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SUMMARY 

Boiling Heat Transfer and Two-Phase Flow 

Boiling P o t a s s i m  Heat Transfer.  The study of bo i l ing  with potassium 

i n  forced flow uipward through a circi,lar channel w a s  continzed following 

i n s t a l l a t i o n  of a new b o i l e r .  Thls pew sec t ion  has s i x  heated regions 

(-1 f t  long each with 0.839-in. outside diameter and O.27O-in. inside diam- 

e t e r )  separated by ad iaba t ic  zones 1 .5  i n .  long i n  which the w a l l  thickness 

was reduced t a  0.075 ir!*; the  f lux  capab i l i t y  G f  t h i s  u n i t  was of the  order 

of 100,300 Btu/hr.ft2.  

(+OO,OOO Btu/hr.ft2) were unsuccessful, and t h i s  e f f o r t  has been temporar- 

i l y  discontinued. 

Attempts a t  fabr ica t ing  a second high f lux u n i t  

Additional data were obtained f o r  the c r i t i c a l  f l u x  and f o r  two-phase 

pressure drop with boi l ing .  

gave values f o r  t he  c r i t i c a l  f lux  of -56,000 Btu/hr.ft2 a t  a mass flow of 

0.7 x lo5 l b /h r . f t2  and -82,000 Btu/hr.ft2 a t  G = 1.0  x lo5 lb /hr . f t2 ;  t he  

e x i t  qua l i t i e s  were 100% and 98$, respect ively.  These r e s u l t s  continue t o  

agree wel l  with predict ions based on the Lowdermilk, Lanzo, and Siege1 

water data. 

Two s e t s  of runs terminated with "burnout" and 

The a x i a l  f l u i d  temperature p ro f i l e  (based on pressure measurements 

made a t  f i v e  s t a t ions  along the  tube assuming liquid-vapor thermal e q u i l i -  

brium) showed a curvature consis tent  with the  wall-temperature p r o f i l e  but 

f e l l  s ign i f i can t ly  above the  w a l l  temperature values.  While t h i s  discrep- 

ancy may r e f l e c t  a r e a l  phenomenon, it i s  possible  t h a t  the  source may, i n  
pa r t ,  derive from a systemic e r r o r  i n  pressure measurement or from an un- 

ce r t a in ty  i n  the  knowledge of vapor pressure f o r  potassium. 

Results f o r  f luxes below the c r i t i c a l  continue t o  suggest a l e s s e r  de- 

pendence on AT than observed with water o r  with the  e a r l i e r  potassium data. 

However, s ince these values a re  associated with small temperature d i f f e r -  

ences (3  t o  10'F) and some uncertainty e x i s t s  i n  the  procedure whereby 

these differences were obtained, t h i s  conclusion remains somewhat doubtful 

Pressure-drop data f o r  two-phase flow of potassium with boi l ing  were 

observed t o  co r re l a t e  wel l  with the  spec i f ic  da ta  of Shrock and Grossman 
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f o r  water using the Lockhart-Martinelli method of presenta t ion .  The simpler 

homogeneous model w a s  found t o  p red ic t  pressure losses  which were only one- 

t h i r d  of those measured. 

A small na tura l -c i rcu la t ion  loop w a s  constructed t o  provide a f a c i l i t y  

f o r  quant i ta t ive measurement of the  superheat required f o r  bubble nucleation 

with the  a l k a l i  l i q u i d  metals.  Three d i f f e ren t  surfaces (smooth as-received, 

porous coating, and d i sc re t e  holes )  were included i n  t h e  apparatus t o  pro- 

vide f o r  t e s t i n g  t h e  influence of surface condi t ion on t h e  superheat.  

on the magnitude of the  surface-temperature o s c i l l a t i o n s  were obtained a t  

heat f luxes between 16,000 and 37,000 Btu/hr - f t2  w i t h  t he  following r e s u l t s :  

Data 

1. Smooth Surface - Typical wall-temperature o s c i l l a t i o n s  w i t h  an 

average amplitude of 140°F a t  a frequency of 0.25 cps were recorded a t  sat- 

ura t ion  temperatures between 1450 and 1470°F; t he  corresponding superheats 

were of the  order of 210 t o  240°F. 

2. Porous Surface - Wall-temperature f luc tua t ions  were e r r a t i c  d i s -  

playing occasional la rge  temperature spikes (95 t o  125°F) randomly dispersed 

between periods of "quiet"  operation with thermal o s c i l l a t i o n s  of l o w  mag- - _  
nitude (2 t o  3°F) and high frequency (-1.3 cps)  and o ther  per iods with f l u c -  

t ua t ions  of intermediate magnitude (-20°F) and frequency (0.13 cps)  fo r  

sa tu ra t ion  temperatures between 1420 and 1450°F. 
values of 140 t o  180"~ associated with the  thermal spikes down t o  60"~ with 

the  intermediate f luc tua t ions  and 24 t o  30°F with the  low magnitude o s c i l l a -  

t ions . 

Superheats var ied from 

3. Discrete Holes - A t  a sa tu ra t ion  temperature of 820"~, w a l l -  

temperature o s c i l l a t i o n s  of -65 OF t o t a l  amplitude (superheats of 140°F) 
and a primary frequency of 0.02 cps were observed; superimposed on the  

fundamental mode was a higher frequency f luc tua t ion  of 0.60 t o  0.75 cps.  

A s  t he  sa tu ra t ion  temperature was increased, t he  fundamental o s c i l l a t i o n  

decreased i n  amplitude and increased i n  frequency, while t he  secondary 

f luc tua t ion  remained e s s e n t i a l l y  unchanged i n  both frequency and amplitude. 

A t  temperatures above 1200 t o  1250°F, only t h e  high-frequency o s c i l l a t i o n  

was detected.  

s t r a i g h t - l i n e  t r a c e s  i n  both b o i l e r  and condenser were recorded. The super- 

heats  f o r  t h e  l a t t e r  s i t u a t i o n  were of the  order of 7 t o  12'F. 

Above 1350"F, these  o s c i l l a t i o n s  a l s o  disappeared; and . :  
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Measured superheats 

= 950°F t o  a low of Tsat 
porous surface were more 

f o r  the smooth surface ranged from -700°F a t  

-270°F a t  1480°F. 

complex. For the  bulk of the data  over t he  same 

Corresponding r e s u l t s  with t h e  

temperature span a s  f o r  t h e  smooth surface,  the  superheat decreased from 

somewhat more than 100°F t o  about 12°F. In  t h e  l imi ted  temperature span 

between 1300 and 1450"F, the  superheat showed s ign i f i can t  "sca t te r"  which 

could be r e l a t ed  t o  the  various f luc tua t ion  modes described above. Very 

low superheats (from 8 0 " ~  a t  930°F t o  9OF a t  1540'F) were observed during 

periods i n  which the  w a l l  temperature d i d  not o s c i l l a t e ;  it was speculated 

t h a t  t h i s  condition corresponded t o  an annular flow with vaporization 

r a the r  than boi l ing .  

ranged from 8 3 " ~  a t  900°F t o  a low of 7 t o  12°F at  1350°F. 

For the  surface with d i sc re t e  holes,  t he  superheats 

Boiling i n  Multirod Geometries. Preliminary data have been obtained 

on the  c r i t i c a l  f l ux  as a funct ion of the  e x i t  qua l i t y  f o r  bo i l ing  water 

i n  p a r a l l e l  flow through a seven-rod c l u s t e r  i n  which the  rods were a t  a 

1/16-in. separat ion.  

2.7 t o  3.2 X lo4 l b /h r . f t2 ,  the  c r i t i c a l  f l ux  var ied from -1.28 x lo5 Btu/ 

h r . f t 2  a t  an e x i t  qua l i t y  of 35.5% t o  about 1.13 x lo5 Btu/hr . f t2  at  
Xe = 41.0%. 

was achieved f irst  on the  c e n t r a l  rod. 

For a sa tura ted  i n l e t  condition and mass flows of 

With a l l  of the  rods at  the  same heat f lux ,  the c r i t i c a l  f lux  

General Boiling Studies.  The magnitude of t h e  c r i t i c a l  heat f l ux  has 

been ana ly t i ca l ly  estimated and experimentally measured f o r  the  condition 

of flow blockage a t  the  i n l e t  of a na tura l -c i rcu la t ion  cooled channel 

immersed i n  a l i qu id  pool.  Two cor re la t ions  of t he  minimum c r i t i c a l  f lux  

were developed. The f i rs t  w a s  based on an empirical  f i t  of l imited ava i l -  

able  data;  and the  second, on an adaptat ion t o  include the  e f f e c t  of heat 

addi t ion of Wallis' co r re l a t ion  for adiaba t ic  flooding r a t e s  i n  unheated 

v e r t i c a l  tubes.  Experimental data  obtained with tubes of 4 . 1 0 - t o  O.25-in. 

inside diameter and 6- t o  48-in. heated length f e l l  a f ac to r  2.2 above the  

minimwn f lux  predicted by the l a t t e r  cor re la t ion .  

0.10-in. inside diameter, the  c r i t i c a l  f lux was below t h i s  cor re la t ion  

apparently due t o  the  influence of surface tens ion .  

For tubes of l e s s  than 
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Swirl-Flow Heat Transfer.  An apparatus has been constructed f o r  the 

study of boi l ing with net  vapor generation w i t h i n  a tube containing a full- 

length twisted tape.  The t e s t  channel w i l l  be mounted v e r t i c a l l y ;  and data 

w i l l  be obtained over a range of i n l e t  flow r a t e s ,  i n l e t  subcoolings, and 

tape-twist. r a t i o s .  Axial-flow data w i l l  be obtained i n  t h e  same apparatus 

f o r  comparison with the  swirl-flow r e s u l t s .  Burnout pro tec t ion  w i l l  be 

provided by a s e t  of subminiature s o l i d - s t a t e  l i g h t - s e n s i t i v e  switches 

which become conducting when the  e f f e c t i v e  l o c a l  i r radiance becomes s u f f i -  

c i e n t l y  high and a c t i v a t e  a r e l a y  and c i r c u i t  breaker.  

w i t h  these switches indicated a sharp increase i n  s e n s i t i v i t y  a t  source 

temperature of 1100 t o  1200°F and no measurable e f f e c t  of ambient temper- 

a ture  over the  range of ant ic ipated operating condit4ions. 

Preliminary t e s t s  

Subcooled swirl-flow boi l ing  w a s  studied f o r  the s i t u a t i o n  of heat 

generation within the  tape and an ad iaba t ic  tube w a l l  over a range of tape- 

t w i s t  r a t i o s ,  i n l e t  water temperatures, and heat f luxes .  

t h a t  the  c r i t i c a l  heat f lux  f o r  a twisted tape w a s  not markeuly grea te r  

than f o r  a s t r a i g h t  tape;  a maximum enhancement of -2@ a t  a tape- twist  

r a t i o  of 7 t o  10  w a s  noted a t  the lowest i n l e t  temperature. 

It w a s  observed 

Analysis of Flow Through Rod Clusters .  The general  problem of describ- 

ing the  ve loc i ty  d i s t r i b u t i o n  and the  pressure-drop two-phase annular flow 

i n  the  complex rod-cluster geometry has been considered. A s  a preliminary, 

the  "simpler" case of single-phase annular flow w a s  developed using separa- 

t i o n  of var iables  t o  reduce the o r i g i n a l  p a r t i a l  d i f f e r e n t i a l  eqaation t o  

a p a i r  of ordinary d i f f e r e n t i a l  equations. An extended point-match tech- 

niquewas thenemployed t o  meet t h e  boundary conditions along the surface 

of the per ipheral  rod i n  the u n i t  flow channel. 

techniques were a l s o  evaluated; the  d i f f i c u l t i e s  assoc ia ted  with these 

a l t e r n a t e  methods a r e  discussed. 

Other possible  mathematical 

- _  

Flow Dynamics and Turbulence 

Vortex Fluid Mechanics. The analysis  of the e f f e c t  of a uniform a x i a l  

magnetic f i e l d  on s t a b i l i t y  of vortex motion w a s  continued. 

c r i t e r i o n ,  v a l i d  f o r  magnetic s t a b i l i z a t i o n  both of nondissipative pure 

vortex flow and of inv isc id  pure vortex flow with f i n i t e  conductivity,  w a s  

An exact 
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derived. 

g i n a l  s t a b i l i z a t i o n  increases l i n e a r l y  with t h e  outer  per ipheral  ve loc i ty  

of the  vortex and parabol ical ly  with the  densi ty  of the f l u i d  but decreases 

with an increase i n  radius r a t i o  (inner/outer) of the two concentric cyl in-  

ders confining t h e  flow. 

gether with the associated boundary conditions, have enabled examination of 

the more general case of hydromagnetic s t a b i l i t y  of vortex-like flow ( in-  

cluding pure vortex flow) with o r  without radial flow. 

spec ia l  cases have been considered i r z  d e t a i l .  

For these cases,  it was found t h a t  t h e  magnetic f i e l d  f o r  mar- 

Equations have a l s o  been formulated which, t o -  

The following 

1. Nondissipative Vortex-Like Flow - The exact c r i t e r i o n  f o r  hydro- 

magnetic s t a b i l i z a t i o n  is found t o  depend on the  shape of the ve loc i ty  

p r o f i l e  and r e s u l t s  a r e  presented i n  t.erms of the AlfvGn modulus, the  
radius r a t i o ,  and a shape f a c t o r  f o r  t h e  p r o f i l e .  

2 .  Dissipative Pure-Vortex Flow - The c r i t i c a l  Reynolds modulus has 
' been determined as a f'unction of Hartmann modulus ( the dimensionless mag- 

n e t i c  f i e l d  s t rength)  and radius r a t i o .  

found t o  r e s u l t  i n  des tab i l iza t ion ,  whereas la rge  values a re  s t a b i l i z i n g .  

Small values of magnetic f i e l d  a r e  

3. Dissipative Vortex-Like Flow - Results a r e  presented f o r  the case 

of zero radial flow as graphs of the c r i t i c a l  Taylor modulus versus the  

square of the Har tmam modulus f o r  several  values of the  radius r a t i o  and 

f o r  the spec ia l  case i n  which onlythe inner cyl inder  ro ta tes .  For t h i s  

case, the magnetic f i e l d  is always s t a b i l i z i n g  and the c r i t i c a l  Taylor 

modulus becomes proportional t o  the square of the Hartmann modulus a t  large 

values of the  l a t t e r .  In addition, r e s u l t s  a r e  presented f o r  the case-of  

outward radial flow as graphs of the c r i t i c a l  t angent ia l  Reynolds modulus 

versus radial Reynolds modulus f o r  several  values of Hartmann modulus. It 

i s  concluded t h a t  the  e f f e c t  of increasing radial flow i s  usually s t a b i l i z -  

ing and t h a t ,  while both radial flow and magnetic f i e l d  a re  s t a b i l i z i n g ,  

large values of radial flow decrease the e f f e c t  of the  f i e l d  and vice versa.  

Furthermore, a t  large values of r a d i a l  Reynolds modulus, %he c r i t i c a l  tan-  

g e n t i a l  Reynolds modulus becomes asymptotically proportional t o  r a d i a l  

Reynolds modulus t o  the  three-halves power, independent of the radius r a t i o .  

The experimental invest igat ion was extended t o  include a study of the  

e f f e c t  of in jec t ion  geometry ( s l i t s  versus round nozzles) on s t a b i l i t y  of 
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je t -dr iven  vortex-l ike flow of an aqueous e l e c t r o l y t i c  conductor under the  

influence of a uniform axial magnetic f i e l d .  

long vortex tubes were employed f o r  these s tud ies ,  and observation of dye 

fi laments in jec ted  i n t o  the  boundary layer  along the  c y l i n d r i c a l  wall  was 

the  technique employed for determining e f f ec t s  of the magnetic f i e l d  on 

flow s t a b i l i t y .  It was observed t h a t ,  f o r  a l lgeomet r i e s ,  the  e f f e c t  of 

t he  f i e l d  i s  the  suppression of flow i n s t a b i l i t i e s  of an apparent o s c i l l a -  

t o r y  nature which or ig ina te  along the  concave w a l l  a t  l o w  values of tan-  

g e n t i a l  Reynolds modulus whep there  i s  no f i e l d .  Results of flow v isua l -  

i za t ion  s tudies  based on ana lys i s  of s t i l l  and motion p i c tu re s  a re  described. 

Two 1.1-in.-diam by 6 1/2- in .  

Quant i ta t ively,  the c r i t i c a l  (or t r a n s i t i o n )  value of t angen t i a l  

Reynolds modulus w a s  found t o  increase approximately l i n e a r l y  w i t h  the  

square of t h e  Hartmann modulus ( f o r  s u f f i c i e n t l y  la rge  values of t he  

l a t t e r )  i n  t he  case of flows generated by two or four s l i t s  and a l s o  i n  

t h e  case of round nozzles.  The data f o r  e ight  s l i t s  suggest a more rapid 

increase i n  Reynolds modulus a t  high values of t h e  Hartmann modulus. The 

e f f e c t  of i n j ec t ion  geometry i s  fu r the r  evidenced by the  observation t h a t  

the  c r i t i c a l  Reynolds modulus increases  w i t h  increasing numbers of in jec-  

t i o n  s l i t s ,  suggesting the  e f f e c t  of growth of t he  boundary l aye r  between 

s l i t s .  It w a s  a l s o  observed t h a t  t he  influence of t he  f i e l d  on t h e  re-  

covery of j e t  ve loc i ty  as t angen t i a l  ve loc i ty  near t h e  periphery i s  depen- 

dent on the r a t i o  of t angen t i a l  t o  radial ve loc i ty ,  high values of t h e  

l a t t e r  r e su l t i ng  i n  r e l a t i v e l y  la rge  increases  i n  recovery when the  flow 

is  magnetically s t a b i l i z e d .  

The experimental r e s u l t s  a r e  discussed from the  point  of view of t he  

theory for d i s s ipa t ive ,  vortex-l ike f l o w ,  w i t h  and without radial f low,  

and some preliminary comparisons a re  made. 

Po ten t i a l  Vortex Flow Near a Sta t ionary  Disk. An a n a l y t i c a l  and ex- 

perimental  inves t iga t ion  has been i n i t i a t e d  i n t o  the in t e rac t ion  of a 

vortex flow and a s t a t iona ry  disk,  as r e l a t ed  t o  the end-wall by-pass flow 

problem i n  vortex tu.bes . A two-dFmensiona1, f ree-s t ream flow c lose ly  

approximating a pure vortex w i l l  be generated experimentally by passing 

water r a d i a l l y  inward through a ro t a t ing  porous outer  drum, w i t h  exhaust 

through a much smaller porous inner  tube concentric with t h e  drum. The 

- _  
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boundary layer  on a s t a t iona ry  end w a l l  confining the  flow w i l l  be studied 

over a wide range of free-stream t angen t i a l  Reynolds modulus by means of a 

number of flow v isua l iza t ion  techniques present ly  being developed. 

r e t i c a l  study of the  boundary-layer flow is being made i n  which the  usual 

boundary-layer s implif icat ions t o  the  momentum equations w i l l  not be made, 

and an analog computer may be used t o  obtain the  tangent ia l  and r a d i a l  

ve loc i t i e s  simultaneously. 

A theo- 

Boundary-Layer Transient Phenomena. Fabrication of the heated, s t a in -  

l e s s  s t e e l  t e s t  sec t ion  incorporating gunbarrel-type thermocouples f o r  in-  

stantaneous surface temperature measurement w a s  completed t o  the  point  of 

vacuum deposit ion of t he  t h i n  film t o  form the  hot junction. D i f f i cu l t i e s  

i n  the  l a t t e r  operation have been experienced, however. Techniques f o r  

fabr ica t ion  of r e l i ab le ,  long-lived hot-f i lm surface probes a re  a l s o  under 

invest igat ion.  One such probe was employed t o  measure the  instantaneous 

l o c a l  heat- t ransfer  coef f ic ien t  inside a 2-in.-diam pipe i n  the  range of 

Reynolds modulus from 2500 t o  157,000. The data  show a de f in i t e  laminar 

behavior f o r  Reynolds moduli below 2600, and a change t o  turbulent  flow 

f o r  Reynolds moduli g rea t e r  than -l5,OOO, with a t r a n s i t i o n  region char- 

acter ized by intermittency of turbulence i n  between. Percentage f luc tua-  

t i o n s  i n  loca l  heat- t ransfer  coeff ic ient  (averaged over a small frequency 

range) were correlated with frequency; and it was found t h a t  t he  l a rges t  

f luc tua t ions  (-8% of the  mean coeff ic ient  when averaged) occur a t  the  low 

end of the  frequency specturm (-2 cps) .  

made i n  terms of the  power spec t r a l  densi ty  using an analog computer, from 

which it was observed t h a t  only a t  high values of the Reynolds modulus i s  

there  a s ign i f i can t  contr ibut ion t o  the turbulent  thermal energy by high- 

frequency f luc tua t ions .  Data have been recorded from which, it is hoped, 

an analysis  can be made of the degree of cor re la t ion  between the  f luc tua-  

t i ons  i n  axial  ve loc i ty  near the  w a l l  and the  f luc tua t ions  i n  the  heat-  

t r ans fe r  coe f f i c i en t .  

Analysis of the  data  w a s  a l s o  

Turbulent Transport Studies.  An a i r  flow f a c i l i t y  w a s  constructed 

and operated t o  invest igate  the previously observed discrepancy between 

l i t e r a t u r e  values and the  r e s u l t s  of t h i s  study on the turbulence l eve l  

i n  water flows within a c i r cu la r  channel. New hot-wire probes with th inner  
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and longer supports and very f i n e  tungsten wires (1.2 t o  1.6 x lo4 i n .  

diameter) were developed f o r  these a i r  s tud ie s .  

not yet  been comple%ed. 

Analysis of the  data has 

Thermmhvs i c a l  ProDerties 

Alka l i  Liquid Metals. Results on the  surface tens ion  of potassium 

against  helium obtained by the  maximum bubble-pressure technique have been 

extended t o  temperatures near the  bo i l ing  poin t .  In  the  temperature span 

between 70 and 710°C, the  surface tens ion  ( i n  dynes/cm) can be represented 

by the  least-squares  derived equation, u = 115.36 - 0.0646 t ,  with a mean- 

square deviation of 50.72 djmeslcm. 

(aboGt 20% on the  average) than values found i n  e a r l i e r  s tud ie s  as reported 

i n  the l i t e r a t u r e .  Similar data obtained with l i thium, u = 437.80 - 0.144 t 
k 2.4 i n  the  temperature range 200 t o  1000°C, agree more c lose ly  with lit- 

era ture  values (-$). 

The da ta  f a l l  s i g n i f i c a n t l y  higher 

Data obtained on the  densi ty  of potassium by varying the  depth of 

c a p i l l a r y  immersion i n  the  surface tens ion  measurements were found t o  be 

only 0.4% above published values.  

qui te  good showing a maximum deviat ion of 2%. 

