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ABSTRACT 
1 

The attainment of low power cost  and high f u e l  
u t i l i z a t i o n  i n  high-temperature gas-cooled reac tors  
(HTGR's) using t h e  t h ~ r i u m - ~ ~ ~ u  f u e l  cycle depend t o  a 
grea t  extent  upon the  a b i l i t y  t o  economically recycle 
fue l .  Accordingly, work i s  being conducted by the  
Oak Ridge National Laboratory and others  t o  e s t ab l i sh  the  
technica l  requirements and economics f o r  HTGR f u e l  recycle.  
The development e f f o r t ,  which i s  based on a f u e l  element 
having a pyro ly t ic  carbon and s i l i c o n  carbide coated 
2 3 3 U - 2 3 5 U - t h o r i ~  f u e l  i n  graphi te  pr ismatic  blocks, i n -  
cludes the  development of processes and equipment f o r  
head-end processing, f o r  chemical reprocessing, f o r  sol- 
gel  preparat ion of microspheres, and f o r  re fabr ica t ion  of 
f u e l  elements. The ul t imate  object ive i s  t o  furn ish  
engineering data  f o r  t he  design and operation of a la rge  
commercial recycle  plant .  I n  addi t ion,  the  recycle  
economics and the  e f f e c t s  on economics of various a l t e r -  
nat ives  i n  the  recycle processes a r e  being studied. T h i s  
paper descr ibes  the  s t a t u s  of the  recycle e f f o r t  and pre- 
sen ts  recent  project ions of t he  cost  of recycle HTGR f u e l  
as  well as the  cost  pena l t ies  associated with delay i n  
recycl ing f u e l  i n  a growing HTGR economy. 

A t  present,  t he  various processes a r e  i n  t he  s tage 
of laborabory development and conceptual design of p i l o t -  
sca le  equipment. The s t a t u s  of a l l  s teps  i n  the  recycle 
processes i s  discussed and the p i l o t  f a c i l i t y ,  the  Thorium- 
Uranium Recycle F a c i l i t y  ( T U R F ) ,  i s  b r i e f l y  described. 
TURF has been constructed and i s  ready f o r  i n s t a l l a t i o n  of 
equipment f o r  HTGR recycle work. The reference f u e l  design 
and the  s t a t u s  of the  work under way, including i r r a d i a t i o n  
performance tes ts  of coated f u e l  p a r t i c l e s ,  a r e  a l s o  
discussed. 



2 

INTRODUCTION 

High-temperature gas-cooled reac tors  using the  thorium-2 33U f u e l  
cycle a r e  under development i n  the  United S ta t e s  by Gulf General Atomic 
because of t h e i r  po ten t i a l  t o  achieve low power cos ts  and high f u e l  
u t i l i z a t i o n .  I n  a 1963 paper, Pahler [l] s t a t e d  t h a t  t h e  attainment of 
l o w  power cos ts  depends t o  a grea t  extent  upon t h e  development of tech- 
nology f o r  t h e  economical recycle  of f u e l  from HTGR's, p a r t i c u l a r l y  
coated p a r t i c l e  fue l s .  This s i t u a t i o n  has not changed s i g n i f i c a n t l y  
during t h e  l a s t  f i v e  years i n  t h e  United S ta tes .  Indeed, a complete 
f u e l  cycle f o r  HTGR's remains t o  be demonstrated. 

Previously t h e  ORNL s t a f f  reported on HTGR chemical processing 
development [2,3] and on t h e i r  preliminary s teps  f o r  development of a 
re fabr ica t ion  technology f o r  HTGR fue l .  [4+] G u l f  General Atomic has 
a l s o  described a concept f o r  a head-end reprocessing f a c i l i t y .  [ 7 ]  
Since t h a t  t i m e  ORNL and others  i n  t h e  United S ta t e s  have been con- 
ducting work t o  e s t a b l i s h  the  technica l  requirements and economics f o r  
HTGR f u e l  recycle ,  This development has included head-end processing, 
chemical processing, sol-gel  preparat ion of microspheres, and re fabr ica-  
t i o n  of f u e l  elements. This work has placed us i n  a b e t t e r  pos i t ion  t o  
assess  the  economic value of HTGR f u e l  recycle  and, correspondingly, 
the  cos t  of delaying recycle  o r  not doing it. 
(1) what i s  the  s t a t u s  of t he  technica l  development f o r  HTGR recycle 
and (2) what i s  t h e  economic penal ty  f o r  e i t h e r  delaying o r  even not 
carrying out t he  t h ~ r i w n - ~ ~ ~ U  recycle.  We s h a l l  dea l  with these  two 
questions i n  t h i s  paper. 

Two questions a r i s e :  

F i r s t ,  we s h a l l  present t he  bas i s  f o r  a thorium-based HTGR f u e l  
recycle program; second, a statement descr ibing how the  work i s  organized 
and scheduled; t h i r d ,  t he  current  s t a t u s  of recycle  technica l  development; 
and fourth,  t he  economic project ions and pena l t i e s  associated with delay 
i n  recycle i n  a growing HTGR economy. 

PROGRAM BASIS 

The object ive of our work i s  t o  furn ish  t h e  necessary technology 
t o  enable a cen t r a l  reprocessing and re fabr ica t ion  p lan t  t o  be construc- 
ted  and placed i n t o  operation. 
s e l ec t  reference f u e l  and recycle processes f o r  development and p i l o t  
p lan t  demonstration. 
developments a r e  a s  follows. 

