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1. INTRODUCTION 

.? 

1 

The matrix exponential method of solving d i f f e r e n t i a l  equations 

w a s  f irst  described t o  the  authors by Prof.  Henry Paynter of MIT, 

who with h i s  ~ t u d e n t s l - ~  developed t h i s  method i n t o  a p r a c t i c a l  

engineering t o o l .  

and even then it was an elegant method of obtaining exact solut ions 

for  a s e t  of constant coeff ic ient ,  homogeneous d i f f e r e n t i a l  equations. 

The matrix exponential technique i s  idea l ly  su i ted  t o  d i g i t a l  

computation and i s  very simple t o  implement, especial ly  when compared 

with most quadrature methods. 

4 The basic  technique w a s  derived many years ago, 

Only two persons besides Prof. Paynter have done extensive work 
5 i n  t h i s  area. L. Pease of Atomic Energy of Canada, Ltd., in -  

dependently developed t h e  method simultaneously with Paynter . 
work of Paynter and Pease formed t h e  bas i s  f o r  our implementation 

and, perhaps, refinement of t h e  method, although t h e  work of several  

 researcher^^-^ established t h e  r igor  of t h e  cen t r a l  technique. 

The 

'5. Suez, Automated Programming f o r  Analog Computers, M.S. 

*H.C.H, Lee, Some F in i t e  Difference Models f o r  Linear and 

thes i s ,  MIT, Aug .  1962. 

Nonlinear Control Studies Using Dig i t a l  Computation, M .S . t hes i s ,  
MIT, Aug. 1962. 

'H. M. Paynter and J. Suez, "Automatic D ig i t a l  Setup and Scaling 

4E. Artin, from 0. Schreier and E.  Sperner, Introduction t o  
Modern Algebra and Matrix Theory (1935); Translated from German, 
Chelsea Publ. Co., N.Y., 1951, pp. 319-320. 

of Analog Computers," Trans. ISA, 3, 55-64 (Jan. 1964). - 

5L. Pease, DEEMS, A Fortran Program f o r  Solving the  First-Degree 
Coupled Dif fe ren t ia l  Equations by Expansion i n  Matrix Series ,  
AECL-1898 (Oct . 1963, repr inted Feb . 1964) . 

E. G .  Keller,  Mathematics of Modern Engineering, VOL .II, 6 
Mathematical Engineering, Wiley, N.Y ., 1942, pp. 234-246. 

7R. Bellman, Introduction t o  Matrix Analysis, McGraw-Hill, N.Y ., . 
1960, pp. 165-173. 

- .  
- .  
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More recently,  M. L. Liou of Be l l  Telephone Laboratories made important 
10,n contributions t o  t h e  matrix exponential method. 

Because t h i s  method can give v i r t u a l l y  exactE solut ions t o  systems 

of equations, it i s  of considerable in t e re s t  t o  most engineers engaged 

i n  systems analysis, automatic control, and simulation. Also, systems 

engineers have long recognized tha t  one e s sen t i a l  difference between 

t h e  analog computer and t h e  d i g i t a l  computer i s  the  awkward (at  bes t )  

manner i n  which t h e  d i g i t a l  machine can perform integrat ion.  The 

matrix exponential method, on t h e  other hand, requires t h e  d i g i t a l  

computer t o  perform mainly matrix manipulations, which it can do i n  

a very straightforward and e f f i c i en t  manner. 

The matrix exponential techniques have worked w e l l  f o r  a large 

general c l a s s  of simulation problems which cons t i tu te  t h e  bulk of t h e  

work i n  t h e  systems analysis  and automatic cont ro l  f i e l d s .  Indeed, 

by use of t he  methods described i n  Sect.  3.4, ce r t a in  types of non- 

l i nea r  equations can be solved as a natural extension of t h e  basic  

matrix exponential method. 

'F. R.  Gantmakher, Applications of t he  Theory of Matrices, 
Interscience,  N.Y ., 1959, pp. 135-9 ( t r ans l a t ion  of Russian 
o r ig ina l  book: Theory of Matrices, 1954). 

'L. A. Pipes, Applied Mathematics f o r  Engineers and Physicists,  

'OM. L. Liou, "A Novel Method of Evaluating Transient Responses," 

lb. F. Kuo and J. F. Kaiser, eds., System Analysis by Dig i t a l  

12"Virtually exact'' means that  the so lu t ion  can be calculated 

2d ed., McGraw-Hill, N.Y., 1958, pp. 101-4. 

Proc. IEEE, - 54 (l), 20-23 (Jan. 1966). 

Computer, Wiley, N.Y.,1966, pp. 99-129. 

- 

t o  as great  a precis ion as i s  desired, consistent w i t h  t h e  precis ion 
obtainable w i t h  a given computer word length.  
precis ion of t h e  method i s  not necessarily l imited by t h e  convergence 
of any approximate quadrature ( in tegra t ion)  formula, simply because 
quadrature i s  not performed. 

I n  other words, t he  

, 



6 

The matrix exponential method has a l so  been implemented and used 

extensively i n  Fourier analysis  problems by simulating band-pass 

f i l ters .  13, Instead of calculat ing cor re la t ion  functions (and 

subsequently t he i r  Fourier transforms) d i g i t a l  f i l t e r i n g  can be used 

t o  obtain spec t r a l  density estimates and t r ans fe r  functions from 

noise data. 

accuracy and t y p i c a l l y  more e f f i c i en t  than  t h e  conventional methods. 

Calculations using f i l t e r i n g  techniques a re  of comparable 

MATMP has a l s o  been used i n  a special  technique t o  ca lcu la te  t h e  

s e n s i t i v i t i e s  of the  time response of a system t o  changes i n  parameter 

values.15 A descr ipt ion of a subroutine which was wr i t ten  t o  

implement time response s e n s i t i v i t y  calculat ions i s  given i n  Sect.  

5.2.3. 

MATMP has been developed and modified over a period of several  

years, and i t s  present form r e f l e c t s  t h e  considerable number of 

he lpfu l  suggestions w e  have had from many people. 

g ra t e fu l  t o  Prof. H.  M. Paynter f o r  f i rs t  introducing us t o  t h e  

method, and t o  Prof. T. W .  Kerlin of the University of Tennessee, 

and J. V. Wilson of ORNL f o r  t h e i r  help and encouragement. 

We are pa r t i cu la r ly  

2. DEVELOPMENT OF THE MATRIX EXPONENTIAL METHOD 

2.1 For Homogeneous Equations 

Consider the f i r s t -o rde r  scalar ,  l inear ,  homogeneous d i f f e r e n t i a l  

equation ( w i t h  constant coef f ic ien t  ) 

- i- ax = 0 ,  
d t  

l3S. J. Ball, A Dig i t a l  F i l t e r i n g  Technique f o r  Ef f ic ien t  Fourier 
Transform Calculations, ORNL-TM-1778 (Ju ly  1967) . 

l4T.  W . Kerlin and S . J. Ball, Experimental Dynamic Analysis of 

15T. W .  Kerlin, "Sens i t iv i t ies  by t h e  S t a t e  Variable Method, 

t h e  Molt en-Salt React o r  Experiment, ORNL-TM-1647 (Oct . 1966) . 

Simulation, - 8( 6), 337-345 (June 1967) . - 

. .  
. 
- .  
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whose solut ion i s  
( 2  1 -at 

An in t e re s t ing  cha rac t e r i s t i c  of t h e  solution i s  t h a t ,  f o r  any 

xO x = e  

t i m e  i n t e rva l  z, t h e  value of x at  the  end of t h e  in t e rva l  i s  a 

product of an exponential t e r m  E 

of t he  interval ,  i .e. 

-a7 and the value of x at  the  beginning 

-az 
t+z  = E "t X (3)  

This w i l l  be re fer red  t o  as the  "incremental solution." 

Now because &' system of homogeneous l i nea r  equations of any 

order can always be broken up i n t o  a s e t  of f i r s t -o rde r  equations, 

consider t he  following s e t  of equations 

I n  xn , - -  axl - all x1 + a= x2 + .... a 
d t  

(4) ax2 
- -  dt a21 x1 + a22 x2 + .... a 2n xn 9 

&n ' - -  - aril x1 + an2 x2 + .... a d t  nn no 

9 

x 

This  a r ray  can be expressed compactly i n  matrix form as a f irst-  

order, l inear ,  homogeneous, matrix d i f f e r e n t i a l  equation with constant 

coeff ic ients ,  i .e. 

- -  :-Ax, ( 5 )  

where X i s  t he  column vector of s t a t e  var iables  xi 
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+ -  - t d X  

2! dt2 
X t  = Xo + i! 

t = O  

and A represents  the  coef f ic ien t  matrix 

tm d”x 
m! dtm 
-- + .... 

t = O  t = O  

A 

n l  

I 2  

22 

a 

a 

n2 a ...... a nn 

Th i s  matrix equation has t he  so lu t ion  

A t  
xo ’Xt = E 

For a formal proof t h a t  Eq. (6) i s  t h e  desired solution, t h e  reader 

i s  referred t o  Bellman.’ However, the  following s igple  proof i s  

somewhat less formal. d X  dx 
a& 2 d t  

First, i f  dx/dt = AX, then - = A - = 
UL, 

3 3  - A X, so t h a t  - d”x - - Am X . A A X = A X; similarly, - - (7)  
2 

dt3 dtm 

If X i s  expanded about zero i n  a Taylor’s s e r i e s ,  $. t 

With Eq. (7) subs t i tu ted  f o r  the  der ivat ive,  

x = I + - + -  1!- 2 !  + .....) xo 
t ( At A2t2 

or 
Xt = cAtXO (Q.E.D..) 

The “incremental solut ion” i s  

xt+T = , ( 9 )  

where cAT, t he  matrix exponential, i s  defined analogously t o  t h e  

sca l a r  exponential as 

i A T ) k  
k! 

.&.+ &P+ ... 
2 :  3: 

EAT = I + AT + 

- .  
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i n  which I i s  t h e  iden t i ty  matrix 

2.2 For Nonhomogeneous Equations 

The matrix equation representing a system of f i r s t -order ,  constant 

coeff ic ient  d i f f e r e n t i a l  equations with nonzero forcing functions i s  

t h e  nonhomogeneous equation 

- -  ( = - A X + Z ,  
d t  

where Z i s  t h e  disturbance, or forcing function,vector. 

as derived by Liou’l i s  

A general incremental solution of the nonhomogeneous equation 

An exact solut ion derived from Eq. (12) fo r  t h e  case where the  

forcing function Z i s  constant over t h e  in t e rva l  t t o  t+.c i s  

X t + T  = E ~ ~ X ~  -+ (cAT - I ) A - b t  . 
It i s  important t o  note t h a t  t he  inverse of A need not be calculated 

t o  evaluate Eq. (13) since 

2 3 ,, k-L k A .T + ... + -  3: k! 
A T  AT 

= I T + r  , 
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= z T  & k! , 

k=l  

AT Because t h i s  series i s  similar t o  t h a t  used t o  represent E , 
the  computer program can ca lcu la te  t h e  two required matrices 

concurrently, since t h e  - kth term of t he  ( ~ ~ ' - 1 ) A - l  s e r i e s  equals 

t he  (k-1)th t e r m  of t h e  se r i e s  times (T/k). I n  the  MATMP 

program, t h e  cAz matrix i s  ca l led  the  "C" matrix and the  ( E  

matrix i s  ca l led  t h e  "HP" matrix ( i n  honor of H .  Paynter) . 
AT -1)A-' 

A t  t h i s  point, two e s sen t i a l  features  of t h e  matrix exponential 

method are emphasized: 

1. The exponential matrices can be computed by the  se r i e s  

approximation t o  nearly any desired precis ion ( typical ly ,  

1 part  i n  lo6 i s  specified f o r  MATMP ca lcu la t ions) .  

f o r  homogeneous equations and f o r  nonhomogeneous equations 

i n  which the forcing functions remain constant over t he  

computation t i m e  interval ,  t he  solutions a r e  v i r t u a l l y  exact 

solut ions.  

Hence, 

2. The solut ion vector can be updated successively by a time 

increment z by two matrix mult ipl icat ions : 

x = c x o + H P z o  
T .  

= c XT + HP z, x2 7 

e t c  

If it i s  assumed that j u s t  one t i m e  increment value z i s  

required, the  C and HP matrices need t o  be evaluated only once. - 
An exact solut ion t o  the  s e t  of nonhomogeneous d i f f e r e n t i a l  equations 

can a l s o  be derived from Eq. (22) fo r  the  case where t h e  forcing 

function Z var ies  l i nea r ly  within the  computation in t e rva l  z .  

I n  terms of t h e  matrix exponential s e r i e s  approximations, t h e  

, 
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trapezoid forcing function incremental solut ion i s  

Xt+T = EAT xt + 7 

+ T  

Liou’l has a l s o  developed a recursive formula fo r  accurate 

approximations of continuous forcing functions which uses a Simpson’s 

ru l e  approximation of t he  nonhomogeneous solution, Eq. (E) ,  within 

t he  time in t e rva l  7: 

(16) 7 
E zt+T/2 + 5 zt+7 

A s  w i t h  t h e  case of the  step-wise varying forcing functions, t he  

matrices required fo r  Eqs. (15) and (16) need t o  be evaluated j u s t  

once at  the  start.  These features  a r e  not presently included i n  the  

MATMP code, but could readi ly  be added as options’. ! 

