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1. INTRODUCTION 

Two reac to r  k i n e t i c s  simulators were developed f o r  t r a i n i n g  operators  
of t h e  Molten-Salt Reactor Bperiment  (MSRE) i n  nuclear  s t a r t u p  and power- 
l e v e l  operat ion procedures. Both simulators were i n s t a l l e d  a t  t h e  r e a c t o r  
s i t e ,  and were connected t o  t h e  r eac to r  instrumentation and cont ro ls  system. 
The operators  were t r a ined  i n  s t a r tup ,  o r  zero power, operat ion with t h e  
simulator i n  February 1965 and i n  power-level operat ion i n  October 1965. 

Both simulators were se t  up on general  purpose, por tab le  Electronic  
Associates, Inc. , TR-10 analog computers (borrowed from the  Instrumentation 
and Controls Division analog computer pool) .  No spec ia l  hardware (o ther  
than t h e  computers) was required.  Although most of  t he  simulation tech-  
niques were s t ra ightforward,  a f e w  spec ia l  techniques were devised. 

This repor t  descr ibes  t h e  two s imulators .  

2.  STARTUP (ZERO POWER) SIMULATOR 

The s t a r t u p  simulator,  se t  up on one y-10 analog computer (Fig.  l), 
computed t h e  r eac to r  neutron l e v e l  from 10- w t o  1 . 5  Mw as a funct ion of 
control-rod-induced r e a c t i v i t y  per turba t ions .  
on system temperatures was not included. 

The e f f e c t  of nuclear  power 

J E U T R O N  L E V E L :  
L I N E A R  POWER 
L O G  POWER 
L O G  COUNT RATE 
P E R I O D  
FISSION CHAMBER 

- 

P O S I T I O N  - 

OFiNL DWG. 66-4834 

INPUTS OUTPUTS RE ACTOR INSTRUMENTATION 

POSITIONS 
R R  - 0 100 
R R- 0200 
CONSOLE METER! CHANNEL 1 
CONSOLE M E T E R :  CHANNEL 2 
SPECIAL: ON CONSOLE 

Fig. 1. Diagram of S tar tup  Simulator. 
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The inputs  t o  t h e  simulator were s igna ls  ind ica t ing  t h e  a c t u a l  
pos i t ions  of  t he  cont ro l  rods, and t h e  outputs ( indicated on t h e  r e a c t o r  
instrumentat ion)  were log  count r a t e ,  period, l o g  power, and l i n e a r  power. 

The l i n e a r  flux-range input s igna l  w a s  taken from t h e  s e l e c t o r  switch 
on t h e  r eac to r  console. The fission-chamber pos i t ion  readout w a s  provided 
by a meter mounted on t h e  console. The f i s  ion chamber i s  t h e  de t ec to r  
f o r  t h e  wide-range counting channel system.' The chamber pos i t i on  i s  
servo-control led t o  give a constant output s igna l ,  and t h e  chamber pos i -  
t i o n  i s  r e l a t e d  t o  the  log  of t h e  nuc lear  power. The period in te r locks  
and t h e  flux con t ro l  system were a l s o  used. 

The operators  pract iced the  approach- to-cr i t ica l  experiment ( i n  which 
p l o t s  of inverse  count rate vs rod pos i t i on  are used t o  ex t rapola te  t o  the  
c r i t i c a l  rod pos i t i on )  and rod-bump experiments f o r  ca l cu la t ing  d i f f e r e n t i a l  
rod - reac t iv i ty  worth from measurements o f  s t a b l e  reac tor  per iod.  The 
simulator w a s  a l s o  used t o  check out t h e  f lux  servo c o n t r o l l e r .  

Rod pos i t i on  s igna ls  were obtained from the  th ree  potentiometers nor-  
mally used by  t h e  MSRE computer. The "St '  curve r e l a t i n g  rod worth and 
pos i t i on  w a s  approximated f o r  t h e  regula t ing  rod by a diode funct ion gen- 
e r a t o r  (Fig.  2 ) .  The rod worth vs pos i t ion  r e l a t ionsh ip  f o r  t h e  o ther  
two rods w a s  l i n e a r .  

