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ABSTRACT

Given a two-dimensional region on which the concentration of a

diffusing species satisfies Laplace's equation, and on whose boundary

the concentration is specified, the Cauchy integral equation is used as

a basis for determining the concentration gradient normal to the boundary

at all points on the boundary.

Numerical methods based on this principle have been developed for

treating volume diffusion controlled migration of arbitrarily shaped

boundaries. These techniques are described, tested, and applied to the

sintering of a rod to a rod and a rod to a plane.

Calculations of the volume diffusion coefficient for copper and

silver systems to which the results are applicable indicate that neck

growth in these systems proceeds one to two orders of magnitude too slowly

to be accounted for by these results. However, the volume diffusion

coefficient calculated from nickel sintering experiments agrees with that

obtained from tracer diffusion experiments.



INTRODUCTION

The two features of sintering processes of greatest experimental and

theoretical interest are the driving force and the dominant mechanism of

material transport. A great deal of effort has been devoted to under

standing these aspects of sintering in the past, but no unambiguous under

standing of the process has yet emerged. It is reasonable to believe that

different mechanisms are dominant in the sintering of different types of

materials, and at different stages of the sintering of any one material.

A short history of the evolution of the field provides supporting evidence

for these statements.

Sintering is the process by which two or more bodies in contact form

increasingly larger contact areas by material transport to the growing

contact, or neck, area (l). This discussion will be primarily limited

to sintering processes in which no external forces, including gravity,

play a significant role as driving forces for the sintering reaction.

Attractive forces between particles (2), the transformation from the

amorphous to solid state or changes in crystal structure (3), and recrystal-

lization in the neck region (4) have all been proposed as driving forces

for sintering. However, it is generally conceded today that surface

tension is the most important driving force for sintering of bodies under

no external forces (5).

Numerous material transport mechanisms have been cited for sintering

in various systems. However, with the single exception of the surface

diffusion mechanism, rigorous mathematical solutions for the rate at

which sintering should occur by any mechanism have not been developed;

there is considerable controversy over the role played by any mechanism



in the sintering of various materials. Plastic deformation, evaporation

and condensation, surface diffusion, grain-boundary diffusion, and volume

diffusion have all been proposed (6). Each deserves some attention.

Nondiffusional Mechanisms

The plastic deformation mechanism was first suggested by Frenkel (7)

who attempted to relate the self-diffusion coefficient to viscosity and

to treat the growth of a neck between spherical particles as a viscous flow

problem. He derived the relationship that the neck radius, x, should be

proportional to the square root of the sintering time, t. Kuczynski (8)

sintered 0.05-in. diam. glass spheres to glass blocks and obtained a

linear relationship between x and t1/2 as well as reasonable values for

the viscosity of glass in the temperature range studied. Although caution

must be exercised in the application of time laws to determine a mechanism

for sintering and will be discussed further below, it is felt that this

experiment offers good evidence that viscous flow may be an operative

sintering mechanism in materials of low viscosity. The t1/2 law has never

been reported for metals (6). Alexander and Baluffi (9) have discussed

attempts to measure viscosities of metals and to apply Frenkel's mechanism

to metal sintering systems and have concluded that a diffusion process

is responsible for sintering in metal systems.

In a more recent attempt to demonstrate that plastic deformation

may contribute the sintering of metals, Early et_ al. (lO) sintered pure

copper and internally oxidized Cu-Al compacts at high temperatures under

externally applied loads. The rate of shrinkage was shown to depend upon

the maximum calculated shear stress in the particles in agreement with



the dislocation climb creep models of Weertman (ll,12) and Ansell and

Weertman (13). The activation energy for the process was very close to

that for self diffusion in pure copper; this observation supports either

a diffusion or a plastic flow model. Salkind et al. (l) investigated

the rate of change of electrical resistivity of loose beds of silver

powder at 300°C and found that the activation energy for the process

decreased as the externally applied stress increased. The activation

energy for creep of silver wires behaved similarly. A dislocation

mechanism was proposed as dominating the sintering process.

The experiments of Salkind and Early are difficult to evaluate,

since the state of stress in their experimental systems is not known.

While it is conceivable that plastic deformation may contribute to the

early stages of neck growth, Wilson and Shewmon (6) question that dis

location multiplication can occur if the neck radius is greater than a

tenth of the body radius. Further evidence that plastic deformation does

not contribute to sintering in metal is provided by the experiments of

Brett and Seigle (l4). They observe that inert markers in sintering

rods do not migrate into the neck region during the sintering of nickel,

and conclude that a diffusion process is the dominant mass transport

mechanism. However, marker material in glass and cellulose acetate fibers

did migrate into the neck region, as would be expected if plastic

deformation were the dominant transport mechanism.

Evaporation and condensation has never been seriously considered as

a transport mechanism in the sintering of metals because metals have very

low vapor pressures. In any event, the predicted relationship for neck

growth (15), x^t1'3, has never been observed.
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Diffusional Mechanisms

Theory

Two diffusional mechanisms of transport, volume diffusion and sur

face diffusion, have been treated by Kuczynski in his classic work (15).

Since most of the current literature is concerned with determining whether

volume diffusion or surface diffusion is dominant for a particular set of

experimental conditions, it is worthwhile to examine Kuczynski's treat

ments in some detail, and then to discuss Nichols' numerical solution of

the surface diffusion problem.

Kuczynski assumed the surface tension, the volume diffusion coefficient,

and the surface diffusion coefficient to be isotropic. These assumptions

will be retained throughout this work. In order to facilitate further

discussion, the remainder of Kuczynski' s assumptions will be broken into

two sets, which will be called geometrical assumptions and small neck

assumptions. The geometrical assumptions are illustrated in Fig. l(a).

(l) Two spheres of radius "a" and separation of centers "2a" retain that

radius and separation throughout the sintering process: this implies that

material is constantly being added to the system. (2) The neck root is

of constant curvature, smoothly joined to the sintering bodies.

The small neck assumptions include the following approximations

[see Fig. l(b)3: (l) the differential increments of volume for a neck

growing between two spheres may be approximated by a right circular

cylinder; (2) the area through which the flux is defined in the case of

volume diffusion is the cylinder side; and (3) the length of the flux

path for surface diffusion is approximately the neck radius of curvature, p.



dx

CYLINDER

SECTION

Fig. 1. Geometrical Relationships for Rod-to-Rod and Sphere-to-Sphere
Sintering. (a) Cross section through two sintering rods or spheres.
(b) Kuczynski's geometrical approximations for spheres. (c) Geometrical
approximations similar to Kuczynski's for rods.



For our future use, small neck assumptions of the same nature are shown

for the sintering of two rods in Fig. l(c), where the differential ele

ment of volume is a slab, and the flat face of the slab is the area

across which flux occurs by volume diffusion.

The relationship between the neck curvature and neck width, x, for

sphere-to-sphere and rod-to-rod sintering is obtained from the Pythagorean

theoreom; the equality on the left is exact while the approximation on

the right is valid only if x « a. The latter is a "small neck

assumption."

x2 JZ

P - 1„ _ T„ = ~ • C1)2a - 2x ~ 2a

•,KThe Gibbs-Thompson equation (5) is used to define AC , the difference

between the equilibrium concentration of vacancies beneath a surface of

rr

local curvature K, C , and C°, the equilibrium concentration of vacancies

under a flat surface:

ACK =CK - C° =- --^- K (2)
v v v kT

where y is surface tension, Q atomic volume, and k is Boltzmann's constant.

If it is assumed that the vacancy concentration at a distance p from the

neck interface equals that just under the main sphere surface, then the

concentration gradient normal to the surface at the neck of sintering

spheres is

ACS 7fiC° /2 1 1\ yQC
V V / , » ~ X

2\a p x/p kTp \a p x/ kTp'
(3)
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where the right approximation is a "small neck assumption" for x « a.

The analogous concentration gradient expression for the sintering of rods

is

ACr /fiC° /l 1\ 7fiC°£° /l 1\

- r +-)-P \a p/kTp \a p/ kTp2

Conservation of material in either system, setting x = 0 at t = 0,

requires that transport of material volume, V, across area, A, satisfy

v on I

where D is the vacancy diffusion coefficient and n is taken normal to A.

Making appropriate substitutions for V and A from Fig. 1 and integrating,

one obtains the following relationship between neck radius and time for

two spheres sintering by volume diffusion:

x5 D 7fiC°
_ = 20^_2. • t . (6)
a2 kT

The analogous result for two sintering rods is given "by:

x5 D 7fiC°
= 10^^^ • t . (7)

a2 kT

Solutions for the rate of neck growth by surface diffusion are based on

an expression given by Nichols (16) for the surface current of atoms,

J , due to a surface gradient of curvature oK/Ss ('o is the surface
S

density of atoms, D the surface-diffusion coefficient):
s



D yoQT SK
s

Jo WP ^ • (S)
s kT ^s '

The surface gradient of curvature is approximated as the difference

between that of the sintering body and that of the neck root, which for

sphere-to-sphere sintering is given by

*K _ 1 f2+UaL, (9)
Ac; i,TT
ASSphere p 2 ia p xi p2

V

while the corresponding approximations for rod-to-rod sintering are

AK

rod (f-e)Va p/ p2
(10)

If the surface current occurs over an area of 4 TTxfl2/3 for the sintering

of spheres, or 4 fi2/3 for the sintering of rods, then the same relation

ship is obtained for sphere-to-sphere and rod-to-rod neck growth by

surface diffusion, that

x7 D yon2
— = 56 — • t . (11)
a3 kT

However, Nichols (16) recently obtained a numerical solution for the

sintering of a line of spheres and a sphere to a plane by surface diffusion

in which both the geometrical and small neck assumptions were relaxed.

The initially spherical surface was allowed to evolve into whatever shape

naturally developed. Consequently, the neck root grew at the expense of

material from just beyond the neck-sphere junction and the radius of



curvature at the neck root was larger than that assumed in Kuczynski's

geometrical model. No simple time law such as Eq. (6), (7), or (ll) fits

the results; however, Nichols fit an equation of the form x/a = At ' to

the results for small ranges of x/a and obtained the values of n given

in Table 1. At x/a = 0.1, the smallest n was 5.7, while at x/a = 0.3,

the smallest n was 6.3. Nichols concludes, on the basis of a comparison

of his numerical solution with Kuczynski's approximate solution, that for

real metal bodies of 100 |J, in diameter or smaller, volume diffusion does

not dominate when x/a < 0.6. He further demonstrates that reasonable

values for the surface diffusion coefficient of copper may be obtained

by applying his results to the experimental data for the sintering of

copper, and regards any volume self-diffusion coefficients obtained by

applying Kuczynski's analysis to real data (17), however reasonable, as

being fortuitous.

Experimental Observations

Wilson and Shewmon (6) have sintered lines of copper spheres of

100 to 300 n in diameter in perhaps the most carefully executed of all

sintering experiments to date. Their conclusion, that surface diffusion

was the dominant transport mechanism for T > 950°C and for 0.2 S x/a ^ 0.4

was based on two types of analyses: (l) comparison of the rates of neck

growth by volume and surface diffusion using solutions similar to

Eqs. (6), (7), and (ll); (2) application of Herring's scaling laws (5).

The application of Herring's scaling laws, which relate reaction kinetics

to the initial particle dimensions, indicate that surface diffusion

transported a large fraction of the material deposited in the neck up to
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Table 1. Nichols Reciprocal Slopes from

Numerical Results on Surface Diffusion

Controlled Sintering

x/a
Values of n from x/a =At 'n

Sphere-to-Sphere Sphere-to-Plane

5.6

5.7

6.5

7.3

7.9

0.05 5.7

0.1 5.9

0.3 6.3

0.5 6.8

0.7 6.9
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x/a = 0.28, but they do not provide a clearcut indication of whether

surface diffusion ever ceases to dominate the process.

The most recent evidence available for evaluating the contribution

to neck growth between sintering spheres of diffusion along grain bound

aries was obtained by Wilson and Shewmon. They measured the shrinkage

which occurred during the sintering of lines of spheres, and concluded

that less than 5$ of the total material transported to the neck region

during their experiments was due to grain-boundary diffusion.