To meet t h i s  goal, it was necessary t o  

The development references and the  required 
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Reference Fuel Element Des ign  f o r  Recycle Development 

The reference recycle f u e l  element i s  very s i m i l a r  t o  t h a t  specif ied 
by Gulf General Atomic f o r  t he  Public Service of Colorado (PSC) Fort  
S t .  Vrain Reactor and f o r  t he  near-term 1000-Mw ( e l e c t r i c a l )  HTGR's t h a t  
are planned by Gulf General Atomic. The pr inc ipa l  difference i s  i n  the  
d e t a i l s  of t he  coated pa r t i c l e s .  The Fort  St .  Vrain Reactor will contain 
1260 standard f u e l  elements and 222 f u e l  elements w i t h  control  rod holes. 
The f u e l  elements are hexagonal blocks of graphi te  approximately 
30 in .  long x 14 in .  across the  f l a t s ,  a s  shown i n  Fig. 1. Each element 
contains 102 coolant holes and 210 f u e l  holes. The f u e l  holes a r e  
approximately 0.45 in .  i n  diameter. The recycle f u e l  f o r  these  reac tors  
w i l l  cons is t  of t h ree  d i f f e r e n t  types of pa r t i c l e s :  
2 3 3 U  and thorium, (2) one containing makeup 235U, and (3) one containing 
thorium. The p a r t i c l e s ,  which a r e  coated wi th  layers  of S i c  and pyrolyt ic  
carbon, are s ized  t o  f a c i l i t a t e  s e l ec t ive  separat ion by screening t o  
s implify reprocessing. 
f u e l  s t i c k  and inser ted i n t o  carbon f u e l  blocks during fabr ica t ion .  

(1) one containing 

The p a r t i c l e s  a r e  mixed and molded i n t o  a bonded 

Although t h e  reference recycle f u e l  will consis t  of t he  p a r t i c l e s  
previously indicated,  t he  recycle process should be capable of handling 
a broader range of p a r t i c l e s  and f u e l  body types. 
e igh t  p a r t i c l e s  and groups them t o  s a t i s f y  four  d i f f e r e n t  s i t ua t ions :  
a reference f u e l  f o r  both i n i t i a l  and recycle core loadings and a long- 
term f u e l  f o r  both i n i t i a l  and recycle core loadings. We assume t h a t  
head-end processing s teps  may have t o  accommodate hot-pressed f u e l  
compacts as w e l l  a s  t h e  bonded f u e l  p a r t i c l e s  of fu tu re  HTGR's. Such 
hot-pressed f u e l  compacts are used i n  t h e  only operating HTGR i n  the  
United S ta tes ,  the Peach Bottom Reactor located near Delta, Pennsylvania. 
The reference f u e l  l i s t ed  i n  Table I i s  amenable t o  recycle by current  
technology. The advanced f u e l  appears most economically des i rab le  f o r  
fu ture  HTGR f u e l  systems. 
i n  Table I follows. 

Table I describes 

A discussion of the various p a r t i c l e s  l i s t e d  

Reference Fuel Pa r t i c l e s .  - The reference f u e l  p a r t i c l e s  a r e  of four  
types. Carbides were selected f o r  t he  i n i t i a l  core loadings because 
Gulf General Atomic now has the  technology necessary t o  f ab r i ca t e  these 
p a r t i c l e s  i n  la rge  quant i t ies .  

To produce an instantaneous Doppler coef f ic ien t  i n  the  i n i t i a l  core, 
some or a l l  of the 235U w i l l  be formed i n t o  thorium-uranium dicarbide 
p a r t i c l e s  (type 2) .  I n  the  Fort  St .  Vrain Reactor a l l  of t he  235U i s  
mixed w i t h  t he  thorium, but  i n  the  current  1000 Mw ( e l e c t r i c a l )  HTGR 
design only half  of t h e  i n i t i a l  f u e l  elements contain thorium-uranium 
pa r t i c l e s ,  and the  remaining half  use uranium dicarbide p a r t i c l e s  
(type 3).  Since two of the  four  i n i t i a l  segments i n  t h e  1000 Mw(e1ectri- 
c a l )  reac tor  achieve less than four  years of burnup, t he  2 3 5 U  deplet ion 
i s  less than normal. These segments contain the  thorium dicarbide and 
the  thorium-uranium dicarbide pa r t i c l e s .  To reduce t h e  complexity of 
recycle,  no p a r t i c l e  separat ion w i l l  be done on these segments; thus,  
a l l  uranium isotopes w i l l  be recycled together.  The remaining two core 
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a Table I. HTGR Fuel Pa r t i c l e  Descriptions 

Fresh Fuel Recycle Fuelb 
F e r t i l e  F i s s i l e  F i s s i l e  F i s s i l e  
P a r t i c l e  P a r t i c l e  1 P a r t i c l e  2 Pa r t i c l e  1 

Reference Fuel 

P a r t i c l e  type 
Kernel composition 
Kernel diameter, p 
B u f f e r  carbon thickness, p 
Inner  i s o t r o p i c  pyrolyt ic  carbon 

S i l i con  carbide thickness, p 
Outer py ro ly t i c  carbon thickness, p 
Tota l  p a r t i c l e  diameter, p, 

thickness,  p 

1 2 3 4 
Thc2 (Til, 3 5U) c2 (2 35u) c2 (m, 3u) o2 
400 f 100 200 f 50 100 f 10 400 f 100 
50 f 10 50 f 10 100 rl: 10 50 f 10 
20 f 5 20 f 5 20 f 5 20 f 5 

20 f 3 20 f 3 20 f 3 20 f 3 
40 t 5 30 f 5 30 f 5 40 f 5 
660 f 146 440 rl: 96 440 rl: 56 660 f 146 

Advanced Fuel 

P a r t i c l e  type 
Kernel composition 
Kernel diameter, p 
Buffer carbon thickness,  p, 
Outer py ro ly t i c  carbon thickness, p, 
Tota l  p a r t i c l e  diameter, ~1 

8 
( 3u) o2 

6 7 
(Th, 5U) 02 (2 3 5u) 02 

5 
Tho2 
400 f 100 
50 f 10 
80 k 10 70 f 10 70 f 10 80 f 10 
660 rl: 140 440 f 90 

200 rl: 50 100 f 10 200 f 50 
50 f 10 100 5 10 150 f 10 

440 f 50 660 f 90 

P a r t i c l e s  w i l l  be bonded i n t o  f u e l  s t i c k s  f o r  i n se r t ion  i n t o  hexagonal graphite f u e l  elements, a 

Natural  boron carbide s t i cks  containing about 15% B4C i n  a graphite matrix will be used i n  f i r s t - co re  
f u e l  elements as  a burnable poison. 

b F e r t i l e  and f i s s i l e  2 p a r t i c l e s  a r e  the same a s  f o r  f r e sh  fue l .  
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segments contain thorium dicarbide and uranium dicarbide pa r t i c l e s .  For 
these f u e l  elements p a r t i c l e s  a r e  separated by the  s i z e  difference between 
p a r t i c l e s  1 and 3. 
the  233U. 
swelling caused by i t s  very high burnup. 
accomplished by increasing the  thickness of t h e  buf fer  carbon l aye r  
adjacent t o  t h e  kernel .  

