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CHAPTER I

INTRODUCTION

The quantum-mechanical three-body problem has played in the past
and continues to play, as it will in the future, an important role in
the development of atomlic and nuclear physics.

One reason for this importance of the three-body problem is
that it provides a nontrivial test of the validity of the fundamental
laws of quantum mechanics. For example, the calculation by Hylleraas
(1929) of the ground-state energy of the helium atom demonstrated not
only the essential correctness of the atomic model but also the ef-
ficacy of the laws of quantum mechanics.

Another reason for the importance of the three-body problem is
that it provides a tool for studying the forces of interaction between
fundamentel particles. In particular, it may be used to investigate
the extent to which the two-body forces are valid for a many-body
system. Thus, the study of three-body systems may help verify the
results of two-body interaction studies and, at the same time, demon-
strate the nature and strength of three-body forces.

Another important role played by the three-body problem is that
of providing a transitional step in degree of difficulty of calcu-
lation in going from the simple two-body system to the complex many~
body systems. At the same time that it provides this bridge from two-
body systems to many-body systems, it may also be used as a limiting

case in the general theory of many~body systems.
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A three-body problem may be classified in a nuwmber of ways. One
way is to classify the problem according to the particles in the system.
Thus, there is the atomic three-body problem (the helium atom, for
example), the molecular three-body problem (the hydrogen molecular ion),
and the nuclear three-body problem (the triton). There are others, of
course,

Anpther method of classifying three-body problems is by the
phyical processes involved., In particular, there are the bound states
with theilr energy eigenvalues and the corresponding properties which
may be obtained from thelr wave functions, and there are the unbound
states which, ordinarily, are associated with collision phenomena.

Some nuclear reactions, although involving many nucleons, may be viewed
from the standpoint of a three-body problem. A particular example of
this is deuteron stiripping.

The art of calculation of the energy eigenvalues of the bound
states, especially the ground states, is highly developed. However,
there is still much to be done in the way of calculating the wave
functions in general, and for the bound states as well as the unbound
states. One of the purposes of this thesis is to develop a practical
method of calculating the wave function of a three-body system in the
inner region where all three particles are strongly interacting. It
will be shown that such an inner wave function may be Jjoined to an
outer wave function which vanishes at large distances from the center
of mass of the system in such a way as to give a good representation

to the ground state of the helium atom. In order to be useful for
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collision phenomena, the inner wave function will have to be joined to
appropriate incoming and outgoing waves.

The first matter to be disposed of is the choice of a coordinate
gsystem., There are a number of considerations to be tsken into account,
Do, or should, the coordinates treat the particles in a symmetric
fashion? To what extent do the coordinates separate out the motions of
interest, in particular, the rotations and the translations? Are the
coordinates orthogonal? Do the operators of interest (in particular,
the kinetic energy, the potential energy, and the angular momenta) take
on convenient forms with the coordinates chosen? To what extent is the
Schroedinger equation separable in the chosen coordinates?

In an attempt to find answers to some of these questions, a
method of classifying coordinates has been developed in the following
Chapter IIX. On the basis of this classification, the form of the
metric tensor is then calculated in Chapter III. Appendix B gives
gpecific results for the two-, three-, and four-body problems.

Most workers in the past have found it convenient to separate
out the center-of~-mass motion, and for this reason the ordinary rec-
tangular coordinates in the observer’s frame are not suitable. On the
other hand, rectangular coordinates in the center-of-mass system are
redundant because they are not linearly independent. In the general
N-body system, the center of mass can be separated out leaving N-1
cluster vectors as described in Chapter II. The coordinates of these
cluster vectors form an orthogonal system of coordinates.

It is usually desirable to use coordinates which also distinguish

the rotations from the other motions. Hylleraas (1928) introduced a
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set of Buler angles for the rotational motion that was quite asymmetric
with respect to the particles. These are the Euler angles used by
Breit (1930) for his separation of the angular dependence in the two-
electron problem. Derrick and Blatt (1958) discuss two ways of de-
fining the Buler angles for the triton in a symmetric fashion. Bhatia
and Temkin (1964) give a symmetric Euler-angle decomposition for the
two-electron problem. Proriol (1967) generalizes this latter method

to systems of three and four identical particles. In Appendix B of this
thesis, the Euler angles are defined with respect to the principal axes
of the system. This is one of the symmetric mgthods discussed by
Derrick and Blatt and, for the purposes of this thesis, seems to be
particularly convenlent.

For the remaining three coordinates which describe the internal
motion of the three-particle system, the three interparticle distances
may be chosen. These form a symmetric set with respect to the three
particles. These interparticle coordinates may be used to describe
two~-, three~, and four-body systems only, and they may not be used to
describe the general N-body system. This does not destroy their use-
fulness for the three-~body problem, however.

In the Ritz-Hylleraas variational method (Hylleraas 1929) of
calculating the ground-state energy of the helium atom, asymmetric
linear combinations of the interparticle distances were used. Present
(19%) and Rarita and Present (1937) used these coordinates for their
calculation of the triton binding energy. Again, for the helium atom,
Kinoshita (1957) used a related system formed by ratios of Hylleraas

coordinates.
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Asymmetric linear combinations of the interparticle distances
form the perimetric coordinates introduced by Coolidge and James (1937).
A similar set was used by Pekeris (1958) for his extremely accurate
calculation of helium atom ground-state energy. The perimetric co-
ordinates have the advantage of having fixed ranges. Kinoshita's co-
ordinates have this same advantage.

Gronwall (1932) showed that the introduction of the area of the
three-particle triangle, along with two linear combinations of the
squares of the interparticle distances, had the advantage of making
the space formed by using these as coordinates conformally Fuclidean.

Curtiss, Hirschfelder, and Adler (1950) introduce the lengths
of the two cluster vectors and the angle between them as internal co-
ordinates. Baker, Gammel, Hill, and Wills (1962) use the same co-
ordinates. Luke, Meyerott, and Clendenin (1952) use two sides of the
three-body triangle and the included angle as coordinates.

In Chapter II of this thesis, the classification of the internal
coordinates is refined. In this way a set of coordinates for the
three-body system has been found which treats all three particles sym~
metrically, which further distinguishes between various internal motions,
and which diagonalizes the metric tensor as much as is consistent with
the known failure of complete separability of the rotational motion.
The classification is done for the general N-body problem, and hence,
the corresponding generalization of the coordinate system should be
possible. The generalization to the four-body coordinates is done in

Appendix B.
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Similar three-body cocrdinates have been found almost sirmulta-
neously and apparently independently by Gallina, Nata, Bianchi, and
Viano (1962), by Kramer (196%), and by Zickendraht (1965).

After the choice of a coordinate system there remains the de-
termination of the wave function. The usual procedure is to choose a
set of functions in which to make an expansion, direct integration of
the Schroedinger equation being ordinarily out of the question. The
problem then reduces to determination of the coefficients of the series
expansion, which is truncated at some point.

A set of functions may be found in various ways. The center-of-
mass motion is always ignored, since it may be factored out of the wave
function. The rotational motion is not so simply disposed of. Curtiss,
Hirschfelder, and Adler (1950) show how a wave function of definite
angular momentum decowposes into a sum, each term of which i1s a product
of a rotation function and an internal function. The rotation functions
asgociated with the orbital motion are just those functions which
Wigner (1931) showed were associated with the symmetric top and which
were first obtained by Reiche and Rademacher (1926) and Kronig and
Rabi (1927).

In addition to the separation of the orbital motion for the
triton, it is desirable to separate out the spin dependence, the I-spin
dependence, the parity, and to give the symmetry classification with
respect to particle interchange. Derrick and Blatt (1958) give such a
classification for the triton, Clapp (1961) gives an even more com-

plete treatment.
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One of the earliest sets of internal functions, which depends
on the three internal coordinates, was that chosen by Hylleraas (1929)
for his Ritz variation calculation of the helium atom ground-state
energy. The form of these functions is a power series in the three
Hylleraas coordinates multiplied by a suitable exponential which guaran-
tees that the function vanishes in the limit of large electron displace-
ments as well as guaranteeing the convergence of the variation integrals.
The same functions may be used for calculations of the triton binding
energy as was shown by Present (19%) and Rarita and Present (1937).
Coolidge and James (1937) showed that the Hylleraas form is complete
in a certain sense which is sufficient for the binding energy calcu-
lation.

Kinoshita (1957) uses a more complete expansion than that of
Hylleraas in that Kinoshita's series contains some terms with negative
powers. Thus, Kinoshita's series includes Hylleraas's as a subseries.

Pekeris (1959) uses an expansion in a series of products of
three Laguerre polynomials, each polynomial having for its argument one
of the perimetric coordinates. Again, as with the Hylleraas functions
and the Kinoshita functions, the series is multiplied by a suitable
exponential function.

A series expansion in Legendre polynomials, the argument of
which is the cosine of one of the angles of the three-particle tri-
angle, was made by Luke, Meyerott, and Clendenin (1952). The coef-
ficients of these polynomials are Tunctions of two variables and must

satisfy a second-order partial differential equation. Baker, Gammel,

Hill, and Wills (1962) use a similar expansion.
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For scattering problems, the plane wave expansions are espe-
cially useful. This is because they are so closely related to the
direct physical observations as well as having nice analytical proper-
ties. They do not form a denumerable basis, however, and, hence, the
expansion of the so-called internal wave functions in these functions
cannot be treated by the usual method of truncating.

Delves (1960) writes the wave function in the form of a product
of two spherical harmonics, the arguments of which are the angles of
the spherical coordinates of the two cluster vectors, respectively.
This product is multiplied by a function of the remaining two coordi-
nates, which are the lengths of the two cluster vectors. The latter
function is shown to satisfy a certain second-order partial differ-
ential equation.

Delves goes on to show that this equation is separable after a
change of coordinates is made. One of these coordinates is the radius
of gyration, and the other is an angle of projection. The resulting
set of functions form a denumerable basis.

This set of functions is closely related to the functions studied
by Zickendreht (1965) and in Chapter IV of this thesis, where the
starting point is that of forming harmonic polynomials in six-
dimensional space.

After the selection of the set of functions in which tc expand
the wave function, the actual calculations must be carried out. Bethe
and Salpeter (1957) review the methods available for the calculation
of the atomic three~body problem. Verde (1957) gives a review of the

nuclear three~-body problem.
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Until recently the only method used for the calculation of the
triton binding energy was the variational technique. A good example
of this is the work of Pease and Feshbach (1952) in their study of the
triton. Reference to earlier work may be found there.

The variational technique is of only limited usefulness for the
calculation of excited states, unbound states, and wave functions in
general. This was pointed out by Mitra (1962) who made one of the
first successful approaches to a calculation of the triton by a method
other than the variational one. His approach was made possible by the
use of a separable potential. Earlier work with a very short range
potential had been done by Skornyakov and Ter-Martirosyan (1956).

Aaron, Amado, and Yam (1964) used a field-theoretic approach to
the three-body problem. However, their method is formally equivalent
to the method of Mitra. They found a reasonable value for the triton
binding energy and resolved the question of neutron~deuteron scattering
lengths.,

In Chapter V of this thesis an apparently novel method of calcu-
lating the wave function and energy eigenvalue of a bound state of a
three-body system is developed. The method is based on an expansion of
the wave function which reduces the Schroedinger equation to a set of
coupled ordinary differential equations. The method does not depend
on the form of the potential except insofar as the resulting wave
functions may be well represented by the truncated expansion.

A generalization of two~body collision theory to three or more
bodies was made by Delves (1958, 1959, 1960). He showed that by using

a denumerable set of functions, the many-particle chamnel wave functions
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were formally identical to the two-body channel wave functions.

Roskies (1966) generalized R-matrix theory to three-body systems
for the restricted case for which there were no two-body interactions.
He pointed out that the results of Delves were velid only for this
restricted situation. Roskies discussed analytic properties of the S-
matrix and gave a three-fold classification of three-body collisions:
(1) two-body collisions, (2) sequential collisions, and (3) real three-
body collisions.

The formal theory of the scattering of a three-particle system
has been clarified by Faddeev (1960, 1961, 1962), by Lovelace (1964),
and by Weinberg (1964). 1In the practical solution to the problem, how-
ever, there remains the difficulty associated with the multiplicity of

coordinates.



CHAPTER II
THE CLASSIFICATION OF COORDINATES

In the study of systems of several particles it is both desirable
and easy to separate out the motion of the center of mass from the so-
called internal motions. This is accomplished by using orthogonal co-
ordinates, three of which describe the center-of-mass motion, and the
remainder of which describe the internal motions. There is a cor-
responding separation in the spherical harmonics and wave functions
assoclated with the system.

It would be convenient if one could set up an orthogonal co-
ordinate system, such as those described in Appendix A, which, in
addition to being orthogonal, would have the property of separating
out the rotational motions from the remaining internal motions, as is

done for the center of mass.

Such a coordinate system does not exist. This fact is well
known for the three-body system. Here it is shown that no such system

exists for the general case of N bodies.

The following two questions then arise: (1) if a coordinate
system which distinguishes the rotational motion from other motions
caunot be completely orthogonal, just how orthogonal can it be, and
(2) to what extent can one "peel off" the internal motions?

This and the following chapter; along with Appendix B, attempt
to give answers to these two questions. In this chapter a method of
classifying some of the internal motions in an invariant manner is

developed.
11
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The most general linear homogeneous transformation of the rec-
tangular coordinates of N particles is obtained by operating on the 3N-
dimensional vector formed by the components with an arbitrary 3N-by-3N
matrix. Usually one requires the matrix to be an element of a group.
The resulting elements formed by the matrix product are the transformed
coordinates or components.

Such a viewpoint which treats all the components homogeneously
is often useful, especially for the construction of coordinate systems
and the associated harmonic functions. From just this viewpoint the
well known generalizations of ordinary spherical coordinates have been
made (Morse and Feshbach 1953). An even more general expansion of the
simple three-dimensional rectangular, cylindrical, and spherical co-
ordinate systems is given in Appendix A by making use of a schematic
cluster diagram. Such coordinate systems have the advantage of being
orthogonal. The associated harmonics are also derived in Appendix A.

However, such transformations as the above are too general for
the requirements of most physical applications. In particular, they
disregard the natural physical correspondences between the components.
For example, there is no correspondence between the x-component of one
particle and the x-component of another particle, or between the x-
component and the y-component of the same particle.

The above viewpoilnt can be brought into greater accord with the
requirements of physics by restricting the transformation to the direct
product of a spatial rotation and a linear substitution on the particles.

Accordingly, the transformation will be written in the form

x=+x=RxU, (2.1)
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where x is a three-by-N matrix consisting of the rectangular components
(specifically, Xij is the ith component of the jth particle), X is the
corresponding matrix of transformed components, R is a three-by-three
orthogonal matrix specifying the rotation, and U is an N-by~N matrix
specifying the linear substitution on the particles. The matrix R is
chosen to be an orthogonal matrix in order to keep distance a rotational
invariant. R is an element of the rotation group. At this point one |
requires of U only that it be an element of a group.

Under the rotation R the components of one particle transform
in the same way as the components of another particle, and the com-
ponents belonging to different particles are not mixed. On the other
hand, the transformation induced by U causes the x-components of dif-
ferent particles to combine in the same way as the y— and z-components,
but x-components are not mixed with y-components, only with other x-
components.

It is advantageous at this point to enlarge the subgroup of
rotations to the subgroup consisting of translations as well as ro-
tations. This may be done by introducing homogeneous coordinates in
the spirit of projective geometry (Graustein 1947). Instead of three
nonhomogeneous (ordinary) components, x, y, and z, for each particle,
there are four homogeneous coordinates, A, Ay, Az, and A, where A is
an arbitrery nonvanishing scalar which may be different for each
particle.

In order to confine the physical problem to metric geometry A
is chosen as unity, although it will be shown that a better choice

would be the square root of the mass of the particle. In any case, the
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ordinary nonhomogeneous coordinates are found by dividing each of the
first three homogeneous coordinates by the fourth.
The use of such homogeneous coordinates allows the transformation
consisting of a rotation R and a translation d to be specified by a

four-by-four matrix T of the form

T = {g ﬂ . (2.2)

The corresponding transformation of the coordinate matrix is
r>r=Tr0U, (2.3)

where r is of the form

T = ; (2.4)

T has a similear form in which the last row contains only unit elements.

For the purposes of mechanics a diagonal mass matrix is

introduced,
my
Mz
m = 105 . (2.5)
! R

Lagrangian mechanics applied to the above formalism yields the following

quantities of physical interest: (1) the kinetic energy
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K = % Trace(Fmi’ ) , (2.6)

where, as usual, the dot above indicates the time derivative, and the

prime denotes the transposed matrix; (2) the linear momentum

b =rm, (2.7)

where pij is the momentum conjugate to rij; and (3) the symmetric

moment-of-inertia matrix
M= rmr’ , (2.8)

the elements of which are the plane moments of inertia, the products of
inertia, the center-of-mass coordinates, and the total mass of the
system. The plane moments are the mass-weighted second moments of the
rectangular components,

A generalized angular momentum matrix can also be formed by
taking the anti-symmetric part of the direct product of r with p. This
has been the subject of an investigation by Smith (1960).

Under a time independent transformation (which is interpreted

herein to be a change in the coordinate system) r transforms as follows:
r>r =T, (2.9)

There corresponds

m-=m=0U71nUu ", (2.10)
- 1 Lt

K»K:K:—E-Trace(rmr), (2.11)

p>Dp=TpU0 ™ =xm, (2.12)
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M>M=T" =rmr . (2.13%)

The transformations induced by T, that is, rotations and trans-
lations, form the Euclidean group. The transformations induced by U
will be called kinematic transformations, generalizing the nomenclature
of Smith (1959).

A particular type of kinematic transformation is the trivial re-
ordering transformation. Tor example, if initially particle 1 and
particle 2 with masses m; and m, are at r; and r, respectively, after
applying the reordering transformation, particle 2 and particle 1 with
masses meo and my; will be at rp and r; respectively. Such a trans-
formation may be represented by a permutation matrix, which has in each
row and each column only one nonvanishing unit element.

The mass matrix m remains symmetric under an arbitrary transfor-
mation, but it does not necessarily remain diagonal. There is a special
subgroup of transformations which keep the mass matrix diagonal. Such

a transformation has the form
1
U = ng o m2 , (2.14)

where m% is the square root of the initial mass matrix before the
transformation, O is an arbitrary orthogonal matrix of order N, and
m% is the square root of the final transformed mass matrix. No diagonal
element of M may vanish.

It is now clear that the initial mass matrix may be transformed

once and for all into the unit matrix I if the initial kinematic trans-

formation is chosen to be
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- me
U=m )
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(2.15)

and if all subsequent kinematic transformations are confined to ortho-

gonal matrices in N dimensions.

The effect of the kinematic transformation of Equation (2.15) on

the other quantities of physical interest is given by the following:

1

n2

to

— 1
T =1 =Im ,

e 1 -
K=>K=3 Trace(r r) ,
p=p=r,
M->M=rr ,

m=-m-=1.

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

It is noteworthy that an effect of the kinematic transformation

is to make the fourth component of the homogeneous coordinates equal

the square root of the mass of the particle. More explicitly, the

form of the transformed coordinate matrix is

1 L
m?_xl m%X2 . .
1 1
miy; MEya . .

L m% m
T

fonl—

where the elements of the

formed quantities.

——

o

N

EE&H
éﬁ

s (2.21)

ngh—-
[
=

-y

matrix are given in terms of initial uwntrans-~
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The orthogonal transformation matrix

m 1 M 1 .
(—)? ()
ml+m2 My Mo
my L my i
_(m -+, )2 )2
1 2 ml+n12
1
0 = (2.22)
1
o -

applied to the right of T gives for the first two columns of the trans-

formed matrix

- 1 -1
piolxy — Xo) ml%(mlxl + MpXs) . . J

1

1
ufo(yr — v2) my5(myy; + maYz) T

’ (2.23)

i 1
nga(zy — zo) my3(myzy + Mpzp) .

1

0 miz s e e

where uyo is the reduced mass of particles 1 and 2, and where my, is
the sum of their masses. The remaining columns are unchanged by the
above transformation.

The result of a transformation such as in Equation (2.22) is to
cause the fourth component of one of the column vectors to vanish,
thereby indicating that this column vector represents a point on the
projective plane at infinity. This vector is invariant under the

translation group. After such a transformation, the original masses
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m; and my, disappear completely from the formalism; only their sum
remains. Of course, the masses must be remembered, or, more completely,
the transformations must be remembered for a physical interpretation of
the components.