2.3 Miscellaneous Features of t he  Matrix Exponential 

Since the  matrix exponential pr inciple  has been a par t  of t he  

mathematical l i t e r a t u r e  f o r  many years, the matrix exponential has 

had at l e a s t  two other names: t h e  fundamental matrix, and the  

t r ans i t i on  matrix. Besides t h e  se r i e s  approximation method, an 

ana ly t i ca l  method i s  often used t o  ca lcu la te  t h i s  matrix;’ however, 

t h e  eigenvalues of A and t h e i r  eigenvectors must be calculated and 

the  i n i t i a l  condition vector must be transformed by a matrix 

comprised of t h e  eigenvectors. It i s  emphasized that t he  se r i e s  

method used i n  MATMP does not require  t h a t  the coeff ic ient  matrix 

be nonsingular (i.e.,  have a nonzero determinant) o r  t h a t  i t s  

eigenvalues be d i s t i n c t  (a  case where the  ana ly t i ca l  solut ion has 

terms.of the  form tcbt and cannot be expressed as t h e  sum of 

exponentials) . 
where two t i m e  constants i n  a decay chain a re  equal, was one of 

The l a t t e r  condition, which occurs i n  problems 
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t h e  problems t h a t  Pease encountered i n  reactor  burnup calculat ions 

t h a t  prompted him t o  develop the matrix exponential method. 5 

Another fea ture  noted by. Pease (but not included i n  MATEXP) i s  

t h a t  t he  average so lu t ion  vector could be obtained d i r e c t l y  from 

a matrix exponential type calculat ion.  

From t h e  mean value theorem, 
,a 

= 'J, X d t ,  
T t  

x can be obtained by integrat ing the  equation for  X i n  terms of C 

and HP: T T 

Term by term in tegra t ion  of t h e  se r i e s  approximations fo r  C and 

HP gives 

[ C d t = T [ I + k + - +  2: 3: + . . .] + HP , (18) 

and 

HP d t  = T~ [& + 3. + + ...I . 
The la t ter  series, l i ke  the  HP matrix calculation, could e a s i l y  

be made concurrent with t h e  other matrix exponential calculat ions.  

The accuracy of MATEXP solutions, both i n  absolute terms and 

compared w i t h  other methods, i s  d i f f i c u l t  t o  estimate quant i ta t ive ly  

for t h e  general  case. 

the  successive mult ipl icat ions of the solut ion vector by t h e  matrix 

exponential natural ly  tend t o  accumulate errors.  

precise calculat ions of t h e  C and HP matrices as recommended i n  the  

Appendix, Sect .  5.1, t e s t  cases have shown t h i s  e r ro r  t o  be negl igible  

fo r  large systems (40 x 40), even after many thousands of updating 

calculations.  

t h e  C and HP matrices t o  a prescribed accuracy. 

Even f o r  those cases t h a t  are solved "exactly,t '  

However, with 

Liou'l has developed an a l t e rna t ive  method of evaluating 

The nature of t h e  matrix exponential method permits t h e  use of 

- .  



much la rger  computation time in t e rva l s  a than would be feas ib le  fo r  

most numerical in tegra t ion  solutions e For constant-coefficient 

equations and a given T, it would be safe  t o  assume t h a t  WEXP would 

be inherently more accurate.  A s  i s  usually t h e  case, however, it 

would be unwise t o  generalize about nonlinear equations. 

solutions a re  discussed fur ther  i n  Sect.  3.4. 
Nonlinear 

Eq. (20) gives a rough estimate of W M P  solut ion times on t h e  

IBM-7090 computer, assuming t h a t  a negl igible  time i s  spent i n  t h e  

per ipheral  subroutines: 

( 2 0 )  
2 Solution time(min) 3.0 x lz6 (NE) NT , 

where NE i s  t h e  number of equations, and NT i s  t h e  number of 

computation t i m e  in te rva ls .  For example, a 59 x 59 system run fo r  

1000 time s teps  took 10 min, and an 8 x 8 run f o r  10,000 s teps  took 

1.5 min. The so lu t ion  t i m e  fac tor  w i l l  vary from about 2 x lom6 t o  

7 x 10 , depending on t h e  amount of ex t ra  subroutine computation and 

pr intout ,  and w i l l  be approximately halved f o r  homogeneous equations. 

-6 

The present "standard" version of the MATEXP program solves up 

t o  60th-order equations and uses about 22,000 words of core storage. 

I n  a 32,000 word computer, t h e  ex t ra  10,000 words can be used f o r  

spec ia l  programming o r  storage, or t h e  order of t h e  equation can be 

increased t o  about 80. Since, for l a rger  problems, tape or other 

slower storage devices would be required t o  ca lcu la te  the  matrix 

exponential functions, the  overa l l  efficiency of t h e  method would be 

reduced. 

Two other in te res t ing ,  though perhaps purely academic, features  

of t he  matrix exponential technique a re  tha t  t he  solut ion time 

increment can be negative (allowing one t o  go backwards) and tha t  t h e  

A matrix can contain complex coef f ic ien ts .  

3 .  DESCRIPTION OF MATEXP PROGRAM AND OPTIONS 

3.1 Basic Input Information 

The WEXP program was wr i t ten  with t h e  in ten t  t h a t  it should 

be easy t o  use for  a wide var ie ty  of d i f f e r e n t i a l  equation problems. 
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Unfortunately, as a program becomes more general, i .e.  the more 

options and spec ia l  features  t h e  program has, it becomes more d i f f i c u l t  

t o  explain t h e  program and t o  use it f o r  any given problem. 

Consequently, any apparent awkwardness and complications i n  t h e  

following discussion a re  due t o  a des i r e  t o  make it general, and any 

omissions are due t o  a des i re  t o  keep it simple. 

The basic pa r t s  of t h e  code are: the  main program, MATMP; t he  

u t i l i t y  subroutine used f o r  outputting, OUTPUT; and t h e  subroutine 

f o r  calculat ing forcing( or disturbance)functions, DISTRB. 

l inear ,  constant -coefficient d i f f e r e n t i a l  equations tha t  are 

homogeneous ( i . e .  have no forcing functions) or which have only f ixed 

To solve 

forcing functions, a l l  t h e  

programming i s  necessary. 

the i n i t i a l  values of t h e  

required da ta  can be read i n  and no ex t r a  

For equations of t h e  form 

ax 
d t  - = A x + z ,  

X vector, t h e  coeff ic ient  matrix A, and 

t h e  (f ixed)  disturbance vector Z may be read i n .  

required f o r  each run i s  t h e  following: 

1. number of equations, 
2 .  

3. computation time in te rva l ,  

4. f i n a l  t i m e ,  

Other information 

i n i t i a l  t i m e  (or  other independent var iable) ,  

5. i n t e r v a l  at which solut ion vector X and disturbance vector Z are 

t o  be printed.  

Since many elements of the  coeff ic ient  matrix A a re  of ten zero, 

only the  nonzero elements need t o  be read in .  T h i s  makes it necessary 

t o  iden t i fy  each coeff ic ient  with i t s  row and column number. 

nonzero values of t h e  i n i t i a l  condition and f ixed disturbance vectors, 

w i t h  t h e i r  row numbers, a r e  read i n  s imilar ly .  

The 

Since successive runs might 

i n  input data  from the  previous 

only the  a l t e r ed  da ta  has t o  be 

An option i s  a l s o  avai lable  

from one run can be used as the  

require  no changes ( o r  only a f e w )  

run, options are provided so t h a t  
read i n .  

whereby the last value of t h e  X vector 

s t a r t i n g  value of t he  succeeding run. 
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This option can be used i f  changes i n  the  computation o r  pr in t ing  

i n t e r v a l  a r e  required i n  the  middle of a solut ion o r  i f  ce r t a in  

i t e r a t i o n  or successive approximation schemes are being used. 

A complete descr ipt ion of the  inputs and options .is given 

the  Appendix, Sect .  5. 

3.2 Alternative Methods of Generating t h e  Coefficient Matrix A 

Although t h e  most straightforward method of input t ing t h e  

i n  

coeff ic ient  matrix i s  t o  read it in, very of ten it i s  advantageous 

t o  have some o r  a l l  of t h e  elements calculated from system parameter 

values. 

programming on t h e  f irst  c a l l  of DISTRB. An a l t e rna t ive  i s  t o  use 

an "algebra tab le"  routine developed by Kerlin and Lucius.16 T h i s  

One option of MATEXP provides f o r  t h i s  t o  be done by special  

rout ine ca lcu la tes  t h e  matrix elements from input parameter values 

without any special  programming. The general expression used fo r  

calculat ing an element a i n  terms of parameters P and the i r  

exponents 
i j  k 

%a is 

+ ... . . .P E Enl  E12 E22 E32 ... Pn p2 3 + c2p1 p2 3 n 
E21 31 a = CIPl i j  

k=l 

A complete descr ipt ion of t h e  program i s  given i n  reference 16. 
Beside t h e  f a c t  t h a t  it i s  sometimes convenient t o  have t h e  

coeff ic ient  matrix calculated by the  computer, i n  some cases computer 

computation i s  almost necessary t o  obtain accurate solutions.  This 

w a s  the  case f o r  one reactor  dynamics calculat ion where the  coeff ic ients  

were f i rs t  carefu l ly  calculated on a 20-in. s l i d e  rule ,  then by the  

machine. The difference i n  the  steady-state solut ion f o r  neutron 

16T. W .  Kerlin and J. L. Lucius, A Technique f o r  Calculating 
Frequency Response and i t s  Sens i t iv i ty  t o  Parameter Changes for Multi- 
Variable Systems, O R N L - T M - ~ ~ ~ ~  (June 1965). 
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l e v e l  a f t e r  a r eac t iv i ty  inser t ion  was approximately a fac tor  of 2 .  

3.3 Alternative Methods of Generating the  Forcing Function Vector Z 

When var iable  forcing functions a re  needed, a spec ia l  program 

must usually be wr i t ten  and included i n  DISTRB. 

function subroutines have been wr i t ten  t o  simplify t h e  programming: 

DE, f o r  approximating a rb i t r a ry  f’unctions; and TRIG, f o r  approximating 

var iable  t ransport  l ags .  They a re  both described i n  Sect .  3.5. 

Two spec ia l  forcing 

For cases where t h e  forcing function i s  a solut ion t o  an ordinary 

d i f f e r e n t i a l  equation, t h i s  equation can simply be added t o  t h e  system 

matrix, and an exact solut ion can be obtained. A s  an example, assume 

t h a t  a s inusoidal  forcing function i s  used t o  exci te  a damped spring- 

mass system. 

y of t h e  mass with t i m e  i s  

The quadratic equation tha t  describes the displacement 

& +  a % +  by = c s i n  (ut + 9 )  , 
dt2 

where cu i s  t h e  frequency of the  sinusoidal input (radians/time) . 
To arrange t h e  equation i n  terms of f i r s t -o rde r  der ivat ives ,  l e t  

d t  ’ x1 5 

2 2  Solving f o r  d y/dt (or dxl/dt), w e  obtain 

9x1 - -  - -.  ax - bx2 + c s i n  (cut + jd), d t  1 

and 

&2 
= x1 

- 
d t  

The equation f o r  a pure osc i l l a to r  with frequency cu i s  
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If we l e t  x3 = ds and x4 = us, then 

. -  

- -  - -m4 , 3 dx 

d t  

dx4 
d t  - c u x 3  
- -  (29) 

If the  i n i t i a l  conditions of x and x are zero and -1, respectively,  

then 
3 4 

X 3 ( t )  = s i n  cut , 

X 4 ( t )  = -cos cut . (31.1 

Thus cx could be subst i tuted for c s i n  (cut + $) i n  Eq.(25). 

required i n i t i a l  conditions of veloci ty  xl( 0) and displacement x2( 0) 

must a l s o  be specified.  

The 3 

The coeff ic ient  matrix f o r  t h i s  example i s  

-a -b +C 

If t h e  s inusoidal  input were introduced as a forcing function, it 

would appear as a s t a i r - s t ep  approximation of a s ine wave, and the  

accuracy of the  solut ion would depend on t h e  accuracy of t h i s  

approximation. A comparison of t h e  approximate and exact solutions 

for  a specif ic  example i s  shown i n  Fig. 1. I n  the  approximate 

solution, a f i r s t -order  extrapolation w a s  used t o  approximate the  

average value of t h e  forcing function over t he  t i m e  in te rva l .  

I n  t h i s  example, t h e  system has a na tura l  frequency of 1.0 

radian/sec and a damping fac tor  of 0.25, and the  dr iving sinusoid 

has a frequency of 2.0 radians/sec. The computation in t e rva l  of 

0.5 sec for  t h e  approximate case gives about seven computations 

per cycle of t h e  dr iving function. Figure 1 a l s o  shows t h e  response 

a f t e r  a long time where t h e  excellent s t a b i l i t y  and accuracy of both 

. . .  
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Posit  ion 
x2 0 
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- /.o 

$ 

Time (sec)  approximate solut ion = 0.014 

Exact MATEXP solut ion - 
x Approximate solution, h t  = 0.5 sec 

Maximum e r r o r  i n  ini t ia l  t rans ien t  
approximate solut ion = 0.020 

Fig. 1 Comparison of Exact MAT= and Approximate WMP 
Solutions for Sinusoidal Input t o  Damped 

Spring-Mass System 

. . .  . '  . .  



b 19 ' 

solutions can be seen. This  type of calculat ion is, h i s to r i ca l ly ,  

very d i f f i c u l t  t o  do with standard d i g i t a l  methods. 17 

3.4 Methods f o r  Solving' Time-Varying-Parameter and Nonlinear 
Di f fe ren t ia l  Equations 

It was shown i n  Sect .  2 t h a t  t he  MAT= method can provide exact 

solutions t o  s e t s  of constant -coeff i c i e n t  , homogeneous d i f f e r e n t i a l  

equations and t o  nonhomogeneous equations f o r  which t h e  forcing 

functions can be represented by stepwise-varying functions. Since 

forcing functions are usually smoothly varying, t h e  accuacy  of t h e  

solut ion would na tura l ly  depend on t h e  accuracy of the  s t a i r - s t ep  

approximations. 