Until Nichols' analysis was presented, much emphasis was placed

upon the value of the slope of log-log plots of x/a versus t, since a

slope of l/5 would indicate volume diffusion dominance according to

Eqs. (6) and (7), while Eq. (ll) indicates that a slope of 1/7 should be

obtained if surface diffusion were dominant. Kuczynski (15,17), Kingery

and Berg (l8), Alexander and Baluffi (9), Wilson and Shewmon (6), and

numerous other experimenters have obtained data yielding slopes ranging

between 1/5 and 1/5.5, and until recently this was a powerful argument

favoring volume diffusion as the dominant material transport mechanism

in systems of particles of diameter greater than 20 to 50 n. However,

Nichols' analysis indicates that such experimental observations also

nearly agree with the slope predicted for a surface diffusion mechanism

for some values of x/a. To further confuse the issue, Wilson has demon

strated that if p~ x5'3, assuming that the shapes evolved by volume

diffusion are similar to those evolved by surface diffusion, that a

slope of 1/5.8 is obtained for sintering by volume diffusion if shrinkage

is accounted for.
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Relaxation of Kuczynski's "Small Neck Assumptions"

It is of some interest to determine what portion of the difference

between Nichols' numerical results and Kuczynski's analysis can be

accounted for by what have been previously termed "geometrical assumptions,"

and what portion arises from the "small neck assumptions." This will be

accomplished by relaxing the "small neck assumptions." The results will

also provide an indication of the validity of Kuczynski's statement that

his time laws are only valid for x/a < 0.3.

The details of the analysis for both volume diffusion and surface

diffusion controlled sintering in rod-to-rod, sphere-to-sphere, rod-to-

plane, and sphere-to-plane configurations are provided in Appendix 1.

The variable U = x/a is introduced, and the constants t , t^., and f(u)

are evaluated exactly for the geometrical constraints prescribed by

Kuczynski. Thus eight equations of the form

f -Ts •f(u) (12b)

are derived for the eight sintering cases, the former form being used for

the volume diffusion mechanism and the latter for a surface diffusion

mechanism.

The solution of the differential Eq. (l2) was performed numerically

by the familiar "Modified Euler Method" (19), in which the errors are

O(tAt) . The technique involves determining an intermediate approxi

mation to U in the (i + l) time step, U. The system of equations to

be solved is
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U=Uo> *' =Vf =T -f(u)
iL = u. + t • At' • f(u.)
1+11 1

Vi =ui +fwv +f(TW^ • <13>

Because solutions were required over some ten orders of magnitude of t'

to sinter from U = 0.001 to U = 0.5, a constant value of AAt' was not

used on successive time steps; rather, the time steps were determined so

that on successive time steps U., = MU.. A number of trial solutions
^ l+l l

were computed for values of M ranging from 1.1 to 1.001. The values of

At' required to achieve any particular value U converged rapidly for

decreasing M. The results for M = 1.005 differed by less than 0.01$ from

those computed for M = 1.001. The numerical results presented in

Figs. 2 through 5 were all obtained using M = 1.001.

In Figs, 2 and 4, the results are plotted for rod-to-rod, sphere-to-

sphere, rod-to-plane, and sphere-to-plane sintering by volume diffusion.

Figures 3 and 5 are plots of the results for the same geometries, for a

surface diffusion mechanism.

The slope of ln(x/a) versus (t t) or (t t) was also determined

numerically for each time step by differencing. This slope, which is

comparable to l/n in Kuczynski's results, is plotted as a function of

x/a for each of the eight cases. (See Figs. 5 through 11.) It should

be noted that significant deviation from the l/5 and 1/7 slopes commences

for x/a ^ 0.1. Further, the deviations in all cases except the sphere-

to-sphere case tend toward increasing n with increasing x/a.
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Fig. 11. Construction for Cauchy Integral Equation.
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It will be noted that as x/a -> 0, the slopes do not approach the

values l/5 and 1/7 for volume- and surface-diffusion cases, respectively.

This behavior results from the boundary condition of Eq. (13), that the

initial x/a / 0 and initial t' / 0. It is a transient effect resulting

from the mathematical method of solving Eq. (12) and has no bearing on

any physical sintering process. The solutions to Eq. (12) have been

obtained on a time scale t' where

t' =t- tQ =t[l - (tQ/t)] . (14)

The effect of t , which is essentially an artificial shift of the time

base, decreases rapidly, as the last equality of Eq. (l<+) indicates.

When t = 100t the effect of t on t' is a 1$ alteration of the time base.

Further, if U5oct or nearly so, then when U = 2.51 U , the effect of the

shifted time base has negligible effect on a calculated d In U/d In t.

Therefore the slopes on Figs. 5 through 11 for U < 0.0025 are meaningless

and should be ignored.

The points of interest thus gleaned from examining solutions to

various sintering problems in which Kuczynski's "geometrical assumptions"

are maintained but the "small neck assumptions" are relaxed are: (l) The

l/n slope values predicted by this analysis are not constant for

x/a > 0.1. (2) The constant n tends to increase in these solutions with

increasing x/a. (3) In order to eliminate the effects of initiating a

solution to a volume diffusion controlled sintering process at x / 0

for t' = t — t = 0, x must be < 2.51 Xi , where Xi is the smallest neck
o ' o x •"•

diameter for which a numerical value of d [ln(x/a)]/d (in t) is desired.
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(4) Thus, most experimental observations have been made over a range of

x/a for which n varies, and since surface diffusion may contribute sub

stantially to neck growth at small x/a, the time scale for computing l/n

may be shifted by some t .

These four points, coupled with Nichols' results indicating

that Kuczynski's geometrical assumptions are not correct for sintering

by surface diffusion, provide adequate justification for the remainder

of this work, which is concerned with solving numerically for the rate

of sintering of a rod to a rod and a rod to a plane by a volume-diffusion

mechanism. The solutions to be developed do not impose an interface

morphology on the neck region. Rather, whatever morphology develops

naturally is used as a basis for computation.

NUMERICAL METHOD FOR SOLUTION OF SINTERING

VOLUME DIFFUSION IN TWO DIMENSIONS

Physical Assumptions

The general problem of interface migration controlled by volume

diffusion reduces to the specific problem of determining the flux of some

diffusing species normal to the interface everywhere on the interface.

In this treatment of sintering, vacancies are considered to be the mobile

species.

Several important assumptions are made in order to facilitate the

solution of the problem. The surface tension, 7, and the diffusion

coefficient for vacancies D are assumed isotropic. It is assumed that

local equilibrium obtains, and that concentration of vacancies just below

the surface of the sintering body is determined by the Gibbs-Thompson
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relationship [Eq. (2)]. The most important assumption made here to

obtain a numerical solution is that the velocity of the most rapidly

migrating portion of the interface is small compared to that of a vacancy.

Under these conditions, an equilibrium concentration of vacancies exists

throughout a sintering body at all stages of interest during sintering.

This assumption may be simply justified as follows: if the jump

frequency of a vacancy near the melting point of a real material, r ,

is about 1011 sec-1, and a jump distance, a, of 3 X 10"8 cm is assumed;

then the most probable displacement of a vacancy per second is a(r t)1/2

or 9 X 10"3 cm/sec. One may use Eq. (7) to approximate the rate of

migration of the neck root (the most rapidly migrating surface region

during sintering). Using typical values of 7fi/kT = 10"7, a = 10"3 cm,

and a mole fraction of 10~3 for vacancies, it may be shown that the neck

root velocity is approximately 4 X 10"5 cm/sec when x/a = 0.1. The

equilibrium assumption is better for larger x/a and larger a, which is

in the range of physical parameters for which volume diffusion is expected

to become dominant. The fact that vacancies migrate about two orders of

magnitude more rapidly than the neck root under the conditions described

above is considered adequate justification for the assumption that

vacancies are distributed in an equilibrium fashion during the periods

of sintering which are of interest.

The justification offered above is equivalent to the arguments used

previously by Mullins and Sekerka in justifying the use of Laplace's

equation in treating slowly moving interfaces (20,2l).
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Method of Solving for the Concentration Gradient of Vacancies
Normal to an Arbitrary Interface

Fick's second law reduces to the following form if the diffusion

coefficient, D, is independent of concentration:

fd2Cp ci2C..
dc/dt = d( £+ *] . (15)

However, the assumption that vacancies are distributed in an equilibrium

fashion throughout a sintering body at any stage of the sintering pro

cess implies that dc/dt ~ 0. Thus, the concentration of vacancies in a

two-dimensional-sintering body must satisfy Laplace's equation,

B2C B2C
^0 (x,y) =—! +—* =0 . (16)

R bx2 By2

Since the concentration of vacancies is specified just under the surface

by the Gibbs-Thompson equation, the problem of determining C (x,y) at

any stage of sintering is the classical Dirichlet problem.

The Dirichlet problem is the determination of a function which

satisfies Laplace's equation, and which assumes preassigned values

C,., = C (s) on the boundary S of some simply connected region R. Here,
R R

we identify S with the two-dimensional profile of the sintering body and

R with the region enclosed by S (that is, the body). The boundary values

C„(s) are identified with the vacancy concentrations very near to the
R

surface and are specified by the Gibbs-Thompson relation.
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It is not necessary to solve the Dirichlet problem in order to

determine the velocity of each element of surface. Rather, simply solving

for dCp/ori, the concentration gradient of vacancies normal to the boundary

where n is the outward normal to the surface, provides all the informa

tion necessary to handle the migrating interface problem. There are a

number of mathematical approaches which are plausible. The approach used

in this work stems from the fact that since C^(x,y) is a harmonic function
R

at any time, it is possible to construct an analytic function, F(z), such

that

F(Z) =CR(x,y) +iC].(x,y) . (17)

Further, since F(z) is analytic, it may be shown that the real and

imaginary parts of F(z) have partial derivatives of all orders, and the

first partial derivatives of the real and imaginary parts are related by

the Cauchy-Riemann equations (20),

dCp dC_

3c 3c

If the x-axis coincides with the outward normal to the interface, then

the y-axis coincides with the line tangent to the interface. Thus,

adopting the convention that the positive direction along the boundary

is defined as counterclockwise with the body on the left, we may write

that
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dC_ oCT

Thus, the required solution for dC /dn may be obtained by solving for

oCj/Bs.

The analytic function F(z) at some point (z) may be constructed

within a simply connected region R bounded by curve S according to the

Cauchy integral formula* (see Fig. ll) from a function C(s) defined on

S by (21):

1 C(s)

F(Z) =2x71 ^F=T ds • (20)

Further, Mikhlin (23) shows that as Z tends from some point in R

to a point t on the contour S, that F(z) tends to a limit F(t) where

F(t) is given by the singular integral equation

1 1 C(s)
lira F(Z) =F(t) =^ C(t) +2^- j) ^-—^ ds . (2l)
Zj \j

In general, the principal value of the integral of Eqs. (20) and (2l)

must be taken.

Mikhlin (23) makes another significant point. Equation (20) is valid

(for a nonclosed integral) even if S is a simple arc rather than a closed

curve. If we choose C(s) to be continuous, then Eq. (2l) becomes (24):

1 C(s)

c(t) =-^§T=~t 'ds • (22)

*Note that Eq. (20) guarantees that the solution which is constructed
will be analytic if C(s) is continuous (22).
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By taking the imaginary parts of both sides of Eq. (22), it may be

shown that

Im[c(t)] = Im

i C(s)

tt y S — 1
ds

ci<t>=-^LcB(s) -Be i^r -M-'i-Cr^ (23)

The real and imaginary parts of ds/(s—t) may be determined as follows;

Let ds be a directed line segment of length |ds| making an angle 9X with

the x-axis, and s—t be a directed line segment making angle 92 with the

x-axis [see Fig. 12(a)]. The value of |d~s/(.s—£)| is given by

ds ds

s - t s - t

[cos (9X - 92) + i • sin (9-l - 92)] (24)

Now, we may define r = - (s-t) and define the angle < (ru) as shown in

Fig. 12(b), where x> is a unit outward normal to S. The angle < (ro) is
—» —+

obtained by the counterclockwise rotation of r into "o .