For l i thium, t h e  agreement w a s  a l s o  

Experiments t o  measure the  contact angle f o r  potassium drople t s  

against  various metals were continued. A condensed-vapor cloud i n  the  

v i c i n i t y  of the droplet  has made c l e a r  photography d i f f i c u l t  f o r  temper- 

a tu re s  above 400°C; however, some t e n t a t i v e  r e s u l t s  have been obtained 

f o r  an untreated,  32 prms f in i sh ,  type 304 s t a i n l e s s  s t e e l  sur face .  

Immediate spreading was observed when the  drople t  w a s  placed on a surface 

preheated t o  60ooc. 

l a t e r  a f t e r  the  temperature had been reduced t o  300°C showed a contact 

angle of 10 deg. After  cleaning the  surface,  a t h i r d  droplet  gave a con- 

t a c t  angle of 1.30 deg a t  100°C. 
w a s  reduced t o  90 deg f o r  a surface temperature of 150°C a f t e r  35 mir !  

and t o  1 5  deg a t  250°C a f t e r  60 min. 

A second drople t  contact ing t h i s  same surface -3 h r  

With increasing temparature, the  angle 
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STUDIES I N  I-IEkJ? TRANSFER AND FLUID MECHANICS 

PROGRESS REPORT FOR PERIOD OCT. 1, 1963 - JUET 30, 1964 

H. W .  Eoffman J. J. Keyes, Jr. 

I. INTRODSTCTIOII' 

The s tud ie s  described i n  the  sec t lons  following r e f l e c t  the  progress 

made during t h i s  report ing period i n  t h e  spec i f i c  program on heat t r a n s f e r  

and f l u i d  mechanics supported a t  t h e  Oak Ridge National Laboratory by t h e  

Engineering Development Branch of t he  U.  S. Atomic Energy Comnission. It 

is  the  purpose of these  inves t iga t ions  t o  generate some of the  fundamental 

da ta  on heat t r anspor t  and f l u i d  flow needed i n  advancing both new and 

ex i s t ing  reac tor  concepts. The primary emphasis continues t o  be on cer -  

t a i n  aspects of turbulence i n  both l i n e a r  and vortexing flows and on two- 

phase flow and bo i l ing  heat t r a n s f e r  with water and potassium. 

This repor t  is  t h e  second. i n  the  cur ren t  s e r i e s  (see Bibliography); 

t h e  next repor t  w i l l  cover t he  period through June 30, 1965, and, hope- 

f u l l y ,  w i l l  be ava i lab le  by September, 1965. 

I =  
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2. BOILING HEAT TRANSFER AND TWO-PHASE FLOW 

2 .1  . Boiling-Potassium Heat Transfer 

2.1 .l. Forced-Comectfon System 

A. I. Krakoviak H. W.  Hoffmzn 

Introduction 

The study of bo i l ing  w i t h  potassium i n  forced flow lp-ward through a 

c i r c u l a r  tube w a s  r e s w e d  following i n s t a l l a t i o n  of a medium-fhx b o i l e r  

(100,000 Btu/hr*ft2 maximum capab i l i t y )  ; add i t iona l  c r i t i c a l  hezt flux 

and two-phase pressure-drop data have been obtaiyled. Fabr ica t ioc  of a 

new high-flux b o i l e r  (q/A - 5OO,OOO Btu/hr*ft2) continues t o  be beset  by 

d i f f i c u l t i e s .  The design of t h i s  new t e s t  u n i t  d i f f e r e d  from t h e  previous 

boiler '  i n  th ree  aspects :  

ment of t he  tube-wall temperature a t  th ree  equal ly  spaced, shor t ,  adia- 

b a t i c  regions slong the  tube w a l l ,  (2) a pressure t a p  w a s  added at the  

midpoint of the b o i l e r ,  acd (3) Yt-Pt l@ Rh thermocoxples were subs t i -  

t u t e d  f o r  t h e  o r ig ina l  Chromel-Alumel couples. The first such b o i l e r  

constructed w a s  extensively damaged p r i o r  t o  i n s t a l l a t i o n ;  t h e  u n i t  w a s  

dropped i n  shipping causing the mashing of severa l  thermocouples and t h e  

t ea r ing  off of the  c e n t r a l  pressure t a p  leaving a hole i n  t h e  tiibe wall. 

Only t h e  copper blocks were salvaged. Boroscopic examination of t h e  

second b o i l e r  following the  brazing operation revealed s i g n i f i c a n t  quan- 

t i t i e s  of braze a l l o y  on the  inner  tube surface.  Although t h e  tube is  

leak  tight and the  braze a l l o y  is  coznpatible with potassium, the re  re -  

mains ser ious  doubt as t o  whether t h e  ins ide  surface can be smoothed suf-  

f i c i e n t l y  'by mechanical means t o  e f f e c t  a usable hea t - t r ans fe r  surface.  

E f fo r t s  to correc t  t h i s  s i t u a t i o n  w i l l  be continued. 

(1) provis ion w a s  made f o r  t he  d i r e c t  measure- 

~ 

'A. I. Krakoviak and H. W. Hoffman, 3oiling-Potassium Heat Transfer:  
Forced-Convection System, pp0 5-212 "Studies i n  Heat Transfer and Fluid 
Mechanics, Progress Report f o r  Period Jan. 1 - Sept. 30, 1963," U r n  
Report ORNL-TM-915, Oak Ridge National La'boratory, October 1964. 

.,.I .. 
J. L j. 
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Apparatus Modifications 

c 

In  view of the above described d i f f i c u l t i e s  i n  constructing a new 

h i g h - f l u  b o i l e r ,  a t e s t  mit of lower f l iur  capab i l i t y  has been i n s t a l l e d  

f o r  izlterim operation. 

a 7-ft  length of l/2-Tn. double ex t r a  heavy IPS type 347 s t a i n l e s s  s t e e l  

pipe (0.270 i n .  I D ,  0.839 ?&i. OD). 
t he  b o i l e r  w a s  divided i n t o  s i x  12-in.-long sect ions which were heated 

rad ian t ly  by individual  clamshell heaters  of 1 1/4-in. inside diameter. 

These heated port ions were separated by 105- in .  gaps i n  which the  w a l l  

w a s  thinned from the c r i g i n a l  0.285 i n .  t o  0.075 io. 

cated i n  the  f i n a l  four  g a p  and a t  the  b o i l e r  e x i t ,  were provided with 

cooling jackets ;  t he  pressures were measured with four  Taylor devices and 

with a 6-in.  bronze Bourdon-tube gage (maintained a t  t h e  ca l ib ra t ion  tem- 

perature  of 1 6 0 ' ~ ) .  

were a l s o  welded t o  the  tube w a l l  i n  each of t he  in te rhea ter  gaps; t h e  

leads of these thermocouples were brought out along the  pressure- 

t ransmit t ing l i n e s .  Fiberfrax insu la t ion  i n  these regions created an 

e s s e n t i a l l y  ad iaba t ic  zone. 

This b o i l e r  (termed medium f l im)  w a s  machined from 

As shown schematically i n  Fig. 2.1, 

Pressnre taps ,  l o -  

A p a i r  of 0.008-in.-diam pt-pt 10% Rh thermocouples 

Tube-wall temperatures a t  the  midpoint of each heated sec t ion  were 

obtained with P';.-?t 1% Rh themnocouples placed i n  0.035-in0-diam holes 

d r i l l e d  r a d i a l l y  i n t o  t h e  tube w a l l ;  t h e  loca t ion  of the  bottoms of these 

wells with respect t o  the  inside tube surface a re  indicated i n  Fig. 2.2. 

The 8 - m i i  thermocouple wires were threaded through two-hole ceramic in-  

su l a to r s  (0.031 i n .  OD) and individual ly  res i s tance  welded t o  the  s t a i n -  

l e s s  s t e e l  a t  t h e  bottom of the  well .  The leads were insulated with 

quartz-cloth sleeving and brought out r a d i a l l y  through the  clamshell 

hea te r  halves. The ins ide  surface temperature w a s  obtained by extrapo- 

l a t i o n  from t he  temperatures measured a t  the  bottom of the  thermocouple 

wel ls .  

Sone error ii? <he tenperature  measurenent r e s u l t s  from heat f low 

along the  themmouple  leads t o  the  junction and from d i s t o r t i o n  of the  

heat flow pa t t e rn  i n  the  tube w a l l  by the  d r i l l e d  thermowells. If by 

proper insu la t ion  the  thermocouple leads a t  the  radius  of the oats ide 

surface a re  ;;zai:?tained a t  t.he temperature of t he  udtside s t a i n l e s s  s t e e l  
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OR N L- DW G 6 4 - 73 0 5 

THERMOCOUP 
LOCATIONS 

TYPE 3 4 7  STAINLESS STEEL PIPE, 
0.839 in. OD, 0 . 2 7 0  in. I D  

INS U LATl ON 

CLAMSHELL HEATERS (TYP), 
12 in. LONG, i'/4 in.  I D  

PRESSURE-TAP LOCATIONS 

Fig. 2 .1 .  Schematic of Medium-Flux Boiler Section. 
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/THERMOCOUPLE 

THERMOCOUPLE WALL THICKNESS 

1-7 I = 0.075 
POSITION ( in. )  

0 x = 0.1240, y = 0.044 
9 x = 0.2005, y = 0.054 
10 x =  0.2146, y = 0.018 
4 4  x = 0.2070, y = 0.054 
12 x = 0.2406, y = 0.033 
13 x = 0.2040, y = 0.024 

Fig. 2.2. Thermocouple and Pressure Tap Details of Medium-Flux 
Boiler. 
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surface,  these e r r o r s  can be kept t o  l e s s  than 5% of the  t o t a l  tempera- 

t u r e  drop through t h e  tube w a l l .  

Btu/hr*f t2  at  the  ins ide  tube surface,  t h e  t o t a l  temperature drop through 

the  tube w a l l  i s  about 100'F.) Care must be taken, however, t o  insure 

t h a t  good welds e x i s t  between the  thermocouple wires and the  s t a i n l e s s  

s t e e l  a t  t he  bottom of the  thermowell and t h a t  t he  thermocouple leads 

a r e  not d i r e c t l y  exposed t o  the  hea ter .  A s l i g h t  e c c e n t r i c i t y  i n  t h e  

b o i l e r  ( ins ide  diameter with respect  t o  outs ide diameter) in'croduces an 

addi t iona l  e r r o r  of about 3'F a t  t h e  maximum heat  f lux.  

(For a maximum heat f l u x  of 100,000 

Heat-Transfer Results 

The data  obtained thus far w i t h  t he  medium-flux b o i l e r  (designated 

Series  C )  a r e  given i n  Table 2.1. 

a r e  shown i n  Figs.  2.3 (run C - 7  a t  q/A = 56,600 Btu /hr - f t2)  and 2.4 (run 
C - 1 2  a t  q/A = 80,600 Btu/hr . f t2) .  

ad iaba t ic  i n t e rhea te r  gaps a re  ind ica ted  by the s o l i d  c i r c l e s ;  these  tem- 

peratures  should correspond t o  t h e  ins ide  w a l l  temperatures a t  these  l o -  

ca t ions .  

measurements i n  thermowells a t  t h e  midpoint of each heated sec t ion  ( in-  

d ica ted  by crosses)  a r e  i n  reasonable agreement with the  interheater-zone 

values.  

Typical a x i a l  temperature p r o f i l e s  

Wall temperatures measured i n  t h e  

Inside w a l l  temperatures obtained by ex t rapola t ion  from the  

Provision was made i n  the medium-flux b o i l e r  f o r  pressure measure- 

ments a t  a number of pos i t ions  along t h e  b o i l e r  (see Fig.  2.1) f o r  the 

twofold purpose of obtaining b e t t e r  data on the  two-phase pressure loss  
and of es tab l i sh ing  more c l e a r l y  the  f l u i d  temperature p r o f i l e  i n  the  

b o i l e r .  

i n  Table 2.1. 

assuming liquid-vapor equilibrium, a r e  a l s o  shown i n  F igs .  2.3 and 2.4 

The absolute pressures measured a t  t h e  f i v e  loca t ions  are given 

The temperatures corresponding t o  these  pressure values,  

(open c i r c l e s ) ;  .the s impl i f ied  equation of Lemon e t  al . ,  2 

4 332 
log P = 4.185 - - , 

T 
2A. W. Lemon, Jr., H. W. Deem, E. H. H a l l ,  and J. F. Walling, The 

Thermodynamic and Transport Proper t ies  of Potassium, "Proceedings of 1963 
High-Temperature Liquid-Metal Heat Transfer Technology Conference," USAEC 
Report OFNL- 3605, Oak Ridge National Laboratory ( i n  publ ica t  ion)  . 

-.. 



Table 2.1. Cperathg Variables and Results of Two-Phase Potassium Flow Studies 
~~ 

Heat 
10'5 x Heat Flux Balance , 

Qelectric Boiler Pressure, psia R u n  No. Inlet Id le t  Fluid E x i t  Fluid E x i t  Q/A 
Mass Flow Temperature , Temperature, Q.lality, (m Fluidl, 

Series C lb/tn.-ft2' "F O F  U t  $ Vapor ~tu/hr.ft Qfluid PE-6 PE-5 PE-4 PE-3 PE-2 

1 
2 
3 
4 
5 

6 
7 
8 
9 
lo+ 

11 
12 
13 
14 
15+ 

2.236 
1.886 
1-583 
1.134 
1-957 

1.609 
1.150 

0.7688 
0.6967 

1.896 
1.640 
1.13 
1.056 
0.9918 

0.9157 

1428.7 
1492 - 9 
1465.8 
1441.1 
1559.6 

1543 .O 

1491.7 
1514.6 

- - 
1617.1 

1563.6 

1596.7 
1573 * 4 

- 

1529.7 
1515.2 

1529.4 
1501.65 

- 

11.50 
23.40 

34.82 
25-52 

38.62 

45.80 
62.24 
77.20 
91.03 

100.00 

55.34 
62.80 

95 
98.00 

87.50 

17,235 
32,828 
30,427 
30,559 
57,993 

57,252 
56J555 
56J 395 - - 
81,444 
80,568 
81,688 
80,223 - 

0.84 

1.04 
0-97 

1.03 
1.03 

1.05 
1.07 
1.06 * 
++ 

1.06 
1.05 
1.08 
1 .og 
*++ 

17.02 
23.20 
20.72 

31-55 

29.55 
25-70 
23-05 
22 * 35 

18.40 

- 
40.51 
37 4 1  
33-81 
32.86 

16.25 
22.45 
19.95 
17.93 
30 * 30 

28.15 

22.25 
24.95 

21.45 - 
38.24 
35.56 
32.16 
31.26 

15.38 
21.15 
18.83 
16.80 
28.03 

26.20 
23.15 
20.93 
20.15 - 

35-31 
32.68 
30.11 
29.16 

14.111 
19.42 
17.58 
15-85 
25 50 

24.05 
21.49 
19-55 
18.95 - 
32.11 

27.56 
27.21 

29-91 

12 * 79 

15-50 
14.25 

17.11 

22.23 

21.09 
19.11 
17-53 4 17-05 - 

23 - 37 
26.54 
2 4 . 3  
24-46 

* 
Qelectric - - 59,667 Btu/hr.ft=. 

Qelectric 

Qelectric 

iHt 
= 59,632 ~tu/lU.-ft~. 

= 87,990 Btu/hr.ft2. +++ 

L r l o u t .  
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Fig .  2.3. Axial Temperature Profile; Run C - 7 .  
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w a s  used i n  t h i s  ca lcu la t ion .  

f o r  T i n  OK.  

pressures which a re  about 0.5% low i n  respect  t o  the  more complete equation 

developed by Lemon and h i s  co-workers;2 the  data p l o t t e d  i n  Figs .  2.3 and 

2.4 include t h i s  correct ion.  The most obvious c h a r a c t e r i s t i c  of these  da ta  

i s  t h a t  they  f a l l  s i g n i f i c a n t l y  above the  inside-tube-wall  temperature 

values though supposedly measuring the  f l u i d  sa tu ra t ion  temperature. 

source of t h i s  discrepancy has not ye t  been c l a r i f i e d ;  it may r e f l e c t  a 

systematic e r r o r  i n  t h e  measurement of t he  absolute  pressure.  Note, 

however, t h a t  the r e s u l t s  c l e a r l y  show curvature i n  the  a x i a l  f l u i d  tem- 

perature  p r o f i l e .  

In  Eq. (2.1), P i s  given i n  atmospheres 

In the  temperature range 900 t o  llOO°K, t h i s  equation y ie lds  

The 

Thermocouples i n  the  thinned-wall s ec t ion  immediately preceding t h e  

first heated zone l i e  a t  the  end of an -1-ft-long e s s e n t i a l l y  ad iaba t ic  

region and, thus,  probably provide a good measure of t he  i n l e t  f l u i d  tem- 

pera ture .  The i n l e t  f l u i d  temperatures indicated a t  the  zero axial posi-  

t i o n  a l s o  f a l l  within t h i s  ad iaba t ic  zone. 

Fig. 2.4 is  a l i n e a r  i c t e rpo la t ion  of the  f l u i d  temperature as drawn pre-  

viously w i t h  respect  t o  the  data obtained i n  t h e  high- and low-flux 

boilers.’  

(long dashes) passing through t h e  i n i t i a l  wall--5enperatur-e value; these  

curves have been draxfi p a r a l l e l  t o  the  fluid-temperature curves ca lcu la ted  

from the  pressure data. The f l u i d  temperatures deduced from t h e  pressure 

measurements would correspond t o  t h e  upper es t imated fluid-temperature 

curve for run C-7, i f  t he  pressures  recorded were cons i s t en t ly  high by 

about 2 p s i ;  s imi la r ly ,  f o r  run C - 1 2 ,  an e r r o r  of “3.5 p s i  i s  s u f f i c i e n t  

t o  account f o r  t he  discrepancy. 

t h e  measxrements w i t h  t h e  Pt-Pt le Rh thermocouples does not seen l i ke ly ,  

even though an absolute c a l i b r a t i o n  w a s  not made; t h e  thermocouples were 

ca l ib ra t ed  only with respect  t o  each o ther .  

Shokn i n  both Fig.  2.3 and 

A more reasonable estimate is  ind ica ted  by t h e  curved l i n e s  

In con t r a s t ,  an e r r o r  of 25 to 35°F i n  

The r e s u l t s  f o r  heat f luxes below t h e  c r i t i c a l  are given i n  Fig.  2.5; 

ATsat is t h e  mean-temperature difference between . the wall-temperature 

Curve and the  upper estimated fluid-temperature curve. The range of t he  

data  obtained with the  high-flux b o i l e r  is  also indicated i n  t h i s  f igure ,  

and it is  noted t h a t  t h e  current  r e s u l t s  suggest a l e s s e r  dependence on 
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AT than w a s  observed with t h e  e a r l i e r  data. However, s ince many of the  
values a re  associated with very small temperature differences (3 t o  10'F) 

and s ince an uncertainty e x i s t s  i n  t he  procedure f o r  obtaining these  d i f -  

ferences,  t h i s  conclusion may wel l  be premature. Again, though the re  a re  

some anomolous values, decreasing AT a t  any given f lux  l e v e l  s e e m  t o  cor- 

respond t o  increasing e x i t  qua l i ty .  

Two s e t s  of runs terminated with "burnout": C - 5  through C-10 and C - 1 1  

through C - 1 5 ;  the  c r i t i c a l  values a r e  given i n  Fig.  2.6 i n  comparison with 

the  r e s u l t s  obtained with the  previous b o i l e r s .  Note t h a t  t h e  agreement 

with the  Lowdermilk, Lanzo, and Siegel  cor re la t ion3  f o r  water remains good. 

For run C-10, the  c r i t i c a l  flux w a s  -56,250 Btu /hr*f t2  (ca lcu la ted  from 

Qe l e  c t r i c  
h r . f t 2  with an e x i t  qua l i t y  of e s s e n t i a l l y  106; f o r  run C - 1 5 ,  $crit - 

82,230 Btu/hr.ft2 a t  G '% 1.0 x lo5 l b / h r * f t 2  and X = 98%. 
(qua l i ty  -96$), temperature o s c i l l a t i o n s  of  30°F t o t a l  amplitude were 

detected a t  the  b o i l e r  e x i t .  

using t h e  heat  balance r a t i o )  a t  a mass flow of -0.7 x lo5 l b /  
?! 

During run C - 1 5  

Pressure -Drop Data 

A s  discussed above, t he  

the  downstream two-thirds of 

e r r o r  i n  the  absolute values 

tween pressure-tap loca t ions  

a x i a l  pressure d i s t r i b u t i o n  w a s  measured over 

t he  b o i l e r .  While the re  appears t o  be an 

of t h e  pressure,  t he  differences recorded be- 

should be va l id .  The r e s u l t s  a r e  presented 

i n  Fig.  2.7 following the  method of Lockhart and Mar t ine l l i 4  which defines 

a f r i c t i o n  mul t ip l i e r  as the  r a t i o  of t h e  t o t a l  two-phase pressure drop, 

(dP/dl)T,, t o  the  pressure drop f o r  t h e  l i q u i d  phase only, ( d P / d R )  a t  

the  same i n l e t  l i q u i d  mass flow. This f r i c t i o n  mul t ip l i e r  can be corre-  

l a t e d  with t h e  dimensionless parameter, 4 9 5  

a' 

Xtt, where 

-. ... . .  .. L- . -. I .  

3W. H. Lowdermilk, D. D. Lanzo, and B. L. Siegel,  " Inves t iga t ion  of 
Boiling Burnout and Flow S t a b i l i t y  f o r  Water Flowing i n  Tubes," Report 
NACA-TN-4382, National Advisory Committee f o r  Aeronautics, September 1958. 

Isothermal Two-Phase, Two-Component Flow i n  Pipes," Chem. Eng. Progr., 45: 

5R. C .  Mar t ine l l i  and D. B. Nelson, "Predict ion of Pressure Drop 
During Forced-Circulation Boiling of Water," Trans. ASME, 70: 695-702 

4R. W. Lockhart and R. C .  Mart i i ie l l i ,  "Prediction of Pressure Drop f o r  

39 (1949). 

(1948) 
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In  Eq. (2.2),  x is the  e x i t  qual i ty;  p9 t he  v iscos i ty ;  p, %he density,  and 

t h e  subscr ipts ,  v arid .e, r e f e r  t o  vapor and l i qu id ,  respect ively.  The 

f l u i d  propert ies  were evaluated a t  the  f l u i d  bulk ( sa tura t ion)  temperature. 

The qua l i t i e s  a t  the  exEt of each 1-ft-long section. between pressure taps  

ranged between 12% and 96% and were obtained by l i n e a r  in te rpola t ion  along 

the  t e s t  sec t ion  between the  i n l e t  (zero)  qua l i ty  and the  measured e x i t  

qua l i ty .  

t h e  densi ty  r a t i o  i n  Eq. (2.2) var ied  near ly  threefo ld .  

Over the  pressure range of the  current  data (12.8 and 40.5 p s i a ) ,  

The data a re  compared i n  Fig.  2.7 with the  r e s u l t s  of Schrock and 

Grossman' f o r  t he  bo i l ing  of water i n  upward flow through a small diameter 

(0.125-in.) tube and with the  e a r l i e r  potassium da ta l  i n  a 0.325-in. tube 

i n  which end e f f e c t s  were included. It is  noted t h a t  the  present r e s u l t s  

f a l l  10 t o  2@ below t h e  mean f o r  t he  Schrock and Grossman data  though 

generally within t h e i r  indicated s c a t t e r  band. 