Likewise, i n  t h e  case of t ime-varying-parameter, or nonlinear, 

equations, t h e  var ia t ions  i n  t h e  coef f ic ien t  matrix A can be 

approximated by stepwise var ia t ions .  For a var iable  A matrix, however, 

t h e  matrix exponentials ( C  and HP) would both have t o  be re-evaluated 

a t  each computation in te rva l .  Although t h i s  may s t i l l  be an e f f i c i en t  

method f o r  low-order equations (-10 or l e s s ) ,  it could be qui te  

t i m e  consuming for l a rge r  problems. 

A more e f f i c i en t  method of solution i s  t o  modify, or  "fudge," 

the forcing function vector so t h a t  it compensates f o r  t h e  var ia t ion  

i n  coeff ic ients  while t h e  A, C, and HI? matrices remain constant. 

This i s  shown schematically i n  Fig. 2 .  

17R.  A. Gaskill,  "Fact and Fallacy i n  Dig i t a l  Simulation, 'I 
Simulation, - 5 (5),  309-313 (Nov. 1965). - 
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X ( t )  (Exact) 
Nonlinear Equations 

A = f ( t , X )  

Z( t ) *A+y ++XI zf ( t' *T-& X( t ) ( Approximat e )  

Fig. 2 .  Approximate Solution Using Fudged Forcing Functions. 

Each component of t h e  f'udged forcing-function vector i s  calculated 

by adding a l l  t h e  coef f ic ien t  per turbat ion quant i t ies  i n  t he  row. 

example, assume one row of t h e  matrix equation i s  

For 

(t) x1 + "12 "2 + a ( t)  x3 + z 1  ( t )  , &l 
d t  - "11 13 

11' a13' 1 I 2  

- -  

and z are var iables  and a i s  a constant.  where a 

and 

Then the  equation can be rewritten 

+ (a  ) x + z (t) + ail x1 + a' 
(a11)o x1 + "12 "2 1 3 0  3 - 1  13 x3 

axl - =  
d t  

Again, the 

but i n  t h e  

stair  -s tep 

forcing function z 

MATMP difference equations, it i s  approximated by a 

funct ion.  

would' ac tua l ly  be smoothly varying, 
f 



21 

Z 
. -  

/@ 

c 
m 4- v 2  

i f  I 

I 

I 
I 

For t h e  case where 

are known f'unctions of 

I 

t h e  coeff ic ients  and/or t he  forcing functions 

time, much grea te r  accuracy ( f o r  a given 

)time * 

computatiw in t e rva l  7) r e s u l t s  from using approximate mean values, 

ra ther  than  i n i t i a l  values, of t he  functions i n  t h e  computation 

in te rva l .  First-order approximations of t h e  mean values can be 

obtained by evaluating t h e  time-varying forcing functions and matrix 

elements at (t + 7/2) instead of a t  ( t ) .  First-order extrapolations 

of t h e  mean values of the solut ion vector X should a l s o  be used 

where coef f ic ien ts  a r e  functions of X, as shown i n  Fig. 3. 
\ 

t ' t + T  

Straight  -Line / Approximat ion 

X 
i 

t -7 t 

T N  X i ( t )  - X & t - T )  

Xi(t+$ N X i ( t )  + 2 

Fig. 3. First-Order Extrapolation of Mean Values of z and x at (t+I). 
2 

The use of an auxi l ia ry  subroutine VARCO grea t ly  s implif ies  the  

programming required t o  use f i r s t -order  extrapolation calculat ions t o  

f ind  approximate mean values of t h e  forcing function. 

described i n  d e t a i l  i n  Sect .  5.2. 
VARCO i s  

The only way of guaranteeing t h a t  t h e  solut ion i s  accurate i s  t o  

reduce t h e  computation in t e rva l  T u n t i l  further reductions make no 

s igni f icant  difference i n  t h e  solution. A simple, i n tu i t i ve  estimation 
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of t h e  accuracy, however, may be obtained by noting t h e  maximum amount 

of change i n  t h e  solut ion and coeff ic ient  values within a computation 

in te rva l .  If these changes are only a f e w  percent of t h e  values of 

t h e  functions a t  t h e  start of t h e  in te rva l ,  then t h e  f i r s t -o rde r  

approximations w i l l  probably give very accurate answers. 

accuracy of t he  representation of a nonl inear i ty  should a l s o  be 

considered when t ry ing  t o  "squeeze" t o o  much accuracy out of a 

The t r u e  

solution. 

The use of fudged forcing functions f o r  t h e  solut ion of nonlinear 

d i f f e r e n t i a l  equations i s  very e f fec t ive  when r e l a t ive ly  few of t h e  

matrix coef f ic ien ts  are var iable .  I n  t h i s  case one might consider 

t he  l i nea r  port ion of t h e  system of equations as being solved by an 

extremely accurate analog computer, while t h e  nonlinear port ion i s  

simulated by a not-quite-so-accurate computer. If most of t h e  

matrix coef f ic ien ts  a r e  variable,  then t h e  more conventional numerical 

solut ion methods might be more p r a c t i c a l  than MATEXP.' 

More de ta i led  discussions of t h e  theory and use of fudged forcing 

functions have been found disguised i n  sophis t icated mathematical 

t r e a t i s e s  by Wolf18 and Frazer e t  a l .  19 -- 

3.5 Special  Forcing Function Subroutines 

Since spec ia l  programming i s  required i n  t h e  DISTRB subroutine 

t o  generate var iable  forcing functions f o r  t h e  d i f f e r e n t i a l  equations, 

two general  purpose subroutines were wr i t t en  t o  f a c i l i t a t e  t h i s  

programming f o r  some problems. 

3.5.1 Arbitrary Function Generation - DFG 

The a rb i t r a ry  function generation subroutine DFG provides a means 

of generating approximations of single-valued functions of one 

var iable  where t h e  a rb i t r a ry  function curve i s  represented by a 

A. A. Wolf, "Some Recent Advances i n  t h e  Analysis and Synthesis 
18 

of Nonlinear Systems", Am. I n s t .  Elec. Engrs . t ransact ions paper 
NO. 61-713. 

19 R. A. Frazer, W .  J. Duncan, and A. R .  Collar, Elementary 
Matrices, Cambridge University Press, 1957, pp. 232-45. 
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se r i e s  of l i nea r  segments (Fig. 4 ) .  
t h a t  of t h e  diode function generator (hence DIG) used i n  analog 

computation. 

The pr inciple  i s  iden t i ca l  t o  

out put 

Actual 

LApproximat e A r/ I 
I p In1 ,ut 

Fig. 4. Subroutine' D K  Represent a t ion  of an Arbitrary 
Function of One Variable. 

DFG i n  i t s  standard form a r b i t r a r i l y  allows f o r  up t o  8 functions 

with up t o  32 points  (o r  31 l i n e  segments) per function. 

required are t h e  ordinate and abscissa values of t h e  line-segment 

end points.  

t h e  dimensions could be changed easily. 

and a Fortran l i s t i n g  a re  given i n  t h e  Appendix, Sect.  5. 

Inputs 

If more functions or f i n e r  approximations a re  required, 

More d e t a i l s  on the  program 

3.5.2 Variable Transport Lag Generation - TRLG 

A t ransport  l a g  ( a l s o  known as a pure t i m e  delay, or dead time) 

ac tua l ly  represents a d is t r ibu ted  parameter system; hence, i t s  

representation i n  a lumped-parameter solut ion w i l l  be only approximate. 

The output z from a pure delay device with an input x and a fixed 

delay t i m e  T i s  

z ( t )  = x (t - 2 ) .  

If T i s  variable,  then the  relat ionship between z and x i s  a function 

of t h e  t i m e  his tory of T. 

The variable time-delay problem i s  best  i l l u s t r a t e d  by 

f l u i d  flow i n  a pipe where the  i n l e t  temperature and flow r a t e  are 

both var iable .  

1. there  i s  no heat t r ans fe r  t o  t h e  pipe; 

2. t he  f l u i d  density i s  constant; 

3. plug flow exis t s ,  i .e . ,  there  i s  no mixing of t he  f l u i d  i n  t h e  

The assumptions required fo r  a pure delay are:  

d i rec t ion  of flow. 
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The technique used i n  TRLG i s  t o  sample t h e  i n l e t  temperature x 

and the  flow rate W at  each computation time i n t e r v a l  T, thereby 

keeping an inventory on each s lug of f l u i d  i n  t h e  pipe.  The t o t a l  

weight of f l u i d  i n  t h e  pipe i s  computed from t h e  i n i t i a l  t ransport  

t i m e  T. and t h e  flow r a t e  W - 
L i' 

( l b ) , =  wi ( lb/sec)  x T~ (set) . 
' to ta l  

Similarly, t h e  weight of f l u i d  t h a t  en ters  during each t i m e  i n t e r v a l  

T i s  W ( t )  x T.  Since t h e  f l u i d  densi ty  i s  constant, t h e  weight of 

f l u i d  t h a t  leaves during t h a t  i n t e r v a l  T i s  equal t o  t h e  weight of 

t h e  i n l e t  slug. 

A s  an example, assume t h a t  t h e  temperature p r o f i l e  i n  t h e  pipe 

i s  as shown i n  Fig. 5 and t h e  slug at t h e  in le t  of APo lb i s  about 

t o  enter .  The s lug a t  t h e  ou t l e t  i s  AP at a temperature x where 

APn > APo. 
equal t o  xn, and t h e  whole p r o f i l e  w i l l  be sh i f t ed  t o  t h e  r i g h t  

by APo lb. 
i s  then (APn - AP,). 

n n' 
When APo enters,  t h e  ou t l e t  s lug temperature w i l l  be 

The weight of t h e  new slug j u s t  upstream of t h e  e x i t  

If APo had been grea te r  than mn, t h e  ou t l e t  s lug would have taken 

as much of t h e  upstream inventory (i.e.,  aPn,l, mnm2, etc . )  as 

required (up t o  300 samples), and t h e  out le t  s lug temperature z 

would be computed as t h e  weighted average of t h e  s lug temperatures. 

For example 

i f  

then 

mo = mn + 0.5 an - 1 ,  

If the  maximum delay time (minimum flow rate) would use up t o o  

many storage locations,  t h e  sampling would be done every other ( o r  

every th i rd ,  e t c . )  computation in t e rva l .  

minimum expected flow rate must be specif ied t o  ca lcu la te  how of ten  

t o  sample. 

With a var iable  lag, a 

The input var iables  supplied by t h e  ca l l ing  program f o r  each c a l l  

of TRLG a r e  XT (e.g., f l u i d  temperatures) and t h e  flow rates W ( i n  
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terms of mass/time, unity f o r  f u l l  flow, or some percentage of f u l l  

scale) .  The lagged functions ZT are returned by TRLG. 

On t h e  f i rs t  c a l l  of TRIG, t h e  f l a g  N I  should be zero, and t h e  

following input data a r e  read in:  

NLAGS = number of functions used, 

T I  = i n i t i a l  values of t ransport  l a g  time fo r  each f'unction, 

WMIN = minimum expected values of flow W fo r  each function. 

The i n i t i a l  values of f l u i d  temperatures i n  t h e  pipes a r e  set 

equal t o  t h e  i n i t i a l  values of i n l e t  temperatures. If spec i f ic  

i n i t i a l  temperature p ro f i l e s  a r e  required, they can be read i n  with 

only a minor change being required i n  t h e  program. 

version of TRLG provides f o r  up t o  s ix  lags  with up t o  300 samples 

per lag.  If more or  fewer lags  or points  a r e  desired, t he  statements 

labeled DIMENS i n  t h e  comment f i e l d  can be changed accordingly. 

The standard 

More d e t a i l s  on TRLG and a Fortran l i s t i n g  a re  i n  t h e  Appendix, 

,Sec t .  5. 
There a r e  two other techniques t h a t  a r e  commonly used t o  represent 

t ransport  delays : 

1. A s e r i e s  of n f i r s t -order  lags,  or  "wel l -s t i r red tanks," with 

t i m e  constants z/n; 

A Pad6 approximationFO which uses several  terms of a series 

approximation of E 

delay), where S i s  the  Laplacian argument. 

2 .  
- ZS ( the  Laplacian representation of a pure 

Both t h e  s e r i e s  l ag  and Pad6 methods have accuracy and f l e x i b i l i t y  

l imi ta t ions  t h a t  would be prohibi t ive f o r  ce r t a in  problems. 21 

Since t h e  d i g i t a l  computer i s  qui te  prof ic ien t  at sampling data, 

t h e  sampled data  approximation as used i n  t h e  TRLG subroutine 

recommended as t h e  most e f f i c i en t  and accurate method. 

i s  

2oA. E. Rogers and T.  W.  Connolly, Analog Computation i n  
Engineering Design, McGraw-Hill, N .Y ., 1960, pp. 419-24. 