The effect of the above transformation may be graphically
represented as in Figure 1. The two points 1 and 2 representing parti-
cles 1 and 2 with masses m; and m, respectively, are associated with
the joining line I§, representing the point at infinity, and with the
line center 12, representing the center of mass of the two particles.
Somewhat similar graphs have been used by Smith (1959).

Since it is associated with mass, namely, the sum of the two
masses, the line center 12 may again be used as a point in a similar
transformation with another point or line center. (The distinction
between real mass and reduced mass is clearly made here. It may be
interesting to note, as an aside, that the latter would not be associ-
ated with any gravitational interaction.)

The transformation corresponding to a complete graph, such as
shown in Figure 1, and the judicious use of reordering transformations
(these are orthogonal too) cause the last row and the last column of

the transformed coordinate matrix to take the form

— 1l -
MeX
1
- £ MEY
r = . s (2.24)
M27Z
1
o 0 . . . 0 M
. pu
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12 A 2
.- M e & ¥ o
12 2
3
4 2

3

Figure 1. Graphs representing transformations to cluster coordinates
for two-, three-, four-, and N-body systems,



21

where X, Y, and 7 are the center-of-mass coordinates of the system,
and where M, the total mass, is the element My, of the moment-of-inertia
matrix of Equation (2.19). The other elements gijrall have the form
of the square root of a reduced mass multiplying a component of a dis-
placement vector and may be called the cluster coordinates cf the
system. The corresponding column vectors will be called cluster vectors.

The above reduction is carried out as far as time independent
transformations can go. There are still 3N coordinates, but all the
masses have been absorbed into the coordinates themselves; only the
total mass remains. The form on the right of Equation (2.24k) is in-
variant under the Euclidean group of translations and rotations. It is
also invariant under N-dimensional orthogonal kinematic transformations

0 of the form

0 = . (2.25)

Again, these transformations form a subgroup.

A glance at Equation (2.19) or at Equation (2.21) reveals that
scalar multiplication of the row vectors x of the coordinate matrix
yields the elements of the moment-of-inertia matrix, namely, the plane
moments of Inertia, the products of inertia, the coordinates of the

center of mass multiplied by the total mass, and the total mass itself.
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This property of the row vectors is invariant under kinematic trans-
formations with orthogonal metrices.
It is well known that there exists a Fuclidean transformation
T which diagonalizes the symmetric moment-of-inertia matrix M (Jeffreys
and Jeffreys 1950). Such a transformation will generally be time

dependent. It causes the coordinate matrix to take the form

0
_ _ 0
r = Iy . (2.26)
0
L
0 © . . . 0 M
- -4

Since the products of inertia wvanish in the new coordinate
system, the row vectors of the matrix T in Equation (2.26) are ortho-
gonal. Hence, 1t is readily apparent that an orthogonal kinematic
transformation of the form given in FEquation (2.25) exists which will

give the coordinate matrix the final form

0 . . . 0 Mgépl

1

2
o . . 0 Mesoo

T = 1 . (2.27)
o . . 0 Misp3
>

LO 0 M4 o

This defines the Py
The values of the nonvanishing components of T are, according to
Equation (2.19), the square roots of principal plane moments of inertia,

In essence, then, the coordinate matrix has been transformed into the
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square root of the diagonalized moment of -inertia matrix, M , given by
o

-y

M = , (2.28)

where N, NAp, Az, are the principal plane moments and Ay is the total
mass.

The original coordinate mstrix r, which gives the coordinates
of the particles in the observer's reference frame, may be expressed
in terms of the diagonalized moment of inertia matrix MO by inverting

the matrices used in arriving at Equation (2.27). The result is

1
r="T Mg U, (2.29)

where the subscript t on U indicates that the matrix U has been
truncated to its last four rows.

The matrix T has the form

T = s ; (2.30)

where R 1s an ordinary three-dimensional orthogonal matrix, and XC is
a vector gilving the three components of the center of mass. The ro-
tation matrix R is time dependent and depends on three coordinates, the
Euler angles being examples. The center-of-mass vector XC a2lso depends

on three coordinates, the three rectangular components themselves being

examples,
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Of the four nonvanishing components of the matrix Mg only three
may vary with time, the total mass M being kept constant. Again, three
coordinates specify these three components, and, again, the components
themselves may be chosen.

The form of the truncated matrix Ut is

o

U, =00 m?2, (2.31)

where m is the diagonal mass matrix given by Equation (2.5), and Om is
an orthogonal transformation specified by the masses and a cluster

graph. The time dependence of U_ is given entirely by the truncated

t
matrix Ot which has the form
= N
0
0
O-t = O't’ . (2-32)
0
0 . . o o0 1
Here Ot' is an orthogonal matrix in N-1 dimensions truncated to its

last three rows. There are B(N—l) time dependent components with six
constraints specifying the orthonormality conditions. Hence, Ot' is
specified by 3N-9 coordinates.

By using the coordinates to specify the transformations, one
has a method of classifying the coordinates in an invariant menner.
Thus, one may say that six external coordinates specify the transfor-
mation T, three specifying the translation and three specifying the
rotation., Three size coordinates specify the diagonal moment-of-
inertia matrix Mo’ and 3N-9 internal coordinates specify the truncated

kinematiec transformation matrix Ot' On the basis of this classification
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the internal variables and the size variables are independent of the
reference frame whether it be an inertial one or not.

Even the rotational coordinates and the center-of-mass coordi-
nates are independent tensors in the sense that their components do not
mix under an arbitrary Euclidean transformation which may vary with
time in an arbitrary way. That is to say, the rotation matrix in the
new reference system does not depend on the center-of-mass coordinates
in the old system, and, conversely, the center-of-mass coordinates in
the new system do not depend on the rotational coordinates in the old

systen.

The single-particle system is the most trivial example. All com-
ponents vanish except the center-of-mass components.

The two-particle system is characterized by three center-of-mass
coordinates, only two rotation coordinates, and one size coordinate.

The third rotational coordinate is lost because rotations about the line
Joining the two particles do not alter the configuration.

Three-particle systems are the simplest systems which have an
internal coordinate according to the above classification scheme. There
are, in addition to the three center-of-mass coordinates and the three
rotational coordinates, two size coordinates specifying the two prin-
cipal plane moments of inertial, and one internal coordinate.

The four-particle system is characterized by three rotational
coordinates, a full complement of three size coordinates specifying the

three principal moments, and three internal coordinates.
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Another related example is the rigid body, which is character-
ized by having no internal coordinates, only three rotational coordi-
nates and three translational center-of-mass coordinates. The principal

moments as well as the total mass are constant parameters.



CHAPTER IIX
THE METRIC TENSOR FOR N-BODY COORDINATES

In the course of answering the question in the opening of Chapter
1T, it is necessary to calculate the metric. This is a difficult and
troublesome problem unless some care is taken. The following method
gimplifies as far as possible the calculation, and, at the same time,
shows some important structural properties of the metric tensor.

The form of the metric tensor for a system of N particles will be
found using the formalism developed in the forégoing Chapter II. It will
be assumed that a coordinate system has been chosen which fits the
clagsification scheme associated with the formalism. The ith such
coordinate is designated by Qi; with the use of a coordinate of a par-
ticular classification, a classification label may also be appended.

For example, Crot,i is the ith rotational coordinate.

The simplest method of finding the metric tensor is by elabo-

rating the expression for the kinetic energy of Equation (2.11). The

time derivative of the coordinate matrix, derived from Eguation (2.29)

and Equation (2.31), is

1 1 1 1
. 5 v 5 -5
r (TMO 0, + T2 O, + T2 Ot) om>= . (3.1)

Six terms are present in the resulting expression for the
kinetic energy. They are as follows:

1. The external epergy

Trace (Tt Mo) . (3.2)

=
i
ol

ex

27
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2. The size energy

L ”% 2
K =3 Trace(TVT(MO) ) . (3.3)
5. The internal energy
K, == Trace(M% T o o)y . (3.4)
in 2 0 o tt
k. The external-internal interaction energy
K, =21 (T~ ) W 0,0
ei 2 race| o — ') L OtOtJ : (3.5)
5. The external-size interaction energy
K =% Trace[(T'T + T T) M% M%] . (3.6)
es 2 o 0
6. The size-internal interaction energy
1 '% ’ % % ’ '% S Ar
Ky =5 Trace[(MO T M2 -~ M2 T'T MZ) 0,071 . (3.7)

In deriving the above six expressions, use has been made of the
orthonormality properties of the truncated matrix Ot and of the di-
agonal character of Mo'

The expression on the right of Equation (3.7) vanishes from
symmetry requirements, so that the size-internal interaction energy
vanishes with it. The external-size interaction energy of Equation
(3.6) vanishes also; this is seen by looking more closely at the de-
tailed structure of the matrices. Furthermore, as is well known, the
external energy decomposes into the sum of a translational energy and
a rotational energy.

Use of the detailed structure of the matrices T, Mo’ and.Ot as
given in Equation (2.30), Equation (2.28), and Equation (2.32) results

in the following expressions:
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1. The external energies,
a) The translational energy

1

- T )2
K, =5 Ma(X)? . (3.8)
b) The rotational energy
B g
rot ~ 3 WIW- (3.9)
2. The size energy
1.
K., =%50p . (3.10)
3. The internal energy
L 1
Ky =3uwdu+3 v AV . (3.11)
4. The rotation-internal energy
U 4
K. = . (3.12)

The Ay, used above 1s just the total mass as may be recalled from
its defining Equation (2.28). The matrix J has the usual moments of

inertia for its diagonal elements. Explicity,

Doths
J = M+ . (3.13)

Related to the matrix J is the matrix
VEfEAa

% = Vsl - (3.14)
VA Ao
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The column matrix p is given by
P ‘
p = Pz ) (5-15)
P3
where the components Py according to Equation (2.27) and Equation

(2.28), satisfy the relations

A o= Moo= (M), . (3.16)

1

Wos Wy
w= lwsy | = Jus} o, (3.17)
=) W5
where the components are given by
w, ., = (RR),. . (3.18)

1J 1d

Just as there are angular velocities associated with the time varying
rotation matrix R, so there are angular velocities associated with the
time varying orthogonal matrix 0. Since one row of matrix 0 is kept fixed
according to Equation (2.25), the variation of internal coordinates
apparently corresponds to the motion of a rigid body in N-1 dimensions.
Since the only part of physical interest, however, is the truncated part
of the matrix, the correspondence is rather to a rigid body of three
dimensions rotating in an N-1 dimensional space. An analogy is a planar
body moving in ordinary three-dimensional space. Some of the motions
leave the plane of the body fixed, other motions tend to take the body

out of its own plane.
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The components of u and v of Equation (3.11) are just such

angular velocities. The three angular velocity components of u, given

by
Uz u
u = | us; = | us (3.19)
Uiz Uz
with
uyy = (Ot,é't,)ij ’ (3.20)

are the three components of the angular velocity which correspond to
the motions which keep the three-dimensional body in its own space as
it moves in N-1 dimensions.

The components of the angular velocity which tend to take the

body out of its own space are given in the column matrix

Vi1 vy 7
Vie Vo
A A = . , (3.21)
V2l .
v ‘
RER | 3N-12

with the components themselves given by

%4

vij = (O..L Otl)ij A (5‘22)
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The matrix Oy is made up of just the first N-4 rows of the N-1
dimensional orthogonal matrix ON-l of Equation (2.25). These are the
rows which are thrown away to form the truncated matrix Ot"

The matrix A appearing in Equation (5.11) is given by

45

M
= ] (5-23)

o A
wherein each of the plane moments of inertia Aﬁ appears N-4 times.

The time derivatives of the coordinates are introduced into the
five contributions to the kinetic energy given by Equation (3.8) through

Fquation (3.12) by means of the following relations involving partial

derivatives:
(%) = (8% )5 (€5 (5.24)
(p)y = (80);5 (£ 5 (3.25)
wi = ;;ij(érot)j ’ (3.26)
g = ug (g )y o (3.27)
Vi T Vij(éin)j . (3.28)

The sum of the five contributions to the kinetic energy are
equated to the following expression for the kinetic energy involving

the metric tensor g:
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. (3.29)

Here, as in the previous equations, summation over the repeated index
J is to be carried out.

The metric tensor is then seen to be of the form
,.o= (8 .30
gy = (8'Ms),, (3.30)

where M is a square symmetric matrix depending only on the elements of

MO (that is, only on the size coordinates) and having the form:

= J E ’ (3.31)

aud ~

where Ab is the total mass Ay, multiplied by the unit matrix of order
three, that is,
Ny
A= Ve . (3.32)
Ny

The matrix S has the form

0% ]
C
ép
g = w O . (%.33)
0 u
5 0 V]
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These results gregtly simplify the calculation of the metric

tensor. Furthermore, the determinant and the inverse are easily calcu-

lated. The determinant is simply
leg 51 = 1817 (5.34)

and the inverse g™t is given by

IRITER Gl A VR (3.35)

(6745

Whereas the matrix S, its determinant ,S’, and its inverse 871
depend on the choice of the coordinate system, the matrix M is inde-
pendent of the choice of the coordinate system except in so much as the
principal moments of inertia and related quantities depend on the sigze

variables. In particular, the determinant of W is found to be

N-k

M| = 2500 = 13)7 (8 = )2 (A — A)2 (M Aohs) , (3.36)
and the inverse is given by
e A »l o
o]
A -1
m = - (3.57)
Jd ~E 4 .
-E 7
A -1
- ad

where the matrices J and E are given by
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- roth -
(A=A )=
A3+A1
J = m (3.38)
A +Ao
(M—ho)®
and
Ldohs
(Aot )
VNS
F = m . (3.39)
w/HAiAE
i (M=12)?]

A result similar to this for a particular choice of coordinates
for the three-body problem has been given by Derrick (1960).

The restriction to a coordinate system whose coordinates fit the
classification scheme of Chapter 11 may be relaxed in an obvious manner.
Any coordinate system may be used; the matrix Y remains unchanged in
form, but the matrix S must be changed so that the first row contains
the partial derivatives of Xcl with respect to each of the 3N co-
ordinates, and similarly for the remaining row of 5.

However, using coordinates which are invariantly classified, the
metric tensor cannot be put into diagonal form except for the one~ and
two-body systems. This is because of the presence of the matrix E which

couples the rotations with the internal motions.
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Appendix B contains results of this method for calculating the
metric tensor for the two=~, three-, and four-body systems. Some general

results are given also.



CHAPTER IV

HARMONIC FUNCTIONS FOR THE THREE-BODY SYSTEM

From this point on, this thesis will be concerned with the three-
particle systems, especially those of atomic and nuclear physics.

The interaction potential between the particles is assumed to be
a function depending not on the external coordinates but only on the
gize coordinates and the internal coordinates as classified in Chapter
IT. Accordingly, the wave function of the system separates into a
product of two functions, a center-of-mass wave function and a so-called
internal wave function. Whereas the center-of-mass wave function de-
pends only on the center-of-mass coordinates as classified invariantly
in Chapter II, the internal wave function depends on the rotational
coordinates and the size coordinates as well as the internal coordinates.
It is only this internal wave function of the three-particle system that
will be considered here.

An importent problem is that of finding a set of functions in
which to expand the internal wave function, which is defined on a six-
dimensional space. Eigenfunctions of the kinetic energy operator are
known to be a useful set of functions in many scattering problems.

These kinetic energy eigenfunctions will be used here as a basis for
the expansion of the wave functions.

The problem, then, is to find these eigenfunctions as a function
of the gix coordinates which are invariantly classified. The particular

choice of coordinates will be as chosen in Appendix B, namely, the Euler

37
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angles d, B, and y, the two size coordinates p and X, and the single
internal coordinate y’. The angle y’ appears in the Laplacian in a
form very similar to that of the Euler angle y. (The angles @, B, and
v are the ¢, 6, and y of Goldstein (1953)). These coordinates, in
addition to sorting out the rotational motions, the size motions, and
the internal motion, have the further advantage of treating the par-
ticles in a completely symmetric manner.

The approach considered here is similar to that of Weyl (1931)
in his treatment of three-dimensional spheriecal harmonics. The spherical
surface harmonics of order £ will be constructed from the homogeneous
polynomials of degree £ in the rectangular coordinates of the six-
dimensional space. For the use of these rectangular coordinates, the
metric tensor must be the unit matrix. The rectangular coordinates may
be taken to be the components of the two three-dimensional cluster
vectors, that is, the cluster coordinates gij as defined by Equation
(2.24).

It is desired to classify these energy eigenfunctions according
to the total angular momentum quantum number BQ and the corresponding
azimuthal quantum number m e In addition, the wave functions may be
characterized by a quantum number p which is associated with the in-
ternal motion and its coordinate y’. There may still remain a number
of solutions for a given set of these quantum nuwbers. The multiplicity
of these solutions is derived in the following.

Delves (1960) and Zickendraht (1965) have studied the construc-
tion of such functions by the vector coupling of the two spherical

harmonics associated with the two cluster vectors, This leads to
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eigenfunctions of the angular momentum in. a six-dimensional space.
Zickendraht has found the explicit expressions for the S-, P-, and D~
state functions and for some "stretched" cases of greater angular
momentum. |
Instead of using the rectangular -components gij directly in the
forming of the polynomisls, it is convenient to form first the complex

spherical basis in three dimensions. A convenient definition is

e, = 2'"5'(1 +ij) , (4.1)
e_= 2'%(_’1_ -13) , | (4.2)
and
e =k . (4.3)
[0}

The g%, e, and Eo form a complex orthonormal basis if the usual
Hilbert space inner product is used to form the scalar product. The
triplet i, j, 5.15 the famjiliar real orthonormal basis in the observer's
system, and i1 is the imaginary root of —l.

A vector in the six~-dimensional space may now be specified by
the six real rectangular cluster coordinates gij or by the three com-

plex components Q+, QO, and Q_. These two sets of coordinates are re-

lated by

b+ig2=n_g_+ﬂo%+9+&, (4.4)

where gy and g, are the two cluster vectors defined by the first two
rows respectively of the matrix on the right of Equation (2.24).
As in Egquation (B.29) of Appendix B, the cluster coordinates

may be related to the invariantly classified coordinates by a matrix
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equation, namely:

Ri1 Rz
p cos X cos ¥/ —sin 9’
(62 £2) =|Ror Ras . (4.5)
. . ’ 4
Rsy R32 o sin X sin y cos 7
.. ..

The combination of Equation (4.4) and Equation (L4.5) leads to the

fbllowing expressions for the complex components:

Q= vin_% exp(iy’) sin Blcos(X + %) exp(iy) — cos(X — ﬁ) exp(—iy)]

(4.6)

and

D
il
Y o

p exp(iy’ + ia) [(1 ¥ cos B) cos(X + %) exp(iy)

i+

+ (1 % cos B) cos(X — %) exp(~i7)] » (b.7)

This is a vector of magnitude given by

la]® = o af + a0 + 0 0¥ = p2 . (4.8)

A homogeneous polynomial Y of degree £ may now be formed as

follows:

o a b ¢ d, %8 £
Y= ), A(eb,c,d,e,0)(2)%(0) (0% (2 )M (o) .
a+b+c+dt+e+f=£

(4.9)
The six indices of summation must all be non-negative. This polynomial
Y will be a surface harmonic of order £ if the radius p is chosen to be

unity and if the polynomial satisfies Laplace's equation in six
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dimensions
V7Y = 0, (4.120)

where V¢ is the Laplacian operator, which takes on the form

2 2 2
V2 = L < 9 - + 0 = + 2 %> . (b.11)
o0 08 20 90 o0 o
0 - 0”0

It follows that the coefficients A(a,b,c,d,e,f) must satisfy

the requirement

(a+1){(a+1) A(a+l,b,c,d+l,e,f) + (b+l)(c+l) A(a,b+l,c+l,d,e,T)

+ (e+l)(f+1) A(a,b,c,d,e+l,f+l) = 0 , (4.12)

if Y is to be a solution to Laplace®s equation.
This functional relation (4.12) which the coefficients A must
satisfy relates only those coefficients for which the following d4if=-

ferences are fixed:

& =d —a , (k.13)

8 =b —c , (4.14)
and

& = —e . (4.15)

Hence, for any given harmonic these three differences may be assumed to
be constants.

Each coefficient A may now be considered a function of only
three of the summation indices, a, ¢, and e, instead of all six.

