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THE VARIATION OF SHOCK OVERPRESSURE WITH DISTANCE TN
AN EXPLOSTIVELY DRIVEN SHOCK TUBE

Lawrence Dresner

1. TINTRODUCTION

This is the third in a series of papers dealing with the propagation
of shock waves in a tube. The first two papers (refs. 1 and 2) dealt
with shock waves produced by detonating small amounts of high explosive
in the tube. One of the aims of this previous work was to study the
attenuation of shock waves by balfles, such as orifice plates, placed
in the tubes.

The total energy (and thus the duration) of the shock waves produced
by high explosives is limited by the largest yield that can be safely
used. In the experiments reported in refs. 1 and 2, the largest yield
used in the 4-in. shock tube at ORNL was about 5 grams of TNT.

The flexibility of the shock tube is increased if the total energy
of the shock wave can be varied over a wide range, especially if it can
be increased by as much as one to two orders of magnitude. To do this,
high explosive has to be abandoned and other methods of driving the
shock tube sought.

In this report, two new methods are studied theoretically and compared
with the o0ld method of using high explosive. 1In particular, the variation
of shock overpressure with distance down the tube is calculated for the
following three different ways of driving a shock tube:

1. Detonation of a small amount of high explosive in one end of
the tube.

2. Rapid burning of smokeless powder in a closed volume {(driver
section) confined by a breskable membrane (G. Coulter, BRL, private communi-

cation to C. V. Chester, ORNL). When the smokeless powder burns, it heats
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the air causing its pressure to increase. The amount of smokeless powder
ig chosen so that when it is all burned the pressure of the air in the
driver section is the pressure at which the mewbrane ruptures. After
rupture, the hot gas in the driver section rushes down the tube driving
a shock wave Dbefore it.

Z. Detonation of an explosive gas mixture cenfined by a breakable
membrane » '

Far enough down the tube the three variaticns of shock overpressure
with distance become indistingulshable if the total energy is the same
in 2ll three methods. However, near the driver end of the tube, the
three are different. The shock overpressures produced in methods 2 and
3 above vary in rather unusual ways with distance down the tube (see
Figs. 2 and 3). This unusual behavior is analyzed in detail and shown to
be due to the propagation of raréfaction waves through the gas behind
the shock front.

Section 2 gives the results in the form of plots of peak overpressure
vs distance down the tube. Section 3 contains a discussion based on the
method of characteristics of method 2 of driving a shock tube. Section b
contains a similar discussion of method 3. Since the information derived
in these analytic discussions 1s incomplete, numerical calculations were
undertaken to round out our understanding of the flow processes in these
two methods. These numerical calculations are discussed in detail in
Section 5.

2. RESULTS

The shock overpressure produced by detonation of a small amount of
high explosive in a tube has already been discussed in other reports
of the author‘s-l’2 There the sclution was given to the following idealized
problem: A plane sheet of explosive ig detonated at tiwe t = 0 in the
plane X = 0 in an infinite, homogeneous atmosphere (pressure = Do,
density = po), instantaneously depositing there an energy 2E per unit area.
What is the shock overpressure Ap when the shcck fronts have reached the
planes + X? The snswer to this problem is shown in Fig. 1, where Ap/po
is plotted against poX/E. The curve was calculated numerically by the
method of von Neumann and Richtmyer.5 The high- and low-overpressure

asymptotes are
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Fig. 1. Ap/pp vs poX/E Explosion in an Infinite, Homogeneous Atmosphere. Ap i8 the shock
overpressure, po is the initial pressure of the atmosphere, X is the distance from the plane of
the explosion, and 2E is the energy per unit ares of the explosion.
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respectively for a perfect gas with a ratio y of specific heats equal
to 1.k,

in the actual explosion of a small amount of high explosive in the
end of a tube, several additional phenomena occur. In the first place,
not all of the energy of the explosive finds its way into air blast.
Some of it is transferred to the pipe wall as heat by the hot bubble
of gas created by the explosion. Secondly, the air blast does not
assume the form of a plane blast wave until it has progressed a short
distance down the tube. Thirdly, friction with the pipe walls causes
gome attenuation in the shock overpressure. The first and third
phenomena are dealt with in references 1 and 2. For distances not
greater than about 50 diameters in ordinary iron pipe, Fig. 1 (with
a yield corrected for heat loss to the wall) gives the variation of
shock overpresgsure with distance down the tube correctly.