As  a matter of i n t e r e s t ,  the  pressure-drop data of Table 2.1 have 

been evaluated i n  terms of the  simpler homogeneous model. Preliminary 

r e s u l t s  f o r  t he  pressure drop across sec t ions  6-5 and 3-2 f o r  run C-12 

a r e  shown i n  Fig. 2.8. 

2.1.2 Superheat Phenomena 

A. I. Krakoviak 

Data obtaiced previously i n  a number of bo i l i ng  potassium forced- 

convection and naturel-convection systems a t  O F 3 L  have suggested the  

existence of abnormally high superheats.  A simple analys is  f o r  pre- 

d i c t ing  the  rragnitude of the  superheat required t o  i n i t i a t e  bo i l ing  w i t h  

t h e  alkali l i q c i d  metals7 v e r i f i e d  the  above conclusion and indicated the  

6'J. E.  Sckirock and L. M. Grossman, "Forced-Convection Boiling i n  

7A. I. TKrakoviak, Boiling-Potassium Heat T ra i s f e r :  

Tubes," Nuel* Sci .  Eng., 12: 

Phenomena, pp. 21-26, "Studies i n  Heat Transfer and Fluid Mechanics, 
Progress Report f o r  Period Jan. 1 - Sept. 309 1963," USAEC Report O m -  
TM-915, Oak Ridge National Labcratory, October 1964 * 

474-481 (1962). 

Superheat 
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c 

need f o r  fu r the r  quant i ta t ive  measurements. Accordingly, an experimental 
program w a s  undertaken t o  determine the  l i q u i d  superheat w i t h  potassium 

and t o  e s t a b l i s h  the  e f f ec t  of surface condition on the  magnitude of the  

su3erhest 

Apparatcs 

A sml l  (20-in. x 2G-in.) na t c ra l - c i r cu la t ion  loop was desigced f o r  

t he  purposes of t h i s  study. 

was constructed of 1/2-in. sched-40, type 347 s t a i a l e s s  s t e e l  pipe arranged 

s o  a s  t o  accomodak the  three  t e s t  regions A, 3, and C i n  Fig. 2.9. The 

s t ruc ture  of these t e s t  sect-ions i s  given i n  Table 2e2 .  Ir; operation, t he  

The system (shown schematically i n  Fig.  2.9) 

Table 2.2. Boiling Surface Charac te r i s t ics  

Region Surface Treatment 

A Porous surface coating 

B Two opposed rows of four  small diameter 
holes spaced a t  2- in .  separat ion 

C A s  received 

f l u i d  was boi led  i n  sec t ion  A, while region B remained unheated; the  vapor 

generated w a s  condensed by cooling the  tube w a l l  a t  the  top of l e g  B. 

Al ternately,  surface B w a s  examined by heat ing t h i s  region, while sec t ion  A 

remained unheated. Final ly ,  by ro t a t ing  the  loop clockwise by 90 deg, 

region C could be s tudied.  

The surface B w a s  formed by d r i l l i n g  holes through the  pipe w a l l  

which were then closed on t h e  outside with weld metal t o  form c a v i t i e s  of 

the  desired depth. X-ray ex&mination of t he  completed sec%ion showed one 

hole t o  be as i n  Fig. 2.10-b, th ree  as i n  Fig.  2.10-c, and the  remaining 

four as i n  Fig.  2.10-d. These holes were arranged i n  two diametr ical ly  

opposed rows of f o w  holes extending a x i a l l y  along the  tube with the  holes 

i n  each row at; 2-in.  separat ion and with one row displaced i n  t he  a x i a l  

d i rec t ion  by 1 in .  with respect  t o  the  o ther .  

Tube w a l l  temperatures were obtained with Chromel-Alumel thermocouples 

(0.010-in. wire) res i s tance  welded t o  the  outside tube w a l l  at, t he  posi+,'  ions 
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indicated i n  Fig.  2.9. The loop pressure w a s  measured with a ca l ib ra t ed  

bronze Bourdon tube gage (0 t o  30 p s i a  range) which w a s  maintained at  the  

ca l ib ra t ion  temperature of 1 6 0 ' ~ .  

as determined froln t h e  loop pressure,  averaged 3'F above the  value in-  

dicated by t h e  condenser thermocouples; t he  maximum deviat ion observed 

w a s  10'F. 

(clamshell)  heaters .  

f o r  ex terna l  heat l o s s ,  w a s  used t o  e s t a b l i s h  the  heat  f l u x  and t h e  tem- 

perature  drop through the  b o i l e r  w a l l .  The sa tu ra t ion  temperature l e v e l  

w a s  cont ro l led  by ad jus t ing  the  loop pressure.  

I n  general ,  the  sa tu ra t ion  temperature, 

Each t e s t  region w a s  heated by a p a i r  of e l e c t r i c  res i s tance  

The power input t o  the  heaters ,  a f t e r  cor rec t ion  

Temperature Pa t te rns  

I n i t i a l  data were obtained with a loop containing only an as-received 

and a porous surface;  t h e  t e s t  region containing d i sc re t e  holes  w a s  in -  

. operative i n  that the  holes were completely r e f i l l e d  with weld metal during 

the  back-welding operation so as t o  r e tu rn  it t o  an e s s e n t i a l l y  as-received 

condition. 

Typical of the  temperature o s c i l l a t i o n s  recorded i n  t h e  b o i l e r  and 

condenser regions a r e  those given f o r  t h e  surfaces  C ( labeled smooth) and 

A ( labeled t r e a t e d )  i n  Figs .  2.11 and 2.12, respect ively.  

i n  these experiments ranged from 16,000 t o  37,000 Btu/hr-f t2 .  

a tu re s  shorn a re  the  recorded outs ide tube w a l l  temperatures; t h e  calcu- 

lated temperature drop through the  w a l l  w a s  general ly  l e s s  than  l3'F. 

The heat  f l ux  

The temper- 

Figure 2.11 displays the  temperature p a t t e r n  observed with the  smooth 

surface.  The superheat a t  nucleat ion w a s  obtained as t h e  temperature d i f -  

ference between t h e  maxima i n  t h e  b o i l e r  (hea ter )  curve and the  minima i n  

t h e  condenser curve. 

indicated by the  condenser curve.)  Uncorrected superheats of 210 t o  240'F 

were determined for t h e  spec i f i c  data p ic tured .  The tube w a l l  temperature 

f luc tua ted  with an average amplitude of -140'F a t  a frequency of 0.25 cps. 

This p a t t e r n  of w a l l  t e q e r a t u r e  o s c i l l a t i o n s  i s  very similar t o  t h a t  

which had been previously found during some per iods of operat ion with tine 

l o w f l u x  b o i l e r  .l 

(The sa tu ra t ion  temperature w a s  taken t o  be the  value 
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Contrasting with t h i s  behavior w a s  t h e  temperature pa t t e rn  observed 
with the  t r e a t e d  surface;  a continuous four-minute por t ion  (not a composite) 

of a temperature t r a c e  is given i n  Fig. 2.12. Three d i s t i n c t  conditions 

were noted: 

1. Temperature spikes of la rge  magnitude (95 t o  125°F) and i r r e g d a r  

cccurrecce haviag a pa t t e rn  arrd associated somd similar t o  those observed 

with the  smooth surface arrd a superheat l e v e l  between 140 and 180'~. 

2. Periods of "quiet" operation of various durat ion separat ing these 

peaks f o r  which the  t h e m 1  c s c i l l a t i o n s  were of low magnitude (2 t o  3°F) 

and r e l a t ive  high frequency (-1.3 cps)  and the  sllperheat was of t h e  order 

of 25 t o  3 0 ' ~ .  

3. Some f luc tua t ions  of intermediate magnitude (-20°F) and frequency 

(0.13 cps) with a superheat of 6 0 ' ~ .  

A four th  mode, not shown i n  Fig. 2.12, w a s  a l s o  seen i n  which the  

tube w a l l  temperature remained constant without f luc tua t ions  f o r  times as 
long as one minute. The sa tu ra t ion  temperature associated with the  data  

of Fig. 2.12 was 1420 t o  1450'F. 

Following accumulation of t he  above data,  the  f a u l t y  d r i l l e d  surface 

w a s  removed f r o m t h e  loop and replaced by a sec t ion  having the  character-  

i s t i c s  described f o r  surface B i n  Table 2.2 and Fig.  2.10. The o r ig ina l  

smooth and t r e a t e d  surfaces  were re ta ined .  The temperature pa t te rns  ob- 

served with t h i s  surface a r e  shown i n  Figs.  2.13 and 2.14. 

The first of these (Fig. 2.13) w a s  obtained at  a sa tu ra t ion  pressure 

of 0.18 p s i a  corresponding t o  a sa tu ra t ion  temperature of 820 '~ ;  t he  minima 

i n  the  condenser temperature curve (uncorrected f o r  wall temperature drop) 

indicate  a sa tu ra t ion  temperature of -805°F. 

w a l l  temperature o s c i l l a t i o n  w a s  of t h e  order of 6 5 " ~  with a primary f r e -  

The t o t a l  Lmplitude of t he  

quency of about 0.02 cps.  Super.imposed on the  fundamental mode w a s  a 

high-frequency f luc tua t ion  of 0.60 t o  0.75 cps 

with these data w a s  140°F. 

The superheat associated 

A s  the sa-buration pressure was increased, t he  fuEdamental o s c i l l a t i o n  

decreased ii1 axpl i tude and tncreased i n  frequency, while t he  secondary 

f luc tua t ion  re-mined e s s e z t i a l l y  unchanged i n  both frequency and amplitude. 
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A t  s t i l l  higher temperatures (1200 t o  1250°F), only t h e  high-frequency 

o s c i l l a t i o n  w a s  detectable .  Final ly ,  at  sa tu ra t ion  temperatures i n  excess 

of 1350°F, the  high-frequency o s c i l l a t i o n s  a l s o  disappeared; and s t r a i g h t -  

l i n e  t r a c e s  i n  both b o i l e r  and condenser were recorded. Typical tempera- 

t u r e  p r o f i l e s  i l l u s t r a t i n g  t h i s  a r e  shown i n  Fig. 2.14. I n  t h e  upper 

por t ion  (Fig. 2.14-a), t he  saturat ior ,  temperature vas -i07C°F with an 

o s c i l l a t i o n  amplitude of -12°F a t  a frequency of 0.12 cps; i n  t h e  lower 

port ion (Fig. 2.14-b), the  sa tu ra t ion  temperature was -1260"~, t he  o s c i l -  

l a t i o n  amplitude -l°F, and t h e  o s c i l l a t i o n  frequency -0.8 cps . 
been estimated t h a t  t he  anql i tude of t h e  high-frequency temperature f luc  - 
t ua t ion  i s  reduced by a f a c t o r  of th ree  between the  ins ide  and outs ide 

surfaces ,  whereas the  low-freqcency f luc tua t ion  is  t ransmi t ted  e s s e n t i a l l y  

without a t tenuat ion .  

It has 

: Superheat Correlat ion 

The r e s u l t s  obtained with a l l  th ree  surfaces  are summarized and com- 

pared i n  Fig. 2.15; t h e  l i q u i d  superheat (corrected t o  account f o r  the  

temperature drop through t h e  tube w a l l )  is p l o t t e d  aga ins t  t h e  sa tu ra t ion  

temperature a t  each operatimg condition. 

superheat calculated7 according t o  t h e  equation, 

Comparison is  a l s o  made with the  

t h e  absolute  tem- Tsat where Th-,i is  t h e  absolute  surface temperature; 

pera ta re  of t he  f l u i d  a t  the  pressure,  Pj; IJ, t h e  surface tens ion  of t he  

l i q u i d  a t  t h e  vapor-liquid in t e r f ace ;  h t h e  l a t e n t  hea t  of vaporization 

of t h e  l i qu id ;  r, the  bubble radius;  and R, t h e  gas constant .  The cavi ty  

(bubble) radius  w a s  introduced as an independent parameter t o  generate t h e  

multiple curves sho - i .  

fg' 

The uppermost s e t  of data i n  Fig.  2.15 (normal t r i a n g l e s )  were ob- 

t a ined  with t h e  smooth surface and show remarkably l i t t l e  s c a t t e r  along 

w i t h  good reprodi ic ibi l i ty  . 
Tsat 

The measured superheat ranged from -700°F a t  
= 950°F t o  a low of -270°F a t  1480°F. 

Corresponding r e s u l t s  with t h e  porous surface a re  more complex, while 

showing a s ign i f i can t  decrease i n  t h e  scperheat required f o r  bubble 
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i n i t i a t i o n .  Two s e t s  of data were obtained with t h i s  surface:  

dicated by the  squares, during the  per iod of i n i t i a l  operat ion of the loop, 

and (2)  represented by the  f i l l e d  c i r c l e s ,  a t  a time subsequent t o  the  

opening of t he  loop and t h e  i n s t a l l a t i o n  of t h e  new sec t ion  w i t h  d i sc re t e ,  

d r i l l e d  holes .  The superheat f o r  t h e  bulk of t he  data, over e s s e n t i a l l y  

the  same temperature spail as with t h e  smooth surface,  var ied  from somewhat 

more than lOO'F t o  about 12'F. 

t he  data s c a t t e r ,  while grea te r  than observed w i t h  t h e  smooth surface,  w a s  

s t i l l  not unreasonable. Most va r i a t ion  occurred i n  -the l imi t ed  region be- 

tween 1300 and 1450'F; and, while it is  possible  t o  r e l a t e  these  deviations 

t o  the  boi l ing  modes discussed above i n  reference t o  t h e  temperature t r a c e  

of Fig. 2.12, no cons is ten t  explanation f o r  t h i s  anomalous behavior near 

t he  atmospheric bo i l ing  pa in t  is  immediately ava i lab le .  Thus, t he  upper- 

most values i n  t h i s  band derive from the  thermal spikes,  t h e  intermediate 

data poin ts  correspond t o  the  lower amplitude peaks, and the  main body of 

data, t o  the  periods of low-amplitude f luc tua t ion .  The lowest superheat 

l eve l s  r e l a t e  t o  those times during which the  w a l l  temperature remained 

constant.  It i s  s p e c u l a t e d t h a t  during these periods an annular flow, with 

vaporization r a the r  than boi l ing ,  ex is ted .  This condi t ion w a s  observed 

over t he  f u l l  range of s a tu ra t ion  temperatures and yielded "superheats" 

from 80°F a t  930'F t o  9'F a t  1540'F. A t  t he  highest  flux l e v e l s  (above 

33,700 Btu/hr*f t  ), t h e  la rge  amplitude thermal spikes  were not present ,  

suggesting t h a t  t h e  porous surface may become increasingly e f f e c t i v e  w i t h  

inc  reas ing heat flux:. 

(1) in-  

Over most of t he  temperature range examined, 

The r e s u l t s  for t he  t e s t  s ec t ion  having e ight  d r i l l e d  holes  a r e  in -  

d ica ted  by t h e  inverted t r i a n g l e s  i n  Fig.  2.15. The measured superheats 

fal l  cons is ten t ly  below those obtained w i t h  the  porous surface,  ranging 

from 8 3 ' ~  a t  a sa tu ra t ion  temperature of gOO°F t o  as low as 7'F at  1350'F. 

%TO fea tures  may be dis t inguished i n  these  data: 

t i o n  i n t o  two s e t s  with t h e  lower values again possibly r e l a t i n g  t o  an 

annular flow, and (2) a level ing-off  i n  t h e  superheat a t  s a tu ra t ion  temper- 

a tu re s  above l25O'F. 

while t h i s  may merely ind ica te  some l i m i t  i n  t h e  s e n s i t i v i t y  of t h e  detec- 

t i o n  instrumentation, t he  f a c t  t h a t  t he  two s e t s  of data asymptote a t  d i f -  

fe ren t  superheat values suggests t h a t  a more fundamental f a c t o r  may be i n -  

(1) an apparent separa- 

This l a t t e r  c h a r a c t e r i s t i c  is  unant ic ipated;  and, 

volve d . 
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2.2. Boiling i n  Multirod Geometries 

L. G .  Alexander 

Preliminary exper-bents with t h e  previously described' seven-rod 

water bo i l e r  were completed; t y p i c a l  data for the  c r i t i c a l  heat f l ux  as 

a function of t he  e x i t  qua l i t y  at, a 1/16-i11. rod separakion are  shown i n  

P i g .  2.16. 

f i rs t  on the  cen t r a l  rod except possibly i n  the  chug-flow regime. 
r e s u l t  i s  contrary t o  expectations Sased on experiments a t  high pressure.  

However, many of  t he  high-pressure exper-hents were conducted In  t e s t  

channels having spacers i n  or near the  heated elements; i n  the  present 

apparatus there  a re  no spacers i n  the  flow region. 

With a l l  of t h e  rods a t  the  s m e  neat flux, "bumout" occurred 

This 

The data appear t o  be reproducible during any one day of operation, 

but there  was a gradual s h i f t  of the c r i t i c a l  heat f lux  t o  higher values 

over a period of severa l  days; t h i s  w a s  a t t r i b u t e d  to t he  presence of a 

sca le  of unestablished o r ig in  which deposited on the  heating surfaces .  

Demineralized water w a s  used i n  these experiments; and the  c i r cu la t ing  

stream was i n  contact only with the  mater ia ls  of construction of the  

apparatus - glass ,  s t a i n l e s s  s t e e l ,  Teflon, Inconel, and brass  plus  small 

mounts  of s i l v e r  and s o f t  so lders .  The heated bundles consisted of 

Firerods sheathed i n  Inconel f o r  t he  t e s t  c l u s t e r  and of s t a i n l e s s  s t e e l  

c lad  Calrods f o r  t he  preheater .  In  t h e  course of these experiments, one 

of t he  preheater rods ruptured discharging magnesium oxide in to  the  system; 

the  surface contamination on the  t e s t  rods may derive from t h i s  source. 

The preheater  i s  being r e b u i l t  using Firerods both t o  increase the  re -  

l i a b i l i t y  of t he  apparatus and t o  extend t h e  range of the  var iables  being 

s tudied.  A t  present ,  an e x i t  qua l i ty  of 5 6  i s  possible  only at  mass flows 

l e s s  than 20,000 lb /h r - f t2 ;  while a t  G = 50,000 l b / h r - f t 2 ,  the e x i t  qua l i t y  

is  l imi ted  to about 3 6 ,  barely i n  the  burnoint range. Increasing the  pre- 

heater  capacity t o  30 kw w i l l  enable mass flows t o  range up t o  100,000 l b /  

h r . f t 2  at 3076 qual i ty .  

i n l e t  qua l i ty  on the  c r i t i c a l  flu. 

it w i l l  also be possible  t o  examine t'fie e f f e c t  of 

~ 

' 5 .  L. Wai-itland, Water Bolling i n  a Multirod Geometry, pp. 27-30, 
"Studies i n  Heat Transfer and Fluid Mechanics, 'Progress Report f o r  Period 
Jan. 1 - Sept. 30, 1963," U S P X  Report OR&-TM-915, Oak Ridge National 
Laboratory, October 1964 
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Fig. 2.16. C r i t i c a l  Heat Flux i n  a Seven-Rod Clus te r .  



- -  

The design of a thin-walled tube t o  replace the  cen t r a l  Firerod i s  

i n  progress.  

amperage current  through the w a l l  of t he  tube (6 t o  10 m i l s  t h i ck ) .  The 

temperature d i s t r i b u t i o n  over t he  e n t i r e  ins ide  surface of  t he  tube w i l l  

be mapped. The frequency and magnitude of t he  t e -qe ra tu re  f luc tua t ions  

w i l l  be determined as the  heat flux is brought up t o  the  c r i t i c a l  l e v e l .  

These experiments w i l l  show where burnout is  i n i t i a t e d  i n  such c l u s t e r s  

( i . e . ,  facing an adjacent tube, or facing the  gap between two adjacent 

tubes)  and perhaps a l s o  shed some l i g h t  on the  nature of the i n s t a b i l i t i e s  

t h a t  l ead  t o  burnout. 

This tube w i l l  be heated by passing a low-voltage, high- 

2.3. General Boiling Studies 

W. R. Gambill 

2.3.1. C r i t i c a l  Heat Flux f o r  Natural  Convection 

of Water i n  Blocked Ver t ica l  Channels 

The problem of es t imat ing the  maximum allowable heat-generation r a t e  

i n  a v e r t i c a l l y  or iented,  na tura l -c i rcu la t ion  cooled reactor  core with one 

of more flow channels inadvertent ly  blocked a t  the  base has sometimes 

a r i s e n  during hazards amlyses .  Very few experimental data  per t inent  t o  

t h i s  poor hea t - t ransfer  s i t u a t i o n  a re  ava i lab le ,  and no predic t ive  tech- 

nique s have been proposed. 

To remedy t h i s  s i t ua t ion ,  two cor re la t ions  of the  m i n i m  c r i t i c a l  

heat flux have been developed u t i l i z i n g  information avai lable  i n  the  lit- 

e ra tu re .  The first is  an empirical  f i t  of the  ava i lab le  data (nine t e s t s  

conducted by WAPD' and MITI'), according t o  which the  c r i t i c a l  flux (Btu/ 

h r * f t 2 )  i s  given as: 

'Me Troy, "Zero Net Flow Burnout Tests  a t  2000 Psia," U M C  Report 
WAFD-TlI-25l, Westinghouse E l e c t r i c  Corp., Atomic Power Divisior,, Pithsburgh, 
Penna., iyg6; a l so  USAEC Report WMD-TH-304, 1957. 

Out  i n  Closed-End Ver t ica l  Tubes," Paper No. 5, Symposium on Two-Phase Fluid 
Flow, Insti.tu.-bio:-i of Mechanical Engineers, London, Feb . 7, 1962. 

lop.  Gr i f f i t h ,  W e  A. Schumann, and A. D. Neustal, "Flooding and Burn- 
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where De is the  equivalent diameter of t he  channel ( i n . ) ;  $, t h e  heated 

length of the  channel ( i n . ) ;  and P, the  pressure l e v e l  (p s i a ) .  

co r re l a t ion  is  an adapkation of Wallis 1 correlation'' of ad iaba t ic  flooding 

r a t e s  f o r  unheated v e r t c a l  tubes t o  include heat addi t ion;  t h i s  r e s u l t s  i n  

The second 

the. dimensionless expre'ss ion : 

where h is  the  1ater;t heat of vaporization; 

liquid-vapor densi ty  difference; and g, t h e  

1 

8 
- 

9 

t h e  vapor densi ty;  Ap, t he  

l o c a l  acce le ra t ion  of grav i ty .  
Pv 

Because of i t s  g rea t e r  genera l i ty ,  Eq. (2.5) w a s  t e n t a t i v e l y  recommended 

f o r  the  pred ic t ion  of c r i t i c a l  hea t  f luxes  f o r  t h i s  case.  