Equation (L.12) correspondingly becomes
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(a+1)(a+1+8,) A(a+l,c,e) + (c+l)(c+l+s) Ala,ctl,e)

+ (e+l)(e+l+8s) A(a,c,e+l) = 0 . (h.16)

This Equation (4.16) relates the three values of A(a,c,e) at the

points of a darkened triangle which lies in the plane
1
a+cte=3[1=(8 +8+ &), (%.17)

as shown in Figure 2. Not all of the darkened triangles on the simplex

may be used, however. For in addition to the constraints

azo0, (4.18)
c=z0, (k.19)
ez0, (h.20)

there are also the constraints

b=c+ 8 20, (4.21)

d=a+ 8 =0, (4.22)
and

f=ec+ 8 20 . (4.23)

The above six constraints may be combined into the following three:

aza. = max(0, —8;) = %(—61 + [8]) (h.2L)

e 2, =max(0, —8) = 2(~b + |5]) , (4.25)
and

ez e =mx(0, ~85) = 5~ + |85]) . (1.26)
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Figure 2. The darkened triangles on the vertices of which the coef-

ficients A are related. In this example a ., , ¢

., s and e ., are
. min min min
assumed to vanish.
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The key to the solution for the coefficients A is found by
observing that to each darkened triangle there corresponds an eguation
relating the three vertices, whereas a value for A is required at each
vertex, There is a one-to-one correspondence between each triangle and
its upper vertex, thus leaving the lower vertices of the lower line of
triangles as points on which the values of A may be chosen independently.

If all but one of the A's on the lower line are assumed to
vanish, then the solution for the coefficients is seen to vanish every-
where except in a diamond-shaped region with bounds parallel to the sides
of the simplex. Thus, in Filgure 2, if the coefficients are chosen to
vanish at all points in the a-c plane except at point P, then the so-
lution vanishes everywhere except in the region surrounded by the
darkened line. There are, of course, other ways of specifying the in-
dependent parameters, but any solution will be a linear combination of
those found here.

It is not difficult to verify that the solution for the coef-

ficients for such a choice of parameters is given by the following:

(-1)° (e —e_, )t
Aa,c,e) = 2t ) (h.27)
a!c!(c+62)!(a+81)!e!(e+83)!(ao——a)!(co-—c)!

where a8, co’ and € in define the point P at which the solution does
net vanish. This triplet, ao, co, and emjn’ rmust satisfy the Equation

(4.17) of the plane, namely:

1
I T -2—[12. — (& + & + B35)] . (4.28)
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The spherical surface harmonics may thus be completely specified
by the five parameters L, 8, 8, 83, and a,. The ranges of the pa-

rameters are as follows:

£ =0, 1, 2, 3, .u. , (4.29)

B, = =k, ~L + 1, vee s -1, 2, (4.30)
with the restriction that

18] + |82] + |8&s] =4, £ —2, =4, ..., (&.31)
and

o = B(=ty + [8])s e s BB = B = 8] - [5]) (4.32)

The largest value of ao given above in Equation (4.%2) may be
combined with the minimum value & in given by Equation (4.24) to yield
the number of harmonics Nza asscciated with the order and the triplet

(81, Bsy O5). The number of harmonics is

- A L I (4.39)

The effect of an infinitesimal rotation of the cbserver!s co-
ordinate system will not change the degree of the pclynomial. Hence,
£ is an invariant. The other parameters, &, O, 83, and a_, are not
invariant under rotations.

The effect of such a rotation may be calculated in the following
way. First, the effect of the transformation on the cluster coordi-
nates 1s calculated, then the corresponding effect using the complex
spherical basis, and finally the effect on the terms of the polynomial

itself.
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An infinitesimal rotation R acting on the rectangular cluster
coordinates Eij is given by
£ (Re) = (I +w) e . (4.34)

I is the unit matrix, and w is given in terms of the infinitesimal

rotation with components w;, ws, and ws by the following matrix:

0 Wz  —Wo
W = W 0 Wy, . (h'Bs)
Wo ~Wy, 0

The corresponding effect on the components Qs QO, and Q+ in the
spherical basis may be calculated from Equation (4.4), Equation (L4.34),

and Equation (4.35) to obtain

e,

_1
(1 = dws) 0 + 2 2(—wp + iwy) Q,
i ~L
Q- (RQ) = o +2 2(wp + 1w1)Q_ + 272(we — i) Q. - (4.36)

L
(L + 1ws) Q, + 2 3(—wp — iwg) g

The powers of the spherical components which appear in the terms of the

harmonic Y on the right of Equation (4.9) then wndergo the following

transformations:
1 1
*\8 ¥\a8-1 . -5 * -5 ¥* . -
()" = (aF) [Qj + w2 e Q) — w2 %8 07 ~ lwsa Qi] , (4.%7)
b b-1 . - .
(o) = ()" 7[a_ + iwm2 @ 0, — w22 7b 0 —dwsb 0], (4.38)

-1 -1 ~L )
(@%)° = ()77 [0* + 1w,272¢ 0F = w2 e 0f + dwse 0¥, (k4.39)
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d d-1 Lo L '

(2,)" = (2,)7 7o, —1n22d o — w2 2d o + iwsd 0], (4.50)
(6%)° = (0% [0F = 102 Fe(0F — 0%) + we2 Fe(0* + 9¥)] (b.41)
o o o 1 + - 2 + LRI .
(a)F = (o e - 1w ?—%f(Q -0) +uw 2'%:?(9 + 0 )] (4.u2)

¢} o} o 1= + - 2 + ).

Only the first order terms have been retained.

It may be seen that the component ws leads to no new harmonics.
That is, the harmonics given by Equation (4.9) are invariant with
respect to rotations about the z-axis. On the other hand, the com-
ponents w; and wy lead to two new harmonic functions. The linear com-
binations (w; + iws) and (wy — iws) are associated with the harmonics
produced by the familiar "raising"” and "lowering" operators of angular
momentum theory (Rose 1957). According to Equation (4.%7) through
Equation (4.42), the harmonics produced are given by the following two

linear combinations of coefficients:

A+(a:c’e§51: 52:5.5) = (a+l) A(a“’l:cye"l; 81”1’62’53+l)
- (e+83+l) A(a,c,e; 1,8z, 8‘5“”1)
+ (c+82+1) A{a,c,e; 8 ,8-.+1,585—1)

— (e+f) Ala,c~1l,e+l; &o+1,8:—1) (4.43%)
and

A_(a:c:eiél,ﬁz;@) = (c+l) Ala,c+l,e~l; 81,81, 85+1)
- (e+63+l) A<a’cpe§ B15 52—1)63"'1)
+ (a+8,+1) A(a,c,e; B+l,8:,851)

— (e+l) A(a~l,c,e+l; B;+1,85,85~1) . (L. uk)
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Thus, if a harmonic function is given in terms of its coef-
ficients A(a,c,e;8,,85,85), then the coefficients of two new harmonic
functions are defined by Equation (4.43) and Equation (4.44) respectively.

The coefficients defined by Equation (L4.27) are assumed to vanish
except for a unique set of values for the triplet (8,,85,8s). The
assoclated harmonics produced by the "raising" and "lowering" operators
from the harmonic of Equation (4.27) each have two sets of values for
the triplet (8,,85,85), as may be seen from Equation (4.43) and Equation

(b.4h). These two equations also show, however, that the sum
O + 8 + 863 =u=4—2n (14‘01'"5)

is dinvariant under the rotation group. The second equality follows
from Equation (4.17) and defines n.
Furthermore, Equations (4.43) and (L4.4k4) show that each harmonic

may be characterized by a constant difference

m - 81 -~ % . (4.&6)

o
The effect of the "raising® operator is to increase m by unity and the
effect of the "lowering" operator is to decrease m by unity. It there-
fore seems reasonable that m is the azimuthal quantum number for the
orbital angular momentum, and it will be seen that this interpretation
is correct.

The classification of the harmonics is usually desired with
respect to the rotation subgroup. This clagsification will be charac-~
terized by £ and p since they are invariants. For a given £ the
triplet (8;,8,,85s) is confined to the interior of the equilateral

octahedron
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[8u] + [82] + [8s] < 2, (4.47)

according to Equation (4.31). This is shown in Figure 3. Also shown
is the intersection of this octahedron with the plane of Equation (4.45)
characterized by constant u. On this plane of intersection may be seen
the lines of constant my and the lines formed by the planes of the co-
ordinate axes.

At each point in the plane of constant u the number of harmonics
is given by Equation (4.3%). In particular, at each point on the sur-
face of the octahedron there is exactly one harmonic. Inside the
octahedron, the form of the absolute magnitudes of Equation (4.33) de-
pends on the octant. Not more than seven octants appear in any one
cross section characterized by p. The number of harmonic solutions as
given by Equation (4.33) according to the octant is given in Table I.

For the particular case that {p[ is equal to £, the cross section
of Figure 3 reduces to a triangle. Since all these points lie on the
surface of the octahedron, there is one harmonic at each point. There
is accordingly one multiplet of (EEO + 1) harmonics for each value of
the orbital angular momentum guantum number with the following allowed

values,

b= 2, £ =2, b=k, ool (4.48)

For the other cases in which }p{ is not equal to the order £,
the number of harmonics for each value of p and m may be found by
summing arithmetic series. The difference between the number of har-
monics assocliated with a given value mo and the number associated with

m, + 1. gives the number of multiplets for the orbital angular momentum
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Figure 3. The equilateral octahedron ‘Sl] + |8?| + ’83] £ and its
cross section in the plane & + &3 +
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TABLE I

NUMBER OF HARMONICS AT EACH POINT IN
THE PLANE 8, + 8> + 85 = 4 — 2n
ACCORDING TO THE OCTANT

Octant Number of Harmonics
+ + + 1 +n

+ + - 1 +n+ &

+ - + 1l +n+ 8

b - - l1+4—n=-25
-+ + 1 +n+ &

-+ - 1+4—-n-2%
- =+ 1+4~-n- 3%
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quantum number ZO equal to the value mo. The results of such calcu-
lations are given in Table II. These results agree with those of
Zickendraht (1965), who, however, was unable to prove his results.

The harmonic functions associated with a given value of u, ﬂo,
and m_ may be calculated by starting out with the stretched case for
which 20 Just equals the order of the harmonic £. By successively
applying the "lowering” operator through the use of Equation (4%.44) and
by choosing the right linear cowbinations at each step, one may eventu-
ally find the harmonic desired. This method is rniot yet practical.

The surface harmonics may be found explicitly by another method.
If the expressions for the spherical components given in Equation (4.6)
and Equation (4.7) are inserted into the expression for the harmonic
polynomial on the right of Bquation (4.9), then, after liberal use of
the binomial expansion, the result is

Y = exp(iy’u) e@(‘iamo) Z e@(—img)

ml

o
(er+f(u—m’)) ( —er—5(u-m'))
Z}{cos(x + %)} IR [cos(z - %)J "o
L
(L+m_+23) (£~m_—2s)
ZDC (sin % B) © (cos % B) © . (4.49)

It is thus revealed that the parameter u is an eigenvalue associ=-
ated with the internal angular coordinate ¥’ and that m really is the
azimuthal quantum number. The other two eigenvalues, which may be taken
to be 5z and a s, are hidden in the coefficients C, which are given by

the following:



TABLE II

THE NUMBER OF MULTIPLETS FOR A GIVEN SET
OF EIGENVALUES £, p, AND £

Region Even £ ~ £o 0dd 4 - £g
£ - zo 1+6 ~ ﬁo
—-— < < S~ J—.
£ —n < Zo Y/ 1+—5 5
n<f <4f-n 1+ [2) B a l]
o} 2 2
0 £ <n
o}
zo zo
a) Even n 1+ [E?} [E;}

NOTE: The square brackets mean the
integral part of the quantity inside 1is to be
teken. This table is forpu =4 —2n 2 0. To
obtain the number of multiplets for negative
1, replace n by £ — n in the above table.
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This multiple sum in Equation (L.50) is taken over all positive
values of the indices gsubject to the constraints shown under the sum-
mation sigma. The reduction to a sum over five indices is trivial. It
is likely that even further reduction of the indices may be made.

The harmonic thus developed is not characterized by a fixed
value of the orbital angular momentum ﬂo. It can, however, be ex-
panded into a sum of such terms, each of which is characterized by a
value of BO. This is done by taking from each term on the right of
Equation (4.50) that factor which depends on the Buler angle R and

£
expanding it as a series in the rotation functions d Omﬂﬁ). The
o

m
resulting coefficients which appear in the harmonic are even more com-
plex than those given by Equation (4.50). It may well be possible that
these multiple sums can be reduced to simpler forms.
The results presented in this chapter of these investigations

into the properties of the harmonic functions are not needed in the

following chapters.



CHAPTER V
THE APPLICATION OF THE METHOD

In order to apply the method developed in the foregoing chapters
and to test its usefulness as a calculational tool, a FORTRAN program
has been written for the CDC-1604 computer

The program has been limited in two respects. First, the
orbital angular momentum is restricted so as to include S states only.
There are a number of reasons for this restriction, the foremost being
that of simplicity. (At present, the forms of the harmonics have been
worked out by Zickendraht (1965) for the S, P, and D states only, so
that, at most, only three values of the angular momentum could be used.)
With this restriction, the program is able to calculate the ground
state and some of the excited states of a three-particle atomic system
and the most important contribution to the ground state of a nuclear
system.

The second restriction concerns the potential function. It may
be quite general in the form of its spatial dependence (it is specified
in a subroutine), but in the initial version of the program there may
be no dependence on internal degrees of freedom, such as spin. The
restriction is of little concern for the atomic systems, but is a
serious limitation on the calculation of nuclear systems. The potential
does not need to be a sum of two-body potentials.

In addition to these two restrictions, the program is directed

toward the calculation of bound-state wave functlons and the corresponding
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energy elgenvalues. The program will also calculate the wave function
at an arbitrary energy, at least in the neighborhood of the origin.
Generally, however, a large number of harmonics is needed for a valid
expansion of the wave function of an unbound system at large distances
from the center of mass of the system.

Of course, the principal motivation for the development of the
method is to calculate scattering phenomena. However, the bound system
has been chosen here because it can more readily demonstrate the capa-
bilities of the method.

The helium atom has been chosen in particular because it pro-
vides a good Tirst test of the method. The Coulomb potential is not
complicated by spin dependence, and, moreover, the well-known results
for the helium atom provide a reliable check on the answers calculated
by the method.

In the following, the wave function and the potential energy will
cach be expanded in a series of harmoniecs. The Clebsch-Gordan series
will be applied to find the corresponding series expansion for the
product of the potential energy and the wave function. The Schroedinger
equation reduces to a set of ordinmary second-order differential equations
coupling the harmonic coefficients of the wave function. This equation
may be integrated by simple numerical techniques.

A complete set of solutions satisfying the inner boundary condi-
tions is integrated outward to a match point. Similarly, a complete
set of solutions satisfying boundary conditions at a distant point
(representing infinity) is integrated inward to the match point. Ac-

cording to the discrepancy in the two sets of solutions at the match
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point, a new solution made up of linear combinations of the old is
chosen 8o as to be as smooth as possible. By integrating the sguare
of this new wave function, a new estimate of the eigenenergy may be made.

The Schroedinger wave equation for the three particles is

ﬁe
~ 5 VRy + Ty = By . (5.1)

The total mass of the system is assumed to be unity throughout this
chapter. The symbol V2 represents the Laplacian operator in six

dimensions and, for S states, is given by

2 .
V2 = p"5/2 = p5/2 + p B(A~15/4) , (5.2)
3p=
where
2
A= 62 sin ux 2 + & 9 . (5.3)
sin kX a(4X) 3(4X) 1 + cos X 9y’

The coordinates are those described in Appendix B. The variable p has
the range (0, «); the variable X has the range (0, n/4), and the vari-
able y’ has the range (0, x).

The wave function is now expanded in the surface harmonics of

Chapter IV. The expansion is

Wos % 7') = 2wy, (0) Y, (6 7). (5.%)
bu

Only the S-state surface harmonics appear in the series. From Table
1T, page 53, 1t 1s seen that there is one S-state harmonic of even order
£ for values of p differing from £ by four.

The harmonics are most easily found, perhaps, by finding the

eigenfunctions of the operator of Equation (5.3). The solution is
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separable in the following form

Yﬂu(x’ y') = AZM(X) fu(y') . (5.5)

The boundary conditions may be obtained from considerations of
the elght three-particle configurations which are mutually related to
one another by a rotation that carries the principal axes into them-
selves. For an S-state the boundary condition with regard to the

internal variable y’ becomes
£ (n) = £ (0) . (5.6)

The separability assumption of Equation (5.5) inserted into the
eigenvalue equation arising from the operator of Eguation (5.3) with

the boundary condition Equation (5.6) leads to the solution
f(y') = exp(i2wy’) for v =0, 1, +2, ... . (5.7)

This 1s just what was predicted, of course, from Table II, page 53.
The p appearing in Equation (5.7) is just half the value of u, which
mist be even.

In a similar way, the functions Aﬂu(x) may be found. For S states

the boundary conditions are

!

ax Aﬂ‘ll(o> =05 (5.8)
and
§§ AEM(K/H) = (0 for even yp , (5.9)

or

Aﬂp(ﬂ/h) =0 for odd p . (5.10)
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The equation to be satisfied for a harmonic of order £ is

- o .
L 16 4 gin by —E— Sv + (4 + 4) A, (x) =0 . (5.11)
sin 4X d(4x) a(kx) 1 cos UX d

The solution is found to be

1l — cos LI-X)

A (X) = (cos 2X)Y LFy (N, N +p + 1; 1; =

by

(cos 2x)¥ P&O

it

) (cos kX)

d??i,v/a (hx) . (5.12)

The functicn Péa’ﬁ)(x) is the Jacobi polynomial of degree n as defined
by Magnus, Oberhettinger, and Soni (1966). The function di,m'(ﬁ) is
the reduced rotation matrix defined by Rose (1957). The value N
appearing in Equation (5.12) must, of course, be a non-negative integer.

It is related to the order £ of the harmonic by the following relation

N=(2-p)/h=(A=w)2. (5.13)

The )\ appearing in Equation (5.1%) and in Equation (5.12) is
half the value of the order £, which is eveh. Putting N equal to a
non-negative integer is Just another way of saying that the order £ of
the harmonic must be greater than p by multiples of four. Another way
of expressing the same idea is to say that the indices appearing on
the rotation matrix of Equation (5.12) must satisfy their usual
relations.

Instead of the indices £ and u, the indices A and v will be used.

The expansion of the wave function given in Equation (5.4) may now be
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written
o A .
ry 2 % 2 . ’ )
Wos % ) = ) 0w () 42 (00 explazey’) (5.14)
Ap=2

It is assumed that the potential energy V appearing in

Schroedinger's Equation (5.1) is given by a similar expansion, namely:

o A
? _ \" ?\ 2 . )
Wor % 7Y = 0 ) ) D)2 e (10 ex(i27) (5.15)

Lo=2

The expansion for the Coulomb potential ig given in Appendix C.

In both Equation (5.15) and Equation (5.14) the expansion coef-
ficients must express the fact that the quantity on the left of the
equation is real. Thus, for example, the coefficients Vkv(p) of

Equation (5.15) satisfy the relation

v, (p) = V(o) , (5.15)

where the asterisk indicates the complex conjugate. A similar relation
holds for the coefficients w%u(p) of Equation (5.14).

Within the computer program the real parts and the imaginary
parts of the coefficients must be stored for the following positive

values of p,
b=, A=2, A=U, ...20 . (5.17)

When p takes the value zero, only the real part of the coefficient needs
to be stored, since, according to Equation (5.16), the imaginary part

vanishes.
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The product V¥ of the potential and the wave function which
appears in the Schroedinger Equation (5.1) may also be expanded in a
series of harmonics. Application of the Clebsch-Gordan series (Rose
1957) yields the following expression for the coefficients:
(W, = (x5 s, (0) W o) (5.18)
Ny

where

Mﬁ}@)=(x+13ﬂ-2 (c(w /2 W[2 N2; v [2 v"[2))2 T, (p)
?\”V "

(c(N/2 Me N/2;—v' [2 p[2))2

(?\II + l)

»

?\”V 144

V7\/fv//(9> . (5-19)

This last form for M follows from Racah!s symmetry relations
(Rose 1957) for the Clebsch-Gordan coefficients. It shows that the M's
are symmetric, thereby decreasing the storage requirements inside the

computer. Specifically, the symmetry relations satisfied by M are
N _uw N A = N Ay F '
Mo (o) = 4 (o) = (M), Xp)) (5.20)

Equation (5.16) has been used in deriving this last symmetry relation
in Equation (5.20).