0! - 62 = (ru) - tt/2

By substituting Eq. (25) and Eq. (24) into Eq. (23), the following

singular linear integral equation is obtained for CT(t):

1 crj(s) sin (ro)
C (t) =- - $ -£ — ds -- f

TT r TT

1 CT(s) cos (re)

It is demonstrated by Lovitt (25) that

(ru) 1
lim cos -rr— = - K(t)
|r|-o Irl 2

ds

(25)

(26)

(27)
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<(rv)

(b)

Fig. 12. Construction Used to Define (a) Real and Imaginary Parts
of ds/(s-z) and (b) the Angle (ro).
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where K(t) is the local curvature at point t.* Although the kernel

sin(ro)/|r| is singular, a method of dealing with this problem is dis

cussed in the next section of this work.

Cauchy Principal Value for the Singular Kernel

If an integrand f(s) has a singularity at s = 0, then the Cauchy

principal value of the improper integral from —a to a is defined as (26);

J f(s)ds = limj €f(s)ds +Jaf(s)ds
—a e-»o'- —a e

(28)

It is important that Eq. (26) is valid if the Cauchy principal values of

any improper integrals are taken (26).

To evaluate the Cauchy principal value of the integral of Eq. (28),

a new function g(s) is defined and expanded in a Taylor series about

s = 0:

2 (n) n
g(s) =s•f(s) =g(o) + g'(0) •s+ g"(0) •jr + ... +g(0) |r + ... .

Hence,

g(s) rs(o) s ->
JVC*)** =J!a — ds =J*-* [— +«'<°> +s"(o) 2: +....J^b .

However, the integrals of the terms involving g (0) are zero due to

(3)symmetry for even values of n. Neglecting terms in g (0) and higher,

Eq. (28) becomes

J^ f(s) ds s/^ g'(0)ds =2 ag'(0) . (29)

*The local curvature may be obtained from l/r = d0/ds for a two-
dimensional body where 9 is the angle between a normal to the curve and
the x-axis.
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Since it is anticipated that the solution to Eq. (26) will be obtained

numerically by discretizing the boundary representation to a set of arc

segments of length As, it is desirable to approximate g'(o) by a centered

difference:

g'(o) S [g(a) -g(-^)]/(2As) .

Therefore a useful numerical approximation to the improper integral

considered in Eq. (28) is given as;

Ja f(s) ds Sa[f(a) + f(-^)] . (30)

Replacing the Integral Equation with a System of Linear Equations

Equation (26) is a classical integral equation of Fredholm of the

second kind. The inhomogeneous term is an integral whose value may be

determined. By using methods described by Eox and Goodwin (27) or

Kantorovich and Krylov (28), solutions may be obtained according to the

techniques described below. Several other methods have been described

by these and other authors, but the use of the high speed digital com

puter makes the techniques described here particularly attractive.

Any contour in question is divided into n arc segments of equal

length As, and the parameter s defined from some starting point such that

s. = kAs. The x and y coordinates (x^ ,y ) and the normal angle 9 for

the set of points P which determine such a system are shown in Fig. 13.
k

The integrals may now be replaced by a quadrature approximation of the form

J^f(s) dss£^ f(sfc) As +e, (31)
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where e is the error introduced by the quadrature. This error term will

be discussed later. The terms A, and s are constant for any particular

integral and for any particular quadrature formula. Among the quadrature

formulae which may be used are the rectangular, trapezoidal, Simpson,

Chebyshev, and Gaussian formulae. Although the latter two formulae are

generally the most accurate, the s are not evenly spaced in arc length,

making them somewhat difficult to apply in the schemes which were used

in solving the integral Eq. (26). The rectangular and trapezoidal

schemes were judged to be too inaccurate for the purposes of this work,

leaving the Simpson quadrature formula as the most promising scheme,

(in fact, this statement is supported by work in which the trapezoidal

formula was used. As might be expected, the error of the trapezoidal

quadrature was larger than that of the Simpson quadrature, and decreased

much more slowly as As was decreased.)

In the usual Simpson formulae, where the range of integration is

broken into n segments of arc length As, the s = KAs, and the A, are

defined by the following equations:

Ax = A = (b - a)/3

A2 = AA =A6 = ... .=A^_i = 4(b - a)/3

A3 = A5 = A7 = = A = 2(b - a)/3 . (32)

Kantorovich and Krylov discuss the maximum error, a, of the Simpson

quadrature. Evaluation of this error is not simple, since it depends upon

the derivatives of both the function C(s) and the kernel. For this

reason, only a numerical analysis of the error involved in solving the



36

integral equation will be attempted. It is of interest, however, to

note the dependence of a on the range and number of segments. Here, T

is an unevaluated term involving the derivatives mentioned earlier:

1 , TU)a <, -L (b_ a)5 -I 4
90 (n - l)

The second order Simpson quadrature formula has the accuracy of a third

order polynomial quadrature formula.

For any two points, P. and P., the numerical values of the kernels

may be obtained as follows (see Fig. 14). Suppose that Eq. (26) is

written for point P., and that P. is one of the points on the integra

tion path. Then the following definitions may be made:

sin (ro). . r x x>
K'(i,j) = ,_ ,X'J = — —

|r. ,| |r| • |x>|

(x. —x.) sin 9. — (y. —y.) cos 9.
i J J Ji JJ J

(x. - x,)2 + (y. - y,)2

cos (ro). . r • x>
K'(i,j)—-—^ = — —-

|r. .| |r| • |-o|

(33)

(x - x ) cos 9 + (y - y.) ' sin 9
1 i i 1 2 : 2. . (34)

(x. -x.)2 +(y^y/

For convenience, the further definition is made that the unprimed

K (i,j) and K (i,j) are the products of K'(i,j) and K'(i,j) with the
s c s c

appropriate values A^ for the integration under consideration.
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Fig. 14. Construction Used in Defining Kernels Numerically.
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Ks(i,j) =^A(i,j) •r(i,j) As , (35)

Kc(i,j) =^A(i,j) •r(i,j) As , (36)

Note that these A(i,j) must take account of the approximation to the

singular term K (i,i) [Eq. (30)] and the limiting value of K'(i,i) as

given in Eq. (27). For the detailed description of the arrays thus

defined for the cases of closed and nonclosed contours, see Appendix 2,

Under these limitations, it is now possible to replace the system

of integral equations represented by Eq. (26) by the following system of

linear equations:

Cz(i) -*T(i) =2_ Ks(i,j)CR(j) +Y Kc(i,j) •̂ (j) (37)
j=l j=l

where <t>T(i) is the approximate solution obtained from the set of linear

equations.

The methods of solution of this system of equations will be the next

consideration.

Solving the Set of Linear Equations

Almost all texts on linear integral equations describe a method of

successive approximations for determining <t>(i) by expanding <t> (i) and

using the so-called iterated kernels. However, solutions may be obtained

much more rapidly on a digital computer by rewriting Eq. (37) as a matrix

equation in which the values <t>x(i) and Cri(i) are treated as elements of
1 R
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one-dimensional arrays and K (i,j) and K (i,j) are treated as elements of

two-dimensional arrays, or, as vectors and matrices, respectively.

Retaining the same notation, Eq. (37) becomes

1L = K •(L + K • 0_ (38)*
I <M3 R ~c I

By rearranging Eq. (38) a solution may be obtained directly by

matrix inversion.

0T = (I - K )_1 •K •(L . (39)

The matrix I is the identity matrix. Fortunately, in all of the

systems which have been investigated to date, (i — K ) is a well-

conditioned matrix. Thus, it may be inverted accurately, even when the

order of the matrix is 90 or higher. On both the Bendix G-21 computer

and the CDC-1604 computer, the (i — K ) matrix has been inverted using

Gauss-Jordan reduction methods on matrices of order 90 for elliptical

contours and for the contours generated during the sintering of a rod to

a rod. The products of (i — K ) and its inverse have been formed, and

found to be equal to the identity matrix to at least seven significant

places.

Matrix inversion is a time consuming process on a digital computer,

—»

and the method of successive substitutions may be used in solving for <t>

to avoid using matrix inversion. If an approximation to <t> is known

^Matrix notation: textbook style calls for bold-face type. Sug
gested that "small m" underscore be replaced by wavy underscore,
example: K • CL..

'MS R



40

(from matrix inversion for a similar contour, in most cases) called <t>°,

then the sequence of successive substitutions

*T. =£e ' HR +& • *l (40a)

^+l) =K • C +K ' ^ , (40b)
I ~6 R ~c I '

-(i)produces a set of <$>j which converge rapidly to <t>T. An example of this

convergence will be given later.

Tests of the Methods Used

Decay of an Ellipse by Volume Diffusion

The decay of an ellipse by volume diffusion was selected as a test

case for the numerical techniques described earlier. The remarks in

Appendix 2 used in defining K (i,j) and K (i,j) for a closed contour apply

to this geometry. The ellipse contour was defined by the standard

equations. (See Fig. 15.)

r = R +5 sin (29 - tt/4 )

k=2(Roo)V2/(Ro +6)

where k is the eccentricity of the ellipse. The points P. were spaced

at equal arc intervals around the contour, using several terms of a

series expansion of the following integral to accomplish the spacing.

s = (R + 6) f* (l - k2 sin2 9) d9
o «J o
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Fig. 15. Ellipse Geometry of Test Case,

P0(R0+8,0)
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Solutions were obtained for three values of k, with 8, 16, 24, 32, and

40 points spaced about the contour for each value of k.

—*

The solutions were obtained by solving for <t>T, and approximating

cXJRi d<t>Ti <t>T(i + l) - <tT(i - l)

dn

I

p Ss
i i

r ' i'

p. 2As
(41)

where As is the arc spacing between points. The velocity of the point P.

is obtained by a material balance as;

Dv9C /Sn D [* (i + 1) - * (i - 1)]
v. = 2L_1 s.Jl_I 1 . (42)

[1 - CR (i)] 2As[l ~CR(i)]

Nichols (29) has given the solution of this problem for a small

perturbation value of k, which may be condensed to

S 7fiCo 6

D~o" =~ kTR R~ 3 -
V o o

For a fixed set of physical parameters, R = 1, (jQC )/(kT) = 10"3, the

term s/(Dfi&) should equal 6 X 10"3.

The results of the numerical scheme are tabulated in Table 2 to

illustrate the very small difference (less than 0.1$) in results obtained

when 5 = 2.7466 X 10"5 and 8 = 2.7466 X 10"4. A plot of S/(D 5) versus

the reciprocal of the square of the number of points P. used to define

the contour, which is a measure of (As)2 is also given in Fig. 16. It

is seen that in the limits as S approaches zero and As approaches zero,
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Table 2. Tabulated Values of o/(D 5) for Decay of Ellipse

by Volume Diffusion

Number of

Points on 5 = 2.7466 X 10"3 5 = 2.7466 X 10~* S = 2.7466 X 10"5

Contour

16

24

32

40

X 10"3

1.789

4.704

5.443

5.710

5.834

x 10"3

1.789

4.685

5.413

5.674

5.795

X 10"3

1.789

4.683

5.410

5.671

5.791



6.5

225-3
l/(number of pointson contour) XIO

Fig. 16. Plot of 5/(D o) for the Decay of an Ellipse by Volume Diffusion versus
l/(number of points on contour)2.
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the numerical solutions converge to the value predicted by Nichols for

small perturbations.

The results further indicate that the velocities of each of the

points P. are nearly proportional to cos (29), which is the functional

dependence predicted by Nichols' analysis. The deviation from this

dependence decreases with decreasing As.

This test is felt to be an adequate demonstration that the numerical

techniques described previously yield suitable solutions for the velocities

of points on migrating interfaces, and that the accuracy of the solutions

may be improved by decreasing As. A further test of the linear integral

equations is provided in the next section.

Planar Analog of Sintering Using a Nonclosed Contour

Imagine "flattening" the rod-to-rod neck profile adopted by Kuczynski

to a plane; this is shown schematically in F-ig. 17 if one understands

that the region —b ^ s < b corresponds to a neck, and that each of the

regions s < b and s ^ b are "rods." A short discussion of this problem

lends valuable insight into the sintering problem.

The solution CT(t), is required to satisfy the following boundary

conditions (see Fig. 17):

C^ = 0, s > b or s < -b

C0 = C, -b < s < b

Because cos (ro)i = cos (ro)2 = 0, while sin (ro)i = — sin (ro)2 = 1,

Eq. (26) may be written for the limits of integration s=— « to s - «

and reduced to

c(t) . c- / ^=— . - £1 m(l^k) . M
I -,1 j. I TT \ , , /

tt —b s — t t + b
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Fig. 17. The Planar Analog of Rod-to-Rod Sintering.
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Differentiation yields

dC (s) C / 1

ds tt \s — b s + b
(45)

These results may be obtained by the method of Fourier integrals as well.