Subsequent t o  the  statement of Eqs. (2.4) and (2.5),  an experimental 

program of l imi ted  ex ten t  was i n i t i a t e d  as a check on the  v a l i d i t y  of these  

pred ic t ions .  Data were obtained with tubes of 0.087- t o  0.246-in. ins ide  

diameter and 6 t o  48 i n .  -heated length operated i n  a l i q u i d  pool a t  atmo- 

spheric pressure.  The new data, f o r  tubes with an ins ide  diameter g rea t e r  

than 0.1 in . ,  and the  older  WAPD and MIT data a r e  p l o t t e d  i n  accord with 

Eq. (2.5) i n  Fig.  2.17. The minimum l i n e  above which t h e  new ' t e s t s  f a l l  

y ie lds  values of l a r g e r  by a f a c t o r  of 2.2 than does .Eq. (2.5). The 

c r i t i c a l  f luxes f o r  tubes with an ins ide  diameter l e s s  than 0.1 i n .  f a l l  

below Eq. (2.5),  apparent ly  because of t he  influence of surface 'tension; 

f u r t h e r  t e s t s  a re  being conducted with the  smallest  t e s t  sec t ions .  

. .  

, r  

. *  

.. - -  
. .  , . . .  

. .  I . .  
, .. .. 

The subcooling of the  l i q u i d  pool above the  heated channels was a l s o  

var ied i n  these t e s t s ,  and t h e  v e r t i c a l  dispers ion of po in ts  at  a given 

value of t h e  absc issa  i n  Fig. 2.17 r e f l e c t s  t h e  influence of t h e  subcooling 

on the  c r i t i c a l  f l u x .  

" G .  73. Wallis, "The Trans i t ion  from Flooding t o  Cocurrent Annular 
Flow i n  a Ver t ica l  Pipe," B r i t i s h  Atomic Energy Authority Report AEEW- R 
142, 1962. 
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2.4.  Swirl-Flow Heat Transfer 

W .  R .  Gambill 

2.4 .l. Swirl-Flow Forced-Convection Bulk-Boiling Burnout 

The hea t - t ransfer  and pressure-drop c h a r a c t e r i s t i c s  of water12 and 

ethylene giycol13 i n  subcooled bo i l ing  within a c i r c u l a r  tube containing a 
fu l l - l eng th  twisted tape t o  generate a s w i r l  motion have been in tens ive ly  

s tudied over t he  p a s t  few years.  

these  inves t iga t ions  t o  the  region of net  bo i l i ng ;  i n i t i a l  emphasis is on 

t h e  de f in i t i on  of burnout limits. 

This cur ren t  study i s  intended t o  extend 

The experimental system, shown schematically i n  Fig.  2.18, is  of 

open-circuit  design i n  the  sense t h a t  t h e  t e s t  f l u i d  (demineralized water) 

i s  pumped from a l a rge  storage vesse l  and, a f t e r  passing through the  b o i l e r  

sect ion,  t he  separated l i q u i d  and condensed vapor streams a r e  re turned t o  

t h i s  same vesse l  a t  a point  above the  f r e e  l i q u i d  surface.  The l i q u i d  

leaving the  pump passes through a preheater  i n t o  the  t e s t  sec t ion ;  a la rge  

pressure drop, taken across  a valve immediately upstream of t h e  t e s t  

b o i l e r ,  serves  t o  s t a b i l i z e  t h e  flow. The water-steam mixture leaving 

t h e  t e s t  sec t ion  i s  separated i n  a steam separator ;  and t h e  individual  

streams, t he  vapor af ter  condensation, a r e  re turned by g rav i ty  feed through 

a cooler  t o  the  s torage tank.  

by turbine-type meters and/or rotameters.  

the  system i s  shown as Fig.  2.19. 

The flow i n  a l l  f l u i d  streams i s  monitored 

A photograph of a f r o n t  view of 

It i s  cu r ren t ly  planned t o  inves t iga te  v e r t i c a l  upflow f o r  e x i t  pres-  

sures  t o  45 p s i a  w i t h  i n l e t  l i q u i d  v e l o c i t i e s  ranging from 1 t o  6 f t / s e c ,  

i n l e t  subcoolings from 0 t o  30°F, and tape  t w i s t  r a t i o s  from 2.5 t o  8 in -  

s ide  diameters per 180-deg t w i s t .  

be obtained using tubes without i n s e r t s  so as t o  provide comparison with 

Axial-flow c r i t i c a l - f l u x  da ta  w i l l  a l s o  

1.1 1.. 

12W.  R. Gambill, R.  D. Bundy, and R. W. Wansbrough, "Heat Transfer,  
Burnout, and Pressure Drop f o r  Water i n  Swirl Flow Through Tubes with In-  
t e r n a l  TwisteC! Tapes," Chemical Engineering Progress Symposium Ser ies ,  
57(32): 127-137 (1961); see a l s o  USAEC Report Om-2911, Oak Ridge National 
Laboratory, 1960. 

'%. R. G a m b i l l  and R. D. Bundy, "High-Flux Heat-Transfer Character- 
i s t i c s  of Pure Ethylene Glycol i n  Axial and Swirl  Flow," A.1.Ch.E. Journal, 
g(1): 55-59 (1963); see a l s o  USAM: Report ORNL-TM-915, pp. 35-40, Oak Ridge 
National Laboratory, October 1964. 



35 

ORNL DWQ. 64-5407 

DEMl  

Fig. 

@- D E l O N l Z E R  
@- POTTER FLOWMETER 

@- BY-PASS 
@- 200 MESH FILTER 

CENTRIFUGAL PUMPJ 

2.18. Schematic and Flow Diagram of Experimental Loop for 
Study of Swirl-Flow with Net Vapor Generation. 
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PHOTO 70943 

Fig. 2.19. V i e w  of PizrtiaJly Assembled System f o r  Swirl-Flow Studies 
with N e t  Vapor Generation. 
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t h e  s w i r l  flow data. 

* -  
:*e. 

. *  

I - -  

The heat-flux capab i l i t y  of the  system w i t h  18-in.-iong A-nickel 

tubular  t e s t  sec t ions  is  -2.5 x lo6 Btu/hr.ft2. 

twis ted  tapes ,  98.8% of t h e  t o t a l  heat  generation w i l l  take place i n  the  

tube w a l l .  A t  4 = lo6 Btu/hr*ft2, t he  temperature difference across  the  

tube wall i s  -85°F; and the  adiabat ic  r i s e  r a t e  of t h e  tube-wall tempera- 

t u re ,  -840°F/sec. 

i b i l i t y  of +1/2$ maximum deviation. 

converged within 5.646. A t  pressures of 30 t o  50 p s i a  and qua l i t i e s  of 

50 t o  90 w t  4, t he  c r i t i c a l  flow l i m i t  i s  estimated t o  correspond t o  a 

mass ve loc i ty  of -200 lb / sec*f t2  ( i n l e t  l i q u i d  ve loc i ty  of 3.3 f p s )  . 
Dry-tube, zero-flow heat- loss  t e s t s  gave a maximum heat loss ,  at  a mean 

ex terna l  w a l l  temperature of 3oo0c, of 93 w a t t s .  

In  t he  tubes f i t t e d  with 

The turbine-type flowmeters have a ca l ib ra t ed  reproduc- 

A complete s e r i e s  of energy balances 

An externa l  view of t he  f irst  t e s t  sec t ion  during an e a r l y  s tage of 

assembly is  shown i n  Fig.  2.20; pressure t aps  may be seen at the  entrance,  

a t  3/4 the  heated length,  and a t  the  e x i t .  

sec t ion  a f t e r  the  i n s t a l l a t i o n  of  thermocouples, a current  transformer, 

thermal insulat ion,  and a shroud tube concentric with the  t e s t  sec t ion .  

On t he  i n t e r i o r  surface of the  nonconducting Lavite shroud tube a re  mounted 

32 subminiature so l id - s t a t e  l i g h t  -act ivated switches which w i l l  a c t  as the  

sensing elements of the  burnout pro tec t ion  system. These switches, which 

a re  of the  s i l i c o n  PNPN type, a r e  normally open, but  switch i n t o  conduction 

i n  -2-psec when the  e f fec t ive  l o c a l  i r radiance r i s e s  t o  -3 m/cm2. 

switches a re  wired i n  p a r a l l e l ,  and t h e  closing of any one ac t iva t e s  a 

r e l ay  and c i r c u i t  breaker t o  in t e r rup t  t he  t e s t - sec t ion  heating current .  

A t  t he  same time, an ex terna l  l i g h t  ind ica tes  which of t he  switches has 

been ac t iva ted .  

Fig.  2.21 shows the  same t e s t  

The 

The t o t a l  response time f o r  t he  e n t i r e  c i r c u i t  is -80 m e c .  

Two va r i a t ions  of t he  l i gh t - ac t iva t ed  switch a r e  p ic tured  i n  Fig.  2.22; 

a t  the  .top i s  the  new GE Lg un i t  and below is  the  GE subminiature L7 type 

(now superseded by the  L9 but  being used i n  the  subject  system). A b r i e f  

study was made of t he  s e n s i t i v i t y  of each type of switch by experimentally 

determining t h e  va r i a t ion  of cut-on dis tance (x,) with source temperature 

(ts). The t e s t s  were conducted by t ravers ing  a switch mounted on a rack- 

and-pinion t r a i n  which was f r e e  t o  move normal t o  an e l e c t r i c a l l y  heated 

I "  
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Fig. 2.22. Light-Activated Switches. - 
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Nichrome s t r i p  mounted a t  the  base of a Mycalex (synthet ic  mica) chimney. 

The r e s u l t s  shown i n  Fig.  2.23 a r e  t y p i c a l  of those obtained. The sensi-  

t i v i t y  sharply increases when source temperatures of 1100 t o  1200°F a r e  

reached. Further t e s t s  were made t o  determine t h e  influence of ambient 

temperature on switch performance; and it was found tha-k under t h e  a a t i c -  

ipa ted  operating conditions,  no e f f e c t  was measurable e 

2.4.2. Subcooled Swirl-Flow Boiling and Burnout with Heated 

Twisted Tapes and Zero Wall Flux 

Twenty-one s e r i e s  of swirl-flow t e s t s  were conducted i n  which a l l  of  
t he  heat was generated i n  twisted-tape s w i r l  generators.  This i s  i n  con- 

trast t o  pas t  OFDK swirl-flow t e s t s  with twis ted  tapes,12,13 -in which 

-95% of the  heat w a s  generated i n  the  meta l l ic  tube w a l l .  

study,14 water from a constant-head tank flowed by gravi ty  a t  5 t o  8 f-ps 

through a v e r t i c a l  0.27-in.-ID g lass  tube -13 i n .  locg i n  which w a s  l o -  

cated a resistance-heated, 16-mil-thick A-nickel tape o A schematic of 

t he  experimental system is shown i n  Fig.  2.24; and a view of a t y p i c a l  

t e s t  sec t ion  (unheated, water f l o w h g )  is  shown as Fig., 2.25. 

In the  current  

Tape t w i s t  r a t i o s  were var ied from 2.7 t o  inside tube diameters per  

180-deg twist, i n l e t  water temperatures from 63 t o  173"F, and heat f luxes  

from 0.21 x lo6 t o  1.20 x lo6 Btu/hr*f t2 .  

t he  tube was held at  30.7 i n .  

The water head above the  top  of 

In  Fig.  2.26, t he  mean tape-surface temperature is  p l o t t e d  versus the  

impressed heat  flux with tape- twist  r a t i o ,  y, as a parameter f o r  an i n l e t  

water temperature of 64"~. 
burnout point .  Similar  r e s u l t s  were obtained f o r  t h e  other  i a l e t  wa?er 

temperatures. The burnout data alone a re  summarfzed i n  Table 2.3. 

Each boi l ing  curve shown terminates at  the  

In  Fig.  2.27, t he  r a t i o  of t he  twisted-tape w a l l  superheat a t  burnout 

t o  the  average straight.- tape c r i t i c a l  w a l l  superheat is p lo t t ed  versus the  

tape- twist  r a t i o  f o r  each i n l e t  wa,ter teIriperature. The c r i t i c a l  superheat 

I4N. R. Gambill, "Subcooled SwiLrl-Flow Boiling and Burnout with Elec- 
t r i c a l l y  Heated Twisted Tapes and Zero Wall Flux," USAEC Repcrt 0~-?24-894, 
Oak Ridge Na%ional Labora-t;ory, J w e  112 1964 
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Fig. 2.24. Schematic of Apparatus f o r  Study of Heat Transfer from 
a Heated Twisted Tape Within an Adiabatic, Circular  Channel. 
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PHOTO 64495 

Fig. 2.25. View of Typical Test Section, Water Flowing, Zero Heat 
F l u .  
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Fig. 2.26. Variation of Mean-Tube-Surface Temperature with Heat Flux 
f o r  Heated Tapes of Several Twist Ratios. Each curve terminates at the 
burnout point. 



Table 2.3. Heated-Tape Cri t ical-Flux Data 

, 

Test No. Y8 

C e 
tb, ' At sub OF )bo 7 (Atsat )bo,mn' 'bo' 

"F e x i t  bo s i t e  fPs OF 10' Btu/hr . f t2 

1-12 00 64.4 + 1 . 4  41.0 47.0 6.4 61.6 0.942 
1.041 

60.9 63.0 6.7 51.8 1.204 

7-5 00 

2-9 21.4 
4-12 12.0 
3-11 7.2 
6-10 4.9 
5-10 3.0 

44.3 44.3 6.8 63.6 
25.1 44 .O 5.7 50.9 0.967 

67.4 67.4 6.7 73.9 1.200 
39.1 39.1 5 -6  69.8 1.028 I 46.8 48.3 5.6 82.6 1.058 

8-6 W 121.0 5 3.6 51.3 51.3 7.8 63.0 0.661 
17.0 17.0 7.5 35.6 0.708 
46.5 50.2 7.1 50.0 0.700 
42.1 46.6 7.4 51.1 

59.6 0 * 735 
76.2 0.677 

39- 5 39.5 7.2 I 31.0 31.0 6.2 

19-7 00 

1-15 11.2 
12-6 7.0 
1 3-4 4.7 
14-3 2.7 

-r 
0 730 Ch 

1-5-9 Q) 170.4 ? 1.0 17.1 28.9 7.5 53.4 0.352 
18.8 29.4 7.7 32.0 0.328 
16.0 24.3 7.6 40.7 0.347 
13.3 13.3 7.3 35 *.5 0.354 
6.3 23.0 4.7 62.1 0.315 I 0.91 W t  $ Qual i ty  3. 3d 72.2 0.320 

20-4 W 

17-5 9.7 
21-5 6 -  3 
18-4 2.9 

16-2 2.7 

&Tape t w i s t  r a t i o ,  u n i t s  of inside tube diameters per  180-deg t w i s t .  

bMean f a t  e x i t  = 210.8"F (+O. 35 OF). sat 
C Three a u x i l i a r y  ad iaba t ic  t e s t s  gave a flow r a t e  through t h e  empty tube 1.30 times that  through t h e  
tube with a f la t  tape  (y = m). 

dLowest v e l o c i t y  measured in.  any t e s t ;  flow r a t e  decreased s i g n i f i c a n t l y  j u s t  before burnout. 
e The heat-balance convergence w a s  usual ly  within 12$ (16$ m a x i m u m ) .  

I 

, 
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Fig. 2.27.  Variat ion of the  Superheat a t  Burnout with Tape-Twist 
Rat io  a t  Several  I n l e t  Water Temperatures. Data a re  normalized with re-  
spect  t o  the  average c r i t i c a l  w a l l  superheat for s t r a i g h t  tapes .  
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increases  continuously w i t h  decrease of t he  numerical tape- twist  r a t i o ,  

and t h e  increment is  smallest  at  t h e  lowest i n l e t  temperature. Similarly,  

i n  Fig. 2.28, the r a t i o  of t he  twisted-tape burnout heat  f l u x  t o  t h e  

average s t ra ight - tape  burnout f l u x  i s  shown as a funct ion of t h e  tape- twist  

r a t i o  f o r  each i i l e t  water temperature. 

s w i r l  does not appear t o  have a marked influence on the  burnout f lux .  

maximum enhancement of t h e  4 
l a r g e s t  a t  the lowest i n l e t  temperature. Comparisons were made between 

the  experimental burnout data and t h e  representat ive burnout co r re l a t ions  

of Gunther" and of Ivashkevich, l6 which gave average deviat ions of 31.3% 
and 28.076, respect ively.  

With t h e  subjec t  geometry, the  

The 

(-20$), which occurs a t  y = 7 t o  10, is bo 

It w a s  o r i g i n a l l y  f e l t  t h a t  a considerable decrease i n  the  c r i t i c a l  

heat f l u x  might r e s u l t  from heat ing the  surface toward which vapor bubbles 

T> -1 , 
:. . 

a r e  t ranspor ted  by t h e  acce lera t ion  f i e l d  produced by t h e  cu rv i l i nea r  flow 

pa t te rn ,  and it i s  pos tu la ted  t h a t  such decrements were not observed with 

s w i r l  flow because of t he  secondary c i r c u l a t i o n  of t h e  main flow i t s e l f  

i n  tne  plane normal t o  the  tube w a l l  (as measured f o r  single-phase water 

flow by Smithberg and Landis17). I n  t h e  entrance region where s w i r l  flow 

is  establ ished,  a probable fu r the r  f ac to r  i n  vapor removal i s  i n e r t i a l  

impingement of t he  l i q u i d  onto the  tape surface,  which is  inc l ined  t o  the  

a x i a l  flow d i rec t ron  when t h e  tape is  twis%ed. 

On a b a s i s  of constant heat loss, it i s  concluded that with t h e  
heated-tape configurat ion l i t t l e  or no burnout pena l ty  is  assoc ia ted  w i t h  

s w i r l  flow f o r  y Z 3 and tha t  t h e  burnout heat flux f o r  heated t w i s t e d  

t apes  can be approximated by f l a t - su r face  pred ic t ions .  The r e s u l t s  a l s o  

ind ica te  tha t  a considerable increase i n  t h e  burnout power dens i ty  of 

tubular-core reac tors  can be r ea l i zed  by t h e  use of i n t e r n a l  s w i r l  flow 

15F. C . Gunther, "Photographic Study of Surface-Boiling Heat Transfer 
t o  Water with Forced Convection," Trans. Am. SOC. Mech. Engrs., 73: 115-123 
(February 1951). 

i n  Channels," Soviet J. of Atomic Energy, 8(1): 44-47 (1961). 

Transfer Charac t e r i s t i c s  i n  Tubes with Twisted Tape Swirl Generators, *' 
ASME J. Heat Transfer,  39-49 (February 1964). 

16A. A.  Ivashkevich, "Cr i t i ca l  Xeat Flows i n  the  Forced Flow of Liquids 

17E. Smithberg and F. Landis, "Frict ion and Forced Convection Heat- 
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with heat generation i n  the  twisted tape (combined, perhaps, w i t h  ex te rna l  

axial-flow w a l l  cool ing) .  

2.5.  Analysis of P a r a l l e l  Flow i n  Rod Clusters  

T .  C .  Min 

A s  an aspect of t h e  study i n t o  the  hea t - t ransfer  and fluid-dynamic 

cha rac t e r i s t i c s  of a rod c l u s t e r  of l imi ted  ex ten t  contained within a c i r -  

cu la r  channel and cooled by a bo i l ing  l i q u i d  i n  longi tudina l  flow e x t e r i o r  

t o  the  rod surfaces,18 an ana ly t ic  descr ip t ion  of the  ve loc i ty  d i s t r i b u t i o n  

and pressure drop with annular flow i n  such a geometry i s  being attempted. 

The annular flow regime w a s  chosen not only f o r  s impl i c i ty  i n  mathematical 

treatment, but a l s o  because there  a re  s t rong ind ica t ions  t h a t  t h i s  flow 

pa t t e rn  occurs most f requent ly  ( p a r t i c u l a r l y  with the  alkali  l i q u i d  metals) 

i n  the  flow range of i n t e r e s t .  Because of the  d i f f i c u l t i e s  involved i n  

such an analysis ,  a number of separate  problems of increasing complexity 

w i l l  be consecutively considered: 

(2) annular f l o w  w i t h  a laminar l i qu id  fi lm, (3) annular flow with a l a m -  

i na r  l i q u i d  film and heat t r a n s f e r ,  ( 4 )  annular flow with a turbulent  

l i q u i d  f i l m ,  and f i n a l l y  (5) annular flow with a turbulen t  l i q u i d  film 

and heat t r a n s f e r .  It i s  planned, i n  a l a t e r  phase of t h i s  program, t o  

assess  the  v a l i d i t y  of these predict ions by experimental s tud ie s  which w i l l  

include the  measurement of the pressure drop and the  f i l m  thickness  i n  an 

isothermal system. The e f f e c t s  of heat addi t ion  w i l l  be considered i n  a 
subsequent experiment. 

(1) laminar, single-phase flow, 

The geometry t o  be considred reduces by reason of symmetry t o  the  

cross-hatched segment shown i n  Fig.  2.29 f o r  a c l u s t e r  of seven rods con- 

ta ined  within a c i r c u l a r  shroud or i n  Fig.  2.30 f o r  nineteen rods i n  d e l t a  

a r r ay  i n  a c i r c u l a r  channel (one of two common arrangements). 

obvious fea ture  i n  both of these f igures  i s  the  complex shape of the  flow 

channel. 

The most 

I%. D. Conway, "The Bending, Buckling, and Flexural  Vibration of 
Simply Supported Polygonal P l a t e s  by Point -Matching, 'I J. Appl . Mech . , 
288-291 (June 1961). 
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Fig. 2.30. Unit Channel in One of 
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The Navier-Stokes equations f o r  an incompressible flow w i t h  constant 

v i scos i ty  reduce t o  Poisson 's  equation f o r  steady, laminar flow i n  a duct 

of constant cross  sec t ion ;  thus,  

2 2 

where 4c/2 is  the  angle subtended by a typ ica l  flow element; pi, the  radius  

of the c e n t r a l  rod; and. po, the  radius  of t he  outer  s h e l l .  

cl ,  i s  given by 

The cmistant,  

Yg dP 
+ -  gc c 1 = - -  

p d.z CL 

i n  which dP/dz i s  the  pressure gradient  i n  the d i r ec t ion  of flow; y,  the  

density;  p, t he  v i scos i ty ;  g, the  l o c a l  acce le ra t ion  due t o  grav i ty ;  and 

a conversion f a c t o r .  gC , 
The accompanying boundary conditions a r e :  

> 
4 C  < $ < -  ~ ( p , ,  4 )  = o f o r  - -4, 

2 2 I 

4, < $ < - ,  u(p_, 4 )  = o f o r  - -4, 
2 2 U 

u (.., "> = u (Pi, +) for Pi < P < Po , 

where 

= r a d i a l  dis tance t o  the  per iphera l  rod. from the o r ig in  a t  the  ps cen ter  of the  c e n t r a l  rod, 

$t = angle between a tangent t o  the  per iphera l  rod. and. 4 = 0. 
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The geometric quant i t ies  involved i n  t h i s  ana lys i s  a r e  indicated.  f o r  t he  

seven-rod. geometry i n  Fig. 2.29. 