Introducing the coefficients
— 5/2 5,0
¢, () =052 v (o) , (5.21)

and making the simplest approximation to the second derivative (this
simple approximation is made in order to have adequate storage in the

fast memory of the computer), namely,
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326 ¢(p + n) + ¢(p —h) — 26(p)
— (p) = ’ (5.22)
dp= h=

leads to the following difference equation:
0., (p + 1) = =0, (p—h)+ (8 (p) - 8(p) + T, (p)) C, - (5.23)

The quantities appearing in this FEquation (5.23) which need defining

are
Sx(p) = [((hp)2(2 — ZPE) ~ 0.25114)/0?\ + CK]/(hr)z R (5.24)
T, () = 5 WMoY < b, (o) (5-25)
)\I
V'
and
c, = oh2(A + 1) . (5.26)

Planck?!s constani;b.is assumed to be unity in these above equations.
The foregoing Equations (5.2%) through Equation (5.26) are in a
form very sultable for computation purposes, snd, in fact, are the
equations used in the program. The symmetric array Mz:z(p) does not
depend on the energy. It is calculated once and for all at the be-
ginning of the program and stored on magnetic tape. As the integration
proceeds, it is buffered into the memory of the computer. Of course,
this array as well as the terms appearing in both Equation (5.23) and
Equation (5.25) must be separated into their real and imaginary parts.
The above describes the method of integrating the Schroedinger
equation to obtain the wave function at a given energy. There is still

the problem of "guessing'" the energy of a bound state. The following
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describes the procedure used to consistently improve the estimate of
the energy eigenvalue.
The procedure is a direct generalization of that used by Lovitch
and Rosati (1965) to integrate the Schroedinger equation for the
deuteron. The eigensolution ¢, congisting of N components, 1s assumed

to satisfy a second-order equation of the form

- 4% + V(r) 9 = b, (5.27)

dre

along with two-point homogeneous boundary conditions. The operator V
is assumed to be a symmetric matrix; ¢ is the eigenvalue desired. The
eigensolution [ is, of course, continuous and has a continuous de-
rivative everywhere in its domain of definition.

At the "guessed" energy e + 8, which is not an eigenvalue of the

system, the equation

- Fu + V(r) u=(ec+ 8 u (5.28)

pl

dr=

has N independent solutions v which satisfy the inner boundary condition,
but no linear combination of these satisfy the outer boundary condition.
Similarly, Equation (5.28) also has N independent solutions w which
satisfy the outer boundary condition, but, again, no linesr combination
of these satisfies the inner boundary condition.

By allowing discontinuities in the components of the solutions
and thelr derivatives at an intermediate point a, the match point, one
mey construct a solution u to Equation (5.28). Thus, the discontinucus

solution u ig a linear combination of the v's on the left of the match
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point and is a linear combination of the w's on the right of the match

point.
From Equation (5.27) and Equation (5.28) the following may be
derived:
2 24/
— g 2B a2 u= 'u . (5.29)

dre  4r®

The transpose is again denoted by the prime. Integration of this
BEquation (5.29) first on the left of the match point and then on the
right of the match point yields the following:

d¢’ (a)
o [ ar ¢'u = ¢ (a) [P, ——— [u], (5-20)

where

_dulay)  du(e) (5.51)

a dr dr

du
(]
is the discontinuity in the derivative of the solution at the match

point a, and
[u]a = u(a+) — ula—) (5.32)

is the discontinuity in the solution itself at the match point a.

If two N-dimensional column vectors, & and B, are chosen so that

a¢’ (=)
¢’(a)~a - g =1, (5-55)

and if then the discontinuous solution u is chosen so that its dis-
continuities at the match point are

[QE
dr-a

= ko (5.34)

and



[ul, = kP (5.35)

for some scalar k, then Equatidn (5.3%0) for the deviation & in the

eigenvalue becomes

5 [ar ¢'u = k . (5.3)

As yet, there has been made no approximation. However, some
approximation to the true eigensolution ¢ must be made in order to
calculate the integral appearing on the left of Equation (5.36).

The only reasonable guantity at hand with which to approximate
the true solution ¢ is the discontinuous solution u. But there is some
liberty in choosing this. A convenient method is to take B to be the
null vector and to take & to be the solution u(a) at the match point.
In this way the solution u is continuous, only its derivative belng
discontinuous. The solution u is then chosen so that the discontinuity
in the derivative will be as small as possible in some sense.

The assumptions of the foregoing paragraph cause Equation (5.33)

to be a normalization condition on u, namely:

u’(a).ufa) =1 . (5.37)
Equation (5.34) becomes under the above assumptions

du

[ )e = Eula) . (5.38)

This last equation may be expressed in terms of the complete sets of

solutions, v on the left and w on the right. Equation (5.38) beconmes

dw _ . dv - .
(Zvrt-m v u=iku. (5.39)
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A1l quantities in this Equation (5.39) are evaluated at the match point
a. Note that w and v are square matrices, made up from complete sets of
solutions,which satisfy the outer and inner boundary conditions,
respectively.

The problem of minimizing the discontinuity reduces to that of
finding the eigenvalue of Equation (%5.%9) of minimum modulus. It
should be noted that the matrix difference on the left is independent
of the particular bases chosen to describe the complete sets of solutions.

The knowledge of the solution u(a) at the match point from the
eigensolution belonging to the minimum eigenvalue of Equation (5.3%9)
allows the determination of u over the whole range. The-estimate of the
energy correction to be made is then given by the following approxi-

mation to Equation (5.36):

du -
u' (a) [5=

'—8::*‘—_"—'"@'1""?" . (5.)—4'0)
j‘dr w'u

Equations (5.37) and Equation (5.38) have been used to eliminate k from
the expression appearing in Equation (5.40).

Although there seems to be no guarantee that a real minimum
exists to the Equation (5.39), intuitively it seems that such a real
value should exist. From Equation (5.%) it is seen that such an eigen-
value would correspond to the true solution of the differential, system
lying nearest to the "guessed" solution. In any case, in practice, the
real minimum has always been found to exist.

The results of the calculations of the energy eigenvalues of the

helium atom for several values of the order A of the expansion are given
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in Table III. There are two numbers against which these results may be

checked. The first number is the zerc-order energy value predicted by

the formula
2
16 -
= (— .o 5041
By (l5ﬂ ¥ (5.41)

where atomic units have been used. The bracket contalns three terms,

each of the form shown and differing only by a permutation of the sub-
scripts. This Equation (5.41) follows directly from Equétion (70) of

the paper by Zickendraht (1965).

Insertion of the masses and charges appropriate to the helium atom
into this Equation (5.41) yields for the zero-order energy the value
~2.498364151 atomic units. It is seen that the error introduced by the
use of a finite mesh and a finite boundary condition is quite small.

The other energy value against which the results given in Taeble
IIT may be checked is the value —2.903%724% atomic units, obtained from
the very accurate calculation by Pekeris (1959). These results shown
in Table IIT should be identical to the energy values given by a
variational calculation using the corresponding harmonics as linear
variational functions. Note that the calculated energies lie above the
"true” value. For the last set of values given in Table III, the com=
puting time required for one iteration was about one hundred seconds.
Only three or four iterations are needed. Hence, the results show that
the method gives reasonable results for a small amount of calculation

time, The complete computer program and a brief set of instructions are

given in Appendix D.
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TABLE III

HELTUM ATOM ENERGY VAIUES FOR VARIOUS ORDERS OF
THE HARMONIC EXPANSION

A E (atomic units)
0 —2.498371
1 ~2.694048

2 ~2.82%6037




CHAPTER VI
SUMMARY AND DISCUSSION

The purpose of the study reported in this thesis was to develop
general methods for the calculation of quantum-mechanical three-body
problems. In particular, methods are needed to calculate wave functions
of bound systems and scattering systems in which the form of the potential
is as general as possible. Previous nonvariational calculations have
used restricted forms of the potentials. The variational methods, while
giving accurate values for the bound-state energy eigenvalues, are
limited to the ground state and a few low-lying excited states. Further-
more, the variational method does not give accurate wave functions.

The method developed herein has been' shown to give good results
for the bound state of the helium atom. Although this method will not
replace the variational method for the calculation of the ground-state
energies, it does present a method of calculating wave functions re-
liably, especially in that region where the three particles are inter-
acting strongly.

Particular systems for which this method appears to be especially
useful are the scattering of nucleons by deuterons, direct reactions
involving deuterons, and nuclear reactions involving three-body final
states.

There are a nuwber of directions in which this study may be
continued. An obvious direction is to generalize to systems more com-

vlex than the three~body system. The coordinate classification scheme

69
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and the form of the metric tensor are already generalized to an arbi-
trary number of particles. It should not be difficult to find coordi-
nate systems suitable for an arbitrary number of particles similar to
the coordinates developed here for the three- and four-body systems.

Harmoniecs similar to the ones developed herein for the three-
body problem should be developed for these more complex systems. And,
again, the reduction of the Schroedinger equation to a set of coupled
ordinary differential equations should be possible, allowing a similar
numerical integration. Of course, the increased complexity of the
harmonic expansion will be a limiting factor.

The continued application to the three-body problem of the
methods developed herein may take a number of turns. First, the outer
boundary condition of the bound-state problem should be improved. This
may be done by using the Wentzel-Kramers-Brillouin approximation at
large distances from the origin. Second, the wave function should be
given additional degrees of freedom to correspond to spin and I-spin
states. Third, realistic nuclear potentials should be used for the
development of subroutines which can be inserted into the program for
the celculation of the wave functions of the two three-body nuclei “H
and °He. Of course, the computer program itself can be made faster and
more efficient.

Perhaps the most advantageous use of the method developed in this
thesis would be in its application to collision phenomena. This would
require the development of harmonic functions having greater values of

the angular momentum than is represented by the S-state functions used
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in this thesis. The coupling of these functions with the potential
functions would have to be developed also.

In the application to collision phenomena, the wave function
should be found by integrating coupled ordinary differential equations
over the internal region and matched to an external wave function on
some surface where the potential is small. This matching to an external
wave function is necessary because the truncated harmonic expansion used
in the internal region will not give an adequate representation of the
two~body bound states at large distances, as has been pointed out.

The results of the study reported in this thesis indicate that

all these goals are feasible ones.
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APPENDIX A

SURFACE HARMONICS IN N DIMENSIONS

The construction of spherical surface harmonics in N dimensions
using the invariantly classified coor@inates defined in Chapter ITI is
a difficult problem. A simpler problem is discussed here, namely, that
of finding the surface harmonics associated with an orthogonal coordinate
system which is a genersalization of the ordinary three-dimensional
gpherical and cylindrical coordinate systems. The classification of
surface harmonics in these coordinates is simple because the structure
of the subgroups by which the harmonics are classified is obvious. The
solution of this simpler problem should help in understanding the struc-
ture and classification of N-dimensional spherical harmonics in general
as well as being In itself a useful bit of information.

Accordingly, an N-dimensional coordinate system consisting of one
radial variable and N-1 angular variables will be constructed. The
method of construction will proceed by means of orthogonal projections
and thence to an orthogonal system of coordinates. These projections,
which define the coordinates, may be specified most simply, perhaps, by
means of a projection diagram such a2s that in Figure 4. The line So in
the diagram represents the N-dimensional space. FEach of the other N-2
lines representsa linear subspace of two or more dimensions. The N one-
dimensional subspaces are represented by the terminal end points on some

of the lines.
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S 4+ -
T — -
So
—md S 4
S_.
‘Dxx
P
**
@ \

Figure 4. A projection diagram defining angular coordinates in a space
of eleven dimensions.
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Fach subspace of two or more dimensions may be decomposed by
means of projections onto two orthogonal subspaces. Thus, each line is
terminated by two lines, two innts, or a line and a point. An arrow
on the line indicates which projection is considered the primary pro-
jection and, hence, gets the cosine of the projection angle 6. The
secondary projection gets the sine of the projection angle 6.

A vector of length r lying in the space SO is projected first
onto the subspace S+ and then onto the orthogonal subspace S5_. The
lengths of the projections are r cos Qo and r sin 90, respectively.

The primary projection of length r cos 60 lying in subspace S+ may
again be projected onto the subspaces S++ and S+“, and so forth, until
the vector is decomposed into its one~dimensional rectangular com-
ponents. The N-1 projection angles and the radius r may be taken as
orthogonal coordinates.

The range of the variable r is from zero to infinity (if the
dimension N is greater than unity). The range of a projection angle is
as follows: (1) from zero to 2x if the two subspaces are one-dimen-
sional, (2) from zero to n if only one subspace is one-dimensional, and
(3) from zero to ﬁ/2 if neither subspace is one-dimensional.

M~The element of volume d% is given by

dr = dr p d6_ p 46, p d6_p 46 P do ..., (A.1)

where the subscripted notation corresponds with that of the subspace in
which the angular displacement is embedded, and Py is the length of the
projection of r onto the subspace Si' An example is

Py = F cos 90 sin 6+ sin 6+_ cos 8+__ cos 9+“~+‘cos 6+__++ .

(a.2)
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The Laplacian operator in this orthogonal system is

2 _  -(N-1) a_ 9 1
VS=r 57 T + oee. + 5 + oaen (A.3)
vhere p is the product of all the pi's. The subscript i is an abbrevi-
ation for a series of +'s and -'s or O.

Now pj depends on the angle ei only if Sj is a subspace of Si.

Looking at the diagram and making the necessary correspondences, one

sees that the Laplacian may be written

2 - ~(N-1) 2 N-1 &, ...
or or
- -L L L.
2 ir o, i- 9 it i- 9
+ p] (cos ei) (sin Gi) 55;(003 ei) (sin ei) 55; F v

(A.4)
vhere Li+ is the number of lines on the primary side of the line Si and
L, is the number of lines on the secondary side. The number Li is

e

associated with the dimension Ni of the subspace Si by the relation

N, =L, +1. (A.5)
Obviously,
L, =L, + L,_+1. (A.6)

= 1 7] N-1 @
V‘d = _ﬁ-l —_— —
T ar or
L L
+ 2;-{ L} T 9 (cos eo) Y (sin 60) g
e - s
= (cos 90) * (sin 90) 99, 99,

continued .....
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L L
1 -
P 9 (cos 6 ) Y (sino ) T 2_
29 Lt L. a6 * + 96
CO8™Y5 “(cos 8) (sin ¢ ) + +
+ +
1 1
+—'—"-‘_—'—-—(...)+—‘——‘——(...)}
cos<o 51in°6
+
L L
— ( Ll T 9 (cos 8) T (sin e ) -
-2 { - - - -
sin=o, L(cos ) * (sin 6_) 96_ 99_
1 1 -
+_._....._<...)+.__.-_(...)” . (a.7)
cosZ6_ sin®0_
Solutions of Laplace's equation
VEY = 0 (A.8)

may be found easily since the equation is separable. The solution is

of the form
Y= f(0) ¥, ¥, VoV, Y Y Y Y e (A.9)

where each v satisfies an equation of the form

i L,
1 d . i+ . i- d
ﬂf 7 T i, °%° B;) 7 (sin 8;) 7 53

> i+, i-
(cos ei) (sin 91) 6;

Mi+ Mi—
- - - Mi} y; =0 . (A.10)
cos®0,  sinZe,
i f i
The M.'s are separation constants.
A change from the dependent variable ¥i to the dependent

variable u, defined by



11, 2L,
* (sin 6,) oy (A.11)

2
u, = (cos Si) i

transforms Bquation (A.10) into the foliowing:

d2u, 1-k%o? 1-1up? 5
=+ { Z - Z (2ni + o By o+ 1) ] u, =0 . (A.12)
a6? L4 sin®9, L4 cos®6,
i i i
The parameters oy and Bi are defined by
1—bhof == +1L (2-1, ) (A.13)
and
2
- = - + - . Ak
1 - B3 uMi+ Li+(2 Li+) (A.1h)
The parameter n, is related to Mi according to
(Li - 1)%
P 2 _
M, + n (2ni oy By o+ 1)=. (A.15)

The harmonic functions Y must be regular for all values of the
projection angle si which have physical meaning. They must also form
polynomials in the rectangular components of the N-dimensional vector.
Either of these requirements leads to nonnegative integral values for
the ni's of Equation (A.12). The solutions u, are given in terms of

Jacobi polynomials (Magnus, Oberhettinger, and Soni 1966) as follows:

1 1
Q +5 B3 P(ai,Bi)

u, = (sin ei) * 7 (cos Gi) + (cos 261) . (A.16)

n,
1

The corresponding solutions for the yi's are

-1) Bi-g(L. -1} (o,s.)
(cos Gi) o Pn.l Y (cos 291)
i
(A.17)
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In & subspace Si of dimension Ni there exist surface harmonics
of the form

y cee (A.18)

Y. =y, ¥y, ViV fm

1 i Y1+ Yi- Y-t
The order ﬁi of these surface harmonics is the degree of the corre-
sponding polynomidal in the components of an Ni—dimensional vector. The
order Zi is related to the separation constant Mi by the following

equation:

M, = zi(zi + N, - 2) . (A.19)

Substituting into this the relations of Bguation (A.5) and Equation

(A.15) results in the following:

1 -
Ly =2n, + o + Py 4 5(5 - Li) z 0 . (A.20)

The combination of Equation (A.13), Equation (A.15), and the
inequality on the right of Equation (A.20) leads to the following

condition on Oﬁ:

1 ~
— = - - . .o
o =2n, +1l+o +B,_ Q(Li— 1) (a.21)

A similar condition on Bi is

. 5 x -
By =emy, v lwoy, +py, =50, -1) . (8.22)

It is thus seen that Qi is an even or odd multiple of one-half
according as Li— is odd or even. TFor the particular case that Lj_
vanishes, o may take on either of the two values: +%, —%. For all

- &

other values of Li— the value of ai is uniquely determined by Euuation

(A.El). Corresponding statements apply for Bi and its relation to Li+'
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Thus, the spherical surface harmonics in N dimensions may be
characterized by N signs (+1), one sign for each rectangular dimension,
and N-1 nonnegative integers n;, one assocliated with each projection

angle. The order EO of the harmonic is

L = 'azni+ —;:N + -é— (1), (A.23)

wherein the summation over the ni's has N-1 terms, one for each pro-
jection angle 91, and the second summation over the signs has N terms,
one for each one-dimensional linear subspace.

The number of harmonics of order £ in a space of N dimensions
may be found by summing over all the possible ways in which Equation

(A.23) may be satisfied. The result is

(r + N —2)t N(N-1)
(A.24)

r rt(s—2r)t (N~ ¢ + 2r)!¢



APPENDIX B
DETAILS OF THE METRIC TENSOR

In this appendix the metric tensor and related gquantities, as
discussed in Chapter III, are considered in detail. Results for the
special cases of the two-, three-, and four-body systems are each
presented separately. Some general results for N particles are also
explicitly given.

The nomenclature and symbols are the same as in Chapter IIT.

The Two~-Body System

The metric tensor for the two-body system is well known. The
results are given here for completeness and for illustration of the
application of the method to a simple system.

The size coordinate frequently chosen is the interparticle
distance rys, which is related to the radius of gyration p through the

following:

m i
Tip = (;)2 P, (B.1)
where the total mass is

m=my +ms o, (B.2)

and the reduced mass is

M3 Mz
Ho= my -+ Mo ) (B'3)

The rotational coordinates frequently chosen are the polar angle 6 and

85
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the azimuthal angle ¢, which are related to the Euler angles « and R

by the relations:
0 =p (B.4)

and

©-
i

a-— /2 . (B.5)

Because of the simplicity of the two-body problem, some of the
rows and columns of the matrices vanish. These are omitted. The co-

ordinate matrix r in the observer's reference frame takes the form

 sin B cos(a — %)‘ d

0
3 | cos B sin(a - -g-) v||° Alﬁﬂz /1+m2
cos B Z
0 1 / /
L 0 1 l+m2 1+m2

X 5 I (B.6)

Although only one column of the rotation matrix appears in
Eq. (B.6), the complete matrix is needed to get all three components
of the angular velocity w. The third Euler angle, which is not needed

in the two-body problem, does not appear. The matrix is

cos @ —cos B sin o sin B sin o
R= |sin « cos B cos @ —sin f cos O . (B.7)
0 sin B cos B

The corresponding time derivative is given in terms of the

elements of the rotation matrix itself by
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“Roz ~Roz —Res 0 Rz —Ryp
ﬁ = Rll ng le a + 0 R23 _REE ﬁ. . (B.B)
\ 0 0 0 0 Rsz ~Rasz
The angular velocities are then found from
0 Rzsz ~Rso 0O o 0
RR={-Rss O Rz |Q+]0 0 1|8 (B.9)
Rss —Rsy 0 0O -1 O

by using the values of the elements of the rotation matrix given in

Bquation (B.7). The angular velocity in the body system is

accordingly
0 T 0 1
. » a
w= |sing]l a+ 0] B =1|sinp O . (B.10)
&
cos B 0 cos p O

Since one axis is associated with a vanishing moment of inertia,
only two components of the angular velocity appear in the kinetic

energy. The corresponding truncated matrix for w is

_ 0 1
W o= . (B.11)
sinpg O
Only one plane moment of inertia does not vanish, namely:
As = mp® = prs, . (B.12)

The matrix J containing the ordinary moments of inertia is
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(B.13)

There are no internal coordinates in the two-body problem.
Accordingly the matrix E, the elements of which vanish anyway, is not
required in the formation of the metric tensor.