'S.E. Beall e t  -- a l . ,  MSRE Design and Operations Report, %rt V, Reactor 
Safety Analysis Report, ORNL-TM-732 (August 1964), pp. 96-98. 

ORNL DWG. 66-4335 

I 

10 20  30 40 

DISTANCE W I T H  DRAWN (IN. ) 

Fig.  2 .  Simulator Approximation of Regulating Rod Worth vs Posi t ion.  
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The analog c i r c u i t  used t o  compute r e a c t i v i t y  from t h e  th ree  rod pos i -  
t i o n s  included the  e f f e c t s  of t he  pos i t ion  of one rod on the  t o t a l  worth of 
t he  o thers  (Table 1). 

Table 1. Full-scale  Rod Worths 

Ful l -scale  
Rod Worth Reac t iv i ty  

Rod Posit ion (% W K )  vs Posi t ion - 
Regulating Rod Shims out 

Shims i n  

"S" curve 

S" curve 

2.6 
1 . 3  

Both Shims Regulating rod out 5.8 l i n e a r  

Regulating rod i n  4 .5  l i n e a r  

Tne neutron l e v e l  computation was made by converting t h e  k i n e t i c s  
equations t o  logarithmic form? s ince  the  neutron l e v e l  var ied over e ight  
decades. Two e f f ec t ive  delayed-neutron precursor groups were used. The 
usual  method of including the source term i n  these  equations was found t o  
be unsa t i s fac tory ,  and a spec ia l  c i r c u i t  w a s  used (see Sect.  6.1). 

a squaring device t h a t  gave adequate accuracy over each l i n e a r  (1.5 decade) 
range (Fig.  3). 

The conversion of l og  power t o  l i n e a r  power w a s  approximated by using 

A voltage signal from the  reac tor  instrumentation l i n e a r -  

2A.E. Rogers and T.W. Connolly, Analog Computation i n  Engineering 
Design, pp. 334-7, McGraw-Hill, New York, 1960. 

OIWL DWG. 66-L836 

I RANGE CKT E I A S  

> ~ ~ ~ ~ o N ~  0 - 3 V  SCALE LINEAR AT FULL / 
/ D E C A D E  

/ X=APPROXlUATlON CIRCUIT OUTPUT 

J 
POWER SIGNAL FROM LOGARITHMIC CALCULATION 

Fig.  3. Approximate Log-to-Linear Conversion. 
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range s e l e c t o r  c i r c u i t  was subtracted from the  l o g  power s igna l ,  and t h i s  
d i f fe rence  was then converted t o  the  l i n e a r  s igna l .  

The equations and analog computer c i r c u i t  used f o r  t h e  s t a r t u p  simu- 
l a t o r  are given i n  Sect .  6.1 

3 .  POWER LEVEL SIMULATOR 

The power l e v e l  simulator,  se t  up on two TR-10 analog computers 
(Fig.  4), simulated the  k i n e t i c  behavior of t h e  MSRE f o r  power l e v e l s  

I N P U T S  

ORNL DWG. 66-4837 

OUTPUTS REACTOR INSTRUMENTATION 

R R - 8 1 0 0  
R R - 8 2 0 0  
CONSOLE METER: CHANNEL 1 
CONSOLE METER: CHANNEL 2 
SPEC'AL : ON CONSOLE 

ROD 
LINEAR POWER 
L O G  POWER 
LOG COUNT RATE 
PERIOD 
FISSION CHAMBER POSITION 

REACTOR INLET TEMPERATURE 
T R  -202 -A 5 

POSITIONS REACTOR OUTLET TEMPERATURE 

RADIATOR SALT OUTLET TEMP. 