Both C_(t) and dCT(s)/ds'are plotted schematically in Fig. 18.

Several interesting points may be gleaned from examining these plots.

First, at s = b and s = —b, where C_.(s) is discontinuous, C (s) is singu-
R 1

lar and c€T(s)/ds is discontinuous. The velocity of each point on the

contour may be computed directly from Eq. (42).

Consequently, the velocity v(s), goes to zero as S approaches + °o

or — °° (Ref. 3). The requirement of conservation of volume as the

contour migrates is stated

J°° v(s) ds =J°° o€T(s)/ds •ds
0 0

Since C_(s) approaches zero as s becomes large, this requirement is

satisfied.

It is expected that the solutions to the rod-to-rod and rod-to-

plane sintering problems will behave in a manner analogous to this

solution.

Initial Profile Migration Behavior in Rod-to-Rod Sintering

The Nonclosed Contour

The initial morphology is that described by Kuczynski's geometrical

assumptions. The contour is considered to be composed of segments of arc

length As. However, if the integral of Eq. (26) were approximated over
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Fig. 18. Schematic Plots of C (s) and dC (s)/ds for the Planar Analog
Problem.
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the entire contour by Eq. (37) and As were sufficiently small to yield

an accurate numerical solution for x/a ^ 0.1, the number of arc segments

would be unmanageably large and computation time would be excessive on

even the most modern digital computer. The region S' is the "top half"

of the neck root region and is defined by the array of points Px, P2,

...P., ...P >P. The point P . lies on the symmetry plane at which the
n' ' n-i ' n ^ n' J J *

sintering bodies make initial contact; thus, P , is always at the neck

root. The distance parameter "s" is set to be zero at P ,, so that

s. = (i — n')As. Points Px and Pn are therefore symmetric about P ,.

The contour may now be divided into three intervals, S', S", and

S"' . The region S"' is the "bottom half" of the neck root, and is the

reflection of S' across the plane joining the centers of the rods. All

parts of the contour not on S' or S"' lie on S".

The first attempt at a solution considers only the region S' of the

total closed contour. A solution based on SY is feasible for the fol

lowing two reasons. (l) Since only differences in C , the real concen

tration, are of interest, C_ may be redefined using as a "standard state"
R

the concentration just under the main rod body of curvature l/a"

v = ync^ /l In
c = cj - (£ =-_£[-- --1 . (47)
-R R R kT \a K/' '

where C- is the concentration under a segment of contour of curvature K.
R

Thus, the first term on the right hand side of Eq. (26) vanishes every

where on S".

1 C (s) sin (ro)
__J _R _ ds =0. (48)

tt S" Irl
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(2) The solution anticipated (on the basis of this section, pages 47

and 49) for CT(s) for the closed contour has the general characteristics

illustrated in Fig. 19. Vacancies from the neck migrate to the nearby

rod surface, causing rapid growth of the neck at the expense of the

receding ooundary of the nearby rod. However, at some distance suffi

ciently removed from P ,, the surface is not affected significantly by

the presence of the neck. This follows directly from the l/r dependence

of both kernels. Also, C (s) does approach zero far from the neck, so

that the second term on the right hand side of Eq. (26) is nearly zero

on S".

1 C (s) cos (rX>) , .
J — - ds = 0 . y '

TT S" Irl

In the discretized form this equation reads exactly as Eq. (37).

Three points deserve attention here: (l) the exact usage of the quadra

ture formulae at P1 and P is not trivial and is discussed in the appendix.

(2) In addition to errors introduced by the finite arc length, a second

set of errors is introduced based on the approximation in Eq. (49). It

is assumed at this stage that the reflection of the neck across the

centerline in Fig. 20, S"' does not influence the solution. Although

these effects will be correctly considered later, their magnitude is of

very real interest. (3) In the continuous problem, the discontinuity in

curvature at the neck-rod junction, which results from assuming the

Kuczynski geometry, causes the flux of material normal to the surface

to approach positive and negative infinity in the neck and rod at the

junction, respectively. As the surface develops its preferred morphologies
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Fig. 19. Schematic Plot of Anticipated C (s) and dCT(s)/ds for Rod-
to-Rod Sintering. Discontinuous behavior dotted, numerical solution full
lines. Cyclic boundary conditions shown fully. Shaded regions are neck

regions.
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during sintering, this artificial discontinuity is quickly smoothed.

The solutions to the discretized problem never become discontinuous for

any finite As because of the difference technique used to approximate the

local curvature at the i point:

k. s(ei+i - ei_i)/2As . (50)

However, the behavior of the solutions of the discretized problems approach

the discontinuous behavior of the solution of the continuous problem as

As approaches zero. The smooth and discontinuous functions are represented

for the reader's convenience in Fig. 19; the discontinuous behavior occurs

only in the formal mathematical solution of the continuous problem.

Errors Arising from the Nonclosed Contour and Finite Arc Spacing

The following discussion deals with the major problem of deter

mining how much of the error for any solution of Eq. (47), in which

Eq. (47) is written only for the contour S' , is due to discretization

(the finite value of As) and how much error is due to not allowing S'

to include the entire closed contour.

Examination of Fig. 20 indicates that if S , the distance coordinate
e n'

of the last point of S', remains constant, the various values of n will

produce different arc spacing, As. On the other hand, if As be held

constant and n allowed to vary, then the range of S' is increased at

constant arc spacing.

Let S be the distance along the contour between the neck root and
q.

the rod-neck junction. This distance may be divided into m segments of

arc length As, or As = s /m, where m = 1, 2, 3 ... The values of n and
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s" /^^/ P-

^^^

S"

Fig. 20. Initial Morphology Assumed for Rod-to-Rod Sintering.
P , is the reflection of P ,. S is the contour distance from P , topn'r n' q n'

q.'
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s were always selected so that s = ks , k = 1, 2, 3 ... Thus, for any
n J n q

initial x/a all contour representations of given m have constant arc

spacing As, whereas all contour representations of given k have the same

range of S' , or the same value of S .o > n

A solution for a particular contour representation (k,m) involves

determining the velocity v.(k,m) of each point P. for that representa

tion. Sets of solutions were computed by direct matrix inversion of

Eq. (38) for initial neck profiles having x/a| = 0.05, 0.10, and 0.30.

For each initial profile, subsets of solutions were computed at constant m

(constant As) for various values of k, and at constant k (constant range

of S' ) for various values of m.

The velocity of greatest interest is that at the neck root,

•,(k,m). A dimensionless "modified velocity," Q(k,m), is defined asv

Q(k,m) = av (k,m)/D . (5l)
n

Figure 21 illustrates the results for x/a| = 0.1. The Q(k,m) is

plotted as a function of (As)2 or (l/m)2 and smooth curves are drawn through

the subsets Q(k,m) of constant k. This set of curves indicates the effect

of varying As for constant ranges of S'. Extrapolating the curves to

As = 0 yields the set of "modified velocities" Q(l,oo), q(2,°°), Q(3,°°) ...

The set of Q(k,«>) represents the effect of varying k on the solution in

the limit as As approaches zero.

The Q(k,m) are plotted as a function of (l/k) in Fig. 22 for

x/a| = 0.10. Smooth curves are drawn through subsets of constant m

(or As). This set of curves indicates the effect of the range of S' for

constant values of As. Extrapolating these curves to l/k ~ 0 yields the
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set of "modified velocities" Q(co,2), q(co,3), q(oo,4), ... This set of

Q(co,m) represents the effect of varying As on the solution in the limit

as S' is extended to include the entire contour except S"'.

These two sets of curves are closely interrelated. Plotting the

Q(k,oo) on Fig. 21 yields a curve which, when extrapolated to l/k = 0,

allows a value q(oo,oo) to be estimated. The "true" value is q(oo,oo) which

should be obtained if the continuous problem admitted solution over the

entire closed contour, excluding the reflected root. The solutions which

have been obtained are internally consistent in that a plot of Q(oo,m) on

Fig. 22 yields the same value of Q(oo,oo) by extrapolation to As = 0 which

was obtained by plotting Q(k,oo) on Fig. 21.

It may be seen that for m ^ 3 (that is, three or more arc segments

between the neck root and the rod-neck junction) small changes in k lead

to greater error in the solution Q(k,m) than small changes in m. Thus,

the over-all accuracy of any solution can be improved at least as much

by correcting for the effect of S", the contour whose influence is not

included in the computation of <t> , as it can be improved by refining As.

Subsequent discussions will be directed toward this goal. Other numerical

experiments similar to that described above have been performed at

x/aI = 0.05 and 0.30. Although these remarks regarding the relative

effects of variations of k and m are also valid when x/a| = 0.05, it may

be shown that Q(k,m) varies as rapidly with unit changes in m as it does

with k at x/aI = 0.30.
' 'o

Equation (7) may be differentiated and used to predict the "modified

velocity" Q. from a Kuczynski-type analysis. Computation of & has the
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same values of parameters (yttC°/~k!I! = 10"10, a = 10"3) that were used to

compute q(00,00).

a dx 2 /Xx"* /7f2C\

Tabulated results from this computation are compared below with Q(oo,oo) for

x/a|Q = 0.05, 0.10, and 0.30.

x/aAl0 \ Q(~,«>)

0.05 3.2 X 10"2 2.75 X 10"2

0.10 2.0 X 10"3 1.60 X 10"3

0.30 2.469 X 10-5 1.56 X 10"5

As Val0 approaches small values, the difference between Q(00,00) and CL

decreases.

Figure 23 is a plot of the imaginary function, <!> (s), obtained by

direct matrix inversion at constant k = 4 for a range of m(As). It will
—+

be noted that d> approaches zero far from the neck. Further, as As is

—+

refined it is apparent that <t>T more nearly simulates the singularity

expected for the solution of the continuous problem at the rod-neck

junction.

Correcting the Solution for the Nonclosed Contour and Reflected Neck

Since a substantial amount of error is introduced into the solutions

by the limited range of S', it is particularly desirable to develop a
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Fig. 23. Plot of * (s) versus s for x/a| = 0.10.
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technique for correcting this error. Fortunately, the techniques for

making this correction allow easy correction for the presence of the

reflected neck region, S"' .

The correction factor is based on the notion behind Eq. (40), that

an approximate solution of suitable accuracy may be achieved by successive

substitutions. One begins with a solution to Eq. (38) for the contour

region S', obtained by matrix inversion, denoted <t>°(S'). In addition,

the arrays <t> (S'), <t> (S2), and <t> (S"') are defined as the values of <$>

on the regions S', S2, and S"', respectively. By techniques to be dis

cussed below, 0T(S') is extrapolated over a portion of S" which will be

denoted S2. The region S2 begins at the ends of S' and extends far

enough into S" that <t>T at the end of S2 is at least four orders of magni

tude smaller than its maximum value on S' . Further, <t>T(S"' ) is assumed

to be related to <t>T(S' )by the symmetry shown in Fig. 19.

The matrix form [Eq. (38)] of the basic integral equation [Eq. (26)]

is then separated to include the three regions S', S2, and S"' separately.

When these integral are approximated in the manner described in Appendix 2,

the following result is obtained:

♦i =yS'> •S(S') +K.(S') •*T(S') +K^Jfe) •CR(S2)

+K,(S2) '\(S2) +K,(S"') •CR(S"') +K,(S"') •^(S"') . (53)

Equation (47) defined CR in terms of local curvature at each point P..

The kernel matrices K and K are similarly well defined; the A(i,j) are

described in Appendix 2.
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The method used to extrapolate <1>(S' ) into S2 is of some interest.

At first glance, it would appear that far from the neck a good approxi

mation might be the functional dependence of <J>(s) from the planar

analogy:

<1 q

In fact, if K is computed from the pairs of points on S' near the end of

the range of S', (P , P ), (p p ) (P p ) it is found that
n n-i n-i n-a ' n-2 N-3

K varies by 10$ or more from pair to pair. Thus, when an extrapolation

of this form is used in Eq. (53), the first derivative of imaginary

function, approximated by

d*T(s)
=* [0 (i + 1) - * (i - 1)]/2AS (55)

P.
l

undergoes a sudden change in slope at P . The rapid slope change causes

unrealistic behavior of the profiles generated later during the solution

of the over-all sintering problem.