This i s  done t o  avoid recycle  of 236U and 237U with 

The d i l u t i o n  i s  assumed t o  be 
P a r t i c l e  3 i s  d i lu t ed  with carbon or voids t o  accommodate 

Recovery of, 235U from p a r t i c l e  3 may be economically warranted s ince 
the discharged uranium i s  about 3@ enriched and contains a s ign i f i can t  
quant i ty  of 237Np and 238Pu. 

P a r t i c l e  4 i s  representat ive of t h e  f u e l  f o r  e a r l y  recycle  cores. 
This p a r t i c l e  contains 233U and thorium i n  t h e  form of oxide prepared by 
the  sol-gel  process. The spent f u e l  p a r t i c l e s  a r e  assumed t o  be separ- 
ab le  by s i z e  difference.  Although thorium i s  blended with 233U i n  t h i s  
pa r t i c l e ,  development of the  so l -ge l  process f o r  making pure U02 p a r t i c l e s  
makes it possible  t o  use 233U p a r t i c l e s  i f  desired. 

Advanced Pa r t i c l e s .  -There  a r e  a l s o  four  types of advanced p a r t i c l e s .  
The p a r t i c l e s  used i n  the  i n i t i a l  r eac to r  charges ( p a r t i c l e s  5 ,  6, and 7) 
a r e  designed on t h e  same bas is  a s  p a r t i c l e s  1, 2, and 3 .  The s ign i f i can t  
difference i s  t h e  el iminat ion of t he  S i c  coating and the  use of oxides 
r a the r  than carbides. This change an t i c ipa t e s  demonstration of t h e  
adequacy of two i so t rop ic  BISO coatings f o r  s a t i s f a c t o r y  f iss ion-product  
r e t en t ion  and t h e  development of so l -ge l  methods f o r  f u e l  f ab r i ca t ion  t o  
the  point  where fu tu re  large-scale  p lan ts  employing so l -ge l  methods 
would have a competitive advantage over present  methods of f ab r i ca t ing  
non-recycle fue l s .  

The advanced recycle 233U p a r t i c l e  ( p a r t i c l e  8) contains no thorium. 
With thorium omitted, the volume of t he  233U r e fab r i ca t ion  process streams 
can be reduced 8076 t o  save costs .  
and 4 contain four  times a s  much thorium a s  uranium. 

The reduction a r i s e s  because part ic les  2 

The reprocessing p l an t  must be ab le  t o  handle a l l  t h e  p a r t i c l e  types. 
Only t h e  233U-bearing p a r t i c l e s  (4 and 8) must be prepared i n  the  recycle 
f a c i l i t i e s ;  however, t h e  f u e l  rod and assembly processes must be capable 
of producing f u e l  elements using combinations of recycle  f u e l  p a r t i c l e s  
a s  indicated i n  Table I-. 

Generalized Fuel Cycle Flowsheets 

The reference and advanced recycle process flowsheets, which a r e  
based on the  p a r t i c l e s  shown i n  Table I, a r e  given i n  Fig. 2. The main 
differences i n  the  flowsheets a r e  a s  follows. I n  the  reference flow- 
sheet t he  f u e l  i s  removed from t h e  spent f u e l  blocks by crushing and 
burning the  e n t i r e  block, whereas i n  t h e  advanced flowsheet t h e  fue l  
p a r t i c l e s  a r e  f i r s t  removed from the  blocks. 
flowsheet t he  f u e l  p a r t i c l e s  a r e  not  crushed because s i l i c o n  carbide 

Also, i n  t h e  advanced 

. 
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coatings a r e  not present.  
and therefore  t h e  a reas  t h a t  need the  most technica l  e f f o r t ,  a r e  a s  
follows: (1) a method must be developed f o r  removal of p a r t i c l e s  from 
the  f u e l  blocks and separat ion of t h e  removed pa r t i c l e s ;  (2) systems 
must be developed f o r  t r e a t i n g  and disposing of f iss ion-product  gases; 
and (3) systems must be developed f o r  the remote operation and mainten- 
ance of equipment f o r  microsphere formation, p a r t i c l e  coating, mixing 
the p a r t i c l e s  before bonding i n t o  f u e l  s t i cks ,  and bonding t h e  p a r t i c l e s  
i n t o  f u e l  s t icks .  
leach method f o r  head-end processing, aqueous methods f o r  chemical 
processing of fue l ,  sol-gel  methods f o r  preparat ion of recycle  f u e l  
p a r t i c l e s ,  and conventional coating and bonding methods f o r  t h e  refab-  
r i c a t i o n  of fue l .  

The key problem areas  of these  flowsheets, 

The approach a t  ORNL i s  pr imari ly  based on the  burn- 

Schedule f o r  Recycle Development 

Economic s tudies ,  which w i l l  be presented l a t e r  i n  t h i s  paper, 
ind ica te  t h a t  the most des i rab le  time t o  begin large-scale  HTGR f u e l  
recycle i s  during the 1980-1982 period. For t h e  purpose of present ing 
a schedule i n  t h i s  paper, we s h a l l  s e l e c t  1981. 
p lan ts  can be b u i l t  and placed i n t o  operation t o  process and f ab r i ca t e  
233U f u e l s  by 1981, a comprehensive program f o r  development of HTGR f u e l  
recycle technology must be completed. 
development i s  presented i n  Fig. 3. The schedule has been divided i n t o  
t w o  broad areas :  (1) f u e l  reprocessing development, which includes head- 
end and solvent ex t rac t ion  processing, and (2) f u e l  r e fab r i ca t ion  develop- 
ment, which includes both preparation by the  so l -ge l  process and manufac- 
t u r e  of f u e l  elements by pyro ly t ic  carbon coating, bonding of f u e l  s t i c k s ,  
and assembly of t he  s t i c k s  i n t o  graphi te  blocks. 
a reas  culminates i n  the  design and construct ion of a cen t r a l  p lan t ,  t he  
construction schedule f o r  which i s  included i n  Fig. 3 .  Approximately 
4 . 5  years a r e  needed t o  complete the  process development. 
of t h a t  period w i l l  be used t o  complete and prove the  r e l i a b i l i t y  of 
equipment before processing of radioact ive mater ia l  begins. 
1 .5  years of hot operation w i l l  be required t o  obtain adequate experience 
and information t o  design, construct ,  and tes t  t h e  large-scale  commercial 
p lan t .  [8] We estimate t h a t  5.5 years a r e  required t o  go from conceptual 
design t o  hot operation of t h e  commercial recycle  plant .  