RADIATOR SALT A T  

T I  - 2 0 2 - A 2  

Td 1 - 2 01 - A  
RADIATOR 9 E 

A I R  - 

X p R-201-A 
RADIATOR HEAT POWER 

FLOW (CONST) X AT  
REACTOR 
CONTROL 

MODE U 
Fig. 4 .  Diagram of Power Level Simulator. 

between 0.5 and 12 Nw. The inputs  were s igna l s  i nd ica t ing  t h e  a c t u a l  
pos i t ions  of t h e  rods and the  r ad ia to r  doors and t h e  a c t u a l  pressure drop 
o f  t h e  cool ing a i r  across  t h e  r a d i a t o r .  The outputs  were neutron l e v e l s  
and temperatures.  The usua l  nuclear  information and key system tempera- 
t u r e  outputs  were indicated on the  reac tor  instrumentat ion.  The r eac to r  
power-level servo con t ro l l e r  and r ad ia to r  load cont ro l  systems were a l s o  
used. 

The r e a c t i v i t y  inputs from control-rod pos i t ion  s igna l s  were computed 
as i n  the  s t a r t u p  s imulat ion.  
delayed-neutron precursor  groups) solved t h e  l i n e a r ,  r a t h e r  than  loga-  
r i thmic,  k i n e t i c s  equations.  Only t h e  0 t o  1 . 5  and the  0 t o  15 I% ranges 
on t h e  r eac to r  l i n e a r  power channels were opera t iona l .  Conversion from 
l i n e a r  t o  l o g  power was approximated us ing  a square-root device (Fig.  5 ) .  

The neutron l e v e l  computation (using two 
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9.5 

1 0 (Mu) 9 0 

8.5 

I (Mw)8.0 

7.5 

x 
X = SIMUL ATOR APPROXIMATION 

DESIRED OU T f  U T 

X 

f i  

0 I I I I I 
0 2 4 6 8 10 

COMPUTED L I N E A R  POWER (Mw) 

Fig. 5 .  Approximate Linear - to  -Log Conversion. 
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P 
I O D I N E  P 

Other r e a c t i v i t y  inputs  t o  the  power l e v e l  simulator were from com- 
puted Xenon poisoning, noise ,  and fue l  and graphi te  temperature changes. 
The xenon-poisoning computation (Fig.  6 )  w a s  included as an opt ion.  In 
considerat ion of t h e  long t ime-constants of  xenon buildup and decay, t he  
equations were time scaled t o  run a t  t e n  times real t i m e .  

X e  (FUEL) " 5~ X,(GRAPHITE) 

S teady-Sta te  Xe Poisoning When P =  10 Mw: 
6 K Fuel = - 0 . 7 %  
6 K Graphite = - 0.79 YO 

Fig.  6 .  

The r e a c t i v i t y  
of  usua l  s imulators  
t h e  noisy output of 
r e  s i s  t an ce feedback 

Diagram of Xenon Poisoning Computation. 

noise  input  w a s  included t o  o f f s e t  complaints t y p i c a l  
about how "smooth" t h e  f lux  output i s  compared with 
a c t u a l  r eac to r s .  
(40 megohms) was used as the  noise  source.  

An opera t iona l  ampl i f i e r  with high 

A s impl i f ied  simulation of t h e  thermal k i n e t i c s  of  t h e  MSRE was used 
which was based on previous s tud ie s  of r eac to r  dynamics .3 

The core w a s  represented by two f u e l  "lumps, o r  nodes , and the  

The thermal c h a r a c t e r i s t i c s  a r e  summarized i n  Table 2 .  
graphi te  by one. 
system. 

Six more lumps were used t o  represent  t h e  res t  of t h e  

The hea t  removal r a t e  from the  r a d i a t o r  i s  cont ro l led  by varying t h e  
a i r  flow through t h e  r ad ia to r ;  hence, t h e  r ad ia to r  s a l t  o u t l e t  temperature 
i s  a f f ec t ed  by s a l t  i n l e t  temperature, a i r  i n l e t  temperature, and a i r  flow 
r a t e  changes. A simple bu t  f a i r l y  accurate  way of s imulat ing the  hea t  
removal i s  t o  make use of t h e  r e l a t ionsh ip  of r ad ia to r  cool ing "effect iveness"  
as a funct ion of a i r  flow rate .  .Cooling e f fec t iveness  i s  defined as t h e  
r a t i o  of t h e  a c t u a l  
t u r e  decrease i n  an 
exchanger: 

3S.J. Ball and 
Reactor Experiment, 

temperature decrease of t h e  hot f l u i d  t o  t h e  tempera- 
i d e a l  (i . e .  , i n f i n i t e  hea t  - t r ans fe r  surface ) heat  

T.W. Kerlin, S t a b i l i t y  Analysis of t h e  Molten-Salt 
ORNL-TM-1070 (Dee. 1965 ). 

