DIMWMENSYOMNS

r~g

SCANPMER

//N\
ShoBES S
/’":_S‘i AT EDIERIT N Lo

A AVE wM r%
HAVE

~
&y
v
e

_ T
CriE el pnmaER
e

NE

SQUEEEE oWT
EATRANEOUS
BLAMKS AbD
CHEIK SYNTHX

i
¥
4

PETERMIMNE
TYPw oF
STARTEMENT

Al

duTPuT

WRLTE
STATEMERT,
TipL, ¢

16

e H“"“\\

N,

\
PASLTWY

TORM LIST oR
ALY STATEmMENT
MLITABER S m!ll‘c..‘»i;
sy pEELR To

BE CHANGLDL

AN)
I/..,.‘v.h_w._‘, - _\ "o ANy o
t WY T more ™

RETURN g NORE -
} R STEITL ME T S .
L.‘_,“._/ N A

by

GuT PUTE
Po

EPLACEMENT, YOS ; .
STATEMEWT .~ LDy
e /JT Py)

1

17

LQS (f) FPVAR
P.1O

e et e s

ANY

MORE

PRAGMETERS
7

CEMPYYOUT

//EQWII M‘ﬂ\t\k\ Y] o
T NUMBER WEED g
™ CHﬂNGlNgf/F4$—~

/ e

e y

CHAMGE NUMBER

18

GETARGS
pav

EMPTYpuT
RINAY

S
S ROES
STATEMERT
NH&avE
JRERA
s

g/y ey

PN

NEED \\Qo

> /

1 v
{ DummyY
LMBJ\
?:::_-_

CHANGE uRZER

BLANIK ouT
STRATEMENT
pUmBER

19

E]
1
A2
|
~
/ _ A S/“\\
S PRENIOIEN :/13,4% TSI
< Nonm- oicd sln”a‘;;;»};);_ g,-p},r., En’;‘f’jc Ye Pol.
T BYEMELT ~JFunerioN, P,
v.“\\“ ’,,/ ‘lﬂ; \x‘\\'/' ,‘/"/
PSS . | \l& ok NO
GET REPLACLMENGT IRRLCATE
| NARLEALE -t MON-DECLARATIVE
} STATEMENT Foung
|
s
NARIARLE
sz PiEg
4 v
® SURSCRT P
P4
o o
Y€2 _Aurepug

TREPLRCEMEN

<OPER)C)TO R’
~ Ewb oF

NETHNT, v
~

»o

//\
VRARLAGLE e

“EnsCounT [RECS

CHEKVAR
P.it

{ QHEK\!HVQ

P

20

GETPHARGS
Pz

P

4
]

READL
STATE MEDT,

FROM
SCRETCH
THPE

{ RETURN)

LO@PUAR

PuT VARIABLE
Lo OUTLISTS

ty

-
i

(" ReTuRN)

22

FORM ConTIpE
STATEMENT

LR

PUTPUTE

PO

CHEKNA

SET Wp
VARIABLE
NAME T
CHELK RRER

D

23

GETARLS

/ CLOSING Nes ” VAST
"~~Qﬂum‘nss/;.& oP ERATOR ’
v P
\\/,
+ 0o

LASTY
OPERATOR

o e o8>
P

i1
—t

CHEWKVAR
Y.l

!

L= groconTeRel>

24

CHEKVAR
-D_ll

OSPERATOR

SuRseirr

¥

25

‘?

FEXnob FIRST
Tronell VARTASLE |

GATHE

R ALv

SUBRSCRIPTS

b

.

CIFDEFINE

\ 77

A

FIoD NEXT
L ToNER VARTAGLE

STATEMENTS
& BE LASERTED

?

26

ANY
VA KL ABUD
N epecl
LIaT

? .

SET WP CALL 1O SET UP CAWC O SET UP CAlL TO
A QRaBULL QQQRIG3S BRQuuLA
/
A
HLITPLTF ouTPuTk
P10

B0

OELETIZ VARIAGLY
FRo# SURSCRIFT LIST

LET LG AL TR

QAQGELIG!

' IERoM CHEEK LIST

DELETE VARLARLE

DELETE VARIADLE
floM Do-PARNM: WIST

27

FIND EXRT
OPRPERATOR TN
STRILMG , TURN
on INRICATOR
LY PDAME ol
consTANT FIRST,

(RETURN)

Irs
THES
ARTAIBLLE ™
AT THELE
3uuﬁg%?r5 -

Tz.po

PUIT VARLARLE \)
AL SURSCRIPTS
I owTLIST!

4

X

Ty
-
L
o
<

28

SET WP VARIRIL
TN CHECK AREA

ALREADY IO
OLipLISTE

Pusi VARTARLE
TrY OUTLESTZ

10-2k.
25.125.
126.
127.

L
{
P29

¥

Distribution

Central Research Library

Document Reference Section
Laboratory;Records

Laboratory Records - Record Copy

Division of Technical Information Extension
Mathematics Division

Research and Development, ORO

ORNL Patent Office

