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1. INTRODUCTION

The matrix exponential method of solving differential equations
was first described to the authors by Prof: Henry Paynter of MIT,
who with his studentsl-3 developed .this method into a practical
engineering tool. The basic technique was derived many years ago,
and even then it was an elegant method of obtaining exact solutions
for a set of constant coefficient, homogeneous differential equations.
The matrix exponential technique is ideally suited to digital
computation and is very simple to implemént, especially when compared
wifh most quadrature methods.

Ohly two persons besides Prof. Péynter have done extensive work

>

in this area. L. Pease” of Atomic Energy of Canada, Ltd., in-

dependently developed the method simultaneously with Paynter. The
work of Paynter and Pease formed the basis for our implementation

and, perhaps, refinement of the method, although the work of several
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researchers established the rigor of the central technique.

lJ Suez, Automated Programming for AnalogﬁComputers, M.S.
thesis, MIT, Aug. 1962.

2H.C.H. Lee, Some Finite Difference Models for Linear and
Nonlinear Control Studies Using Digital Computation, M.S. thesis,
MIT, Aug. 1962.

:3H. M. Paynter and J. Suez, "Automatic Digital Setup and Scaling
of Analog Computers,"” Trans. ISA, 3, 55-64 (Jan. 196L).

uE. Artin, from O. Schreier and E. Sperner, Introduction to
Modern Algebra and Matrix Theory (1935); Translated from German,
Chelsea Publ. Co., N.Y., 1951, pp. 319-320.

5L. Pease, DEEMS, A Fortran Program for Solving the First-Degree
Coupled Differential Equations by Expansion in Matrix Series,
AECL-1898 (Oct. 1963, reprinted Feb. 196k).

6E. G. Keller, Mathematics of Modern Engineering, vol.II,
Mathematical Engineering, Wiley, N.Y., 1942, pp. 23L-246.

7R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, N.Y.,
1960, pp. 165-173.
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More recently, M. L. Liou of Bell Telephone Laboratories made 1mportant
contributions to the matrix exponentlal method.lo 11

Because this method can give virtually exac‘t12 solutions to systems
of equations, it is of‘considereble interest to most engineers engaged
in systems analysis, automatic control, and simulation. Also, systeﬁs
engineers have long recognized that one essential difference between
the analog computer and the digital computer is the:awkward (at best)
manner in which the digital machine can perform“integration.’ The
matrix exponential method, on»the‘other hand, requires the digital
computer to perform mainly matrix mahipulafiohs, which it can do in
a very straightforward and efficient manner.

The matrix exponential techniques have worked well for a large
general class of simulation problems which constitute the bulk of the
work in the systems analysiS'end automatic control fields. Indeed,
by use of the methods described in Sect. 3.&; certain types of non-
linear equations can be solved‘as a natural extension of the basic

matrix exponential method.

8F, R. Gantmakher, Applications of the Theory of Matrices,
Interscience, N.Y., 1959, pp. 135-9. (translation of Russian
" original book: Theory of Matrices, 1954 ). -

9L. A. Pipes, Applied Mathematics for Engineérs and Physicists,v
24 ed., McGraw-Hill, N.Y., 1958, pp. 101-k,

Oy, 1. Liou, "A Novel Method of Evaluating Tran51ent Responses,

Proc. IEEE, 5u (1) 20-23 (Jan. 1966).

llF F., Xuo and J. F. Kaiser, eds., System Analy51s by Digital
Computer, Wiley, .Y.,l966 PP. 99-129.

12"Virtually exact" means that the solution can be calculated
to as great a precision as is desired, consistent with the precision
obtainable with a given computer word length. In other words, the
precision of the method is not necessarily limited by the convergence
of any approximate quadrature (integration) formula, simply because’
quadrature is. not performed.



The matrix exponential method has also been implemented and used
extensively in Fourier analyeis problems by simulating band-pass
filters.l3’lh Instead of calculating correlation functions (and
subsequehtly their Fourier transforme) digital filtering can'be used
to obtain spectral density estimates and transfer functions from
noise data. Calculations using filtering techniques are of comparable
accuracy and typically‘more efficient than the conventional methods.

' MATEXP has also been used in a special technique to calculate the
sensitivities of the time response of a system to changes in parameter
values. 15 A descrlptlon of a subroutine which was written to
implement time response sensitivity caleulatlons is given in Sect.
5.2.3.

MATEXP has been developed and modified over a period of several
- years, and its present form reflects the considerable number of
helpful suggestions we have had from many people. We are particularly
grateful to Prof. H. M. Paynter.for first introducing us to the
method, and to Prof. T. W. Kerlin of the University of Tennessee,
and J. V. Wilson of ORNL for their help and encouragement.

2. DEVELOPMENT OF THE MATRIX EXPONENTTIAL METHOD

2.1 For Homogeneous Equations
Consider the first-order scalar, linear, homogeneous differential

equation (with constant coefficient)

dx ' '
'a'.E'*'aX-O: o . (l)

138. J. Ball, A Digital Filtering Technique for Efficient Fourier

Transform Calculations, ORNL-TM-1778 (July 1967).

lhT. W. Kerlin and S. J. Ball, Experimental Dynamic Analysis of

the Molten-Salt Reactor Experiment, ORNL-TM-1647 (Oct. 1966).

Yr. w. Kerlin, "Sensitivities by the State Variable Method,"
Simulation, 8(6), 337-345 (June 1967).
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whose solution is ‘ L
x = e x| (2)
0
An interesting characteristic of the sblution is that, for any
time interval T, the value of x at the end of the interval is a )
product of an exponential term e-aT_and the value of x at the beginning

of the interval, i.e.

X = € X, (3)

This will be referred to as the "incremental solution.”
Now because & system of homogeneous linear equations of any
order can always be broken up into a set of first-order equations,

consider the following set of equations

- + a,, Xy * a, X

R Mt T I~ B~ S e B W W

dx,

T - %1 X1 T8 Xp Foeeer By Xy (4)
dxn .

at " %™ Tap Xp T oeeee By X

This array can be expressed compactly in matrix form as a first-
order, linear, homogeneous, matrix differential equation with constant
coefficients, i.e. '

ax ‘ :
at = AX ) (5)

where X is the column vector of state variables xi

0

SN.... h§<



and A represents the coefficient matrix

all alz seocese aln

a, =
A E 21 22 e e o000 a2n

anl an_2 sess o0 ann

This matrix equation has the solution
X, = eAt X . (6)

For a formal proof that Eq. (6) is the desired solution, the reader

is referred to Bellman.7 However, the following sigple proof is

somewhat less formal. First, if dX/dt = AX, then 1% = o & _

; 22 at
a’x a™x

AAX=22%; similarly, = = A3 X, so that ===Aax. (7
dt dt

It Xt is expanded about zero in a Taylor's series,

X ox +b & L2 8x . Ea™
t 70 1! dat 2! th ' m! dtm
t=0 t=0 t=0

With Eq. (7) substituted for the derivative,

2,2
At A7t
= —— —+ ceoee
L B vy %o
or

At .

X, =¢ X, (Q.E.D.) (8)
The "incremental solution" is
At '

Xt+'r"€ Xt} (9)

A
where ¢ T, the matrix exponential, is defined analogously to the

scalar exponential as

2 3 k
S ‘(gf) + (g'f) + e S—Lﬁf (10)
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in which I is the identity matrix

loo .aoooo
Olo .....O
0010 ...0

O ..l.....ol

2.2 For Nonhomogeneous Equations

The matrix equation representing a system of first-order, constant
coeff1c1ent differential equations with nonzero forcing functions is
the nonhomogeneous equation

ax
at

where Z is the disturbance, or forcing function,vector.

= AX .+ Z, , (11)

A general incremental solution of the ndnhomogeneous equation

as derived by Liou11 is

C t+T :
X, =T x o+ A(“T)f 'ATZ ar . (12)

An exact solution derived from Eq. (12) for the case where the

foreing function Z is constant over the interval t to t+1 is

At - At -
Xppo=€ Xt (7" -I)A lzt . (13)

It is important to hote that the inverse of A need not be calculated

to evaluate Eq. (13) since

( AT_I)A-]‘ + AT + S_A_T)_

.M}/

LB ‘Ak“lT‘k |

o TRT

]
H
A
+
+

I\)
o
w
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2
= T I"l'-é-\-"£ +£%;L+.

gAT}k-l
ki ?

) k-1
. Z o) (14)
k=1

Because this series is similar to that used to represent eAT,

the computer program can calculate the two required matrices

(eAT-I)A-l series equals

concurrently, since the kth term of the
the (k-1)th term of the AT series times (1/x). In the MATEXP
program, the AT matrix is called the "C" matrix and the (eAT -I)A-l
matrix is called the "HP" matrix (in honor of H. Paynter).
At this point, two essential features of the matrix exponential
method are emphasized:
1. The exponential matrices can be computed by the series
approximation to nearly any desired precision (typically,
1 part in lO6 is specified for MATEXP calculations). Hence,
for homogeneous equations and for nonhomogeneous equations
in which the forcing functions remain constant over the
computation time interval, the solutions are virtually exact
solutions. )
2. The'solution vector can be updated successivelybby a time

increment T by two matrix multiplications:

XT.= C XO + HP ZO

X2T = C XT + HP Z,
eéc
If it is assumed that Jjust one time increment value T‘iS
required, the C and HP matrices need to be evaluated only once.
An exact solution to the set of nonhomogeneous differential equations
can also be derived from Eq, (12) for the case where the forcing |
function Z vgries linearly within the computation interval <.

In terms of the matrix exponential series approximationé, the



s
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trapezoid forcing function incremental solution is

o0 .
AT 11 k-1
Xppp =€ X *7 Z Kt Zk+15:) (A7) 2y
A k=1

2, k-1 |
T Z GaD)T 2ot © . (15)
k=

1

c 11 . ’
Liou = has also developed a recursive formula for accurate
approximations of continuous forcing functions which uses a Simpson's

rule approximation of the nonhomogeneous solution, Eq. (12), within

.the time interval t:

At T T
Ky ™ € [Xt+6'Zt]+3 € Zt+¢/2+3zt+m' (16)

As with the case of the step-wise varying forcing functions, the
matrices required for Egs. (15) and (16) need to be evaluated just
once at the start. These features are not presently included in the

MATEXP code, but could readily be added as options.