L 
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Table 2 .  MSRF: Thermal Charac t e r i s t i c s  Used i n  the  Power Level Simulator 

Core t r a n s i t  t ime, sec 

Graphite t ime-constant,  sec  

Heat exchanger t o  core t r a n s i t  time, sec a 

Core t o  hea t  exchanger t r a n s i t  time, sec 

Radiator t r a n s i t  time, see 

Radiator t o  heat  exchanger t r a n s i t  t ime, sec 

Heat exchanger t o  r a d i a t o r  t r a n s i t  time, see 

a 

a 

Heat exchanger "ef fec t iveness"  f ac to r s  a t  s teady s t a t e  -b. . 
T 

= 0.7029 T 
P I  

rn 

I 
P i  

T 
& = 0.2971 
J. s i  

= 0.5522 so T 

Tsi 

7.6 (two 
lumps ) 

200.0 

10.0 

6.67 

6.67 

10.0 (two 
lumps ) 

5.0 

~ ~~~~~ 

a 

b 

Holdup time i n  hea t  exchanger i s  included i n  the  o the r  t r a n s i t  t imes.  

P, primary; S, secondary; i, i n l e t ;  and 0 ,  o u t l e t .  
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- - Tsalt i n  - Tsalt out  
EC Tsalt  i n  - Tair i n  

The sa l t  o u t l e t  temperature i s  computed from 

The ca lcu la ted  cooling e f fec t iveness  as a funct ion of a i r  f l o w  rate and 
t h e  l i n e a r  approximation used i n  the  simulator a r e  shown i n  Fig.  7 .  

ORNL DWG. 66-4840 

0.1  
u 

W 

m 
0 
W 
z 
W > 
I- u 
w 
LL 
L L  
W 0.05 
c3 
Z 

- 

- 

COOLING EFFECTIVENESS 
= TSALT I N  - T SALT OUT 

TSALT IN - T A I R  IN 
E C  

CAL CUL A TED 

A PPROX IMA rIoN 

0 - 
U 

0 
I- 
Q 
0 
Q 

a 

- 

a I I I I I I I I 

100 
0 
0 5 0  

COOLING AIR FLOW RATE (To)  

Fig. 7 .  MSRE Radiation Cooling Effect iveness  vs A i r  Flow Rate. 
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'3 

*i 

The a i r  flow rate W through t h e  r ad ia to r  w a s  computed from a 

where 

K = constant adjusted t o  give 10 Mw cooling a t  f u l l  a i r  flow, 

Dp = measured a i r  pressure-drop s i g n a l  across  t h e  r ad ia to r ,  

= measured r a d i a t o r  door pos i t ions  (inches r a i s e d ) .  

a 

%,$ 
Conversion of t h e  analog computer voltages represent ing temperatures 

t o  signals compatible with t h e  Foxboro E C I  instruments was done with 
s t ra ightforward r e s i s t ance  d iv ider  networks. 

The equations and analog computer c i r c u i t  used f o r  t h e  power l eve l  
simulator are given i n  Sect.  6.2. 

4. TIME REQUIEZD FOR SETUP OF SIMULATORS 

The engineering and c r a f t  time required t o  develop, i n s t a l l ,  and 
check out t h e  s imulators  and t o  t r a i n  t h e  operators  i n  t h e i r  use w a s  as 
follows ( a l l  values i n  man-weeks ): 

Engineering Labor 

Development 

Set  up and check out 

Lecturing on use 

Craft Labor 

I n s t a l l a t  ion 

Tota l  

Star tup Power Level 
Simulator Simulator 

1.6 
0.7 
0.3 

1.4 
1.2 

1 .o 

0.4 
- 
4.0 

5. CONCLUSIONS 

The two on-s i te  t r a i n i n g  simulators were developed and operated satis-  
f a c t o r i l y  as p a r t  of t h e  MSRE operator  t r a i n i n g  program. 
obvious funct ion of t r a i n i n g  the  operators ,  t he  simulators served as a 

Besides t h e  
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means of checking out  t h e  r eac to r  instrumentation and cont ro l  system, t h e  
opera t ing  procedures, and the  rod and radiator-door  d r ives .  Some minor 
modifications were made t o  t h e  system as a r e s u l t  of t h i s  experience with 
t h e  s imulators .  