Before la rge-sca le  

Our schedule f o r  HTGR recycle  

Development i n  the  two 

The l a s t  year 

About 

Probably a smaller and diminishing development effo-rt  w i l l  be 
required during the  l a t t e r  per'iod t o  solve problems r e l a t e d  t o  scaleup 
and t o  f u r t h e r  r e f ine  the  processes f o r  recycle.  
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STATUS OF RECYCLE DEVELOPMENT 

Papers by Nicholson [2] and Lot t s  [4] and t h e i r  co-workers i n  1965 
summarized the  s t a t u s  of HTGR recycle  development i n  the  United S ta tes .  
Before proceeding with a discussion of t h e  s t a t u s  of recycle  development 
i n  the  various processing technologies, it seems usefu l  t o  b r i e f l y  
summarize what has been done on reprocessing and r e fab r i ca t ion  of 233U- 
thorium fue l s .  
f o r  t h e  recycle  of 233U-containing graphi te  matrix f u e l  elements. Com- 
mercial f a c i l i t i e s  such a s  the  p lan t  of t he  Nuclear Fuels Services,  Inc., 
a subsidiary of W. R. Grace Company, and Midwest Fuel Recovery Plant ,  
cur ren t ly  proposed by General E lec t r i c ,  a s  w e l l  a s  other  proposed 
chemical processing f a c i l i t i e s ,  a r e  pr imari ly  concerned with t h e  extrac-  
t i o n  of 235U and plutonium from water r eac to r  f u e l s .  
government-owned p lan t s  a t  Hanford and Savannah River a r e  not concerned 
with reprocessing of 233U graphite matrix fue l s .  

Only a l i m i t e d  amount of technology i s  present ly  ava i lab le  

Also t h e  

Preliminary head-end treatment work has been done on 233U graphi te  
matrix fue l .  [7,9,10,11] Reprocessing of i r r a d i a t e d  thorium metal was 
demonstrated i n  t h e  ORNL Thorex P i l o t  Plant  L12J i n  1956, and 233U has 
been recovered f rom i r r a d i a t e d  tho r i a .  [13 1 
(ThO2-3$ U)02 shards i n t o  Zircaloy-clad f u e l  rods was demonstrated i n  t h e  
Kilorod Plant [14] i n  1964. 

The v ibra tory  compaction of 

There i s  e s s e n t i a l l y  no experience with power r eac to r  graphi te  matrix 
L i t t l e  has been done -on t h e  separat ion f u e l s  containing thorium and 233U. 

of f u e l  p a r t i c l e s  containing 233U from those containing 235U a s  i s  required 
by the  reference recycle  process flowsheet previously presented. 

Laboratory s tudies  have been reported on head-end processing, chemical 
processing by solvent  extract ion,  and p a r t i c l e  f ab r i ca t ion  a t  ORNL. [15-17] 
The various s teps  i n  chemical reprocessing a r e  w e l l  del ineated.  Cold 
f ab r i ca t ion  of t h e  reference f u e l  has been performed on a developmental 
engineering sca le  a t  ORNL and on a production sca le  a t  Gulf General Atomic. 
This  f ab r i ca t ion  development includes making microspheres by so l -ge l  
forming techniques, [18] coating with pyro ly t ic  carbon and s i l i c o n  
carbide, [19] and combining the  microspheres i n t o  f u e l  s t i cks .  [ 20 ]  The 
sol-gel  process f o r  preparing Th02-UO2 and UO2 microspheres has been 
demonstrated i n  d i r e c t l y  maintained engineering equipment on a g rea t e r  
than 10 kg/day scale .  [21] Subs tan t ia l  progress has been made i n  devel- 
oping methods f o r  performing the same operations remotely. This work, 
along with r e l a t ed  coating s tudies ,  i s  being done i n  the  Coated P a r t i c l e  
Development Laboratory, a laboratory designed f o r  t h i s  task.  [18] Also, 
some equipment f o r  performing these  operations i n  a remote f a c i l i t y  has 
been conceptually designed. E181 

Although t h e  above discussion gives general  information on t h e  
problems i n  recycl ing t h ~ r i u m - ~ ~ ~ U  and implies s p e c i f i c  data  and tech- 
nology on c e r t a i n  s t eps  associated with t h e  recycl ing of HTGR fue l s ,  it 
a l s o  shows t h a t  much remains t o  be done be’fore accomplishing t h e  f u l l y  

. 
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. 

in tegra ted  recycle demonstration required f o r  t he  design of a commercial 
recycle  p l an t ,  To assess  i n  d e t a i l  the  present s t a t u s  of the various 
technological  a reas  and t o  determine more prec ise ly  what remains t o  be 
done, t h e  following comments give the present s t a t u s  of recycle develop- 
ment f o r  t he  various a reas :  reprocessing, including head-end processing 
and solvent extract ion,  and f u e l  re fabr ica t ion ,  including preparation 
of microspheres and f ab r i ca t ion  of f u e l  elements. 

Fuel Reprocessing 

Reprocessing development tasks  include the  development of head-end 
processes and the  appl ica t ion  of ex i s t ing  technology f o r  aqueous processing. 

