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SUMMARY 

. 

Studies of t he  radiat ion embrittlement of weld heat-affected-zone 

samples and base p la te  of ASTM A-21B pressure-vessel s t e e l  are contin- 

uing. 

t h e  s h i f t  of duc t i le  b r i t t l e  t r ans i t i on  temperature of base p la te  and 

HAZ specimens of three d i f f e ren t  heats of A-212B s t ee l .  Heat t o  heat  

var ia t ions  of s e n s i t i v i t y  t o  radiat ion embrittlement a re  quite s t r ik ing .  

I n  t h i s  report  we show the  e f f e c t  of i r r ad ia t ion  temperature on 

Studies of t h e  increase of y ie ld  s t r e s s  of ferrovac-E i ron  samples 

i r r ad ia t ed  t o  the same dose but  a t  d i f f e ren t  r a t e s  have now been com- 

pleted. No e f f e c t  of dose r a t e  on y i e ld  stress increase w a s  observed 

f o r  dose r a t e s  ranging from about 1 .7  x 10l1 neutrons/cm2 see t o  2.3 x 

neutrons/cm2 sec (E > 1 Mev). Studies of annealing of radiat ion 

hardening were car r ied  out i n  the temperature range from 300 t o  400°C. 
It w a s  observed t h a t  the  rad ia t ion  damage became more s tab le  w i t h  in- 

creasing dose i n  the i n t e r v a l  4 x 1017 t o  5 x lo1* neutrons/cm (E > 1 

Mev). 

energy. Studies were a l s o  car r ied  out which indicate  an e f f e c t  of i n t e r -  

s t i t i a l  impurit ies i n  producing radiat ion hardening. I n  these s tudies  

samples were i r r ad ia t ed  a t  low temperature and t e s t e d  a t  0 ° C  w i t h  no 

apparent increase i n  y i e ld  s t r e s s .  Similar samples given iden t i ca l  

treatment but  annealed i n  the temperature in t e rva l  from 0 - 1 0 0 ° C  before 

t e s t i n g  a t  O°C, showed an increase i n  y ie ld  stress about equal t o  t h a t  

observed i n  specimens i r r ad ia t ed  a t  90°C. 

2 

Also the annealing d id  not take place w i t h  a constant ac t iva t ion  

The temperature and s t r a i n  rate dependence of t h e  flow stress of 

i r r ad ia t ed  polycrystal l ine i ron specimens w a s  tested.  The r e su l t s  were 

analyzed t o  give ac t iva t ion  energies and ac t iva t ion  volumes for flow. 

The act ivat ion volume w a s  not changed by i r r ad ia t ion  while t h e  act iva-  

t i on  energy w a s  increased by i r rad ia t ion .  

A niobium s ingle  c r y s t a l  with a t o t a l  impurity content of < 75 ppm 

and a r e s i s t i v i t y  r a t i o  R 3OO/R 4.2 = 1420 w a s  produced. An annealing 

procedure for improving the perfect ion of niobium s ingle  c rys ta l s  w a s  

determined and x-ray topographs of  the resu l t ing  c rys ta l s  were made. 
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Studies of dis locat ion motion i n  niobium single  c rys ta l s  using e tch  

p i t s  were continued and procedures for decorating dis locat ions i n  very 

high pu r i ty  niobium were determined. 

Stage I11 annealing in  i r r ad ia t ed  niobium w a s  s tudied using i n t e r n a l  

f r i c t i o n  measurements and r e s i s t i v i t y  measurements. The r e s u l t s  showed 

t h a t  Stage I11 annealing i s  due t o  migration of oxygen atoms t o  rad ia t ion  

produced defects. This r e s u l t  h a s  important implications for theor ies  of 

radiat ion hardening since it i s  known t h a t  a l a rge  hardness increase 

occurs during t h i s  annealing stage. 

. 



RADIATION METALLURGY 

D. S. Bill ington, M. S. Wechsler, and J. T. Stanley 

The major emphasis of  research i n  the  Radiation Metallurgy Section 

i s  t h e  study of radiation-hardening and rad ia t ion  embrittlement i n  the 

bcc metals and al loys.  

low-temperature b r i t t l e n e s s  which can be characterized by the  duc t i l e  

b r i t t l e  t r a n s i t i o n  temperature. The increase i n  d u c t i l e - b r i t t l e  t rans i -  

t i o n  temperature upon i r r ad ia t ion  i s  of concern i n  reactor  technology 

because of the possible catastrophic f a i l u r e  of reactor  pressure vessels  

i n  service.  The work described i n  t h i s  report  shows the  influence of  

metal lurgical  var iables ,  i. e. i n t e rna l  s t ruc ture  such a s  grain boundaries 

and d i s t r ibu t ion  of various phases a s  determined by h e a t  treatment, i n  

determining the response of a s t e e l  t o  i r r ad ia t ion  hardening. O f  course 

t h i s  i s  a very complex problem and i n  order t o  study cer ta in  aspects it 

i s  necessary t o  work w i t h  somewhat simpler systems than pressure vesse l  

s tee l .  High pu r i ty  i ron polycrystal l ine specimens and h i g h  pur i ty  nio- 

bium single  c rys ta l s  a r e  being used t o  study dis locat ion motion and in t e r -  

act ion w i t h  rad ia t ion  produced defects. Since the in te rac t ion  of i n t e r -  

s t i t i a l  impurit ies w i t h  radiat ion produced defects  may play an important 

ro l e  i n  rad ia t ion  hardening mechanisms, s tudies  of these in te rac t ions  are 

being made. 

These metals have i n  common t h e  tendency toward 

Radiation Effec ts  on Pressure-Vessel S tee ls  

R. G. Berggren W. J. Stelzman 
T. N. Jones 

We have previously reported on the e f f ec t  of fast  neutron dose and 

i r r ad ia t ion  temperature on the Charpy V-notch t r ans i t i on  temperature of 

three heats  of ASTM A-212 Grade B base p la te  and synthet ic  heat-affected 
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zone samples. " 
have been obtained; these,  with the  previous data, a re  presented i n  Table 

Additional d u c t i l e - b r i t t l e  t r a n s i t i o n  temperature data 

1. 
I n  the unirradiated condition, the pa r t i cu la r  weld thermal cycles 

and s t r e s s  r e l i e f  imposed upon these three  heats  of A-2126  s teel  in-  

creased the d u c t i l e - b r i t t l e  t r a n s i t i o n  temperatures. The l a r g e s t  in- 

crease (SSD Item 1 4 7 - W  - 2B) has been a t t r i b u t e d  t o  the  presence of 

continuous networks of proeutectoid fe r r i te  a t  p r io r  aus ten i te  grain 

boundaries. 3'4 Comparison of t h e  i r r ad ia t ed  base p la te  and heat-affected 

zone specimens f o r  each of the three heats a t  a 60 t o  74°C i r r ad ia t ion  

temperature and a dose range of 8 t o  10 x 10l8 neutrons/cm (E  > 1 Mev) 

indicates  t h a t  the  s e n s i t i v i t y  of each condition t o  i r r ad ia t ion  is  r e l a t ed  

t o  t h e  cooling r a t e  encountered i n  each thermal  cycle. When one considers 

t h a t  t h e  base p la tes  have t h e  slowest cooling rates, then t h e  samples from 

a l l  t h r e e  heats w i t h  t h e  highest  cooling r a t e s  showed the  least s h i f t  i n  

t r ans i t i on  temperature and the  slowest cooling rates (normalized base 

p la tes )  the  highest  s h i f t .  

Knopf, and Byron. 

2 

Similar behavior has been noted by Carpenter, 
5 

2 Normalization of these data t o  a dose of 9 x 10" neutrons/cm ( E  > 1 

MeV) following the  t rend  band f o r  A-212B i r r ad ia t ions  y ie lds  t h e  change i n  

t r a n s i t i o n  temperature a t  the 20 f t .  lb .  energy l e v e l  f o r  various 

'R. G. Berggren, W. J. Stelzman, and T. N. Jones, "Radiation Effec ts  
on Pressure-Vessel Steels ,  " Radiation Metallurgy Section Sol id  S t a t e  Divi- 
s ion Progress Report, February, 1966, OFUYL-3949, p. 2. 

R. G. Berggren, W. J. Stelzman, and T. N. Jones, "Radiation Effec ts  2 

on Pressure-Vessel Steels ,  " Radiation Metallurgy Section Sol id  S ta t e  Divi- 
s ion Progress Report, July, 1966, ORNL-4020, p. 1. 

I 

'E. F. Nippes, W. F. Savage, and W. A. Brown, 'Study of the Weld Heat- 
Affected Zone of A-212B Steel ,  " Rensselaer Polytechnic I n s t i t u t e ,  Troy, 
N. Y. (February 1961). 

Affected Zone i n  A-212B Steel ,  " Rensselaer Polytechnic I n s t i t u t e ,  Troy, N. 
Y. (January 1964). 

' G .  F. Carpenter, N. R. Knopf, and E. S. Byron, "Anomalous Embri t t l ing 
Effects  Observed During I r r ad ia t ion  Studies on Pressure Vessel Steels ,  ' I  

Nuclear Science and Engineering - 19, 18-38, (1964). 

W. F. Savage and F. C. Breimeister, "A Further Study of the  Weld Heat- 
4 

. 