2%. G .  Margolis and J. J. O'Donnell, "Rigorous Treatment of 
Variable Time Delays", IEEE Trans. on Electronic Computers, V o l .  
EC-12, June 1963, pp 307-9. 
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4. SUMMARY AND CONCLUSIONS 

. -  

The matrix exponential method has a number of advantages over 

t h e  more common integrat ion schemes for  a large and s igni f icant  c lass  

of ordinary d i f f e r e n t i a l  equation problems. The speed and accuracy 

of MATEXP have t h e  po ten t i a l  of reducing computing costs  for large 

problems and of making more "real-time" computations feas ib le  f o r  

on-line d i g i t a l  computation, control, and optimization calculat ions.  

The MATEXI? program has been developed over a period of several  

years, mainly through use i n  simulation problems. There are, however, 

at  l e a s t  th ree  other areas i n  which t h e  matrix exponential method 

might be effect ive:  

1. Automatic parameter estimation - where the parameters of t h e  

model d i f f e r e n t i a l  equations are adjusted t o  optimize t h e  

agreement between theo re t i ca l  and experimental response curves. 

A computer program t o  implement t h i s  technique i s  current ly  

under development; 

2 .  Solution of nonlinear algebraic equations by the  method of 

steepest  ascents; and 

3.  Boundary value problems. 

Other refinements t h a t  have been used with the  MATMP code 

include t h e  addition of an automatic p lo t t i ng  subroutine and a more 

e f f ic ien t  output routine which p r in t s  only specified var iables .  

Forcing-function subroutines t o  solve implici t  equations and 

generate functions of two var iables  are planned as additions t o  t h e  

"standard" package. 



5.  APPENDIX 

5 .1  Problems i n  t h e  Evaluation of Exponential Functions 

The Taylor s e r i e s  approximation f o r  a sca la r  exponential function 

n i s  n 

n! (5.1) k=O k,! 3 '  

Th i s  approximation a l s o  holds t r u e  when t h e  argument y i s  a matrix; 

hence, matrix exponential functions are amenable t o  d i g i t a l  computer 

calculation, s ince r a i s ing  a matrix t o  a power i s  a straightforward 

operat ion.  

It i s  important t o  note t h a t  t h e  HP matrix calculat ion 

I] A - l  (5 .2)  

does not require  inversion of t h e  A matrix, and can be calculated 

d i r e c t l y  from t h e  terms of the  C matrix approximation as shown 

i n  Sect.  2.2. 

There a r e  several  numerical problems associated w i t h  t h e  matrix 

The approximations w i l l  be va l id  only i f  exponential calculat ions.  

1. the  series w i l l  converge, 

2 .  t h e  numerical computation does not lose significance due t o  

overflow, mundoff,  or t runcat ion e r rors .  

Since the  evaluation of exp (AT) requires  calculat ing powers of t h e  

matrix AT, there i s  a p rac t i ca l  l imi ta t ion  on the  maximum value of 

t h e  la rges t  element i n  t h e  AT matrix, and experience has shown tha t  

it i s  most e f f i c i en t  t o  l i m i t  t h i s  value t o  about 1.0. Should t h e  

desired T make max A . . T  > 1.0, then T i s  halved up t o  10 t i m e s  

f o r  t h e  exponential calculat ions;  The or ig ina l  arguments a r e  

res tored by applying the  following equations as many times as 

required: 

- 
i , j  I 1J I 

- .  
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C( T) z exp (AT)  

= exp ($1 exp ($1 
(5.3) 

There a re  a l s o  provisions i n  the  code t o  keep t rack  of t h e  roundoff 

e r rors  i n  t h e  exponential calculat ions.  The maximum values of t h e  

l a rges t  elements i n  t h e  &pr matrices are monitored t o  make sure 

t h a t  they a re  not la rger  than t h e  specif ied precision "P" times 

10 

the  accuracy of the  summation w i l l  be approximately P, since t h e  

summation i s  car r ied  out u n t i l  t he  la rges t  element i n  &pr < P. If a 
8 maximum value of a Q," element does exceed P x 10 , then T i s  halved, 

t h e  exponential i s  calculated, and the  o r ig ina l  T i s  res tored as before. 

k! 

8 ( f o r  an eight-decimal computer). When the  QFT t e r m s  a r e  summed, 

Users are cautioned t h a t  roundoff e r rors  may become s igni f icant  

i f  res tora t ion  of t h e  o r ig ina l  T requires very many applications of 

t h e  argument doubling Eqs. 5.3 and 5.4. 
fo r  estimating t h i s  l imitation; however, checks made on sample problems 

indicate  a "safe'' boundary probably ex i s t s  at  a precision P = 10 

W e  know of  no general  ru les  

-6 and 

T halved 10 times. 

least be cautions about t he  r e su l t s .  

With a la rger  P and more halvings, one should at 

The f i d e l i t y  of t h e  r e s u l t s  a r e  a l s o  questionable whenever t h e  

r a t i o  of the la rges t  (absolute) matrix element t o  t h e  smallest 

(nonzero) element i s  > - 10 . T h i s  might be a manifestation of a very 

wide range of t i m e  constants i n  a dynamics problem. With a range of 
8 - 10 , c lea r ly  t h e  faster time constants could be considered 

"instantaneous" w i t h  respect t o  t h e  slower ones, and the  equations 

could probably be rewri t ten t o  get  around t h i s  problem. 

8 
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5.2 Detailed Description of Programs 

Column 1-2 
Format I2 

Input NE 

Hopefully the  information given i n  t h i s  sect ion i s  su f f i c i en t  t o  

permit t h e  reader t o  use and modify MATEXP. 

going through t h i s  t yp ica l ly  excruciating experience with programs 

from others, w e  have t r i e d  making things as c lear  as possible .  I n  

par t icu lar ,  w e  have used many comment cards i n  t h e  program l i s t i n g s  

as a running explanation of what we a r e  doing. Either author would 

be glad t o  t r y  t o  help out any po ten t i a l  MATMP user, and would be 

Since w e  have t r i e d  

6-7 11-20 21-30 31-40 41-50 51-60 61-62 
3X I2 3X F1O.O F1O.O F1O.O F1O.O F1O.O I2 
u P TZERO T TMAX PLTINC MATYES 

happy t o  receive any suggestions f o r  improving t h e  program. 

Col~mn 63-64 65-66 67-69 
Format I2 I2 I 3  
Input ICSS JFLAG ITMAX 

5.2.1 MATMP Main Program 

< I .  

70 71-72 73-74 75 -80 
I1 I2 I2  F6 .O 

LASTCC I l Z  ICONTR VAR 

The MATEXP program consis ts  of t h e  main program and two sub- 

rout ines  OUTPUT and DISTRE, plus any other subroutines ca l led  by 

DISTRB. Even i f  DISTRB i s  not used, a dummy must be included. 

For each case run on MATFXP, t h e  data w i l l  include ( i f  appropriate):  

1. MATMP Control Card, 

2 .  Coefficient matrix ( A ) ,  

3. I n i t i a l  Condition Vector ( X I C ) ,  

4. 
5. 

Any data  read i n  by subroutine DISTRB, 

Fixed forcing function vector ( Z ) .  

J 



NE = number of equations 

LL = coeff ic ient  matrix t a g  number 

P = precision of C and HP - recommend 10 

TZERO = zero t i m e  

T = computation t i m e  i n t e rva l  

TMAX = maximum t i m e  

PLTINC = pr in t ing  time in t e rva l  

MATYES = coeff ic ient  matrix (A)  control  f l a g  

-6 or less 

1 = use previous A and T 

2 = read new coeff ic ients  t o  alter A 

3 = read e n t i r e  new A (nonzero values) 

4 = DISTRB t o  calculate  e n t i r e  new A 

5 = read some, DISTRB t o  calculate  others 

6 = DISTRB t o  alter some A elements 

ICSS = i n i t i a l  condition vector ( X I C )  f l a g  

1 = read i n  a l l  new nonzero values 

2 = read new values t o  al ter previous vector 

3 = use previous vector 

4 = vector = 0 

5 = use last  value of X vector from previous run 

JFLAG = forcing function ( Z )  f l a g  

1 t h r u  4 = same as for  ICSS f o r  constant Z 

5 = c a l l  DISTRB at  each time s tep  for variable  Z 

1TMA.X = maximum number of terms i n  se r i e s  approximation of exp (AT) 
LASTCC = nonzero f o r  last case 
I1z = row of Z if only one nonzero, otherwise = 0 

ICONTR - fo r  i n t e r n a l  control  options 

0 = read new cont ro l  card fo r  next case 

1 = go t o  212 c a l l  DISTRB fo r  new A or T 

-1 = go t o  215 c a l l  DISTRB fo r  new i n i t i a l  conditions 

VAR = maximum allowable value of Largest coeff ic ient  matrix element * T 
(Recommend VAR = 1.0) 
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7-18 
I ' co i~mn 1-3 - 

Format I3  I3  E 12.3 Repeat, 

Input Row No. Col. No. COEFFICIENT 4 per card 

2 .  Coefficient Matrix A Format 4(213, E12.3) - Include i f  MATYES = 

Column 1-2 3-5 6-17 
Format I 2  I3  E 12.3 Repeat Cols . 3-17, 
Input MM Row No. I . C .  Value 5 per card 

Notes: 1. A l l  row and column number en t r i e s  on a card must 
be nonzero. 

2 .  I n s e r t  blank card after a l l  coef f ic ien t  matrix 
da ta  i s  read in .  

Data can be entered i n  f loa t ing  point (F) 
format with decimal point .  

3.  

4. Disturbance Vector Z Format (I2, 5(13, El2.3))- Include i f  

JFLAG = 1 or  2 

Repeat Cols . 3-17, 
Column 1-2 3-5 6-17 
Format I2 I 3  E12.3 Repeat Cols . 3-17, 
Input Kx Row No.  Z Value 5 per card 

Note: See notes under 3. 

Two f igures  are included t o  a i d  i n  understanding t h e  W M P  

program. Figure 5.1 summarizes t h e  da t a  arrangement, and Fig. 

5.2 i s  a flow diagram of t h e  main program. 

MATEXP are a l s o  l i s t e d  and ident i f ied .  

The symbols used i n  

' .  
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ORNL DWG. 67-10217 

'1 . 

-- 

FROY BOTTOM lllont 

JJFLAO.0 TO TOP 
FIO. APb mMP * PX IO# 

PRHT o#TRoc MT& 
RTINC PLTINCX.SS00 
N M  0 

Fig. 5.2a. MATMP Block Diagram- Read or Compute A Matrix and XIC Vector. 
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FIB. 5.20 

*I AL 8 1.0 

& De 16 KL = I, ITHAX 

TU SWLUENT 37 
K L U  K L  

ALL = T I A L  Fl6 5.2C 
* L a  A L + I  
TALLL * T / A L  
OPT 9 O P T I A * A U  

I I C * C+OPT 

tP HP+OPT+TALLL E? 
WK*ABS (QPTIIMAX, JYAXI I  

ORNL DWG. 67-1U218 

PRINT ISTQR 'i' 

Fig. 5.2b. MA- Block Diagram - Compute C and HP Matrices 
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JJFLAG I 
TINE - T I M W T  
PLT=PLT+T 

ORNL O W .  67-10219 

FROM RIGMT SIW 
FlQ 5.2b 

TXYE*TZERQ 
PLT’O 

. 

CALL OUTPUT 
I ST CALL 

lo-.;”.. 
29 

0. - Q TOO 

IRT- PLTINC) 

CALL OUTPUT 

ICONTR Lc).l 
PLT * 0 
K=K+I 
NX‘O 

fnw BQTtQy 
fIQ I.2b 

37 

Fig. 5 . 2 ~ .  MA= Block Diagram - Compute Solut ion Vector. 
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MATMP MAIN PROGRAM SYMBOL KEY 

1. 

2. 

3. 

Control Card Inputs 

See input data format l i s t .  

Input Data 

A( NE, NE) = coeff ic ient  matrix 

MM = i n i t i a l  condition vector t a g  number 

X I C  (NE) = i n i t i a l  condition vector 

KK = disturbance vector t a g  number 

Z(NE) = disturbance vector 

In t e rna l  Variables 

The following var iables  a re  l i s t e d  i n  a lphabet ical  order. 

A D T = A M A X * T  

AL = Floating point KLM f o r  ALL calc, Ki3B-l fo r  TALLL 

ALL = T/AL with AL = KLM 

AMAX A M a x i m u m  (absolute) value of element i n  A matrix 

AMIN = Minimum (absolute) value of nonzero element i n  A matrix 

C( NE,NE) = Coefficient matrix exponential 

HP( NE,NE) = Disturbance function matrix exponential 

IMAX = Row locat ion of AMAX 
I M I N  = Row locat ion of AMIN 

ISTOR = Number of times matrix exponential argument T i s  

JFK = Number of times T i s  halved i n  order f o r  matrix exponential 

JJFLAG = Fiag t o  prevent double c a l l  of DISTRB during i n i t i a l  

JMAX = Column locat ion of AMAX 

J M I N  = Column locat ion of AMIN 

K = Case number 

KLM = Number of terms i n  se r i e s  approximations of exponentials 

N I  = Print ing f lag:  0 on i n i t i a l  c a l l  of OUTPUT causing pr intout  

PE = Maximum element i n . ( g  - 1 ) t h  QFT term 

pMK =Maximum element i n  - nth  &pr term 

halved so t h a t  AMAX * TOAR; later ISTOR = ISTOR + JFK 

calculat ion precision t o  be P o r  be t t e r  

time s tep  calculat ion 

of A, C, and HP matrices. OUTPUT sets N I  = 1 on first  c a l l .  
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QFT(Nl3,NE) = Term i n  se r i e s  approximation of C matrix 

GapTMp = Maximum permissible value of element i n  QPT matrix. 