By means of t he  transformation, 

Eq. (2.6) can be simplified.  t o  t he  Laplace equation; tbus,  

where 

1 a2w 
- 0 .  

The boundary conditions i n  t u r n  become, 

9 
-4, 4 C  

w(pi, 4 )  = 1 fo r  - < 4 < - 
2 2 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

I .  . .. 

' ..... - 
. .. 

Fourier Method 

To solve Eqs. (2.8) through (2.12), t he  technique of separat ion of 

var iab les  (Fourier ' s  method.) i s  applied t o  Eq. (2 .8) .  

t h a t  t he  dependent var iable ,  W, can be expressed i n  the  form: 

Thus, it i s  assumed 
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Subs t i tu t ing  Eq.  (2.13) 
reduces t o  two ordinary 

1 d2@ - -  - 
9 *= 

In employing the  

a novel boundary such 

i n t o  Eq. (2 .8 ) ,  the  p a r t i a l  d i f f e r e n t i a l  equation 

d i f f e r e n t i a l  equations: 

1 / d2R dR \ 
- + p -) = +n2 . 

d P  
- - R (p2 dp2 (2.14) 

* 
Fourier method. cf solving the  Poisson equaticn w i t h  

as f o r  flow i n  a rod-cluster  geometry, one is  faced 

w i t h  two judgments. 

t h i s  requires an t i c ipa t ion  of some of t he  proper t ies  of the f i n a l  so lu t ion .  

The other  i s  the  d iv is ion  of t he  flow f i e l d  i n t o  regions and. t he  se l ec t ion  

The f i rs t  i s  the  choice of the  eigenvalue +n2 or -n2; 

of boundary conditions i n  these regions i n  addi t ion  t o  the  no-sl ip  condition 

on the  s o l i d  surfaces;  again, t h i s  requires  defining the  proper boundary 

conditions and an an t i c ipa t ion  of the proper t ies  of the  f i n a l  so lu t ion .  

Inexperience i n  these choices can - and  d i d  - lead t o  catastrophes when 

computer techniques a r e  applied t o  the  so lu t ion  of Eq. (2.8) f o r  flow i n  

complex channels. 

It i s  recognized qua l i t a t ive ly  tha t  the  ve loc i ty  at a fixed angle 9 
w i l l  f i rst  increase when departing along an outward normal from the  sur -  

face of t he  c e n t r a l  rod and then decrease as the  outer  s h e l l  i s  approached. 

This behavior suggests t h a t  R ( p )  should be i n  t h e  per iodic  form of s ine 

and cosine funct ions.  The f a c t  t h a t  the  ve loc i ty  at  a f ixed r a d i a l  d i s -  

tance increases with angle 9 as 9 increases  from zero implies t h a t  O ( 4 )  i s  

i n  the  nonperiodic form of hyperbolic s ine and cosine functions.  This 

a l s o  i s  i n  accord with the  known property of two-dimensional Poisson or 
Laplace equations tha t  i f  R ( p )  i s  a trigonometric funct ion then a($) is  a 

hyperbolic function, and vice versa .  The above l i n e  of reasoning d i c t a t e s  

t h e  choice of -n2 as the  proper eigenvalue. 
** 

From t h i s ,  there  r e s u l t s  : 

@($) = f ( s i n h  n9, cosh r$) and. R(p )  = g [ s i n ( n  hz. p ) ,  C O S  (n hz. p )  1 

* 
Other possible  methods which have been explored a r e  discussed l a t e r  

The choice of +n2 shonld lead  t o  the same solut ion,  i f  properly ob- 

i n  t h i s  s ec t i cn .  

t a ined ,  as t h a t  found w i t h  -n2; t h i s  aspect i s  discussed l a t e r  i n  t h i s  
s ec t  ion. 

** 



An e a r l y  choice of the  boundary condition, 

w a s  found t o  be incor rec t  i n  t h a t  symmetry i n  ve loc i ty  with respect t o  the  

radial plane, $ = $c/2, does not necessar i ly  mean t h a t  t he  der ivat ive is 

zero i n  t h i s  plane.  

$ = 0 remains; however, while u or O a re  continuous a t  $ = $c/2, 

&/&#I exhib i t  a d iscont inui ty .  

u(p, -$c/2) t o  be the  appropriate boundary condition f o r  symmetry a t  

$ = C#I /2. A s  a r e s u l t ,  t he  problem t o  be solved i s  not as simple as t h a t  

o r i g i n a l l y  formulated; i n  cont ras t ,  t he  so lu t ion  is  not as complicated as 
t h a t  found e a r l i e r .  

Symmetry i n  O ( $ )  with respect t o  the  r a d i a l  plane 

o r  

Further,  inves t iga t ion  showed ~ ( p ,  $c/2) = 

C 

Having chosen the  eigenvalue, -n2, t he  functions O and R take the  

following form: 

f o r  n # o (2.15) I- O = A cosh n$ + Bn s inh  n$ 

Rn = Cn cosh (n h p )  + Dn s i n  (n &n p )  

n n 

and 

f o r  n = 0 . I- @ = A  + B o $  

Ro = Co + Do &n p 

0 0 (2.16) 

Applying the f irst  two boundary conditions [Eqs .  (2.9) and (2.10)1, there  

r e s u l t s  

c 

c 

COS ( n h p . )  + D~ s i n  ( n h  pi) = o 

cos (n h p,) + D~ s i n  (n h po) = o 
} f o r  n # 0 (2 017) n 1 

n 

and 

f o r  n = 0 . I 1 = C' + Db &n pi 
0 

2 I 5 0 = C  0 + D ) h p o  

B = O  
0 

(2.18) 
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. For a non t r iv i a l  solut ion,  it i s  necessary t h a t  

cos(n h pi) s i n ( n  h po) - s i n ( n  h pi) cos(n h po) = o 
or 

sifi(n&z 5 ) = o ; 0 

i . e . ,  t ha t  the  eigenvalue be n = mk for rn = 1, 2, 3 ... 
where 

and. 

I ( C Z  - 1) Pi 
c =  
0 

( 0  

Thus, 

Cm = -Drn t a n  (mk h pi) 

and. 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

and. the  so lu t ion  i s  obtained i n  dimensionless form as: 

03 

I- + 1 Fm cosh mk $ s i n  ( m k h  C )  
m = l  

and. 
7r P P 

k =  - > e o =  - > - n = m k  . 
50 'i P i  
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The coe f f i c i en t s ,  Fm, can be determined by the  extended point-match 

m e t h ~ d ' ~ , ~ ~  applied t o  the  last boundary condition [Eq.  (2.12) 1. Thus, 

where 

m = 1, 2, 3 PS 

eo 'i 

7T 
k =  - 9 c s =  - 

2 c s - i =  $ + 2 ( 3 : ~ 0 ~ e ,  

d d 
a = € ( (  - l ) = - ,  E =  = e c c e n t r i c i t y  , 

'i PO 'i 
- 0 

c s  = J $ +  2a COS e + 1 , 
s i n  8 

(3: + cos e 
$s = a r c  t a n  f o r O < e < r ,  

and 

d = distance between t h e  centers  of t he  c e n t r a l  and. 
per iphera l  rods.  

A crude estimate of F fo r  a seven-rod c l u s t e r  with ( = 5 and m 0 
E = 0.8 gives the  r e s u l t :  

F, = -6.30558 

F = -1.55819 

F3 = -0.13553 

F, = -1.28565 

F, = -0.58302 

2 

Hence, t he  d.imensionless ve loc i ty  d . i s t r ibu t ion  for t h i s  arrangement i s  

approximated. by the  expression: 

- 
4 ;  

.. . .  

19H. D. Conway, "Triangular P l a t e s  Analyzed by Point-Matching, 'I 

J. Appl. Mech., 755-756 (December 1962). 
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.h( 
U * R ,  4 )  = ( f Z  - 1) - - ((* - 1) - 6.30458 cosh k 4 s i n ( k . h  () + 

.h (0  

+ 1.55819 cosh 2k 4 s i r i ( 2 k h  c )  - 0.13553 cosh 3k 4 s i n ( 3 k h  f )  - 
- 1.28565 cosh 4k 4 s i n ( 4 k h  c )  - 0.54302 cosh 5k 4 s in (5k .h  ( )  . 

A computer program w i l l  be wr i t t en  t o  determine more prec ise ly  t h e  

values of F,, F2, F,, . . . , F,, by point-match i n  the  least-squares  sense 

a t  37 points  (every 5 deg) along the  boundary of the  per ipheral  rod f o r  

the  following configurations:  

E 
f 0  - 9, - 

5 rod TI2 4 ,  5 0.8, 0.9 

7 rod. ~ / 3  4 ,  5 0.8, 0.9 

9 rod. T i 4  5 0.8, 0.9 

13 rod TI2 7 0.9 

19 rod ~ / 3  7 0.9 
25 rod. n/4 7 0.9 

The ve loc i ty  d i s t r i b u t i o n  w i l l  be calculated,  f o r  these severa l  configura- 

t i ons  t o  allow f o r  l a t e r  comparisons as t o  flow r a t e s  and pressure drops, 

f r i c t i o n  fac tors ,  l o c a l  and average shear s t r e s ses ,  and heat t r a n s f e r  i n  a 

study of geometry optimization. 

t r ans fe r  w i l l  be tackled before turning t o  the  more d i f f i c u l t  two-phase 

annular flow problem. 

The problem of forced-convection heat 

Complex-Con jugate Method. 

The p o s s i b i l i t y  of employing the  complex-conjugate technique has been 
exlored.,20 s ince it is  known t h a t  t h i s  method renders a so lu t ion  i n  a very 

simple and elegant  manner. Equation (2.6) [Poisson's equation] may be 

nea t ly  expressed. i n  the complex-conjugate coordinate system as, 

a t  R (region) 
d2U cl - - -  - 

- 4 - 
a z  z 

(2.28) 

2oL. V.  Ahlfors, Complex Analysis,. Chap. 5, pp. 175-208, McGraw-Hill 
Book Company, New York, 1953. 



60 

and 

u = 0 a t  C (boundary) . 
The so lu t ion  of t h i s  Di r ich le t  problem i s  simply: 

C i  - 
u = - [ z  z - f ( g )  - g(Z) l  . P . 3 0 )  

4 

The proof is  r e l a t i v e l y  simple but  is  omitted here, s ince  the  so lu t ion  

s a t i s f i e s  the  d i f f e r e n t i a l  equation and hence i s  obviously co r rec t .  The 

problem then becomes one of f inding f (2) and g (z )  ; t h i s  depends e n t i r e l y  

on whether t he  equation of the  boundaries can be separated and expressed 

i n  the  form: 

- 
z z - f (2)  - g(Z) = 0 . 

A Dir ichlet  problem with boundary geometries (channel configurations ) 

such as a t r i ang le ,  half-moon, e l l i p s e ,  o r  even a cardioid which is  very 

d i f f i c u l t  t o  solve i n  a Cartesian coordinate formulation becomes s t r i k i n g l y  

simple when t h e  equation of the  boundaries is  wr i t t en  out .  

of t he  boundaries of a simply connected domain would be t h e  product of t h e  

boundaries. 

Even i n  a simply connected region, i f  the  boundaries involve two o r  more 

segments of c i r c u l a r  a rc ,  t h i s  method fa i ls  due t o  t h e  f a c t  t ha t  the  

equation of boundaries would be f ( z  E )  instead of the  more des i rab le  form 

of Eq. (2 .31 ) .  

a c i r c u l a r  s h e l l  involve both t h e  mult iply connected domain and c i r c u l a r  

a rcs ,  the  p o s s i b i l i t y  of using the  complex-conjugate approach does not 

appear promising. However, t h i s  inqui ry  has helped g r e a t l y  i n  understand- 

ing the  close connection between the boundary and the  so lu t ion .  

The equation 

However, t h i s  does not apply f o r  mult iply connected domains. 

Since the  boundaries i n  our problem of a rod c l u s t e r  within 

Conformal-Mapping Method. 

Exploration of t he  method of conformal mapping indicated t h a t  only 

simply connected domains can be mapped conformally on a c i r c l e  i n  a one- 

to-one ma-mer.21 This method depends v i t a l l y  on the  knowledge of the  '. . -! 
._. . . 

21L. M. Tao, "Method of Conformal Mapping i n  Forced Convection Problems," 
Proceedings of the  1961-62 Internat ional .  Heat Transfer Conference, pp. 598- 
606, The American Society of  Mechanical Engineers, New York, 1963. 

- 
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mapping function. Again, t h i s  approach is  ruled out by the  multiply con- 

nected domain of t h i s  problem. 

Green' s-Functicn Method. 

It was found that the  determination of t he  Green's function f o r  a 

pa r t i cu la r  system as complicated as the one being considered here poses a 

more d i f f i c u l t  problem than the  o r ig ina l  boundary-value problem. 22 

Alternate  Eigenvalue Select ion 

If +n2 i s  chosen as the  eigenvalue i n  E q .  (2.14) instead. of -n2, t he  
functions @ and R would be i n  the  form: 

Qn(4) = A, cos n 4 + Bn s i n  n 4 
n -n J f o r  n # 0 (2.32) 

R&) = cn P + Dn P 

and 

for n = 0 , @ 0 = A o  + B o  4 

R o = C  0 + D o h p  
(2.33) 

s ince on the  boundary of the cen t r a l  rod and. t he  outer  s h e l l  the function 

W requires  : 

W is  seen t o  be independent of 4 on these surfaces .  Hence, 

and. 

f o r  n = 0 . 
l = C  + D o h p i  

+ Do h po 

0 

c2 = (2 

Bo = 0 

0 0 

22S. H .  Crandall, Engineering Analysis, McGraw-Hill Book Co. , New 
York, p .  214, 1956. 

(2.37) 
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If n is  an integer ,  then the  non t r iv i a l  so lu t ion  W 

impossible. 

( fo r  n # 0) i s  n 

On the  other hand, there  i s  a non t r iv i a l  so lu t ion  of Wn i f  we do not 

impose the  r e s t r i c t i o n  t h a t  n be in t eg ra l ;  i . e  ., 

or 
i m r '  

PO h -  
m = 1, 2, 3 ... 

The negative values of m a re  omitted. because they yield.  e s s e n t i a l l y  the  

same cha rac t e r i s t i c  functions as t h e  pos i t i ve  ones. 

o r  

where 
P c = -  ~ 

Pi 

When the value of n i s  replaced.by m, t he re  obtains:  

R m ( O  = Fm s i n  (m k h ( )  

and 

Om($) = Am cosh mk$ + Bd s inh  mk$ , 
where 

'IT 
k = -  . 

Thus, the  so lu t ion  i s  i n  t h e  same form as t h a t  derived from t h e  one i n  

which -n2 is  chosen. 

nate eigenvalue +n2, t h e  so lu t ion  f i rs t  appears i n  terms of cos n$, s i n  nd, 

The only difference i s  t h a t  by se l ec t ing  the  a l t e r -  



pn, and p-n and must be converted t o  t h e  form cosh mkd, s inh  mk4, 

s i n  (mk .& p ) ,  and cos (mk .& p )  through t h e  d e f i n i t i o n  of n = imr/.& c 0 .  
I n  cont ras t ,  when -n2 i s  se lec ted ,  t he  solut ion i n  t h e  form of cosh mk4 

and sin (mk en p )  is more apparent. 
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3. FLOW DYNAMICS AND TURBULFNCE 

3.1. Vortex Fluid Mechanics - Hydromagnetic S t a b i l i z a t i o n  

T .  S. Chang J. J. Keyes, Jr. W .  K. Sartory 

The ana ly t i ca l  and experimental inves t iga t ion  i n t o  the  dynamics of 

vortex-l ike f lows  w a s  continued, 23~24 with emphasis on the  e f f e c t  of a 

uniform a x i a l  magnetic f i e l d  on the s t a b i l i t y  of vortex motion of an 

e l e c t r i c a l l y  conducting f l u i d .  

3.1.1. Theoret ical  Stud.ies 

With regard t o  the  ana ly t i ca l  program, more general  c h a r a c t e r i s t i c  

so lu t ions  f o r  hydromagnetic s t a b i l i z a t i o n  have been considered. For 

example, equations f o r  vortex-l ike flow with o r  without r a d i a l  flow have 

been derived and the  assgciated boundary conditions es tab l i shed .  Recent 

analyses25, 26 have shown t h a t  f o r  an incompressible, conducting, inv isc id  

pure-vortex f low,  or nondissipative vortex-l ike flow, exact c r i t e r i a  

f o r  hydromagnetic s t a b i l i z a t i o n  m y  be deduced. Additional analyses 

* ** 
27,28 

23H. W.  Hofflnan e t  a l . ,  "Fundamental Studies i n  Heat Transfer and 
Fluid Mechanics, S ta tus  Report Ju ly  1, 1959 - February 29, 1 9 6 0 , ~ ~  USAEC 
Report ORNL CF-60-10-6, Oak Ridge National Laboratory, October 1960. 

Fluid Mechanics Progress Report fo r  Period Jan. 1 - Sept. 30, 1963," USAEC 
Report ORNL-TM-915, pp. 41-78, Oak Ridge National Laboratory, October 1964. 

Flow," Proceedings of t he  Second Southeastern Conference on Theoret ical  
and Applied Mechanics, Pergamon Press,  I!Tew York ( t o  be published i n  1964). 

24H. W .  Hoffman and J. J. Keyes, Jr., "Studies i n  Heat Transfer and 

25T. S. Chang, "Hydromagnetic S t a b i l i z a t i o n  of Nondissipative Vortex 

26T. S. Chang, "Exact Cr i t e r ion  of Hydromagnetic S t a b i l i t y  of inv isc id  
Vortex Flow with F i n i t e  Conductivity, 
and Technical Display of t he  American I c s t i t u t e  of Aeronautics and Astro- 
naut ics ,  Washington, D. C . ,  June 28 - J u l y  2, 1964. 

Vortex Flow," submitted f o r  publ icat ion i n  t h e  Physics of Fluids  (1964). 

Flow," USAEC Report ORNL-3707, Oak Ridge National Laboratory ( i n  prepara t ion) .  

as  ( radius  ) -' . 
[see Eqs. (3.1) through (3 .4) l .  

presented a t  the  F i r s t  Annual Meeting 

27T. S. Chang and W .  K. Sartory,  "Hydromagnetic S t a b i l i t y  of Dissipative 

2&r. S. Chang and W. K. Sartory,  "Hydromagnetic S t a b i l i t y  of Vortex-Like 

* 
A two-dimensional, axisymmetric flow whose t angen t i a l  ve loc i ty  va r i e s  

Any axisymmetric flow s a t i s f y i n g  the  bas i c  s teady-state  equations 
** 



I 
per ta ining t o  t h e  s t a b i l i t y  of d.issipative,  pure-vortex flow, and vortex- 

l i k e  flow have a l s o  been completed. 

The following i s  a detailed.  descr ipt ion of the recent a n a l y t i c a l  work: 

I. A Class of Statioziary Vortex-Like Solutions with Axial Symmetry 

It w a s  found t h a t  the  basic  equations of magnetohydrodynamics con- 

t a i n  a c l a s s  of exact s ta t ionary  solut ions with a x i a l  symmetry. 

l i s t e d  as follows: 

They a r e  

? 
K2 - -  

r Qr - 

K2/v + 1 
+ r Y ( 3 4  

53 K4 - -  

r K2/v + 2 Qe - 

( 3 N  
K' 
3 + r 

2 (K2/v + 1 ) ( K 2 / v  + 2 ) 2  

where Qr, Q , and, Q a r e  the  c y l i n d r i c a l  components of the flow veloci ty ,  

P is  the f l u i d  pressure,  K ' s  a r e  constants,  v is  the  kinematic viscosi ty ,  

r is  the radial coordinate, and z . i s  t h e ' a x i a l  coordinate. This c l a s s  of 

two-dimensional solut ions i s  independent of the f i n i t e  conductivity of the 

f l u i d  medium and the  ex terna l ly  applied uniform axial magnetic f i e l d .  

0 Z 

11. Perturbation Equations f o r  the Study of the S tab i l iza t ion  

of Vortex-Like Flow 

Neglecting the  e f f e c t  of a x i a l  flow, the perturbation equations 

f o r  the s t a b i l i t y  of vortex-like flow are  found t o  reduce t o  a s e t  of 

coupled equations given i n  Eq. (3 .5) :  
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F (3 .5 )  

Rem' v 
B Y, + ( i a  - + G + )  Y3 = 0 , 

N 

where 
d2 1 d  1 

dx2 X dx X2 
- B2 , F = -  + - - - -  

where N i s  the  c h a r a c t e r i s t i c  t ransverse ( t angen t i a l )  Reynolds 

modulus , 
i s  the  c h a r a c t e r i s t i c  magnetic Reynolds modulus, 

i s t i c  Alfvbn modulus, k i s  the  r a t i o  of t h e  c h a r a c t e r i s t i c  radial veloci ty  

t o  the  t ransverse ve loc i ty ,  a i s  t h e  dimensionless frequency parameter, 

B i s  the dimensionless wave number, y,, y2, y , and y, a r e  t h e  dimension- 

l e s s  per turbat ion functions,  x i s  the  dimensionless radial coordinate,  

L and M are  constants ,  = ro/r2, r2 is t h e  outer  cyl inder  radius ,  and 

r 

Ree,r l  
is the  c h a r a c t e r i s t i c  r a d i a l  Reynolds modulus, N 

NRer 3 7 Rem, 7 
i s  the  character-  

NAJ ? rl 

3 

is  an a r b i t r a r y  radius  used i n  def ining the  dimensionless parameters. 
0 

.. 



111. S tab i l i za t ion  of Nondissipative Pure-Vortex Flow 

It was f ~ ~ n d ~ ~ , ~ ~  t h a t  pure vortex flow of a p e r f e c t l y  conducting, 

nondissipat ive medium enclosed within two concentric cy l ind r i ca l  w a l l s  

can be s t ab i l i zed  aga ins t  t he  breakdown of laminar motion by means of an 

a x i a l l y  applied magnetic f i e l d .  The following conclusions were reached 

during t h i s  phase of the  ana lys i s :  

1. An exact c r i t e r i o n  f o r  magnetic s t a b i l i z a t i o n  may be obtained 

f o r  an inviscid,  p e r f e c t l y  conducting, pure-vortex flow contained within 

two nonpermeable w a l l s .  The c r i t e r i o n  expressed i n  a lgebraic  form i s  as 

follows : 

where J, and Y 

of one, respect ively;  and NAa i s  the  per iphera l  Alfvbn modulus. 

r e s u l t s  a r e  presented graphical ly  i n  Figs .  3 . l t h r o u g h  3.3. 

a r e  Bessel funct ions of the f irst  and second kind or order 

Numerical 
1 

2. There e x i s t s  a c lose  agreement among the  approximate r e s u l t s  of 

the  e a r l i e r  a n a l ~ s e s ~ ' - ~ l  and the  exact  c r i t e r i o n .  

3. Such a pure vortex flow is  i n t r i n s i c a l l y  unstable without an 

a x i a l l y  applied magnetic f i e l d .  The paradox between t h i s  conclusion and 

Rayleigh's c r i te r ion32 l i e s  i n  the  assumption of the  nondissipative nature 

of the f l u i d  medium. 

