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CREEP-RUPTURE PROPERTIES OF Cb~-752 ALLOYS AND THEIR
RESPONSE TO HEAT TREATMENT

R. L, Stephenson
ABSTRACT

Creep-rupture properties for Cb-752
(No-1.0% W—2.5% 7r) to 1000 hr are presented for
test temperatures of 982°C (1800°F), 1093°C
(2000°F), and 1204°C (2200°F), Substantial
improvements in strength at 982°C (1800°F) and
1204°C (2200°F) can be achieved by pretest
annealing 1 hr at 1593°C (2900°F). These
improvements are shown to be stable for at least
1000 hy, Pretest annealing at higher temperatures
yields inferior properties. A tentative explana-
tion for these effects is offered in terms of
precipitete distribution,

INTRODUCTTION

A large nuwber of refractory-metal alloys are currently under
consideration for high-temperature structural applications. In most
cases, the only mechanical property data available on these materials
are tensile~test data and very short-time creep data. Since long-
time (= 1000 hr) creep properties must be considered for many high-
temperature applications, an evaluation of several promising refractory-
metal alloys was undertaken. This evaluation included the determination
of creep properties to 1000 hr, their stability, and their response to
heat treatment, so that a valid comparison of thelr suitability for
high~temperature structural applications could be made. This report
describes such an evaluation of Cb~752 (Wb—~10% W—2.5% Zr).



MATERTAL

The heat of material tested was produced by Stellite Division of
Union Carbide Corporation (heat No. 52227) from powder which was con-
solidated by electron-beam melting. The resulting material was consumable
arc~-melted to an 1l-in.-diam ingot.

The ingot was conditioned and extruded to a rectangular billet, then
"ot-cold" rolled to a 1/4-in, sheet bar. The sheet bar was cold rolled
to 1/8-in. sheet, This sheet was spot conditioned, pickled, and vacuum
annealed 1 hr at 1371°C (R500°F). The material was then cold rolled %o
penultimate gage and solution annealed for 1 hr at 1538°C (2800°F),
after which it was cold reduced to final gage (0.030 in,), pickled, and
annealed 1 hr at 1316°C (2400°F),

The vendors analysis of this material is listed below:

Element Wt %
W 9.9
71 2.6
0.0034%
0 0.0072%
0,0099%

aDetermined on finished sheet.

The material was given a fluorescent-penetrant inspection which
showed it to be free of surface flaws greater than 00,0005 in. deep, a
transmission-ultrasonic inspection which showed it to be free of lami-
nations greater than 0,125 in, in diameter, and a shear-wave ultrasonic
inspection which showed it to be free of transverse discontinuities in

excess of 3% of the materlal thickness.



EXPERIMENTAL DETATLS

The apparatus used in this work is described in a previous report.l
The tests were performed at pressures lower than 2 x 1077 torr., Every
test specimen was analyzed for interstitials. The afber-test oxygen con-
tent of most specimens was between 100 and 400 ppm., In this region the
creep~rupture properties could not be correlated with the oxygen contents.

The metallographic specimens were prepared by vibratory polishing in

the manner describved by Long and Gray.2
RESULTS AND DISCUSSION

The creep-rupture ovroperties of as-received Cb-752 alloy at 982°C
(1800°F) are given in Fig. 1. Times to 1, 2, 5, and 10% elongation are
plotted as a function of stress along with the time to rupture., Similarly
the creep-rupture properties at 1093°C (2000°F) and 1204°C (2200°F) are
given in Figs. 2 and 3 respectively. Figure 4 shows the secondary creep
rate as a Tunction of stress for each of these temperatures. Isochronous
stregs-strain curves for the alloy at all three temperatures are shown
in Figs. 5, 6, and 7 respectively., It can be seen from Figs, 2 and 3
that at long times and high temperatures the curves exhibit a pronounced
curvature. The ductilities seem to be adequate at all of the temperatures
investigated, the lowest being an average of approximately 37% for the
982°C (1800°F) tests.

In order to determine the effect of annealing temperature on the
creep~rupture properties, duplicate specimens were annealed at various
temperatures, After annealing, one specimen from each paiy was loaded to
35,000 psi at 982°C (1800°F) while the other was loaded to 17,500 psi at
1204°C (2200°F), The times to selected percent elongations and to rup-

ture are plotted as a function of pretest annealing temperature for the

1R. L. Stephenson, Comparative Creep-Rupture Properties of D-43 and
B-66 Alloys, ORNL-TM-9%4 (November 1964).