RATIO = =/AMIN. 8 I f  RATIO less than  10 

machine) there  may be s ignif icant  problems i n  

calculat ion of C and HP. 

( f o r  e ight  decimal 

TALLL = T/AL with AL = KLM +1 
TQ,P(NE) = Temporary storage f o r  QPT terms 

X(NE) = Solution vector 

Y(NE) = Temporary storage fo r  X 

5.2.2 Subroutine OUTPUT 

The first t i m e  MATEXP c a l l s  OUTPUT, t h e  coef f ic ien t  matrix ( A )  

and t h e  exponential matrices C and HP are pr inted out, along with t h e  

_ in i t ia l  solut ion ( X )  and disturbance ( Z )  vectors.  OUTPUT a l s o  sets 

the  first c a l l  f l a g  ( N I )  t o  1, and on subsequent c a l l s  only the  X 

and Z vectors are pr inted.  

time at  the  expense of storage would be t o  s to re  X (and Z) values 

i n  arrays f o r  a large number of time in t e rva l s ,_ then -p r in t  t h e  

a r rays  out i n  blocks. Additional savings could be achieved by 

p r in t ing  only selected var iables .  

A possible means of saving computing 

5.2.3 Subroutine DISTRB 

Subroutine DISTRB may be ca l led  by MATEXP e i the r  t o  compute 

matrix coef f ic ien ts  (A)  on t h e  first c a l l  ( i . e .  when f l a g  N I  = 0)  

and/or compute var iab le  forcing-function vectors ( Z )  . 
Other spec ia l  purpose subroutines, such as VARCO, D E ,  TRIG, 

and any others  the user may want t o  supply, are usually ca l led  by 

DISTFB . 
Another spec ia l  purpose use of DISTRB i s  t o  compute inputs 

fo r  -successive MAT= cases without requiring a control  card f o r  

each case. 

t h e  control  card) .  

rese t  t o  0, and case number K i s  increased by 1; then i f  ICONTR 

This i s  done by means of t h e  flag ICONTR (Cols. 73-4 on 

After a case i s  run, the  first c a l l  f l a g  N I  i s  

' .  

i s  posit ive,  DISTRB w i l l  be ca l led  at statement 212, where a new 
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coeff ic ient  matrix A or  t i m e  i n t e r v a l T  may be calculated.  

ICONTR i s  negative, DISTRB i s  ca l led  at statement 215, permitting 

new i n i t i a l  conditions t o  be used. 

If 

The program l i s t i n g  f o r  DISTRB that  w a s  used i n  calculat ing t h e  

sinusoidal forcing function fo r  t h e  example i n  Sect.  3.3 
i n  Sect.  5.3. 

i s  given 

Another version of DISTRB i s  used t o  ca lcu la te  t he  sens i t i v i ty  

of a system's t i m e  response t o  changes i n  t h e  system's coeff ic ient  

matrix elements 

DISTRB controls  t h e  solut ion of t h e  system equations and s to re s  

those values of t h e  solut ion vector which are t o  be used subsequently 

as forcing f'unct ions f o r  t h e  s e n s i t i v i t y  calculat ions.  

the  sens i t i v i ty  t o  a 

i s  stored and i s  later used as a forcing function t o  t h e  ith row of 

the  same system equations. 

To compute 

t h e  jth row of t h e  system solut ion vector i j '  

1-5 

After solving t h e  system equations and s tor ing  the  required 

elements of t h e  response vector, t h e  ari thmetic average values of 

t h e  X's i n  each time i n t e r v a l  a r e  calculated and stored (XT) .  

During each sens i t i v i ty  run, DISTRB feeds the forcing function 

i n t o  t h e  system equations, and t h e  r e su l t i ng  pr intouts  of t h e  X 

vectors are the  desired s e n s i t i v i t i e s .  

For t h e  sample program shown i n  t h e  Fortran listing, Sect.  5.3, 
t he  system i s  forced by a u n i t  s tep  input i n  row I1Z (specif ied on 

the  control  card) .  Other control  card inputs are: 

ICONTR = 1 

Special  input da ta  read i n  by DISTRB are the  row ( IS )  and column 

( JS)  numbers of t h e  matrix elements fo r  which s e n s i t i v i t i e s  a re  t o  

be calculated, t h e  number of time points  (NTS), and t h e  number of 

s ens i t i v i ty  runs ( NSENS), as follows: 
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1 11 51 
(IS(1) I JS(1) I ( 4 X )  I IS(2)  JS(2) I (4X) j -  ... t h r u  JS(5) INTI 1 NSENS] 

13 I3 13 13 13 T3 

5.2.4 Subroutine VARCO 

The VARCO (VARiable Coefficient)  subroutine can be used w i t h  

DISTRB t o  simplify t h e  programming of problems w i t h  var iable  coef f ic ien t  

matrix elements. I n  general, these elements a r e  functions of both 

time and the  values of t h e  solut ion vector X.  

ca l led  by DISTRB at t h e  start of each computation i n t e r v a l  and t o  

re turn  t h e  mean values of time (TX), and X, (XTR),  f o r  that i n t e r v a l .  

The mean values of X a r e  predicted by a f i r s t  order extrapolat ion 

scheme, as shown i n  Fig. 3. VARCO w i l l  a l s o  cause t h e  i n i t i a l  time 

s tep  t o  be repeated, using the  first t r y  a t  calculat ing X(T) t o  

estimate t h e  mean value at - DISTRB can then ca lcu la te  t h e  

coef f ic ien t  values using TX and XTR. Use of t h i s  f i r s t -o rde r  

extrapolat ion scheme r e s u l t s  i n  s ign i f icant  improvement i n  accuracy 

over using no extrapolation. 

VARCO i s  designed t o  be 

T 
2 '  

5.2.5 Subroutine DFG 

DFG uses the  pr inc ip le  of the  analog computer's Diode Function 

- Generator ( see  Fig. 4) and uses l i n e a r  in te rpola t ion  t o  approximate 

a rb i t ra ry ,  single-valued functions of a var iable .  Data f o r  DFG i s  

read i n  the  first t ime it i s  ca l led  by DISTRB (i .e ., when N I  = 0 ) .  

The standard program provides f o r  up t o  8 functions with up t o  32 

coordinates each. 

- - 

On each successive c a l l ,  DFG re turns  t h e  functions ZD f o r  

varying inputs XD. 

limits, t h e  output i s  a s t ra ight - l ine  approximation of ZD(1) based 

on t h e  slope of t h e  function a t  t h e  boundary, and an e r r o r  message 

"DFG(1)  RANGE EXCEEDED" i s  pr inted.  

The inputs read i n  by DFG are:  

If an input XD(1) goes outside t h e  spec i f ied  

NDIGS Number of functions used 

NFTS(8) Number of points  i n  approximation f o r  each function 
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Column 1-2 

Format I 2  

Variable NDFGS 

XP( 32,8) Independent var iable  points  

ZP( 32,8) Dependent var iable  points  

11-13 

NPTS ( 1) 

Repeat Cols, 11-13 
7 more times fo r  8x I 3  
NpTS(2) t o  (7)  

The input format i s  as follows: 

Column 1-10 11-20 21-30 31-40 

Format ~ 1 0 . 3  E10.3 E10.3 E10.3 

Variable XP( 1,l) ZP( 1,l) XP(2,l) zP( 2,l 

Card No, 1 (12, 8X, 813) 

.. Repeat as required 
f o r  DFG( 1) ; Max. 
8 numbers per card 

5.2.6 Subroutine TRLG 

TRLG (TRansport - - -  LaG) i s  described i n  some d e t a i l  i n  Sect .  3.5. 
The input functions XT (e.g. f l u i d  temperature) and t h e  mass flowrates 

W ( i n  terms of e i t h e r  mass/time, uni ty  for  f u l l  flow, or  some 

percentage of f u l l  scale)  a r e  supplied by t h e  ca l l i ng  program DISTRB, 

and t h e  lagged functions ZT a re  returned by TRIG. On the  f i r s t  c a l l  

of TRLG (when N I  = 0) ,  t h e  following input da ta  i s  read in: 

NLAGS Number of functions used 

 TI(^) 
~ ( 6 )  

I n i t i a l  value of t ransport  l ag  time for each function 

Minimum expected value of mass flow W f o r  each function 

The program i s  set up assuming t h a t  subroutine VARCO i s  a l so  

ca l led  by DISTRB. 

i n i t i a l  t i m e  s tep  calculation; thus t h e  TRLG functions w i l l  not be 

updated on the  second c a l l .  If VARCO i s  not used, t h i s  second c a l l  

VARCO has a r e s t a r t  feature which repeats  t h e  
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omission may be deleted by removing statement 33 i n  t h e  TRLG program. 

The input format fo r  TRLG is: 

Card No. 1 (12) 

I Column I 1-2 I 
I2 I 

Variable I NLUS 

Card No. 2 ( 6 ~ 1 0 . 3 )  

Repeat 5 more 
times for  
T I @ )  - (6) 

Card No. 3 (6E10.3) 

I Repeat 5 more Column 1-10 
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5.3 FORTRAN L I S T I N G  O F  PROGRAMS 
\ 

S I B F T C  M A I N  DECK 
C PROGRAM MATEXP FOR THE 7 0 9 0  - FORTRAN 4 
C 
C T H I S  PROGRAR C A L C U L A T E S  THE S O L U T I O N  OF A M A T R I X  O F  F I R S T  
C ORDER, S I M U L T A N E O U S  D I F F E R E N T I A L  E Q U A T I O N S  W /  CONSTANT C O E F F I C I E N T S  
C O F  THE FORM D X / D T  # AX + Z s  
C 
C THE METHOD I S  PAYNTER-S M A T R I X  E X P O N E N T I A L  METHOD 
C 
c T H E  S O L U T I O N  I S  G I V E N  FOR I N C R E M E N T S  OF T H E  I N D E P E N D E N T  
c V A R I A E L E  ( T I  FROM TZERO THROUGH TMAX 
C 
C COMPUTES M A T R I C E S  C # E X P ( A * T )  AND 
C H P  # ( C - I ) * A  I N V E R S E  
C S O L U T I O N  X ( N * T )  # C * X (  (N - I  I * T ) + H P * Z (  ( N - l  ) * T I  
C S E R I E S  C A L C U L A T I O N  OF C AND HP M O N I T O R E D  T C  
c ASSURE S P E C I F I E D  S I G N I F I C A N C E .  
C I F  T I S  REDUCED FOR C AND HP CALCS.9 

. c  CRIGINAL A F G U ~ M E N T S  A R E  RESTOREG B Y  - 
C c ( ~ * T ) # c ( T ) * c ( T )  
: C HP(2*T)#HP(T)+C(T)*HP(TI 

* c  
- c  OUTPUT FROM T H E  PROGRAM I S  P R I N T E D  A T  l N T E R V A L S  P L T I N C .  

- C  T H E  PROGRAM U S E S  S U B R O U T I N E S  D I S T R B  AND OUTPUT 
C 
C I N P U T  FOR THE PROGRAM C O N S I S T S  OF 
C ONE CONTROL CARD 
C T H E  C O E F F I C I E N T  M A T R I X  A ( U P  TO 6 0  X 6 0 )  
C T H E  I N I T I A L  C O N D I T I O N  VECTOR X 
c A F I X E D  D I S T U R B A N C E  VECTOR z 
C 
C A V A R Y I N G  Z CAM B E  GENERATED BY D I S T R B  
C V A R I A B L E  C O E F F I C I E N T  E Q U A T I O N S  MAY B E  S O L V E D  BY A P P R O P R I A T E  
c F U D G I N G  O F  THE DISTURBANCE F U N C T I O N  SUBROUTINE.  
C 

C NE#NO. O F  E Q U A T I O N S  ( 1 2 )  

C P # P R E C I S I O N  O F  C AND H P  ( F l O . 0 )  - RECOMMEND I o O E - 6  OR L E S S  
C TZEROAEZERC: T I M E  (F10 .0 )  
C T # C O M P U T A T I O N  T I M E  I N T E R V A L  (F10.0)  
C TMAX#M AX I VUPA T I ME ( F I 0 0 1 
C P L T I N C #P R I M T I N G 
C MATYESBCOEFF. M A T R I X  ( A )  CONTROL F L A G  ( 1 2 )  

CONTROL CARD I N P U T  I N F O R M A T I O N  

C L L # C O E F F .  M A T R I X  T A G  NO. ( 1 2 )  

T I ME I N T E R V A L  ( F I 0 0 1 

. c  I # U S E  P R E V I O U S  A AND T 
- c  2#READ NEW C0EFF.S TO A L T E R  A 
- c  3#READ E N T I R E  NEW A (NON-ZERO V A L U E S )  

- c  5#READ SOME, D I S T R B  T O  CALC. OTHERS 
. c  6AEDISTRB TO A L T E R  SOME A ELEMENTS 

C I C S S # I N I T I A L  C O N D I T I O N  VECTOR ( X I C )  F L A G  ( 1 2 )  
c I # R E A D  I N  A L L  NEW NON-ZERO V A L U E S  
C 2#READ NEW V A L U E S  TO A L T E R  P R E V I C U S  VECTOR 
C 3 # U S E  P R E V I O U S  VECTGR 
C 4#VEC'TOF?jHO 

. c  4AEDISTRB TC: CALC. E N T I R E  NEW A 

D I M  
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C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 

C 

C 
C 
C 

C 

$#USE L A S T  VALUE OF X VECTOR FROM P R E V I O U S  RUN 

I THRU 4#SAbtE AS FOR I C S S  FOR CONSTANT 2 
5 # C A L L  C I S T R B  AT EACH T I I 4 E  S T E P  FOR V A R I A B L E  Z 

J F L A G # F O R C I N G  F U N C T I O N  ( 2 )  F L A G  ( 1 2 )  

I T P , A X  8 MAX,  N e e  5 F  TER”4Z I F !  S E R I E S  APPRDX. 
OF E X P ( A T ) ,  ( 1 3 )  

L A S T C C  # N O N - Z E R 3  FOR L A S T  CASE ( 1 1 )  
I I Z  # ROW NO. OF 2 I F  ONLY CNE NOI‘J-ZERO, 

ICONTR - F 3 R  I N T E R N A L  CONTROL C P T I O N S  ( 1 2 )  
OTHERWISE # o  ( 1 2 )  

O#P,CAD NEW CQF!TROL CAPD FCR NEXT C A S E  
l # G O  TO 2 1 2  CALL Z I S T R B  FCR NEW A OR T 

- I # G O  T O  215 C A L L  C I S T R B  F C R  PJEW 1.C.-S 
VAR # MAX.  ALLOWACLE VALUE OF LARGEST CCEFFe M A T R I X  ELEMENT * T 
(RECOMMEND V A R # I . 0 )  ( F 6 . 0 )  

KHCASE NUF4BER 

K #  I 
N I b O  

N I # O  ON I - S T  PASS. SET T O  I CN I - S T  C A L L  OF OUTPUT. 