We shall assume in method (2) that the gas in the driver section
is heated uniformly. If an amount of heat g is released per gram of
gag in the driver section, the pressure of the gas at the instant of
membrane rupture is greater than its original pressure p, by an amount
p, &iven by

Dy

z;y — 15 Po = G . (2)

We shall assume henceforth that p, > py-
If we fix ¥ = 1.4 once and for all, the entire problem may be speci-
fied by the physical variables p,, Dy, Po., and L, the length of the driver

section. Since p, >> , we wmay dro from the list. Dimensional
% To P o



analysis then indicates that the variation of shock overpressure with

distance X down the tube must have the form

%f- - 1 <%> , (3)

where f is an as yet undetermined function.
When X >> L, Bq. (3) should go over into Eq. (la). Since E = pgql,
this means that

X . )
f (TD N']X i (X > L, v = 1.4) . (4)

When the membrane first ruptures, the situation is the same as
that in a conventional gas-driven shock tube. A shock front and a
contact surface propagate forward in the tube while a rarefaction
propagates backwards. The shock overpressure remains constant at
least until this rarefaction reflects off the end of the tube and
catches up with the shock front. 1In the next section it is shown
that the rarefaction catches up with the shock front when X/L = 3.817;
for smaller values of X, Ap/p* may be calculated with the Taub equation,u

according to which
£ (%D = 0.4609 (1< X< 3.87, 7= 1.k4) (5)

Equations (4) and (5), which give the behavior of f(X/L) for large
and small X/L, respectively, are plotted in Fig. 2 as thin lines.
Plotted as a thick line is a curve calculated numerically by the method
3 1% appears that f(X/L) is very close

to the value given by Kq. (5) for X/L < 3729 [the value of X/L at

of von Neumann and Richtmyer.
which Egs. (4) and (9) intersect] amd very close to the value given by
Eq. (k) for X/L = 3.729,

In method (3), the gas in the driver section is not uniformly
heated. Instead a detonation is initiated at X = O and allowed to
propagate through the explosive gas mixture in the driver section.
When the detonation front reaches the membrane, the latter ruptures

and the burned gas escapes, driving a shock wave before it.
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Fig. 2. The Function £(X/L) = bp/p, vs X/L. b, is the initial over-
pressure in the driver section, L is the length of the driver section,
Ap is the shock overprossure, and X is the position of the shock front
measured from the driver end of the tube.




q and p, are defined as in case (2), i.e., g is the heat released
by chemical reaction per gran of explosive gas mixture, and p, is the
uniform rise in pressure the hurned gas would experience if it were con-
fined indefinitely in its original volume. y is taken to be the same for
the burned gas as for the unburned explosive wmixture. By the same

dimensional argument as before it follows that

2 _g(H, (6)

*

where g is an as yet undetermined function. When X >> L, Eq. (6) also

goes over into Eq. (la), i.e.,

g @9 ~l$ (X> 0L, vy =1.4) (7)

When X/L is small, however, g behaves very differently from f. 1Ia
the first place, until the detonation front reaches the end of the
explosive gas mixture, Ap/p* remains constant. Tf the detonation is a
Chapman-Jouguet detonation, this constant is 2 when P, >> Ty, as shown

in section four of this report. Thus,

e(f) =2 <. (8)

When the detonation front reaches the end of the explosive gas
mixture, it changes abruptly into an ordinary shock front. The shock
overpressure drops discontinuously to 1.56 p, 8t X = L, as is also shown
in section four.

Equations (7) and (8), which give the behavior of g(X/L) for
large and small X, respectively, are plotted in Fig. 3 as thin lines.
Shown as a thick line is a curve calculated numerically by the method
of von Neumann and Richbtmyer. One can see that g(X/L) has a most

unusual behavior, which is discussed further in section Five.