All manipulations required t o  operate  t h e  simulated r eac to r  were done 
from t h e  r eac to r  console, and t h e  readout devices were p a r t  of t h e  standard 
r eac to r  instrumentation. 
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6. APPENDIX 

6 .1  Details of Star tup Simulation 

The neutron k i n e t i c s  equations are 

6 

where 

n = neutron population, 

t = t i m e ,  see,  

1* = prompt neutron l i fe t ime,  see, 

k = r eac to r  mul t ip l ica t ion ,  

pT = t o t a l  delayed neutron f r ac t ion ,  

p i  
= e f f e c t i v e  delayed neutron f r a c t i o n  f o r  ith precursor  group 

with f u e l  s a l t  c i r cu la t ing ,  

= decay constant f o r  ith precursor  group, 

- - it' precursor population , 
'i 

ci 
S rate of neutron production by source.  

R e w r i t e  Eqs .  (1) and (2), assuming kpT GZ & and -- - - 1* - 1* - 
knpi nf3i 

Divide Egs. (3)  and ( 4 )  by n: 
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Pi A i C i  1 “i - - -  - - - - .  
n d t  l* n 

Define new var iab les  : 

dn 

n 

- 
M = - -  - rec iproca l  period, 

,Subs t i t u t e  i n t o  Eqs .  (3’ ) and (4l ): 

(5) 
i=l 

hiVi - Mvi . dVi - p i  - -  d t  i-z- 

The usua l  method of computing the  source term i s  as follows: noting 
t h a t  Wn = S and 

therefore  

o r  

The analog computer can usua l ly  solve a f i r s t - o r d e r  d i f f e r e n t i a l  
equation such as Eq. (7)  for W; however i n  t h i s  case, W becomes so small 
when n >> S t h a t  t h e  vol tage represent ing W i s  within t h e  noise  l e v e l  of  
t h e  ampl i f ie r ,  so f u r t h e r  computation with it i s  meaningless. To avoid 
t h i s  problem, t h e  r e l a t ionsh ip  between W and log  n w a s  approximated as 
shown i n  Fig.  8. 

b. 

I-. 

F; 

C’ 
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W 

\ 

- L O G n  

Fig.  8. Approximation of  Logarithmic Source Term W .  

The six delayed-neutron precursor  groups were approximated by two 
groups, as fol lows:  

3 

- 
= 0.000924, @4 -6 

- 
Q 

L X -  i 
i=l 

- 
= 0.0442 see-', '4-6 

The prompt neutron l i f e t i m e  l* was 0.00024 see,  and pT was 0.0064 (ref 4) .  

Fig.  9. 
The analog computer c i r c u i t  for t h e  s t a r t u p  s imulator  i s  shown i n  

R.B. Lindauer, Revisions t o  MSRE Design Data Sheets, Issue N o .  9, 4 
Om-CF-64-6-43 (June 24, 1964 ). 

I 
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6.2 Details of Power Level Simulation 

6.2.1 Neutron Kinetics Equations 

Equations (1) and ( 2 )  of Sect .  6.1, with two delayed-neutron precursor 
groups , were used. An analog c i r c u i t  (Fig.  10)  developed many years ago5 
w a s  used t o  solve these  equations.  This c i r c u i t  i s  superior  %o most of 
those published i n  t h e  l i t e r a t u r e ,  mainly because of  t h e  way i n  which the  
amplitude sca l ing  i s  accomplished. 