Several other mathematical functions are justifiable for use in

extrapolating $T(S'). These functions result from closed-form solutions

for circles having C = 0 everywhere except in regions corresponding to

the neck region of two sintering rods. Unfortunately, all of these easily

justified extrapolation functions produce the same sudden change in

B0T(s)/c3s that the function of Eq. (54) introduces.

The only extrapolation of the imaginary function on the range S2

which was investigated and found suitable was

<DT(s) = Ki/s2 + K2/s4 + K3/s6 . (56)
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The constants Ki, K2, and K3 are computed from the imaginary function

values at the triplet of points P , P , and P .
n-2' n-i' n

The preceding discussion has outlined the methods used to define

each term on the right side of Eq. (53). The technique for obtaining the

—*

corrected solution follows: first, <t>°(S' ) is found by solving Eq. (38)

over the region S'

0°(s') =[I-KJS')]"1 •KjS') •CR(S') . (57)

—* —*

Then *T(S2) and *°(S"') are computed from Eq. (54) and symmetry conditions,

respectively.

-*( i+i)The iterative procedure for computing <J>1 (S') is to then solve:

41+1)(S') =^(3') CR(S') +K,(S') ^(S') +^(3,) CR(S2)
(58)

+K,(S2) 41}(S2) +̂ (S"') CR(S"') +K^S"') ^^(S'") .

-*(±) ->(i)The arrays <t>v (s2) and 4>^ ' (S"' ) are recomputed from Eq. (54) and symmetry

considerations before each iterative application of Eq. (56). The iteration

process is repeated until the most rapidly changing value of $T(S'),

which is in fact always that at Pi or P , changes less than one part in

10* on successive iteration steps. It has been observed that this cri

terion leads to changes in d<H_(s)/ds of less than one part in 105 on

->(±)
successive iterations. The <t>| (S') converges rapidly to meet this

criterion.

The use of this correction technique produces a set of Q values

which nearly agree with the Q(oo,m) extrapolated values. The slight
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discrepancy, less than a percent, may be attributed to the visual

estimates of Q(oo,m) or to the effect of those portions of S" which were

not included in S2 or to the effect of S"'.

Defining the Migrating Boundary on Successive Time Steps

The preceding remarks dealt with the determination of the flux of

vacancies normal to a set of points representing a particular contour,

with no reference to how the contour changes shape with time. Here it

is proposed to allow each point P.(x.,y.) on the contour for which veloci

ties, v., are computed from Eq. (42) to migrate normal to the original

contour for time At to P'. (x'. ,y'.). The loci of all such points defines a

new curve after migration, SS (see Fig. 24). Iteration of this calcula

tion constitutes a complete description of the growth process.

However, it is evident from Fig. 24 that, if a smooth curve SS were

passed through the points P'. (x'. ,y'.), the curve would not be divided into

equal arc segments by the points. Since the techniques for determining

the flux of vacancies normal to the contour are based on equal arc seg

ment lengths, it is necessary to define SS by a new set of points

P'.'(x'.',y'.') which divide it into equal arc segments. Nichols (16) has

presented a very interesting technique for dealing with this problem based

on finite difference approximations for the change in the (s,9) coordi

nates of points P.(x.,y.) which have migrated to P' (x'. ,y'.). This technique

has been tested and found unsuitable for the relatively large arc spacings

and At values which must be used to compute a solution in a reasonable

time. The net effect of cumulative errors after several time steps is

to displace the curve between P and the end of S2 to the right. After
q
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P„(x,y) P|(x,y)^

Pr;(x',y')\> /P/lx'.y')

CURVE SS

ft(x,y)

Fig. 24. Migration of P.(x.,y.) on Curve S to P'. (x'. ,y'. ) on Curve SS.
1 ii i i,Ji
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a large number of time steps for a test case, the entire curve had

"drifted" so much that points which should have fallen on the original

contour were displaced more than a rod radius from the original rod

contour.

The following techniques have been developed to handle relatively

large arc spacings and At. Having the set of points P.(x.,y.) and the

velocity v. of each point, the coordinates of the unevenly spaced points

P'. (x'. ,y'.) are computed from

x'. = x. + v. At cos 9. , (59)
ill l ' v '

yi = yi + Vi At Sin 9i ' (60)

where 9. is the angle between the normal to the original contour at

P.(x.,y.) and the x-axis.
iv i' i'

A smooth curve was fit to the P'. (x'. ,y'.) by passing a cubic through

successive sets of points P'. , P'. , , and P'. ,
l' l+l' 1+2

y'. (x) = a. + b.x' + c. (x' )2 + d. (x' )3
iv/ l i iv/ iv/

where a continuous first derivative was maintained by requiring that

dy'(x)/dx|p, = dy^__i(X)/dx|p, .
i i

The fitting technique is begun at point P', where dy', (x)/dx = 0. If

|dy'. (x)/dx| > 0.5 at P'.(x'. ,y'.), then a cubic curve of the form

x'. (y) = a. + b.y + c. (y' )2 + d. (y' )3 is fit to the points.
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The polynomial coefficients a±, \> , c , and d. which define the smooth

curve SS may now be used to compute the distance coordinates s'. on each

point P'. (x'. ,y'.) measured along the curve. The numerical approximation

for the distance between P'. and P'. , is made that
1 1+1

x'
1+1

Si+i ~ Si =J" (1 + [dy-(x)/dx]2} dx
x'.

i

k=i

^ |r ) (-R. v +13R. . +13R. 1± -R. ,J (61)24 /_, v i,k-i i,k i,k+i i,k+2y v '
k=0

where

As = (x' , - x'.)/i
v 1+1 l '

and

Ri,i+j= '1+ [dyiW/dx]2lx.+U+j)Ax.

Note that Eq. (61) makes use of values of dy'. (x)/dx between P' and

P' . Therefore one step of the numerical integration in each segment

includes multiply-defined dy' (x)/dx. Because of the smooth characteris

tics of the polynomial functions used to determine y.(x) or x.(y) for

segments of SS, little error is introduced by going outside the range over

which y'(x) was fitted.

Each point P' is now specified by three parameters (x'. ,y'., and s'.).

Upon selecting some new value of As, a Lagrange interpolation for x' (s' )

and y' (s') may be used to find equally spaced points P'/(x" y") on SS,
X 1 y X

such that s". = (i - n' )As".
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The new contour is thus defined by points spaced at equal arc

intervals and is suitable for computing a new set of velocities v. for

the next time step.

Solution to the Rod-to-Rod Sintering Problem and
Errors in the Final Solution

In order to obtain a final solution and arrive at a meaningful

estimate of the error in the solution for the rod-to-rod problem, several

numerical experiments were performed. Several sources of error require

consideration: (1) those arising from the finite arc spacing As;

(2) those arising from the finite time steps At. employed; and (3) those

arising from the finite length of contour used to obtain the precise

solution. It has been demonstrated that corrections may be made for the

latter source of error to such an extent that such errors are negligible

in comparison to errors arising from the former two sources (see section

entitled "Initial Profile Migration Behavior in Rod-to-Rod Sintering,"

page 47). Stability problems of the type encountered by Nichols never

arose for any of the parameters used in solving the volume-diffusion

problem.

Errors Due to Finite Arc Spacing

The effect of varying As on the initial neck profiles has been

discussed previously, page 52. In order to determine the effect of

varying As on the neck velocity over several time steps, solutions to the

rod-to-rod system were obtained for x/a| = 0.05, 0.09, 0.10, and 0.30

at (k,m) = (4,2), (4,3), and (4,4). (See page 52 for the definition of

these terms.) These combinations of parameters represent constant size

of the contour regions S', S"', and S2 (k = constant) and variable As (m).
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The time increments At. were defined such that the neck-root point

displacement was 0.15 As on each time step. The arc spacing As was set

on successive time steps such that a neck of the Kuczynski geometry for

that particular x/a would have the region between the neck-root point and

the rod-neck junction divided into "m" sections. This procedure, of course,

means that the time step variable was not the same for each of the (k,m)

systems. However, the procedure is justifiable, since it will be shown

in the next section that the results are virtually independent of the

size of At. for this small a time step.

Representative results are shown in Fig. 25 for x/a| = 0.09. This

graph demonstrates that as As decreases, the product D t required to grow

a neck of a particular x/a decreases. An equivalent statement is that

the computed neck root velocity increases as As decreases. The products

D t are plotted versus (l/m)2 for selected values of x/a in Fig. 26.

These curves were extrapolated to (l/m)2 = 0, or to (As)2 = 0, and the

results plotted in Fig. 25 as the extrapolated solution to the problem.

If sufficient time and funding were available, such an extrapolation

could be performed for all x/a from 0.09 to 0.80, the range of the solution.

The most important conclusions which can be drawn from this analysis

are that the finite arc spacing causes the computed solution for D t to

be approximately 15$ too high for the (4,3) system and approximately 8$

too high for the (4,4) system. These errors are constant after the first

twenty-five time steps for all x/a| . In view of the uncertainty in

existing diffusion and sintering data, the final solution was computed

for the (4,3) system.
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Fie. 25. Plot of D t versus x/a for Rod-to-Rod Sintering.
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Fig. 26. Extrapolation of D t versus l/m2 to Estimate Error in
Solution of Rod-to-Rod Sintering Problem.
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Errors Due to Finite Time Steps

In order to determine the effect of varying At., solutions were run

for up to forty time steps for various x/a| and various (k,m). It was

found that if the neck root displacement AN , on any given time step was

less than or equal to 0.15 As, no difference could be detected in plots

of x/a versus D t. Figure 27 shows representative data for x/a| = 0.09

and AN , =0.10, 0.15, and 0.25 As.
n ' '

Solution to the Rod-to-Rod Sintering Problem

On the basis of the preceding discussion, the system selected for

the final solution of the rod-to-rod problem was the (4,3) system. The

origin x/a| = 0.09 was selected because several numerical experiments

indicated that by the time x/a = 0.10, the contour assumed is practically

identical to that generated from other x/a| < 0.09. Since Nichols'

results indicate that surface diffusion is usually dominant for small

x/a, the only interesting region to examine is that for x/a > 0.10.

Selected contours are shown in Figs. 28 and 29 for the rod-to-rod

sintering problem (4,3). Because the time scale varies by about seven

orders of magnitude, the results are plotted as In (x/a) versus In (D t)

in Fig. 30. In addition, the apparent value of the slope l/n was com

puted for each time step and plotted versus x/a (see Fig. 31).

1 d In(x/a) ln(x/a). - ln(x/a).

n d ln(t) ln(t.) - ln(t. )
(62)

In accordance with the discussion on page 24, these values are meaningful

only for x/a > 0.25.
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Fig. 27. Plot of D t versus x/a for Various Values of AN , = d-As.
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Dimensionless Parameters and Treatment of Experimental Data

For ease of reading, the parameters involved in obtaining a solution

have been treated as real physical constants. The arbitrarily assumed

values used in obtaining the solutions to the sintering problems given

here were:

?§ = A = 10-10, a = KT3 cm, C = 10-3 . (63)
kT o v '

A real material has its own set of parameters which will be denoted in

the prime system, of C, (7fi/kt)', a', (D t)', etc. The dimensionless

parameter SL is introduced:

i = a'/a = x'/x . (64)

Since the problem hinges upon a linear integral equation, the dimension

less parameter relating the experimental concentration to the assumed

concentration for curvatures K' (experimental) and K (numerical solution)

is

m = C/C = AC K/A'C'K' = (AC /A'C) • I . (65)

Thus, by writing the general equations for neck migration in the

real and numerical system and rearranging, the following result is

obtained;

Z D t • dC/c3n D t
1/i = (x - x )/x' - x' ) = = ~J— • m • £ . (66)

° ° E(D t)' • BC/cin' (D t)'
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Upon substituting the numerical values of Eq. (63) into Eq. (66), the

final conversion equation for determining the experimental (D t) value

required to sinter to a particular x/a is given by:

(D t)' = 10"13 D t • i3/A'C . (67)
v V V o

This result and pertinent comments are also applicable to the rod-to-plane

results which will be presented below.