. 
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Table 1. Effec t  of I r r ad ia t ion  Temperature and Dose on Charpy V-Notch 
Duct i le-Bri t t le  Transit ion Temperature of ASTM A-212 Grade B 

Base P la te  and Heat-Af f e  cted-Zone Specimens 

SSD I t e m  No. 147 147 147 156 156 156 15 7 157 157 

Cooling R a t e  a t  538"~  24.4"C/Sec 7.8"C/Sec 12. ~ " c / s ~ c  5. ~ " c / s ~ c  12. ~ " c / s ~ c  5. ~ " c / s ~ c  
Thermal Cycle None 4B 2B None 2 3 None 2 3 

I r r ad ia t ion  
Temp. Dose 
( " C )  (E > 1 MeV) 

DBTT a t  20 f t - l b ,  ( " C )  

1 2 w 
( x 10 8n/cm 

0 - 20 - 18 60 - 12 7 8 3 53 43 

7 82 150 

-- 
60-74 .5 62 

I 1  

11 

I 1  

1 1  

8 80 172 
9-90 3 97 145 135 13 7 
10 92 127 108 

I t  11 
233 
260 

148 
93 



Table 1 (Continued) 

SSD I t e m  No. 147 147 147 156 156 156 157 157 157 

Cooling Rate a t  5 3 8 " ~  24.4"C/Sec 7.8"C/Sec 12. ~ " c / s ~ c  5. ~ " c / s ~ c  12. ~ " c / s ~ c  5. ~ " c / s ~ c  
Thermal Cycle None 4B 2B None 2 3 None 2 3 

Irradiat ion 
Temp. Dose 
( "C) (E  > 1 MeV) 

DBTT a t  20 f t - l b ,  ( "c) 

( x  1018n/crn2) 

260 9.6 
277- 283 7 

8 1 1  
18 62 

62 

132 

I 1  11 
288-291 9 

1 1  10-10.3 
72 

75 
70 

55 

63 
98 

10 7 

321 
333 
33 7 

9 
8 
7 

2 
20 

72 

340 
360 
440 

9-10 
10 
8 

10 9 
-5 

70 
23 

2 

. 

471 10 3 
474 9 15 

. . 
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i r r ad ia t ion  temperatures shown i n  Figs. 1 to 4. A comparison shows t h a t  

the e f f e c t s  of i r r ad ia t ions  vary considerably f o r  the three heats and, 

for t h e  case i n  hand, show t h a t  it is  minimized i n  h e a t  A-2056 (SSD Item 

157) f o r  both the base p la te  and heat-affected zone specimens. Not enough 

i s  known of t h e  normalization h i s to r i e s  of these heats t o  reach any con- 

clusions regarding t h e  difference i n  i r r ad ia t ion  sens i t i v i t i e s .  

is  l i t t l e  or no decrease o r  "recovery" of  the t r ans i t i on  temperature i n  

t h e  i r r ad ia t ion  temperature range up t o  250°C; however, recovery of the 

major portion of irradiation-induced t r ans i t i on  temperature s h i f t s  f o r  a l l  

conditions occurs within a f a i r l y  narrow band of l e s s  than 100°C (260 t o  

3 3 O " C ) ,  leaving 10% or less o f  t h e  o r ig ina l  damage remaining. 

A cursory comparison of the high temperature i r r ad ia t ions  w i t h  the  

post i r r ad ia t ion  h e a t  treatment data presented previously'" indicates  

t h a t  a h e a t  treatment of 1 2/3 t o  3 h r s .  may af ford  as much recovery as 
the high temperature i r r ad ia t ions  a t  the same temperature. F u r t h e r  post  

i r r ad ia t ion  recovery s tudies  a re  planned on materials already i r radiated.  

It i s  a l so  apparent t h a t  f o r  t h e  high temperature i r rad ia t ion ,  t h e r e  

1- 
SSD ITEM NO 

Z 60 
W 

0 z 

I u 
a 

40 

2 0  

0 
(00 200 300 400 500 600 0 

IRRADIATION TEMPERATURE PC) 

Fig. 1. Change i n  Charpy V-Notch. Transit ion Temperature f o r  Heat 
15900 (SSD I t e m  147) of ASIIM-A212-B Steel.  
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Heats of ASTM A-212-B Steel .  
Zone Specimens . Both Base P la te  and Synthetic Heat-Affected 

Tensile Tests on I r r ad ia t ed  I ron  

N. E. Hinkle N. K. Smith 

The e f f e c t  of neutron dose r a t e  on the t e n s i l e  propert ies  of a high 

The importance pur i ty  vacuum-melted i ron ( Ferrovac-E) h a s  been studied. 

of understanding t h e  e f f e c t  of dose r a t e  may be rea l ized  when it is  point- 

ed out t h a t  mater ia ls  i r r ad ia t ions  are performed i n  research reactors  

having neutron dose r a t e s  of 1OI2 t o  5 x 1013 neutrons/cm2 sec (E > 1 % 

Mev) whereas t h e  s t r u c t u r a l  mater ia l  of the pressure vesse l  of a power 

(E > 1 MeV).' 

reactor  is  subjected t o  dose r a t e s  of 10 9 t o  10l1 neutrons/cm2 see  

'J. J. DirJunno and A. B. Eolt, "Radiation Embrittlement of Reactor 
Vessels, " h c l e a r  Safety 4, 34 (1962). - 
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The experimental d e t a i l s  of the i r r ad ia t ions  and some preliminary 
r e s u l t s  have been described i n  previous reports  of t h i s  series. 7-9 
b r i e f l y  summarize, t e n s i l e  samples of Ferrovac-E iron, vacuum annealed 

and f'urnace cooled t o  obtain a grain s i ze  of l301J., were i r r a d i a t e d  t o  a 

dose of' about 3 x 1018 neutrons/cm2 (E > 1 MeV) i n  experiment assemblies 

located a t  increasing distances from t h e  Oak Ridge Research Reactor. 

The i r r ad ia t ion  temperature was 95O C and t h e  neutron dose rates ranged 

from about 2 x 

t e s t ing  of as - i r rad ia ted  samples from each assembly has been completed. 

The r e su l t s  of t h i s  study, as shown i n  Fig. 5 ,  indicate  t h a t  there  i s  

no dose r a t e  e f f e c t  w i t h i n  the range of dose r a t e s  used a t  t h e  neutron 

dose of  5 x 1Ol8 neutrons/cm . 

To 

t o  2 x 1013 neutrons/cm2 see (E > 1 Mev). Tensile 

2 

7N. E. Hinkle and N. K. Smith, "Tensile Tests on I r r ad ia t ed  Iron, 
Quarterly Progress Report: 
Materials , May, June, July,  1965, BNWL-218, pp. 10.25-10.35, August, 1965. 

I r r ad ia t ion  Effec ts  on Reactor S t ruc tu ra l  

N. E. Hinkle, N. K. Smith., and M. S. Wech.sler, 'Tensile Tests on 
I r r ad ia t ed  Iron, ' I  Quarterly Progress Report: 
Reactor S t ruc tura l  Materials, November, December, 1965 , January, 1966, 

8 
I r r ad ia t ion  Effec ts  on 

BNWL-CC-510 , pp. 10.8-10.27, February, 1966. 

'N. E. Hinkle and N. K. Smith., "Tensile Tests on I r r a d i a t e d  I ron  and 
Iron Alloys, I t  Quarterly Progress Report: 
S t ruc tura l  Materials.  November, December, 1964, Januarv 1965, m-84618, 

I r r ad ia t ion  Effec ts  on Reactor 
. * .  " * <. 

pp. 10.31-10.43, F e b k a r y  15, 1-96?. 

ORNL- DWG 66- 3577 
(do3) 
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NEUTRON DOSE RATE ( neutrons /cm* . sec , E > 1 MeV) 

Fig. 5. Lower Yield S t ress  vs  Dose Rate f o r  Ferrovac-E Ir n. Grain 
I r r ad ia t ion  Dose and Temperature, 4.6 x 1Ol8 neutrons Size, 130 Microns. 

/em2 (E > 1 MeV) a t  93°C. Test Temperature 30°C. 
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Post- i r radiat ion annealing h a s  been performed on samples i r r ad ia t ed  

a t  about 95°C t o  neutron doses of 4.5 x t o  5 x 10l8 neutronslcm 2 

(E > 1 Mev). 

covery vs  annealing time a t  indicated annealing temperature. 

t h e  d i f f e ren t  slopes for the  data  a t  various annealing temperatures 

indicate  damage recovery a t  t h e  lowest dose does not occur by a unique 

recovery process. The annealing s tudies  on samples i r r ad ia t ed  to a 

s l i g h t l y  grea te r  dose, as shown i n  Fig. 7, appear t o  support the view- 

point t h a t  the  damage recovery i s  not s ing ly  activated.  

presented evidence from studies  of pos t - i r rad ia t ion  annealing of Ferrovac- 

E t h a t  indicate  t h a t  more than one thermally ac t iva ted  process i s  

responsible for t h e  damage recovery i n  iron. The data i n  Fig. 8 f o r  t h e  

highest  neutron dose show t h a t  f o r  a given annealing time, the recovery 

percentage decreases w i t h  increasing dose. This i s  espec ia l ly  true for  

The r e s u l t s  are shown i n  Figs. 6, 7, and 8 as  percent re- 

I n  Fig. 6 

Bryner'' has  

105. S. Bryne r ,  'Electron-Transmission Microscope Study of Defects 
i n  Neutron I r r ad ia t ed  I r o n , "  Quarterly Progress Report: 
Ef fec ts  on Reactor S t ruc tura l  Materials, May, June, July,  1966, BNWE 

I r r ad ia t ion  

CC-784, pp. 5.1-5.3, August, 1966. 

ORNL-DWG 66-11129 
r I I 1 l 1 1 1 1 1  I I 1 I I I I I I  I I I 1 1 / 1 1 /  I I 1 I l 1 1 1 1  
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Fig. 6. The Percent Recovery of Radiation Induced Strengthening 
by Post I r r ad ia t ion  Annealing a t  t h e  f iven Temperatures. 
ture = 30°C. 
x 1012 n/cm2 see  (E > 1 MeV). 
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annealing temperatures of 300" and 330°C. 
firmed t h i s  trend. 

damage with increasing neutron dose may be explained by the  existence of 

two or more defect  ty-pes having d i f fe ren t  ac t iva t ion  energies f o r  recov- 

e ry  and whose r e l a t ive  hardening ef fec ts  change w i t h  increasing neutron 

dose. It i s  a l s o  l i k e l y  t h a t  t h e  r e l a t ive  e f f e c t s  of such defect  ty-pes 

may be changed as a function of t h e  i r r ad ia t ion  temperature. 