A key poin t  i n  t h e  scheme f o r  simulating t h e  equations i s  the  use of 
a small feedback capac i tor  f o r  t h e  in t eg ra t ion  of  t he  neutron l e v e l  equa- 
t i o n ,  r a t h e r  than solving d i r e c t l y  f o r  dn/dt and t h  n in t eg ra t ing  with a 
conventional l a rge  -feedback-capacitance in t eg ra to r  .? In Fig.  10, ampli- 
f i e r  1 (which solves  f o r  n )  has a feedback capac i tor  of 10 1* p f .  The 
ampl i f ie r  gain i s  1/10 l* Rin(sec-’), where Rin i s  i n  megohms. With the  
assumption t h a t  a l l  input r e s i s t o r s  are 0 .1  megohm, Eq. 1 can be rearranged 
t o  show t h e  des i red  form of t h e  inputs  t o  ampl i f i e r  1, as follows: 

(kn - knpT - n + l*AIC1 + l*h2C2).  dn 1 
dtF 

The quant i ty  kn i s  generated from n and 6k as shown i n  Fig. 10. Typically 
k w i l l  vary between 1.005 and 0.98 f o r  con t ro l  s t u d i e s .  
inherent  inaccuracy of t h e  mul t ip l i e r ,  it i s  advantageous t o  l e t  t he  f u l l -  
s ca l e  output of  t h e  (6k x n ) m u l t i p l i e r  be only a f e w  percent  of kn. 
t h e  simulator,  t h e  vol tage represent ing zero 6k w a s  o f f s e t ,  i . e . ,  
-1.5% I 6k 5 +0.5’$, because of  t h e  apparent deadband i n  t h e  quarter-square 
mul t ip l i e r  when one input opra tes  around zero v o l t s .  
i s  generated from 

Owing t o  t h e  

In 

The quan t i ty  kn& 

0 .1  kn x 100 f3, x 0.1 
L J U 

pot 2 s e t t i n g  1 megohm input 
t o  ampl i f i e r  1 

t h e  gain reductions thus  allowing a reasonably l a rge  gain s e t t i n g  on pot  2 .  

The 1* hiCi 
of EQ. 2: 

sci = 

which rearranged 

terms are obtained by f irst  t ak ing  the  Laplace transform 

’By E .R .  Mann (deceased), Instrumentation and Controls Division. 
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Fig. 10. Analog Ci rcu i t  Designed by E.R. Mann f o r  Neutron Kinetics 
Equations. c 
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where S i s  the  Iap lac ian  argument. 

Solving f o r  t h e  output of i n t eg ra to r  4 [e(,)]: 

de 
- - - h . ~ e ( ~ )  + 0.1 h i  kn Se (4 )  1 

(4) = 
at, 

I h i  \ 

I$ 1 
+ h i J '  Mult ipl icat ion of e 

which i s  seen from Eq. ( 9 )  t o  equal -10 l*h.  C .  as required f o r  generating 
dn/dt i n  Eq. (8). 
gains on the  pi pots  could be increased. 

by 100 p. gives -10 knpiI (4  1 1 

1 1  Again, because the  ampl i f ie r  gains were reduced, the  

-4 
%is c i r c u i t  c l e a r l y  shows t h a t  f o r  small values of l* (e .g . ,  10 

10- s e c )  t he  feedback capaci tor  f o r  ampl i f ie r  1 w i l l  be very small 
and thus w i l l  have a negl ig ib le  e f f e c t  on t h e  response of n f o r  t h e  slow 
v a r i a t i o n s  normally encountered i n  control  s tud ie s .  Under these  condi- 
t i o n s  the  negl ig ib le  e f f e c t  of t h i s  capaci tor  implies t h a t  t he  neutron 
k i n e t i c s  a r e  independent of 1*, and f o r  m precursor groups, the  neutron 
k i n e t i c s  can be described by m d i f f e r e n t i a l  equations,  r a t h e r  than (m + 1) 
equations.  This s impl i f ica t ion  i s  u s e f u l  when the  k ine t i c s  equations a r e  
solved on a d i g i t a l  computer, because the  maximum computation time inverval  
i s  usua l ly  governed by the  1*/& time constant and must be made q u i t e  small 
t o  give s t a b l e  (and accura te )  answers. 