3. UNIFORM HEATING

Figure L shows a wave diagram describing the flow in method (2)

after the membrans ruptures. The line 0t is the time axis; the line
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Fig. 3. The Function g(X/L) = &p/p, vs X/L.
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% is the uniform rise

in pregsure the burned gas wonld experience if confined indefinitely in
its original volume, £p is the overpressure at the shock (or detonation)
front, L is the length of the driver secticn, and X is the position of the
shock (or detonation) front measured from the driver end of the tube.
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Fig. 4. Wave Diagram for the Case of Uniform Heating (Method 2).
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Ox is the space axis. The line x = O represents the end of the tube.
Point S marks the position of the membrane before it ruptures. 8Q is
the shock front and 8P the contact surface between the hot gas that
was originally behind the membrane and the shocked gas that was ori-
ginally in front of it. A rarefaction wave is shown propagating back-
wards from 8, reflecting from the end of the tibe, crossing the contact
surface and eventually catching up with the shock front.

The shock front, contact surface, and rarefaction wave separate
Tour regions of uniform flow labeled O, 1, 2, and 3 in the wave
diagram. Each reglon is described by two thermodynamic state variables
and a flow velocity u. Actually, four different thermodynamic variables
are in common use, namely, the pressure p, the density o, the speed of
sound ¢, and the specific volume 1. These four are capnetted by two

relations, viz.,
wpo= pct, (9a)
pr = 1, (9p)

so that only two are independent.
Region O is the region of ag yet undisturbed alr. Its pressure isg
Py, 1ts density pg, 1ts flow velocity uy, = 0. Reglon 3 is the region

of still stationary driver air. Therefore

Ds = Dy » » (10a)
Pa = Po > (10b)
Gy = /7“f§f?§“, (10¢)
u; = O . (104)

Region 2 is the region of expanded driver alir. Its state is connected

with the state in region 3 by the adiabatic law

p, (27, L (-n) /Ay, (11a)
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and by the constancy of one of the Riemann invariants

2c 2¢
s - Elal.
ATt ST b U (11b)

Region 1 is the region of shocked air. Its state is related to the
state O by the Rankine-Hugoniot equations. Since, by hypothesis, p,
>> Py, we can use the limiting form these equations take for strong

shocks, viz.,

o - 2 2-1

by T ST (12a)
po U = p , (12b)
poui = P (l - Mz) s (120)

where U is the shock velogity. Finally, since regions 1 and 2 are

separated by a contact surface,
P2 = P > (13a)
Uup = Uy . (13b)

Using Egs. (10-13), we can solve for the ratio pl/p*as follows:

/B e (L -pd) = ow o, [12¢] (Lha)
T [13b] (14b)

_ 72%&i (1 - %j) , [11b) (1)

e /T (1-2) . (9] (1)

< g T |1 (-a (7-1) /27] , [11a] (1be)

- == /7B o ‘[1 ( (7- W”] , [13a] (1kf)

- B e [1(B) ] L a0y (g



Here the numbers in brackets denote the equation used in obtaining the

equallty written on the same line. The last equality may be written

_o2r (r+ 1) (7-1)/27F
g; ey R <§i> ?J : (15)

When 7 = 1.4, Eq. (1Y) may be solved by trial and error to give

L . 0.4609 (7 = 1.%) . (16)

*

Equations (10-13) may now be used to find the remaining unknowns.

The results are given in the following table.

Table 1. 8tate Variables for y = 1.4

Region 1 0 1 2 3
pi/p* << 1.000  0.4609 0.4609 1.000
0:/po 1.000  6.000 0.5751 1.000
ci/U << 1.000  0.4410  Tn.k2h 0 1.501
ui/U 0 0.8333 0.8333 o)

Using the figures in Table 1, we can calculate the abscissa Xy
of the point Q at which the reflected rarefaction first overtakes the
shock wave 5. However, instead of proceeding directly with that
calculation we first obtain a lower limit for X,. As shown in the wave
diagram, the portion AB of the leading characteristic of the reflected
rarefaction is curved and in fact is concave downwards. (We shall
subsequently prove that this is so.) The portions BP and PQ on the
other hand are straight lines since they have constant slopes dx/dt
equal to u, + ¢, and u + ¢,, respectively. Let us now extend a line
through A parallel to BP (line AB'P') which intersects the path of the
contact surface SP in P'. Through P' we extend a line P'Q' parallel
to PQ which intersects the path SQ of the shock in Q'. Since AB is
concave downwards, the abscissa X, of Q is greater than the abscissa