Assuming that the translational coordinates are the rectangulaer
components of the center of mass, X, Y, and Z, that the size coordinate

is ri15, and that the rotational coordinates are @ and ¢, the matrices

M and S which form the metric tensor are

- -1
1
1
1
m=M 1 (B.14)
p?
| o”
and
- b
1
L
1
S o= K/ > (B-l5)
0 1
sin 86 O

respectively.

The metric tensor itself is found to be the following well known

diagonal expression:
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= B.16
(g;4) (B.16)
urie 51in<6
The order of the variables has been taken as the following: X,

Y, Z, r1ip; ¢, and 6.

The Three-Body System

The three-body system is characterized by having two nonvanishing

principal plane moments, A; and A, and one internal coordinate. The
plane moments are described by two coordinates. A convenient choice is

the radius of gyration p and the angle X, which are related to the moments
through the relations:

o
i

T =01 =p cos X (B.17)
and

1

Ao = ps = p sinX . (B.18)

The total mass is assumed to be unity. If the principal axes are chosen

so that Ay 2 Ap, then the angle X varies between O and ﬂ/h.

Since the third principal plane moment vanishes, the matrix J

accordingly takes on the forms:



Q0
3 2 [ .2
A r3 sin=X
2
Al - pg cos“% . (B.l9)

M+ p§+p§ 1

L . L N - -

The related matrix E has only one component which does not vanish,

namely:

Bss =0 As = 20102 = o2 sin 2X . (B.20)
The matrix 8p of partial derivatives appearing in 8 is

cos X — sin X
dp = . (B.21)
sin X o cos X

The corresponding inverse is

cos X sin X

-1 _
(90)7% = —sin X cos X ’ (B.22)

8] p

-

The internal coordinate y’ describes the internal motion through

the matrix

[Eos ¥ —sin ¥’

Opr = (B.23)
sin 7’ cos 7'
The time derivative of this is
. —sin ¥’ —cos 7' )
0,, = ¥ . (B.24)

cos ¥’ —sin ¥’/

It follows that
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o 1f .
y . (B.25)
-1 0

0,,0

o O

The single component of u which‘enters into the kinetic energy 1is
accordingly.

u=7, (B.26)
and the corresponding u appearing in S is

w=1. (B.27)

The choice of a graph for the three-body system must be made.

There are three such graphs. The oune chosen is that appearing in

Figure 1, pege 20, which has a corresponding matrix

mz mi
0 0 -
1 my +me m +o 0
0O =
m gRekR mz
O Vi VL2 My +mz s O
_O my+me /M3 ) I 0 0 1
- -
Nz my
- 0
my e My Mo
- my Mz . Mol 5
ﬁVG;TQEW . (B.28)
my o my +s
L my 4/ e A/ 3 g
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Again it should be pointed out that the total mass is assumed to be

unity.

The coordinate matrix for the three-body system viewed from the

observer's frame of reference may thus be written:

r~ 17 T r
Rip Rio X pocos X cos y' —sin '
Roy Rop X
r = psin X sin 7' cos 7'
Rs1 Rsz 2
0] 0
L,O 0o 1 1L %. |

_ 1T -

Mo my 1
-— (6] mq 2
my +ms ms o
X M4 M= = 3
2
=/ +m. m.
m; -Hmy my +mp 1772 2

-1
/M3 £/ Mo £/ 3 i m32-‘

=}

%
W
it
-

-
0

0

|

(B.29)

wherein only the first two columns of the rotation matrix R given in

Equation (B.5L4) appear because the vanishing third plane moment has

been omitted.

The matrices Ml and 3, which form the metric tensor are

|._I

pZsin®X
pPcos®X
o? pZsin 2X

pZ sin 2% pZ

(B.30)
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and

cos X =-psin X
sin X pcos X

8 = » (B.31)
sin B sin ¥ cos ¥ O

sin B cog ¥y —sin ¥ o

cos ¥ 0 1

respectively.

The metric tensor which results decomposes as follows:

81

L

where g:; is the diagonal matrix

o -

1

N

and go» is glven by



ok

% 31n®8(1l+cos 2X cos 2y) — % sin B sin 2X sin 2y cos ¥ sin 2X cos ¥
1. . . 1
~ 5 sin B sin 2X sin 2y §(l~cos 2X cos 2y) 0 0
gg = )
cos Y 0 1 sin 2X
sin 2X cos ¥ 0 sin 2% 1
(B.34)
The corresponding determinants are
ml = (1/16) p®sin® hx , (B.35)
S| = —o sinp , (B.36)
and
’gigj' = (1/16) p*%sin?lhX sin3p . (B.37)

The contravariant components of the metric are given by the in-

verse of the metric tensor above. For this the following matrices are

useful:
- - .. -
1 1
A
2 pg
— L L
J 2z A =S 2
+ P
A Ao 1
2
i (m—22)% | | (p3p2)? |

cse”X
= p72 sec®X , (B.%8)

sec® 2%



il

m— 1

i

S-l

.0

0

~sin 2X sec2x

1
1
1
1
—_t
pZsin®X
1
p2eoseY
1 —sin 2%
pZecos@2X  pZeos22X
—sin 2% 1
p2cos®2X pZcos®2X §
1
1
cos X sin X
—sin X cos ¥
p= p= ’
sin 7 cos 7 0
sin B sin B

cos ¥ —sin ¥ 0

—sin ¥ -—cos ¥ 1
tan B tan B

2

(B.39)

(B.40)

(B.L1)
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The inverse of the metric tensor decomposes as follows:

-1
g1
(g..)7t = ) (B.h2)
1d -2 =1
P 8o

where g1t is given by

1
1
1
02
L =
and gzt is given by
- -
Gia Gz —Gy3 cos B 0
Goy Goo —Go1 cos B 0
R
—G11 cos B —Goy cos B Gyp cos®B + sec™@ 2X -—sin 2% sec® 2%
0 0 —-sin 2X sec® 2X sec® 2X )
(B.hL)

The as yet undefined matrix elements appearing in the above

symuietric matrix got are given by:

Gi1 = 2(1 = cos 2X cos 27) cse®p csc? 2% , (B.45)

Gzz = 2 sin 2y cos 2X cse B cse? 2X , (B.46)
and

Goz = 2(1 + cos 2X cos 2y) csc? 2% . (B.u7)

The order of the variables has been assumed throughout to be

Xy ¥, 2, ¢, Xy, @, B, 7, and 7',
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The Four-Body System

The four-body system is the simplest system for which all three
moments are nonvanishing. Hence, all three columns of the rotation
matrix are needed.

There are three internal coordinates which must describe the
three-by-three orthogonal matrix Ot" These internal coordinates may
be chosen in analogy to the BEuler angles which appear in the rotation
metrix R.

In fact, if R(o,B,”) is the rotation matrix as a function of the

Euler angles o, B, and 7, then the matrix Ot’ may be defined by
O, =R (d, 8", 7). (B.48)

This, together with the following definition of Om in Equation (B.52),
may be taken as the definition of the internal coordinates, o/, p’, and
7[

Equation (B.56) may be used to calculate the internal angular

velocities which are given by

- (& ’ - ., - - , 2 |

Substituting the internal coordinates o, p’, and 7’ for the Buler

angles results in

Qo

o
i
el
e+ 0.
.
—
o
\Ji
=)
~—

where u i1s the matrix
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—sin B/ sin ' —cos ¥’ 0

=
B

—sin g’ cos 7’ sin ' 0

—cos B’ 0 ~1

There are fifteen four-body graphs., The graph shown in Figure 1,

page 20, corresponds to the matrix

1 0 0] O

0 mstmg O —</ma+me
“%“\=jo o 1 o

;Q Jmitme 0 4/m3+nq_~

mz iy
- 0 0
my +me mj +me
my Mo
0 0
my o my s
X
My m=
0 0] -
M3y, =+,
m3 My,
0 0 =+, M= +Mg |

continued.....



] ]

e my
- 0
m +Hmy my +Mo
Tz +My )My (ms-+my Jmz (my+mp )ms (mg +mp)my
g Mo my e Mz +y M3+l

My, s
0 0] -
M= -Hlly, M54y,

O

2
5
5
R

(B.52)

It has been assumed that the total mass of the system is unity.

A1l the quantities required to calculate the coordinate matrix
of Bouation (2.29) for the four-body system are thus provided above or
in a following section containing general results.

- For the four-body metric tensor, the general result of Equation
(B.73) may be used to give the submatrix u’Ju as well as o' Jw simply
by replacing the Buler angles «, £, and ¥, by the internal angles &,
p’, and y’.

The submatrix o Ju for the four~body system is the sum of three

terms:

sin B sin ¥ sin B’ sin ¥’ sin B sin y cos ¥’ O
W Ju = Mp? sin 24 sin X |cos 7 sin g’ sin 7’ cos ¥ cos 7' 0

0 0 0

continued.....
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sin g cos 7 sin B’ cos 7' —sinp cos 7 siny’ O
+ Mp? sin 27 cos X |—sin 7 sin g’ cos 7’ sin 7 sin 7’ 0
0 0 0

cos g cosp’ O cospB
+ Mp? sin®q sin 2X 0 0 0 . (B.53)

cos p’ 0 1

The Rotation Matrix

The rotation matrix is given in terms of the Euler angles (the
line of nodes is measured off through the angle « from the x-axis in a

right-handed system (Goldstein 1953)) by the following:

R =

cos Y.cos o—sin y.cos B sin o -sin y.cos @—cos Y +cos B.sin @ sinB.sinc
cos Y.sin o+sin y.cos p cos @ ~-sin y.sin a+cos 7.cos B.cos @ -sinf.cosq].

sin 7.sin B cos Y.sin B cosp
(B.5k)

The colums of R are the observer's coordinates for the unit
basis vectors along the principal axes,
The time derivative of R is given by three matrix terms in the

following manner:
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“Ro; —Ron ~Ros Riz sin 7 Ris cos ¥ =~Ry; sin ¥ —Rys cos ¥
R = Rll ng Rl3 (.X + "‘R23 sin 7 R23 cos ¥ “‘Rgl sin Y ""R22 cos Y é
0 O o) Rz= sin 7 Rss cos ¥ —Rzy sin ¥ ~Rxzs cos 7

Riz =Ryp O
+ Rgf: '—R,_Q_l o7 . (B‘Sﬁ)

Rzs2 —Rsy O

The corresponding result for the matrix product R'R, which gives the

components of the angular velocity in the body systenm, is

0 —~cos B sin p cos 7
R'R =| cos p 0 ~sin B sin 7| &
—sin B cos 7 sin B sin ¥ 0
0 0 —-sin ¥ 0 -1 ©
+1 o 0 —os 7l g+ |1 o of 7. (B.56)
sin ¥ cos ¥ O 0 0O O

The angular velccities in the body system are then glven by w

in the form

Qe

(>
il
e
-
o
N1
-3
~—

W

e

where w is the matrix appearing in the matrix S and is given by
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sin B sin 7 cos 7 0
w={sinp cosy =-siny O0f. (B.58)
cos 8 0 1

Associated with this matrix © are its determinant
|o| = —sin g , (B.59)
and its inverse

gin 7 csc B cos ¥y ¢csc B 0]

O

(B.60)

cos ¥ —sin

el

—sin ¥ cot B —cos 7 cot B 1

The Size Coordinates

A gpherical coordinate system is useful for specifying the p,,
0o, and the psz of Equation (2.27). 'The spherical coordinates may be

defined by the following:

oy = p sin y cos X , (B.61)
oz = p sin 1 sin X , (B.62)
and
Pz = p COS T . (B.63%)
The corresponding matrix (8p), which appears in S, is
sin fp ecos X pcos necos X ~—p sin n sin X
(80) = {sin n sin X p cos 7 sin X ¢ sin g cos X} , (B.6L)

cos 7 -p sin 7 0

and the inverse is



(op)~t =

The following appears in the metric tensor:
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~ay

-

-

1

(ap)’ (9p) = p=

pZsin®y

8in 7 cos X sin 7 sin X cos 1
cos 1 cos X cos 7 sin X ~sin 71
o 0 o
—sin X cos X o

o 8in q p sin g

(B.65)

(B.66)

Appearing in a similar way in the reciprocal of the metric tensor is

(8p)7*(2p)" = p®

(p sin q

)—2

The forms of the matrices J, L, 3, and E in the various size

coordinates are given herewith:

(Ag+hs)
T (Astin)
(Ag+hg)
(p5+0%)
oM (p5+0%)
P (05+02)

continued
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1 — sin®y cos?X

= Mp? 1 — sin®n sin®x >

VHA2A5 P23

,,.
]
3

sin 27 sin X

= Mp# sin 21 cos X
[ Ao+l -
(No—15)°
Mg+l
(r5—1q)7
My +ho
IR Y-
. (A Aa)J
2, 2
[ P40

(p5—08)2

2,2
c +pl
_1 =
- 2_.2y2
M (p5~2)
2,2
PI+PS
(ef—p2)=

1 - cosgn

P=PL

P1P2

sin®n sin 2X

continued.....

(B.68)

(B.69)
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. -
(1 — sin®n cos®X)

cos 21 + sin®ny cosEX)?
n i

(1 = sin®y sin®X)
]

(cos 21 + sin®q sin®X)®

1

cos®2X giny

el

(B.70)
Voo i
(Ao—15)®
~/1FA3AJ_
(As=1g )=
,,/LLAlAe
5 (Aa—Ae)i
2ppps “
(0Z3-03)"
20303,
-1 R
M - (p5-p2)2
2010z
i (pf-02)?|

continued.....
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sin 27 sin X

{cos 27 + sin®ny cos®x)?

1 sin 21 cos X

2 (cos 2n + sin®n sin®X)?
Mo 1 n

sin 2%

sin®n cos®2X .

-

(B.71)

The Metric Tensor

Te forms for 8 and Megiven by Equation (3.33) and Equation
(3.31), respectively, lead to the following general form for the metric

tensor:

Yaxc)’(axc) 7

(8p)’ (op)
(gij) = _ . (B.72)

o Jw ' Eu

TE (W )
-l

The total mass has been assumed to be unity in this expression.
The two third-order matrices, (BXC)'(BXC) and (8p)' (9p), are
casily calculated. For rectangular center-of-mass coordinates the
first is the unit matrix. The second matrix is given by Equation (B.66).
The matrix o Jw may be calculated from Eguation (B.58) and

Bauation (B.A8) to yield the following:



el

~

oy
el

p=(1+cos®n) 1

+ p©siny
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_ p®sin®q cos 2%

2

0 0

cos B O

- -
cos®p o cos B

0

1

J

Tcos 2y sin“g

sin 2y sin B

cos 2y sin B

cos 2y

(B.73)




APPENDIX C

EXPANSION OF THE COULOMB POTENTIAL

The Coulomb potential may be expanded into a series of harmonic
terms. For this, the expressions for the interparticle distances are
required. From Equation (2.29) or, more explicitly, from Fquation
(B.29) it may be shown that the distance between particle i and particle

J is given by:

m, + m, 1
—d ' 3
gmimj (1L + cos 2X cos 2(y' + Sij)) . (c.1)

The &, .'s which appear in Equation (C.l) must satisfy the con-

13
dition
m,
tan(s, , — 8, ) == [J—d, (c.2)
1J Jk mimk

wherein i, j, and k are an even permutation of 1, 2, and 3. ZEquation
(C.2) defines only the differences between the angles. This reflects
the fact that the relation is invariant with respect to orthogonal
kinematic transformations. For the particular cluster graph chosen in
Appendix B the angle &, vanishes. Equation (C.2) then defines the
other two angles uniquely.

The expansion of the Coulomb potential of a single interacting
pair into a harmonic series reduces to the expansion of the last factor
on the right of Equation (C.1). The binomial expansion may be applied

to obtain the following:
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d l\
% %3 r(§’ 8 s

(1L + cos 2X cos 2(y" + 8))2 = ), T cos 2% cos 2(y' + 8) .

s=0 sil'(z —8)

(c.3)

This is also expanded in a harmonic series of the following form
(1 + cos 2X cos 2(7'+ 6))"}? = Z A aMe (4%) exp{iopy’) . (C.h4)

o v V/g,v/z

The expansion coefficients A)V are then found by equating the
right hand side of Equation (C.3) with that of Equation (C.4) and
integrating over the ranges of definitionm.

The resulting form of the expansion coefficients is

Ay, = Ay exp(i2vd) , (c.s)

where the coefficient AK is given by the following series

(oA + kn)t 2-8

a = (=50 e ) . (c.6)
A 8 gzo at(n + A+ 1)1 (A + 2n)t

This series may be shown to converge by using Gauss's test
(Bromwich 1949). The convergence is very slow, however. The series
has been summed on a digital computer. The results are given in Table

IV. The value of the first term is known (Zickendraht 1965) to be
A = or/2)(5x) . (c.7)

This value was used to get some estimate of the accuracy of the series,
at least for the first few coefficients.

The Coulomb potential due to three interacting particles charac-
terized by 721, Zo, and Zx may now be written in the form of a series of

harmonics, such as on the right of Equation (C.k). The coefficients
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TABLE IV
VALUES OF THE COULOMB EXPANSION COEFFICIENT AA
A A
0 1.20041 8
1 —0.48016 6
2 0.30867 7
3 —0.22864 9
h 0.18188
5 ~0.15110
é 0.12927
7 ~0.11298
8 0.1003k
9 -0.09025
10 0.08201
11 —0.07515
12 0.06935
15 —0.06438
14 0.06008
15 ~0.05632
16 0.05300
17 —0.05005
18 0.0k7h1
19 ~0.0450k
20 0.04289
21 —0.0409L

NOTE: The accuracy of the above
values for A, after the first one is not
known, but it is believed to be of an order
consistent with the number of places shown.
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are then of the form

Ay, = AAOD-I(lez«/Qulz exp(2iv Biz) + ...) . (c.8)

The sum in this Equation (C.8) is over the three terms obtained
from one another by permuting the indices. The energy is given in
mass units. The total mass is assumed to be unity and Hij is the re~
duced mass of particles i and j. The fine structure constant is denoted

by .



APPENDIX D

THE COMPUTER PROGRAM @M3BODY

The computer program GM3BODY and its subroutines follow in
FORTRAN language after a brief description of the regquired input cards.
Standard library subroutines have been omitted. The input data cards
are five in number,

CARD 1 contains the masses ML, M2, M3 of the three particles.
An optional input quantity is MASSUNIT which is an eight-letter name
which specifies the unit of mass used. The format statement is
FORMAT( 3E20.0, AB).

CARD 2 contains the charges Z1, Z2, 7Z3 of the three particles
in units of the electronic charge. Following these three is the
maximum order MAXLAM used in the expansion of the potential. Ordi-
narily, this is twice the order MAXLAMDA used in the expansion of the
wave function and glven on CARD 4 below. The format statement is
FORMAT(3F20.0, I10).

CARD % contains the inner boundary point RO (usually zero), the
match point RMATCH, and the outer boundary point RFINAL., The unit of
length is the Compton length associated with the unit of mass chosen
above on CARD 1. The corresponding format statement is FORMAT(3E20.0).

CARD L contains the maximum order MAXLAMDA used in the harmonic
expension of the wave function, the number MESH1 of intervals between
RO and RMATCH, the number MESH2 of intervals between RMATCH and RFINAL,

and an instruction ITAPELO, which is zero or blank if this is an initial

112
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run, and nonzero if a tape for tape unit 4O has been saved from a
previous run. The format statement is FORMAT(LI10).