4. The magnetic f i e l d  f o r  marginal s t a b i l i z a t i o n  decreases with the  

increase of the  radius  r a t i o  (Fig.  3 .1) .  

29T. S. Chang, "Magnetohydrodynamic S t a b i l i t y  of Vortex Flow - a Non- 
d iss ipa t ive ,  Incompressible Analysis, If USAEC Report ORNL-TM-402, Oak Ridge 
National Laboratory, October 23, 1962. 

30E. P. Velikhov, "S tab i l i t y  of an Idea l ly  Conducting Liquid Flowing 
Between Cylinders Rotating i n  a Magnetic Field.," J. Exptl .  Theoret. Phys. 
(USSR), 36: 1398-1404 (1959). 

31S. Chandrasekhar, "The S t , ab i l i t y  of Nondissipative Couette Flow i n  

32Lord Rayiiegh, "On t he  Dynamics of Revolving Fluids ,"  Sc ien t i f i c  

Hydromagnetics," Proc. N a t l .  Acad. Se i . ,  46: 253-257 (1960). 

Papers, Cambridge, England, 6: 44'7-463 (1920). 
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5 .  The magnetic f i e l d  f o r  marginal s t a b i l i z a t i o n  increases l i n e a r l y  
with the  outer  per iphera l  ve loc i ty  of t he  vortex (Fig.  3 .2) .  

6. The magnetic f i e l d  f o r  marginai s t a b i l i z a t i o n  increases parabol- 

i c a l l y  with the  dens i ty  of the  f l u i d  (Fig.  3 .3) .  

IT. Exact Cr i t e r ion  of Hydromagne-kic S t a b i l i t y '  of Iiiviscid Vortex 

Flow with F in i t e  Conductivity 

The purpose of  t h i s  por t ion  of the inves t iga t ion  w a s  t o  consider the  

possible  e f f e c t s  of t he  f i n i t e  conductivity of t he  working medium on the  

c r i t e r i o n  of magnetic s t a b i l i z a t i o n .  The following conclusions were reached 

during t h i s  phase of the  analysis:26 

1. It is  possible  t o  s t a b i l i z e  the  motion of an inv isc id  pure vortex 

motion with f i n i t e  conduct ivi ty  by means of an a x i a l l y  applied uniform 

magnetic f i e l d  . 
2. The c r i t e r i o n  f o r  magnetic s t a b i l i z a t i o n  may be expressed i n  terms 

of a simple algebraic  expression iden t i ca l  t o  t h a t  f o r  nondissipative flow 

[Eq. (3.611. 

3. The exact c r i t e r i o n  f o r  magnetic s t a b i l i z a t i o n  is  determined. by 

the  marginal value of the  rec iproca l  of t he  per iphera l  Alfvhn modulus. 

4 .  The marginal magnitude of the  applied magnetic f i e l d  is r e l a t ed  

t o  the  radius r a t i o ,  t he  densi ty  of the  f l u i d ,  and the  per ipheral  speed of 

t he  vortex.  

5 .  The c r i t e r i o n  f o r  magnetic s t a b i l i z a t i o n  i s  r e l a t ed  i n d i r e c t l y  t o  

t he  f i n i t e  conduct ivi ty  of t he  f l u i d  medium. It is  derived by assuming 

t h a t  the  margiDal s t a t e  of s t a b i l i t y  i s  due t o  a secondary fiow and t h a t  

t he  f i n i t e  conductivity of the  medium is not negl ig ib ly  s m a l l .  

V .  &act Cr i t e r ion  of Hydro-magnetic S tab i l i za t ion  of Nondissipative 

Vortex-Like Flow 
\ 

An exact solution2' considering the  s t a b i l i z a t i o n  of nondissipative,  

pe r f ec t ly  conducting, vortex-l ike flow by means of an a x i a l l y  applied mag- 

n e t i c  f i e l d  w a s  obtained; and it w a s  shown t h a t  a lgebraic  expressions may 

be deduced f o r  t he  determination of t he  c r i t e r i o n  i f  the  c r i t i c a l  
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per turbat ions a re  assumed t o  be due t o  the  axisymmetrical normal modes. 

The parameters which determine the  s t a b i l i t y  c r i t e r i o n  a re  a new character-  

i s t i c  Alf'vkn modulus and a dimensionless number charac te r iz ing  the  shape of 

the  ve loc i ty  p r o f i l e .  The c r i t e r i o n  includes the  r e s u l t  f o r  pure-vortex 

flow as a spec ia l  case.  For small radius r a t i o s  and ve loc i ty  p r o f i l e s  

approaching t h a t  of a pure vortex, t he  c r i t e r i o n  comerges toward the  

pure -vortex r e s u l t  . 
The deduced r e s u l t s  a r e  summarized as follows: 

1. A n  exact c r i t e r i o n  f o r  hydromagnetic s t a b i l i z a t i o n  of nondissipa- 

t i v e ,  vortex-like flow must be s t a t e d  separa te ly  f o r  t he  following cases:  

a. "h = 0" 

The dimensionless parameter h charac te r izes  the  shape of the  

t ransverse ve loc i ty  p r o f i l e .  For h = 0, we have a pure vortex and 

the  r e s u l t  i s  given i n  Eq.  (3.6).  

b .  " 0  > h > -K-~'" 

The c r i t e r i o n  f o r  t h i s  case i s :  

where J and Y a re  Bessel functions of the  f i rs t  and second. kind 

of order p, respect ively,  and N 
A a  

modulus. 

P P 
i s  the new c h a r a c t e r i s t i c  Alfvkn 

Some typ ica l  graphs of t he  above expressions a re  shown i n  

Fig.  3.4. 

c .  "A <' - K 2 f l  

The ve loc i ty  p r o f i l e  i n  t h i s  case is always s t a b l e .  

d. "h > 0 and 4 $e h 5 1 "  

I n  t h i s  case,  t he  c r i t e r i o n  is t h e  same as  case b .  - Typical 

carves a r e  shown i n  Fig.  3.4. 

. .  
. I  . 

.. .. 

c 

The c r i t e r i o n  i n  t h i s  case becomes: 
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where K and S are  the  Boole functions33 of t he  first and second 

kind. of order (o,m), respec t ive ly .  
0 9  o,m 

The ca lcu la t ions  f o r  the  above expressions a r e  being considered 

and. should be ava i lab le  i n  the  near fu tu re .  

2.  The c r i t e r i o n  i s  appl icable  t o  any vortex-l ike p r o f i l e  w i t h  the  

exception of r igid.  body ro t a t ion  which y ie lds  a t r i v i a l  r e s u l t .  

3. For small values of the  radius  r a t i o ,  it is  expected t h a t  the con- 
2 

d i t i o n  f o r  l a rge r  values of 4 N 

f o r  very small values of the  radius  r a t i o  and r e l a t i v e l y  small values of A, 
the  c r i t e r i o n  converges toward the  pure-vortex r e s u l t .  

h is only of formal i n t e r e s t .  In f a c t ,  Ak? 

V I .  D i s s  i pa t  ive Pure -Vortex Flow 

This case i s  obtained from Eq. (3.5) by put t ing  NRer = k = M = 0 .  

It i s  convenient t o  choose 7 = 1.0 a n d . t o  drop the  subscr ip t  7 from the 

dimensionless parameters. The s t a b i l i t y  can be character ized by the  

radius  r a t i o ,  K, t h e  parameter Q, = (1 - K ) ~  NRee NRem N - ~  Aa , and we = 

(1 - I C ) ~  NRee NRem f-2 where f i s  a funct ion of K only, defined as the  

smallest  so lu t ion  of t he  equation: 

- 

J 1 ( 2  f )  Y,(2 f / K )  - J1(2 f / K )  Y , (2  f )  = 0 . (3.9) 

Comparing Eqs. (3.9) and (3.6), we see t h a t  if t h e  flow were nondissipative 

f would be equal t o  the  c r i t i c a l  Alfv&n modulus. 

The r e s u l t s  were obtained by numerical so lu t ion  of the  s t a b i l i t y  

equations and are  graphed i n  F ig .  3.5. 

It w a s  found t h a t :  

1. In  t h e  l i m i t  as both t h e  v i s c o s i t y  and e l e c t r i c a l  r e s i s t i v i t y  
approach zero, agreement is obtained with the  nondissipative r e s u l t s  of 

33G. Boole, P h i l .  Trans. Roy. SOC . (London), 239 (1844). 
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Section 111; and a s  the  v i scos i ty  approaches zero with f i n i t e  conductivity,  

the r e s u l t s  a re  i n  agreement with Section I V .  

2. As t he  magnetic f i e l d  approaches zero, t he  r e s u l t s  a r e  consis tent  

with the  nonmagnetic s t a b i l i t y  c r i t e r i o n  of R a ~ l e i g h ~ ~  and Taylor .35 

3 .  When a i s  la rge ,  an increase i n  the  magnetic f i e l d  s t r eng th  tends 

t o  s t a b i l i z e  the  flow; but when a is small, an increase i n  the  f i e l d  can 

make the  flow l e s s  s t a b l e .  

> . . ,  

4. An increase i n  the  e l e c t r i c a l  conductivity never s t a b i l i z e s  the  

flow but ,  p a r t i c u l a r l y  with a weak magnetic f i e l d ,  can cause i n s t a b i l i t y .  

V I I .  Dissipative Vortex-Like Flow 

When the  e f f e c t s  of f i n i t e  v i scos i ty  and e l e c t r i c a l  conductivity a re  

included i n  the  ana lys i s  of vortex-l ike flow, the  following parameters a re  

usefu l  i n  charac te r iz ing  the  s t a b i l i t y :  

(1 - (1 - K') 2 , the  Taylor number, NReg,v 
N- = -2 

K2 
Ta  

IC = rad.ius r a t i o ,  

= t h e  r a t i o  of angular ve loc i ty  of t he  -inner cyl inder  t o  t h a t  
of t he  outer  cyl inder ,  

The de f in i t i ons  a r e  given i n  terms of quan t i t i e s  appearing i n  Eq. (3 .5) .  
For t h i s  case,  there  i s  no radial flow, NRe = 0.  

r 
Nprm is a f l u i d  property which, f o r  most f l u i d s ,  i s  l e s s  than about 

so  t h e  approximation Npr = 0 has been made. Thus far only the  case 
m 

of a s t a t iona ry  outer  w a l l ,  p = 0, has been completed. 

34Lord (J. W .  S . )  Rayleigh, S c i e n t i f i c  Papers, Cambridge, England., 

35G. I. Taylor, Ph i l .  Trans. Roy. SOC . (London), A223: 289 (1923). 

6: 447 (1920). 
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The r e s u l t s  were obtained by numerical so lu t ion  of the s t a b i l i t y  

equations and a re  graphed i n  Fig.  3.6.  

It was found t h a t :  

1. Unlike the  case of pure-vortex flow, an increase i n  magnetic 

f i e l d  s t rength  is always s t a b i l i z i n g .  

2. When i s  small, approximate agreement i s  obtained with the  

narrow-gap r e s u l t s  of Chandrasekhar .36 
- 

3 .  A s  c becomes very large,  N- becomes proport ional  t o  Q2, in -  Ta 
d ica t ing  t h a t  the  s t . a b i l i t y  becomes independent of v i scos i ty .  Chandrasek- 

ha r ' s  narrow-gap r e s u l t s ,  on the other  hand, ind ica te  t h a t  N- becomes 

proportional t o  i t s e l f .  
Ta 

4. When a i s  very large,  t he  disturbance which produces i n s t a b i l i t y  

becomes smaller and i s  confined t o  a narrow region near t he  inner cyl inder .  

The s t a b i l i t y  i s  then determined by the  shape of the  ve loc i ty  p r o f i l e  i n  

some small neighborhood of the  inner w a l l .  

VIIS. The Effec t  of Superimposed Rad.ia1 Flow 

The ca lcu la t ions  of Section VI1 have been extended t o  include the  

e f f e c t  of outward r a d i a l  flow superimposed on the  primary ro ta t ing  flow. 

Numerical so lu t ion  of t he  s t a b i l i t y  equations w a s  used; and the  r e s u l t s  

a re  reported i n  Figs .  3.7 through 3.10 i n  terms of t he  tangent ia l  Reynolds 

modulus defined by 

- - 'e ,o.8 r2 
9 

V 
NRe 8 ,0.8 

i s  the  t angen t i a l  ve loc i ty  at 0.8 of the  outer radius,  r . e,0.8 2 
where Q 
The r a d i a l  Reynolds modulus, NRer, i s  a l s o  important i n  the  cor re la t ion  of 

the  r e s u l t s .  

The following conclusion can be drawn: 

1. The e f f e c t  of increasing t h e  outward r a d i a l  flow is  usua l ly  sta- 

b i l i z ing ,  although the re  a re  some regions i n  which a s l i g h t  decrease i n  

36S. Chandrasekhar, Hydrodynamic and Hydronagnetic S t a b i l i t y ,  Oxford 
University Press,  New York, 1961. 



Y- 
Ta 

78 



79 

ORNL DWG 61-7490 10000 

3 000 

I000 

3 00 
NReg,0.8 

100 

- 
1 .o 3.0 10 30 100 

NRe, 

Fig. 3.7. C r i t i c a l  Tangential Reynolds Modulus Versus Radial Reynolds 
Modulus, = 0. 
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Fig. - 3.8. C r i t i c a l  Tangential Reynolds Modulus Versus Radial  Reynolds 
Modulus, Q = 100. 
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Fig. 3.9.  C r i t i c a l  Tangential Reynolds Modulus Versus Radial Reynolds - 
Modulus, Q = 1000. 
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Fig. 3.10. C r i t i c a l  Tangential Reynolds Modulus Versus Radial  Reynolds 
Modulus, 5 = 10,000. 
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s t a b i l i t y  occurs. 

. 

2 .  A s  NRe, i s  increased, the disturbance becomes confined t o  a region 

near the outer  w a l l .  When t h i s  occurs, the  l o c a t i o i  of the  inner w a l l  be- 

comes unimportaflt and the  curves f o r  various values of the  radlus r a t i o  

cor-.-Terge. 

3 .  Although both r a d i a l  flow and an a x i a l  magnetic f i e l d  tend t o  

s t a b i l i z e  the  flow, a la rge  value of 61 tends t o  decrease the e f fec t iveness  

of radial f l o w  as a means of s t a b i l i z a t i o n .  Similarly,  a large value of 

N R ~ ,  decreases the  effect iveness  of  a magnetic f i e l d .  

4. When N R ~  is  very la rge ,  t he  c r i t i c a l  value of N R ~ ~ , o . ~  becomes r 
asymptotically proport ional  t o  N:L2 and a l l  of the  curves approach the  

r 
same asymptote. 

Future ana ly t i ca l  work w i l l  extend the  numerical r e s u l t s  t o  include 

inward r a d i a l  flow, as wel l  as ro t a t ion  of the  outer  w a l l ,  f o r  comparison 

with published wide-gap, Couette flow, hydromagnetic s t a b i l i t y  theory.  A 

one-term nonlinear per turbat ion e f f e c t  w i l l  a l s o  be considered i n  conjunc- 

t i o n  with the  hydromagnetic s t a b i l i t y  of d i s s ipa t ive  Couette flow f o r  t he  

spec ia l  case of t he  outer  w a l l  s t a t iona ry .  It i s  fu r the r  proposed t o  

i n i t i a t e  an inves t iga t ion  of the  s t a b i l i t y  of a s ingle ,  two-dimensional, 

j e t  impinging t angen t i a l ly  on a concave boundary layer  i n  order t o  include 

a case more d i r e c t l y  r e l a t ed  t o  the  physical  problem. 

3.1.2. Experimental Stud.ies 

The exploratory experimental inves t iga t ion  was extended t o  include a 

study of the  e f f e c t  of i n j ec t ion  geometry on hydromagnetic s t a b i l i t y  of  
confined, je t -dr iven vortex flow. Recall t h a t  the  working f l u i d  employed 

i n  t h i s  inves t iga t ion  i s  a concentrated aqueous solution of  ammonium 

chloride (TJH,Cl) whose e l e c t r i c a l  conduct ivi ty  at 200°F, the temperature 

of t h e  experiments, is 0.84 rnho/cm o r  about t h a t  of a low-temperature, 

a lkal i -metal  seeded plasma. 

74,000 gauss w a s  provided by t h e  double c o i l ,  6 .5- in .  diameter, Large 

Volume Test Magnet (LVTM) located i n  the  ORIVL Magnet Laboratory. 

ure 3.11 depicts  t he  flow diagram f o r  t he  experiment. Photographs were 

A uniform axial magnetic f i e l d  of up t o  

Fig- 
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Fig. 3.11. Schematic Flow Diagram for MHD Experiment No. 1. 
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obtained. by viewing i n  the  a x i a l  d.irection (from above) through t ransparent  

p l a s t i c  end. w a l l s .  

Two vortex tubes employed i n  the  recent s tud ies  a re  i l l u s t r a t e d  i n  

cross  sec t ion  i n  Fig.  3.12. The tubes a re  each 1.1- in .  I D  by 6 1/2 i n .  

long, fabr icated of brass, and d i f f e r  only i n  the  geometry of the  f l u i d  

in j ec t ion  system. The tube depicted a t  the  l e f t  has e ight  O.OO7-in. wide 

by 5 3/4-in. long s l i t s  ( w a l l  j e t s )  f o r  vortex generation, while t he  tube 

a t  the  r igh t  has 880 round nozzles of 0.020-in. diameter arranged i n  e ight  

rows and uniformly spaced along the length of the  tube; t he  t o t a l  a rea  of 

these eight  s l i t s  i s  about the  same as t h a t  of the 880 round nozzles. The 

axes of both the  s l i t s  and the nozzles in t e r sec t  a radial  pos i t ion  of 9/10 

of the tube radius .  The theo re t i ca l  average r a t i o  of tangent ia l - to- rad ia l  

ve loc i ty  near the  periphery with t h i s  geometry i s  about 40. 

f e d  from an annulus as indicated,  and the  f l u i d  is  withdrawn a t  the center  

of one end. 

a x i a l  ve loc i ty  corresponding t o  decreasing radius .  There is  no evidence 

of a rec i rcu la t ion  pa t t e rn  a t  the  conditions of t h i s  study. 

The j e t s  a re  

The flow pa t t e rn  i s  thus an inward s p i r a l  with increasing 

I 

Observation of dye fi laments in jec ted  i n t o  the  boundary layer  on the 

concave w a l l  a t  t he  three  circumferent ia l  pos i t ions  indicated is  the  

primary technique employed f o r  determining e f f e c t s  of the  magnetic f i e l d  

on flow s t a b i l i t y .  These dye in jec t ion  posi t ions a re  located approximately 

midaxially with respect t o  tube length.  
I 

i The pr inc ip le  s i m i l a r i t y  parameters employed i n  cor re la t ing  the  exper- 

imental r e s u l t s  include the  tangent ia l  Reynolds modulus based on a radius 

r a t i o  of 0.8, 

the  per ipheral  r a d i a l  Reynolds modulus, 

t he  per ipheral  magnetic i n t e rac t ion  parameter, 

l -  
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Fig. 3.12. Vortex Tubes (1.1-in. Diameter) for MHD Studies. 
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and the  square of t h e  Hartmann modulus, 

u 2 2  $a = - r 2  B~ . 
I-1 

i s  the  tangent ia l  '0,0.8 I n  these expressions, r2 is  the tube radius ,  

ve loc i ty  at a radius r a t i o  of 0.8, Qr i s  t h e  per iphera l  r a d i a l  veloci ty ,  

B i s  the  magnetic induction, p i s  the density,  1-1 i s  the  absolute v iscos i ty ,  

and u is  the  e l e c t r i c a l  conductivity.  

* 
0 

The most s t r i k i n g  observation of  the e f f e c t  of the a x i a l  magnetic 

f i e l d  is  the  suppression of what might general ly  be described as "flow 

i n s t a b i l i t i e s  of an apparent o s c i l l a t o r y  nature," which seem t o  or ig ina te  

i n  the  boundary layer along the  concave w a l l  a t  low values of the  per ipheral  

t angent ia l  Reynolds modulus and t o  i n i t i a t e  i n s t a b i l i t y ,  characterized by 

gross r a d i a l  convection, i n  the  i n t e r i o r  of the  flow f i e l d .  The influence 

of t he  magnetic f i e l d  f o r  the  case of the  vortex flow generated by 8 by 

0.007-in. plane s l i t s  is  shown i n  Fig.  3.13, i n  which dye is  in jec ted  

downstream from one of the  s l i t s .  

(upper ha l f  of  t he  f i g u r e ) ,  i n s t a b i l i t y  i s  already evident a t  NReQ,o.8 = TOO 

by the  apprearance of s ign i f i can t  r a d i a l  mixing and absence of any well-  

defined s p i r a l  flow pa t t e rn .  Note a l s o  the  large-scale  vortex shedding 

from the  l i p  of an in j ec t ion  s l i t .  

applied t o  give NHa 2 47, strong s t a b i l i z a t i o n  i s  evidenced by the  formation 

of a well-defined s p i r a l  dye t r ace  with suppression of  the r a d i a l  ve loc i ty  

per turbat ions.  The magnetic f i e l d  a l s o  e f f e c t s  reduction i n  sca le  of t he  

l ip-shed eddies .  

With no applied magnetic f i e l d ,  NHa = 0 

When the  74-kilogauss a x i a l  f i e l d  is  

Further evidence of the  hydromagnetic s t a b i l i z a t i o n  e f f ec t  i s  seen i n  

Fig.  3.14, i n  which time-sequence exposures f o r  NRe0,0.8 = 1400 a re  depicted 

(N = 0, upper; N = 47, lower). A s  a matter of f a c t ,  the f i e l d  is H a  H a  
e f fec t ive  i n  completely s t a b i l i z i n g  t h e  w a l l  l ayer  for Reynolds modulus up 

t o  -4000 f o r  t h i s  case.  

i s  s t i l l  s ign i f i can t  i n  the  i n t e r i o r  at N ~ e ~ , 0 . 8  = 4500. 

Figure 3.15 indica tes  t h a t  the  s t a b i l i z a t i o n  e f f e c t  

The e f fec t  of t he  magnetic f i e l d  f o r  the  case of the vortex generated 

by in jec t ion  through e ight  rows of 20-mil-diam round nozzles was studied 

* 
Note t h a t  p i s  a l s o  used. (page 76) f o r  the  r a t i o  of angular ve loc i t i e s  

of the  outer  and inner cyl inders .  
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PHOTO 70586 

Fig. 3.13. Dye Injection Traces - Nozzle-Fed Vortex Tube; NRe ,o.8 = 700. 
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by means of motion p ic ture  photography. For t h i s  case, t h e  value of 

per ipheral  t angen t i a l  Reynolds modulus observed a t  t r a n s i t i o n  t o  ins ta -  

b i l i t y  i n  the  boundary layer  along the  concave w a l l  i s  -500 w i t h  no applied 

magnetic f i e l d  and -1500 w i t h  the  f u l l  magnetic f i e l d .  The following ob- 

servat ions a re  based on a de ta i l ed  ana lys i s  of t h i s  f i l m :  

1. NRe,,o,8 = 400: With no magnetic f i e l d  (NHa = 0),  evidence of a 

s t ab le  layer  near t he  w a l l  i s  observed w i t h  a def in i te  i n s t a b i l i t y  de tec t -  

able  i n  the  i n t e r i o r  which may a r i s e  from nonaxisymmetric f l u i d  in j ec t ion .  