Xg of Q. We can determine the value of XJ by writing in terms of X



16

and X3 (the abscissa of P') and the velocities ui, ei, and U the
following two requirements, namely: (1) the projection on the time
axig of 8Q' 1s the sum of the projections on the time axds of SA, AP',
and P'Q'; and (2) the projection on the time axis of SP' is the sum
of the projections on the time axis of SA and AP'. The slopes dx/dt
of SA, AP', P'Q', SP', and 8Q' are, respectively, u; - c5, U, + cg,

u + ¢, U, and U. Thus

o - L _ L . X2 + Xo - X5
U “U, + Cq Uy +Cy WY O (17a)
1 i
u, -Uz + Cg U, +:Cy
It follows from these equations and the state variables given in
Table 1 that
t
)“(f“ = 3.750 , (18a)
%’“ = 2,415 . (18b)

Thus Eg. (16) must hold at least until the shock front reaches an
abscissa X3 = 3.730L.

To chow that this value is actually a lower limit to X;, i.e., to
show that Xy > X5, it is enough to show that the arc AB is concave
downwards. This we do as follows. Owing to the constancy of a Riemann
invariant along AB we may write

-2:—+
7 -

N

2Ca 2¢
s -
o = u + )

N
“‘”"‘)
}‘—l

(o) s L3 -0, ()

where u and c¢ are the flow veloecity and speed of sound at any point N
along AB. The second equality is simply an identity. Now let & repre-
sent the arc length along AB measured positively from A. Then from (19)

we get

—%; (u+ c) = = —— (u - c) . (20)
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Now dx/dt = u - ¢ along the line SN. Thus

4

I (u=-c)>0, (21)

since, for example, u - ¢ is more negative along SA than SN, etc.

Hence, if 7 < 3,

?%; (u+ec)=20, (22)

which says that dx/dt increages along AB with increaging arc length ¢
from A. This means, however, that AB is concave downwards.

Now let us calculate exactly the value of X,. We begin by erecting
a perpendicular at § that intersects the lineg A'P' and BP in the
points C' and C, respectively. Since the padrs of triangles SCP and
SC'P' and 8PQ and S'P'Q' are respectively similar,

Xy - L _ 89" _ 8P’ _sc (23)
%, -L 8§ T8 " & - -

In order to calculate the ratio SC'/SC we need to find the eguation
of the arc AB. The differential equation of AB is

dx _ _begy 3 -7
rr I it | (u=~c) . (2k)

The second equality follows by use of Eq. (19). If (x,t) are

the coordinates of N,

u-c = T s (25)

since the slope dx/dt of SN is u - c. Thus the differential equation

of AB becomes

ax ke 3 -7 (x -1
% - e 13 =

If we introduce the variables

= 3 (278')
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v o= &b (270)
(26) becomes
-t y - 1 _h
“E T 2(7 T 1> § =501 - (28)

When © = 1, i.e., when t = L/cg, x = 0, i.e., £ = -1. Equation (28)

can be solved by separation of variables and yields

-L(r#1) /2(7-1) ]
2 -1
G- 9)

Yy + 1 - 1 (29)

We shall need the intersection B of this curve with the trailing

characteristic 8B of the rarefaction, i.e., with the line

= Uy - ¢y, (30a)
or

£ - 2% _ _o.3715 . (30Db)

Here we have used the state variables given in Table 1. Substituting

(30b) into (29), we find © = 1.394%. Thus the coordinates of B are

Xg = 0.4823 L, (31a)

L
by = 1.394-22 . (31b)

The equation of the line BC is
(x - XB) = (u + cy)(t - tB) . (32)
It follows from (32), (31), and Table 1 that when x = I,

t = 1.759 7%; =~ 8C . (33)