°E, L. Long and R, J. Gray, Metals Progr. 74(4), 14548 (0ctober 1958).
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982°C (1800°F) tests in Fig. &, Figure 2 gives the influence of pretest
annealing temperature on the properties at 1204°C (2200°F). It can be
seen that the creep-rupture properties can be improved substantially by
annealing at moderately high temperatures while annealing at still higher
temperatures yields inferior properties. In order to determine the long-
time stability of these improvements, a number of specimens were annealed
at 1593°C (2900°F), the apparent optimum bemperature, and tested at 982°C
(1800°F) and 1204°C (2200°F). The results of these experiments are shown
in Figs. 10 and 11. (Curves showing the time to 1% creep and to rupture
for the as-received material are included for comparison.) Isochronous
stress-strain curves for the pretest annealed material at 982°C (1800°F)
and 1204°C (2200°F) are shown in Figs. 12 and 13 respectively. Annealed
specimens tested at 982°C (1800°F) average approximately 28% ductility.

A possible explanatlon for the effect of pretest annealing tempera-
ture on the mechanical properties and for the severe curvature of the
creep-rupture curves (Figs. 2 and 3) at high teaperatures is suggested
by the microstructures of the creep specimens., Figure 14 shows the
mierostructures of specimens tested at 982°C (1800°F). Figure l4a shows
a representative view of the microstructure at high maguification and a
view of the fracture at low magnification of a specimen tested a very
short time, Figure 14b shows similar views of a specimen tested for a
long time at the same temperature., Analogous views of short- and long-
time specimens tested at 1093°C (2000°F) and 1204°C (2200°F) are shown
in Figs., 15 and 16 respectively. All specimens give some indication,
however inconclusive, of a precipitate., At longer times and higher
temperatures a precipitate 1s distinctly visible in the grain boundaries.
The appearance of this precipitate in the grain boundaries is roughly
concurrent with the onset of the accelerated creep observed at longer
times and higher temperatures. Figure 17 shows photomicrographs of
specimens tested at 982°C (1800°F) and 1204°C (2200°F) after a pretest
anneal of 1 hr at approximately 1760°C (3200°F). In contrast to the
specimens shown in the preceding figures, which showed substantial frac-
ture ductility, these specimens are seen to fail with very little defor-

mation of the matrix material. In the case of the 1204°C (2200°F) test



the fracture is clearly intergranular. t is possible that increasing
pretest annealing temperatures places progressively more of this pre-
cipitate in solution, allowing it to reprecipitate in a finely dispersed
gtate at the test temperature and hence produce the higher strength
properties, At still higher temperatures it is possible that increaged
atom mobilities allow more rapid coalescence of the remaining precipi-
tate in the grain boundaries while grain growth reduces the grain-
boundary area and thus decreases the amount of precipitate needed to
cause significantly reduced fracture ductility.

. Precipitates which are identical in appearance have been cbserved in
D43 (Nb—-10% W-1% Zx—0,1% C) (Ref. 3) and FS-85 (Nb—27% Ta~10% W-1% Zr)
also.* Attempts have been made to identify this precipitate by electron

5

diffraction. The results are inconclusive but prelininary data indicate

that it is Zr0z.
SUMMARY

The creep-rupbure properties have been determined to 1000 hr for a
heat of Cb-752 alloy at 982°C (1800°F), 1093°C (2000°F), and 1204°C
(2200°F). It has been shown that the pretest annealing temperature can
have a pronounced effect on the creep-rupture properties at the test
temperatures investigated. Strergths were progressively increased by
pretest anneals at increasing temperatures up to approximately 1593°C
(2900°F). With higher pretest annealing btemperatures, inferior strength
and ductility are observed. A tentative explanation of this behavior
in terms of the distribution of precipiﬁétes in the alloy is offered.
The improved properties resulting from a l-hy pretest anneal at 1593°C
(2900°F) are shown to be stable for at least 1000 hr at 982°C (1800°F)
and 1204°C (2200°F), These improvements are achieved at the expense of

3R. L. Stephenson, to be published.

4R, L. Stephenson, Creep-Rupture Properties of FS-85 Alloy and Their
Response to Heat Treatment, ORNL-TM-1456 (July 1966).

°T, ¥, Wilmarth, private communication.



a slight reduction in ductility. In view of the pronounced curvature
of some of the creecp-rupture curves at long times it is concluded that
very shorb-time data freguently do not provide an adequate evaluation

of an alloy.
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Fig. 1. Creep-Rupture Properties of Cb-752 Alloy at 982°C (1800°F).
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Fig. 2. Creep-Rupture Properties of Cb-752 Alloy at 1093°C
(2000°F).
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Fig., 3. Creep-Rupture Properties of Cb~-752 Alloy at 1204°C
(2200°F).
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