CARD 5 contains the initial "guessed" energy ENERGYO in the unit
of mass used on CARD 1, a relative convergence criterion EPSI, the
number of zeroes NZEROES to be expected in the wave function, and the
maximum number ofAiterations MAXIT to be allowed in converging toward
the energy eigenvalue., The program stops after the maximum number of
iterations has been reached or after the relative energy correction

becomes less than EPSI. The format statement is FORMAT(2FE15.8, 2I10).



aoan

20

100!

8

9

11k

oA (b
EHOEBAT L EYERTYE 2y

CUMMsl FINFUT/RDIRMATON,,RF INAL S MESH | yMESH2

COMMANYZ PRAMETRSZ MAXLAMDAS MAXLAM2: NMAX, NUMAX, NMAXIe NUMAXI,
PHMAX L, MUMAX S MUMAXISQH

COMPAN/ENERUY/ENERGYD s ENERUY,» AMASS, HEASS, CMASS

GOMEaN /POTRLUHMLZ AMASSHR, UMASSPR, CMASSPR, ABCHMASS, POT(20)
CUMEOR /57 LSUs LSts LSETWOy LSZ, LS. LSTATALs INJTIALS» S(5000)
COMMBILZUVECTER/N UL (B&) s w22U2(bB6) 2V IRE)

COMMBN / PRI/ Ns NZERUES, PhHISGhn, PRICIDOQD)

READ IN INFUT DATA,.

YASSES [N AWBITRARY MASS UNIT. ENERGY [N TeE SAME MaASS UNIT, LENGY
HS IN COMPTEN WAVELENGTHS(SLASRED) OF TraT MASS UNIT,

ITIMEGS ICLUCKF(ITIME)

REMIND 4y

REWINL U

COMTIMUE

READ 2U»AMASS,RMASS,CMASS, HASSUNIT

FORMAY (3E2(,00, A8)

ABCMASS=ANASS+RMASS+(CMASS

AMASSFREAMASS/ABCHASS

BMASSHR=BMASS/ABCMASS

CMASSFH=CHASS/ABCMASS

IDATE = TUATEF(]IDATE)

CUNTLIsUE

PRINT 10U}, IUATE, AMASSPR, BMASSPR, CMASSPR, AMASS, MASSUN(T,
1HMASS, KASSUNET, CMASS, MASSUNIT, ABCMASS, MASSUNIT
FORMAT(ZUX16HAGM3IBODY RESULTSI4XSHDATE Ag,//27HKPARTICLE MASSES (R
VELATIVE) F2i,l1s 2F30e11/7 270 PARTICLE MASSES (ABSOLUTE) €24,10.
21X A8, 2LEZ1,100 IX ABY// 21H TOTAL MASS OF SYSTEM 6X E24,10,1X A8
37/ I4hKNAME AND OESCRIPYIUN 6F F3TENTIAL )

CALL FOTUATA

CONTINUE

READ 2QU,RO,KMATCH,RF INAL

CaONTLIAUE

READ tU, - MAYLAMDA, MESH!, MESHZ, J1TAPE4D

FORMAT (411D)

NMAX = MAXLAMUAZ2

NMAXIERFAXS |

LSOsthMAX 1) PNHAXI/Z2

NUMAX = (MAXLAMDA + ()72

NUMAX | =NUMA XS}

MMAX ESNMAX | *NUMAX

LSt=MBAXISAMAXI

LSITwE = LSt + LS|

LG22 tFHAX |+ | ) *MMAX /2

LS 5 LS2%4 + LSITWEO « (S0

LSTETAL = 4999

MAXLAMEZ = MAXLAMDA + MAXLAMUA

MOMAX I TNMAX | #MMAX | +MMAX )

MOMAXISUEMOMAX | *MOMAX

MUPPER=MUMAX IS

T & RC/(RO+(RMATCH = RQ) / MESHI)

TSO = T°*T

TROBY = SURTFL(T)

MUMAXZ = MOmAX) < |

TJUMP = MOMAXZ*MMAX)

Iw0 = U

Wl = §,0

W) 3 NMAXI
Do 2u<e (z],
Wi =2 Wl o+ |y
Wl = | ,07u14
NY = =L
IFCNU) 2026, 2027, 2026

MAXLAMDA

2026 IWE = Jwl + |
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[W2 = Ikl 4 EhAX)
WETGHT LI W
AETGHTCOIWZ2) = VEIGHT(Lx 1)
NU = NU O+ 2
IFeny) 2u2e, «Gev, 21er
2027 1WHO = Juwl « |
WEIGHY (Inl) = Wi
2028 COMTINUE
: IFCITAPE4AD) 12, 14
14 CALL TAPERATE
15 CONTIRUE
PRINT 1006, FU, 3IMATCH, RFEImNAL, MESH}, MESH?
1006 FU”HAT”(‘bFﬂHUUhDAQY PrINTIS X 3E291027 30+ NUMBER QF INTERVALS
1IN MESHES 23X &12577) ’
PRINT 10U7, MAYLAMZ, MvaX (s MMAX|, MUMAXE, LSUs LS1s°LSZ2, LS
1007 FORHMATCZIMKSIX DIMENSITELAL SPRERICAL HARMANICS TERMINATED Al ORUER
I L o= 2*LAMELA = 13, 18, / 708 THE CUHRESPONDING DIMENSIUN OF THE E
2XPANSION CEEFRICTIENTS VECTO?H IS ( 13, SH + 2* 135, 3H) = 13 / 6BH
3 THE POTENTIaL MATRIX 1S CHARACTERIZED BY LS = LSD + 2%LS] + 4*.S2
4 = 13, bH 4 2% 14, SH + 2* [4, ¥y = 15, IH,/)
19 ConTlinUE

SCALEl & |, E=100
SCALEK] = 1, E=|0
SCALEZ = |.E~100

SCALERY = | ,k-10
READ 11, ENERGYD, EPSL, NeZeROS, MAXIT, ISCALEs NTRY, IREPEATU
I} FORMAT (2k1I5,b, SI1i3)
IF (MAXIT) 12+ 43, 13
12 17T = =MAXI]T
GO TO (9. &, /, 6), 1T
13 CONTINUE
I¥ (ISCALE)Y 16, 18, o
{6 REAL 17, SCat.E1, SCALER|, SCALEZ, SCALER?
|7 FORMAT (4E(L,3)
18 CUMTIRUE
PRINT 1006, IREFEAT3, MaX1T, £PS], SCALE), SCALER|, SCALEZ,SCALERQ
1008 FORMAT (16FKINPUT ASKER FER 15, 22H REPEATS, WO MORE THAN 15, S5gH
PITERATIENS avL A CENVERGEWNCE CRITERIBN OF EPSILEN = E10.3, H, 7/
223H SCALE FRCTBRS USED ARE # 29X BHSCALE)] = E10,3, {0X 9HSCALER| =
SE10,8/ 25X 8BHWSCALER = E1(0,3» |0X 9HSCALERR = E}(,3//)
ENERGYFENERGYU*ABCMASS
ENINC = ENERGY
T IFLENINGY 2020, 2021, 2122
2021 ENINC = =0,Un>
2020 ENINC & =ENINMC
2022 CONTINUE
1T s MAXIT
N & |
0 20 J= 1, mUMAX]
el ui¢y) = t,0
N2=(
UMAX22U, U
UMAXI=U, U
PRINT 10U9, ENER3YD
1009 gega:T C23hKIN]TIAL ENFRGY ASSURED 35X E25,1025H (N))

24 IRFPEAT = IREFFATD
THIS 15 STARTING PUINT OF [TERATIONS GOVERNED BY
INDEX HEPEAT AlD GOVERNED BY ENERGY EIGENVALUE CONVERGeNCE,
25 NgzMUrAX)
INITIALS=] $ CaLL MATCNIRL
SIMNTRGRLED,C
SET HBUNDARY CONUITIONS 6N THE LEFT
CALL DIAGONAL(PHICH MOrAX12540)
CALL DIAGONAL{PHI(MUPPRER) ,MUMAXI,],0)
J1o=2 NMANX]



2002

2004

40

44
42

a5

95

J =0

TPR = TRH67Y
IPHIL =
IPHIt = NMA
JUELTA = (A
DO 2004 {, =
TPR = TpR*T
Dg 2008 NU
IPHII = Pk
1PHIZ = |P»r
PHI¢CIFHTI)
PHI{IFH]Z)=
JE s JI o+ |
JIP 3 J} o+
JIPR = DIF
J2PR ® JIFR
J2P = JgPR
J2 =5 JeZp -
IF (uitygt))
PHI{JIPR) =
PrHI(JIP) =
TFeui(d2))
PH1{J2PR)Y =
PHI(JEP) =
CONT IinUL
IF((L/7e)~2
PHI(IFPHIY)
IPHID = 1Pk
J o= Jsl

JP 3 J + UL
JPR = Jb &
IFLyl(y)) ¢
PHI(JPK) =
PHI(JP) = F
COMTINVE
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x*(MOMAXZ2) « |
f=l)oMOMAX|

s MAXLAMU
SG

= 1, J

1o+« MOMmaAXZ
Iy« JJump
s TPR
PHICIPHIH)

JOELTA

« MOMAX1ISQ

+« MMAX|

= MOMAX|SQ
JNELTA

2L05, 2006
ulbegn)
FHICJIPR) * TPR
2ul?, 2003
nitde)
PHICJ2PRY *TPK

= TPR
1 + MOMAXZ2

ELTA

MOMAX SO
coe, 20404
vityd
HICJPR)*TPR

CALCULATE MATRIX W 8F WAVE FUNCTIONS ON THE LEFT
UP T6 MATCH POINT,

CALL PHIMAKEP(RQ,RMATCH,MESH|sSINTEGRL.NO, )

K=MyUPHER

MEE R

l‘(-Nﬂ’42:42{fl

I=MyPPER
Il=]+MUMAXY

#RITE TAPE
N 45 J=1,1

% Ke|

soei $ KISK-I+MOMAX|SQ
STORE W ON TaPE,

[Os CPHICUYp =K, K1)

[

PHI(IISPHICUI+PHI(S)

FMESHEMESH]
HEtRMATCH=-R
Q2=H+KMATCH
Qi{zRMATCH=F
“RECIFI=2Y,C

CALL PHIMAK
Jg 55 Jd=l,t
PHICJ)I=FHI(
“RITE TAPE

CALL TRANSF
CALL TRANSF
DI = SCALE!
Call MATO(F
IF(D1I6L, 60

0 CALL STOP(S

~“RITE TAPE
NOeMOMAX |

J0)/FMESH

/H
CALCULATE k' AND STIKE ON TAPE,
EP{R|)R2:2sSINTELRL NS, ) )
t
JY*HRECIPI
TCatPHLOUY» Y101 M)
CALCULATE THE TRANSPOSE OF WIWJKECIP AND STURE ON TaPE,
GZAPHI(I ) ,MOMAXED
GZ(PHI(MUPPER) ,MUMAX])

HICKYaPHECT) ) MOMAX T o MGMAX 1 2D » SCALER) ¢MOMAX | 2MOMAX])

a1
100tPAICIIs YT, 1)



70

72
75

95

112

117

SET HBUNDAKY CONDITIOGMNS ON THE RIGHT.
CALL UIAGEONALUFKHI(])sMEHAXT1D00)
CALL LIAGENAL(PHI(MUPPER) pMUMAX ] 51 ,()
1F{N2) 70,75
JEUNZ= LY H0MAX | #MUPPER
DB 72 I=t,MBMAX|
PHICJY & PRICJY + w201

NENEY)
CALCULATE K AND STORE ON TAPE,
CONTIhUE
CALL PHIMAKER(RFINAL,RMATCH A MESH2,SINTEGRL,5T41)
K=MUPFEK
I=1
IF(=NUEIB2,82,01
l=MUPPEK % K=
Ii=]+tULAX IS $ KI=SK+MOMAXISO=1I

ARTTE TAPE 10stPALOJ) p =K, K1)
ne 8% Jsl, 11|
PHICJ)=PHI (DI +PHTI(S)
F'M[«_SH:NE;SH?_
Hz (RF INAL-FMATCHY/FMESH
REZH+AMATCH
R4=RMATHe}
HRECIPZ=U,E/H
CALCULATE K' AND STARE 6N TaPE.
CALL PHIMAKER(RI, R4, 2+ SINTEURL, NG, 1)
Do 95 J=1,1|
PHI()=PH]{JY"HRECIP2
WRITE TAPE U2 tPHICGW) a1, 1)
BACKSPALE (U
CALOULATE (RORRECIP = W!WRECIP) AND FIND 1TSS MINIMUM
EIGENVALUE ANU CORKESPONDING EIGENSOLUTION V,
CALL TRANSFOZ(PHILI) . MorAXI) $ HACKSPACE 1D
CALL TRANSFOZAPHI(MUPPER) ,MUMAX ()
BACKSPACE 0
D2 = SCALEZ .
CALL MATO(PHI{K) yPHILIY , MOMAR | MONAX] ,D2,5CALERR,MOMAX T+ MOMAX ()
1¥¢p2)101,100

0 CALL STep(5I1C)

KisK+MUMAX1Sh-}
READ TAPE 10, (PHIUJ)sJdskK1)
Ne 110, Jds ] HOMAXISO

=] yupH )49 Mo G
MﬁgédﬂthéégZ‘Phl‘¥§a“C# s

EIGENEU,U

N = 20

CaLl MIMNEIC (PH],V,M0MaX!|,NTIRY, N.O,5E-9.E!GEN,PHI(MUPP;R)J
REWINE 40

HUFFER IN (44, 1) (St1Y, S(LS))

REWINL 410

D=PRI(MUPPEK)
CALCULATE STARTING VECTBKS U) AND U2,

READ  TAPE o (PUItU)rd= 1, MUMAX)SQ) $ REWIND |0
1 = MUPPER

De 1l g = 1, MOvAXI

PHIGI) = Viy)

1 =1 + |

UMAX2 = SCALEZ

CALL UVECTEK(UR,PHICHUPPER) »PHT aNZ,MOMAX |, UMAX2 ) SCALERR)
READ  TAPE U2 {PHICUI 2 =], MUMAX]|5Q)

1 = MUPPEH

B8O 112 0 = 1, MBYAX)

PHI(I) = V(Y

1 =1«

UMAXY = SCALE!

CALL UVECTCR(U| 2o PHI(MUPPER) ¢PHE NI MOMAXY ,UMAX |, SCALERY?
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REWINL 10
IREPEATEIKEFFEAT =
IF (IREPEAT) 120, 120s 25
THIS 1S THE ENU PUINT OF JTERATIUNS GOVERNED BY JNLUEX JREPEAT
120 SINTEGLRL=0,5E=38 '
SCALE = UMAXI/ZUMAX2

INFTIALSEC §  CALL MATCNTRLU
ND=

TPR = TRHOT

J = U

Ji = KNMAXI

ulent)y = 1,0

0o 2U|4 L = C» MAXLAMDA

TPR = TPR*ISD

vo ZUIA NG = 1, J

JIEos gl o+

JIPR & Jl + MUMAXISG

J2PR ' JIPR + MMAXI|

J2 = JeZFR -« MUMAXISE

PHI(JIPRY s Ulcgl)

PHI(JI) & FrllJIPR)*TPR

PHI(JEFR) = 11(J2)

PHItJZY = FHIGJZRPKRI*TPR
2013 CONTINUE

IFt(Lrey®2~L) 2014, 201
2011 J = J+i

JPR = 3 ¢ V{MAXISO

PHICJFR) = LIy

PHI(J) 5 PHICJPR)*TPR
20014 CONTINUE

Ut(nt) = 8,9

NZEROES = 0

PHISGN & 0,0

CALL PHIMAKERC(RO2RMATCH,MESH] ,SINTEGRL,NO, )

KEMOMAX )50
120
FOmNG) 142,142414)
1a1 FeromAx dd2r 1480 RL,

142 lizp+MURAX =]
pDa 145 J=l,11
145 PHI(J*135Pr [ (Je | )+PHILYS )
SINTEGRL = SINTEGRL + SINTEURL
CALL PHIMAKEPU(R{+R2,22SINTEGRL,NO. L)
LBVE=MUMAX]
IF(LAVE=T) 159,150
150 Love=2
195 LOVEYGUELOVE«HNOMAX SO
PHI=~ GOES T4 mi/ZBAX| ¢ |, ETC,
PrHI= FHIME GrES TO MOMAXI + | + M/MAX|SQ, ETC,
NG 160 J=|snnMAXI
PHI(LEVE+*J)=PRI(K+ )
160 PHI(LGVEYCL*J) PAX(I*J)'HRECIPI
NOD=|
SINTEGRL = SCALE®SCALE*SINTEGRL®(D,5
DO 170 JElan0MAX]
PHI(J)I=0.0
P70 PHI(J+MOMAXISQI=UZEY)
PHI(NZ*MUMAXISR)=) 0
PHISGHh 5 0,U
CALL PHIMAKER(RFINALSRMATCOHIMESH2,SINTEGRL,NTs )
K=MOMAXiSQ
1=0
IF(aNO) 185,105,180
180 l=MOMAXISQ
K=0
185 1i=1+RUMAX)=)
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ne j9t Jsisll
190 PHICJI+I)EPFItJ+ | I+PHIC)+ 1)
SINTEGRL = SINTESRL + SINTEGRL
CALL PHIMAKERIRS,R4,2, SINTEGRL NG, |)
REWIND 40
BUFFER IN (40 1) (SC1), SCLSH)
REWINL 4U
€=0,0
DO 2UD J=famMAX]
PHI(I*U) = =Pl {1+J)*"HRLCIP
C = PHICUI+O)*FRI(LAGVE+ I *RELIGHTLY) = C
200 € =2 PRI(R+ ) *PHILLOVEY AU+ *WETUHT(J) - ¢
Ti=ENERGY/AB0NASS
NELTA = C*SCALE/SINTEGRL
SNEW = +14,
IFINZLRGES-1MZERDS)Y 2031, 2032, 2030
2030 SNEW = =1,
20381 IF({SNEW*SOLD)Y 2041, 2041, 2040
2040 ENINC = 1,E¢ENING
GO TR 2045
2041 ENING = U,S9EWINC
2045 DELE ENINC*SNEA

SoLb = SNEb
G@ 10 2050
2032 saiD 0.0

DELE = DELTA
ENINC ® DELE
IFCENINC) 2034, 2033, 2(50
2033 ENINC = =,0ub
2034 ENINC = ~ENIMU
2050 COMRAVYE ernecuy o pELE
T2=ENERGY/AHCMASS
T3=DELTAZAELMASS
IYIME = (ICLECKFUITIMED) = 1TIMED)/60
DET = PRODLCTYID. D)
DEY = PRADLCTI(DET, D22
PRINT 1016, ITIME, T3s T2, N, DET,» NZERCES
1016 FERMAT (7H TIME = 15, 4H SEC 4X I2HCUGRRECTIEN = E|7.10s 4X | 3HNEXT
| ENERGY = E47.10, 14, 3X |IHDETERMINANT = E}7.10/ 40X 1/HWAVE FUNC
2T16N hAS 1S, 8H ZERYES,/)

T = T&

IF (T) 220G, 220, 210
210 17 & =7
220 IF {T+T1Y 240, 260, 2480
230 1 = -7
240 IF (T-Ti) 260, 260, 250
250 v = T

260 T4 = T
IF (T4) 280, $00, 270
270 T4 = =74
280 IF (T4/7 =~ &£PS1) 303, 350, 290
290 1T = J7 - |
IF ¢(I17) s0C, s00, 24
300 CanTINUE
CALL STgP(E5L)

PRINT $1U
310 FORMAT (IlHZ)
Ge 10 1%

END QMSuODY
SUBRAUTINE PATENCHL
THE CoULOMB FOTENTIAL RETWEEN THRtE PARTICLES.
PETLI) CONTALLRNS PBT,, PuT(2) CONTAINS FPOBTT,
PET(3) COKTAINS THE CONSTANT FOR A GIVEN R,
RPAT({4) CHONTALINS CONSTANT,
COMMBL ZPGTENUNRL/ AMASSPR, BMASSPR, CMASSPR, ABCMASS. POT(2y)
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CoMMOk / INCEULZ VALI34), VNUICSE)
ComMnan / R / k, TwOHSE
COMMBL/COEFIF/LPI,LFRPR, L, NUPR,NUPRPR,NU,CIEF s RECLAM | ,FACLBGLI]0)
EQUIVALENCE 21 PBTIUD))s (L2s PIT(6)), (23, POT(T7))
EQUIVALENCE ¢FaTl, PAT(2))
DATA (ALPRA = C,00729725)
DATA (COUL = 1,2004217549, =,47970460639, ,308224, =,220199,,18188
ba=aI51 1y 0,1293,=.1130, .j003%,-,09025, ,0R201, =-,N75]5s ,06985,
2 »,0668b, LubUNE, =,092682, 402300, =,05005, 0474}, ~.04504,
S ,042b%, =,04094, v02e¢Cre0s00240500440,40)
DIMENSION COILLC3L)
ASSUFES KWULFRPR S PASTTIVE AND NOT GREATER THAN LPRPR,
IF{LMAX=LPRPR) 20» 10» 10
i0 TEMP = POTUII*CUILILPRPKY|)