Additional t e s t i n g  has  con- 

The apparent increased s t a b i l i t y  of the rad ia t ion  

A possible explanation f o r  the unusual damage recovery r e s u l t s  pre- 

sented above is  t h a t  the  i n t e r s t i t i a l  impurit ies carbon, nitrogen, and 

oxygen, being mobile a t  t h e  i r r ad ia t ion  temperature of 95"C, may be 

combining w i t h  rad ia t ion  induced defects  t o  produce various defect 

arrangements each of which have a d i f f e ren t  hardening e f f e c t  on t h e  base 

mater ia l  and d i f fe ren t  ac t iva t ion  energy f o r  recovery. 

toward resolving some of these problems, four vacuum annealed and furnace 

cooled t e n s i l e  samples of 4% grain diameter Ferrovac-E were i r r ad ia t ed  

a t  -130°C i n  the  Bulk Shielding Reactor (BSR) t o  a neutron dose of  7.8 
x 

minimum predicted mobili ty temperature of any of these i n t e r s t i t i a l  atoms. 

After i r rad ia t ion ,  these samples were s tored  i n  l i q u i d  nitrogen before 

tes t ing.  I n  addi t ion four iden t i ca l  samples were i r r ad ia t ed  a t  about 

90°C i n  a hydraulic tube i n  t h e  Oak Ridge Research Reactor (ORR) t o  a 

dose of 1.23 x neutrons/cm* (E > 1 Mev). 

controls were s tored  a t  room temperature before tes t ing .  

A s  a f i rs t  s t e p  

(E > 1 Mev). This i r r ad ia t ion  temperature i s  w e l l  below the 0 ° C  

These samples and the 

These samples w e r e  t e s t e d  i n  an Ins t ron  t e n s i l e  machine a t  a s t r a i n  

rate of 2% per minute and a t  a t e s t  temperature of 0°C a t  which the 

i n t e r s t i t i a l s  were not expected t o  be mobile. The r e s u l t s  of t h e  t e s t s ,  

shown i n  Fig. 9, indicate  t h a t  only a small percentage of t he  damage 

accumulated i n  t h e  i r r ad ia t ions  a t  90°C i s  attr ibutable t o  the low t e m -  

perature neutron bombardment and subsequent thermal rearrangements occur- 

r ing  below O°C. 
yie ld  strength found a f t e r  t h e  i r r ad ia t ion  a t  90°C may be induced i n  t h e  

samples i r r ad ia t ed  a t  very low temperatures by a 10 min. anneal a t  100°C. 

Similar anneal hardening has been observed by Makin and Minter'' i n  

It is  a l s o  shown t h a t  a large pa r t  of the increased 

1 I M .  J. Makin and F. J. Minter, "The Mechanical Propert ies  of 
I r r ad ia t ed  Molybdenum, Acta M e t .  - 7, pp. 361-366 (1959). 
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niobium and by Moteff12 and co-workers f o r  tungsten and molybdenum. 

i n t e r s t i t i a l  content of the Ferrovac-E i ron  samples w a s  not  controlled; 

therefore,  it i s  not possible t o  r e l a t e  t h e  anneal hardening t o  the  

presence or absence of ce r t a in  i n t e r s t i t i a l s .  

some thermally ac t iva ted  rearrangement occurs between 0" and 100°C and 

it i s  believed t h a t  in te rac t ion  of the i n t e r s t i t i a l  elements with th.e 

rad ia t ion  induced defects  i s  responsible f o r  the  observed ef fec t .  More 

de ta i led  experiments, using control led addi t ions of nitrogen and carbon 

t o  i ron  and sens i t ive  physical techniques t o  de tec t  the e f f e c t s  of the  

i n t e r s t i t i a l  element mobili ty and ac t iv i ty ,  a r e  i n  the preliminary s tage 

and w i l l  be discussed fully i n  a f'uture report .  

The 

However, it i s  c l ea r  t h a t  

12J. Moteff, 'Qadiation Damage i n  Body-Centered Cubic Metals and 

. 

Alloys, If i n  Radiation Effec ts  i n  Materials, ?Jew York, Gordon and Breach., 
1966. 

. 
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The absence of a dose r a t e  e f f e c t  i n  our s tudies  may be a r e s u l t  of 

the complications a r i s ing  out of t h e  in te rac t ions  of the i n t e r s t i t i a l  

impurit ies w i t h  t h e  radiat ion induced defects. Also, the wide var ia t ion  

i n  the dose dependence of t h e  radiat ion damage previously reported i n  our 

s tudies  may be ascr ibed t o  t h e  same problem. 

On The Temperature And S t r a in  Rate Dependence O f  
Radiation Hardening I n  Iron 

S. M. Ohr E. D. Bolling 

The strong temperature and s t r a i n  r a t e  dependence of the y i e ld  and 

flow s t r e s ses  of the body-centered-cubic metals indicates  t h a t  the 

thermal ac t iva t ion  of dis locat ion motion plays a s ign i f i can t  ro le  i n  t h e  

deformation process. 

motion has  been t h e  subject  of a number of  investigation^,^^' no at- 

ten t ion  has  so  far been given t o  neutron i r r ad ia t ed  body-centered-cubic 

metals. An understanding of t h e  r a t e  processes as r e f l ec t ed  by t h e  strong 

temperature and s t r a i n  r a t e  dependence of the  y i e ld  s t r e s s  is  of consid- 

erable  i n t e r e s t  because of t he  influence which these fac tors  have on the 

duc t i l e -b r i t t l e  t r ans i t i on  i n  t h e  body-centered-cubic metals. 

report ,  a preliminary account of an invest igat ion of the temperature and 

s t r a i n  r a t e  s e n s i t i v i t y  of t h e  y i e ld  stress of neutron i r r ad ia t ed  and 

unirradiated Ferrovac-E i ron  i s  given. 

Although the thermal ac t iva t ion  of  dis locat ion 

I n  t h i s  

Small t e n s i l e  samples of 1/2-gage-length were prepared from cold 

ro l l ed  sheets of 0.01-in.-thickness. 

vacuo t o  achieve a uniform average grain diameter of approximately 3%. 
The t e n s i l e  samples, shielded w i t h  cadmium, were irradiated a t  tempera- 

tu res  between 37O and 90°C i n  t h e  poolside f a c i l i t y  of  the ORR a t  a dose 

rate of  approximately 3 x 10l2 neutrons/cm2 sec. t o  a dose of 1.2 x 10l6 

These samples were annealed - i n  

l3H. Conrad, 'Yielding and Flow of t h e  B.C.C. Metals a t  Low Tempera- 
tures ,  " p. 476 i n  Th.e Relation Between t h e  Structure and Mechanical Pro- 
p r t i e s  of Metals, Her Majesty's Stationery Office, London, 1963. 

l4H.  Conrad, "On the  Mechanism of Yielding and Flow i n  Iron,"  J. Iron 
and S tee l  Ins t .  - 364, 198 (1961). 
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neutrons/cm2 (E > 1 MeV). 

temperatures i n  baths of l i q u i d  nitrogen (77"K), dry ice  - acetone 

(195'K), Freon 12 (243OK), i ce  water (273"K), and a t  room temperature 

(298O~). I n  order t o  measure the s t r a i n  r a t e  s ens i t i v i ty ,  the  cross- 

head speed of the Ins t ron  t e n s i l e  machine w a s  cycled by an order of 

magnitude between the s t r a i n  r a t e s  of 6.56 x lo-? see'' and 6.36 x 10- 

see''. I n  some of  t h e  t e s t s ,  a change i n  t e s t  temperature w a s  made on 

a given sample t o  measure the temperature dependence of t h e  y i e l d  stress 

a t  a constant dis locat ion configuration. I n  addition, stress re laxa t ion  

t e s t s  were car r ied  out a t  room temperature t o  determine accurately the 

athermal component of the y i e ld  stress, as w e l l  as t o  measure the  rate 

s e n s i t i v i t y  a t  small e f fec t ive  s t resses .  

Tensile deformation was car r ied  out a t  various 

4 

Figure 10 shows the temperature dependence of the  lower y i e ld  s t r e s s  

f o r  unirradiated and i r r ad ia t ed  iron, t e s t e d  a t  a s t r a i n  r a t e  of 6.36 x 

see-'. The ove ra l l  e f f e c t  of neutron i r r ad ia t ion  i s  an upward 

s h i f t  of the  y i e ld  stress curve without an appreciable change i n  i t s  

shape. It may be uloticed, however, t h a t  the gap between the  two curves 
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does gradually narrow as t h e  temperature i s  increased. Thus neutron 

i r r ad ia t ion  seems t o  have s l i g h t l y  modified the  temperature dependence 

of t h e  y i e ld  stress. 

It i s  generally accepted t h a t  the  y i e ld  stress consis ts  of two com- 

ponents, namely thermal and athermal. 

stress, o r  t h e  e f f ec t ive  stress, t h a t  var ies  with t es t  temperature. The 

e f f ec t ive  stress i s  a measure of t h e  degree of the rma l  ac t iva t ion  i n  

overcoming t h e  sho r t  range obstacles t o  dis locat ion motion. Also, it i s  

the stress that i s  e f f ec t ive  i n  moving dislocations.  The a thermal  com- 

ponent defines t h e  stress l e v e l  t h a t  h a s  t o  be supplied by the applied 

stress i n  overcoming the long range in te rna l  s t r e s s  i n  the crystal .  To 

determine t h e  the rma l  component of y i e ld  stress, it is  necessary t o  deter-  

mine the a thermal  component and t o  subt rac t  it from the  applied stress. 

I n  earlier works,14 t h e  athermal component has  been taken as t h e  y ie Id  

stress a t  a s u f f i c i e n t l y  high temperature. 

a method of determining t h e  i n t e rna l  stress from a stress relaxat ion tes t  

by u t i l i z i n g  equations governing dis locat ion dynamics. 

i s  applied t o  t h e  stress relaxat ion data, obtained from both unirradiated 

and i r r ad ia t ed  samples, the s t r e s s  dependence of dis locat ion veloci ty ,  

m*, i s  found t o  be approximately 4.0 and it is not  a f fec ted  by neutron 

i r rad ia t ion .  

i s  increased by approximately 3.4 kg/m upon i r rad ia t ion .  T h i s  change 

can account f o r  almost a l l  of the increase i n  the y i e ld  stress a t  room 

temperature due t o  neutron i r rad ia t ion .  A t  low temperatures, t h e  effec- 

t i v e  stress has  also been increased by i r rad ia t ion .  This is  shown i n  

Figure 11 i n  which the e f fec t ive  stress i s  p lo t ted  as a function of t e m -  

perature. T h i s  increase i n  t h e  e f f ec t ive  stress i n  i r r ad ia t ed  samples 

may be due t o  e i t h e r  a d i f f i c u l t y  i n  generating fresh dislocations,  a 

It is  the  thermal component of the 

Recently, L i l ?  has  suggested 

When h i s  method 

It is  a l s o  found t h a t  the a thermal  component of the stress 
2 

~ ~~ ~ ~~ ~ ~- 

'55. C. M. L i ,  "Dislocation Dynamics i n  Deformation and Recovery, ' I  

t o  be published i n  the Canadian Journal of Physics. 