2.3 Miscellaneous Features of the Matrix Exponential

Since the matrix exponential priﬁciple has been a part of the
mathematical literature for many years, the matrix exponential has
had at least two other names: the fundamental matrix, and the
transition matrix. Besides the series approximation method, an

9

analytical method is often used to calculate this matrix;” however,
the eigenvalues of A and their eigenvectors must be calculated and
the initial condition vector must .be transformed by a matrix
comprised of the eigenvectors. It is emphasizéd~that the series
method used in MATEXP does not require that the coefficient matrix
be nonsingular (i.e., have a nonzero determinant) or that its
eigenvalues be distinct (a case where the analytical solution has
terms of the form tebt and cannot be expressed as the sum of
exponentials). The latter condition, which occurs in problems

where two time constants in a decay chain are equal, was one of
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the problems that Pease encountered in reactor burnup calculations -
that prompted him to develop the matrix exponential method.5

Another feature noted by Pease (but not included in MATEXP) is
that the average solution vector X could be obtained directly from
a matrix exponential type calculation.

From the mean value theorem,
T

X =%—f X, dt,
0

X can be obtained by integrating the equation for X in terms of C
and HP:

T T
- 1 1 [ 1
= = = = + .
X fot at Tf cxo (HP) Zoj at (17)
0 0
Term by term integration of the series approximations for C and
HP gives ' v '
. _ .
e 3
det=T I+§—f+'(§f) +(ﬁf) + ...|=HP , (18)
o .
and
i 2
fHPd‘t=1:2 -EI—£+§%+ Af) + e | (19)
0 .

The latter series, like the HP matrix calculation, could easily
be made concurrent with the other matrix exponential calculations.

The accuracy of MATEXP solutions, both in absolute terms and
compared with other methods, is difficult to estimate quantitatively
fbr the general case. Even for those cases that are solved "exactly, "
the successive multiplications of the solution vector by the matrix
exponential naturally tend to accumulate errors. However, with
precise calculations of the C and HP matrices as recommended in the .
Appendix, Sect. 5.1, test cases have shown this error to be negligible
for large systems (4O x 40), even after many thousands of updating
calculations. Lioull has developed an alternative method of évaluating
the C and HP matrices to a prescribed accuracy.

The nature of the matrix exponential method permits the use of
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much larger computation time intervals T than would be feasible for
most numerical integration solutions. For constant-coefficient
equations and a given 1, it would be safe to assume that MATEXP would
be inherently mére accurate. As is usually the case, however, it
would be unwise to generélize about nonlinear equations. Nonlinear
solutions are discussed further in Sect. 3.4.

Eq. (20) gives a rough estimate of MATEXP solption times on the
IBM-T7090 computer, assuming that a.negligible time is spent in the

peripheral subroutines:

Solution time(min) ® 3.0 x 100 (NE)Z NT , (20)
where NE is the number of equations, and NI is the number of
computation time intervals. For éxaﬁple, a 59 x 59 system run for
1000 time steps took 10 min, and an 8 x 8 run for 10,000 ‘steps took
1.5 min. The solution time factor will vary from about 2 x lO-6 to
T x 10-6, depending on the amount of extra subroutine computation and
printout, and will be approximately halved for homogeneous equations.

The present "standard" version of the MATEXP program solves up
to 60th-order equations and uses about 22,000 words of‘core storage.
In a 32,000 word computer, the extra i0,000.words caﬁ be used for
special programming or storage, or the order of the equation’ can be
increased to about 80. Since, for larger ?robiems, tape or other
slower storage devices would be required to calculate the matrix
exponential functions, the overall efficiency of the method would be
reduced. | |

Two other interesting, though perhaps purely academic, features
of the matrix exponential technique are that the soiution timé
increment can be negative (allowing one to go backwards) and that the

A matrix can contain complex coefficients.
3. DESCRIPTION OF MATEXP FROGRAM AND QPTIONS

3.1 Basic Input Information

The MATEXP program was written with the intent that it should

be easy to use for a wide variety of differential equation problems.
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Unfortunately, as a program becomes more general, i.e. the more
options and special features the program has, it becomes more difficult
to explain the program and to use it for any given problem.
Consequently, any apparent awkwardness and complications in the
following discussion are due to a desire to make it general, and any
omissions are due to a desire to keep it simple.

The basic parts of the code are: the main program, MATEXP; the
utility subroutine used for outputting, OUTPUT; and the subroutine
for calculating forcing(or disturbance)functions, DISTRB. To solve
linear, constant-coefficient differential equations that are
homogeneous (i.e. have no forcing functions) or which have only fixed
forcing functions, all the required data can be read'in'and no extra
programming is necessary. For equations of the form

%% = AX + 2,
the initial values of the.X vector, the coefficient matrix A, and
the (fixed) disturbance vector Z may be read in. Other information
required for each run is the following: '
1. number of equations,
2, initial time (or other independent variable),
3. computation time interval, ‘
4, final time,
5. dinterval at which solution vector X and disturbance vector Z are
to be printed.

Since many elements of the coefficient matrix A are often zero,
only the nonzero elements need to be read in.. This makes it necessary
to identify each coefficient with its fbw and column number. The
nonzero values of the initial condition and fixed disturbance vectors,
with theif row numbers, are read in similarly. _ |

Since successive runs might require no changes (or only a few)
in input data from the previous run, options are provided so that
only the altered data has to be read in.

An option is also available whereby the last vélue of the X vector

from one run can be used as the starfing value of the succeeding run.
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This option can be used if changes in the computation or printing.
interval are required in the middle of a solution or if certain
iteration or successive épproximation schemes. are being used.

A complete description of the inputs and options is: given in

the Appendix, Sect. 5.

3.2 Alternative Methods of Generating the Coefficient Matrix A

Although the most straightforward method of inputting the
coeffiéient matrix is to read it in, very often it is advantageous
to have some or all of the elements calculated from system parameter
values. One option of MATEXP provides for this to be done by special
prbgramming on the first call of DISTRB.. An alternative is to use
an "algebra‘table" routine developed by Kériin and Lucius.l6 This
routine calculates the matrix elements from‘input parameter values
Without any special programming. The general expression uséd for
calculating an elemenf aij in terms of parameﬁers Pk and their

exponents EkQ is

11 _ oy By nl B, By 5 B3o L

E E E,, E
84 = C,Py P, P3 ces By + C,Py P, 3 e By + ...
or m n
a,, =) Cg- P’Ekk (21)
ij ¢ .
f=1 k=1

A complete description of the program is given in reference 16.

Beside the fact that it is sometimes convenient to have the
coefficient matrix calculated by the computer, in some cases computer
computation is almost necessary to obtain accurate solutions. This
was the case fof one reactor dynamics calculation where the coefficients
were first carefully calculated on a 20-in., slide rule, then by the

machine. The difference in the steady-state solution for neutron

16T. W. Kerlin and J. L. Lucius, A Technique for Calculating
Frequency Response and its Sensitivity to Parameter Changes for Multi-
Variable Systems, ORNL-TM-1189 (June 1965).
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level after a reactivity insertion was approximately a factor of 2.

3.3 Alternative Methods of Generating the Forcing Function Vector Z

When variable forcing functions are needed, a sﬁecial program
must usually be written and included in DISTRB. Two‘special forcing
function subroutines have been written to simplify the programming:
DFG, for approximating arbitfafy functions; and TRIG, for approximating
variable transport lags. They are both described in Sect. 3.5.

For cases where the forcing function is a solution to an ordinary
diffefential equation, this equation can simply be added to the system
metrix, and an exact solution can be obtained. As an example, assume
that a sinusoidal forcing function is used to excite a damped spring-
mass system. The quadratic equation that describes the displacement

y of the mass with time is

o B
Q-X +a Xy by = ¢ sin (wt + ¢) s (22)
<2 tar ¢

where w is the frequency of the sinusoidal input (radians/time).

To arrange the equation in terms of first-order. derivatives, let

A
xl—-dt} (23)
X, B Y -« (2k)
. 2 .2 S
Solving for dy/dt” (or dxl/dt), we obtain
dx, ‘
= f'axl - bx2 + ¢ sin (ot + ¢), (25)
and
dx,
2
T =Xy e ' (26)
The equation for a pure oscillafor with frequency w is
2
S2+efs=0- (@
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- ds
If we let x3 = 30 and x), = ws, then
g
T A (28)
ax,
e w X3 . (29)
If the initial conditions of x3 and X), ‘are zero and -1, respectively,
then
x3(t) = sin wt , (30)
xu(t) = -cos wt . (31)

Thus CX3 could be substituted for é sin (wt +.¢) in Eq.CEQ. The
required initial conditions of velocity xl(O) and displacement x2(0)
must also be specified.

The coefficient matrix for this example is

-a -b +c 0

+1
A= 0 -
0] 0 +W 0

If the sinusoidal input were introduced as a forcing function, it
would appear as a stair-step approximation of a sine Wave, and the
accuracy of the solution would depend on the accuracy of this
approximation. A comparison of the ap?roximate'and exact solutions
for a specific example is shown in Fig. 1. In the approximate
solution, a first-order extrapolation was uséd to approximate the
average value of the foréing function over the time interval.

In this example, the system has a natural frequency of 1.0
radian/sec and a damping factor of 0.25, and the driving sinusoid
has a frequency of 2.0 radians/sec. The computation interval of
0.5 sec for the aﬁproximate'case gives about seveh coﬁpUtations
per cycle of the driving function. Figure 1 also shows the response

after a long time where the excellent stability and accuracy of both



. ORNL DWG. 67-10215
10§ |

51
Position
X2 ]

>

o . ' - ) - '
A ' | A\ Maximum error in
. Time (sec) approximate solution = 0.014

§\
I £ : _ _
™ Maximum error in initial transient : Exact MATEXP solution
.. approximate solution = 0.020 :

X Approximate solution, At = 0.5 sec

. Fig. 1- Comparison of Exact MATEXP and Approximete MATEXP
. ' : L Solutions for Sinusoidal Input to Damped
—- 1.0 3 Spring-Mass System
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solutions can be seen. This type of calculation is, historically,

very difficult to do wiﬁh standard digital methods .1

3.4 Methods for Solving Time-Varying-Parameter and Nonlinear
Differential Equations

It was shown in Sect. 2 that the MATEXP method can provide exact
solutions to sets of constant-coefficient, homogeheous differential
equations and to nonhomogeneous equations for which the forcing
functions can be representéd by stepwise-varying functions. Since
forcing functions are usually smoothly vérying,;the accuracy of the
solution would naturally depend on the accufacy of the stair-step
approximations.