The equation of ths line AB'C' is

X o= (g o+ ep)(t - 2) (3%)

Ca
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It follows from (34) and Table 1 that when x = L
v o L '
t = L705-<- = SC' . (35)
3

Finally, from (33), (35), (23), and (18a), it follows that

- 5817 . (36)

4. DETCNATION OF AN EXPLOSIVE GAS MIXTURE

Until the detonation front reaches the end of the driver section,
the wave diagram (Fig. 5) is that of a Chapman-Jouguet detonation

5

followed by a rarefaction wave. Because the flow behind a Chapman-
Jouguet detanation is sonic relative to the front, the leading edge of
the rarefaction coincides with the detonation front. Behind the
rarefaction 1s a region of stationary burned gas of uniform pressure
and density.

When the detonation front reaches the end of the driver section
(point P), conditions change abruptly, combustion energy no longer
being supplied to the gas. The burned gas in the region x < L now
acts as a driver gas, while the air in the region x > L acts as the
gas being driven. A shock, contact surface, and rarefaction wave
emanate from point P exactly as they do from point 8§ in Fig. 4. They
are shown gchematically in Fig. 5. The contact surface separates the
air that has passed through the shock front from the burned gas that
has expanded through the rarefaction. Because of the presence of the
rarefaction emanating from the origin O, the trajectorieg of the
shock front and the contact surface cannot be calculated as simply as
they were in the lasgt section. However, in the neighborhood of the point

P, the methods of the last section apply mutatis mutandis, and we shall

be able at least to calculate the initial overpressure behind the
shock front at P.
Let us beglin by calculating the condition of the gas at position

1 just behind the Chapman~Jouguet detonation front. Fig. 6 shows the
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Fig. 5. Wave Diagram for the Case of an Exploding Gas Mixture (Method 3).
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Fig. 6. Schematic Diegram of the Flow Through a Chapman-Jouguet Detonation Front in a System of
Reference Stationary with Respect to the Front.
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flow conditions in a frame of reference at rest with respect to the
detonation front. v, and v,, the flow velocities of the gas on the
two sides of the detonation front in this frame of reference, are
measured positively in the direction of the arrows. Since u,, the
velocity of the unburned gas in the laboratory frame of reference,

is zero,

U = Va s (373)

I

u U-v = Vg -V , (37p)

where U is the velocity of the detonation front, and u, is the flow
velocity of the burned gas in the laboratory frame of reference, and
both are measured positively to the right.

If we now let m be the mass flux density (g cmmgsec'l) of gas

through the front, we see that
PoVe = PV, = m. (38a)

Now we consider the change in momentum of the slug of fluid passing

through the detonation front in one second. It is given by
my, - mvy = Py - Dy - (38b)
The change in energy of the same slug of fluid is given by

1
mv; + me, - 5 MV - mey = DoVp - PyVy (38c)

ot

where e is the internal energy of the gas in region i per unit mass

plus the energy a4 that could be released per unit mass by chemical

reaction. Thus ch is the potential energy of chemical reaction per

unit mass of gas in region i. By hypothesis

qQ = 0, (384a)

qO = m . (388)



Equation (38e) defines p,. Thus
T,
e - Pt _, *°
[e} 7..:]_ 7-.1,
= Bih
& = ST

(39)

(390)

If we eliminate vy, v, and m from Egs. (38) and use Egs. (39),

we can express 7, in terms of p, as follows:

Po + W2p +(1 - 4?) p,

LET
Dy + p P

To

According to the Chapman-Jouguet hypothesis, the condition

dT] e T3 = Ty ,
dp, P - Po

holds for an actual detonation. If we calculate dr, /dp, from (LO)

and eliminate 7, between (40) and (41), we get

p*+ (l+l~“2)po
O T G TD R

bp =

1

Ap Py - Po

In the limiting case in which Dy >> Do (k2a) simplified to

P, = Ap = 2p, (p, > po) -
From (40O) it then follows that
To 2 * o/ "

If we now substitute pyvy, for m in (38b) and use (37a,b), we
find
Po Uy = Ap .