. 
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decrease i n  the e f f ec t ive  gage length of the sample a r i s i n g  from disloca- 

t i o n  channeling,16' l7 or a modification of the r a t e  processes. 

One of the parameters of i n t e r e s t  i n  theraml. ac t iva t ion  analysis  is  

the ac t iva t ion  volume. The ac t iva t ion  volume, v, represents t h e  s t r a i n  

rate s e n s i t i v i t y  of y i e l d  or flow s t r e s s ,  and it can be determined exper- 

imentally through the expressionl3 

l-43. Mastel, H. E. Kissinger, J. J. I a id l e r ,  and T. K. Bier le in ,  
"Dislocation Channeling i n  Neutron I r r ad ia t ed  Molybdenum, I f  J. Appl. 
PhYS. 3, 3637 (1963). 

17R.  J. Arsenault, 'The Poss ib i l i t y  of I r r ad ia t ion  Damage Affecting 
the Rate-Controlling Mechanism f o r  S l i p  i n  Body-Centered-Cubic Metals 
and Solid Solutions, 'I ORNL Report No. 3993, 1966. 

Fig. 11. Temperature Dependence of Effect ive Lower Yield S t ress  f o r  
Unirradiated and Neutron I r r ad ia t ed  Iron. 
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On the other  hand, t h e  ac t iva t ion  volume i s  r e l a t ed  t o  the following 

microscopic quant i t ies ,  

v = b d R ,  

where b i s  the Burgers vector and d and R a re  the  s i ze  and t h e  average 

spacing, respectively,  of the b a r r i e r s  t h a t  give r i s e  t o  the  shor t  range 

resis tance t o  dis locat ion motion. I n  determining t h e  ac t iva t ion  volume, 

both the r a t e  change t e s t  and the stress relaxat ion method are employed. 

I n  the rate change t e s t ,  the  increment i n  s t r e s s  accompanying a sudden 

change i n  the  cross-head speed i s  measured. I n  the s t r e s s  re laxat ion 

method, t h e  cross-head motion i s  ha l ted  and the subsequent decrease i n  

s t r e s s  i s  measured continuously as a function of t i m e .  

shown18 t h a t  t h e  r a t e  of s t r e s s  re laxat ion is  d i r e c t l y  proportional t o  

the p l a s t i c  s t r a i n  r a t e  due t o  the  motion of dislocations.  It is, there- 

fore,  possible t o  measure t h e  s t r a i n  r a t e  dependence of t h e  applied 

s t r e s s  from the analysis  of the relaxat ion curve. 

It has  been 

Figure 12 shows a p lo t  of t h e  ac t iva t ion  volume as a function of 

the  e f fec t ive  s t r e s s  f o r  both unirradiated and i r r ad ia t ed  iron. It i s  

found t h a t  data obtained by the two methods are i n  good agreement. It 

can be seen from t h e  p lo t  t h a t ,  although there  i s  an indicat ion of a 

very s l i g h t  increase i n  the  ac t iva t ion  volume pa r t i cu la r ly  a t  high 

e f fec t ive  s t resses ,  data from both unirradiated and i r r ad ia t ed  samples 

f a l l  along a s ingle  smooth curve. 

w i t h  those obtained by Conrad'' f o r  un i r rad ia ted  iron. 

t h a t  the  e f f e c t  of neutron i r r ad ia t ion  i s  t o  raise the e f f ec t ive  s t r e s s  

f o r  deformation bu t  when the  ac t iva t ion  volume i s  compared a t  the same 

l e v e l  of e f fec t ive  s t r e s s  there  i s  no change due t o  i r rad ia t ion .  Accord- 

ing t o  the def in i t ion  of the ac t iva t ion  volume, t h i s  behavior implies 

t h a t  the  neutron i r r ad ia t ion  does not introduce new b a r r i e r s  t o  disloca- 

t i o n  motion, i n  addi t ion t o  those t h a t  a re  already present i n  unirradiated 

crystals .  

The r e s u l t s  a re  a l s o  i n  good agreement 

It may be s t a t e d  

l8S. M. Ohr, "A Study of Radiation Hardening i n  I ron by St ress  Re- 
l a m t i  on Wchniaues. f! 'D. 10.15 i n  Quarterly Progress Report: I r r ad ia t ion  a-- , L ----I _- -__  - - __.__ ~ 

E f  f e c t  s on Reactor Structuralr  Mate rials, &y- Ju ly  1965, - Pacif i c Northwest 
Lab o r  a t  or  y 
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Another parameter of i n t e r e s t  i s  the ac t iva t ion  energy, H, associ-  

ated with, the the rma l  ac t iva t ion  of dis locat ion motion. The ac t iva t ion  

energy i s  defined as 

where Ho i s  the t o t a l  ac t iva t ion  energy, o r  the maximum in te rac t ion  energy 

between the b a r r i e r s  and t h e  moving dislocations.  

the r i g h t  hand side, v T , corresponds t o  the  work done by the appl ied 

stress during the thermal act ivat ion.  The t o t a l  ac t iva t ion  energy, Ho, 
i s  f'urther defined as 

The second term on * 

Ho = Fo d/2 , ( 4) 

where Fo i s  the  maximum force required f o r  a segment of dis locat ion t o  

surmount a b a r r i e r  of the diameter d. The ac t iva t ion  energy, H, i s  

determined experimentally through an expression 1-3 

e 

where (&/dT), i s  t h e  temperature dependence of the y i e ld  or flow s t r e s s .  
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Figure 13 shows a p lo t  of the ac t iva t ion  energy as a function of 

the e f fec t ive  s t r e s s .  

e n t l y  higher a f t e r  neutron i r rad ia t ion .  The values o f  t h e  t o t a l  

ac t iva t ion  energy, Ho, may be estimated from Fig. 13 by extrapolat ing 

the curves t o  zero e f fec t ive  stress. The estimated values of H a re  

approximately 0.87 ev and 0.97 ev f o r  unirradiated and i r r ad ia t ed  

c rys ta l s ,  respectively. The value of Ho for unirradiated i ron  i s  some- 

w h a t  higher than t h a t  previously given by Conrad.14 The discrepancy can 

be a t t r i b u t e d  t o  the method by which the  e f fec t ive  s t r e s s  i s  assigned. 

I n  Conrad's analysis ,  the  e f fec t ive  s t r e s s  w a s  evaluated w i t h  respect t o  
the stress a t  300°K. This has  an e f f e c t  i n  underestimating the effec-  

t i v e  s t r e s s  and hence the value of q, since the ac t iva t ion  energy in- 

creases rapidly as the e f fec t ive  s t r e s s  approaches zero. 

data a l s o  y ie lds  a value f o r  Ho of approximately 0.7 ev a t  300°K, i n  

agreement with Conradrs data. From the  preliminary nature of the pres- 

en t  work, a question remains as t o  whether the  observed increase i n  the  

ac t iva t ion  energy upon i r r ad ia t ion  i s  real. I n  order t o  es tab l i sh  t h e  

e f f e c t  of i r r ad ia t ion  on the ac t iva t ion  energy, Ho, more accurately,  a 

more carefu l  measurement of the temperature and s t r a i n  r a t e  dependence 

of the y i e ld  stress pa r t i cu la r ly  i n  t h e  low range of e f fec t ive  s t r e s ses  

i s  needed. This i s  the range t h a t  will grea t ly  influence the value of 

It shows t h a t  the ac t iva t ion  energy is  consist-  

0 
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HoJ but  unfortunately the ac t iva t ion  volume and t h e  temperature depend- 

ence vary too rapidly t o  permit accurate determination. 

Although an e f f o r t  i s  being made t o  supplement these experimental 

data, it now appears t h a t  neutron i r r ad ia t ion  does not seem t o  a l t e r  the 

s i ze  and density of b a r r i e r s  t o  dis locat ion motion i n  iron. 

ca l led  t h a t  even unirradiated i ron  exhib i t s  a strong temperature depend- 

ence of y i e ld  stress. 

present pr ior  t o  neutron i r r ad ia t ion  can in t e rac t  strongly With moving 

dislocations.  The defects introduced by i r r ad ia t ion  a re  not s u f f i c i e n t l y  

e f fec t ive  t o  in t e r f e re  w i t h  dis locat ion motion a s  a new separate en t i ty .  

The apparent increase i n  the  ac t iva t ion  energy implies t h a t  the irradia- 

t i o n  induced defects merely strengthen the  b a r r i e r s  t h a t  a r e  already 

present i n  unirradiated crystals .  

It i s  re-  

Therefore, it has been suggested t h a t  barriers 

* 
Niobium: Pur i f ica t ion  and Perfect ion 

R. E. Reed 

This report  w i l l  describe work which produced the purest  niobium 

single  c rys ta l s  obtained i n  the Research Materials Program a t  O R N l  during 

the past  s i x  months. 

s ingle  c rys ta l s  with good crys ta l l ine  perfect ion w i l l  a l s o  be described. 

An annealing treatment which resu l ted  i n  niobium 

A. Pur i f ica t ion  

ExDerimental Procedure 

Niobium metal w a s  obtained from the Pama Research Laboratory, 

Union Carbide Corporation, Parma, Ohio. It w a s  i n  the form of  e lec t ro-  

deposited metal cut from the edge of a cathodic p la te  deposit. I n  t h i s  

case, the  niobium metal w a s  electrodeposited from a solut ion about 10 

weight per cent NbF 

of  about 775°C and a current density of about 50 ma/cm2 w i t h  commercially 

pure niobium as anode material .  