Likewise, in the case of time-varying-parameter, or nonlinear,
equations, the variations in the coefficient matrix A can be
approximated by stepwise variations. For a variable A matrix, however,
the matrix exponentials (C and HP) would both have to be re-evaluated
at each computation interval. Although this may still be an efficient
method for low-order equations (~10 or less), it could be quite
time_consuming for larger problems.

A more efficient method of solution is to modify, or "fudge;"
the forcing function vector so that it compensateé for the variation
in coefficients while the A, C, and HP matrices remain constant.

This is shown schematically in Fig. 2.

7R, A. Gaskill, "Fact and Fallacy in Digital Simulation,”
‘Simulation, 5 (5), 309 313 (Nov. 1965)
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Nonlinear Equations

Z(t )= —> X(t) (Exac‘t>

A= f(t,X)
+ z.(t,X)
Z(t) —— A - X(t) (Approximate)

p fa——o

Fig. 2. Approximate Solution Using Fudged Forcing Functions.

Each component of the fudged forcing-function vector is calculated
by adding all the coefficient perturbation quantities in the row. For

example, assume one row of the matrix equation is

&

1

e (t) X) *apy X, e (t) Xy + zl_(t) s
where all’ al3, and z, are varlables and a1p is a constant.
Let _ ?

8y (8) = (ay)g + 2y,
and

—_ 1
al3 (t) = (al3)o + a‘l3 e

Then the equation can be rewritten .

dx

. |
o= (ap)gx tay x v (a

)

[}
+z(t)+allxl+al3x3 .
- g

E Zf(tJX)

13°0 3

Again; the forcing function zf‘would'éctﬁally be smoothly varying,

but in the MATEXP difference equations, 1t is approximated by a

stair-step functlon.
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For the case where the coefficients and/or the forciﬁg functions
are known functions éf time, much greater accuraéy'(for a givén
computation interval T) reéults.ffom:using'approximate mean values,
rather than initial values, of the functions in the computation
interval. First-order approximations of the mean values can be
obtained by evaluating the time-varying forcing functions and matrix
elements at (t + 7/2) instead of at (i). First-order extrapolations
of the mean values of the solution vector X should also be used

where coefficients are functions of X, as shown in Fig. 3.

Straight-Line
Approximation

P

> time

Fig. 3. First-Order Extrapolation of Mean Values of z and x at (t+%).

The use of an auxiliary subroutine VARCO greatly simplifies the
programming required to use first-order extrapolation calculations to
find approximate mean values of the forcing function. VARCO is
described in detail in Sect. 5.2.

The only way of guaranteeing that the soiu;ion is accurate is to
reduce the computation intervél Tvﬁntil further reductions make no

significant difference in the solution. A simple, intuitive estimation
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of the accuracy, however, may be obtained by noting the maximum amount
of change in the solution and coeff1c1ent values within a computatlon
interval. If these changes are only a few percent of the values of
the functions at the start of the interval, then the flrst—order
approximations'will probably give very accurate answers. Thevtrue
accuracy of the representatlon of a nonllnearlty should also be
considered when trylng to "squeeze" too much accuracy out of a
solution. - _ v

The use of fudged forcing functions for the soiutiQn of nonlinear
differential equations is'vefy effective when relatively few ef the
matrix coefficlents are variable., In this case one ﬁight consider
the linear portion of the system of equations :as being solved by an
extremely accurate analog computer, while the nonlinear portion is
simulated by a not=-quite-so-accurate computer. If most of the
matrix coefficients-are variable, then the more conventlonal numerlcal
solution methods might be more practlcal than MATEXP

More detailed dlscu551ons of the theory and use of fudged forcing
functions have been found disguised in sophisticated mathematical

treatises by Wolf18 and Frazer et al.19

3.5 Special Forcing Function Subroutines

Since special programming is required in the DISTRB subroutine
to generate variable forcing functions for the differential equations,
two general purpose subroutines were written to facilitate this

programming for some problems.

3;5.1 Arbitrary Function Generation - DFG

The arbitrary function generation subroutine DFG provides a means
of generating approximations of singleevalued functions of one-

variable where the arbitrary function curve is represented by a

18 : ‘ ' '
"A. A. Wolf, "Some Recent Advances in-the Analysis and Synthesis
of Nonlinear Systems , Am. Inst Elec. Engrs. transactlons paper
No. 61-713.

'9R. A; Frazer, W. J. Duncan, and A. R. Cellar, Elementary
Matrices, Cambridge University Press, 1957, pp. 232-45.
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series of linear segments (Fig. 4). The principle is identiecal to
that of the diode function generator (hence DFG) used in.analog
computation.

Output
? Actual

Approximate

<« : 5> Input

Fig. 4. Subroutine DFG Representation of an Arbitrary
Function of One Variable.

DFG in its standard form arbitrarily éllows for up to 8 functions
with up to 32 points (or 31 line segments) per function. Inputs
required are the ordinate and abscissa values of the line-segment
end points. If more functions 6r finer approximatibns are required,
the dimensions could be'changed eaéily. More details on the program

and a Fortran listing are given in the Appendix, Sect. 5.

3.5.2 Variable Transport lLag Generation - TRIG

A transport lag (also known as a pure time delay, or dead time)
acfuaiiy represents a distributed pérameter system; hence, its
representation in a iumped-parameter solution will be only approximate.
The output z from a pure delay device with an input x and a fixed

delay time T is
z(t) = x (t -1).

If Tt is variable, then the relationship between z and x is a function
of the time history of =.
The variablé time~delay problem is best illustrated by
fluid flow in a pipe where the inlet temﬁerature énd flow rate are
both variable. The assumptions required for a pure delay are:
1. there is no heat transfer to the pipe;
2. the fluid density is constant;
3. plug flow exists, i.e., there i1s no mixing of the fluid in the

direction of flow.
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The technique used in TRLG is to sample the inlet temperature x
and the flow rate W at each computation time interval T, thereby
keeping an inventory on each slug of fluid in the pipe. The total
weight of fluid in the pipe is éomputed from the initial transport
time T, and the flow rate W: '

P, ial (1b) = W, (1b/sec) x T (séc) .
Similarly, the weight of fluid that enters during each time interval
T is W(t) x T. Since the fluid density is consfant, the weight of
fluid that leaves during that interval T is equal to the weight of
the inlet slug. | o |

As an example, assume that the temperature profile in the pipe
is as‘shown in Fig. 5 and the slug at the inlet of APO 1b is about
tq enter. The slug at the outlet is APn at a temperature xn, where
APn > APO. When APO enters, the outlet slug temperature will be
equal to X and the whole profilg will be shifted to the right
by APO 1b. The weight of the new slug just upstream of the exit
is then (APn - APO).

1f APO had been greater than APn, the outlet slug would have taken
AP etc.) as

n-1’ n-2’
required (up to 300 samples), and the outlet slug temperature z

as much of the upstream inventory (i.e., AP

would be computed as the weighted average of the slug temperatures.
For example '
if A
APO = APn + 0.5 APn_l s

then o "APn'xh + 0.5 APn_l X1

Z = " B
, AP+ 0.5 AP,

If the maximum delay time (minimum flow rate) would use up too
many storage locations, the sampling would be.done every other (or
every third, etc.) computation interval. With a variable lag, a ..
minimum expected flow rate must be specified to calculate how often
to sample. ,
The input variables suppiied by the calling program for each call
of TRIG are XT (e.g., fluid temperatures) and the flow rates W (in



Inlet ) : ‘ Outlet

Temperature
x
_?fff—_'r".f.-'_
, |
v | |
0 . - P :
Weight of fluid (1b) o “total

Fig. 5, Temperature Profile of Fluid in Pipe.
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terms of mass/time, unity for full flow, or some percentage of full
scale). The lagged functions ZT are returned by TRIG.
On the first call of TRLG, the flag NI should be zero, and the
following input data are read in:
 Nacs
TI

WMIN = minimum expected values of flow W.for each function.

number of functions used,

f

]

initial values of transport lag time for each function,

The initial values of fluid temperatures in the pipes are set
equal to the initial values of inlet temperatures. If specific
initial temperature profiles are requifed,'they can be read in with
only a minor change being required in the program. The standard
version of TRLG provides for upkto six.lags with up to 300 samples
per lag. If more or fewer lags or points are desired, the stétements
labeled DIMENS in the comment field can be changed accordingly.

'~ More details on TRLG and a Fortran listing are in the Appendix,

.Sect. 5. ‘

There are two other techniques that are commonly used to represent
transport delays:

1. A series of n first-order lags, or "well-stirred tanks," with

' time constants T/né o '

2. A Padé approximationfo which uses several terms of a series
approximation of e_TS_ (the Laplacian representation of a pure
delay), where S is the Laplacian argument. °

Both the series lag and Padé methods have éccuracy and flexibility

limitations that would be prohibitive for certain problems.21

Since the digital computer is quite proficient at sampling data,

- the sampled data approximation as used in the TRLG subroutine is

recommended as the most efficient and éccuraté method.

2OA. E. Rogers and T. W. Connolly, Analog Computation in

Engineering Design, McGraw-Hill, N.Y., 1960, pp. 419-24.

, °ls. . Margolis and J. J. O'Donnell, "Rigorous Treatment of
Variable Time Delays', IEEE Trans. on Electronic Computers, Vol.
EC-12, June 1963, pp 307-9.

<
3.
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L. SUMMARY AND CONCLUSIONS

The matrix exponential method has a numbef'of advantages over
the more common integration schemes for a large and significant class
of ordinary differential eQuation problems. The speed ahd'accuracy
of MATEXP havevthe potential of reducing computing costs for large
problems and of making more 'real-time" computations feasible for
on-line digital computation, control, and -optimization calculations.