Conservation of Volume

The total volume of material of two sintering rods should be conserved,

so that the total cross-sectional area of two sintering rods should not

change in contour plots. One method of checking this is to measure the

cross-sectional area planimetrically. This was done for the first three

contours of Fig. 28. However, only the material gained by the neck and

that lost by the rod body was measured (that is, the areas between the

original contours and the generated contours). The apparent material

gains for the contours, in order of increasing x/a as shown in Fig. 28,

were 21.4, 22.1, and 18.5$ of the total material transferred to the

neck.

A more refined technique, however, consists of approximating the

material gained in the neck root on the i time step, gi(i), by summing

the positive displacements AN.(i), where the j subscript runs over the
J

neck region:

gi(i) 2E ANt(i) As
j J
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and approximating the material lost from the rod body by summing the

displacements on the rod body, AN.(i):

g2(i) S^Z AN (i) As .
j J

Then the percentage of material gained on any time step is simply

per cent gain = 100$ • [gi(i) - g2(i)]/gi(i) •

This gain was computed for each (k,m) system used to compute Q(oo,oo) in

"Errors Arising from the Nonclosed Contour and Finite Arc Spacing,"

page 52. The per cent gain was extrapolated to As = 0 for k approaching

infinity. The extrapolated values were 2, 2.5, and 9% at x/a = 0.05, 0.10,

and 0.30, respectively. The gain in the (4,3) system at x/a| = 0.10 was

24.5$. This value is in good agreement with the planimetrically measured

values. The agreement might be expected, since the planimetric measure

ments covered a curve of essentially the length of S', which was the

contour length used as a basis for the computations.

However, when the solution is corrected (see "Correcting the Solution

for the Nonclosed Contour and Reflected Neck," page 58) for the addi

tional contours S2 and S"', the computed gain for the initial time step

(computed over S' and S2) is 0.157$. The total gain after k time steps

is computed as:

k k

gi(i) - Vg2(i)

per cent total gain = x 100$ .

Z§i(i)
1=0
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Typical values were -0.17, -0.47, -1.05, -0.98, and -0.325$ for

x/a = 0.103, 0.123, 0.171, 0.228, and 0.315, respectively.

This type of volume conservation check is much more sensitive to

small gains or losses of material than planimetric measurement of the

entire system. Such small discrepancies provide reassurance that the

solutions computed are physically realistic.

The Rod-to-Plane Sintering Problem

The treatment of computed results for the rod-to-plane system so

closely parallel those of the rod-to-rod system that it is only necessary

to comment on the significant differences between the systems and review

the highlights of the numerical treatment and results.

The initial profile is that assumed by Kuczynski, and the geometry

is shown in Appendix 1. The initial solutions were based on a region S',

defined so that the midpoint of the range of S' is the neck root. A

demonstration of the similarity between the systems is provided in

Figs. 32 and 33, in which Q(k,m) is plotted versus (As)2 and (l/k). As

in the case of rod-to-rod sintering, the Q(k,m) approaches the limiting

value Q(oo,co) as k and m increase. The term q(oo,oo) was only determined for

x/a|Q = 0.10, where its value is 0.690 X 10"3. The comparable value of Q,

calculated from Eq. (7) is 1 X 10"3.

The plots of Q(k,m) clearly demonstrate that the restricted length

of S' is a greater source of error than the finite As for m ^ 3, so

region S2 was defined on both the rod and on the plane to be sufficiently

long that when <t> (s) is extrapolated on S2, it decreases to at least

10"4' of its maximum computed value on S' . An equation of the form of
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Fig. 32. Plot of Q(k,m) versus (As)2 for Rod-to-Plane Sintering, x/a| = 0.10.
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Fig. 33. Plot of Q(k,m) versus l/k for Rod-to-Plane Sintering, x/a| = 0.10.
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Eq. (56) was used to extrapolate <t> (S2), although different constants

were computed for the rod and plane extrapolations, using the first and

last three points on S', respectively. In addition, the effect of the

reflected neck root was also accounted for, as in the rod-to-rod problem,

using symmetry. The solutions for the initial profiles were obtained by

matrix inversion, whereas on subsequent time steps equations of the form

of Eqs. (57) and (58) were used to compute <t>| (S') by successive

substitution.

The boundary-moving techniques differed from the rod-to-rod techniques

only in that the polynomial fits and use of Eq. (61) were initiated at

the end of S2 on the rod rather than at the neck root.

On the basis of an error analysis similar to that used in the rod-

to-rod problem, it was decided that the k = 4, m = 3 system, with an

overall error estimated at approximately 17$ in computed values of D t,

should comprise the final solution. Figure 34 is the plot of In (x/a)

versus In D t, for this system, and Fig. 35 is the set of l/n values

computed from Eq. (62). The dimensionless parameter discussion of

"Dimensionless Parameters and Treatment of Experimental Data," page 77,

is valid for this problem; in fact, the same parameter values given in

Eq. (63) were used in the solution. Typical profiles are shown in

Fig. 36.
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DISCUSSION OF RESULTS

The numerical results of this work fall into two categories:

(l) interface migration during sintering for the geometrical constraints

described by Kuczynski; and (2) interface migration during sintering by a

volume diffusion mechanism with no geometrical constraints placed on the

shapes developed. The former results were developed primarily to show a

need for the latter results. Since the systems without geometrical con

straints are more accurate descriptions of experimental sintering condi

tions, there is little need to discuss the results from the geometrically

constrained systems.

Numerical Methods and Errors

It is felt that the test cases described on pages 40 through 47

(the ellipse and planar source problems) demonstrate the validity of the

linear integral equation [Eq. (26)] for both closed and nonclosed con

tours. The numerical results for the ellipse test case demonstrate that

the numerical solutions converge accurately to the known analytic solution

in the limit of small S for the ellipse. The agreement between the

numerical and analytical results for an initial shape of Kuczynski

geometry provides assurance that these results are reasonable.

The error in the final solutions for the rod-to-rod and rod-to-plane

sintering problems is reasonably well known. The D t parameters for rod-

to-rod and rod-to-plane sintering have nearly constant known errors for

all x/a, being approximately 15 and 17$ too large, respectively. For the

sake of consistency, all further calculations will be based on the reported
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results for the (4,3) cases without correcting for this known error.

These errors lie at least within the range of the experimental scatter

in diffusion and sintering data.

Comparison with Earlier Analyses

In contrast to the gross discrepancies between the relationships

predicted by Kuczynski and the numerical results of Nichols, it is found

that Kuczynski's analyses of the volume-diffusion sintering problems are

quite similar to the numerical results reported here. In fact, the

(4,3) system rod-to-rod results may be represented to within ±8$ of D t

for 0.2 £ x/a < 0.7 by

x5 7P£°
— s 5.8 d t . (68)
a2 kT V

The rod-to-plane results may be represented over the same range by

x5 7ftC°
— s 2.2 D t . (69)
a2 kT V

It is not surprising that the numerical results can be represented

in this manner, since computed values of d ln(x/a)d In t for the rod-to-

rod and rod-to-plane cases yield values of approximately 1/5, as shown in

Figs. 31 and 35, respectively.

Furthermore, Alexander and Baluffi (9) have observed that the neck

root regions, which they described as triangular cusps, "...became rather

bulbous due to smoothing effects with a radius about twice that predicted

analytically." This enlargement of the neck radius is predicted by the
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numerical results for the rod-to-rod sintering case. The ratio of p,

the neck radius of curvature predicted by Kuczynski, to As/(9 ,, — 9 , ),
1 n +1 n'—l

the approximate radius of curvature at the neck root in the numerical solu

tion, varies from 2.8 at x/a = 0.10 to 1.7 at x/a = 0.40. As will be

demonstrated below, the rod-to-rod solutions can not be applied to layers

of wire above x/a = 0.25. However, the difference between Kuczynski's

results and these results may not be ascribed to enlargement of the neck

radius (and hence an alteration of the driving force). Based on the

Kuczynski geometry, Q, exceeds the values of Q(°°,°°), as described on

pages 52 through 58, by factors ranging from 1.2 (x/a = 0.05) to 1.6

(x/a = 0.3). Thus, a significant amount of the difference between these

analyses must result from inaccuracy in Kuczynski's estimate of the con

centration gradient dC/dn.

Calculations of Diffusion Coefficients from Experimental Data

Nichols has demonstrated that for x/a < 0.4, there is little difference

between the rates of sintering of lines of spheres and two isolated spheres

by surface diffusion. Furthermore, for x/a < 0.25, less than 20$ of the

material contributed to the neck root in rod-to-rod sintering comes from

beyond the 60° sector of the original rod in which the neck was located.

Within this range it is felt that the rod-to-rod sintering results are

applicable to the three-wire compacts sintered by Brett and Seigle (14)

and to the wire-wound bobbins of Alexander and Baluffi (9). The rod-to-

plane sintering results are felt to be applicable to single layers of

wire-wound bobbins up to x/a ~ 0.35, since interference from necks not

accounted for in the numerical solution should be smaller than in the

case of hexagonal arrays of wires.
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As an example of the numerical computations, the volume-diffusion

coefficient for nickel will be computed for the 0.0254-cm-diam wires

sintered by Brett and Seigle at 1300°C. The values 7 = 1500 ergs/cm (36)

and ft = 1.095 X 10"23 cm3/atom (calculated from densities and atomic

weights in reference 34) were used in these calculations. Thus, the

parameter A' in Eq. (67) is given by:

A' = 0.756 X 10"7 cm

The dimensionless parameter, i, is computed from the defining of

Eq. (64) for a' = 1.27 X 10"2 cm as:

£ = 1.27 X 10~2 cm/10"3 cm = 1.27 X 101 .

The time t' to grow a neck from x/a = 0.1 to x/a = 0.25 is 370 hr, whereas

from Fig. 30, it may be seen that Dt = 1.9 X 10"3 cm2. Substituting these

values in Eq. (67) and solving for D', the bulk diffusion coefficient for

nickel at 1573°K,

10-13 cm • 1.9 XIO-3 cm2 • (l2.7)3
D' = = 0.62 X 10"11 cm2/sec .

0.756 X 10"7 cm 25.2 X 105 sec

Recent tracer diffusion experimental results may also be used to calculate

the bulk diffusivity of nickel at 1573°K as

/ -68,000 cal/mole n
D*?73 K= 1.9 exp ( j = 0.714 X10-11 cm2/sec .

V1.987 cal/mole °K • 1573°KJ
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Considering the uncertainty in diffusion and neck growth data, this

represents excellent agreement. It is thus possible that, for these

relatively large diameter nickel wires, volume diffusion contributes

substantially to the sintering process for 0.1 < x/a.

However, such good agreement is not obtained for sintering experi

ments performed with copper and silver wires. Alexander and Baluffi (9)

measured the rate of neck growth of 0.0128-cm-diam electrolytic copper

wires wound on 1.9-cm-diam copper spools, and obtained data to which the

rod-to-rod analysis applies. Alexander and Baluffi calculated an activa

tion energy of 47,000 cal/mole for their experiment. The Dp was given

by the tracer diffusion results (3l) as:

D = 0.33 exp (-48,200 cal/mole/RT) .

Alexander e_t al. (32) performed a rod-to-plane type experiment of

the same nature by sintering 0.0127, 0.0251, 0.0381, and 0.508-cm-diam

copper wires onto 6.35-cm-diam copper cylinders at 1050 and 1070°C.

Kuczynski (17) sintered 0.0127-cm-diam silver wire to a 0.0635-cm-diam

silver cylinder at temperatures ranging from 460 to 900°C for various

times, and obtained an activation energy of 45,700 cal/mole. The bulk-

diffusion coefficient for silver was calculated from the tracer-diffusion

results (33) that

D =0.34 exp(-43,500 cal/mole/RT) .
rig,

The calculated results for D' are tabulated in Table 3, together with

other pertinent data and the tracer-diffusion coefficients at the tempera

ture of the sintering experiments. It is apparent that, since the D'



Table 3. Comparison of Calculated D' with D from Tracer-Diffusion Experiments

Temperature Time

System („c) (hr) x/a
D' (calculated) D (tracer)

(cm2/sec) (cm2/sec) Material0

Surface

Tension3,

(ergs/cm2)

Rod-to-rod 900 25

Rod-to-rod 1075 4

Rod-to-plane 1050 24

Rod-to-plane 900 4

Rod-to-rod 1300 370

0.206 2.04 X 10"12

0.264 5.2 X 10-11

0.223 6.13 X 10-10

0.313 1.14 X 10-10

0.25 0.41 X 10-11

Reference given in parentheses.