*Work sponsored by the Research Materials Program of the A.E.C. 

i n  a mixture of a l k a l i  f luor ides  a t  a temperature 5 

19 

l9 G. W. Mellors and S. Senderoff, '!Electrodeposition of Coherent 

- I  

! . 

. 

. 

Deposits of  Refractory Metals: I. N i o b i u m ,  ' J. Electrochem. SOC. - 112, 
266 (1965). 
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The metal w a s  then e lec t ron  beam drop cas t  i n to  a water cooled cop- 

per mold w i t h  a l/2-inch inside diameter. 

swaged t o  3/16-inch-diameter rod. 

This casting w a s  then cold 

Table 2 l i s t s  t h e  impurity l eve l s  of t h i s  material before and a f t e r  

the  drop casting operation. 

ppm t o  95 ppm. 
ppn while the  nitrogen content remained about the same. 

carbon content increased from 1-6 ppm t o  30 ppm. 

increase i n  the Ta and W content. 

during the drop cast ing operation. 

than 1 ppm after t h e  drop cast ing operation. 

The oxygen l e v e l  w a s  reduced from 200-300 

The hydrogen l e v e l  was a l so  lowered from 9-30 ppm t o  1 

However, t h e  

Also,  there  w a s  an 

Fe w a s  reduced from 70 ppm t o  < 1 ppm 

A l l  o ther  impurit ies were a l s o  less 

. 
Table 2 

Impurity Analysis of Parma Niobium 

After Various Melting Operations 

I n  Weight Par t s  Per Million 

Impurity E l e  c t r o  - Drop Zone 
Deposited Cast Refined 

C 1 - 6* 30 

0 200 - 300* 95 
N 5 - 10* 5 
H 5 - 30* 1 

Ta 5 18 
W 1 14 
Fe 70 <1 

* 
These values were taken from reference 19. 

* 
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The 3/16-inch-diameter niobium rod w a s  then electron-beam f loa t ing-  

zone refined i n  a bakeable s t a in l e s s  steel  system which h a s  been described 

i n  reference 20. The rod w a s  given 10 zoning passes a t  a speed of 5.0 

in/hr.  The vacuum w a s  1 x lom6  t o r r  during much of the  f i rs t  pass but  

s t ead i ly  improved u n t i l  it a t t a ined  8 x 10-l' t o r r  during the last  two 

passes. 

ax is  w a s  near the center of the u n i t  t r iangle .  Table 2 l i s t s  t h e  i m -  

pur i ty  analyses a f t e r  t h i s  operation. The oxygen and nitrogen l eve l s  

were 3 and 2 ppm respectively.  

unchanged. 

The rod w a s  a s ingle  c rys t a l  which w a s  seeded such t h a t  the  rod 

The other  impurit ies were r e l a t i v e l y  

The resis tance r a t i o  of the rod was measured between room tempera- 

t u re  and l i qu id  hydrogen temperature and was found t o  be: 

20°K = 256. 

l i qu id  helium temperature w i t h  the  l a t te r  being done i n  a 12 K gauss 

magnetic f i e ld .  

R 300°K/R 

This r a t i o  w a s  also taken between room temperature and 

This r a t i o  w a s :  R 300°K/R 4.2"K (12 K gauss) = 1420. 

A compression t e s t  w a s  made on a specimen cut from the rod wi th  a 

3:l length-to-diameter ra t io .  The ends were lapped f l a t  and perpendic- 

u l a r  t o  the rod axis.  After a l i g h t  chemical polish,  t h i s  specimen w a s  

t e s t ed  a t  a s t r a i n  r a t e  of 2.3 x 

machine. 

see-' on a tab le  model Ins t ron  

The flow s t r e s s  resolved on the  (101) [111] s l i p  system w a s  900 
2 gm/m 

D i  s cus s ion 

All pure niobium previously reported w i t h  R 300°K/R 4.2"K (magnetic 

f ie ld)  > 1000 has been prepared using a technique involving an anneal i n  

high vacuum ( < lom8 t o r r )  a t  temperatures above 2200°C. 

Swenson2' and Fawcett, Reed, and Soden22 used t h i s  technique on wire 

type specimens t o  obtain resis tance ra t ios  of 1900 and 1600 respectively.  

Stromberg and 

'OR. E. Reed, "Electron Beam Floating Zone Refining of  Niobium," 
Proceedings of  the Second In te rna t iona l  Conference on Electron and Ion 
Beam Science and Technology, April  17-20, 1966, New York, Gordon and 
Breach, t o  be published. 

Effects  i n  Superconducting Niobium, I '  Phys. Rev. Le t te rs  - 9, 370 (1962). 

magnetic Properties of  Ta and Nb, 'I Bull. Am. Phys. SOC. - 11, 170 (1966). 

2111. F. Stromberg, and C. A. Swenson, ''Negative Surface Free-Energy 

2%. Fawcett, W. A. Reed, and R. R. Soden, "High-Field Galvano- 

3 

. 
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Neither group reported any mechanical properties.  However, Taylor 

and C h r i s t i a n  ‘3 using the annealing procedure on 3m-diameter s ingle  

c rys ta l s  of niobium reported. a resolved y i e ld  s t r e s s  i n  compression of 

850 gm/m2 f o r  a s t r a i n  r a t e  of 6 x see-’. They a l s o  reported a 

resis tance r a t i o  of - 4000 f o r  t h i s  material .  

The niobium s ingle  c rys t a l s  produced by e lec t ron  beam-float-zone- 

re f in ing  from the Parma material a t  OWL apparently approach the  pu r i ty  

obtained by Taylor and Chris ta in  using t h e i r  annealing technique. 

Further s tud ies  on t h i s  mater ia l  involving high temperature anneals i n  

high vacuum a re  i n  process. 

B. Perfection 

Experimental Procedure 

A niobium s ingle  c r y s t a l  seeded such t h a t  the  rod ax is  w a s  near a 

< 211 > crystal lographic  d i rec t ion  w a s  grown using the electron-beam 

floating-zone technique. The niobium metal w a s  obtained from Wah Chang 

Corporation. The e f f e c t  of f loat-zone-refining upon the pur i ty  of t h i s  

mater ia l  has been previously described. ‘* 
c r y s t a l  w a s  zoned one pass a t  3.8 in/hr  a t  1-2 x 

The 3/16-inch-diameter 

t o r r  vacuum. 

A sect ion 3/4-in.-long w a s  cut from the rod using a high speed 

abrasive cut-off wheel. P a r a l l e l  f l a t s  about 1/2-in. -long and 1.5mm 
apart were spark cut along the [112] growth ax is  such t h a t  t h e  (110) 
plane w a s  perpendicular t o  the flats. The f l a t  surface w a s  thus a 

(111) surface,  

w e r e  0.7m apart ,  an anomolous transmission x-ray topograph (Borrmann 

topograph) w a s  taken using molybdenum K rad ia t ion  from (110) refkect ion 

planes . 

2 x 10-8 t o r r  vacuum. 

w a s  placed i n  a 3/8-inch I.D. niobium susceptor which w a s  ins ide a 1 

1/4-inch-diameter tantalum s p l i t  radiat ion shield.  

After chemically polishing the specimen u n t i l  t h e  f l a t s  

a 

The specimen w a s  then annealed for 2 h r s .  42 mins. a t  220OoC i n  a 

The specimen R. F. induction heating w a s  used. 

The 4-inch-diameter 

’3G. Taylor, and J. W. Chr i s t i an ,  “The Effec t  of High Vacuum Puri- 
f i c a t i o n  on the Mechanical Propert ies  of Niobium Single Crys ta l s ,”  Acta 
Met. - 13, 1216-1218 (1965). 

c 
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induction c o i l  w a s  outside the 2 1/2-inch I.D. pyrex water cooled 

vacuum jacket which surrounded t h e  work. The temperature w a s  measured 

using an op t i ca l  pyrometer s ighted on one end of the specimen. 

annealing , another Borrmann topograph w a s  taken. 

A f t e r  

Discuss ion 

Figure 14a i s  a Borrmann topograph showing the as-grown dis locat ion 

s t ructure .  The substructure consisted of sub-boundaries of l e s s  than 

180 sec misorientation elongated i n  the  growth direction. 

there were other  areas  showing ra ther  dense tangles  of dislocations.  

The subgrain 

I n  addition, 

Figure 14b i s  the  same specimen a f t e r  annealing. 

boundaries have become very sharp compared t o  the  as-grown condition. 

However, they s t i l l  have a misorientation < 180 see. 

t h e  subgrains have a low dis locat ion densi ty  which approaches lo2 l i n e s /  

cm2. Anneals a t  1 8 0 0 " ~  t o  2000°C f o r  times of about 2 hours d id  not 

r e s u l t  i n  any detectable change i n  the  perfect ion of other  s i m i l a r  

specimens. 

t o r r  are  necessary t o  obtain appreciable changes i n  c rys t a l l i ne  perfec- 

t i o n  f o r  annealing times of  a few hours. 

these same annealing conditions a re  those used by other invest igators  
t o  obtain resis tance r a t i o s  ( R  300°K/R 4.2OK (magnetic f i e l d )  > 
1000 and resolved y i e ld  s t r e s ses  below 1000 gm/m . 
Soden22 have noted t h a t  high values fo r  t he  resis tance r a t i o  do not 

necessar i ly  imply high chemical purity.  It i s  suggested here t h a t  h igh  

c rys ta l l ine  perfect ion may be a f ac to r  i n  obtaining large resis tance 

r a t i o s  f o r  niobium i n  addi t ion t o  high purity. 

The i n t e r i o r s  of 

Evidently, temperatures above 2200°C i n  a vacuum < 10-8 

It may be s ign i f i can t  t h a t  
21-23 

2 Fawcett, Reed, and 

Conclusions 

Niobium metal prepared by electrodeposit ion from a solut ion of 

NbF5 i n  molten a l k a l i  metal f luor ides  w a s  an excel lent  s t a r t i n g  mater ia l  

f o r  obtaining h.igh pur i ty  niobium single  c rys ta l s  using electron-beam- 

floating-zone-refining. The low Ta and W contents were very important 

since the zone re f in ing  does not reduce the l e v e l  of  these impurit ies.  