POT = TEFP*YNUINJIPRPRY})
PUTI= TEMP*VANUL]L (NUPRPR+))
RETURN

20 P87 = U, U
POTL = FOT
RETURN
ENTRY PETIPFEP
POT(3) = PETC4)/R
RETURM
ENTRY PGTLATA

1o ronbatile fle s iy Lax
POT(4) = ASCMASS*ALPHA
PRINT 20U, LMAXs 21s AMASSPR, 22, HMASSPR, Z3» CMASSPR

200 FORMAT (/40> 2iRT4E CAULEMB POTENTIAL /7 40X 24HTRUNCATED TO LAMB]A
15 0, 19 7 43X 22HCHARGES AND MASSES ARE / 3(40X 2F25.107)7)
CALL INCOHUL(LMAX)
PRINT 40U, (CL, VNUCI*|), VNUICI+1), COLLCI*1Y), 120, LMAX)

400 FORMAT( BXx 2nNU 28X 7HVNUREAL 23X |2ZHVNU[MAGINARY 26X 7HCOULCON
1/7/7(¢5X 15, lox EN174.10s 18X EI17+10, 18X E17,10)77)

500 RETURN
END

SUBRBUYTINE PUIMAKER({R],RFINAL »MESHPTS,SINTEGRL,NO,INITCOL)
Coammal WEIGNT(RT)
SOMMAN/ZENEFGYZENIRGY s ENERGY, AMASS, BMaASS, CMASS
EQUIVALENCE (ENEIGY, EMVERHSEQ)
EQUIVALENCE ¢LS2, LSY)
COMMEN / Prl/ N, NZEROES: PHISGN, PHI(15000)
CAMMEN /S5/ LS0, LS1. LS1TKRB: LS2, LS, LSTATAL, INITIALS, S{(5D00)
COMMAN/ PRAMETRSYZ MaxLarDas MAXLAMZ, NMAX, NUMAX, NMAX |+ NUNAX),
I“MAX |, MOMAXEs MGMAXISH
THE PARAMETERS ARE DEFINED AS FOLLOWS,
NMAX FsNMAX !
NUMAX EeNUMAXe )
MMAX | NMAX ) sRUvAX
MOMAX I2MMAX [+ MMAX JeNMAY |
MOMAXISQESMIMAX T ONOMAX ]
LSO (NMAX |+ )Y NMAX /2
LSIsMMAX T SAHAX)
LS2(MMAX |4 1) *MMAX | /2
THE MAGNITLDE @F N& 1S THE NUMBER O8F caLumn VECTHRS
IN EACH PHI MATRIX, THE SIGN IS POSITIVE (NEGAT]VE)
IF THE LAST PH! CALCULATED WAS STGRED IN
UPPER (LOWERY PHI, 1,E,, PHI(MOMAXISQ«e)(PHIGI) ),
SIGHA = 0,C
MDELTA=MOMAX ISO
MINSCINITCCLmid) eMOMAX ) 2t
IFt{=NO)30,£00,20
20 MDELYAzeMOMAXISG
MINMDMAXISGehIN
NBseNO
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30 MAX=MINa(NC»|)*MIMAXI
FMESHPTS=MESHPTS
FMESHRET=D, 0
IF (MESHPTS)SI1,5%1.510
50 SI16N=1,0
DELTARERFINAL=R]
IF{DELTAR)IZ4,D5,56
55 GALL STeP(101)
51 CALL STgPR(1232)
54 NELTAK=-DELTAR
S1GhN==1,0
56 H=DELTAR/FMESKHPTS
TWOAHSH = H*n*2,(
CONSTHA = TwPHSG * TwWOHSQ * D,0625
ECONST = (-EAVERASD) * THWOHSO + 2,0
N8 300 RESHPT=2,MESHPTS
FMESHPT=1 ,¢FMESHPT
MAY =MAX+MDELTA
MINzZM]INSMDELTA
MOELTA==MDE{TA
INITIALS=INTITIALS+LS
IF{INITIALCLS-1259,41
59 IFCINITIALS+LS~1=LSTOaTaLYe1e61)060
60 INITIALS=|
61 CALL MATCNTRL
CALCULAYE AND  PREPARE ADDRESSKES
RE(FMESHPTF YESHPTS) *SIGN*H*RF INAL
HRSN = (H*R)**2
HOLD = HRSL*ECANST « CANSTH4
HRSQREC = | ,/HRS]
INITS = INITIALS ¢ (SO + 2"L.51
DO 200 MO2F=rIN,MAXv(MAX)
JO = MO2P
MizgPp = J0 <« HMAX]
M2 = MI2P =
J & M2
M22 = J ¢ FHAXI
M22m 3 M22 e |
v2op & M22% & 2
TADDRE = MZgP = INITY
M32 = M22 & MMAX|
MO2 = M32 ~ mOvAX|
Mp2et = MOZ & 2
MO3PY = MDZP) « MDELTA
1S = INITIALS
TADDRESS = [% +« (S09
FLAMDAL = 0,1
DG 190 LAMTA = 0, MAXLAMDA
FLAMDAL = FLAMDAL + TWEWSQ
PHIMULT = (#aLN/FLAMDA} « FLAMDAY) * HRSQREC
Ny = LAMDA
IF ¢NU) 1S9, Bo, 90
CALCULATE PHIREAL AND PH]I»IMAGINARY,
90 J = J+!
JPR = J ¢ MDELTA
JPRI = JPR + MMaX|
JI = JPRT » MDELTA
T3 4 U.U
T3l = 13
DO 97 1= mpoze, M2
1ADDRESS = JALUDRESS + |
TADDRESZ = [ADDRESS « (St
T3 = SUIADCRESS= 1) *PHI(]) + T3
T3l = S{IATLRESZ2=1)*PHI(]) + T31
97 CONTINUE
PR = HM22
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DO 98 | = vI2P, J

IPR = JPR « |

IADDRESD = ]PK = |ADDRF

TARDRES| = IADDRES) « 83

1ADDRES? [ADDKES] + (S3

TADDREST 1ADDRES2 + (53

T3 = SCIADLRESQE) * PHI(I) + S(IADDRES})Y o PHI(IPR) + T3

T31 = S(IATLRESZ2)Y * PHI(!) + SC]ADDRES3) » PHICIPR) + Ts1
98 CoNTINUE

1ADDRE = MZ¢ = 1ADDRESQH

D6 99 1 = _, M22M

IPR = IPR + |

[ U U

1ADDRESO = IPR + [ADNRESD ~« M22P
TADDRES| = 1AUDRESD + 1S3
IADDRES2 = JAULDRES| + LS3
TADDRES3 = [ADDRES2 + | S3

T3 & SUIADCKSSO) * PHI(I*|) « S(JADDRES|Y * PHI(IPR) + T3
T3] = »SCIADNDRES2) * Puifi+|) *SUIADDRES3) * PHI(IPR) + T3}
99 CONTIKVE
PHICJPRY = (PHIC(J) * PHIMULT + T3) * FLAMDAl = PHI(JPR)
PHIC(JPRIY = (PHICJI) * PHIMULT « T31) » FLAMDA| = PRICJPR])
NU 2 KU = 2
IF (NU) 100, 80, 90
(o THE CALCULATIUN SF Pulo,
80 J0 = JO <
JOPR = JO « MDELTA
L = JOPR « MOUP|
T3 2 0|0
Do 85 1= MO2PI, JO
1S 2 ]S + )
T3 & SCISet) ® PHI(I=1) « T3
85 ConTINUE
{v = IS
DO 87 ! E 9Dl M'?
L= Lt
17 =2 Le17
T3 & SUITel) * PHIC]) « T3
87 CoanTiINMUE
1BAR = M22¥
Do 88 1 = v|2, M22M
1BAR = [HAR & |
IT = JT ¢ A+MAX)
ITRAR = 1T « LS}
8A T3 =2 S{ITw!)*PHICI+4) o S(ITBARm |} *PHI(IRAR+|) + T3
PHICJIOPR=1) = (PH](JDe1) ® PHIMULT - ¢ T3) ¢ FLAMDA| = PHI(JOPR = |)
180 Comtihlt
CALCULATE SINTEGRL
IF(SINTEGRL ) 140,200
200 CALL MATCANTRY
300 CoMTINUESGS TO 500
140 1w = |
N 150 1 = n02P, M32
SIGHA = PHICII®PHICI)*UEIGHT(IW) + SIGMA
150 W & Ik +
PHINE & PHI(MD2 + N)
1F (PRINE*FHISGN)Y 155, 157, 200
155 NZERAES = ANZFRBES ¢
157 {F(PHINE) 167, 200, 159
159 PHISGBK = },0
38 1A 200
160 CBNTINUE
PHISGN =w| D
5o T8 200
350 CALL STeP(10X)
500 1Ft«™MDELTAYEND,350,550
550 N@=zeNO
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600 SINTEGRL = SIGMA*H ¢ SINTEGRL
RETURN
END
SURRAUTINE TAPEMATE
CaMMaN / R ¢ R, TwaHsQ .
COMMAN/COEF JF/LPR,LLPRPAR, L, NUPR,NUPRPR, NU,CPEFIRECLAML,FACLOGI3D0)
coMmah £57 1.0, LS1, LS1TWO, LS2, LS, LSTATALs INITIALS, 5(5000)
EQUIVALENCE C(INITIALSs NDIFF)
COMMON ZINFLUT/ROsRMATCH,RFINALIMESH| ,MESH?
FACLAGLLY = (140
FACLAGI2) = FACLOG())
FN = 140
Dg {0 N = 2, 300
FN = FN s {,C

10 FACLEBGIN) = LOGF(FN) + FACLUG(N={)

CALL TAPERST
NDIFF&C

1=20
NDIFFMAX=LSTATAL/LS~2
s{RMATCH=RGY/MESH]
DG 200 MESHPTS |, MESH]
RE{(MESH | »MESHPT) *(=h)+RMATCH
50 CALL TAPER
1F (NDIFFMAXaANDIFFIS0s65.60
60 1F (NDIFF+1)R0,70
70 NDIFF=U
BO IF (1#LSelSTRTALIIIO, 110,400
1006 1=0
110 CALL POTPREP
CALL MATRIX(D)
200 NDIFFRNDIFFet
He(RFINAL=RMATCH) /MESH?
D8 400 MESHPT=|,MESH?
Re(MESHZ~MESHPT) *H+RHMATCH
250 CALL TAPER
IF (NDIFFMAXaNDIFF)I250,260.260
260 IF (NDIFF+1)280,270
270 NDIFF=D
280 IF (14LS=LSTATAL)310,310.300
300 1=0
310 CALL PETPREP
CALL MATRIX(1)?
A00 NDIFFeNDIFFad
450 CALL TAPER
IF (NDIFF+1)450,500
500 CALL YAPERFIN
RETURN
END
SUBRAUTINE TAPER v
COMMPN /S/7 LSD, LSi, LSiTWO, LS2, LS, LSTOTAL, INITIALS, S(500D0)
EQUIVALENCE (INITIALS, NDIFF)

C NDIFF IS THE NUMBER AF BATRIX BLACKS KWHICH HAVE REEN
COMPLETELY CALCULATED MINUS THE NUMJER WHIcH Have STeRTED TO BE TaPED,
G0 18 20 )

5 IF(NDIFF)ICILID04140
10 NDIFFSNDIFF w!
IFINALSIFINGAL4LS
IFLIFINAL=LSTYOTAL) IS, 15,12
12 IFINALE®LS
15 1=1FINAL-LSs 1
19 BUFFER QUTC 40, 1)(SC1),SO1FINALD)Y
20 IF(UNIT, 40)100,5,30,25
25 CALL SYeP(401)
30 CALL STOP(402)
ENTRY TAPERST
TFINALSD



500
501

20

40

12k

RETURN

NDIFFa«) § RETURN

£ Y TAPERFIN

EﬁERFILt ECFI

REWIND 4D

RETUPHN

END ,

SUBRAUTINE RATRIX (INIT)

comMMaN /PBTENCHL/Z AMASSPR, BMASSPR, CMASSPR, ARCMASS, POT(2)
EQUIVALENCE (FBT1, PaTt2))

campal, / R / Ry TWERSQO

COMMANZCAEF 1€ /LPRL,LPRPR, L ,NUPR,NUPRPR ,NU,CAEF,RENLAM| FACLAGL3Q0C)
caMman/ PRAMETRSZ MAXUAMDAs MAXLAMZ, NMAYXY, NUMAX, NMAX]» NUMAX|,
MMAX Y, MOMAX 1. MOMAX1SH

CoMMAah /S/ LSO, LSis, LS1TWO, LS2, LS, LSTOTALs, INITIALS, S(5000)
FQUIVALENCE (N8, NO)

10 = INIT

It = }0 + LS§¢

12 2 11 + LS1TwO

FLAMDAL = 0,4

DB 999 L = 0, MAXLAMDA

FLAMDAL = FLAMEAL + |0

RECLANMI = | D/FLAMDAL

NU = L

NYTEST = NL

Ll = 0

L2 = L

LMAX & L2 = |

LMIN B | MAX « 2

LSIGN = |
Dp 800 LPR
LMAX = {MAX 1

LMIN = LMIN = LSIGN

NUPR = LPR ¢ 2

NUPR # AUPE » 2

1F (NUPR = MUITEST) S50, 50, 40

Lie L2

+

50 1F (NMUPRY #1450, {00, 4Q¢
CALCULATE S4.,S AAD S3,S,
400

408
410
44

442
443

12 2 12 ¢+ )

121 = 12 + L82
131 = 12! + LS2
13 2 18] + L2
SymM = 0,0

‘syMlp = SUY¥

SUM3I = Syur]

SUM3 & SUMT]

NUPLUS = NL o NUPR
NUMINUS = nu = NUPR

LPRPR = NyNIMUS

IFLLPRFR « LM™IN) 408, 410, 410
LPRPR = LMlw

IFCLPRPR = NUPLUS) 415, 4)11: 41
NUPRPK = NLPLUS

CALL POTENCKL

IF (POT) 413, 412
1IFtPaTI) 413, 445

NUPR ® =NUFR

CALL COEFIF

SYM3 =2 COEF *pOT & SUMJ
SUM3Y = COFF*POT! + SUM3I
NUPR & wNUFR

NUPRPR = NUMINUS

CALL PBTENCHL

IF(PAT) 417, 416

LF(enTl) 417, 418

CALL CHEF ¥



418
420

100

125

SUM = COEF*PAT « SuM

SYM] = CHEF *PUT] + SUMI
LPRPR = LPKPR + 2
IF(LPRPR=L¥AY) 410, 41p, 420
S(12)= (SuM3 + SUM)

S(121) = (SuMSl = SUM]Y
§¢131) = (suml + Sum3zl)
S¢§3)Y = (SLM = SUM3)

Go T8 700

TF(NUY 300, 200

CALCULATE SO

200

210
215
218
220

10 = 10 + |

suym = §,0

NUPRPK = 0

LPRPR = LMIN

CALL FOTENCHL
1FC(PBY) 215, 218
CALL COEFIF

Sum = COEF*pal *+ SUM
LPRPR = LPRPE + 4

IF (LFRPR « LMAX) 210, 210, 220D
S¢{10)Y = SUNM

Be 78 700

CALCULATE Si AND sS1I1I

300

700
800

810

900

999

1= 31+

11t = 11 « LS!

sym = 0,0

SUM] = SUM

NUPRPR = N

LPRPR = NU

[F (LPRPR=LMINY 308, 31IC, 3i0
LPRPR = | MIN

CALL FOYENCHL

IF(PBT)Y 315, 312
IF(PaTI) 315, 38

CalLlL CEREFIF

SUM = PBT*COFF + SUM
SUMI B PATI*cOEF + SUM]
LPRPR = LP&PP + 2

IF (LFRPR « {MAX) 3j0., 310 320
S{14) = Su»

S(I11) = SuM}

GO 18 700

NUPR = NUPR w» 2

1F (NUPRY 20n, (00, 400
CaNTINUE

IF (LSIGN) 900, 810, 810
LSIGN = =]

NUTEST = LSIGN » NUTEST
L = L o+ |

L2 = MAXLAVDA

Ge 18 20

Ny 8 hU = 2

NUTESTY = ML

1F {NUTEST) 999, 0, I
CanTIhNUE

INIT 8 INJT & LS

RETURN

END

SUBRAUTINE [MCOULINUMAX) ~
EQUIVALENCE(MI,AMASSPR)Y, {M2,8MASSPR), (3, CMASSPR), (M» ABCMASS)
soMmMan /POTENCHL/ AMASSPR, BMASSPR, CMASSPR, ARCMASS, POT(20)
EQUIVALENCE (Z1, PBTIS)Y), (42, PAT(61), (23, POT(7))

COMMAN / INCAULY VNU{3A). VNUI(IA)

TYPE KEAL Mi, M2, M3, M

Al2 = ZI%2Z*SQARTF(2,(*V1*°M2/LHM1 «M2))



20
3n

40

50

60

70

80

90

100

500

550
800

650
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223 = Z2%23SGRTIFL2,D%M2%K3/ UMY » MY))
Al = A23
ADDIREZAL & AYD

AJ] = Z3I°ZV*SURTF(2,2°H3 M1/ (M3+M1))
Agn = A3

ADDZREAL = 420

VNU(T) 3 ACLPREAL ¢ AZ23 + A2
aDDyI~46 = 3,0

LDGZTYAG = ADD|IMAG

UNUTCEY = pUN2THAG

FaLL & 1.0

QYMPSED = 4, ek {eM2eM]

SYMp=:T = SeeTr{SYMPRED)
T = »¥1eM3 « M2

1FCeTi) 23, 1o

gaszd = 1,7
TANZE = D,
TAN23ISD = TAL2Z

G8 12 5D

T2 =2 1! « %2 » ¥2
1FexY2) 40, 3¢

teses = 0,¢C

TANZI = COSES

TANZ23ST = TALZ23

68 1o 50

Cese3 & T2/71

YAND2R = SYMRAET/T2
TAAZISE = Tar23#TAN23
T & %243 » M|
IFer1) 78, 60

ces3i = |,C

TANIY = 0,0

TANZISO B TANIY

GG 1 19¢

Y2 2 Y1 = M) e M|
TFeY2) 940, 84

cas3t = 2,¢C

TAN3ZE = CEsd)
TALZISG = Tavdl

Go 12 1pC

COS3l = T2/TH
TANIE = SYWRAZT/T2

TALIISE =2 TANIIOTANG|
CasTINGE

28 1850 N = 1, NUMAX
VREAL = |
VIMAG = 00,0C

IF(Ca823) €52
Yl = ADDIREAL

>

s+ 500

ADDIAESL = ~ADDIIMAG

VREAL = ADCwEAL + VREAL
ADDYIYAG = Ti

viIMan = ADL) IMAG
IFCC"S31) €500 4600

T2 = 2LD2REAL

ADDZREAL = aAnD2IvAG
VREAL = ADCZirEaAl « VREAL
ADD21IvAG =2 eY?

VIMAG = ADC2TMAG < VIMAG
410 = A10*°Cns23

A} a AlD

Bl = AlsTANZ]

A20 = A20°C0S23

A2 = A2D

SUM = A2 ¢ Al

AD2 = &,0
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BDZ? = ADZ

ADYE =3 »,5

801 = »,5

FNU = FNUJ

BNY = FNU

FNUT = BNU « 1,0

BNy = FNUL + 0,5

ANT = BN + 1,0

BN2 = {=FNLII"FNU*0,25
ANZ = (=FHNLIel Q3 *FNUI"C, 25
ANY = 1,0

LMAX = NU/Z

DB 700 L=}, LMAX

Al = AI*TAN23SQ

AZ = AZ*TANZLSA
ATHTAL = AZ » A}

ADY = AD} + 2,0

AD2 = ADI + AD2

ANT = AN -» 240

AN2 = ANI 4+ AN?

