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ABSTRACT , •

A Fortran II program is described to perform numerical inte
grations by the Monte Carlo method to calculate the solid angle '
presented by a circular aperture facing another at any obliquity.

INTRODUCTION

A knowledge of the solid angle subtended by a circular disc
to another which faces it from any direction is frequently of value
in physics. There are, for instance, two important types of measure
ments in nuclear physics and associated technology. The first is
in absolute radioactive source strength measurements1 where the
source is laid down uniformly on a circular disc immediately below
the detector which has a circular window. The second situation is

in absolute differential cross-section measurements, where it is
common to use a detector with a circular collimator to record the

scattered and transmitted particles from a thin target bombarded
by a beam of particles that has a circular profile.

2-10
Exact calculation of the solid.angle by anti-differentia

tion, except for the case of a point source, is prohibitively
difficult* However a numerical integration by the Monte Carlo
method, performed on a computer, can calculate the solid angles
to any desired degr.ee of accuracy.

DESCRIPTION OF THE CALCULATION

For the sake of simplicity the calculation will be described
in- terms of a radioactive source laid down with constant specific
activity on a circular disc. Radiations are emitted isotropically
and those striking a;circular detector that faces the center of

the source are recorded with 100% efficiency. The situation where
the detector facing the source can be placed anywhere on a semi
circle whose center is at the center .of the source, is simulated.
However, the case where the detector is parallel to, and has its
center on the normal through the center of the source will be first
described.11 Fig. 1 shows this case and also serves, to help define
symbols used in the text.



An expression for the solid angle subtended by one disc at the
other is
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Only an approximate solution of this equation is possible except
for the case of a point sour,ce when

fipg =2tt[1 -(1 +RD/D)2rl/2] (2)
However a simplified expression for the geometry, which is approxi
mately correct over a range of source-to-detector distances, has
been quoted by Burtt.1^ In addition Konijn and Tollander13 have
used a computer to numerically solve the integrals in an approxi
mate equation and have tabulated the results for a range of Rq/R-p.
and D/Rp. However their data have rather wide (> 10%)

separations between values of the parameter and is applicable only
when the source is smaller than the detector. If the case is

considered where the detector is moved around.the arc of a circle v

of radius D but still faces the source, the calculation by the use
of calculus is even more difficult.14 Equation (l) still applies
but fi(r) has a different form, namely Q(r,9).

A more elementary method of obtaining the source-to-detector
geometry to any required degree of accuracy is to use the Monte
Carlo'method15 to perform a numerical integration. The essence
of the method is that a computer is made to' perform a gedanken
experiment to simulate the isotropic emission of particles uni
formly located on one surface of a hypothetical disc. The computer
program uses 2 random numbers to give the point of origin of the
disintegration and 2 more random numbers to obtain the direction
cosines. The program then ascertains whether or not a line with
the randomly selected direction originating at the randomly chosen
point on the disc intersects a circular disc representing the
detector. This sequence is iterated as many times as desired and
finally the ratio of the number of hits to tries, multiplied by
2tt yields the solid angle in steradians.

DESCRIPTION OF THE PROGRAM

The input data must be keypunched on one card per case according
to the format of statement 1 of the program. The source radius (RS),
detector radius (RD), separation (D), angular displacement (THETA),
the coefficient of variation (COEF) and the number of iterations
(NMAX) are required to fill the 6 fields. COEF gives the accuracy
required, for example, 0.01 will yield a standard deviation (SIGMA)
of 1% in the answer (P). NMAX is the number of iterations (compare,
radioactive disintegrations) to be performed and its choice controls
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the time and accuracy of the calculation. Approximately one minute
on a CDC I60UA computer is needed to perform 10,000 iterations;. .,
an IBM 360/75 is seven times faster. For the case when RD > RS,
and THETA =(0, a suitable choice of NMAX is (1-3) x 101*; however
if the source is bigger than the detector a larger NMAX must be
chosen to obtain the same accuracy.

To increase the speed of calculation the simulated radiations

are delimited to a cone with a solid angle (hi\ ETA) that encompasses
the detector (see Fig. 1 for the case where THETA = 0).

Iitt ETA = 2tt(1 - C) (3)

where C is the cosine of half the apex angle of the cone and is
given by

C=D(Rg +RD)2 +D2)"1/2 (10
The product, of the ratio of the number of hits to tries (P,) and
ETA is the geometry factor (P). The maximum possible value of P
is 0.5.