The MATEXP program has been developed over a period of several
years, mainly through use in simulation problems. There are, however,
at leasf three other areas in which the matrix exponential method
might be effective:

l. Automatic parameter estimation - where the parameters of the
model differential équations are adjusted to optimize the
agreement betﬁeen theoretical énd experimental response curves.
A computer program to implement this technique 1s currently
under development;

2. Solution of nonlinear algebraic equations by the method of
steepest ascents; and

3. Boundary value problems.

Other refinements that have been used with the MATEXP code
include the addition of an automatic plotting subroutine and a more
efficient output routine which prints only specified varilables.
Forcing-function subroutines to solve implicit equations and
generate functions of two variables are planned as additions to the

"standard" package.
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5. APPENDIX

5.1 Problems in the Evaluation of Exponential Functions

The Taylor series apprbximation for-a scalar exponential function
is ; »n Kk Xi
€~ fo Tk Lty oY

ol R

Xﬁ .
P e+ (5.1)

o=
w

This approximation also holds true when the argument y is a matrix;

hence, matrix exponential functions are amenable to digital computer
calculation, since raising a matrix to a power is a straightforward

operation. v '

It is important to note that the HP matrix calculation
HP = [exp (Ac) -'I]A'l ‘ C(5.2)

does not require inversion of the A matrix, and can be calculated
directly from the terms of the C matrix approximation as shown
in Sect. 2.2. '

There are several numerical problems associated with the matrix
exponential calculations. The approximations will be valid only if
l. the series will converge,

2. the numerical computation does not lose significance due to
overflow, roundoff, or truncation errors.

Since the evaluation of exp (At) requires caleculating . powers of the

matrix At, there is a practical limitation on the maximum value of:

the largest element in the At matrix, and experience has shown that

it is most efficient to limit this value to'about'l.o. Should the

desired T make max |A, .t] > 1.0, then T,is'halved up to 10 times

i,J
for the exponential calculations. The original arguments are

restored by applying the following equations as many times as

required:
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C(Tj

= exp (A1) ‘
. o (5.3)
= exp (45) exp (45)
HP(T>.E [éxp (A1) -I] A_l.
={ [exp (A%) -I] A-%}[I + exp (A%)]: | (5.4)

There are also provisions in the code to keep track of the roundoff
errors in the exponential calculations. The maximum values of the

largest elements in the QPT matrices ié%%— are monitored to make sure

that they are not larger than the specified precision "P" times

108 (for an eight-decimal computer) . When'fhe QPT terms are summed;

the accuracy of the.summation will be approximately P, since thé
summation is carried out until the largest eléﬁent in QPT < P, If a
maximum value of a QPT element does excéed Px 108, then 7 is halved,
the exponential is calculated, and the original_T is restored as before.

Users are caufioned that roundoff erroré-may become significant
if restoration of the original T requires very many applications of
thé argument doubling Eqs.‘5.3 ande.H. We know of no general rules
for estimating this limitation; however, éhecks made on sample‘problems
indicate a "safe" boundary probaﬁly existé'at a precision P = 10"~ and
T halved 10 times. With a larger P and mOré halvings,:one should at
least be cautious about the results. _

The fidelity of the results are also questionable whenever the
ratio of the largest (absélufe) matrix'eleméht to the smallest
(nonzero) element is > 10". This might be a manifestation of a very
wide range of time constants in a dynamicé problem. With a range of
~ 108, clearly the faster tim¢ constants could be considered
"instantaneous" with respect.to the slower oqé$, and the equations

could prbbably be rewritten to'get around.this problem.
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5.2 Detailed Description of Programs

Hopefully the information giveh‘in this section is sufficient to
permit the reader to use and modify MATEXP. Since we have tried
going through this typically excruciating experience with programs
from others, we have tried making things as clear as possible. In
particular, we have used many comment cards in the program listings
as a running explanation of what we are doihg; Either author would
be glad to try to help out any potential MATEXP user, and would be

happy to receive any suggesfions for improving the program.

5.2.1 MATEXP Main Program

The MATEXP program consists of the main'progiam and two sub-
routines. OUTPUT and DISTRB, plus any other sﬁbroutines called by
DISTRB. Even if DISTRB is not used, a dummy must be included.

For each case run on MATEXP, the data will include (if appropriate):

1. MATEXP Control Card,

2. Coefficient matrix (A),

3. Initial Condition Vector (XIC),

4, Any data read in by subroutine DISTRB,
5. Fixed forcing function vector (Z).

Input Data Formats - MATEXP Main Program

1l. Control Card

Column | 1-2 6-7 11-20| 21-30 ] 31-40 | 41-50]| 51-60 | 61-62

Format | 12 |3X | I2 |3X| F10.0| F10.0| F10.0 | F10.0| F10.0 I2

Input | NE IL P TZERO T TMAX PLTINC | MATYES
Control Card - cdnt'd

"Column [ 63-6k| 65-66 | 67-69 70 -2 73-7% [ 75-80 |

Format | I2 I2 I3 | 11 I2 I2 F6.0

Tnput | ICSS | JFLAG | ITMAX LASTCC TI1Z | ICONIR VAR
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NE

ILL = coefficient matrix tag number

number of equations

P = precision of C and HP - recommend 10-6 or less

TZERO = zero time

T = computation time interval

TMAX = maximum time :

PLTINC = printing time interval

MATYES = coefficient matrix (A) control flag
1l = use previous A and T

=-read new coefficients to alter A

= read entire new A (nonzero values)

DISTRB to calculate entire new A

= read some, DISTRB to calculate others

= DISTRB to alter some A elements

ICSS = initial condition vector (XIC) flag

O Ui = W N
il

1 = read in all new nonzero values
= read new values to alter previous vector
= use previous vector

vector = O

v W N
I

= use last value of X vector from previous run
JFLAG = forcing function (Z) flag

1 thru 4 = same as for ICSS for constant Z

5 = call DISTRB at each time step for variable Z
ITMAX = maximum number of terms in series approximation of exp (AT)
LASTCC = nonzero for last case o
J1Z = row of Z if only one nonzéro} otherwise = O
ICONTR - for internal control options 4

0 = read new control card for next case

1l = go to 212 call DISTRB for new A or T

-1 = go to 215 call DISTRB for new initial conditions

VAR = maximum allowable value of largest coefficient matrix element * T
(Recommend VAR = 1.0)
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2. Coefficient Matrix A Format h(213, E12.3)_5 Include if MATYES =

2, 3, or 5.
Columm| 1-3 -6 — 7-18
Format I3 I3 E 12.3 ' Repeat,
Input | Row No. Col. No.| COEFFICIENT 4 per card

Notes: 1. All row and column number entries on a card must
be nonzero. '

2. Insert blank card after all coefficient matrix
data is read in.

3. Data can be entered in floating point (F)
format with decimal point. .

3. Initial Condition Vector XIC Format (I2, 5(13; E12.3))~ Include
if ICSS = 1 or 2 '

Column | 1-2 3-5 6-17
Format 12 13 E 12.3 " Repeat Cols. 3-17,
Input MM Row No.} I.C. Value 5 per card

Notes: 1. All row number entries on a card must be nonzero.
2. Insert blank card after all XIC data is read in.

3. Data can be entered in F format.

4. Disturbance Vector Z Format (I2, 5(13, El2.3))- Include if
JFLAG = 1 or 2

Column 1-2 | 3-5 6-17
Format I2 I3 : E12.3 " Repeat Cols. 3-17,
Input KK Row No. 'Z Value 5 per card

Note: See notes under 3.

Two figures are included to aid in undefsﬁanding the MATEXP
program. Figure 5.1 summarizes the data arrangement, and Fig.
5.2 is a flow diagramlof the main program. The symbols used in
MATEXP are also listed and identified.
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r MATEXP CONTROL CARD -
' Case 2

Include if
JFLAG = 1 or 2

S e T

DATA READ IN BY DISTRB

Include if
ICSS =1 or 2 )

MATYES = 2, 3, or 5

MONITOR
CONTROL CARDS

Fig. 5.1 MATEXP Data Arrangement
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ORNL DWG. 67-10217

NI:O FROM BOT TOM RIGHT
Fig.5.2¢

) e———— O

FROM BOT YOM MGHT
F16. 5,20

2]
WFLAGSO 10 YoP
CPTMP + P2 100 Fio.5.2

PRINT CONTROL DATA
PLTING @ PLTINC ¥.9999
JFK=0

Fig. 5.2a. MATEXP Block Diagram — Read or Compute A Matrix and XIC Vector.
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ORNL DWG. 67-10218

FROM
Fig.8.2a

FIND AMAX 8 AMIN
'RATIO * AMAX / AMIN
T HALVED ISTOR TIMES
(UP T®10) UNTIL
AMAX % T C VAR

TO STATEMENT 20
Fi6.52C
PE:0
AL® 1O
et « C
a7
r
—{ 0616 kL= 1, TTMAX |
CI2T) = CiTIC(T)
KL =KL TO STATEMENT 37
ALL = T/AL £G. 5.2C
AL * AL+ 418
TALLL * T/AL ! .
GPT « QPTHA ¥ ALL [ween « wrm+cmmrm |
€ C+apT
» a9
o+
. /1
{9FK-1)
*,-
45
| #e o v+ cPTHTALLL |
47 .
- WK = JFK+|
[ Pux1ass (aPT(1Max, seax ] TeT#0.8
14 o-
{QPTMP-PNK) 83
+
502 ,
1STOR:
L 1F: 414
| (ot ) ~ . | 1sToR+urk
0~ . 40
i :
- 1 \ 1N, I
PE- 2% PMK PRINT KLM {TMax SoeIKLM- N 1=
{ ) ot [ o/ 558 \ITMax
. - \

Fig. 5.2b. MATEXP Block Diagram — Compute C. and HP Matrices.
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ORNL DWG. &7-10219

FROM RIGHT SIDZ
FIG.5.2b

20

TIME*TZERO®
PLT:0

O~ 218

3 | co To\ 5238 /.. IF
JFLAG {MATYES

20 4
28 +

QA [ xxe0 CALL DISTRB
-0 15T CALL

CALL OUTPUT
I ST CALL
(NI SET #t)

24

CALL DISTRD

=

SOLUTION
Xs¥Y

i

JJFLAG =)
TIME » TIMEAT ot v B iy Folg

PLT=PLT4T ' o

- IF ’
(PLT-PLTINC) _ IF
ICONTR
o+
33
CALL OUTPUY

PLT* O PLT=0 ~

3

KeK+{
3
" FROM BOTTOM
FIG. 8.2b
| (3 _ N
TIME-TMAX
0,4 ’

k14

Nl O

Fig. 5.2c. MATEXP Block Diagram — Compute Solution Vector.
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MATEXP MATN PROGRAM SYMBOL KEY

1.

2.

3.

Control Card Inputs

See input data format list.

Input Data
A(NE,NE) = coefficient matrix

MM = initial condition vector tag number
XIC (NE) = initial condition vector
KK = disturbance vector tag number

Z(NE) = disturbance vector

" Internal Variables

The following variables are listed in alphabetical order.