Using (37b) and (38a), we can write

m(ty - 7)) .

L'Ll =

(40)

(41)

(42a)

(42b)

(h2e)

(43)

(Lha)

(4bp)
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Using (4hb) to eliminate m in (38b) and using (43), we get
1
0o = Ap et . (khe)
From (4hc) and (4ha), it follows that

oo or-pd o (45a)

2
a - m_ﬁ_lg . (45b)
Thus
y +c = U. (45¢)

as required by a theorem of Jouguet's. Finally, using (Lkha), (45a),

U i Py
- TR (454)

The gtate variables p, 7, ¢, and u at any point in the rare-

and {9a2), we get

faction wave behind the detonation front can be determined from the

relations

u+4 e = % 5 (46a)
2 2
-——-———-—-7 _C 1 - u = }“‘%‘l‘“i - ul > ()4‘6b)
P (c\2y/(r-1) T {eN-2/(7-1)
Py <01> T, (01) ) (86e)

Equation (46a) gives two equivalent expressions for the slope dx/dt

of the straight-line characteristics of the rarefaction wave emanating
from O, Eq. (46b) expresses the constancy of a Riemann invariant along
the cross characteristics, and Egs. (46c) are two equivalent forms of

the adiabatic law.
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Using Eqs. (46a), (46b), (45a), and (45b), we find

1 - 4% .
£ - Aok (R, (47a)
S, r-ud 2 (X
o TH TR (Ut> ’ (470)
u ..
= (- (Ut) 2 ' (b7e)

Using (47b) and (46c), we can find p and 7.

X = Ut is the distance traveled by the detonation front in time
t. From Eqs. (47) it is clear that the pressure, density, and velo-
city profiles behind the detonation front depend only on the ratio
x/X. When x/X = 1/2, u = 0. For x/X < 1/2, all the state variables
are constant and have the value they have for x/X = 1/2. This then
determines the state variables in region 2 in Fig. 5. The pressure,
density, sonic velocity, and flow velocity profiles behind the detona-
tion front are plotted in Fig. 7 for » = 1.4. It is these profiles
which are used as the initial conditions in the numerical calculations
mentioned in connection with Fig. 3.

By a repetition of the argument leading to Eq. (15) we can cal-
culate the pressure just behind the shock front in the immediate vicinity
of P. However, now the driver gas has the state variables p,,7,, U
given by Egs. (42c¢), (43), (45a), and (45d). The equation analogous to
Eq. (15) is now

>(7 -V/Py 11

o <2p*>l/? e 2 (h—%)

dp* 27

which has the solution
P . 1.556 (49)
p%

for v = 1.4. This means that when the detonation front reaches the end
of the driver section and is replaced abruptly by a shock the shock over-

pressure jumps discontinuously from 2p, to 1.556 p,_.
Y % %
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5. DISCUSSION

In spite of the complexity of the calculations carried out in
gections 3 and 4, they yield only the crudest information about the
flow processes occurring in the ftube. Much more information can be
obtained from the numerical calculations, egpecially if we examine the
pressﬁre, dengity, and velocity distributiong behind the shock front.

Shown in Fig. S are seven sets of pressure, density, and velocity
distributions corresponding to the seven lettered points in Fig. 2.

In these figures, the abscissa y = X/?.SL. Thus an abscissa of 0.1333
corresponds to X = L, an abscissa of 0.3%33 corresponds to X = 2.5001L,
and an abscissa of 0.5080 corresponds to X = 3.817L. p*/pb was taken
to be 1000 in these calculations. The ordinate labeled "pressure"

is p/2ypy = 0.3571% (p/py), that labeled "density" is.50 (p/po ),

and that labeled "velocity" is 20 (u/cy)-

Figure 8a shows the situation shortly after the rupture of the
membrane. The shock front has an abscissa y of approximately 0.160.
(In the method of Richtmyer and von Neumann,3 shocks, which are abrupt
discontinuities, are replaced by rapid but continuous changes.) The
contact discontinuity is located at about y = 0.155. The rarefaction
begins at about y = 0.130. The region of flow between the shock and the
beginning of the rarefaction hag a uniform pressure and flow velocity,
as it should. The density distribution should consigt of two uniform
regions separated by the discontinuity at the contact surface. (These
regions are somewhat distorted in Fig. 8a because only a small number
of mesh points were available at this early stage of the calculation to
represént them. They are better developed and more accurately rendered
in Fig. 8b.) Behind the rarefaction ig the remaining portion of the
driver region.