When a magnetic f i e l d  of 74 kilogauss i s  applied (N 

b i l i t y  i s  eliminated completely w i t h  formation of a well-defined lml 1 nar 

s p i r a l  dye t r a c e .  Spreading of the  dye t r a c e  i n  the  jet-miixing zone near 

t he  w a l l  i s  evident .  

= 47), the  in s t a -  H a  

2. NRee,o .8  = 860, N = 0: Dye enter ing j u s t  downstream from a row 

of nozzles reveals  t he  i n s t a b i l i t y  along the  concave w a l l  and the  disorder- 

ing of flow i n  the  i n t e r i o r .  Separation of the  dye filament from the  w a l l  

a t  the  downstream row of j e t s  leaves a res idua l  t r ace  which d i f fuses  out of 

what i s  probably a r ec i r cu la t ion  region downstrean from a nozzle. 

bances which or ig ina te  i n  the  boundary l aye r - j e t  in te rac t ion  zone seem t o  

amplify i n  t h e  i n t e r i o r  i n to  i r r egu la r  vortex loops. It is  a l so  noted t h a t  

the  i n s t a b i l i t y  is a more o r  l e s s  per iodic  wave-like phenomenon, not t y p i c a l  

random turbulence.  

Ha  

Distur- 

3. N R ~ , , o . ~  = 1200: With no applied magnetic f i e l d ,  o s c i l l a t i o n  of 

the  dye t r a c e  near t h e  w a l l  is noted, inducing large-scale  r a d i a l  mixing i n  

the  i n t e r i o r .  Both t h e  amplitude and frequency of  t he  disturbance a re  ob- 

served t o  increase w i t h  increasing N above the  c r i t i c a l  po in t .  Wlth 

the  magnetic f i e l d  applied,  s t ab le  laminar r ing  s t ruc tu re  w i t h  suppression 

of the  loca l  r a d i a l l y  d i rec ted  ve loc i ty  per turbat ions i s  noted. There is  

no question as t o  the  complete s t a b i l i z a t i o n  except i n  the  core of t h e  vor- 

t ex  where a x i a l  flow predominates. 

Re,, 0 - 8 

4. NRe8,0.8 = 1950: Without t he  f i e l d ,  there  i s  evidence of a three  

dimensionality i n  the  f u l l y  developed per turbat ions as indicated by the  

twis t ing  motion of t he  dye which suggests t h a t  the  o r ig in  of the  i n s t a b i l i t y  

may lndeed be similar t o  that  of the  Taylor-Gtjertler i n ~ t a b i l i t y . ~ ~ ' ~ ~  

37H. G'dertler, " m e r  eine Dreidirnensional Instabil i t '$t ,  Laminaer 
Grenzchichten ai? Konkaven Wanden, " Nachr . Wiss . Ges . , Gzttingen, Math. 
Phys. Klasse (New Ser i e s ) ,  2, No. 1 (1940). 
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However, because of the  s t rong radial and a x i a l  convection and t h e  i n -  

fluence of t he  nonaxisymmetric j e t  dr iving sources, the  s teady secondary 

pa t t e rn  of vortex c e l l s  does not appear, at  l e a s t  when viewed i n  two 

dimensions from a f ixed  f r m e  of' reference.  The i m k a b i l i t y  a l s o  appears 

t o  have c e r t a i n  cha rac t e r i s t i c s  of a J e t  influence separat ion phenomenon. 

Because of t he  c o q l i c a t i o r  -in in t e rp re t a t ion ,  a s a t i s f a c t o r y  expiai?ation 

of the  tra.nsitio_n_ phenomenon has riot been e luc ida ted  (see page 94). Since 

the  Reynolds modulus i s  above the  c r i t i c a l  value (1500) w i t h  full magnetic 

f i e l d ,  t he  flow i s  no longer completely s t a b i l i z e d  a t  

s t a b i l i z a t i o r  is, however, evident by reduction i n  the  sca l e  cf the  in-  

t e r n a l  eddy s t ruc tu re  and hence reduction i n  t h e  radial dispers ion.  

dampening e f f e c t  of the  f i e l d  on s m a l l  per turbat ions which o r ig ina t e  near 

t he  w a l l  is a l s o  evident;  the  f i e l d  a c t s  t o  prevent growth of these  per- 

tu rba t ions  i n t o  f i l l - s c a l e  disturbances.  

= 47. %r+,ial %a 

A 

5. N R ~ ~ , ~ . ~  = 3100: Here the  primary influence of the  f i e l d  i s  a 

s t rong reduction i n  the  frequency of t he  observed flow o s c i l l a t i o n s  near 

the concave w a l l  

bances i n  the  i n t e r i o r  of the  flow f l e l d .  

and a moderate reduction i n  t h e  amplitude of t he  d i s t u r -  

The e f f e c t  of slowly decreasing Hartmann modulus (by decreasing Bo) 

from 47 t o  0, at constant Reynolds modulus of 860, w a s  invest igated;  and 

it w a s  observed t5at tne  i n s t a b i l i t y  appears ftrst -ill t he  i n t e r i o r ,  spread- 

ing outward as the magnetic f i e l d  is  f h r t b e r  decreased t o o  zero.  

When t h e  Hartmann modulus is  slowly increased from 0 t o  47, a t  con- 

s t a n t  R e p o l d s  modxlus of 860, t h e  i n t e r i o r  of t he  flow f i e l d  s t a b i l i z e s  

f i rs t .  Migration of t he  dye t r a c e  -toward t h e  w a l l  as Ysle f i e l d  is ra i sed  

sugges'a a change i n  ve loc i ty  p r o f i l e  i n  t h e  w a l l  l aye r  which appears t o  

be co r re l a t ed  with the  s t a b i l i z a t i o n  e f f e c t .  

Figure 3.16 compares the  e f f e c t  of t h e  magnetic f i e l d  on the  j e t  

ve loc i ty  recovery r a t i o  (a 
2-, 4 - ,  and 8-plane sl i ts ,  8 rows of round nozzles.  

t he  r a t i o  cf the t angen t i a l  ve loc i ty  a t  a radius  of 0.8 r2, t o  the  in j ec t ion  

ve loc i ty .  The s ign i f i can t  increase i n  a fcr 2- and 4-slit configurations 

i s  evident .  No s i g n i f i c a n t  Tncrease w a s  observed f o r  8 s l i t s  or 8 raws of 

nozzles. 

) f o r  four  cor i f igxa t ions  of dr iv ing  j e t s  : 

is  def ined as 
0.8 

a0.8 

0.8 

T h i s  observatior, co r re l a t e s  with the  f a c t  t h a t  % /Qe,o.8 Is about 
2 

.. 
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twice as high f o r  t he  l a t t e r  cases where there  appears t o  be no e f f e c t ,  

suggesting t h a t  a t  l e a s t  p a r t  of t h e  e f f e c t  of t h e  f i e l d .  on a may be due 

t o  increase i n  radial flow i n  the  i n t e r i o r  due t o  suppression of t h e  

"shor t -c i rcu i t "  flow on the  end. w a l l s .  

the  more s ign i f i can t  t h i s  e f f e c t  becomes. 

The lower the  Q /Qe,o.8 r a t i o ,  r2 

Figure 3.17 summarizes quan t i t a t ive ly  the  experimental hydrodynamic 

s t a b i l i z a t i o n  r e s u l t s  f o r  vortex flows generated by 2-, 4-; and 8-sli t  in -  

jec t ion ,  and by in j ec t ion  through 8 rows of round nozzles.  In  t h i s  corre-  

l a t i o n ,  t he  per iphera l  t angen t i a l  Reynolds modulus a t  t r a n s i t i o n  t o  in s t a -  

b i l i t y  along the  concave w a l l ,  N : ~ ~ , ~ . ~ ,  is  p lo t t ed  as a funct ion of t h e  

square of t he  Hartmann modulus, NZa, obtained by va r i a t ion  i n  the  magnetic 

f i e l d  s t rength .  

increase approximately l i n e a r l y  with N2 

8 s l i t s  a re  anomalous i n  t h i s  respect .  

* 
For a l l  but t he  8-slit tube r e s u l t s ,  NRe ,o.8 i s  seen t o  e 

f o r  NEa > 600. The r e s u l t s  f o r  H a  
Note a l s o  t h a t ,  w i t h  no magnetic 

NRe ,0.8 is i n  the  range from -400 t o  -950, while f o r  t he  maximum * 
e 

magnetic f i e l d ,  N g e e , 0 , 8  var ies  from -1600 t o  -4000 depending on in j ec t ion  

geometry. The graph thus suggests t he  influence of i n j ec t ion  geomdry, 

s ince t h e  t r a n s i t i o n  Reynolds modulus i s  observed t o  increase w i t h  in-  

creasing numbers of i n j ec t ion  s l i t s ,  a t  l e a s t  a t  the  higher values of Ga. 
This observation co r re l a t e s  w i t h  t he  growth of the  w a l l  boundary layer  be- 

tween s l i ts .  The round j e t  da t a ,  however, f a l l  more near ly  i n  l i n e  w i t h  

the  data f o r  two t angen t i a l  feed sl i ts .  

A comparison of the  experimental hydromagnetic s t a b i l i z a t i o n  r e s u l t s  

w i t h  t he  numerical r e s u l t s  f o r  d i s s ipa t ive  vortex-l ike flow (Cases V I 1  and 

V I I I ,  page 76 and 77) may be of some i n t e r e s t .  It i s  important t o  bear i n  

mind, however, t h a t  s ign i f i can t  d i s s i m i l a r i t i e s  e x i s t  between t h e  ac tua l  

je t -dr iven vortex flow system and the  ideal ized mathematical model. For 

example, t he  azimuthal va r i a t ion  i n  t angen t i a l  ve loc i ty  induced by the  j e t s  

has not been considered, nor has the  in t e rac t ion  of the  j e t s  with the  con- 

cave boundary layer .  

and furthermore t h e  i n s t a b i l i t y  t r e a t e d  i n  t h e  ana lys i s  i s  the  t r a n s i t i o n  

t o  a s t a t iona ry  three-dimensional motion. 

The unperturbed flow has been assumed two dimensional, 

In  the experiment we see an 

"apparent" o sc i l l a to ry ,  time dependent, perturbed s t a t e .  

microscopic observation (40X) through p l a s t i c  end w a l l s  of a dye t r ace  in-  

jec ted  j u s t  downstream from one of the  s l i ts ,  it appears as though the  

Based on binocular 
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Fig. 3.17. Summary of Hydromagnetic Stabilization Experiments with 
1.1-in.-dim Jet-Driven Vortex Tubes. 



i n i t i a l  phase of  t r a n s i t i o n  may be an o s c i l l a t o r y  two-dimensional expan- 

s ion  and contract ion of the  w a l l  l aye r  which may be associated with in-  

c ip i en t  separat ion of the  decelerated j e t  f low.  The f u l l y  developed 

i n s t a b i l i t y ,  however, appears t o  be th ree  dimensional i n  which the  dye 

t r ace  ro t a t e s  i n  an i r r egu la r  manner about a circumferent ia l  streamline.  

The o s c i l l a t o r y  behavior of t h i s  phenomenon m y  be the  r e s u l t  of convection 

of a s t a t iona ry  perturbed s t a t e  with reference t o  the  f ixed  point  of ob- 

servat ion,  r a the r  than a t r u l y  time-dependent f luc tua t ion .  

case, t he  i n s t a b i l i t y  i s  probably of t he  s t a t iona ry  Taylor-Gsertler type 

as assumed i n  the  ana lys i s .  A t ransparent  p l a s t i c  model i s  i n  f ab r i ca t ion  

which w i l l  enable observation i n  both r a d i a l  and a x i a l  d i r ec t ions  t o  es tab-  

l i s h  more conclusively the  nature of t he  observed i n s t a b i l i t y .  

If such is  the  

With these l imi t a t iocs  i n  mind, consider t h e  following comparison. 

Let t he  t angen t i a l  flow i n  t h e  v i c i n i t y  of the  s t a t iona ry  concave w a l l  be 

generated by ro t a t ion  of a hypothet ical  cyl inder  of radius ,  r = IC r2, with 

respect  t o  a f ixed outer  cyl inder ,  s o  t h a t  p = 0. 

been considered ana ly t i ca l ly :  

Three spec ia l  cases have 

= 0 (no radial flow - Case V I I )  '' NRer 

. 

IC = 0.8 (correspondlng t o  what nay be a t y p i c a l  boundary- 
l aye r  thickness)  

> 0 (outward r a d i a l  flow - Case V I I I )  
r 

IC = 0.25 (corresponding near ly  t o  the  a c t u a l  o u t l e t  rad.ius) 

2 '  NRe 

> 0, RRC = 0 
r 3. NRe 

K = 0.25, but  t he  convective terms involving NRe d i r e c t l y  a r e  
r 

eliminated. i n  the  equations of motion (RRC = 0) 

There i s  a c e r t a i n  a r t i f i c i a l i t y  i n  each of these cases:  

1. The ve loc i ty  p r o f i l e  for t h i s  case does not look much l i k e  a 
boundary-layer p r o f i l e  . 

2. The ac tua l  r a d i a l  flow is inward on the  average. Use of outward 

radial flow i n  the  ca lcu la t ions  gives a more near ly  co r rec t  ve loc i ty  p r o f i l e ,  

however. 
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have removed the  convective contr ibut ion of radial flow 

desired. ve loc i ty  p r o f i l e  - hence, i n  t h i s  case, NRer 

a shape f ac to r  governing the  ve loc i ty  p ro f i l e  only.  

cases a re  p lo t t ed  i n  Fig.  3.18 and compared with the  

can 

ex - 
perimental r e s u l t s  f o r  t w o  s l i ts  ( tangent ia l  en t ry ) .  

justed i n  the  upper two curves t o  give an in t e r sec t ion  with the  experimental 

r e s u l t s  at  low N:a. 

t he  same l i n e a r  slope as  the  data, the  K = 0.25, NRe 
r 

s l i g h t l y  s teeper  than  the  data,  and t h e  K = 0.25, NRe 

curve exhib i t s  appreciably more curvature than the  experimental r e s u l t s .  

Keeping i n  mind t h e  possible  d i s s i m i l a r i t i e s  between the  experiaental  j e t -  

driven vortex flow s i t u a t i o n  and the  ana lys i s  plus  the f a c t  t h a t  two ad- 

justable  parameters a r e  employed, any apparent agreement over such a l imited 

range could be f o r t u i t i o u s  . 

NRer has been ad- 

= 0 exhib i t s  approximately 

= 17.8 curve is 

The curve f o r  K = 0.8, NRe 
r 

= 31.6 (RRC = 0) 
r 

A h-in.-diam s t a i n l e s s  s t e e l  vortex tube model i s  i n  fabr ica t ion  which 

w i l l  employ four  t angen t i a l  s l i t s  f o r  vortex generation and which w i l l  en- 

able  operation a t  values of N2 of up t o  about 32 x lo4, or a f a c t o r  of 13  H a  
higher than possible  using the  present 1 .1 - in . -d im tubes.  The new model 

w i l l  be used t o  study the  hydromagnetic s t a b i l i z a t i o n  e f f e c t  i n  the  boundary 

layers  i n  t h e  f l a t  end w a l l s  as wel l  as on the  concave cy l indr ica l  w a l l .  

It i s  intended t o  inves t iga te  i n  p a r t i c u l a r  t he  e f f e c t  of the  f i e l d  on the  

undesirable sho r t - c i r cu i t i ng  end-wall f low discussed i n  r e f .  38 and i n  the  

following Section 3.2. 

38w. S. Lewellen and W .  S. King, "Boundary-Layer S imi la r i ty  Solutions 
f o r  Rotating Flows with and Without Magnetic In te rac t ion ,"  Report No. 
ATN-63 (9~7) -6, Aerospace Corporation, Ju ly  1963. 

. 
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3 .2 .  Potent ia l  Vortex Flow Near a Stat ionary Disk 

G .  J.  Kidd, Jr. 

In  the  design and operation of confined vortex systems, the flow i n  

the  boundary layers  on the  s t a t iona ry  surfaces is not s a t i s f a c t o r i l y  under- 

stood a t  present .  

advanced energy-conversion appl icat ions,  t h i s  flow amounts t o  a s ign i f i can t  

f r ac t ion  of the  t o t a l  f o r  the  system. To a i d  i n  understanding t h i s  phenom- 

enon, a study i s  being i n i t i a t e d  i n  which the  in t e rac t ion  between a v o r t i c a l  

flow and a s t a t iona ry  disk,  perpendicular t o  t h e  ax is  of the  vortex, w i l l  

be examined. 

t i a l  vortex* can be generated experimentally by passing water r a d i a l l y  in-  

ward through a ro t a t ing  drum made of expanded aluminum honeycomb and ex- 

hausting it through a small porous tube a t  the  ax i s  (Fig. 3.19). Several 

previous ana ly t i ca l  and experimental ~ t u d i e s ~ ' - ~ ~  have shown t h a t  f o r  cases 

where the inward flow per  u n i t  length i s  small compared t o  the c i rcu la t ion ,  

i . e . ,  

I n  je t -dr iven vortexes of the  type proposed f o r  ce r t a in  

A two-dimensional swir l ing flow c lose ly  approximating a poten- 

1 
2 B K2 ; % < < 2 r K ,  

the  tangent ia l  ve loc i ty  i n  

qe 

the  f r e e  stream i s  given by: 

c1 n 

* 
The f r e e  stream i n  a 

t i a l  vortex; t he  p o t e n t i a l  
je t -dr iven vortex chamber i s  e s s e n t i a l l y  a poten- 
vortex is  one i n  which angular momentum per  u n i t  

mass i s  conserved so  t h a t  t he  t angen t i a l  ve loc i ty  var ies  inversely with the  
radius;  i .e . ,  90 = K r, where Q i s  the  t angen t i a l  veloci ty ,  2 TT K i s  t h e  
c i rcu la t ion ,  and r i s  the  radius .  

39H. A .  E ins te in  and H. L i ,  "Steady Vortex Flow i n  a Real Fluid," 
Proceedings of the  1951 Heat Transfer and Fluid Mechaoics I n s t i t u t e ,  p.  33, 
Stanford University Press,  Stanford, Cal i fornia ,  1951. 

Strong Circulation," J.  Fluid Mech., 14 (3) :  420 (1962). 
4%. S. Lewellen, "A Solution f o r  Three-Dimensional Vortex Flows with 

* l C .  duP. Donaldson and R .  D. Sull ivan, "Behavior of Solutions of t he  
Navier-Stokes Equations f o r  a Complete Class of Three-Dimensional Viscous 
Vortices," Proceedings of the  1960 Heat Transfer and Fluid Mechanics I n s t i -  
t u t e  , p .  16, Stanford University Press, Stanford, Cal i fornia ,  1960. 

l -  
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i n  which c1 and c2 depend on boundary conditions and n depends on the  mag- 

nitude of the  radial flow and i s  negative f o r  inward flow. Since la rge  

values of  n occur a t  very small radial f lows ,  the  po ten t i a l  vortex is  

e a s i l y  approximated experimentally. By es tab l i sh ing  the  f r ee  stream flow 

i n  t h i s  way, it w i l l  be possible  t o  study the  boundary layer  over a wide 

range of t angen t i a l  Reynolds moduli : 

K 
- -  - 

V 
NRe 

since K can be varied. by simply cliang'ing 

drum. 

, 

the  angular speed. o f  the  revolving 

The ac tua l  flow i n  the  boundary l aye r  w i l l  be s tudied using a number 

of dye t r a c e r  techniques, 42,43 t he  t e l l e r ium t r a c e r  technique,44 and an 

e l e c t  roc hemilumine scent  boundary-laye r v i sua l i za t ion  technique . 45 

A theo re t i ca l  study of the boundary-layer f l o w  i s  being made by a t -  

tempting t o  in tegra te  the  axisymnetric boundary-layer equations for the  

t angen t i a l  and r a d i a l  ve loc i t i e s  simultaneously on an analog computer. An 

approach similar t o  t h a t  of Schwiderski and L ~ g t ~ ~  w i l l  be used i n  which 

the  usual boundary-layer s impl i f ica t ion  of dropping terms involving d2/dZ2 
i s  not made, but  r a the r  a l l  terms are  included. 

42Symposium on Flow Visualization, ASME Annual Meeting, Nov. 30, 1960. 
43W. J. Rainbird, R. S. Crabbe, and L. S. Jurewicz, "A Water Tunnel 

Invest igat ion of t he  Flow Separation about Ci rcu lar  Cones a t  Incidence, 'I 

Aeronautical Report LR-385, National Research Council of Canada, September 
1963 * 

(June 1953) 

44F. X .  Wortman, "A Method f o r  the  Observation and Measurement o f  
Water Flow with Tellerium," Z e i t s c h r i f t  f G r  angewandte Physik, 5 (6) : 201 

45B. Howland, W.  E .  P i t t s ,  and R.  C .  Gesteland, "Use of Electrochemi- 
luninescense f o r  
Massachusetts I n s t i t u t e  of Technology, September 219 1962. 

Normal t o  a Vortex Flow," NWL-1835, Naval Weapons Laboratory, Dahlgren, 
Virginia,  Ikcember 20, 1962. 

Visualizing Fields  of Flow," MIT Tech. Report 404, 

46E. W .  Schwiderski and H .  Lugt, "Boundary Layer Along a F la t  Surface 
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3.3. Boundary-Layer Transient Phenomena 

G.  J. Kidd., Jr. 

Fabricat ion of the  new s o l i d  s t a i n l e s s  s t e e l  t e s t  s ec t ion  ir-corpora- 

-Ling brazed-in hea ters ,  described previously,  47 has proceeded t o  the  f i n a l  

stage: the  formation of t he  junctions on the  16 gunbarrel thermocouples. 

During t h i s  report ing period, the gunbarrel  thermocouples, along w i t h  o ther  

spec ia l  w a l l  surface temperature probes and heat flux meters, have been i n -  

s t a l l e d  In the  s t a i n l e s s  s t e e l  body of t he  t e s t  sec t ion .  

achieve good thermal contact between the  probes and the  body of t h e  hea ter ,  

it w a s  necessary t o  hand f i t  each one i n t o  a taper-reamed hole .  

probes were a l l  f i t t e d  they were driven home and t'ne port ions extending 

i n t o  the  flow channel were ground-off flush with the  w a l l .  

sec t ion  w a s  then honed t o  a 4-pin. rms f i n i s h  

I n  order t o  

Once the  

The e n t i r e  t e s t  

The next and f i n a l  s t e p  is  the  p l a t ing  of a th in-n icke l  film over the  

ins ide  ends of the  gunbarrel  thermocouples t o  f o m  t h e  hot junct ions.  

i s  des i red  t h a t  t h i s  be accomplished by a s tandard vacuum deposi t ion tech-  

nique. However, despi te  the  f a c t  t h a t  t he  same 'technique w a s  used as on t 

It 

the  previous two similar t e s t   section^,^^^^^ it has not been possible  thus 1; I !  

far t o  e f f e c t  a s a t i s f a c t o r y  junction. 

l a t l o n  of honing o i l  i n  the  ceramic in su la to r  of t he  thermocouples which 

b o i l s  out and contamicates the  sec t ion  when the  pl&ing elecbrcdes are 

heated under vacuum. 

t o  f i n d  an a l t e r n a t i v e  means of p l a t i n g  the  -interior of tine t e s t  set+' "ion. 