ADT = AMAX x T

AL = PFloating point KIM for ALL calc, KIM+1l for TALLL

AL = T/AL with AL = KIM |

AMAX = Maximum (absolute) value of element in A matrix

AMIN = Minimum (absbiute) value of nonzero elememt in A matrix
C(NE, NE) = Coefficient matrix exponential

HP(NE,NE) = Disturbance function matrix exponential

IMAX = Row location of AMAX ‘

IMIN Row location of AMIN

ISTOR = Number of times matrix exponential argument T is
halved so that AMAX x TKVAR; later ISTOR = ISTOR + JFK

JFK = Number of times T is halved in order for matrix exponential
calculation precision to be P or better

"JIFLAG = Flag to prevent double call of DISTRB durlng initial
time step calculation

Column location of AMAX
Column location of AMIN

!

JMAX
JMIN

K = Case number

KIM = Number of terms. in series approximations of exponentials

NI = Printing flag: O on initial call of OUTPUT causing printout
of A, C, and HP matrices, OUTPUT sets NI = 1 on first call.

PE = Maximum element in. (n - l)th QPT term
PMK = Maxlmum element in nth QPT term
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QPT(NE,NE) = Term in series approximation of C matrix

QPIMP =
BATIO =

TALLL =
TQP(NE)
X(NE)
Y(NE)

Maximum permlss1ble value of element in QPT matrix.
AMAX/AMIN. If RATIO less than 108 (for eight decimal
machine) there may be significant problems in
calculation of C and EP. -

T/AL with AL = KIM +1

= Temporary storage for QPT terms

= Solution veetor

=}Temporary storage for X

5.2.2 Subroutine OUTPUT

The first time MATEXP calls OUTPUT, the coefficient matrix (A)

and the exponential matrices C and HP are printed out, along with the

_initial solution (X) and disturbance (Z) vectors. OUTPUT also sets

the first call flag (NI) to 1, and on subsequeht calls only the X‘

and Z vectors are printed. A possible means of saving computing

time at the expense of storage would be to store X (and Z) values

in.arrays for a large number of time intervals,.  then print the

'arrays out in blocks. Additional savings could be achleved by

printing only selected variables.

5.2.3 Subroutine DISTRB

Subroutine DISTRB may be called by MATEXP either to compute
matrix coefficients (A) on the first call (i.e. when flag NI = 0)

and/or compute variable forcing-function vectors (z2).

Other special purpose subroutines, such as VARCO, DFG, TRLG,

and any others the user may want to supply, are usually called by

DISTRB.

-Another special purpose use of DISTRB is to compute inputs

for successive MATEXP cases without requiring a control card for

each case. This is done by means of the flag ICONTR (Cols. 73-4 on

the control card). After a case is run, the first call flag NI is

reset to O, and case number K is increased by 1l; then if ICONTR

is positive, DISTRB will be called at statement 212, where a new
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coefficient matrix A or time interval T may be calculated. If
ICONTR is negative, DISTRB is called at statement'QlS, permitting
new initial conditions to be used. -

The program listing for DISTRB that was used in calculating the
sinusoidal forcing function for the example in Sect. 3.3 is given
in Sect. 5.3. '

Another vefsion of DISTRB is used to calculate the sensitivity
of a system's time response to changes in the system's coefficient
matrix elements

ax L]

da, .
1J

. DISTRB controls the solution of the sysfem equations and stores
those values of the solution vector which are to be used subsequently
as forcing functions for the sensitivity calculations. To campute
the sensitivity to aij’ the jth row of the system solutionizector
is stored and is later used as a forcing function to the i row of -
the same systenm eq}lations.15

After solving the system equations and storing the required -
elements of the response vector, the arithmetic average values of
the X's in each time interval are calculated and stored (XT).

.During each sensitivity run, DISTRB feeds the forcing function
into the system equations, and the resulting printouts of the X
vectors are the desired sensitivities.

For the sample program shown in the Fortran listing, Sect. 5.3,
the system is forced by a unit step input in row I1Z (specified on

the control card). Other control card inputs are:
JFLAG = 5

ICONIR = 1

Special input data read in by DISTRB are the row (IS) and column
(JS) numbers of the matrix elements for which sensitivities are to
be calculated, the number of time points (NTS), and the number of

sensitivity runs (NSENS), as follows:



1 ‘ 1 ‘ 51
fs(u) | as@ | ) | 18(2) | 3s(2) | (uX)f...thru J5(5) }NrT | NSENs]

I3 I3 I3 I3 I3 13

5.2.4 Subroutine VARCO

The VARCO (VARiable COefficient) subroutine can be used with
DISTRB to simplify the programming of problems with variable coefficient
matrix elements. In general, these elements are functions of both
time and the values of the éolution vector X. VARCO is designed to be
called by DISTRB at the start of each computation interval and to
return the mean values of time (TX), and X, (XTR), for that interval.
The mean values of X are predicted by a first bfder-extrapolation
scheme, as shown in Fig. 3. VARCO will also cause the initial time
step to be repeated, using the first try at calculating X(T) to
estimate the mean value at g. DISTRB can then calculate the
coefficient values using TX and XTR. Use of this first—order »
_extrapolation scheme results in significant improvement in accuracy

over using no extrapolation.

5.2.5 Subroutine DFG

DFG uses the principle of the analog computer's Diode Function
Generator (see Fig. 4) and uses linear interpolation to approximate
arbitrary, single-valued functions of a variasble. Data for DFG is
read in the . first time it is called by DISTRB (i.e., when NI = 0).
The standard program provides for up to 8 functions with up to 32
coordinates each. o .

On each successive call, DFG returns the functions ZD for
varying inputs XD. If an input XD(I) goes outside the specified
limits, the output is a straight-line apbrokimation of ZD(I) based
on the slope of the function at the boundary, and an error message
"DFG(I) RANGE EXCEEDED" is printed.

The inputs read in by DFG are:

NDFGS Number of functions used

NPTS(8) Number of points in approximation for each function
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XP(32,8) Independent variable points ..
ZP(32,8) Dependent variable points

The input format is as follows:

Card No. 1 (I2, 8X, 8I3)

Column 1-2 11-13
— Repeat Cols, 11-13
Format I2 8% I3 ' .
-7 more times for
Variable | NDFGS NPTS(1) | NPTS(2) to (7)

Card No. 2, 3....etc. (8E10.3) _ ,

~ Column 1-10 11-20 21-30 31-L0 Repeat as required
Format E10.3 E10.3 E10.3 E10.3 | for DFG(1l); Max.
Variable | X0(L,1) | z8(L,1) | xP(2,1) | zp(e,1| O numbers per card

NOTES: 1. When all data for DFG(1) has been entered, start
DFG(2) data on new card; etc.

2. Enter independent variable points XP in order,
progressing from most negative to most positive
values.

3., F Format entries (with decimal point) may be used.

5.2.6 Subroutine TRLG

TRLG (TRansport LaG) is described in some detail in Sect. 3.5.
~ The input functions XT (e.g. fluid temperature) and the mass flowrates
W (in terms of either mass/time, unity for full flow, or some
percentage of full scale) are supplied by the calling program DISTRB,
and the lagged functions ZT are returned by TRLG. On the first call
of TRLG (when NI = 0), the following input data is read in:

NLAGS Number of functions used

TI(6) Initial value of transport lag time for each function

WMIN(6) Minimum expected value of mass flow W for each function

The program is set up assuming that subroutine VARCO is also
called by DISTRB. VARCO has a restart feature which repeats the
initial time step calculation; thus the TRLG functions will not be
updated on the second call. If VARCO is not used, this second call
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omission may be deleted by removing statement 33 in the TRLG program.
The input format for TRLIG is:

Card No. 1 (I2)

Column 1-2

Format I2

Variable | NLAGS

Card No. 2 (6E10.3)

Column 1-10 Repeat 5 moref
Format E10.3 times for .
Variable TI(1) TI(E) - (6)
Card No. 3 (6E10.3)

Column - 1-10 Repeat 5 more
Format E10.3 .times for .
Variable | WMIN(1) WMIN(2) - .(6)
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5¢3 - FORTRAN LISTING OF PROGRAMS

$IBFTC MAIN DECK
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PROGRAM MATEXP FOR THE 7090 - FORTRAN 4

foS PROGRAM CALCULATES THE SOLUTION OF A MATRIX OF FIRST
ORDERs SIMULTANEOUS DIFFERENTIAL EOUATIONS W/ CONSTANT COEFFICIENTS

OF THE FORM DX/DT # AX + Ze
THE METHOD IS PAYNTER-S MATRIX EXPONENTIAL METHOD

THE SOLUTION IS GIVEN FOR INCREMENTS OF THE INDEPENDENT
VARIABLE (T) FROM TZERO THROUGH TMAX

COMPUTES MATRICES C # EXP(A¥T) AND
HP # (C-I1)*A INVERSE
SOLUTION X(N#T) # CH*X((N—1)*T)+HP*Z ((N-1)*T)
SERIES CALCULATION OF C AND HP MONITORED TC
ASSURE SPECIFIED SIGNIFICANCE.
IF T IS REDUCED FOR -C AND HP CALCSes
CRIGINAL ARGUEMENTS ARE RESTORED BY -
CL2¥THy#C(Ty=C (T
HP (2% T)#HP(T)+C(T)*HP(T)

OUTPUT FROM THE PROGRAM IS PRINTED AT INTERVALS PLTINC,
THE PROGRAM USES SUBROUTINES DISTRB AND OUTPUT

INPUT FOR THE PROGRAM CONSISTS OF
~ "ONE CONTRCL CARD
THE COEFFICIENT MATRIX A (UP TO 60 X 60) S DIM
THE INITIAL CONDITION VECTOR X ,
A FIXED DISTURBANCE VECTOR Z

A VARYING Z CAN BE GENERATED BY DISTRB
VARIABLE COEFFICIENT EQUATIONS MAY BE SOLVED BY APPROPRIATE
FUDGING OF THE DISTURBANCE FUNCTION SUBROUTINE.