A res is tance r a t i o  R 300°K/R 4.2"K (12 K gauss) = 1420 and a resolved 
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PHOTO P-86981 

(a) As-Grown (18X) (b )  Annealed (18x) 

Fig. 14. Borrmann top0graph.s using MoK radiat ion from the  (110) 
r e f l ec t ion  of a n i o b i m  single  c rys t a l  i n  (a31 t h e  as-gro 
(b)  after annealing a t  2200°C f o r  2 3/4 hours a t  2 x 10-jlntorr vacuum. 

conditon and 
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shear s t r e s s  f o r  yielding i n  compression = 900 gm/mm 2 was obtained f o r  

t h i s  material  a f t e r  10 f l o a t  zone ref ining passes a t  5 in./hr. i n  a f i n a l  

vacuum of 8 x 10 

crys ta l s  can be improved by annealing 4 hours a t  temperatures above 2200°C 

i n  vacuums b e t t e r  than 5 x loe8 t o r r .  

- 10 t o r r .  The perfection of  as-grown niobium single  

Concerning the Etching of Dislocations i n  Niobium 

H. D. Guberman 

A s  has  been demonstrated, e tch p i t s  may be produced i n  niobium 

which are associated with dislocations.  *' 
locations associated w i t h  grown-in sub-boundaries and those randomly 

d is t r ibu ted  throughout the sub-grain were e a s i l y  etched. 

fresh dislocations introduced by e i t h e r  deforming through the y ie ld  point 

o r  s t ress ing  e l a s t i c a l l y  near t h e  y i e ld  point were a l s o  etched w i t h  appar- 

en t  ease. 

p i t+  a t  new dis locat ions i n  the accustomed manner. Investigations indi-  

cate t h a t  the  a b i l i t y  t o  e tch dis locat ions i n  niobium is affected by the 

state o f  the mater ia l  and i n  cer ta in  instances i s  d i r e c t l y  associated 

w i t h  the presence of carbon a t  the  dislocations.  

I n  a l l  cases studied the dis-  

I n  addition, 

Recently however, it became a l l  but impossible t o  produce etch 

A l l  the samples s tudied were ostensibly ident ical .  The e a r l i e r  

polycrystall ine mater ia l  and s ingle  c rys ta l s ,  which etched sa t i s f ac to r i -  

l ~ , * ~  and t h e  l a t e r  s ingle  c rys ta l s ,  which etched poorly, were prepared 
f rom the same Wah Chang s t a r t i n g  stock i n  the manner described by Reed. 26 

The difference i n  t h e  behavior of the mater ia l  thus suggested t h a t  it 

h a d  somehow been a l t e r e d  during preparation. This w a s  corroborated by 

i 

i 

25H. D. Guberman, "Dislocation Etch P i t s  i n  Niobium, Radiation 
Metallurgy Section Sol id  S ta te  Division Progress Rept., Aug. 1965, OIWL- 
3878, P9 49. 

1966, om1-3949, P. 35. 

26R. E. Reed, "High Vacuum Electron Beam Floating Zone Refiner, ' I  

Radiation Metallurgy Section Sol id  S ta te  Division Progress Rept., Feb. 

. 



27 
observations on the  superconducting properties of niobium s ingle  c rys ta l s  

prepared during the period i n  which the non-etching samples were grown. 

It w a s  found t h a t ,  compared t o  mater ia l  grown e a r l i e r ,  the  t r ans i t i on  

temperature decreased while the upper c r i t i c a l  f i e l d  a t  4.2% increased 

indicat ing an increase i n  t h e  impurity content.27 It was subsequently 

determined t h a t  the vacuum system i n  which t h e  c rys ta l s  were grown w a s  

operating a t  a higher pressure due t o  a f a u l t ;  t h i s  could conceivably be 

the cause of the anomalous behavior though the  precise nature of the 

contamination i s  not known. 

This suggests t h a t  impurit ies play a s ign i f i can t  ro le  which was not 

A t  about t h i s  time it became known t h a t  oxygen played apparent e a r l i e r .  

no pa r t  i n  the etching but  t h a t  carbon s ign i f i can t ly  enhanced dis locat ion 

etching i n  niobium. 

This w a s  immediately ve r i f i ed  by depositing a f l a s h  coating of car- 

bon i n  a vacuum onto a sample which had been indented and then aged a t  

1050°C f o r  10 1/2 hours. 

usual  etching treatment did not show any new dis locat ions (Fig. 19) , but  

afterwards showed them qui te  c l ea r ly  (Fig. 16). 

28 

Prior t o  the carbon deposition and aging, the 

Aging temperatures subs tan t ia l ly  lower than 1000°C w i t h  o s  without 

carbon deposition, did not a i d  i n  etching dislocations.  Annealing f o r  

18 hours a t  400°C or  16 hours a t  600°C af ter  carbon deposition did not 

s ign i f i can t ly  enhance the  etching of f resh dislocations.  However, i n  

the f i rs t  case, subsequent redeposit ion of carbon and aging a t  l O 5 O " C  

f o r  11 hours revealed the p i t s  clearly.  I n  the second case, re-aging 

a t  lO25"C fo r  17 hours without p r io r  carbon deposition did not reveal 

any but grown-in dislocations as before. 

The above experiments a re  s ign i f icant  f o r  two reasons. F i r s t ,  

they es tab l i sh  t h a t  it i s  the carbon and not the aging treatment which 

i s  of primary importance i n  revealing the dis locat ion s i t e  by etching. 

Secondly, i n  the mater ia l  a t  hand, it i s  not possible t o  cause a redis-  

t r i bu t ion  of carbon by low temperature aging as was done by Evans t o  

2 7 ~ .  T. Sekula, pr ivate  communication. 

*%. Vardiman, Naval Research Laboratory, Washington, D. C. , private  

29P. R. V. Evans, "Dislocation Etch. P i t  Studies i n  Annealed and 
communication. 

Deformed Polycrystal l ine Niobium, ' I  J. Less-Common Metals - 6, 233 (1964). 

. 
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I 

Fig. 15. Area Surrounding Indentation i n  a Nb Sample Shows Appar- 
e n t l y  no Fresh Dislocation P i t s  after Usual Etching Procedure. 
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Fig. 16. Fresh P i t s  Associated with Deformation i n  the  Vic in i ty  of 
the  Indentation were Eas i ly  Br0ugh.t Out after a Flash, Carbon Deposition 
and High Temperature Aging Treatment P r i o r  t o  Chemical Etching. 
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decorate f resh  dis locat ions,  possibly because t h e  present mater ia l  is  

of much higher purity.  

It w a s  subsequently determined t h a t  3/4 hour aging a t  1000°C a f t e r  

carbon deposit ion i s  su f f i c i en t  t o  introduce t h e  impurity i n t o  solut ion 

and decorate the dis locat ions.  

It i s  pa r t i cu la r ly  noteworthy t h a t  t h i s  carbon decoration treatment 

enables the fresh dis locat ion pa t te rns  t o  be revealed with grea te r  c lar-  

i t y  and d e t a i l  than before i n  the s ingle  c rys t a l  material .  For example, 

i n  making dis locat ion ve loc i ty  measurements it w a s  possible t o  observe 

f resh  p i t s  along a f r ac t ion  of t h e  po ten t i a l  source length only. 

however, p i t s  a r e  uncovered along the length o f  the scratch a t  every 

point  (Fig. 17). Thus it would seem t o  be desirable  t o  decorate the 

dis locat ions i n  t h i s  manner i n  every instance f o r  ve loc i ty  measurements, 

etc.  However, the  treatment raises ce r t a in  problems; i n  par t icu lar ,  it 

must be establ ished t h a t  a one hour 1000°C anneal does not subs t an t i a l ly  

a f f e c t  the  arrangement, f o r  example, of f r e sh  dis locat ions emanating from 

a surface source. 

Finally,  s ince it i s  known t h a t  carbon is  not  s u f f i c i e n t l y  mobile 

Now 

t o  decorate rapidly moving, f r e s h  dis locat ions a t  room t e m p e r a t ~ r e , ~ ~  

it would be of i n t e r e s t  t o  know what permitted the f r e s h  dis locat ions 

t o  be etched pr inc ipa l ly  i n  the poly-crystal l ine niobium i n  t h e  f i r s t  

place . 
The In te rac t ion  of Radiation Produced Defects and 

I n t e r s t i t i a l  Impurity Atoms i n  Niobium 

J. M. W i l l i a m s  J. T. Stanley 
W. E. Brundage 

The annealing of rad ia t ion  damage i n  the temperature i n t e r v a l  near 

15 per cent of the  melting temperature i s  a pa r t i cu la r ly  important 

annealing stage f o r  b.c.c. metals s ince it h a s  been shown t h a t  addi t iona l  

30R. W. Powers and Margaret V. Doyle, "Diffusion of I n t e r s t i t i a l  
Solutes i n  the Group V Transit ion Metals," J. Appl. Phys. 30 314 (1959). 2 
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Fig. 17. P i t s  Along a Scratch. i n  Nb Revealed by t h e  Carbon Deposi- 
t i o n  Technique. 
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radiat ion hardening i s  produced by annealing i n  t h i s  range.3l-33 Anneal- 

ing i n  t h i s  temperature i n t e r v a l  i s  cal led Stage I11 annealing by most 

authors. Stage I11 annealing i n  b.c.c. metals has been a t t r i b u t e d  t o  

e i t h e r  vacancy migration,34 i n t e r s t i t i a l  migration35 or i n t e r s t i t i a l  

impurity migrat i0n.3~,37 A s  pointed out  i n  t h e  previous report3' we 

believe t h a t  Stage I11 annealing i s  due t o  i n t e r s t i t i a l  impurity migra- 

t ion ,  and we presented evidence obtained from in te rna l  f r i c t i o n  measure- 

ments t o  ve r i fy  t h a t  oxygen atoms do migrate t o  i r r ad ia t ion  produced 

defects  i n  the temperature range of Stage I11 annealing. 

addi t ional  evidence obtained from r e s i s t i v i t y  and in t e rna l  f r i c t i o n  

measurements is  presented t o  show t h a t  t h e  Stage I11 annealing i n  niobium 

i s  caused by oxygen migrating t o  radiat ion produced defects. 