The method of calculation, written below in FORTRAN, will be

outlined because it is the simplest case of a program that can be
modified in many ways. For instance, the shapes of the source or
detector could be changed;-5 they could be constructed as a simple
three dimensional solid,1°,17 or made to possess a detector effi
ciency other than 1.0. In addition the angular distribution of
the radiations could be-made non-isotropic ,!3 Dr the distribution
of points on the source disc could be made non-uniform to simulate,
for example, a decrease in radioactivity towards the periphery.1"

Statements 10 to ik randomly select a direction within the
solid angle, UttETA, which is given by the direction cosines U and
V. The random number RANF(0) is part of the standard software
provided by many computers; if such a facility is not available a

simple eight statement, zero to one, random number generating sub

program can.be used (see Appendix I) and this function (FLTRNF(X))
can be called in place of RANF(0).

Statements 20-23 choose a point (X,Y) at random, with equal
probability per unit area, on the source disc from which the line,
whose direction has been obtained, originates. After this, it is

ascertained .if the line intersects the detector by determining if
the point of intersection (XF, YF) with the plane of the detector
is within the circle of radius RD(statement 37)- If a hit is
scored it is recorded in statement 3. The following FORTRAN
statements (h_ to 6) test to see if sufficient accuracy has been
obtained and if not to re-enter the DO loop at statement 2.
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If THETA is not zero the situation illustrated in Fig. 2
pertains. In order to conserve computer time the simulated radia
tions are limited to a cone of solid angle 1+ttETA which encompasses -
a detector of radius Rp'assumed to be located at a distance Dj_
along the perpendicular axis through the center of the source.
D-|_ = D - RgSINO, the shortest distance between the source and
detector.

In each iteration a point is randomly chosen on the source disc
(statements 20-23) and the perpendicular distance (D2) from the
point to the detector is calculated (statement 23+1). The detector
is then assumed to be shifted to a position where it is parallel to
the source and at a distance D2 along the normal through the center
of the radiation source disc (see Fig. 2). A random direction is
chosen and the procedure is exactly as the case when THETA = 0 but
the detector-to-source separation is now Dp instead of D.

-? If THETA is so large that part of the detector is hidden from
' the source the calculation is properly ammended by branching at
] statement 32 and also "DETECTOR PARTIALLY HIDDEN" is printed out.
* v The radial distance (see Fig. 2) that remains unhidden is given by

XHID = -DcotG and there is a branching later'in the program to
statement 36. This forces an exclusion from the record of simulated
hits on the detector that occur behind the plane of the source. The
output values of RS, RD, D, THETA, P, SIGMA and NMAX are printed on
one line.

Fig. 3 shows some calculated values of geometry for circular
radiation sources and detectors with unit separation and THETA =
0. Computed values of the fractional solid angle (P) are plotted
as a function of THETA for one set of the parameters R , R and D,
in Fig. k.

Monte Carlo calculations are notoriously difficult to verify
but insertion into the program of specific values of direction
cosines in place of the randomly selected values gave the correct

hit or miss prediction. Where comparison with Konijn and Tollander's

I tabulated data (for THETA = 0) were possible, agreement was obtained.
; A good check to determine whether or not the program has compiled

•I properly was to put input data for a point source, with THETA = 0
and to check that the output gave the correct yalues given in
equation 2 and in Fig. 3 (where Rg =0.01 is a good approximation to
zero on the logarithmic scale). Also it was deemed advisable to ask
(in the control cards) for the dump, so that in the event the calcu
lation was not finished, an incomplete but useful output was obtained.
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APPENDIX I

FORTRAN LISTING FOR A RANDOM NUMBER GENERATING SUBPROGRAM

FUNCTION FLTRNF(X)

TYPE INTEGER RANDOM,GENERA

COMMON/RANDOM/RANDOM,GENERA

EQUIVALENCE(RANDOM,RANDM)

DATA(RANDOM»30517578125),(GENERA=3051758125)
RANDOM=RANDOM * GENERA

RANDOM=RANDOM.AND.0000777777777777B

RAND0M*=RAND0M.0R.2000000000000000B

FLTRNF=RANDM +0.

END
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Fig. 1. Detector placed axially above the source.
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Fig. 2. Detector off axis at angle 9 from the source.
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