3.53 X10"10 Cu (9) 1670 (9)

5.02 X 10-9 Cu (9) 1670 (9)

4.64 x 10-9 Cu (33) 1670 (9)

2.7 X 10"9 Ag (17) 1140 (5)

0.714 X 10-11 Ni (14) 1500 (33)

Volume0

(cm3/atom)

X 10-23

1.2 (9)

1.2 (9)

1.2 (9)

1.7 (35)

1.09 (35)
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required to grow a neck of a particular x/a is smaller than the tracer-

diffusion coefficient by between one and two orders of magnitude for these

experiments, sintering is proceeding more slowly than a volume-diffusion

model would predict, as measured by the rate of neck growth. It is inter

esting to note in this context that 0.05 |i, A1203 particles dispersed in

sintering copper wires retard the rate of sintering, whereas Al203 par

ticles dispersed in nickel wires do not alter the rate of sintering (l4).

This effect is due to the presence of the second phase, since sintering

of copper saturated in oxygen and containing 55 ppm Al sintered faster

than copper containing alumina. However, sufficient data were not given

for calculating the absolute self-diffusion coefficient of copper from

the sintering results.

No clear-cut explanation of the discrepancies in diffusivities

measured by tracers and calculated for the sintering of copper and silver

wires can be offered at this time. However, on the basis of these results,

it is not unreasonable to suspect that some other mechanism, such as an

interface reaction, is the rate-limiting step during sintering in some

systems.

In order to aid experimenters in determining whether volume diffusion

or surface diffusion should dominate in any particular sintering experi

ment, future work will include a comparison of the relative contributions

of volume- and surface diffusion for various physical parameters. It is

hoped that the volume diffusion and surface-diffusion numerical techniques

may eventually be combined so that the simultaneous operation of both

transport mechanisms may be evaluated. Until these future phases of the

numerical work have been completed, it does not seem profitable to discuss

this matter at great length.
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Applicability of Numerical Techniques to Other Problems

Numerous other systems of complex interface geometry in which the

interface migration is presumed to be controlled by volume diffusion may

be treated using the methods developed here. For application of the

present techniques to these systems, it is only necessary that matter be

conserved, that V^C = 0, and that the concentration C(s) be defined just

under the boundary surface. Such problems include phase transformations,

scratch smoothing, and grain-boundary grooving.

A feasibility study has been made for one phase transformation prob

lem, and some preliminary results are outlined in Appendix 3. The problem

discussed is that of an infinitely long crystal of constant cross-section

growing from a supersaturated solid solution within the confines of an

infinite cylinder on which the concentration of the diffusing species is

specified.

It is hoped that this work will stimulate further use of these

techniques in treating interface migration problems.

SUMMARY AND CONCLUSIONS

Numerical results for the rate of neck growth during the sintering

of rods and spheres to themselves and to planes by volume and surface

diffusion have been obtained by relaxing the mathematical restriction

that x/a « 1 used by Kuczynski, but retaining his geometrical constraints.

Under these conditions it is found that d ln(x/a)/d ln(t) is not constant

for x/a < 0.3 as the earlier analyses predicted.
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Use of the Cauchy integral equation and the Cauchy-Riemann differential

equations permits definition of the gradient of a harmonic function bound

ing a two-dimensional region on which the function is defined. The values

of the function on the curve are specified as boundary conditions.

Numerical techniques are developed for treating a curve of arbitrary shape.

The numerical methods are applied to trial cases for which the solu

tions are known, and then are used to solve for the rate of neck growth

and morphologies developed during rod-to-rod and rod-to-plane sintering by

a volume-diffusion mechanism. Although some variation in d ln(x/a)/d ln(t)

is found over the range of x/a investigated in the solutions, it is found

that the results may be represented accurately for the case of rod-to-rod

sintering by:

x5 7fiC°
— = 5.8 - D t

a2 kT v

For the rod-to-plane sintering case the results may be represented by:

x5 7oC°
— = 2.2 D t

a2 kT V

Application of these results to available data indicates that neck

growth in the sintering of copper and silver wire proceeds from one to two

orders of magnitude too slowly. However, the volume-diffusion coefficient

for nickel calculated from sintering data is in excellent agreement with

that obtained by tracer-diffusion techniques. This suggests that neither

surface- nor volume diffusion is the rate-limiting step during sintering

in some systems.
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APPENDIX 1

NUMERICAL SOLUTION OF SINTERING PROBLEMS USING

KUCZYNSKI-TYPE GEOMETRICAL RELATIONS

In this appendix, the solutions to a number of sintering problems

are set up using the type of geometrical approximations suggested by

Kuczynski (that is, the neck profile is a fillet of radius, p, tangentially

joined to bodies of circular or planar projection in the cases of rod-to-

plane and sphere-to-plane sintering, respectively). The body radius, a,

is assumed to remain constant during the sintering process. The neck-

body junction is located such that dy/dx is continuous over the entire

profile, although d2y/dx2 is discontinuous at the junction. In contrast

with Kuczynski's analysis, however, no mathematical approximations are

made which would require x « a.

By defining U = x/a and p' = p/a, it is found that the mathematics

of the cases of (l) rod-to-rod, (2) rod-to-plane, (3) sphere-to-sphere,

and (4) sphere-to-plane sintering by either volume diffusion or surface

diffusion may be formulated as equations of the general form

dV/dt = K • f(u) (A-l)

where K and f(u) are different for each of the eight cases. The terms

of Eq. (A-l) for each of the eight cases are defined in this appendix,

but the solutions are discussed in the text of this work.

Three subscript letters are added to K and f(u) for the different

cases, with the first two subscripts indicating the morphology of the

sintering bodies (r for rod, p for plane, and s for sphere) and the final
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subscript s for surface diffusion and v for volume diffusion. Thus,

K refers to rod-to-plane sintering by volume diffusion,
rpv ^ & J

The geometrical terms which are common to rod-to-rod and sphere-

to-sphere sintering may be deduced by examining Fig. 1-1. The common

terms are:

U = x/a , (A-2)

P' = P/a , (A-3)

9 = arctan (p' + u) , (A-4)

sin e=(iLi.^ =(£L±JJ^ , (A_5)
.p+a/Vp+l/

- e.(-^ .^_±_l . U-6)

The geometrical terms common to rod-to-plane and sphere-to-plane

sintering are deduced from Fig. 1-2. By applying the Pythagorean theorem,

and retaining the definition, U = x/a, the following relationships are

obtained:

d' = p/a = 2 - U - 2/1 - U , (A-7)

=arctan (V *p' j, (A-S)

The common trigonometric terms for rod-to-plane and sphere-to-plane

sintering are:

sin * =ILl-fil , (A-9)

cos * = j- ~ P, . (A-10)
l+o
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(O.a)

(0,0)

'4OF MATERIAL
TRANSPORTED

fr+PdO)

NECK FILLET

1-1. Geometry Common to Rod-to-Rod And Sphere-to-Sphere
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Fig. 1-2. Geometry Common to Rod-to-Plane and Sphere-to-Plane
Sintering.
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The preceding discussion has defined the geometrical relationships

involved in the eight sintering cases. For each case, a dV/dt term, a

transport area (for volume diffusion) or length (for surface diffusion)

and driving force remain to be defined. This is shown in some detail for

the rod-to-rod cases, and outlined briefly for all others.

The volume of material which must be transported to grow a neck

radius, x, in rod-to-rod sintering is

pcos9 r2(y)

V=4^o Jrjy)1 dr • dy = 2a2

The rate of change of V is given by

(U + p' ) -

dV/dt =2a2 -Jl +[(p')2 -l]^ +
J dU

l-2p' ^-9

-<°'>2 (i

dp'l dU
dU J dt

. (A-ll)

dU= 2a2Cl(u)^ (A-12)
dt

where the equations of (A-12) define C-^ (u) as the term in braces as a

function of U, only.

For rod-to-rod sintering by volume diffusion, the area over which

material diffuses is given by:

A = 4a • p' (tt/2 - 9) = 4aC2(u) . (A-13)

The definitions B = By OT/kT and E = 7 flC /kT will be used. The driving

force is assumed to be AC/p, where

AC

P

Z-(L.+ 1\ c3(u) .-1
p'a" xp

(A-14)
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A flux balance for the system yields

§ =D ^ •A (A-15)
dt v p

and substituting Eqs. (A-12), (A-13), and (A-14) into Eq. (A-15), the

result is obtained that:

2ED C (u) • C (u)
dU/dt| = 2_2 1 . (a-16)

a2Cl(u)

For rod-to-rod sintering by surface diffusion, flux occurs over four

lines of unit length at the body-neck junction, a total diffusion length

of

L = 4 . (A-17)

The surface flux is given by

j =B•^ =--2— (^ + l) =-£_ •C3(U) . (A-18)
S Ss a2p' V ' a2

Thus, a material balance on the system yields;

or, substituting Eq. (A-12) for dV/dt, Eq. (A-17) for L and Eq. (A-18)

for J ,
s

B 2C3(U)
dU/dt| =— '—— • (A-20)

rrS a^ Cx (U)
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The following equations were obtained for the various sintering

cases mentioned earlier in a manner analogous to that used to obtain the

rod-to-rod equations.

Sphere-1o-Sphere:

Rod-to-Plane:

pcos9 r2(y) 2tt

Vss=2.To Jr^/o d^ rdr ' ^ > <A"2l)

dV /dt = 2Tra3 • C5(u) • dU/dt , (A-22)
s s

pcos9

Ass = 4lT Jo r2(y)^y = 4Tra2C4(u) , (A-23)

AC/p =-^— • (2 + 1/p' - 1/U) =— C6(U) , (A-24)
p' a2 a2

L = 4TTaU , (A-25)

Ja = BC6(u)/a2 , (A-26)

ED 2C4(u) • C6(U)
dU/dt = —- • , (A-27)

' SSV a3 C5(U)

B 2U • C6(u)

du/dt Isss =~ T T, * (A_28)SSS a* C5(U)

pcos9+p r3(y)

Vrp =2So U (y) dr *dy > (A"29)



Sphere-to-Plane:
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dV /dt = a2C7(u) du/dt , (A-30)

AC/p =- -E- fi +1-) =- £_ C9(U) , (A-31)
p'a2 V2 p'7 a2

Arp =^P'^ - ♦) =a • C8(U) , (A-32)

L = 4 , (A-33)

B 2C9(u)
Js = , (A-34)

a2 (tt — 4>)

ED C8(u) C9(u)
dU/at|TiTw = — , (A-35)

a3 C7(rpv °3 C7(U)

B 8C9(u)
dU/dt I = , (A-36)

rpS a* (TT-0C7(U)

p(l+cos<t>) r2(y) 2tt
Vsp =/o SrAj) So **rdrdy, (A-37)

dV /dt = TTa3C10(u)du/dt , (A-38)
sp

p(l+cos<t>)
Asp =2TT So T3^ dy =2TTa2cn(u) > (A-39)

AC/p =- -2— (1 + l/p' - 1/u) =- —C12(U) (A-40)
a2p' a2
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L = 2-naU ,

Js =- BCl2(u)/a2 ,

dU/dt|
spv

2DyE Cn(u) C12(U)

a3 Cx 0(u)

2B UC12(u)
dU/dtI =

SPS a^C10(u)

(A-41)

(A-42)

(A-43)

(A-44)
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APPENDIX 2

QUADRATURE WEIGHTING FACTORS

In the text, the use of weighting factors in quadrature formulae was

indicated without any specific detail on how they should be obtained.

Equations (3l), (32), (35), and (36) of the text make specific reference

to these weighting factors.

The factors arise from approximating a contour integral as:

n

Ja f(s) ds s ) if(sk)As +e. (B-l)
k=0

Separate consideration will be given to closed and nonclosed contours,

for both the contour integrals on the right side of Eq. (26) in the text.