I n  t h i s  report  

. 

Specimen Preparation 

The samples used i n  these experiments were prepared by swaging and 

drawing zone ref ined niobium39 rods t o  0.030 inch diameter wire su i tab le  

f o r  both in t e rna l  f r i c t i o n  and r e s i s t i v i t y  measurements. The wires were 
i 

31M. J. Makin and F. J. Minter, "The Mechanical Properties of Irradi- 

32A. S. Wronski and A. A. Johnson, "A Hardening Effec t  Associated 

a t ed  Niobium, Acta Met. - 7, 361 (1-939). 

w i t h  Stage I11 Recovery i n  Neutron I r r ad ia t ed  Molybzenum," Phil. Mag. 8, - 
1067 (1963). 

33N. E. Hinkle, t h i s  report. 

34D. E. Peacock and A. A. Johnson, "Stage I11 Recovery i n  Neutron 

"J. Nihoul ,  "The Recovery o f  Radiation Damage i n  Molybdenum," 

36A. R. Rosenfield, 'Recovery of Cold Worked Body Centered Cubic 

37F. Schlat  and A. Kothe, "Einfluss des Sauerstoffgehalts auf die 

3'J. T. Stanley and W. E. Brundage, "The In te rac t ion  of Radiation 

Irradiated Molybdenum and Niobium, Phil .  Mag. 8, 563 (1963). 

Phys. Stat .  Sol. - 2, (1962). 

Metals, I '  Acta Met. - 12, 119 (1964). 

Erholung von Kalwerformtem Fantal ,  Acta Met. 14, 425 (1966). 

Produced Defects and I n t e r s t i t i a l  Impurity Atoms i n  Niobium, 
Metallurgy Section Sol id  S ta t e  Division Progress Report f o r  Period 
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Beam Science and Technology, Gordon and Breach Publishers, New York, 
Apri l  17-20, 1966. To be published. 

I 

. 

c 



33 
then annealed and outgassed a t  various temperatures ranging from 1800 t o  

2200°C by r e s i s t i v e  heating i n  vacua ranging from 5 x 

t o r r .  These treatments resu l ted  i n  samples w i t h  various concentrations 

of the three pr inc ipa l  i n t e r s t i t i a l  impurit ies,  C, 0, and N. Since the 

purpose of these experiments is  t o  focus a t t en t ion  on the ro l e  of oxygen 

i n  the rad ia t ion  annealing, an attempt was  made t o  add oxygen t o  two of 

the samples, D and F, following the o r ig ina l  outgassing treatment. This 

w a s  done by reheating the samples t o  a temperature lower than t h e  out- 

gassing temperature i n  an atmosphere of 02. 

oxygen concentration was - 260 ppm by weight. However, f o r  sample D the 

conditions necessary f o r  adding oxygen were not  achieved and some carbon 

w a s  inadvertent ly  added instead. 

t o  3 x lo-' 

For sample F the r e su l t i ng  

The i n t e r s t i t i a l  impurity l eve l s  of these specimens were characterized 

by means of i n t e rna l  f r i c t i o n  and r e s i s t i v i t y  measurements. The data of 

Powers and Doyle provide a quant i ta t ive  correlat ion between in t e rna l  

f r i c t i o n  peak heights and concentration f o r  0 and N. 

contribution of oxygen w a s  taken as 0.0039 pQ-cm/wt ppm 

$) and t h a t  of nitrogen w a s  0.005 pQ-cm/wt ppm (10 pQ-cm/at $)42. Neither 

the damping e f f e c t  nor t h e  r e s i s t i v i t y  of carbon is  known, but  estimates 

of the carbon concentration were obtained under the assumption t h a t  the  

values fo r  0 and N a r e  a t  least representat ive of those f o r  carbon. 

Attempts t o  measure carbon concentration were fu r the r  l imi ted  by the 

f a c t  t h a t  carbon has a very low s o l u b i l i t y  a t  low temperatures. 

some o f  the carbon may p rec ip i t a t e  out during cooling and any carbon 

retained i n  solut ion rapidly p rec ip i t a t e s  during the time required f o r  

making in t e rna l  f r i c t i o n  measurements. 

40 

The r e s i s t i v i t y  
41 (6.7 pQ-cm/at 

Thus, 

4oR. W. Powers and Margaret V. Doyle, "Diff'usion of I n t e r s t i t i a l  
Solutes i n  the Group V Transit ion Metals," J. Appl. Phys. 30, 314 (1957). 

"C. S. Tedmon, Jr., R. M. Rose, and J. Wulff, "Controlled Addition 
- 

of Small  Amounts of-Oxygen t o  N i o b i k  (Columbium),;' Trans. AIME - 230, 
1732 (1964). 

'5. A. Pasternak and B. Evans, "The Ef fec t  of Dissolved Nitrogen on 
the E l e c t r i c a l  Resistance of Niobium (Columbium), ' I  Trans. AIME 233, 1194 - 
(1965) 9 
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I n  general, the  t o t a l  i n t e r s t i t i a l  impurity concentrations predicted 

from the r e s i s t i v i t y  data were i n  good agreement w i t h  those obtained from 

in t e rna l  f r i c t i o n  measurements. These methods and some preliminary meas- 

urements w i l l  be presented i n  more d e t a i l  l a t e r ,  bu t  a summary of the 

annealing information, resu l t ing  impurity concentration and r e s i s t i v i t y  

data are  given i n  Table 3. 
The pr inc ipa l  meta l l ic  impurit ies a re  Ta  and W. The concentration of 

these impurit ies depends only on the source of the pre-zoned s t a r t i n g  

material ,  since zoning has  no e f f e c t  on t h e i r  concentrations. 39 Material  

from two sources w a s  used i n  these experiments and the appropriate l eve l s  

of Ta  and W are a l s o  indicated i n  Table 3 .  

Measurement Te chni ques 

A descr ipt ion of the i n t e r n a l  f r i c t i o n  equipment and procedures has  

For purposes of r e s i s t i v i t y  measure- been given i n  a previous r e p 0 r t . 3 ~  

ments, primary po ten t i a l  contacts of 0.010 in. diameter Nb wire were spot- 

welded t o  the samples. These contacts remained w i t h  t h e  samples throughout 

t h e  preliminary measurements, i r rad ia t ion ,  and subsequent isochronal anneal- 

ing t o  be described later. Thus, the  gage length w a s  constant for a given 

sample over the course of i t s  e n t i r e  s e r i e s  of treatments. The accuracy 

of the absolute r e s i s t i v i t y  values given i s  l imited t o  about - 4% by our 

knowledge of  the sample geometry. Platinum w i r e  contacts were spotwelded 

t o  the primary niobium contacts and copper leads were at tached t o  the P t  

by soldering. The resis tance measurements were made by the potentiometer 

technique using a Rubicon Six D i a l  Microvolt Potentiometer. The sample 

w a s  immersed i n  l i q u i d  helium inside a superconducting magnet capable of 

20 kilogauss. The resis tance values were picked off the superconducting 

t r ans i t i on  curve a t  f i e l d s  ranging from 13 t o  18 kilogauss, a s  required 

t o  insure t h a t  each sample w a s  f i l l y  normal. 

+ 

Pre-Irradiat ion Measurements 

L 

In t e rna l  f r i c t i o n  measurements on sample A a r e  shown i n  Fig. 18. The 

difference between the  f i rs t  and second run data shown i s  due t o  the pre- 

c ip i t a t ion  of carbon during the f irst  run measurements. 

measurements on samples C and E a re  shown i n  Fig. 19. I n  both of these 

In t e rna l  f r i c t i o n  

. 
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Sample 

A 

B 

C 

D 

E 

F 

1 x 10-7 1700 

.. . 

1 

0.017 

Table 3. Annealing Temperatures, Vacua, and Resulting 
Characteristics f o r  Niobium Samples. 

870 

Innealing Final Vacuum Re-Heating 
Temp. Ach.ieve d Temp. 

Annealing 
During ( "a ("c) 

1800 I 5 x I -- 
I torr I 

I I 

Re-Heating 
atm 

Resistivity R R o o ~  Temp. Interstitial Metallic 
( PQ- cm> R4* 'OK Impurities Impurities 
at Weight ppm 

4.2"K I 

8 5 x 10- 
torr 
(02) 

-6 5 x 10 1.0 
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specimens the  oxygen peak seems t o  be buried i n  the background damping and 

4 i s  cer ta in ly  less than 1 x 10- . This value of i n t e r n a l  f r i c t i o n  corres- 

ponds t o  about 3 ppm by weight of oxygen. The r e s i s t i v i t y  of sample E 

(0.017 pa-em) would correspond t o  about 4 ppm oxygen i f  t h e  t o t a l  resis- 

t i v i t y  were a t t r i bu tab le  t o  oxygen. However, the  large meta l l ic  impurity 

concentration probably accounts f o r  much of t h i s  r e s i s t i v i t y ,  s o  t h a t  the  

oxygen content should be much less .  Nitrogen and carbon remain i n  sample 

C i n  su f f i c i en t  quant i t ies  t o  produce the s m a l l  peaks shown i n  Fig. 19 and 

the  observed r e s i s t i v i t y  of 0.069 @.-em. 3 0 t h  specimens show decreases i n  

the background damping a t  temperatures where the oxygen atoms become mo- 

b i le .  T h i s  e f f e c t  i s  espec ia l ly  pronounced i n  sample E. 

The in t e rna l  f r i c t i o n  measurements on sample F are shown i n  Fig. 20. 
-4 The oxygen peak height of 75 x 10 

r e s i s t i v i t y  of 1.0 pR-cm corresponds t o  - 255 ppm. 

corresponds t o  260 ppm of oxygen. The 

I r r ad ia t ion  and Annealing Procedures 

In t e rna l  f r i c t i o n  specimens from samples A and B were irradiated t o  

(E > 1.0 MeV) respect ively i n  posi t ion doses of 8 x and 1.6 x 

P-5 of the Bulk Shielding Reactor. The i r r ad ia t ion  temperature w a s  50°C. 
Res i s t iv i ty  and in t e rna l  f r i c t i o n  specimens from samples C, D, E, and 

F were i r r ad ia t ed  i n  posi t ion C - 4 1  of t h e  LITR. 

i r r ad ia t ed  together t o  a dose of approximately 1 x 1Ol8 neutrons/cm2 (E > 
18 1.0 MeV) and E and F were i r r ad ia t ed  simultaneously t o  a dose of 2 x 10 

neutrons/cm (E > 1.0 Mev). The i r r ad ia t ion  temperature w a s  - 50°C f o r  

b o t h  i r radiat ions.  