According to the data in Table 1, the pressure just behind the
shock should be 0.4609 p,. Thus, the pressure ordinate should be
0.3571% x 0.46095 x 1000 = 165, which is very close to the value shown

is Figs. 8a and 8b. (The fluctuations in Fig. 8b are spurious and
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result from the finite-difference scheme.) According to the Rankine-
Hugoniot equations, a shock with pi/pg = %60.9 should have p; /Py = 5.925,
which is about 1% less than the value shown in Table 1. This corresponds
to an ordinate of about 296 for the density, which is close to the

value shown in Fig. 8b. Behind the contact discontinuity, the density
ordinate should be 0.5751 x 50 = 28.76 according to Table 1; and this

too is in good agreement with the value shown in Fig. 8b. Finally,

the ordinate of flow velocity behind the shock front should be 331 [y /co
16.56, from Egs. {12c) and (92) ), which is again close to the value in
Figs. 8a and 8b.

In Fig. 8b, the rarefaction has just reached the closed end of the
tube. Although region 3 in Fig. 4 has now disappeared, the other regions
are still unaffected. 1In Fig. 8c, the rarefaction has been reflected
off the end of the tube and is now advancing into region 2. At this
point, X/L is about 2.34, so that conditions at the shock cannot as
yet have been affected. In Fig. &4, X/L = %.19, and the rarefaction
still has not caught up with the shock front. The contact surface is
still plainly discernible.

In Fig. 8e, X/L = 4.08, and we are now on the branch (4) of the
overpressure curve. The portions of the pressure, density, and flow
velocity profiles just behind the shock frout are beginning to resemble
those behind the shocks originating from a plane explosion when those
shocks are strong (Taylor's similarity solution; see Fig. 9). This
resemblance increases through Figs. 8f and 8g. For example, in Fig. 8g,
at y = 0.69, the pressure, density, and flow velocity are 68%, 55%,
and 84% of their respective values at the shock front. The corresponding
percentages from Fig. 9 are 69%, 52%, and 86%, respectively.

It appears from these results that in the interval 1 = X/L < %.817
the pressure, density, and velocity profiles just behind the shock front
are adjusting their shapes gradually to conform with the shape required
by the similarity solution and that while this adjustment is going on,
the shock overpressure is unaffected.

Figure 10 shows ten sets of pressure, density, and velocity distri-
butions corresponding to the ten‘;}ettered points in Fig. 3. The
abscilssa in this figure is y = X/#ﬂ. p*/p0 is now 500, and the ordinate
scales are now p/7pe = 0.71428 (p/ps), 50 (p/og), and 20 (u/cy)-
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Figure 10a shows the situation shortly after the detonation front
passes the point X = L. Behind a value of iy of about 0.23, the initial
pressure, density, and flow veloecity cdistributions (shown in Fig. 7)
are as yet undisturbed. In front of y = 0.23, a rarefaction, a contact
discontinuity, and a shock front have formed. By the time X/I has |
reached 1.9 (Fig. 10d), the shock pressure has fallen below the pres-
sure of the gas in region 2 of Fig. 5. This gas can now éxpand forward
and even strengthen the shock. This expansion is shown in Figs. 10e-j.
By the time X/L has reached 3.0 (Fig. 10g), the gas expanding forward
has begun to support the shock front. In Figs. 10h-j this support is
evidenced by the constancy of the shock strength. However, the profiles
of pressure, density and flow velocity are changing from concave down-
wards to concave upwards and approaching the profiles of the gimilarity
solution. The region of constant shock overpressure between 3.3L and
5.0L in this problem is the analogue of the region of constant over-
pressure between L and 3.817L in: the case of uniform heating. Beyond
5.0L the overpressure follows branch (7) of the overpressure curve

quite closely.
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