CONTROL CARD INPUT INFORMATION

NE#NO. OF EQUATIONS (I2)
LL#COEFFe MATRIX TAG NCe (12) :
P#PRECISION OF C AND HP (Fip0es0) - RECOMMEND {e+0E-6 OR LESS
TZERO#ZERO TIME (FI10.0) '
T#CCMPUTATION TIME INTERVAL (FI0.0)
TMAX#MAXIMUM TIME (F10e0)
PLTINC#PRINTING TIME INTERVAL (F10e0)
MATYES#COEFFs MATRIX (A) CONTROL FLAG (I2)
I #USE PREVIOUS A AND T
2¥READ NEW COEFF.S TO ALTER A
3#READ ENTIRE NEW A (NON-ZERO VALUES)
4#DISTRB T CALC. ENTIRE NEW A~
5%¥READ SOMEs DISTRB TC CALCs OTHERS
6#DISTRB TO ALTER SOME A ELEMENTS
ICSS#INITIAL CONDITION VECTOR (XIC) FLAG (I2)
| #READ IN ALL NEwW NON-ZERO VALUES
2H#READ NEW VALUES TO ALTER PREVIOUS VECTOCR
3#USE PREVIOUS VECTOR
LEVECTOR#D
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S#USE LAST VALUE OF X VECTOR FROM PREVIOUS RUN
JFLAGHFORCING FUNCTION (Z) FLAG (12)
{ THRU 4#SAME AS FOR 1CSS FOR CONSTANT Z
S#CALL DISTRB AT EACH TIME STEP FOR VARIABLE Z
I TMAX # MAX. NOo OF TERMS IN SERIES APPROX,
OF EXP(AT)s (I3) '
LASTCC # NON-ZERQO FOR LAST CASE (11)
112 # ROW NCe OF Z IF ONLY CNE NON-ZEROs
OTHERWISE #0 (12)
ICONTR - FOR INTERNAL CONTROL CPTIONS (12)
O¥READ NEW CONTROL CARD FCR NEXT CASE
I#GO TO 212 CALL DISTRB FCR NEW A OR T
~1#GO TO 215 CALL DISTRB FOR NEW I.Ce-S
VAR # MAX. ALLOWABLE VALUE OF LARGEST COEFFe MATRIX ELEMENT * T
(RECOMMEND VAR#! .0) (F6.0)

DIMENSION A(60560)sC(60,60)9sHP(65+60)sQPT(60+60) DIMEN
IX(6D)9Y(6D)9Z(6D)9XIC(6D)9TQP(6D) o ' DIMENS

COMMON CsHPsAsQPTsXsZsY s ITMAX KKsLL s MM,
VJIFLAG S XICYNI s TIMEsTMAX s TZERCSNEsTQP 4T
211Z9sICONTRsPLTINCIMATYES» ICSS s JFLAGSPLT

K#CASE NUMBER

NI#0 ON |-ST PASS. SET TO | ON I-ST CALL OF OUTPUT.
K#1

NI#0

.READ (5,100) NEQLL9PQTZEROQTQTMAXQPLTINCQMATYESQICSS9
VJFLAGs I TMAX sLASTCCs11Z2,ICONTR4VAR

100 FORMAT(2(12+3X)s5F 10e0+3129135119212sF64C)

S0

99

1ol

92

95

COEFFICIENT MATRIX INPUT

GO TO (399992429253 )sMATYES

DO 90 I#I| 4NE

DO 90 J#!SNE

AllsJ)Y#0e0

IF(MATYES=-4)994+3599

DO 91 I#ls1379

MATRIX ELEMEMTS 5(ROW, COLUMNSs VALUE)

ALL I AND J ENTRIES ON CARD MUST BE NON-=ZERO.

A BLANK CARD IS REQUIRED AFTER ALL ELEMENTS ARE READ IN.
READ (5s101) I1eJl oD s129J29D29139J3sD39149J4sD4
FORMAT (4(213sE1243))

IF(I1)3293492

A(l';Jl’#D'

ACT129J2)%D2

A(q39J30#D3

A(I49Jﬁ&#D4

INITIAL CONDITION VECTOR XIC INPUT

GO TO(4s120+695+611CSS

DO 93 I#1,NE

XIC(II#0e0

DO 94 I#1415 , '

ALL ROW (1) ENTRIES MUST BE NON-ZERO ' '

A BLANK CARD 1S REQUIRED AFTER ALL ELEMENTS ARE READ IN.

READ (5495} MM91||9D'I,I|29D|29I|3§D|391|49D|49Il5gD|5
FORMAT(I1255(134E1243})
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96

94

81
82
214
212
213

211

=45~

IF (1111696996
XIC(III)Y#DI |

XIC(II2)#D1)2
XIC(II3Y#DI13
XIC(II4V#D I 4
XIC(IIS)#DIS

MM#0
DO 7 I#1sNE
XIC(1)#0e0

IF(ICSS=5)8145214,8|

DO 82 I#14NE
XCLY#XIC(I)
IF(MATYES=31213+2139212
CALL DISTRB

JJIFLAG#0

QPTMP # MAX. PERMISSIBLE ELEMENT OF QPT FOR 8 DECIMAL COMPUTER

MATRIX CALCe LOSES SIGNIFICANCE IF LARGEST
ELEMENT IN SERIES APPROX. MATRIX QPT IS
GREATER THAN P*|.CES8

QPTMP#P*| +E8

WRITE (69211) KeNEsPsTo
IPLTINCyMATYESs1CSSsJFLAGs ICONTR ITMAX,IIZ9VAR,OPTMP

OFORMAT ( |1 2HIMATEXP CASE,I3/17H NOe OF EQUATIONS,
1137208 SPECIFIED PRECISIONsF1248/6H TIME .

28HINTERVALsFI1848/15H PLOT INCREMENTsF|7e8//

316H CCNTROL FLAGS =/1IH 35Xs6HMATYESs14/IH

45X s4HICSS»16/1H $5Xs5HJUFLAGsI5/1H s5X9s6HICONTRy14/
534HOMAX e TERMS IN EXPONENTIAL APPROXes15/

806

402

40

407
408

6!3H SINGLE Z ROW,sI14/20H MAXe ALLCWABLE A#DTsF9.3/
727H MAXe ALLOWABLE QPT ELEMENTSFI1e3)

PLTINCHPLTINC*049999

JFK#0

IF(MATYES-1)20s20,806

SCAN MATRIX FOR MAXe AND MINe NON-ZERO ELEMENTS.
IMAX#|

JMAX# | _

AMAX#ABS (A(1s1))

DO 40! I#14NE

DO 4n! J#!sNE

IF(AMAX~ABS (A(1sJ)))402+401 9401
AMAX#ABS (A(IsJ}))

IMAX#1I x

JMAX#J

CONTINUE

IMIN#IMAX

JMIN#IMAX

AMIN#AMAX

DO 409 I1#I| 4NE

DO 409 J#1 sNE

IF(A(TSJ)) 40794099407

IF(ABS (A(I+J))~AMIN) 408,409,409
AMIN#ABS (A(IsJ))

IMIN#I

JMIN#J
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409

413
403
404

405

410
411

48

49

b6~

CONTINUE
RATID#AMAX/AMIN
AMIN # MINIMUM NON-ZERD ELEMENT
I STOR#D
ADT#AMAX®*T
DO 403 I#1s11
IF(VAR-ADT) 413+4045404
ISTOR#ISTOR+I
ADTH#ADT*D .5
T#ADT /AMAX
COMPUTATION INTERVAL T IS HALVED ISTOR
TIMES (I1g#MAXe) SO MAXe ELEMENT IN A%*T
IS LESS THAN VAR
WRITE (6+405) IMAX s JMAX sALIMAX s JMAX) sADT 9T s
| IMINsJMINSA(IMINsJMIN)4RATIO
FORMAT (3 IHOMAX«COEFFe MATRIX ELEMENT # A(sI2s1Hs3129s3H) #»
. E15e4/13H MAXe A#DT # sF 1268 42Xs 1 4HWITH DELTA T #4F1548/
230HOMINIMUM NON-ZERO ELEMENT # A(s12sIHseI2s3H) #sE1544/
318H RATIO AMAX/AMIN #sEI15,.4)

IF(ISTOR-10)8s410,410

WRITE (69411) ,
DFORMAT (34HQA*DT STILL GREATER THAN ALLOWABLE,
{ 19H AFTER 10 HALVINGS.) '

GO TO 37 _

CALCULATION -OF MATRIX EXPONENTIALS C AND HP
DO 9 I1#I1sNE

DO 9 J#IsNE

C(IsJ)#De

DO 1D I#1sNE
ClIsI#1o

SKIP HP CALCS. FOR HOMOGENEOUS EQUATIONS
IF (JUFLAG-4)48,51,48

DO 49 1#1sNE

DO 49 J#1sNE

HP(I+J)#0O.

DO 50 I#I4NE

50

5(

HP (T, 1)#T
PE#0.0

DO 'l I#14NE.
DO |1 J#IsNE
QPT (I s J)#C(IsJ)

FORM THE MATRIX EXPONENTIALS CHEXP(A*#T) AND HP#((C-~I1)%¥A INVERSE)

AL#140

DO 16 KL#IsITMAX

KLM#KL
CALL#T/AL
AL#AL+1 0
TALLL#T/AL

i el PR
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44

45
145

46

FIN

17
16

21

.'_)+7_

DO 18 I#! 4NE

DC 13 J#14NE

TQP(JUI#0eD

PO 13 KX#14NE

TQP (U #TQP(JY+QPT (I sKX)*¥A(KXsJ)

DO 18 J#I|sNE
CQPT(Is)ETQP(J) *ALL

QPT#MATRIX TERM IN SERIES APPROXe #((A¥T)%*%K)/K FACTORIAL

DO 44 I#1NE
DO 44 J#ISNE
CUIsJIECIIL0)+QPT (1)

IF (JFLAG=4)45447445

IF(ITMAX=KL )47 9474145

DO 46 I#! sNE

DO 46 J#1sNE

HP (T s J)#HP (19 J)+QPT(IsJ)*TALLL

D MAX ABS ELEMENT IN QPT AND CALL IT PMK

LARGEST QPT ELEMENT USUALLY IN ROW IMAXs COLUMN JUMAX

PMK#ABS (QPT( IMAXsJMAX))

IF(QPTMP-PMK) 83,83+502

IF(PMK=P) 40640616 ' ‘

SCAN OTHER QPT ELEMENTS ONLY WHEN QPT(IMAXs JMAX) IS LESS THAN P
DO 14 I#!sNE

DO |4 J#!| sNE

PMK#AMAX | (PMKsABS (QPT(1IsJ)))

IF(PMK=P)17+17516

PRESENT MAXe QPT ELEMENT. SHOULD BE LESS THAN
HALF PREVIOUS MAXe TO INSURE CONVERGENCE

IF(PE-2+%PMK) 16921921
PE#PMK
WRITE (6+200) KLM

200 FORMAT (44HONCe OF TERMS IN SERIES APPROXe OF MATEXP # ,12)

538

83

304

303

303

210

IF(ITMAX=1)20s20+538

IF(KLM=1ITMAX) 414583,83
T#T*Qe5

JFKH#JIFK+I
IF(JFK~7)303+3045304

WRITE (6+305) PMK

OFORMAT (32HD7 TRIES AT HALVIMNG T NeGes PMK#sF1246)