Samples C and D were 

2 

Post i r r ad ia t ion  annealing of t he  i n t e r n a l  f r i c t i o n  specimens w a s  

done i n  conjunction w i t h  t h e  i n t e rna l  f r i c t i o n  measurements. The r e s i s -  

t i v i t y  specimens were isochronally annealed f o r  periods of 1 h r .  a t  25°C 
temperature in te rva ls  s t a r t i n g  w i t h  75°C. 
samples i n  a quartz tube at tached t o  a U W  pumping system. A tube flxnace 

w a s  preheated t o  the  desired annealing temperature and placed around the  

tube. 

ceeded 1 x to r r .  

The annealing w a s  done w i t h  the 

The pressure i n  the vacuum system during these anneals never ex- 

. 

i 
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SPECIMEN: Nb-TP-2 UNIRRADIATED CARBON PEAK 
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Fig. 18. Pre-Irradiation Internal Friction Measurements on Sample A. 
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Fig. 19. Pre-Irradiation Internal Friction Measurements on Samples 
C and E. 
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0 40 80 120 160 200 240 
TEMPERATURE ("C) 

Fig. 20. Pre-Irradiat ion In t e rna l  Fr ic t ion  Measurements over t h e  
Oxygen Peak Region i n  Sample F. 

In t e rna l  Fr ic t ion  Results 

In t e rna l  f r i c t i o n  measurements on specium A were reported previous- 

ly.38 In te rna l  f r i c t i o n  measurements on specimen B were made as a f'unction 

of time a t  the oxygen peak temperature i n  order t o  determine t h e  decrease 

of the peak w i t h  time. 

f r i c t i o n  measurements on specimens from i r r ad ia t ed  samples C, D, E, and 

F showed no changes from the  pre- i r rad ia ted  measurements. 

The r e su l t s  are shown i n  Fig. 21. In t e rna l  

Res i s t iv i ty  Results 

Figure 22 shows the post i r r ad ia t ion  isochronal annealing data f o r  

samples C and D. 

pre- i r radiat ion value. 

increased about twice a s  much as  sample C f o r  t h i s  dose. 

r e su l t s  on sample C appear somewhat e r r a t i c  bu t  no marked annealing s tages  

appear up t o  323°C. 

pre- i r radiat ion value. 

The change i n  r e s i s t i v i t y  i s  taken w i t h  respect t o  the 

Thus, we see t h a t  sample D, the  more impure sample, 

The annealing 

A t  325°C the sample appears t o  be approaching i ts  
It i s  planned t o  extend these anneals t o  400°C. 

Sample D exhib i t s  a sharp decrease i n  r e s i s t i v i t y  s e t t i n g  i n  above 

200°C. The r e s i s t i v i t y  goes well  below the pre- i r rad ia t ion  value. A s  

w a s  previously mentioned, carbon prec ip i ta t ion  occurs i n  t h i s  temperature 

- i  

I 
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- I O  
I 
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Fig. 21. Decrease i n  Oxygen Peak Height versus Time a t  the Peak 
Temperature (150°C) f o r  Sample B I r r ad ia t ed  t o  1.6 x 1018 neutro s/cm2 
( E  > 1.0 MeV). Frequency = 0.854 cps. Q-l ( t  = 0) = 19.5 x 10' t . 
region, even i n  unirradiated samples. 38 We therefore  f e e l  t h a t  t h i s  

annealing s tage i s  probably not r e l a t ed  t o  radiat ion e f fec ts .  I n  order 

t o  t e s t  t h i s  contention, annealing of control (unirradiated)  specimens 

of both C and D h a s  been undertaken, bu t  t h i s  annealing h a s  not ye t  pro- 

gressed beyond 200°C. 

Signif icant ly ,  ne i ther  sample exhibi ts  an annealing stage i n  the 

v i c i n i t y  of l25OC. The annealing s tage obtained by Peacock and Johnson 37 
f o r  t h e i r  dose of - 1 x lo1' (E  > thermal) i s  a l s o  shown i n  Fig. 22. 

dose should be comparable t o  our dose of - 1 x 10l8 ( E  > 1.0 Mev). The 

curve of Peacock and Johnson37 i s  a r b i t r a r i l y  placed along the ordinate 

so  t h a t  t h e i r  pos t - i r rad ia t ion  change i n  r e s i s t i v i t y  corresponds t o  t h a t  

of sample D. Peacock and Johnson estimate t h e i r  impurity concentrations 

a t  500 ppn 0, 50 ppm N, and 100 ppm C. 

This 

Figure 23 shows the annealing r e su l t s  obtained thus f a r  on sample E 

Again the i r r ad ia t ion  produced a smaller r e s i s t i v i t y  increase i n  and F. 

the purer sample (E)  than i n  the contaminated sample (F) .  

of these samples exhibited a s  la rge  an increase as did e i t h e r  of the two 

previous samples ( C  and D) even through they were i r r ad ia t ed  t o  a s l i g h t l y  

l a rge r  dose. 

place f o r  Stage 111. 
value. 

However, ne i ther  

Sample F (260 ppm 0) shows an annealing stage i n  the proper 

Indeed, the r e s i s t i v i t y  goes below the pre- i r rad ia t ion  
L i t t l e  e f f e c t  i s  observed i n  sample E o r  the two control  specimens. 

. 
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Fig. 22. Change i n  Res i s t iv i ty  versus Isochronal Annealing Temper- 

ppm oxygen) a f t e r  I r rad ia-  
a ture  f o r  Samples C and D after I r r ad ia t ion  t o  1 x lo1* neutrons/cm2 
( E  > 1.0 Mev) and for Comer i a l  PJiobium (50 
t i o n  t o  1 x 10'9 neutrons/cm 5 3g (epithemnal) . 

a 

-0.04 

ORNL-DWG 67-886 

0 2 X d 8  neutrons /cm2 (E>(.d MeV) 
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A UNIRRADIATED 

50 100 150 200 250 

ISOCHRONAL ANNEALING TEMPERATURE ("C) 

Fig. 23. Isochronal Annealing of I r r ad ia t ed  and Unirradiated 
Niobium Samples. 

D i s  cuss ion 

This work has  shown the following r e su l t s :  (1) I n  the temperature 

range of Stage I11 annealing i n  niobium no r e s i s t i v i t y  decrease of irra- 

diated specimens i s  observed i n  the  absence of i n t e r s t i t i a l  impurity 

atoms. 

decrease i s  observed upon annealing i n  t h e  temperature in t e rva l  from 75°C 
(2)  If oxygen i s  present i n  i r r ad ia t ed  niobium a r e s i s t i v i t y  

. 
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t o  20OoC. 

i s  observed i n  t h e  temperature in t e rva l  200 t o  320°C. 

in t e rna l  f r i c t i o n  peak decreases a f t e r  i r r ad ia t ion  and annealing i n  t h e  

temperature in t e rva l  near l5O"C. From these f a c t s  we conclude t h a t  the  

r e s i s t i v i t y  decrease observed by Peacock and Johnson and the y i e ld  stress 

increase observed by Makin and Minter i n  t h i s  temperature range were 

caused by migration of  oxygen atoms t o  i r r ad ia t ion  produced defects. 

( 3 )  If carbon i s  present i n  niobium a r e s i s t i v i t y  decrease 

(4) The oxygen 

We a l so  observed t h a t  the  i n i t i a l  pu r i ty  and/or c rys t a l  perfection 

influences t h e  amount of  damage produced by the i r r ad ia t ion  a t  50°C and 

a l s o  the amount of annealing i n  Stage 111. 

atoms migrate t o  a defect  s t ruc ture  t h a t  was formed by migration of an 

elementary defect a t  some lower temperature and t h a t  t h e  c lus t e r s  of 

these elementary defects were nucleated by impurity atoms. 

This suggests t h a t  the oxygen 

Stage 111 annealing has  a l so  been reported i n  other b.c.c. metals, 

and we a re  in te res ted  i n  speculating about the  poss ib i l i t y  t h a t  i n t e r s t i -  

t i a l  impurity atoms a re  responsible f o r  the annealing Stage I11 i n  these 

other metals. Tungsten i s  pa r t i cu la r ly  in t e re s t ing  since Kuhlmann and 

Schultz recent ly  reported t h a t  neutron i r r ad ia t ed  tungsten t h a t  had been 

degassed i n  high vacuum s o  a s  t o  remove i n t e r s t i t i a l  impurit ies s t i l l  

showed Stage I11 annealing. 43 
t h e i r  sample w a s  based on r e s i s t i v i t y  a t  4.5"K after rapid cooling from 

1600°C. However, the  so lub i l i t y  of i n t e r s t i t i a l  impurities i n  tungsten 

i s  known t o  be very low a t  l o w  temperature and a t  1600°C most of the 

i n t e r s t i t i a l  impurit ies are probably already prec ip i ta ted  as oxides and 

carbides.44 We have previously shown evidence t h a t  carbon t h a t  has  pre- 

c ip i t a t ed  from solut ion i n  niobium can be put back in to  so lu t ion  by 

neutron i r r a d i a t i 0 n . 3 ~  

above mentioned observations i n  tungsten. 

The estimate of i n t e r s t i t i a l  content i n  

We suggest t h a t  t h i s  e f f e c t  could account f o r  t h e  

43 H. He Kuhlmann and H. Schultz, "Erholungsstufe 111 i n  Entkohltem 

44 
Wolfram nach Neutronenbestrahlung be i  4.5"K, I '  Acta Met. - 14, 798 (1966). 

Trans. AIME - 233, 186 (1965). 
R. H. Schnitzel, "Internal  Fr ic t ion  of Tungsten Single Crystals, ' I  
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