ANU = (AN2/ANDZ2)*ANU

SUM = ANU * ATATAL + SumM

700 TONTINLLE
VNU(NU+§) = VREAL + SUwm
B2 = A2*TAN3)
SymMl = (B2 + Bi)*BNU
LMAXY = tNL=)) /2
DO 8OO L=t, LMaX]
By # BI®TANZ3SD
R2 = B2*TANIISO
ATHTAL = BZ + B)

8D) = BDI & 2,0
Rp2 = 6Dt « RD2
BNiI = BN! = 2,0
BN? = BN & Rik?
BNU = (BN2/KDZ)*3NY

SUM] & BNU*HTBTAL + SUMJ
800 CoONTINUE ‘ .
YNDT(NUS1) = VIMAG + Suml
1800 CONTINUE
RETURN
END
SUBRBUTINE GREFIF
ceccce CLEBSH-GRRDAN COEFFICIENT SUBROUTIME ( TAMURA=MARABLE = ORNL)
ceeccece DEFINITION OF THE CG COEFFICIENT 1S FOUND IN EQUATIENS
CCCeae C18) anvD (17) oF RACAH » PHYS, REV, 42 (]642) 438,
tceeec IF Ce30J) J2 Mi M2 | J3 M3Y THEN 1Aae2*J1l, 1B=2%J2» 1C=2%03,
eceeec INez*Mi, 1E=2%M2, IF=24M3,
geeece THE MAIN=RAUTINE OF A PROGRAM, ANY SUBROUTINE OF WHICH
£CCCee IS 1€ CALL CLER anD/BR RAC7, MUST WaVE FOLLOWING SET
e¢ceece OF STATEMENTS a7 175 VERY REGINNING,
DIMENSIBN FACLAGISNS)
FACLAGIZ2Y=FACLBGT|)=0,0
FN=1,0
De {0 Ne3,500
FN=FN+],0
10 FACLAG(N)=LOGF(FN)+FACLOG{N"|)
EQUIVALENCE (LPR,1AD, (LPRPR, IR, (L,1C), (NUPR,ID), (NUPRPR,IF),

OO D

t (NG IF)
COMMBANZCOEFIF/LPR,LPRPR, L, NUPR,NUPRPR,NU, CREF RECLAM | ,FACLOGI300)
105 KielAslBelC § 1AQCPsK|/2
IF(IABCP*2-K12)000,120
{28 X2=1A+1D %  1APD=EX2/2
1FC1aPDe2-x2y1000,125
125 K3=18~-1E 8 IBMF=EK3/2

CIF(IRME*2.k8) 1000, 130



AN NannaaOn 0000
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130 NZMIC2={1H~1C~1DY}/2 $ NIMIC3=tlA+]E~-1CY)/2

290

400

2000
2010
1000

2015

1
20
30

19
20
25
30
40

50

NZMISXMAXOF (NZMIC3,NZMIC2,0)

NZT4zNZMIaNZMIC2 § 1ABCFIABCP»I(

NZT=lagCaNzM]  $  JAMD=1APD=IN

NZT2=1AMD=N/M] & JBPE=IBME+IE

NZT32]BPEehzM]  §  NZMX=XMINDOFCIABC,1aMD, [RPE)
IF(NZMX=NZNV 1Y 1003,2C000,200

NZT5NZMI~AZMIC3 $ JCPFSLIC*IF)/2 3  JCMF=]CPF-IF

1CAB = [AECF = (B § IRCA = 1ABCP - 14

SQFCLG = (FACLOG(IABC*)) - FACLUG(TABCP«2)

[+FACLEG(ICAB+ I Y+FACLAGCIBCA+ |} +F ACLUG(IAPD+ I Y¢FACLBG(IAMD+ )
2+FACLOG(IBFE+ 1 Y+FACLAGEIBME+ 1) +F ACLOG{ICPF« tY*FACLOG(ICHF+))*0,5
TERMLGRmFACLEGINZT I+ ) eb ACLUGINZTZ2+ 1) =FACLAGINZTI+ )
I+SOFCLGaFACLAGINZTA+ 1) wFACLURINZTS« 1 )=FACLOGINZMT+ 1)
RACSEXPF(TFRMLG)

NZMI=NZMI=

DO 400KNZ=NZIH]aNZMX

NZT3=NZTS=I $ NZT2=NZT2+|

NZT4=(+NZT4 § NZ2T5=z+N2TS $ NZTIeNZTi-|
TERVLGI=FACLAGINZTA+) )b ACLOGINZTS« | )=FACLAGINZ*1)

[ +SNFCLGeFACLAGINZT }+ ) =FACLOUGINZT2+ 1) =FACLAGI(NZTI+))
RACZEXPF(TERMLGY*RAC

CONTINUE

COEF = RAC*RAC

RETURN

1F118)1000,2015,2010

1Ftm1A)200,2015,1000

COEF & 0,9

REYURN

COEF = RECLAMI

RETURN

END COEFIF

SUBROUTINE MATCNTRL

THIS SUBROLTINF 3UFFERS BLOCKS OF DATA FREM TAPE UNIT 40 CYCLICAL
LY INT& COASECUTIVE CELLS OF St}, IT ASSUMES LS, LSTOTAL, J, AND
S{) ARE IN CamM™@N, LSTaTAL 1S THE DIMENSIAN 8F S¢). LS IS THE
LENGTH OF €isF BLICK BF St), J IS THE INITIAL ADDRESS OF THE
8L6CK BEING USED, AR ApaUT T8 BE USED, IN THE EXTERNAL PROGRAM.
T8 USE  €]) INITIATE BY SETTING J=) AND ENTERING,

(2) IMMEDIATELY BEFORE FACH USE ©F Ao 8LOCK OF DATA IN THE

EXTERNAL PRAGKAM PERFORM THE FOLLOWING

NERELR

IF (J=L.S=-¥) 10, 30

IF (J+LS=t=-LSTATAL)Y 30, 30, 20

NER

CALL MATCNTHL

(3) MATCNTRL MAY BE ENTERED AT aNY aTHER PBINT OF THE

EXTERNAL PROGRAM,

HUFFERING COMTINUES UNTIL A ONE WORD END-OF=FILE 8LOCK IS READ
IN, THE NEXY ENTRY AFTLR COMPLETIAN OF THIS REWINDS THE TAPE,
NG ENTRY WILL AGAIN RE EFFECTIVE UNTIL AN INITIATING ENTRY

1S MALE WITWH J = 0,

EQUIVALENCE (INITIALS, J)

COMMAN /S/ LS80, LS)s LSITWO, LS2, LS, LSTOTAL, INIT1ALS. S(s000)
IF (J) 19, |0

1sC(LSTOTAL/ZLS)=})*.S+}

REMIND 40

J=1

K = 0

1IF (X) 100, 20

IFCUNIT, 40 Y3D.40,90425

CALL SToP(Z01)

IF¢I=Jd 100,20

li=1+LS

IFCII#LSm[=LSTOTAL)BOSBTe5D

IF(I=1)70,€0
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60 IF(J~1)65,100
65 Js=15GE TO E7
79 li=|

80 1F(11=J)85,100
85 I=1]

87 IPRsl+(S~]|
BUFFER IN( 4021)(SC1)Y2S{IPR)Y
50 18 20

90 REWIND 40

100 RETURN

SUBRAUTINE MINEIG (A,V, AR, NTRY, NaAXNO,EgPSLAN,E]GEN,S)
DIMENSION A(2),VI(2),5())
MR=NR
NRPLUS sHMR+ |
NRRP={NRPLLS =])*MR
Mze |
IF (NYRY) 7, 4, 5
5ng 61 & |, MR
6 v{1) = 0,0
NO = NTRY
Go 1a 67
7 NO = |
VMAX = 0,0
ne 10! = |, MR
Iz ey(]) .
tF (Z) 9 10, B
zZ = =2
IF (=~Z~VMAX) 10, 10, 12
VMAY ® 2
NO = I
co U
10 DgN1¥h!E= 1, MR
b vel) = vEl)/7v{ND)
GO 19 67
4 ANNMIN=ZwA{})
IFCANNMINDZZ,22,20
20 ANNMINSeANNHIN
22 ND=1
I=ND
DB 30 I11=1,NRSQ,NRPLUS
vin=a,0
Zs-AL10)
IF(2127,25,26
26 Z=n~7
27 IF(Z-ANNMIN)30,30.28
28 ANNMINZZ
ND=1
30 I=1+1
68 10 67
25 v(1)=1,0
Ge YA 28
31 7 = VIN}
na 321 = |, MR
32 ve1) = vi])r7
EIGEN=(D JVMAX) *SIGN+EIGEN
33 DB 34 ly=],vas0
34 S{1yIi=A(LY)
NE 36 11=),8050,NRPLUS
36 S{ID2S(1D)-EIGEN
KeKe |
1F(KIA0, 38
40 S1GN==1,0
CALL KRAMRLD (S,V,MR, },DsMR¢MR)
1F (DET) 42, 4

N WO o
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41 Ngr = D
42 VMAX = <V(\)
IF(VMAX)46,50445
45 yMAX==VEAX
SIGN=1,0
46 Tsi=N) /vnAX
IF(T)A8,38,47
47 T=eT
48 IF(»T=EPSLEN )B0,80,50
50 N 60 l=1,¥R
Zz-v(])
1Fe2) 58,60,57
57 Z7ze?
58 JF(VMAX~Z2)60,60,59
9% VMAY=Z
Ne
60 CONTINUE
IF(VMAX) 3,65
65 DO 66 l=zl,MKk
66 v(1)=0,0
67 v(nQ3I=sl,0
K=sMAYNE+ ]
NahN{
EJGENED,O
DET = EIGEA
NQ=Me2
MasNJ«=!
Go 10 33
90 SIGN=D,0
50 768 50
80 EIGEM3(]D /VMAX) *SIGN+EIGEN
38 s = DET
MAXNG B N
QETURN
END
SUBRAUTINE DIAGONAL(X)NXsVALUE}
COMPUTES A DIAGOANAL MATRIX X @F RANK NX WITH ELEMENT VALUE.
DIMENSTEON x(2)
NeNX
NNMzN®Ne |
X(1)=sVALUE
1=1
JA=]
NisJAsN
DB 50 JB=NI,ANM, N
X(JA+ | )eVALUE
IER R
Ji=1
JA=JA+N
DO 50 lu=Ja,us
X(J1)=0,0
X)X (JD)
50 JlsJleN
RETURN
END
SUBRAUTINETRANSPIZUX,NX)
DIMENSIEGN X¢2)

c THIS SUBROLTINE REPLACES A SQUARE MATRIX X (4F
c ARDER NX) EBY ITS TRANSPOSE,

NaNX

NNMzNONw|

I=)

Ja=]

NlaJASN

D8 50 JbEN1aNNMN|
1=21e1



50

~N NS

(=)

13
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J1=1
JAT JARN

DO 50 lusJdia,ub
Tsx(lJ)
XTI =X(JD)
X(JyI=T
JlzsJleN

CaNT INUE

RETURN

END

SURRAUTINE MATE (APX,NRsNVNET,,SCALER,NANX)
EQUIVALENGE (¢SuM, SUMDyY, (PIVaT, PIVOTN), (Z, 2D
DIMENSIOGN A¢2), X(2)
D = DET

Ks0

KKNA=K

MX=NX

MR=NR

NR|=MRe}

KR I=NR1
NYXz (Ve ) oYX
NVXR=AVXeMR

MA=NA

NAfT=MAS |
NRMRI=NATSARY
NRMR=NRNR I+ |
NRNAF=NRNRenR

DO 5 KRNAK=NRNA| ,NRNR}
PlveT=C,0

Kekel .
NYXK=K*NVX
KKMA=KKNA+M A}

KK KNAmYA

DO 6 IK=XK,KR|

ZzsA{ 1K+ 1)

1F(Z2) 5,6,4

Zz-7 -

IF{=Z=PIVOT) 6,6,7
PivaTrez

IRRY=1K

CoONTINUE

SUMD =2 =A(KK)
TFC(SUM+PIVETYI 8,9
1F(PIVET=SLEY 1210410
IPRUPR= PR akK+K
SUMD = wA(IrRJ + |)
DB |2 KJISKK,MRNAK,MA
20 = AULIPR, « ()
ACIPRJ*IzA(K))
A{ky) = 2D
1PRJ=]IFRJ+VA
COanTINUE
NG |3 KJsK,NvXK,MuX
2eX(IPRJPR+ 1Y
YCIPRJPR* 1Y EX(KY)
X{kJ)=2
IPRUPR= PR _PO+MX
CoNTINUE

z=D

PIVETL = (=»1,0)/SUMD
D = ~SUMSDISCALER

NB 16 KJzK,NVXK, 94X
Td=K
X{KJISPIVET o X{KY)
DG 186 JK=KK,XR}
X{1J+d) = ma (IKaI2NCKy) & XUTU+])
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18
19

20
30

25
26

40

64
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Tdz{Jd=1
CONTINUE
N t4 KJ:KKNAJ‘JRNAK'MA
1J=KJ
A(KJ) & PIVUTL®A(KY)
De |14 1K=zKK,XRI
ACIJe1dateA(RJIICACIKEI+ALTYE )
1J=1J+]
CBNTINUE
KR| = KRI| ¢ ™A
TanTIhle
SuM = A(NRAR)
TF (SUM) 17, 19
piyaT = 1,0/9UM
NRNRD B ONRARE ¢ MA
DE 18 NRJ=MH, NVXR, MX
X{MRJ)= PIVOT*X(NRY)
1J=NR U+
11 = NRNRI|
DE 18 ka2l AR
11=11=nat
1L=11
INER VLY
DB 18 LJ=lleNRY
XCIJ=1) = <& CpLe1d*x () + x(1J=4)
IL:]LH“A
ConNTINUE
JET = DeSUM*sSCALER
RETURN
IF (su¥) i, 19
END
SUBRAUTINE U VECTOR (U, V, W, N+ NO, UMAX|,SCALER)
WMERE U 1S A VECTOR OF DIMENSION NO AND St NORMALIZED
THAT THE CCMPONENT UCN) OF MAXIMUM  MAGNITUDE WOULD BE UNITY.
HOWEVER TH1S VALUE OF UNITY IS ALWAYS PRAVILFED IN THE UNIT HATRIX
S8 YHAY UCA) 1S SET EQUAL TO ZERS AFTER NBRRAL[ZATION.
JE ASSUME & S THE RFSULT OF A LINEAR APERATION, CcALL !T L,
APERATING &% THE UNTT MATRIX | PLUS THWE VECTOR Uy 1N COLUMN N1,
THWE NEW VECTOR U IS DETERMINED FREwM VECTER V BY THE RELATIAN
L (U ¢ 1(N)) =V WHERE J(N)Y 1S THE NTH COLUMN BF THE
UNIT MATRIX AND V 1S A GIVEN VECTOR OF DIMENSION NO.
THIS SUBRELTINE REPLACES UI RY U, N| BY », V AND W ARE DFSTROYEU,
THE VALUE FF THE CANMPONENT OF U BF MAXIMUM HMAGN{TUDE BEFBRE
NORMALIZATION 1S PUT INTO UMAXI,.
MATQ 1S NEEDED AS A SLavE,
UMAXE INITTALLY CONTAINS THE INITIAL SCALE FACTOR &F THE
DETERMINANT GOING INTOG MATO, AND SCALER 1S THE CARRESPONDING
MULTIPIER SCALE FACYAR GOING 1NTD MATO,
DIMENSTIGN L(2), VI2), wW(2)
NUY s AD
2 = UMAX|
CALL MATO(W,VsNU,14sZ,SCALERNU, NI
1F(2)30,20
GALL STgP(arny)
VN = C.C
IF(NY 25, 26
YN & VI(N)
UMAX=0,0
D8 70 l=zl,Nu
gy syNsUCT)eVLL)
Z=U(l)
1FCZ350,70,40
lzw?
1F(=2=~UMAXI7U, 70,60
UMAXEwZ
NE
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70 ConTINUE
UMAX T = U(N)
YMAX = UMAX|
IF (uMAX)I9E,80
80 CALL STeP(3u21
90 De )00 I=],.nU
100 UCEY=UC])/LMAX
yiny=0,0 %  RETURN $ END
SUBRAUTINE KRAMARD  (AsX,NRSNVIDET,MASNX)
DIMENSTIBNACIUY W XC}D)
D=1,0 ’
MR=KR
Mo MR
KRI:Mn‘
NR2zKk =)
K=(
KKNAZK
Yx=nYX
NX2=MX-2
NRYzNXZeNRZ
MYXz Vet ) py
NVXYR=2NVX+N1E
NYXM =L VXR
MAZNA
NAl=MAS |
TI=NAT MR
NRNRI=1I=NA|
NRNAISNRNR I mNR2
D8 5 NRNAKzHVRINA|sNRNRI
PivaT=0,0
Kekwl
NVXK=R+NVX
KKNA=KKNA+N A
KK2KKNA=MA
N8 6§ [K=zKK,KRrI
ZewAllK21)
1F(2) 3,6,4
Z=z=~7
IF(=2=PIVBT) 6,67
pPlvgYeez
IPRJY=TK
CanTInUE
SUMz=ALKK)Y
IF(SUM+PIVETYI 1,8,9
9 IF(PIVOT=-SLHEY LM b, 1D
G IPRUPREIPRL=KK+K
SUMz«A(]PR, +I)
0O 12 KJsKK,HRENAK, MA
Z=A(IPRY+ 1)
ALTERU 1 I=A(KJ)
Atkyr=z?
IPRUSIPRI+MA
|2 CantiIhUE
DO 13 KIsKsNVXKMX
ZeX(IPRUPR+ )
X{IPRJPR*])I=%X({KJ)
X(KYy=2
IPRUPR=IPR PR+NMY
13 CONTINUE
D:nD
t PIlveT=(~1,0)/SUM
NG 16 KUK, NVXK,yMX
1d=KJ
2=PIVOT *X(KJ)
00 16 IK=KK,KRI
XCIJel =AM+ 1) RZ=X{] J+1))"SUM

~ N

*
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INESNLY

DB 14 KJSKKNAJNRNAK,MA

1J=KJ

A(KJISPIVOT*A(KY)

DO |4 IK=KK,KRI

AT s datma(RIIYPALIKE ) Y+AL)IT )

INEINEY

CONTINUE

KRIsKR1+MA

IF (=D) 17,1718

Na {9 lJsMR,MNVXR,)MX

X(1Jys=xt1.)

ng 20 NJJsAKRYaNX2

1J==N]J

I1=11=NAI

DazPeA(ll+«])

TFEACITS1))Y) 23,22

Mamy«~N]J

NV XMEMERVX

D6 20 MJsM, MNVXM, MX

IL=11

TJslJeMX

X(1Jge1)=D*x(1d=1|)

DE 20 LJd=l., MJ

KATJm 1S m AT o X{LJ) e X1 de )

IL=IlsMA

CONTINLVE

1F ¢(A(L1)) 27,26

Mzl

IF(w=hRY 28, 29

KJaMe | aMX

00 2% NRJ=VMR,NVXR,MX

KJ=KJIwMX

DO 25 lJ=K_ ,NRJY

X(147=0,0

NEY=zA(I)*D

RETURN

IFESUM) 11,5

END

SUBRBUTINE STOP(L)
STOPS IF ¢ IS 0DD,
CONTINUES [F L 1S EVEN,

PRINT 10, L

FERMAT €/777/50%, S5HSTOP (s 14, 14H) ENCOUNTERED ///77)

1F (tL.72)%Z = L) 30, 2p

RETURN

STFP

END

FUNCTIBN PRODUCT (A, RI)

TH{S Ss R, FINDNS THE PRODUCT OF TWO FLOATING POIMT NUMBERS

SCALED BY PEWERS OF  10%%600 WITHAUT CAUSING OVERFLOMW,

EQUIVALENCE ¢A,1A), (B, IB)

22 = Al
A & AZ
1F ¢A)Y 10, 140, 20
Az wA
K2 = B
R o= B
IF (3) 30, 100G, 40
2 g -8

TYFgTEl.1AY/10000000000008 * (=18)/1000000N000008 + 1049
1F (ITEST) #4s 80, 85
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ao
90

95
100

PREDUCT =
RETURN

IF (ITEST
PREpDULT =
RETURN

PRALICT =
RETURN
PRADUCY
RETURN
END

“w
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(1,E300 * a2) * (|,E300%82)

¢« 1998) 95, 97, 90
b2 ¢ g2

(1, E~300%42) * ([,E~300%B2)

.0
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