Head-End Process. - The head-end reprocessing development program 
involves cold engineering-scale work on graphi te  f u e l  block treatment and 
on f u e l  p a r t i c l e  separation, a s  well  a s  ho t - ce l l  experiments on i r r a d i a t e d  
f u e l  capsules. The object ive of t he  engineering work i s  t o  f i n d  means 
f o r  separat ing coated f u e l  p a r t i c l e s  from the  bulk of the  graphi te  f u e l  
matrix and separat ing 23 'U-containing p a r t i c l e s  from 'U-containing 
p a r t i c l e s .  A flowsheet f o r  head-end processing of t he  reference f u e l  
element i s  shown i n  Fig. 4.  The ho t - ce l l  experiments a r e  t o  provide 
information on f u e l  s t i c k  and coated p a r t i c l e  proper t ies  and behavior 
when they have been i r r ad ia t ed  t o  an t ic ipa ted  HTGR conditions and on the  
e f f e c t  such behavior w i l l  have on f u e l  p a r t i c l e  recovery, separabi l i ty ,  
and d isso lu t ion  i n  acid.  Information w i l l  a l s o  be obtained on radio- 
ac t ive  gas behavior and treatment. 

The very l a rge  amount of graphi te  i n  the block r e l a t i v e  t o  f u e l  
p a r t i c l e  mass i n  the  f u e l  element makes mechanical separat ion of t he  
matrix from t h e  f u e l  p a r t i c l e s  highly desirable .  
cannot be separated from the  f u e l  p a r t i c l e s ,  t he  e n t i r e  f u e l  block must 
be burned. This requi res  breaking the  block i n t o  pieces which w i l l  
burn i n  equipment of reasonable s ize .  
gas containing oxides of carbon, oxygen, perhaps a chemically i n e r t  
d i luent  gas, and s m a l l  but  s ign i f i can t  amounts of the  radioact ive gases 
tritium and 85Kr. The radioact ive gases must be removed from the  waste 
gas stream before i t s  permanent disposal.  Because of t h e  an t ic ipa ted  
problems of burner operation, gas handling and disposal ,  methods a r e  
being s tudied for the  removal of the f u e l  s t i ck .  
erosion of the s t i c k  bonding mater ia l  away from t h e  f u e l  p a r t i c l e s  by 
a water je t  d i rec ted  i n t o  the  f u e l  holes i n  the  graphi te  block; d r i l l i n g  
or  "brushing" the  f u e l  p a r t i c l e s  and s t i c k  bonding mater ia l  out of t h e  
f u e l  holes;  cu t t i ng  around t h e  f u e l  holes so  a s  t o  f r e e  t h e  f u e l  s t i c k  
i n  a thin-walled graphi te  tube; and f i n a l l y ,  burning away the  s t i c k  
bonding mater ia l  p r e f e r e n t i a l l y  from the  f u e l  p a r t i c l e s  by d i r ec t ing  a 
flame lance i n t o  the  f u e l  holes. This l a t t e r  approach i s  perhaps the  
most promising. I ts  success depends on t h e  f a c t  t h a t  t h e  graphi te  block 
matrix, t he  s t i c k  bonding material ,  and t h e  pyro ly t ic  carbon coatings on 
the  p a r t i c l e s  a l l  burn a t  a d i f f e ren t  r a t e ;  t h e  s t i c k  bonding mater ia l  
i s  t h e  e a s i e s t  t o  burn. 

I f  t h e  matrix mater ia l  

It a l s o  leads t o  la rge  volumes of 

These include: 
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Notwithstanding the  d e s i r a b i l i t y  of mechanical s t i c k  removal, t h e  
only approach t o  head-end reprocessing t h a t  seems ce r t a in  t o  work i s  
block burning. This approach relies on the S i c  coatings on the  three 
d i f f e ren t  p a r t i c l e s  re ta in ing  t h e i r  i n t e g r i t y  during block crushing and 
burning. 
t o  crush the  graphi te  blocks; what f r a c t i o n  of t h e  p a r t i c l e s  w i l l  break 
during block crushing and the  r e su l t an t  extent  of cross contamination 
between the  two uranium isotopes;  optimum burner s i z e ,  configuration and 
operating conditions; composition, nature, and bes t  treatment of burner 
off-gas; t h e  degree of p a r t i c l e  breakage during burning and the  extent  
of uranium isotope cross contamination from S ic  coating f a i l u r e ;  how t o  
separate components i n  the  burner product, which w i l l  consis t  of two 
d i f f e ren t  s i z e s  of Sic-coated pa r t i c l e s ,  and probably of alumina a s  w e l l ,  
s ince a fluidized-bed burner using alumina as %he f lu id i zed  mater ia l  i s  
l i k e l y  t o  be the  b e s t  type of burner; and f i n a l l y ,  how t o  t rea t  the  
separated f u e l  p a r t i c l e s  t o  prepare them a s  su i t ab le  feed f o r  solvent 
extract ion.  This includes how bes t  t o  break t h e  S ic  coating t o  permit 
d i sso lu t ion  of t h e  f u e l  p a r t i c l e  kernels  and whether t he  inner  buf fer  
coating needs t o  be burned off .  

Important answers t o  be found i n  t h e  engineering tes ts  are how 

A t  present,  fu l l - s ca l e  prototype HTGR f u e l  blocks have been 
fabricated,  and some methods of block crushing and mechanical removal 
processes f o r  f r ee ing  f u e l  p a r t i c l e s  from t h e  graphite matrix have been 
tes ted .  [ 2 2 ]  Small-scale burner s tud ies  have a l s o  been done. [ 2 3 ]  

I r r ad ia t ed  loose p a r t i c l e s  and bonded p a r t i c l e s  w i l l  be t e s t ed  
i n  a hot c e l l .  Tests with the i r r ad ia t ed  loose p a r t i c l e s  w i l l  provide 
information on S ic  coatings and on f iss ion-gas re lease  from the  f u e l  
p a r t i c l e s  during various s tages  of head-end processing. 
include the  burnoff of t he  outer  pyro ly t ic  carbon cqatings, t h e  breaking 
of the  S ic  coating, probably by grinding, subsequent burning ( i f  necessary) 
of t he  buf fer  coat, and d isso lu t ion  of t he  f u e l  kernels  i n  acid.  The 
points  a t  which f i s s i o n  product gases are released and t h e i r  amounts w i l l  
have an important bearing on design of t he  off-gas f a c i l i t i e s ,  t he  burner, 
t h e  S ic  coating grinder,  and the  kernel  dissolving equipment. 