6.2.2 Core Thermal Dwlamic Equations 

The f u e l  flow i n  the  core i s  approximated by two f i r s t - o r d e r  lags  i n  
s e r i e s ,  and heat  t r a n s f e r  takes  place between the  f i rs t  f u e l  lump and the 
graphi te .  The nuclear importancesof the  two f u e l  lumps a r e  equal .  Forty- 
seven percent of t h e  nuclear hea t  i s  generated i n  each f u e l  lump. The 
remaining 6% i s  generated i n  t h e  graphi te .  The hea t  balance equations 
used f o r  t h e  core a r e  as follows: 

a .  F i r s t  f u e l  lump 

U I  

- 0.263 5 + 0.017 FG + 0.246 Tci + 0.0329 n ;  c -  - -  a t  C 



b .  Second f u e l  lump 

dTco - -  - - 0.263 Tco + 0.263 ??e + 0.0329 n ;  
d t  

c .  Graphite 
- 

dT 
- = - 0.005 FG + 0.005 + 0.00084 n .  a t  

Temperatures are i n  OF, t i m e  i s  i n  seconds, and neutron l e v e l  n i s  i n  
megawatts. 

As discussed previously,  t he  lags  due t o  holdup and hea t  t r a n s f e r  
i n  the  loop ex te rna l  t o  the  core were represented by s i x  f i r s t - o r d e r  l ags .  
Each l a g  i s  described by t h e  equation 

dX = 1 
d t  - ?? (Xin - a Y 

where T i s  t h e  t i m e  constant of t h e  l a g .  

6 .2 .3  Radiator Effect iveness  

The p l o t  of r a d i a t o r  cooling e f fec t iveness  vs a i r  flow was ca lcu la ted  
by 

1 - exp [-(1 - Nl)N2] 

1 - N 1 exPr[ - ( l  - N1)N2] ' 
- Tsalt i n  - Tsalt out - - 

Ec - Tsalt  i n  - T  a i r  i n  

where 

(''p )salt 
N1 = 'm&- 

W = mass flow rate, lb/sec,  

C = s p e c i f i c  hea t ,  Btu/lb- F, 0 

P 

U = o v e r a l l  hea t  t r a n s f e r  coe f f i c i en t ,  Btu/sec-f t  - F, 

A = heat  t r a n s f e r  a rea ,  f t 2 .  

2 0  

:t 

t 



Since a i r  flow i s  perpendicular  t o  t h e  tubes,  t h e  hea t  t r a n s f e r  c o e f f i c i e n t  
on t h e  a i r  s i d e  w a s  assumed t o  vary a s  t h e  0.6 power of flow r a t e .  

I 

6.2.4 Xenon Poisoning 

Even when time sca led  by a f a c t o r  of 10, t h e  xenon t r a n s i e n t s  a r e  very 
very slow, and care  had t o  be taken t o  avoid l a rge  e r r o r s  due t o  i n t e g r a t o r  
d r i f t .  Manual d r i f t - c o n t r o l  po ts  were added t o  both i n t e g r a t o r s  i n  the  
c i r c u i t .  

Fuel xenon w a s  assumed t o  b u i l d  up a t  a r a t e  equal t o  iodine production, 
s ince  t h e  xenon s t r ipp , ing  t ime-constant is s m a l l  compared with those  f o r  
decay, burnup, and d i f f u s i o n  t o  t h e  g raph i t e .  

6k)graphi te  Xe - 
d t  - 0.00025 (% 6k)fuel Xe 

Since s imulat ion pressed t h e  l i m i t a t i o n s  of t h e  accuracy of t h e  com- 
p u t e r ,  some of t h e  coe f f i c i en t s  had t o  be f i e l d  s e t  t o  give proper s teady-  
s t a t e  output values .  
i n  speeding up t h e  computation even more, it was not  done because we 
d i d n ' t  want t o  have t h e  xenon dynamics confused with t h e  reac tor  thermal 
dynamics. 

Although t h e r e  would have been a number o f  advantages 

Fig.  11 is  t h e  analog computer c i r c u i t  used f o r  t h e  power l e v e l  
s imulator  . 

I 

j - .  
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