I READ ( 5 , 1 0 0 )  N E , L L , P , T Z E R O , T , T M A X , P L T I N C , M A T Y E S , I C S S ,  
1 J F L  AG I TMAX L A S T C C  I I Z 9 I CONTR ,VAR 

100 F O R M A T ( 2 ( 1 2 , 3 X )  , 5 F 1 O . O ~ 3 I 2 ~ 1 3 ~ 1 1 ~ 2 1 2 , F 6 ~ C )  
C 
C C O E F F I C I E N T  M A T R I X  I N P U T  

GO TO ( 3 , 9 9 , 2 , 2 , 2 , 3 ) , M A T Y E S  
2 DO 9 0  I # I , N E  

DO 9n J # I , N E  

I F ( M A T Y E S - 4 ) 9 9 , 3 , 9 9  
9 0  A ( I , J ) # O * O  

9 9  DO 91 I # 1 , 1 3 7 9  
C M A T R I X  ELEMENTS 5 (P.CW, COLUMN, V A L U E )  
C A L L  I AND J E N T R I E S  3N CARD MUST BE NON-ZERO. 
C A BLANK CARD I S  R E G U I R E D  AFTER ALL ELEMENTS ARE READ I N .  

READ ( 5 , 1 0 1 )  I I , J I  ~ D I , I Z ~ J 2 , D Z t I 3 ~ J 3 , D 3 ~ 1 4 ~ J 4 , D 4  

I F (  I 1  1 3 , 3 9 9 2  
9 2  A( I . I ,J I  ) # @ I  

A (  I 2 . 9 J 2 ) # 0 ?  
A t 9 I 3 , J 3 ’ + ) B D 3  

I O 1  FORMAT ( 4 ( 2 1 3 , € 1 2 . 3 ) )  

91 A ( 1 4 r J A g D 4  r 4  

c 
c INITIAL’ CCNDITION V E C T ~ R  XIC INPUT 

3 G O  T O ( 4 , 1 2 0 , 6 , 5 , 6 ! , I C S S  
4 00 9 3  I#I,bJEt 

9 3  X I C (  I ) # O e O  

120 co  9 4  I # I , l S  
C A L L  ROW ( I 1  EFdTRIES MUST B E  NON-ZERO 
c A BLANK CARD I S  R E Q U I X E D  AFTER ALL ELEMENTS AEE READ I N .  

READ ( 5 9 9 5 )  “M,I I I , D l  I ,I 1 2 9 D 1 2 , I  l 3 9 C l 3 9 I  1 4 r D 1 4 , I  l 5 9 \ D l 5  
9 5  FORMAT(  1 2 , 5 ( 1 3 , E I 2 . 3 ! )  
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I F  (I I 1 1 6 , 6 9 9 6  
1 9 6  X I C ( I l l ) # D l l  

X I C ( I 1 2 ~ # D I 2  
X I C ( I l 3 ) # D 1 3  
X I C ( I 1 4 ) # D 1 4  

9 4  x I c ( I 1 5 ~ # n 1 5  
C 

5 MM#O 

7 X I O ( I ) # O . O  
6 ~ F ( I C S S - 5 ) 8 1 ~ 2 1 4 ~ 8 1  

8 1  DO 8 2  I # I , N E  
8 2  X ( I ) # X I C ( I )  

2 1 4  I F ( M A T Y E S - 3 ! 2 1 3 , 2 1 3 , 2 1 2  
2 1 2  C A L L  D I S T R B  
2 1 3  J J F L A G # O  

DO 7 I # I , N E  

c CPTMP # MAX.  P E R M I S S I B L E  ELEMENT OF QPT FOR 8 D E C I M A L  COMPUTER 
c M A T R I X  C A L C .  LOSES S I G N I F I C A N C E  I F  LARGEST 
i ELEMENT I N  S E R I E S  APPROX. M A T R I X  QPT I S  
c GREATER THAN P * I * C E 8  

C 
QPTMP#P*  I eOE8 

W R I T E  ( 6 , 2 1 1 )  K ,NE ,P ,T 9 
* .  

I P L T I N C , M ~ T Y E S , I C S S , J F L A G , I C O N T R , I T M A X , I l Z ~ V A R , ~ Q P T ~ ~ P  
* .  c 

2 1 1 ~ F O R M A T ( 1 2 H I M A T E X P  C A S E , I 3 / 1 7 H  NO. OF EQUATIONS,  . .  
l I 3 / 2 0 H  S P E C I F I E D  P R E C I S I O N , F 1 2 . 8 / 6 H  T I M E  9 

2 8 H I N T E R V A L , F 1 8 . 8 / 1 5 H  P L O T  I N C R E M E N T , F 1 7 . 8 / /  
3 1 6 H  CONTROL F L A G S  - / I H  , 5 X , 6 H M A T Y E S , 1 4 / I H  9 

4 5 X , 4 H I C S S , I 6 / I H  , 5 X , 5 H J F L A G , I 5 / 1 H  9 5 X , 6 H I C O N T R , I 4 /  
534HOMAXo TERMS I N  E X P O N E N T I A L  APPROX. , I5 /  
6 1 3 H  S I N G L E  2 R O W , I 4 / 2 0 H  M A X .  ALLOWABLE A*DT,F9.3/  
7 2 7 H  V A X c  ALLOWABLE QPT E L E M E N T v F I  1 . 3 )  

C 

C 

\ 
P L T I N C # P C T I N C * 0 . 9 9 9 9  

J F K # O  
I F ( M A T Y E S - 1 ) 2 0 , 2 0 , 8 0 6  

C SCAN M A T R I X  FOR MAX. AND M I N e  N9N-ZERO ELEMENTS. 
8 0 6  I M A X # I  

J M A X #  1 
AMAX#ABS ( A ( 1 9 1 ) )  

DO 401 I # 1  ,NE 
DO 4 0 1  J # I , N E  
I F ( A P I A X - A B S  ( A ( I s J ) ) ) 4 0 2 , 4 0 1  , 4 0 1  

f MAX# I 
J M A X h ' J  

I M I  N # I  M A X  
JM I N#JMAX 
A M I  NALAMAX 

4 0 2  AMAX#ABS ( A ( I , J ) )  

4 0 1  C O N T I N U E  

: DO 4C19 I # I , N E  
1 DO 409 J# l  ,NE 
1. I F ( A ( I , J ) )  4 0 7 ~ 4 1 - 1 9 9 4 0 7  

407 I F ( A B S  ( A ( I , J ) ) - A M I N )  4 0 8 , 4 0 9 , 4 0 9  
4 0 8  A M I N # A B S  ( A ( I , J I )  

I M I N # I  
J M I N # J  



-46- 

409 C O N T I N U E  
R A T I D # A M A X / A M I N  

I STOR#O 
ADT#AMAX*T 
DO 403 I # l , l l  
I F  (VAR-ADT 4 13,4049404 

413 I S T O R # I S T O R + I  

C AM1P.I # M I N I M U M  NON-ZERD ELEMENT 

403 ADT#ADT*O.S 
404 T#ADT/AMAX 

C C O M P U T A T I O N  I N T E R V A L  T I S  H A L V E D  I S T O R  
C T I M E S  ( I O # M A X . )  SO MAX. ELEMENT I N  A * T  
c I S  L E S S  THAN VAR. 

W R I T E  ( 6 9 4 0 5 )  I M A X  9 JMAX ,A ( I MAX, JMAX 1 ,ADT ,T 9 

I I M I N , J M I N , A (  I M I N , J M I N I  , R A T I O  

I E 1 5 . 4 / 1 3 H  MAX. A*DT # , F 1 2 . 8 , 2 X 9 1 4 H W I T H  D E L T A  T #,F15.8/ 
2 3 0 H O M I N I M U M  NON-ZERO ELEMENT # A (  12, IH ,  I 2 9 3 H 1  #,E 15.41 
318H R A T I O  A M A X / A M I N  # 9 E 1 5 . 4 )  

405 F3RMAT (3 IHOMAX.COEFF.  M A T R I X  ELEMENT # A (  9 1 2 9 1 H , 9 1 2 9 3 H )  #!9 

C 
I F ( I S T O R - 1 0 1 8 , 4 1 0 , 4 1 O  

410 W R I T E  ( 6 , 4 1 1 )  
4 1 I o F O R M A T ( 3 4 H O A * D T  S T I L L  GREATER THAN ALLOWABLE,  

119H A F T E R  I O  H A L V I N G S . )  
GO TO 37  

c C A L C U L A T I O N  O F  M A T R l X  E X P O N E N T I A L S  C AND HP 
8 DO 9 I # I , N E  

DO 9 J # l  9 N E  

9 C ( I 9 J ) # O *  
C 

DO 10 I # I , N E  
I O  C ( I , I ) # I .  

C 
C SKIP HP CALCS. FOR HOMOGENEOUS EQUATIONS 

I F  ( J F L A G - 4 ) 4 8 , 5 1 , 4 8  
48 DO 49 I # l , N E  

DO 49 J # l  ,NE 
49 H P ( I , J ) # O .  

C 
DO 50 I # I , N E  

5 0  H P ( I , I ) # T  
C 

C 
51 PE#IY.O 

DO I I  1 6 1 , N E .  
DO I I  J # I , N E  

I I  Q P T ( I , J ) # C ( I , J )  
C 
c NOW FORM T H E  M A T R I X  E X P O N E N T I A L S  C # E X P ( A * T )  AND H P # ( ( C - I ) * A  I N V E R S E )  
F 
c 

AL# l .O  
? 
i 

12 DO 16 K L # l , I T M A X  
F 
c 

K L M # K L  
A L L # T / A L  

T A L  L L # T / A L  
A L # A L +  I m a  

r 
c 



. 
DO 18 I # I , N E  

C 
C 

% 

DC 13 J # I , N E  
TQP ( J 1 #O 0 
DO 13 K X # I , N E  

1 3  T Q P ( J ) # T Q P ( J ) + Q P T ( I , K X ) * A ( K X , J )  
C 

DO 18 J # l , N E  
1 8  Q P T ( I 9 J ) # T Q P ( J ) * A L L  

C 
C Q P T g M A T R I X  TERM I N  S E R I E S  APPROX. # ( ( A " T ) * * K ) / K  F A C T O R I A L  
C 

DO 44 I # l , N E  
DO 44 J # I  ,NE 

44 C ( I , J ) # C ( I I J ) + Q P T ( I ~ J )  
C 

C 
I F  ( J F L A G - 4 ) 4 5 9 4 7 , 4 5  

4 5  I F ( I T M A X - K L ) 4 7 , 4 7 , 1 4 5  
1 4 5  DO 46 I # l , N E  

D 3  46 J # I , N E  
46 H P (  I , J ) X t H P (  I , J ) + Q P T (  19J)"TALLL 

' C  
C 

- c  
- C F I N D  M A X  ABS ELEMENT I N  QPT AND C A L L  I T  PMK 

C LARGEST QPT ELEMENT USUALLY I N  ROW I M A X ,  COLUMN JMAX 
47 PMK#ABS ( Q P T  ( I M A X  9 J M A X  1 1 

I F ( QP T M P - P M K 1 8 3 9 8 3 9 5 0 2 
5 0 2  I F ( P b 1 K - P )  4 0 6 , 4 0 6 , 1 6  

4 0 6  DO 14 I # I , N E  
DO 14 J # I , N E  

I F ( P M K - P )  17,17916 

C SCAN OTHER QPT ELEMENTS ONLY WHEN Q P T ( I M A X ,  J M A X )  I S  L E S S  THAN P 

14 P M K # A M A X I ( P M K , A B S  ( Q P T ( i 9 J ) ) )  

C 
C PRESENT MAX. QPT ELEVENT SYOULD BE L E S S  THAN 
C H A L F  P R E V I O U S  MAX.  T O  I N S U R E  CONVERGENCE 

17 I F ( P E - ~ . * P M K ) I ~ ~ Z ~ ~ J ~ I  
16 PE#PMK 

C 

C 

C 

21 W R I T E  ( 6 9 2 0 0 )  KLM 

2 0 0  FORMAT(44HONO.  OF TERMS I N  S E R I E S  APPROX. OF MATEXP # , 1 2 1  

I F ( I T M A  X-  I ) 2 0 9 2 0 9 5 3 8  
I F ( KLM- I T h1AX 1 5 38 4 I 4 9 8 3 9 8 3 

C 
8 3  T # T * Q . 5  

J F K # J F K +  I 
I F ( J F K - 7 ) 3 0 3 9 3 0 4 , 3 0 4  

3 0 4  WRITE ( 6 9 3 0 5 )  PMK 
3 0 5  O F O R M A T ( 3 2 H 0 7  T R I E S  A T  HALVIP IG T N.G.9 P M K # , F 1 2 . 6 )  