The t e s t s  

Tests with the  i r r ad ia t ed  f u e l  s t i c k s  w i l l  provide information on 
e f f e c t s  of i r r a d i a t i o n  on the bonding matrix mater ia l  and thus w i l l  help 
determine if promising mechanical means of matrix removal a r e  l i k e l y  t o  
be helped or hindered by i r r ad ia t ion .  Also, crushing and burning of the  
i r r ad ia t ed  f u e l  s t i c k s  contained i n  graphite sleeves w i l l  help determine 
i f  cold engineering tests a r e  val id ,  or  i f  irradiation-induced changes 
necess i ta te  modified o r  new approaches t o  crushing and burning. 

Solvent Extraction. - Thorium- and uranium-bearing mater ia l  from 
the  burner w i l l  be dissolved t o  form a solut ion corresponding t o  Thorex 
Process [12] requirements. 
ex t rac t ion  process w i l l  be used t o  separate  233U from thorium and from 
f i s s i o n  products. This process i s  based on solvent ex t rac t ion  of metal 
ions from n i t r a t e  media with a so lu t ion  of t r i b u t y l  phosphate (TBP) i n  
a high-boiling organic di luent ,  such a s  dodecane. The chemical flowsheet 

The n o r e x  Process or a very similar solvent 
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which w i l l  very l i k e l y  be emphasized i s  shown i n  Fig. 5.  The uranium 
from t h e  235U-containing p a r t i c l e s  may a l s o  be recycled t o  t h e  reac tor  
because of economic considerations.  However, because it need not be 
re fabr ica ted  remotely, it i s  not being considered i n  t h i s  part of t h e  
recycle development. 

O f  considerable importance i n  developing t h e  solvent ex t rac t ion  
pu r i f i ca t ion  of HTGR f u e l s  i s  the  presence of 233U i n  concentrations 
exceeding the  c r i t i c a l l y  safe  maximum.  Soluble and f ixed  poisons i n  
solut ions and tanks w i l l  be used along with geometry and mass control  
t o  ensure t h a t  no p o s s i b i l i t y  e x i s t s  f o r  a c r i t i c a l  accident.  

The Thorex Process has been tested on a p i l o t  p lan t  scale .  A 
t o t a l  of 40 metric tons of irradiated thorium metal and oxide were 
processed. I n  p a r t  of t he  p i l o t  p lan t  demonstration, thorium t h a t  had 
been i r r ad ia t ed  t o  produce 4 kg 233U per  metric ton of thorium and 
cooled only 28 days w a s  processed. Recently, both t h e  Hanford and 
Savannah River s i t e s  employed t h e  technology derived from t h e  Thorex 
Process p i l o t  p lan t  demonstration t o  process many tons of Tho2 t h a t  
had been l i g h t l y  i r r ad ia t ed  t o  produce 233U. 

After  t he  Thorex Process p i lo t - sca l e  demonstration, t he  equipment 
and f a c i l i t i e s  have been used t o  make ORNL the  na t iona l  233U depository. 
Thus f a c i l i t i e s  a r e  ava i lab le  f o r  s to r ing  100 kg of t h i s  isotope. Much 
of t he  solvent ex t rac t ion  p lan t  necessary t o  car ry  out t h e  HTGR f u e l  
reprocessing p a r t  of the  recycle demonstration i s  a l s o  ava i lab le  a t  ORNL 
i n  the  P i l o t  Plant  Building; however, some addi t iona l  off-gas treatment 
f a c i l i t i e s ,  as w e l l  as other equipment needed s p e c i f i c a l l y  f o r  t h e  re -  
cycle demonstration, may have t o  be added t o  t h e  p lan t ,  An equipment 
flowsheet i s  shown i n  Fig. 6. Shaded equipment pieces must be added 
t o  t h e  plant .  Not shown i s  the  off-gas treatment f a c i l i t y  t h a t  will 
probably be required,  

Fuel Refabrication 

The re fabr ica t ion  developmental e f f o r t  includes the  preparation. 
of f u e l  mater ia l ,  the  coating of f u e l  p a r t i c l e s ,  and the  f ab r i ca t ion  of 
f u e l  s t i c k s  and f u e l  elements. W e  are emphasizing development of refab- 
r i c a t i o n  capab i l i t i e s  f o r  f u e l  f o r  t h e  PSC For t  St .  V r a i n  and t h e  proposed 
1000 Mw reactors .  The i n i t i a l  cores of these reac tors  w i l l  cons is t  of 
thorium-uranium dicarbide p a r t i c l e s  coated with pyro ly t ic  carbon and Sic,  
and of thorium dicarbide and uranium dicarbide p a r t i c l e s  coated s imilar ly .  
Recycle cores w i l l  have p a r t i c l e s  consis t ing of ThC2, 233UC2, and 
(233U,Th)02 coated with S ic  and pyro ly t ic  carbon. 
processes w i l l  be considered i n i t i a l l y  f o r  production of t h e  mixed oxide 
f u e l  kernels.  

Only t h e  sol-gel  

Sol-Gel Process. - Sol formation i s  the  f i rs t  operation i n  forming 
recycle f u e l  p a r t i c l e s  a f te r  spent f u e l  reprocessing. The so lu t ion  
received from t h e  Thorex p i l o t  p l an t  i s  transformed t o  so l  by a continuous 
remotely operable solvent ex t rac t ion  process. This process i s  shown 
schematically i n  Fig. 7. 
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Sol  i s  formed i n t o  ge l  microspheres of control led s i z e  i n  a remotely 
operable sphere-forming column. The ge l  microspheres are then dried and 
f i r e d  t o  form the  f i n a l  oxide pa r t i c l e s .  The only p a r t i c l e  t h a t  will be ’ 

formed i n  t h i s  way i s  t h e  Th02-233U02 par t i c l e .  The presence of severa l  
hundred pa r t s  per  mi l l ion  232U i n  the recycle  233U HTGR f u e l  d i c t a t e s  
t ha t  it not be handled d i r ec t ly .  
remote fabr ica t ion .  

The o ther  p a r t i c l e s  do not require  

Engineering-scale equipment f o r  forming s o l s  of mixed thorium and 
uranium i s  i n  use a s  a hooded operation. Further operating experience 
i s  needed before the remotely operable equipment can be designed. A l l  
ThO2-UO2 r a t i o s  of i n t e r e s t  can be made from solut ions of thorium 
n i t r a t e  and uranyl n i t r a t e .  
conventional solvent ex t rac t ion  processes f o r  uranium and thorium 
pur i f ica t ion ,  f o r  example, the  Thorex Process. 