Closed Contour

Consider the general closed contour of the type shown in Fig. 2-1.

Points P , P , ....P (n = even integer) are spaced at equal increments

of arc length, As, on the contour, where P and P coincide.
" on

Nonsingular Contour Integral

The integrand of the second term of Eq. (26) consists of the kernel

cos (ro)/|r| and the integrand function C (s), neither of which is singular.

Thus, a simple Simpson quadrature formula may be used to approximate the

integral at any point P.. The formulations below make use of the defini

tions of K' and K' in Eqs. (33) and (34). The Simpson quadrature for any
s c

point P. is written:
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|Y

*-X
Fig. 2-1. General Closed Contour
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C (s) sin (ro) As
— ds S— [C (i + l) K (i,i + l) + 4C (i + 2) K (i, i + 2)

|r| 3 L C l c

+ 2C].(i + 3) Kc(i,i + 3) + 4C];(i + 4) Kc(i,i + 4) +

+ 4CI(i - 2) Kc(i,i - 2) + 2C.[(i - l) Kc(i,i - l)

+ 4CI(i) Kc(i,i) + Oj-Ci + l) Kc(i,i + l)] . (B-2)

Nonclosed Contours

The general treatment of nonclosed contours resembles that of closed

contours in most respects. It differs in that the so-called "four-point"

Simpson quadrature formula is introduced, and in that the end points

require careful consideration.

Consider the nonclosed contour shown in Fig. 2-2, which is composed

of a region S' over which a preliminary solution is determined by matrix

inversion, and a region S2 over which an approximate solution is assumed

(which is the case in both rod-to-rod and rod-to-plane sintering). The

reflected neck S'" will be considered separately.

Nonsingular Nonclosed Contour Integral

The weighting factors may be defined for any point P. on S' by

integrating from P to P : the result is:
00 u nr

A(i,j) = As/3, j = u, j = m

A(i,j) = 2As/3, j = odd integer

A(i,j) = 4As/3, j = even integer .
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Fig. 2-2. Nonclosed Contour for Rod-to-Rod Sintering.
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Singular Nonclosed Contour Integral

The limits of the Simpson singular integral for even i naturally

match the limits of the Simpson nonsingular integral above, when the

Cauchy principal value of the contour integral is used from P. , to P.
l—l l+l

However, for odd i, the Simpson singular integrals limits do not

match those of the nonsingular integrals unless an odd-interval quadrature

is used. A trapezoidal integration from P., to P. _ fulfills this

requirement, as does the use of a three-interval Simpson quadrature, such

as:

Jp f(s) ds =3As[f(0) +3f(l) + 3f(2) + f(3)] . (b-6)
o

Thus, if the A(i,j) matrix [Eq. (36)] is written for a closed contour,

it is defined by:

A(i,j) = 2As/3, i,j mixed (even-odd or odd-even integers) ,

A(i,j) = 4As/3, i,j unmixed (even-even or odd-odd integers) . (B-3)

Two points are worthy of comment. First, the cyclic boundary condi

tion that P and P are identical is used to compute the integral from
on D

P _-, to (P or P )to Px . Second, the limits over which the terms of

Eq. (26) are integrated are chosen to be identical; for example, the

value of the second term in Eq. (26) at the i point is obtained by inte

grating from P._-, "to P.,-,; and the value of the first integral is obtained

likewise. If the ranges do not conform in this sense, the final solution

for <t>T(s) has been found experimentally to be in error.



114

Singular Closed Contour Integral

The integrand of the first term of Eq. (26) consists of the kernel

sin (ro)/|r| and the integrand function C (s), where the kernel is singular

as |r| -» 0. A Simpson quadrature formula may be used to approximate the

integral for point P. over the intervals beginning at P. , and ending at

P. . Equation (30) is used to approximate the Cauchy principal value

of the integral from P._, to P.+1- The A(i,j) matrix [Eq. (36)] for a

closed contour is thus:

A(i,j) = 2As/3, i,j mixed, j/i+1, j=i-l

r i,j mixed, j=i+l, j=i-l
A(i,j) = 4As/3, 1

*- i,j unmixed, i / j .

A(i,j) =0, i = j (B-4)

Note that cyclic boundary conditions apply when i + 1 = n or when

i — 1 = —1. The latter was selected because of its higher accuracy.

Applying the three interval Simpson quadrature from P.,-i "to P.,/ and from

P._, to P.j, and using the usual Simpson quadrature formula elsewhere

(except for the Cauchy principal value approximation from P-n to P ,),

it is found that:

A(i,j) = 2As/3, all i, odd j

A(i,j) = 4As/3, all i, even j
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where the following exceptions are noted:

A(i,j) = As/3, j = u,m

A(i,j) =0, i = j

A(i,j) = 4As/3, even i, j=i+l, i—1

A(i,j) = llAs/8, odd i, j = i + 1, i - 1

A(i,j) = 9As/8, odd i, j = i + 2, i - 2, i + 3, i- 3

A(i,j) = 17As/l6, odd i, j = i + 4, i - 1 . (b-7)

The Reflected Neck

If Pir and Pnr denote the reflections of Px and P , the end points

of S', then a simple Simpson quadrature yields:

A(i,j) = A(i,j) = As/3, all i, j = lr, nr

A(i,j) = A(i,j) = 4As/3, all i, even j

A(i,j) = A(i,j) = 2As/3, all i, even j / lr, In . (B-8)
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APPENDIX 3

TWO-DIMENSIONAL CRYSTAL GROWTH

Introduction and Circle Test Case

The text of this work deals primarily with the solutions for two-

dimensional sintering problems. A slightly different class of problems

may be treated with the mathematical and numerical techniques developed

here. In these problems the growth of a body is controlled by volume

diffusion external to the body. In particular, in this discussion the

growth of an infinitely long cylindrical rod whose axis coincides with

the axis of an infinitely long right circular boundary is considered.

No attempt will be made to observe the growth of rods of any cross

section other than circular cross sections.

Figure 3-1 is a schematic of the cylinder boundary S4, the rod

boundary ^ , and the shaded internal region T within which diffusion

occurs. Within T, it is assumed that ^C = 0. If the cylinder and rod

cross sections are both circular, and the diffusing species concentration

is fixed at Cx on ^ and at C4 on S4, then within T the concentration of

the diffusing species is given by

(CU-Cx)
C'(z) = Cx + . (C-l)

In (R/p)

This may readily be demonstrated by showing that X^C'(z) = 0. Separating

i 9
C'(z) into its real and imaginary parts, C^z) and CT(z), (since z = re )

illustrates that the imaginary part of C(z) is multiple-valued in 9 and

increases by 2tt(C,4 — Ci )/ln (R/p) for each 2tt increment in 9:
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*-x

Fig. 3-1. Two-Dimensional Crystal Growth System.
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cI(z) =(c* - Cje/ln (R/p) .

For the integral Eq. (26) of the text to apply, a simple closed region T

is obtained by introducing a cut along 9=0, where S2 is the cut surface

from |r| = |p| to |r| = |r|, and S3 is the cut surface in the opposite

direction. The integral equation is then written for the four segments

of the total contour, and the notation is introduced that:

C.(t) = -
C^s) sin (ro), 1 f C (s) cos (ro)
R _ 'ts ,

— — ds
Iv ' v 'ts

tt "S. r+ tt S. r.
1 ' ts' 1 ' ts1

ds . (C-3)

where

C (t) = Ix(t) + I2(t) + I3(t) + I4(t) . (C-4)

The following assumptions are made to evaluate the I. for physically

reasonable conditions:

1. CT(s) is multiple-valued, but CTD(s) is not multiple-valued.
I -K

2. The maximum radius vector to a point on Sj. , p , is much smaller

than R.

3. Si is a simple curve, but not necessarily circular in shape.

4. CT(s2) and C (s3) are constants.

This latter condition is true if the cut is made along a plane of mirror

symmetry of Si, since cXL/dn = 0 along such a cut, requiring that

SCT/c3s = 0 along the cut surfaces S2 and S3. Under these conditions it

may be shown that:
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c(s3)-cT(s2)
lim /RtI2(t) +I3(t)] =— y^ t1 _6» • (C-5)
max'

It may further be shown that if C_(s4) = C39 and C^S^) = constant, then
1 R

I4(t) S 2tt[1 - 2( p/R)2 ]C3 (C-6)

for p « R.

As a specific test case, it may be shown that if Si is a circle and

C.[(s) =C39, that

Ii(t) = - nC3 . (C-7)

By substituting Eqs. (C-5), (C-6), and (C-7) into Eq. (C-4), it may be

shown that

lim /R _Q»TU) =lim /R _, QX h^ -°39 • ^
max' Kmax' . ,

i=l

This result is in agreement with Eq. (C-2), and demonstrates by internal

consistency the validity of Eqs. (C-5) and (C-6).

Method of Numerical Solution for Noncircular ^

Consider now the problem of an infinitely long rod growing within

an infinitely long matrix of cylindrical boundary, where the matrix is

supersaturated in the diffusing species, and the cylinder wall is nearly

infinite in radial extent compared to the rod dimension. The rod is per

mitted any boundary contour which has at least one plane of mirror symmetry

coincident with the cylinder axis. The supersaturation is obtained by
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prescribing the concentration of the diffusing species to be C4 on S4,

and defining Ci at each point on Si by the Gibbs-Thompson equation. Then

at any point t,

C4 - Ci(t)
C3(t) = (C-9)

In (R/p)

is a measure of the supersaturation at point t.

Now, if the integral Eq. (26) be written for the entire contour,

I2(t) + I3(t) may be evaluated by Eq. (C-5), and Eq. (C-6) may be used

to evaluate I4(t) for fixed C4, R, p, 9, and (yQC /kT). The evaluation

of I4(t) may be performed in the usual manner. Points P. are located so

as to divide Si into n arc segments of equal length. A set of integral

equations is then generated by writing the integral equation for each of

the P.. The set of integral equations is then replaced by a system of

linear equations by means of quadrature formulae identical to those used

in the ellipse decay case (Appendix 2), except that care must be taken to

avoid integration across the cut. The sum of the integral over Si of the

C_(s) sin (ro)/|r|, I2(t) + I3(t), and I4(t) are treated as an inhomoge-

neous term, and matrix inversion may be used to solve for <t> .

It is possible to study the effects of anisotropy of surface tension,

7, in this numerical scheme, since if 7 is anisotropic, the Gibbs-Thompson

becomes (3l) for dilute solutions:

CR(s) =CQ +Cafi(7o + 7£)K/(kt) . (C-10)

The term 7" may be found at any point by introducing centered differences

to approximate the equation
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„ _ b_ fbj bs\ bs
7 c3s Us hQJ bQ

provided that 7(9) does not have a cusp, or discontinuous curvature.

Trial Applications of the Methods Developed

The techniques described in the preceding section were applied to

the growth of rods of circular cross section for the cases of isotropic

and anisotropic surface tension. The results of these applications are

described briefly below.

The circle of isotropic surface tension was solved for n equals 8,

16, 24, 32, 40, and 48. Solutions were obtained for these systems with

C3(t) = 0, and the calculated (I>T(i) were constant to at least six signi

ficant places for each system.

Solutions were also obtained for C3(t) = 10*, and the values of <t>(i)

for all systems agreed with Eq. (l0) to at leaet six significant places

(as many as were printed out by the computer). These two tests indicate

the validity of the mathematical treatments of (l2 + I3) and I4.

In addition, the boundary of a circular rod of isotropic surface

tension was allowed to migrate 30 time steps, where the boundary displace

ment was 10~3|p|per time step. Nichols' techniques for boundary migration

and point relocation are well-suited to handling contours of slowly changing

curvature, and were used for this work. The values of <t'T(t) agreed with

C3(t) to six significant figures after 30 time steps, and the velocities

of all points agreed to at least four significant figures on each time

step.
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The velocities of the anisotropic rod of circular cross section

were computed for the case

7 = 7 + 7x cos 29 .

It was found that the velocities of the points were proportional to cos 29

to at least three significant places for n = 8 and to at least four

significant places for n > 16.

Although it has not been possible to utilize this approach to study

the behavior of two-dimensional crystals of various shapes as yet, it is

felt that a number of interesting studies on the stability of interfaces

and growth morphologies may be performed using these techniques.
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