GO T O  3 7  
3 0 3  W R I T E  ( 6 9 2 1 0 )  KLMpPMKqT 
2 1 0  FORMAT(21HOMAX.  ELEMENT I N  T E R M 9 1 3 9 8 H O F  QFT # 9 E I I * 3 /  

I 3 5 H  TRY H A L V E D  T I M E  I N T E R V A L  D E L T A  T # 9 F i 5 . 8 )  
G O  TO 8 
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. 
414 ISTOR#ISTOR+JFK 

C O R I G I N A L  ARGUMENTS OF C AND HP MATRICES RESTORED I F  ISTOR GREATER THAN 0 , 
I F ( 1 S T O R )  2 0 9 2 0 9 4 1 0  

4 1 6  WRITE ( 6 9 4 1 5 )  I STOR 
4 1 5  FORMAT(26HOTOTAL NC. OF T HALVINGS # , I 3 1  

DO 417 K R # I , I S T O R  
I F ( J F L A G - 4 )  4 1 9 9 4 1 8 9 4 1 9  

C S K I P  HP CALCS. FCR HOMOGENEOUS EQUATIONS 
4 1 9  DO 4 2 0  I # I , N E  

DO 4 2  I J # l  ,NE 
TQP(J)#O.O 
DO 4 2  I K X # I  ,NE 

DO 4 2 0  J # I , N E  
4 2 1  TQP(J)6TQP(J)+HP(I9KX)*C(KX,J) 

4 2 0  H P ( I , J ) # T Q P ( J ) + H P ( I , J )  

4 1 8  D3 4 3 0  I N I , N E  
DO 4 3 0  J # l  , N E  

DC 4 3 1  I # I , N E  
DO 4 3 1  J# I  ,NE 
DC 4 3 1  K X # l  ,NE 

DO 4 3 2  I 6 1 9 N E  
DO 4 3 2  J # I , N E  

C 

4 3 0  O P T ( I 9 J ) ? Y O . O  

4 3 1  QPT(I,J)#QPT(I,J)+C(I,KX)*C(KX,J) 

4 3 2  C ( I , J ) # Q P T ( I , J )  
417 T#Z.O*T 

C 
C C ( I 9 J )  I S  THE M A T R I X  EXPONENTIAL  C # E X P ( A * T )  
C AND H P ( I 9 J )  I S  THE ( ( C - I ) * A  I N V E R S E )  MATRIX  
C NOW WE READ ( O R  CALL  SUBROUTINE FOR)  DISTURBANCE VECTOR 
C 

2 0  T I  M E # T Z E R O  
PLT#O. 
GO TO ( 2 6 9 1 2 1  ~ 2 7 , 2 5 9 5 5 1 , J F L A G  

5 5  I F ( M A T Y E S - 3 ) 2 1 5 , 2 1 5 9 2 7  
2 1 5  C A L L  D I S T R B  

I I Z H I  I Z  
G O  T(> 2 7  

C 
2 6  DO 97 IXrI,NE 
97 Z ( 1 ) S O . C  

1 2 1  DO 9 8  I f f 1 9 1 5  

C A L L  ROW ( I ) E N T R I E S  P.1UST BE NCN-ZERO 
C A BLANI< CARD I S  REQUIRED AFTER A L L  ELEMENTS ARE READ I N .  

READ ( 5 9 9 5 )  K K , I 2 1 , D 2 1 , 1 2 2 ~ D 2 2 , 1 2 3 ~ D 2 3 ~ 1 2 4 ~ D 2 4 ~ 1 2 5 ~ D 2 5  
I F ( I 2 1 ) 2 7 9 2 7 , 7 8  

7 8  

9 8  
c 

2 5  

2 8  
C 
c 

27  

KKXO 
Cc! 2 8  I # ! , N E  
i (  I ) # O .  

ON I - S T  C A L L  OF OUTPUT N I  SET T O  I 
C A L L  9UTPUT 
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C 
C NOW COMES THE EQUATICN SCLUTION BASED ON 

C 
C x ( N T ) # M ~ x ( N T - I ) + ( ( ~ - I ) A  I ~ . ) + ~ N T - I )  

2 4  I F  ( J F L A G - 4 ) 2 9 9 5 4 9 5 6  
5 4  DO 5 3  I # l , N E  

Y (  I ) # C (  I,I)*X(I) 
DO 5 3  J # 2 9 N E  

I F ( I I Z ) 5 2 , 5 2 9 7 0 2  
5 3  Y ( I ) # Y ( I ) + C ( I 9 J ) * X ( J )  

5 6  I F ( J J F L A G ) 3 0 9 2 9 9 3 0  
3 0  C A L L  D I S T R B  
2 9  I F ( 1 1 2 ) 7 0 0 ~ 7 0 0 ~ 5 4  

C O N L Y  ONE Z-TERM C A L C .  I F  I I Z  I S  GREATER THAN ZERO 
7 0 2  DO 7 0 3  I # I , N E  
7 0 3  Y(I)#Y(I)+HP(I~IIZ)*Z(IIZ) 

GO TO 5 2  
700 DO 3 2  I # I , N E  

Y ~ I ~ # C ~ I ~ l ) * X ~ l ~ + H P ~ I ~ l ~ * Z ~  I )  
DO 3 2  J I 2 9 N E  

3 2  Y ( I ) # Y ( I ) + C ( I , J ) * X ( J ) + H P ( I , J ) 9 Z ( J )  
5 2  DO 3 1  I # I , N E  
31 X (  I ) # Y (  I) 

. c  / 

. -  C ONE T I M E  INCREMENT O F  THE SOLUTION HAS JUST BEEN FOUND 
C NOW PLOT AND P R I N T  I F  P L T l N C  INTERVAL HAS ELAPSED 
C 

J J F L A G #  I 
TIME#TIME+T 
PLT#PLT+T 

3 3  C A L L  OUTPUT 

3 5  I F  (T IME-TMAX 1 2 4 , 3 7 9 3 7  

3 4  K # K + I  

I F ( P L T - P L T I N C ) 3 5 9 3 3 9 3 3  

PLT#O. 

3 7  I F ( L A S T C C ) 4 0 , 3 4 , 4 0  

N I # O  
P L T # I I * O  
I F  ( ICONTR 12 I5 9 I 92  I 2  

END 
40 STOP 
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S I B F T C  SUB2 DECK 
7 SUBROUTINE D I S T R B  

S I B F T C  DSENS DECK 

i D I S T R B  FOR T I M E  RESPONSE S E N S I T I V I T Y  CALCS. 
SUBROUTINE D I S T R B  

DIMENSION A ( 6 0 , 6 O ) ~ C ( 6 0 , 6 0 ) , H P ( 6 0 , 6 0 ) , Q P T ( 6 0 , 6 U ~ ,  

COMMON 
I X ( ~ O ) , Y ( ~ O ) , Z ( ~ ~ ) J X I C ( ~ O ) , T Q P ( ~ O )  

C 9 HP ,A 9QPT ,X ,Z r Y  9 I T M A X  ,KK 9 LL ,MM, 
I J J F L A G , X I C , N I , T I M E , T M A X , T Z E R O , N E , T Q P , T ,  
2 I I Z , I C O N T R , P L T I N C , M A T Y E S , I C S S , J F L A G , P L T  

I X S E N (  1 5 9 3 0 )  , X P S I ( 3 0 )  
D IMENSION I R ( 5 ) , I S ( I 5 ) , J S ( 1 5 ) , I Q ( 3 ~ ~ ~ X T ~ 5 , l G O O ) ,  

I F ( N 1 ) I ~ I ~ Z  
I I F ( I C O N T R + 2 ) 5 , 4 , 3  
2 I F ( I C O N T R + 2 ) 7 , 6 , 6  

C I N I T I A L  INPUTS AND CALCS. 
3 R E A D ( 5 , I O O )  ( I S (  I , J S ( I  , I # i , 5 )  ,NTI,NSENS 
100 F O R M A T ( 6 ( 2 1 3 , 4 X )  1 

N D T # I  
I CONTR#-2 
NT I MO#N T I - 1 
DO 8 I # I , N E  

8 Z ( I ) # O o O  
C DURING S0LUTIC)N OF SYSTEM EQUATIONS 

6 DC 2Cl I # I , M S E N S  
I C O # J S (  I) 

20 XT(I,NDT)#X(ICO) 
NDT#NDT+ I 
GO TO 3 0  

C 
C JUST AFTER SYSTEM SOLUTION I S  CONPLETED 

4 I S T # @  
I CCNTR#-3 
DO 21 I # I , N S E N S  
DO 2 1  J # I , N T I M O  

21 XT(I,J)#Oo5*(XT(I,J)+XT(I,J+I)) 
.- c X T  # A V G  VALUES OF S E N S I T I V I T Y  EQN I N P U T S  

W R I T E ( 6 9 1 0 2 )  ( ( X T ( I , J ) , J # I , N T I )  , I # I , N S E N S )  
102 F O R Y A T ( 3 H O X T / ( I H  , I O E l l . 3 ) )  

C 
C AFTER COMPLETING EACH S E N S I T I V I T Y  RUN - 

5 I S T # I S T + I  
I F ( I S T - N S E N S ) 3 1 , 3 1 , 3 2  

D I MENS 
D I MENS 

2 9 8 8 0 1 0 5  
29880  I 0 7  
29880  I08  

29880  I I 3  
298801 I 5  
2988131 I 7  

29880  I 2 3  

2988G20 I 
2988U2 I 2  

29880203  
2 9 8 8 0 2 0 5  

29880209  
2988021 I 
298802  I 3  

298802  I 4  

2988d2  I 5  
298802  I 7  
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C GO TO NEXT CASE 
32 ICONTR#O 

PLTINC#TMAX 

NI#I 
G O  TO 30 

31 I IZ#IS( IST) 

TMAX#O 0 

C COL.  I IZ OF HP MATRIX MULTO BY Z 
WRITE(6,lOl) IS(IST)gJS(IST) 

101 FORMAT(18HOSENSITIVITY T O  A ( ~ I 3 ~ i H g g I 3 v l H ) )  
TIMEITZERO 
NDT# I 
DO 41 I#I,NE 
X (  I ) # O O O  

41 Z(I)#O.O 
J JFLAG#O 

C D U R I N G  EACH SENSITIVITY R U N  - 
7 Z(IIZ)#XT(IST,NDT) 

NDT#NDT+ I 
30 RETURN 

END 

298802 I9  
2988022 I 

2988830 I 
29880303 

29880305  

298803139 

, 29880315  . 
298803  17' 
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S I B F T C  SUBV DECK 

C FOR U S E  W I T H  D I S T R B  AND M A T E X P  FC)R 
C V A R I A B L E  Z-So G I V E S  I - S T  ORDER EXTRAP.  
C FOR AVG. X A N D  T I M E ,  P L U S  R E S T A R T  
C ON I - S T  I N T E R V A L .  D I S T R B  FORM # 
C CALC.  M A T R I X  C O E F F o - S ,  ETC.  I F  N I # O  

S U B R C U T I N E  V A R C O ( X T R , T X )  

C C A L L  V A R C O ( X T R 9 T X )  
C CALC.  Z-S U S I N G  X T R ( 1 ) - S  A N D  T X  ( T I M E ) .  
C 

D I M E N S I O N  A ( 6 0 , 6 0 ) , C ( 6 0 , 6 0 ) , H P ( 6 0 , 6 0 ) , Q P T ( 6 ~ , 6 O ) ,  

COMMVION C,HP,A,QPT,X,ZIY,ITMAX,KK,LL,MM, 
IX(60)~Y(60)~Z(60),XIC(6O)~TQP(60) 

I JJFLAG,X IC ,N I ,T IME,TMAX,TZERO,NE,TQP,T ,  
2 I I Z ~ I C O N T R , P L T I N C , M A T Y E S ~ I C S S , J F L A G , P L T  

D I M E N S I O N  X T R ( 6 0 ) , X L ( 6 0 )  
C 

I F ( N 1  1 1  9 192 
C F I R S T  E N T R Y  

I N V # I  
T X # T Z E R 0 + 0 . 5 * T  
DO IIJ I # I , N E  

I O  X T R ( I ) # X I C ( I )  
GO T?  30  

2 I F ( N V ) 3 , 3 , 4  

4 NV#O 
C SECOND E N T R Y  

T I M E # T Z E R O  
PLT#n.O 
DO I 1  I # I , N E  
X L ( I ) # X I C [ I )  
X T R ( I ) # 0 . 5 * ( X L ( I ) + X ( I ) )  

I I  X ( I ) # X I C ( I )  
GO T 3  3 0  

C E N T R I E S  A F T E R  SECOND 
3 T X # T I M E + O . ~ * T  

DO 12 I # I , N E  
X T R ( I ) # X ( I ) + O o 5 * ( X ( I ) - X L ( I ) )  