Such solut ions a r e  the normal product of 

Gel microsphere-forming column operations a r e  i n  advanced s tages  of 
development, although much of t h e  work i s  empirical  and the underlying 
pr inc ip les  are imperfectly understood. Gel sphere drying i s  a l s o  s t i l l  
imperfectly understood. More work i s  needed on these s teps .  Work a l s o  
remains t o  be done on developing remote handling and inspect ion tech- 
niques f o r  the sphere-forming operations. The sphere-forming equipment 
i s  more f l e x i b l e  than other  types of equipment used i n  re fabr ica t ion  
because of the inherent  ease of changing from one microsphere s i z e  t o  
another and because the sphere handling and inspect ion equipment can be 
designed t o  dea l  with a range of s i z e s  and a va r i e ty  of mater ia l s  
(e.g., Tho2-U02 and U 0 2 ) .  
t i ons  remotely imposes problems and cons t ra in ts  t h a t  must be studied 
fu r the r  through cold engineering development work i n  prototype equipment. 

The requirement f o r  carrying out the  opera- 

Fabricat ion of Fuel Elements. - The flowsheet f o r  re fabr ica t ion  of 
the reference f u e l  elements i s  shown i n  Fig. 8. T h i s  f i gu re  shows 
primary s teps  fo r  inspect ion of bare p a r t i c l e s  containing 233U, coating 
of these pa r t i c l e s ,  and inspect ion of the  coated pa r t i c l e s .  
bearing p a r t i c l e s  a r e  mixed with separate  p a r t i c l e s  bearing the thorium 
and the 235U and molded i n t o  f u e l  s t icks .  
loaded i n t o  graphite blocks, and carbonized i n  s i t u .  
shown f o r  inspect ion of f u e l  s t i c k s  and f u e l  element loading and 
inspection. 

The 233U- 

The f u e l  s t i c k s  a r e  polymerized, 
Operations a r e  a l s o  -- 

P a r t i c l e  Coating. - A 5-in.-diam, spouting-bed,furnace similar t o  
t h e  coating furnace planned f o r  r e fab r i ca t ion  ha.s” been extensively used 

~ 

f o r  pyro ly t ic  carbon coating. [ 1 9 ]  A 3-in. -diam, spouting-bed furnace 
has been used f o r  s i l i c o n  carbide coating. [24] 
types have been produced on semi-production scale .  

Coatings of t he  required 

The buf fer  coating i s  applied from a mixture of acetylene and i n e r t  
gas. The i so t rop ic  coating i s  present ly  appl ied w i t h  propylene but can 
be applied with e i t h e r  propane or methane. The s i l i c o n  carbide coating 
i s  done with methyl t r ichlorosi lane and hydrogen. 
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A l l  coating operations involve the  production of la rge  volumes of 
off-gas, consis t ing of hydrogen o r  hydrogen and HC1, depending on which 
coating i s  being applied.  I n  addition, a l l  off-gas must be f i l t e r e d  t o  
remove any radioact ive material. Countercurrent caus t ic  so lu t ions  
remove HC1. During hydrocarbon coating, no H C 1  w i l l  be i n  t h e  off-gas 
but la rge  quan t i t i e s  of soot may be present.  Hence, t h e  off-gas f i r s t  
passes through a bag f i l t e r ,  where t h e  soot i s  removed. For ei ther  
coating process the  gas i s  passed through absolute  f i l t e r s  before being 
e jec ted  i n t o  t h e  atmosphere. 
explosive mixtures of hydrogen and oxygen from occurring i n  t h e  off-gas 
equipment . 

Special  precautions are used t o  prevent 

A prototype of t he  remote coating furnace i s  cur ren t ly  being 
constructed. On completion, t he  e f f e c t  of operating var iab les  on the  
coatings produced w i l l  be determined, and the  remote operation and 
maintenance capab i l i t i e s  of t h e  prototype will be checked. Next, a 
system f o r  coating i n  the  re fabr ica t ion  p i l o t  p lan t  w i l l  be designed 
and in s t a l l ed .  

P a r t i c l e  Handling and Inspection. - P a r t i c l e s  must be remotely 
t ransfer red  between operations i n  t h e  p i l o t  demonstration. The t r a n s f e r  
method must not damage the  p a r t i c l e s  and must require  only l i m i t e d  
maintenance. The pa r t i c l e s ,  both before and a f t e r  coating, must be 
inspected t o  ensure t h a t  spec i f ica t ions  are m e t .  

Considerable progress has been made on the  development of equipment 
and processes f o r  p a r t i c l e  handling and inspection. After the  micro- 
sphere production s tep,  t he  dried and s in te red  microspheres must be fed 
i n t o  a hopper. This hopper has been designed and tes ted .  The feed 
mechanism on the  hopper i s  a cut-off valve a l s o  designed and tested a t  
ORNL. This valve cons is t s  of a f l e x i b l e  tube t h a t  can be ex terna l ly  
pressurized. When pressurized, t h e  tube buckles inward, thereby shut t ing  
off the flow of microspheres through it. P a r t i c l e s  are fed from one 
loca t ion  t o  another by gravi ty  feeding and pressurized pneumatic feeding. 
T e s t s  made a t  ORNL ind ica te  t h a t  pneumatic feeding can be used t o  t r ans -  
fer  p a r t i c l e s  over dis tances  of more than 50 f t  w i t h  increases  i n  eleva- 
t i o n  of a t  l e a s t  15 f t .  Negligible abrasion occurs even on t h e  low- 
dens i ty  acetylene p a r t i c l e  coatings. 