Figure 3.20 is  a photograph of t h e  new t e s t  s ec t ion  preparatory t o  the  

The problem appears t o  be an accumu- 

Attempts a re  being made t o  remcve t h i s  o i l  and/or 

1' !. . . I  

- -. . .  
1' . 

47H. W. Hoffman and J. J. Keyes, Jr., %tu-dies i n  Heat Transfer and 
Fluid Mechanics Progress Report for Perioc? Jar?.. 1 - Sept.  3C, 1963," USAEC 
Report GRii-TM-915, pp. 8-5, Oak Ridge National Laboratory, October 1964. 

4aA. E. Higinbotham, T .  J .  Delaney, J .  E .  lkntzkiue, and M .  J. Friedman, 
"Study of Unsteady Heat Transfer Between a Surface and a Flowlng Fluid," 
USAEC Report kT-397, MIT Prac t ice  School, Oak Ridge Gaseous Diffusion Plan t ,  
May 11, 1-959. 

49J. E.  O'Connel, S.  M. Fleming, and R .  M. Rotk, "Study of Unsteady 
Heat Transfer Between a Surface and a Liquid i n  Turbulent Flov," USAEC 
Report KT-565, MIT Prac t ice  School, Oak Ridge Gase0u.s Diffusion Plant ,  
March 4 ,  1961. 
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vacuum p la t ing  s t ep .  

Techniques f o r  f ab r i ca t ing  r e l i a b l e ,  long-lived hot-fi lm surface 

probes f o r  the  measurement of  l oca l ,  instantaneous hea t - t ransfer  r a t e  and 

coe f f i c i en t  of  heat t r a n s f e r  have been perfected.  

been made and a re  being evaluated f o r  ease of forming the  t h i n  film, en- 

durance, dimensional s t a b i l i t y ,  e t c .  A new t e s t  sec t ion  containing four  

of these probes and a hot-fi lm anemometer i n  a chrome-plated brass  tube 

i s  i n  fabr ica t ion .  

A number of probes have 

Recent measurements have been made of the instantaneous l o c a l  water 

f i lm  hea t - t ransfer  coe f f i c i en t  inside a 2-in.-diam pipe containing one 

hot-fi lm probe. The r e s u l t s  a re  shown i n  Fig.  3.21. The probe formed one 

l eg  of a constant temperature hot-fi lm anemometer bridge. The mean vo l t -  

age across that l eg  of t he  bridge is  shown i n  the  left-hand column of the  

f igure  and averaged about 3.3 v o l t s ;  the  maximum f luc tua t ions  were of the  

order of 200 mv (0.2 v o l t s )  peak t o  peak. 

e f f i c i e n t  i s  d i r e c t l y  proport ional  t o  the  voltage i n  t h i s  c i r c u i t ,  the  

percentage f luc tua t ion  i n  hea t - t ransfer  coe f f i c i en t  about t he  mean w a s :  

Since the  heat- t ransfer  co- 

* h' k0.2 
- = -  x 100 = +6$. 
h 3.3 
- 

The data  show a d e f i n i t e  laminar behavior f o r  Reynolds moduli below 2600 

and a change t o  turbulent  flow with a c h a r a c t e r i s t i c  period of intermit-  

tency flow i n  between. 

analyzed manually t o  f ind  the  d i s t r ibu t ion  i n  amplitude of the f luc tua-  

t i o n s  a s  a function of the  frequency, and the  r e s u l t s  a r e  presented i n  

Fig.  3.22. Some of t he  s c a t t e r  i s  due t o  the  technique used i n  evaluating 

the  data;  however, the  curves do indicate  a t rend i n  t h e  amplitude-frequency 

spectrum. These data,  which represent the  average values of the  amplitudes, 

show t h a t  the l a rges t  amplitudes occur a t  the  low end of the  frequency 

spectrum. There were, of course, occasional f luc tua t ions  much grea te r  than 

the  average, i n  some cases as much as three  times the  average value.  

Data f o r  a Reynolds modulus of  17,000 was then 

- 

* 

~~ ~~~ * 
For small f luc tua t ions  i n  hea t - t ransfer  coe f f i c i en t  about t he  mean 

value, t he  conversion from voltage t o  power introduces a f ac to r  of 2 i n  
i n  t h i s  re la t ionship .  

\ 
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Fig. 3.21. Time-Dependent Fluctuations of 
Transfer Coefficient Inside a 2-in.-ID Pipe. 
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Fig. 3.22. Spectrum of the Fluctuations in Local Water Film Heat- 
Transfer Coefficient Observed at NRe = 17,000 Inside a 2-in.-ID Pipe. 
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A Panoramic Subsonic Spectrum Analyzer i s  avai lable  t o  reduce the  

data  automatically and methods f o r  ca l ib ra t ing  t h i s  instrument so  it can 

produce quant i ta t ive  r e s u l t s  a re  now being devised. 

A fu r the r  analysis  of the  data w a s  made i n  terms of the  power spec t r a l  

densi ty  (PSD), which r e l a t e s  t he  energy-per-unit frequency t o  the  frequency 

of the f luc tua t ions .  

Computer. Figure 3.23 presents  the  r e s u l t s  of t h i s  ana lys i s .  A t  low 

Reynolds modulus, most of the energy i s  contained i n  the low-frequency 

f luc tua t ions  while a t  higher Reynolds modulus there  can be a s igni f icant  

contr ibut ion t o  the  energy a t  t he  very high frequencies.  

frequency re la t ionship  i s  important i n  the  analysis  of the thermal-cycling 

fa t igue  problem i n  reac tor  systems. 

This analysis  w a s  performed on a PACE TR 10 Analog 

This energy- 

The l a t e s t  s e r i e s  of runs have been designed t o  measure the  cor re la -  
I t i o n  coef f ic ien t  between the  f luc tua t ion ,  q , i n  the  axial ve loc i ty  near 

the  w a l l  and the  f luc tua t ion ,  h l ,  i n  t he  hea t - t ransfer  coef f ic ien t  as a 

function of Reynolds modulus. The cor re la t ion  coe f f i c i en t  i s  defined by 

the  e quat ion : 

q1 h' 

The experiments were car r ied  out i n  the  same t e s t  sec t ion  used previously 

with the addi t ion of a hot-wire anemometer t o  measure the  ve loc i ty  near 

t he  w a l l .  This data i s  being analyzed on the  TR 10; however, the  analysis  

has not reached the  point  where it can be in te rpre ted  quant i ta t iv ley .  
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3.4. Turbulent Transport Studies 

R .  P. Wichner 
h 

- .  

. 

It w a s  reported previously50 t h a t  preliminary data on the turbulence 

l e v e l  i n  water a t  a Reynolds modulus of 158,000 as obtained i n  t h i s  study 

f e l l  below published values which e x i s t  f o r  a i r  flows only.51 To resolve 

t h i s  discrepancy, an a i r  flow f a c i l i t y  w a s  assembled; a photograph of the  

apparatus i s  shown i n  Fig.  3.24. The t e s t  sect ion,  composed of two 21-ft 

lengths of 8-in.  pipe,  formed the  suct ion l i n e  of t he  blower. 

admitted through the  f i l t e r  box made up of fourteen 20-in. x 25-in. x 2-in.-  

wide Fiberglas a i r  f i l t e r  elements (shown a t  the  extreme l e f t  of Fig.  3.24) 
in to  an i n l e t  d i f fuse r  ( t o  conserve pressure drop) containing s t ra ightening 

vanes and a wire screen. The wire screen f l a t t ened  the i n l e t  flow p r o f i l e  

t o  conform more near ly  with the  f u l l y  developed p r o f i l e ,  thereby reducing 

the  required J/d's t o  achieve f u l l y  developed pipe flow. The flow r a t e  w a s  

var ied by changing the  diameter of the  o r i f i c e  on the  blower o u t l e t .  Pres- 

sure measurements, from which w a l l  shear s t r e s s  and ve loc i ty  p ro f i l e  values 

a re  derived, were made by means of an R G I  Model G-1500 micromanometer capable 

of resolving a pressure difference of 0.001 in .  of water. 

A i r  w a s  

In order t o  take advantage of the lower form drag i n  a i r  flows (com- 

pared with water),  new hot-wire probes were fabr ica ted  with thinner  and 

longer wire supports.  These supports should in t e r f e re  l e s s  with the  flow 

and, hence, have l e s s  influence on the  measured turbulence proper t ies .  In  

addition, methods were developed f o r  handling and mounting the very f ine  

tungsten wires (0.00012-in. t o  0.00016-in. diameter) required f o r  a i r  hot- 

wire anemometry. These wires a re  bare ly  v i s i b l e  against  the l i g h t  back- 

ground i n  the  photograph of these probes shown i n  Figs .  3.25 and 3.26. 

probes i n  Fig.  3.25 a re  designed t o  en te r  t he  flow stream i n  an approxi- 

mately r a d i a l  d i rec t ion ,  while t he  one i n  Fig.  3.26 i s  designed t o  face 

d i r e c t l y  in to  the flow. 

The 

'OH. W .  Hoffknan and J. J. Keyes, Jr., "Studies i n  Heat Transfer and 
Fluid Mechanics Progress Report f o r  Period Jan. 1 - Sept. 30, 1963," USAEC 
Report ORNL-TM-915, Oak Ridge National Laboratory, October 1964. 

51J. Laufer, "The Structure of Turbulence i n  Ful ly  Developed Pipe Flow," 
N a t  . Adv. Com. on Aero. Report -1174, 1954. 
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The a i r  Reynolds s t r e s s  data taken t o  date has not ye t  been f u l l y  

analyzed. These r e s u l t s ,  along w i t h  t h e  e a r i l e r  data with water, w i l l  

be discussed i n  d e t a i l  i n  a subsequent repor t .  



4. THERMOPHYSICAL PROPERTIES 

4 .l. Alkal i  Liquid Metals 

J. W .  Cooke 

4.1.1. Surface Tensioc of Pctassium 

The preliminary r e s u l t s  reported p r e v i o u s l p 2  for the  surface tension 

( r e l a t i v e  t o  helium) of 99.96 w t  $ potassium have been extended t o  temper- 

a tures  near the bo i l ing  poin t .  

were made i n  the  temperature range 70 t o  713°C using a naximum--bubble pres-  

sure apparatus.  A l l  measurements were ca r r i ed  out a t  atmcspheric pressure;  

data were obtained under both increas izg  and decreasing temperature condi- 

t i o n s .  Inconel c a p i l l a r y  tubes of four  d i f f e ren t  s i z e s  ( ins ide  diameter 

between 1.54 and 1.66 m) were used with two potassium samples. The con- 

taminant concentration i n  these samples (before and a f t e r  use)  i s  given i n  

Table 4 .l. 

A t o t a l  of 202 separate detzrmications 

The surface tens ion  w a s  calculated using the  Rayleigh-Schroedinger 

e q ~ a t i o n ; ~ ~ r ~ *  the  f i n a l  r e s u l t s  a r e  p lo t t ed  i n  Fig.  4.1 acd compared with 

data reported by other  inves t iga tors .  

may be described, i n  the  temperature span between 70 and 7lO"C, by the  

l e a s t  -s quare s derived e quat ion, 

The surface tens ion  ( i n  dynes/cm) 

CJ = 115.36 - 0.0646 t , (4 4 
with a mean-square deviat ion of kO.72 dyries/cm. 

values around 2OO0C were as much as 54 below t h e  average da ta  and were not 

included i n  t h e  least-squares  ana lys i s .  All of these lower values were 

recorded within 10 t o  20 minutes a f t e r  a new c a p i l l a r y  tube has been in -  

s t a l l e d .  Thm, it is possible  t h a t  these lower values r e su l t ed  from poor 

wet.ting of t he  caT i l l a ry  tube by the  potassiim. 

Several  surface tension 

. .  , :  
.I ' .  - 
.- 
. .- , 

52J. W .  Cooke, Thermophgsical Proper t ies  of Liquid Metals, pp. 116-121, 
"Space Power Program Senisnn. Prog. Rep. June 30, 1963," USAEC Report OFUVL- 
3489 

. 
L 

53Eord. Rayleigh, "On the  Theory of the  Capi l la ry  Tube," Proc. Royal 
So:. , Sec a, 92: 184-195 (1915). 

54E. Schroedinger, "Note on the  Capi l lary Presure i n  Gas BubSles," 
A m .  - Physik, 46: 413 (1915). 

- I  



Element 

Table 4 . 1 .  Spectrochemical Analysis of Potassium 
Sample Nos. 1 and 2 Before and After  

Surface Tension Deteminations 

Sample Nos. 1 & 2 Sample No. 1 Sample No. 2 

Before, After ,  After ,  
PPm PPm PPm 

Oxygen 
Iron 

Chromium 

Nickei 

Lithium 

Sodium 

Rubidium 

Cesium 

Aluminum 

Magne s ium 

Copper 

Cobalt 

Calcium 

Molybdenum 

Boron 

Lead 

Titanium 
S i lve r  

Zirconium 

P o t a s s i m  (by d i f fe rence)  

26; 35 

a 
6.7 

60" 
132 
20 

a 0  

<2 

a 

<5 

a 

<5 
11 

<3 
10 

<5 
<5 
a 
a 0  

3.3 
a 

a 
n o b  
47 

2 - 2  

22 

G O  

<2 

<5 
' 3  
- 

99.97 wt $ 

27; 1.17 

58; 80 
5 

133; 210 

- 

99 0 93% 
a 

bSample taken i n  g lass  b o t t l e .  

Sample taken i n  polyethylene b o t t l e .  
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Figure 4 . 1  a l s o  shows e a r l i e r  data on potassium obtained by Quarter-  

# 

man and Primak55 (1949) and by Taylor" (1955); both s e t s  of r e s u l t s  f a l l  

s i g n i f i c a n t l y  below the values found i n  the  current  invest igat ion.  Quarter- 

man and Primak used a c a p i l l a r y  r i s e  technique t o  obtain the  surface ten-  

s ion  over the  narrow temperature range between the melting point and 150°C; 

t h e i r  r e s u l t s  were -2076 below the values reported here.  

t o r s  indicate t h a t  t h e i r  data may be low by as much as 15% due t o  a possible 

contact angle between the  potassium and t h e i r  glass  c a p i l l a r y  tube and t o  

d i f f i c u l t i e s  i n  measuring the c a p i l l a r y  height between t h e  two concave 

menisci . 

These investiga- 

Taylor a l s o  used a maximum bubble-pressure technique but noted d i f f i -  

c u l t i e s  i n  es tabl ishing the  peak pressure due t o  f luc tua t ing  manometer 

readings; these r e s u l t s  l i e  between $ (at 75°C) and 35% (at 500°C) below 

t h e  present data. The extent  of cesium and rubidium impurities i n  the 

potassium (contaminants most l i k e l y  t o  a f f e c t  the  surface tension)  were not 

reported by Taylor. 

4.1.2. Density of Potassium 

Data on the maximum bubble pressure at various depths of  c a p i l l a r y  

immersion have been used t o  calculate  the densi ty  of l i q u i d  potassium. 

The r e s u l t s  a re  shown i n  Fig. 4.2; comparison i s  made with a composite of 

data from three invest igat ions as reported by L y ~ n . ~ ~  

quite good, with the present values averaging about 0.4% higher.  

The agreement i s  

4.1.3. Contact-Angle Determinations 

Determination of the  contact angle between a potassium droplet  and 

various horizontal  supporting surfaces have been continued using the  

55L. A. Quarterman and W .  L. Primak, "The Capi l lary Rise, Contact 

"J. W .  Taylor, "The Surface Energies of the Alkal i  Metals," B r i t i s h  

57R. N .  Lyon, ed. ,  Liquid Metals Handbook, 2nd ed. ,  p .  42, U. S. 

Angle, and Surface Tension of Potassium," J. Am. Chem. SOC., 72: 3035 (1950). 

Atomic Energy Authority Report AERE M/R 1620, Feb. 22, 1955. 

Government Pr in t ing  Office, Washington,. D. C . ,  1952. 



118 

I
 

0
 

I
-
N

N
C

U
 

U
 

m
 

0
 

z 

I
 

/ i 
/=

 

W
 
3- 

In
 

r- 0
 

0
 

r- 
0

 

0
 

0
 

% 0
 - Y

 
Y W

 
E

 
3
 

O
I
-

 
o
a
 

W
E

 
W

 
a
 
I
 

W
 

I- 

O
 

E 0
 

.. .. 5
'- 

- .. 



d 

* 

. 
II 

0 

previously described technique .52 

t i o n  of potassium vapor i n  the  region of t he  drople t  has made c l ea r ,  sharp 

photography d i f f i c u l t  t o  impossible. However, some t e n t a t i v e  r e s u l t s  have 

been obtained f o r  a n  untreated,  32 p m  f i n i s h ,  type 304 s t a i n l e s s  s t . ee l  

sur face .  

A t  temperatures above 4OO0C,  condensa- 

Inmediate spreading (zero contact angle) occurred when a potassium 

drople t  w a s  placed on the  surface preheated t o  6 0 0 " ~  i n  a pu r i f i ed  helium 

atmosphere. 

a f t e r  the  surface temperature had been reduced t o  300°C, showed a contact 

angle of 10 deg. The s t a i n l e s s  specimen w a s  then removed from the  apparatus 

and cleaned s o  t h a t  only a t h i n  coating of potassium remained on t h e  surface 

A t h i r d  l i q u i d  potassium drople t  placed on t h i s  surface (now considered as 

pre t rea ted)  gave an i n i t i a l  contact angle of 130 deg a-1; 100°C. 

creasing temperature, t h e  angle was reduced t o  90 deg f o r  a specimen tem- 

perature a t  150°C some 35 min l a t e r  and f i n a l l y  t o  1-5 deg a t  250°C, 60 min 

l a t e r .  These r e s u l t s  are consis tent  with the  e a r l i e r  da ta  with a type 316 
s t a i n l e s s  s t e e l  sur face .  

A second droplet ,  placed on t h i s  same surface 160 min l a t e r  

With in -  

Further modification of the  apparatus t o  maintain equilibrium vapor 

pressure near t he  drople t  i s  i n  progress; t h i s  should afford a clean un- 

d i s to r t ed  view of t he  drople t .  

4 . 1 . 4 .  Surface Tension of Lithium 

The surface t ens ion  ( r e l a t i v e  t o  helium) of 99.90 w t  $ l i t h '  l u m  has 

been determined from 198 t o  lOO5"C using t h e  maximum bubble-pressure appara- 

tu . s  described p r e v i o u ~ l y . ~ ~  

pressure with both increasing and decreasing temperature s t eps .  Four d i f -  

f e r e n t  s i ze  Inconel c a p i l l a r y  tubes were used with th ree  samples of' l i t h ium 

whose spectrochemical analyses before and a f t e r  t h e  experiment a re  given i n  

Table 4 .2 .  

The invest igat ion was c a r r i e d  out a t  atmospheric 

The surface t ens ion  w a s  calculated using the  Rayleigh-Schroedinger 

e q ~ a t i o n . " ~ , ~ *  

l i shed  r e s u l t s .  

temperature range from 200 t o  1000°C by the  least,-squares equation, 

The r e s u l t s  a r e  p l o t t e d  i n  F ig .  4 .3  and compared with pub- 

The surface tension (dynes/cn) Eay be expressed i n  t h e  
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Table 4.2.  Spectrochemical Analyses of Lithium 
Samples Nos. 1, 2, and 3 Before and Af ter  

Surface Tension Determinations 

Samples NOS. 1, 2, & 3a Sample No. 1 Sample No. 2 

Element Before, After ,  After ,  
PPm PPm PPm 

Oxygen 
Nitrogen 
Potassium 
Sodium 
Cesium 
Rubidium 
Iron 
Chromium 
Nic ke 1 
Cobalt 
Titanium 
Zirconium 
Aluminum 
Magne s ium 
Copper 
S i lve r  
Boron 
Lead 
Calcium 
Molybdenum 
Columbium 
Beryllium 
Bismuth 
S i l icon  
Tin 
Platinum 
Vandaium 

b 
11 

9 
51. 

a o o  
<8 

<20 
a o  
<5 0 

<6 
<8 

e 0  
a o  
<3 

a 
a 

<40 
a00 
a o  
e 0  
a 
<3 

a o  
a o  
a o  
a o  

a 0  

b 
<50 
a 5  

65 
<1-5 
a 5  
137 
<5 
62 - 

b 
<50 
a 5  
110 
21 

a 5  
6 
9 

23 - 

a 

bAnalyses not completed . 
Sample No. 3 w a s  acc ident ly  contaminated a f t e r  t he  experiment bu t  

before an ana lys i s  could be made. 

. 
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Fig. 4 . 3 .  Surface Tension of Molten Lithium as a Function of Temperature. 
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with a mean-square deviat ion of k2.4 dynes/cm. 

The experimental r e s u l t s  of Taylor,56 who a l s o  used t h e  maximum bubble- 

pressure technique, average 54 below the  present  r e s u l t s  (see Fig.  4.4). 
However, Taylor noted d i f f i c u l t i e s  i n  e s t ab l i sh ing  the  maximum pressures  

due t o  f luc tua t ing  manometer readings and did not repor t  t h e  ex ten t  of potas-  

sium and rubidium impuri t ies  i n  the  l i th ium (contaminants most l i k e l y  t o  

a f f e c t  t he  surface tens ion) .  

Determinations of the  surface tensions of cesium and rubidium are  being 
planned. However, due t o  the highly reac t ive  nature and low surface energy 

of these  two a l k a l i  metals, extensive modification of t he  present  experi-  

mental apparatus w i l l  be required.  

4 .1 .5 .  Density of Lithium 

The dens i ty  of l i th ium was a l s o  ca lcu la ted  using the  data obtained 

from the  maximum bubble pressure a t  various depths of c a p i l l a r y  immersion. 

The data of Been e t  al .58 a r e  compared with the  present  r e s u l t s  i n  Fig.  4 . 4 .  
Considering the  very low dens i ty  and high surface tens ion  of the  l i thium, 

the  agreement i s  qui te  good, with a maximum deviat ion of 8.  
. 

I 

- ,.. 58S. A .  Been e t  a l . ,  "The Densi t ies  of Liquids a t  Elevated Temperatures: 
Par t  I. The Densit ies of Lead, Bismuth, Lead.-Bismuth Eutec t ic ,  and.Lithium 
i n  the  Range Melting Point t o  1000°C ( 1 8 3 2 " ~ ) , "  NEPA-1585, Fa i rch i ld  Engine 
Airplane Corp., NEPA Division, Oak Ridge, Tennessee, September 7, 1950. 
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