12 X L ( I ) # X ( I )  
3 0  R E T U R N  

END 

2 9 8 8 0 1 0 1  
2 9 8 8 0 1  0 3  
2 9 8 8 0 1  0 5  
2 9 8 8 0  I 0 7  
2 9 8 8 0  I i39 
2 9 8 8 0 1  1 I 
2 9 8 8 0  I 13 
2 9 8 8 0 1  I 5  
2 9 8 8 0 1  17 
D I MENS 
D I M E N S  

2 9 8 8 9  I I 8  

2 9 8 8 0  I 2 0  
2 9 8 8 0  12 I 
2 9 8 8 6  I 2 2  
2 9 8 8 0  I 2 4  
2 9 8 8 0 2 0 2  
2 9 8 8 0 2 0 4  
2988G2(36 
2 9 8 8 0 2 0 8  
2 9 8 8 0 2  I J 
2 9 8 8 0 2  I 2  
2 9 8 8 0 2  I 4  

2 9 8 8 0 2  I 6  
2988 i32  I 8  
2 9 8 8 0 2 2 0  
2 9 8 8 0 2 2 2  
2 9 8 8 0 2 2 4  
2 9 8 8 0 3 0  I 
2 9 8 8 0 3 0 3  
2 9 8 8 0 3 0 5  
2 9 8 8 0 3 0 7  
2 9 8 8 0 3 0 9  
2 9 8 8 0 3 1  I 
2 9 8 8 0 3  13 
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S I B F T C  FGEN BECK 

C 
C E Q U I V A L E N T  TO 8 DFG-S W I T H  UP TO 3 2  
C P O I N T S  EACH. C A L L E D  BY D I S T R B .  
C 
C I N P U T S  ARE 
C NDFGS NO. OF DFG-S USED 
C N P T S  NO. OF POINTS I N  EACH DFG 
c XP INDEPENDENT V A R I A B L E  DFG P O I N T S  
C Z P  DEPENDENT V A R I A B L E  DFG P O I N T S  
C 
C XD I S  THE I N P U T  V A R I A B L E  AND ZD THE OUTPUT 
C 

SUBROUTINE D F G ( X D , Z D )  

CI IMENSION A(60,60),C(60,60),HP~60~60),QPT~60,60), 

C OMMON 
I X ( 6 O ) , Y ( 6 0 ) , Z ( 6 0 ) , X I C ( 6 0 ) , T Q P ( 6 0 )  

C 9 HP 9 A 9 OP T KK 9 L L MM 
I J J F L A G , X I C , N I , T I M E , T M A X , T Z E R O , N E , T Q P , T ,  
2 I I Z 9 I CONT R 9 P L T I N C  J FLAG P L T  

I J P ( 8 1 9 Z D ( S ) , X D ( 8 )  

X 9 Z 9 Y 9 I T PIAX 

MATY ES 9 I CSS 
D I M E N S I C N  X P ( 3 2 , 8 ) , Z P ( 3 2 , 8 ) , S L ( 3 2 , 8 ) , N P T S ( 8 ) ,  

C 
C 

C F I R S T  C A L L  COMPO 
C 

I F ( N I ) l r 2 , 1  

2 READ ( 5 , 1 0 0 )  NDFGS9NPTS 
100 F O R M A T ( I 2 , 8 X , 8 1 3 )  

DO 8 6  I # I , N D F G S  
N P # N P T S (  I) 

7 READ ( 5 , 1 0 1 )  ( X P ( J , I ) , Z P ( J , I )  , J # I , N P )  
101 F O R M A T ( 8 E 1 0 . 3 )  

2 0 0 0 F O R M A T ( 4 ~ 0 C F G , I 3 , 1 7 H  XP ANC Z P  II.IPUTS/ 
8 6  W R I T E  ( 6 , 2 0 0 )  I, ( X P  ( J  I ) ,ZP ( J  ,I ,J#l ,NP 1 

l ( l H 0 , 4 ( 2 E 1 2 . 4 , 4 X ) ) )  
DO 3 1#1 9NDFG.S 

DO 3 J# l  ,M 
M#NPTS( I ) - I  

3 S L ( J , I ) # ( Z P ( J + I , I ) - Z P ( J , I ) ) / ( X P ( J + l r I ) - X P ( J ~ I ) )  
C 

DO 5 I # l  9NDFG.S 
DO 4 J # 2 9 3 2  
I F ( X D ( I ) - X P ( J , I ) ) 5 , 5 , 4  

4 C O N T I N U E  
5 J P (  I ) # J  

C 
C CALCS. MADE EACH T I M E  

I DO 6 I # l  9NDFG.S 
J # J P (  I) 

18 I F ( X D ( I ) - X P ( J t I ) ) I O ~ l I ~ l 2  
10 I F ( X C ( I ) - X P ( J - I , 1 1  ) 1 3 , 1 4 , 1 5  
I 3  J#J- 1 

16 J # Z  
I F ( J - I )  16,16,10 

GO TO 19 

G O  TO 6 

I F ( N P T S ( I ) - J ) 1 7 , 1 8 , 1 8  

14 Z D ( I ) # Z P ( J - I , I )  

I 2  J#J+I 

1 
248801c15 . 
2 9 8 8 0  IO6 
2 9 8 8 0  I G7 
2 9 8 8 0 1 0 8  
2 9 8 8 0  I 0 9  

2 9 8 8 0  I I3 
2 9 8 8 0 1  1 0 

2 9 8 8 0 1  1 2  

2 9 8 8 0  I I 4  
2988131 I S  
2 9 8 8 0 1  I 6  
D I M E N S  ~ 

D I MENS 

2 9 8 8 0  I I7 
2 9 8 8 0 1  18 
2 9 8 8 0 1  19 
2 9 8 8 0 1 2 1  . 
2 9 8 8 0  122. 
2 9 8 8 0 1 2 3  I .  
2 9 8 8 0 1 2 4  . 

2 9 8 8 0  I25 
2 9 8 8 0 2 0  I 
2 9 8 8 0 2 0 2  

2 9 8 8 b 2 0 4  
2 9 8 8 0 2 0 5  

2 9 8 8 0 2 0 7  
2 9 8 8 0 2 0 8  
2 9 8 8 0 2 0 9  
2 9 8 8 0 2  I D  
2 9 8 8 0 2 1  I 
2 9 8 8 0 2  I 2  
2 9 8 8 0 2 1 3  . 
2 9 8 8 0 2 1 4 .  
2 9 8 8 0 2 1 5  - 
2 9 8 8 0 2 1 6  

2 9 8 8 0 2  I8 
2988i32 19 
2 9 8 8 0 2 2 0  
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.$ 

17 

I I  

19 
I 0 2  

15 
C 

C 
c 

c 
6 

J # N P T S (  I) 
G O  TO 19 
Z D ( I ) # Z P ( J , I )  
G O  TO 6 
W R I T E  ( 6 , 1 0 2 )  I 
F O R M A T ( 4 H O D F G , I 3 , 1 6 H  RANGE EXCEEDED.)  

ZD(I)#ZP(J-I,I)+SL(J-I,I)~~XD(I)-XP(J-I,I~~ 
J P ( 1 )  S T O R E S  V A L U E  OF X D  L O C A T I O N  

J P ( I ) # J  
TO U S E  A S  F I R S T  T R Y  N E X T  T I M E .  

R E T U R N  
E N D  

298ac~3i3 I 
29880302  
298803i33 
2 9 8 8 0 3 0 4  

, 
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B I B F T C  T R L A G  DECK 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 

C 
C 
C 
C 

C 

SUBROUTINE TRLG(XT,W,ZT) 

VARIABLE TRANSPDRT L A G  GENERATOR - FORTRAN I V  

USES UP TO 3 0 0  POINT APPROXIMATION FOR 
UP T O  6 VARIABLES. USES INVENTORY C A L C .  

INPUTS FOR EACH L A G  ( T O T A L  # NLAGS) 
l e  INPUT FUNCTION X T ( 1 )  
2. MASS FLOWRATE W ( I )  

4. MINIMUM EXPECTED VALUE OF MASS FLOW W M I N ( 1 )  
3 .  I N I T I A L  VALUE OF L A G  T I M E  T I ( 1 )  

OUTPUTS ARE LAGGED FUNCTIONS Z T ( 1 )  

N I  # I -ST  CALL FLAG ( #  0 ON I - S T  C A L L )  
T # COMPUTATION T I M E  INTERVAL 

I F ( N I j 2 0 , 2 1  920 
F I R S T  C A L L  COMPO 

2 1  READ(S,IO~)’NLAGS,TI,WMIN 
I O 0  F O R M A T ( I 2 / ( 6 E 1 0 . 3 ) )  

101 FORRAT(26HOTRLG INPL‘TS - T I  AND WMIN/ (  IH0,6E18.5)  1 
W R I T E ( 6 , I O l  1 TI,WMIN 

DO 2 2  I# I ,NLAGS 
XJMP( I ) # I  e 0  
X S ( I , I ) # X T ( I )  
P S (  I , I ) # W ( I ) * T I ( I )  
XNSP#PS(l,I)/(WMIN(I)*T) 
DO 2 3  M # I 9 1 0  
P I #XJMP ( 1-1 *XNSP 
I F ( 3 0 0 . 0 - P 1 ) 2 3 , 2 4 , 2 4  

2 3  X J M P ( I ) # X J M P (  I ) + I . O  
C 

2 4  J M P ( I ) # I F I X ( X J M P ( I ) )  
K T (  I ) # 2  
J T (  1 1 6 1  

2 2  N J M P ( I ) # I  
NV#- I 

i 
C CALCS. MADE EACH T I M E  

2 0  NV#NV+I 
C * * 3 C * * *  NOTE - I F  A RESTART FEATURE IS USED (WHERE THE I N I T I A L  T I M E  

I 

P 

2 9 8 8 0 1 0 5  
2 9 8 8 0  I 0 6  

2 9 8 8 0  I 0 8  
2 9 8 8 0  I 0 9  
2 9 8 8 f i l  10 
2 9 8 8 0 1  1 1  
2 9 8 8 0  1 12 

2 9 8 8 0 1  14 

DIMENS 
DIMENS 

DIMENS 
DIMENS . 

2 9 8 8 0 1 2 1  
2 9 8 8 0  I 2 3  

DIMENS 

D I MENS 

2 9 8 8 0 2 9 2  
298802133 
2 9 8 8 0 2 0 4  

2 9 8 8 0 2 0 6  

D I MENS 
2 9 8 8 0 2 0 9  

2 9 8 8 0 2  I 2  
2 9 8 8 0 2  I 3  
2 9 8 8 0 2  I 4  

2 9 8 8 0 2  16 .  ’ 

I 

C STEP CALCULATION I S  REPEATED) ,  THE FLAG NV AND STATEMENT 3 3  WILL 
c OMIT THE TRLG C A L C .  T H I S  I - S T  C A L L  OMISSION MAY BE DELETED BY 
C REMOV I PJG STATEMENT 33. 

3 3  I F ( N V ) 3 1 , 3 2 , 3 1  
31  DO 17 I # I , N L A G S  

26 N J M P ( I ) # N J M P ( I ) + I  
IF(NJMP(II-JMPII))26,27,27 2 9 8 8 0 2  I 8  

2 9 8 8 0 2  I9 
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GO TO 17 

K#KT( I )  
J#JT( I )  
XS(K,I)#XT(I) 
PS(K,I)#XJMP(I)+W(I)+T 

I F ( P S ( J I I ) - P S ( K ~ I ) ) I ~ ~ , ~  

IF(J-300)6,7,7 

* 
27 NJMP( I ) # I  

C J#N@. 3F ELEMENT AT EXIT. K#N3. AT ENTRANCE 

2 ZT(I)#XS(J,I) 

7 JT(I)#I 

6 JT( I )#J+ I  
GO T3 30 

GO TO 30 
c 

1 COLLT#XS(J,I) 
4 CGL LP##PS ( J 9 I ) 

DO I 5 M #  I , 3 0 0  
IF(J-300)8,999 

9 J#O 
8 J#J+I 

PQ#COLLP+PS(J,I) 

IF~PQ-PS(K,I))11~12r13 
, ? C  

. I I  CCLLT#(COLLT+COLLP+XS(J,I)*PS(J,I))/PQ .- c 
C 

c 

I 5 CQL LP#C~LLP+PS ( J, I 

12 ZT(I)#(COLLT*COLLP+XS(J,I)*PS(J,I))/PQ 

IF(J-300) 14,16916 
16 JT(I)#I 

14 JT( I )#J+I 
GO TC, 3 0  

GO TO 30 
C 

13 PS(J,I)#PQ-PS(K,I) 
ZT(I)#(COLLT*COLLP+XS(J,I ) * P S ( J , I ) ) / ( C O L L P + P S ( J , I ) )  
JT(I)#J 
GO TO 30 

C 
3 ZT(I)#XS(J,I) 

PS(J,I)#PS(J,I)-PS(K,I) 
C 

30 IF(K-300)4,5,5 
5 KT(I)#I 

4 KT(I)#K+I 
GO TO 17 

17 CCNTINUE 

32 RETURN 
END 

# 

.' c 

2988022d 
2988022 I 
29880222 
29880223 
~ 9 8 8 0 2 2 4  

298803 I6 

298803 I 3  
29880320 

D I M E N S  

2988040 1 
29880402 
29880403 
29880404 
2988U4U5 

2 98'8 0 4 U  7 
29880408 
29880409 
2988041d 

29882412 
2988241 3 

DI MENS 
298804 I6 
2988041 7 
298804 I8 
298804 I9  
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