GC TO 37

WRITE (6s210) KLMsPMK T '
FORMAT (21 HOMAXe ELEMENT IN TERM,I13,8HOF QPT #sEI |3/
| 35H TRY HALVED TIME INTERVAL DELTA T #,F15.8)

GO TO 8 '
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414 ISTORH#ISTOR+JFK

C ORIGINAL ARGUMENTS OF C AND HP MATRICES RESTORED IF ISTOR GREATER THAN O ,
IF(ISTOR) 2020416 '
416 WRITE (6s415) ISTOR

415 FORMAT(26HOTOTAL NCe OF T HALVINGS #413)
DO 417 KR#|,ISTOR :
IF(JFLAG=4) 41994189419 A
C SKIP HP CALCS. FOR HOMOGENEOUS EQUATIONS
419 DO 420 I#1sNE - '
DO 421 J#1sNE
TQP(J)#0e0
DO 421 KX#I sNE
421 TAP(J)ETQP(J)+HP (I sKX)*#C (KX sJ)
DO 420 J#I1 4NE
420 HP (I s )#TQP(J)+HP (1 J)

418 DD 430 I#1,4NE
DO 430 J#!14NE -
430 QPT(IsJ)#00
DC 431 I#14NE
DO 431 J#! 4NE
DO 431 KX#|sNE
431 QPTU(I»J)I#QAPT(I9J)+CIIsKX)*C(KXsJ)
DO 432 I1#IsNE
DO 432 J#I4NE
432 ClIsJI#QPT(1,J)
417 T#2e0%T

C(IsJd) IS THE MATRIX EXPONENTIAL CHEXP(A*T)
AND HP(IsJ) 1S THE ((C—-1)*A INVERSE) MATRIX
NOw WE READ (OR CALL SUBROUTINE FOR) DISTURBANCE VECTOR

OO0

20 TIME#TZERO
PLT#Oe
GO TC (2612127925955 ),JFLAG
55 1F(MATYES~-3)2155215427
215 CALL DISTRB
11Z#112
GO TO 27

26 DO 97 I#14NE
97 Z(1)#0.C
121 DO 98 I#1,415 :
C ALL ROW (I) ENTRIES MUST BE NCN-ZERO
C A BLANXK CARD IS REQUIRED AFTER ALL ELEMENTS ARE READ IN.
READ (5595} "KKsI219D2191224sD2251234D235124sD2451254D25
IF(I21)2752778 - '
78 Z(I21)#D21
2(122)y#D22
Z(123)#D23
201244024
98 Z(125)#D25

25 KKAD
DO 28 I1#!sNE
28 Z(1)80. |

C ON 1-ST CALL OF OUTPUT NI SET TO |
27 CALL OUTPUT :
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53

56
30
29

702
703

700

32
52
31

ONE
NOW

33
35

37
34

40

-9~

COMES THE EQUATION SCLUTION BASED ON
XINT)#MEX(NT=1)+((M=T)A INVe)*Z(NT~1)

IF (JFLAG=4)294544+56

DO 53 I1#I14NE

YUIVHCtI s )X

DO 53 J#2sNE

YCI)AY(T)+C (T e J) %X (J)
IF(112)52+524,702

IFU{JJFLAG) 3092930

CALL DISTRB

IF(11Z2)700+s70054

ONLY ONE Z-TERM CALC, IF 11Z IS GREATER THAN ZERO
DO 703 I1#1sNE
YOIIAY(I)+HP (I 11Z)%Z2(112)

Go To 52

DO 32 I#!sNE '
YUIYHC(TI o 1) #X L)Y 4+HP (T 1) %2 (1)

DO 32 J#24NE :

YODIHY (D) +C (T o J) ¥X (J)+HP (T s J) *Z (J)
DO 31 I1#I| sNE

X{Iy#Y (1)

TIME INCREMENT OF THE SOLUTION HAS JUST BEEN FOUND
PLCT AND PRINT IF PLTINC INTERVAL HAS ELAPSED ’

JJFLAG#I

TIME#TIME+T

PLT#PLT+T
IF(PLT-PLTINC) 35433933
CALL OUTPUT

PLT#0

IF(TIME~TMAX 24537937
IF(LASTCC)40s 34540

K #K+ |

NI#0

PLT#00N .
IF(ICONTR)215s1 9212
STOP

END
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202

31

203
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C ouT DECK
SUBROUTINE OUTPUT

DIMENSION A(6U’6U)9C(6U,6U)9HP(6U960)’QPT(60960)’
IXC60)sY(60)92(60)sXICL6T)sTQP(60)

COMMON CoHPsAsQPTsX9ZsY s ITMAX 9KKsLL MM,
| JIJFLAGsXICsNI s TIME s TMAX s TZEROSNESTQP 4T
2I1ZsICONTRsPLTINCsMATYES ICSSsJFLAGSPLT

IF(NI)2s1 92

NI#I

NC#1(0

DO 11 NCMEIsS51isl0

WRITE(E9200) LLs ((ACIsJ) s JENCMSNC) s I1#1 sNE)
FORMAT (2HDAsI12/(1H sIPICEl1e3))

TF(NE=NC) 10510911 '

NCHNC+10

NC#10

DC 21 NCM#1s51 10 v : :
WRITE(S5+201) ((CUIsJ) s JHNCMINC) s I#14NE)
FCRMAT (2HQC/(IH 4IPIOEI1&2))

IF(NE-NC) 20920921

NC#NC+ 10 -

NC#10

DO 31 NCM#1451410

WRITE(69202) ((HP(IsJ) s JH#NCMsNC)sI#1sNE)
FCRMAT (3HOHP/(IH sIPIJEI143))
IFINE=NC) 242521

NCH#NC+10

WRITE(69203) TIMEs (X(1)sI#I1sNE)

FORMAT(4H T #,IPEIQe2s4H X #» /UIH $5Xs 10E1143))

IF(JFLAGeNEW5) GO TO 30

WRITE(65204) (Z(I1)sI#1sNE)

FORMAT(6HOZ #  s1PI0EI143/(1H 35XsICEI143))
RETURN

END

DIMENS
DIMENS
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$IBFTC suBz DECK
SUBROUTINE DISTRB
C
C DISTRB FOR REPCRT EXAMPLE
C
DIMENSION A(60+60)sC(60+60)sHP(60960) sQPT(60+60)
IX(60)sY(60)92(60)sXICLE6D0)sTQP(60)
COMMON CoHP sAsQPT9X9ZsY s ITMAX sKKsLL s MMy
| JUFLAGsXICsNI 9 TIMEs TMAX s TZEROSNE»TQP o T
211 Z+sICONTRSPLTINCyMATYES s ICSS s JFLAGSPLT
C ’ : '
TX#TIME+Qe5%T
ZUV)YHSIN (2.0%TX)
RETURN
END

$IBFTC DSENS DECK
SUBROUTINE DISTRB
C DISTRB FCR TIME RESPONSE SENSITIVITY CALCS,
DIMENSION A(60+60)sC(60+60)9sHP(60+60)9sQPT(60,60}
IX(60)sY(60)s2(60)sXIC(60)sTQP(60)
COMMON CsHP sAsQPToX9ZsY s ITMAX sKKsLL s MM,
'JJFLAG,XIC,NI,TIME;TMAXQTZEROQNEDTQPQT’
21 1Z+sICONTRsPLTINCesMATYES s ICSSsJFLAGSPLT
DIMENSION IR(5),15(15)4JS(15),1Q(30)sXT(5,1000)
IXSEN{(15+30) +XPSI(30) '
IFINI)Ts142
| IF(ICONTR+2)545443
2 IF{ICONTR42)7 646
C INITIAL INPUTS AND CALCS.
3 READ (55 100) (IS(1)sJS(I)sI#195)sNTIsNSENS
100 FORMAT(6(213s4X))
NDT#1 '
ICONTR#=-2
NTIMO#NTI -
DO 8 I1#1sNE
8 Z(11#0.0
C DURING SOLUTION OF SYSTEM EQUATIONS
6 DC 20 I#1sNSENS
ICO#JS(T)
20 XTI SNDTIH#X(ICO)
NDT#NDT+I
GO TO 30

C JUST AFTER SYSTEM SOLUTION IS COMPLETED
4 1STH#D
ICONTR#-3
DO 21 I#1 sNSENS
DO 21 J#1 sNTIMO
. 21 XT(I 9 J)#0e5%*(XT(IsJ)4+XT(IsJ+11))
e XT # AVG VALUES OF SENSITIVITY EQN INPUTS

WRITE(6s102) (CXTCIeJd) s JHI oNTI) o I#1 9NSENS)
102 FORMAT(3HOXT/{(1H 4I10El1«3))
C
C AFTER COMPLETING EACH SENSITIVITY RUN -

5 ISTHIST+1I . :
IF(IST-NSENS)31431932 ‘

DIMENS
DIMENS

29880105
29880107
29880108

29880113
29880115
29880117

29880123

29880201

29880212

29880203
29880205

29880209
29880211

29880213
29880214

29880215
29880217
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101

4|

30
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GO TO NEXT CASE

I CONTR#D

PLTINC#TMAX

TMAX#De 0

NI#l

Go To 30

[IZ#IS(IST)Y

COLe I1Z OF HP MATRIX MULT. BY z
WRITE(6s101) . , IS(IST) »JS(IST)
FORMAT ( | 8HOSENSITIVITY TO A(,13,|H,.13,|H))
TIME#TZERO

NDT#I

DO 41 I#1sNE

X(I)#0e0
Z(1)#0e0
JUFLAG#D

"DURING EACH SENSITIVITY RUN -

Z(I1Z)#XT(IST4NDT)
NDT#NDT+ |

RE TURN

END

29880219
29880221

29880301
29880303

29880305

29880309

29880315 °

29880317
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OO OO OO0

12
30

SUBRCUTINE VARCO(XTRsTX)

FOR USE WITH DISTRB AND MATEXP FCR
VARIABLE Z-Se GIVES {-ST ORDER EXTRAP.

FOR AVGe X AND TIMEs PLUS RESTART
ON |-ST INTERVAL, DISTRB FORM #

CALCe MATRIX COEFFe-S»
CALL VARCO(XTRsTX)

ETC.

IF NI#O

CALCe Z-S USING XTR(I)=S AND TX (TfME);

DIMENSION A(6D,60)9C(6D,60)9HP(6D,60);QPT(6u,6D)9
IX(60)sY(60)s2(60)sXICI60),TQP (60)

COMMON CsHPsA3sQPTyX9ZsY s ITMAXyKKsLL yMM,
[ JIFLAGsXICoNI 9 TIME s TMAX s TZEROSNEsTQP s T
21 1ZsICONTRyPLTINCYMATYES» ICSS»JFLAGHPLT

DIMENSION XTR(60)sXL(60)

IF(NI)1sls2
FIRST ENTRY
NV # |
TXH#TZERO+O «5*T
DO 10 I#I1 sNE
XTROI)H#XIC(IY
GO T2 30

IF(NV)3s344
SECOND ENTRY

NV#0
TIME#TZERO

PLT#0Q.D

DO I I#I9NF
XLII)#XIC(])
XTR(I)#0. 5*(XL(I)+X(I))
X{I)#XIC(I)
GO To 30
ENTRIES AFTER SECOND
TX#TIME+D«5%T

DO 12 I#IsNE
XTROI)#X{I)+0e5%*(X{1)=XL(I))
XLOI)Y#X ()
RETURN

END

29880101
29880103
29880105
29880107
29880109
29880111
29880113
29880115
29880117
DIMENS .
DIMENS

29884118

29880120
29880121
29880122
29880124
29880202
29880204
29880206
29880208
29880210
29880212
2988021 4

29880216
29880218
29880220
29880222
29880224
29880301

29880303
29880305
29880307
29880309
29880311

29880313
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$IBFTC FGEN CECK

aNaNaNaNaYANA AR EANA NS

100

4
101
86

SUBROUTINE DFG(XD,2D)

EQUIVALENT 70 8 DFG-S WITH UP TO 32
POINTS EACHe CALLED BY DISTRB.

INPUTS ARE
NDFGS NO. OF DFG-S USED
NPTS NOe OF POINTS IN EACH DFG
XP INDEPENDENT VARIABLE DFG PCINTS
ZP DEPENDENT VARIABLE DFG POINTS

XD IS THE INPUT VARIABLE AND ZD THE QUTPUT

DIMENSION A(60+60)sC{60+60)sHP(60+60) sQPT (60960}
FXTU60) oY (60)9Z2160)sXICL60)sTQP(6D)

COMMON CsHP sA9sQPTsXsZsYs ITMAXsKKsLL s MMy

J JIFLAGsXICHyNI 9 TIME s TMAX s TZEROSNEsTQP s Ty
21 1Z9ICONTRIPLTINCOMATYES s ICSS s JFLAGSPLT

DIMENSICN XP(3248)9ZP(32+8)9SL(32+s8)9yNPTS(8)>
[JP{(8)9ZD(8)+4XDI(8)

IFINI) 921
FIRST CALL COMP.

READ (5,100)
FORMAT(12+8X9813)
DO 86 I1#14NDFGS
NP#NPTS (1)

READ (5.101)
FORMAT(8E(D«3)
WRITE (65200)

NDFGSsNPTS -

(XP(JeI)sZP(Js1) e J#IsNP)

2000FORMAT (4HQDFGs 13,1 7H XP AND ZP INPUTS/

LI o

18
10
I3

L UIHO 94 (2E12e494X)) )

DO 3 I#!sNDFGS

MENPTS(I)~|

DO 3 J#I sM
SLUJesIVHIZPUI+ T 9 1)=ZP(Js 1))/ {XPLJ+1s1)-XP(JsI1))

DO 5 I#! sNDFGS

DO &4 J#2s32
IF(XD(IN=XP(Js1))5+5,44
CONTINUE

JP(I1)#J

CALCS+ MADE EACH TIME

DO & I#! sNDFGS

JEJIP(T)
IF(XD{I)=XP{JsI))10sl 1,12
IF(XD(I)=XP{J=151))13s14s15
J#JI-1 :
IF(J=1)16s16s10

J#2

GO To 19

ZDUIIYHZP(J=1s1}

Go To 6

J#I+I ,
IF(NPTS(I)=J) 1718518

ITo(XP(JsI)sZP(Je1) s J#I ¢NP)

29880105 .

129880106
29880107
29880108
29880109
29880112
29880113
29880110
298801 14
29880115
29880116
DIMENS
DIMENS
25880117
25880118
29880119
29880121 -
29880122
29880123

29880124 -

29880125
29880201

29880202

29880204
29880205

29880207
29880208
29880209
29880210
2988021 i
29880212
29880213

29880214 -

29880215
29880216

29880218
29880219
29880220
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JENPTS(I)

GO TO 19
ZDIIVH#ZP(Js 1)
GO TC 6

WRITE (6s102) 1

FORMAT (4HODFGs 13,4 16H RANGE EXCEEDED. )

ZD(IYHZP(J=1 o I)4SLIJ=1 o TI*¥(XD(I)=XP(J=1,51)).
JP(1) STORES VALUE OF XD LOCATION

TO USE AS FIRST TRY NEXT TIME.
JPCI# - :

RE TURN
END

29880222
29880223

29880224
29880225

29880301
29880302
29880303
29880304
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$IBFTC TRLAG DECK

aNalaNaRalaNaNANANANATANANA!

N NOAN

N

[aNe!

OO Oy

23

24

22

ZD

****** NOTE - IF A RESTART FEATURE IS USED (WHERE THE INITIAL TIME
STEP CALCULATION IS REPEATED),s THE FLAG NV AND STATEMENT 33 WILL
OMIT THE TRLG CALCe THIS |-ST CALL OMISSION MAY BE DELETED BY

33
31

26

SUBROUTINE TRLG(XTsWsZT)
VARIABLE TRANSPORT LAG GENERATOR -~ FORTRAN 1V

USES UP TO 300 POINT APPROXIMATION FOR
UP TO 6 VARIABLES. WUSES INVENTORY CALC.

INPUTS FOR EACH LAG (TOTAL # NLAGS)
fe INPUT FUNCTION XT(I)
2e MASS FLOWRATE W(I)
3« INITIAL VALUE OF LAG TIME TI(I) .
4se MINIMUM EXPECTED VALUE OF MASS FLOW:WMIN(I)

OUTPUTS ARE LAGGED FUNCTIONS ZT(lI)

DIMENSION A(60+60)sC(60560)sHP (60560) sQPT(60,60) s
IX(60)sY(60)2(60)sXIC(6D0),TAP(6D)

COMMON CsHP sAsQPTsXsZsY s ITMAX sKKsLL MMy

IJUFLAG s X1CoNI s TIME s TMAX s TZEROSNEsTQP 5T
211ZsICONTRsPLTINCyMATYESs1CSSsJFLAGSPLT

DIMENSION XT(6),W(6)9TI(6)sWMIN(é),ZT(6)3X5(BDD,6)9
IPS(300s6) sKT(6) sJT(6)sXIMP(6) s IMP(6) s NIMP (6)

NI # |-ST CALL FLAG (# 0 ON -ST CALL)
T # COMPUTATION TIME INTERVAL

IF(NIN20s21,20

FIRST CALL COMP.

READ (5, 100) NLAGS,TI,WMIN
FORMAT(I2/(6E1De3))
CWRITE(65101) TIsWMIN
FORMAT (26HOTRLG INPUTS — TI AND WMIN/(I1HOs6E1845))
DO 22 1#! 4NLAGS
XIMP(I)#1 o0

XSUIsI)#XT(I)

PS(l oI )HEW(I)®TI(I)
XNSP#PS (1 s1)/ (WMIN(I)*T)
DO 23 M#I,10 |
PI#XJIMP (1) #XNSP
IF(300e0-P1)23,24,424
XIMP(T)#XUMP(1)+1.0 .

JMPUII#IFIX(XJIMP (1))
CKT(I)#2

JT (I #]

NJMP (1) #1

NV#-1

CALCS. MADE EACH TIME
NVHNV+ |

REMOVING STATEMENT 33
IFINV)31932,31
DO 17 I#!sNLAGS

IF(NJMP(I)—JMP(I))26,27927
NIMP (1) #NIMP(T) +1

29880105
29880106

29880108
29880109
298801 |10
2988011 |
29880112

29880114

DIMENS
DIMENS

DIMENS
DIMENS

29880121 °
29880123

DIMENS
DIMENS
29880202
29880203
29880204
29880206
DIMENS
29880209

29880212
29880213
29880214

29880216.

29880218
29880219
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GO To 17

NJIMP (1) #1

K#KT (1)

JHIT(I)

XS(KsT)#XT(I) ‘
PS(KsI)#XIMP (1) *W (1) ®T
J#NQCe OF ELEMENT AT EXITe K#NO. AT ENTRANCE
IF(PS(Jsl)=PS(KsI)) 19293
ZTULYAXS(Js 1)
IF(J-300)697s7

JTUI #]

GO T0 30

JTUI)#J+]

Go To 30

COLLTH#XS(Js 1)
COLLP#PS(JsI)
DO 15M#1+300
IF(J-300)8+955

J#0

NE-NE
PQ#COLLP+PS(Js1)

IF(PQ-PS{KsI)) 11912513
COLLT#(COLLT*COLLP+XS{J,I)%¥PS(JsI))/PQ

COLLPH#COLLP+PS(Js1)
ZT(I)#(COLLT*#COLLP+XS(Js1)%¥PS(Js1))/PQ

IF(J=-300) 14516416
JT(IY#1

GO To 30
JTIY#J+I

GO To 30

PS(Js)#PQ-PS(Ks1)
ZTCI)#(COLLT*COLLP+XS(Js 1) *¥PS(JsI))/(COLLP+PS(JsI))
JTUIY#J ‘ '

GO To 30

ZTLIY#XSEUN 1)
PS(Js IV #PS(JsI)-PS(K,I)

IF(K~300)44595
KT(I)#1

GO TO 17
KT(D)#K+1
CONTINUE

RE TURN
END

29880220
2988022 |
29880222
29880223
29880224

29880301
29880302
29880303
DIMENS

25880205
29880306
25880307
29880308
29880309
29884030
2588031 i
DIMENS

DIMENS

25880316

29880319
29880320

DIMENS

29880401
29880402
29880403

29880404
29880405

29880407
29880408
29880409
29880410

29880412
26880413

DIMENS

29880416
29880417
25880418
29880419
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