Microspheres next must be shape-separated t o  eliminate any p a r t i c l e s  
with a maximum-to-minimum diameter r a t i o  of g rea t e r  than 1.3. 
separator  developed a t  ORNL cons is t s  of a f l a t  p la te ,  which i s  t i l t e d  
and vibrated t o  separate the  nonspherical p a r t i c l e s  from t h e  microspheres. 
The microspheres then must be fed t o  a s ize  classif ier .which,  as present ly  
conceived, cons is t s  of two screens t o  eliminate the  oversize and under- 
s i z e  i n  one operation. A t  t h i s  point,  t h e  acceptable mater ia l  must be 
weighed and then dispensed i n t o  a sampler. 
samplers, which appear i dea l  f o r  t he  p i l o t  demonstration. 
t he  main batch mater ia l  then must be fed  t o  storage hoppers. The sample 
a t  t h i s  time must be inspected f o r  s i z e  d i s t r ibu t ion .  
p a r t i c l e  sphe r i c i ty  and dens i ty  may a l s o  be inspected. The microspheres 

The shape 

We present ly  use Vezin 
The sample and 

If necessary 
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t o  be inspected f o r  s i z e  d i s t r ibu t ion  a r e  t ransfer red  t o  the  p a r t i c l e  
s i z e  analyzer. 
rectangular tube through which the microspheres are passed one a t  a 
t i m e .  
sphere passes through the  channel; 
current  proportional t o  the  s i z e  of t he  microsphere, which i s  then 
recorded by a pulse-height analyzer. 
i n  approximately.3 min. 
t i on ;  hence, considerably faster counting may be possible.  

I n  t h i s  instrument, a l i g h t  shines across  a t ransparent  

The l i g h t  i n t e n s i t y  i s  observed by a photodetector a s  a micro- 
t he  photodetector records a d ip  i n  

Presently,  a sample can be recorded 
No r e a l  e f f o r t  has been made t o  speed the  opera- 

I f  densi ty  must be measured, a mercury pycnometer can be used. This 
apparatus measures the  volume of t h e  p a r t i c l e  by measuring t h e  amount of 
mercury displaced by the  pa r t i c l e s .  Knowing the  volume displaced, we 
can weigh the microspheres and accurately determine density.  

The qua l i f i ed  mater ia l  then must be weighed t o  t h e  proper batch s i z e  
f o r  coating. After each coating operation, t he  coating thickness has t o  
be measured by t h e  p a r t i c l e  s i z e  analyzer, and the densi ty  i n  conjunction 
with a weight measurement. I n  addi t ion,  t he  anisotropy must be occasion- 
a l l y  checked on the pyro ly t ic  carbon coatings. 
on the  r e f l e c t i o n  of polarized l i g h t .  When sectioned specimens of 
coated microspheres a r e  examined under polar ized l i g h t ,  highly aniso- 
t r o p i c  coatings show a maltese cross, but i so t rop ic  coatings show no 
such e f f e c t .  The appearance of the maltese cross can be ca l ibra ted  w i t h  
x-ray determinations of anisotropy. 

The method used i s  based 

Microspheres can be t ransfer red  from the  furnace by gravi ty  feeding 
through the  bottom of t h e  cone t o  receiving hoppers. 
microspheres must be fed t o  weighers and samplers, from which they go 
t o  t h e  inspect ion l i ne .  
t o  the  coating furnaces i f  more coating i s  required or sent  on t o  the 
next s t ep  i f  t he  coating operations a r e  complete. 

A t  t h i s  point  the 

The microspheres would next be e i t h e r  returned 

To f a c i l i t a t e  these various t ransfers ,  d ive r t e r  valves have been 
developed t o  be used i n  conjunction w i t h  storage hoppers. These d ive r t e r  
valves operate by mater ia l  en te r ing  the  top  and t r ave l ing  through a f lex-  
i b l e  tube, which i s  then connected t o  one of two e x i t  tubes by a pneumatic 
cylinder and cam device. 
completed. 

The design and t e s t i n g  of t h i s  device has been 

After  a l l  coating operations are f inished,  t he  microspheres must be 
sent  t o  an alpha monitor f o r  inspection of surface contamination. This 
alpha monitor cons is t s  of a feeding mechanism t h a t  produces a monolayer 
of microspheres t r ave l ing  across a 6-in.-wide p la te ,  observed by an 
alpha monitor. 
qua l i t y  of t he  coating operations. 
has been completed. 
must be sent  t o  another shape separator and c l a s s i f i e r .  Again a l l  products 
have t o  be weighed and any abnormal amount of r e j e c t  material i s  then 
inspected. A t  t h i s  point i n  t h e  operation numerous batches of micro- 
spheres a r e  accumulated. Batches a r e  then blended t o  produce la rge  

The l e v e l  of contamination provides an ind ica t ion  of t h e  
A prototype of t he  alpha monitor 

After  qual i fying i n  t h i s  inspection t h e  microspheres 
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homogeneous batches of microspheres needed f o r  t he  succeeding s teps .  
This batch blender has been conceptually designed, 
batch must then be sampled f o r  qua l i t y  control  and weighed t o  the  
precise  amount needed f o r  production of, f u e l  s t i cks .  

The homogeneous 

P a r t i c l e  Blending, Fuel S t ick  Molding, and Inspection. - To 
f a c i l i t a t e  inspection, t he  f u e l  p a r t i c l e s  a r e  blended and cas t  i n t o  
s t i c k s  r a the r  than d i r e c t l y  i n t o  graphi te  blocks. Fuel p a r t i c l e s  w i l l  
be bonded s o  t h a t  i f  an i r r ad ia t ed  f u e l  block i s  broken, t h e  spread of 
contamination would be l imi t ed  t o  the  immediate area.  

The p a r t i c l e  blending s t e p  must blend the  Tho;! -2 33U02 p a r t i c l e s  
with the  ThC2 and "'UC2 p a r t i c l e s  t o  produce f u e l  s t i c k s  with less 
than 1% variance of uranium and thorium i n  any 1-in.  length and less 
than 5% U and 6% Th variance from the -des i r ed  loading i n  the  e n t i r e  
f u e l  element. The operation must have s u f f i c i e n t  loading accuracy so  
t h a t  t h e  uranium and thorium loadings of t he  e n t i r e  core w i l l  not vary 
more than 1%. 

Conceptual design of a p a r t i c l e  b l ende r - f i l l e r  device has been 
completed, This  device w i l l  blend three  types of p a r t i c l e s  while f i l l i n g  
a f u e l  s t i c k  mold. 
feeder o r i f i c e s  so t h a t  a l l  th ree  p a r t i c l e  type feed streams w i l l  end 
concurrently. 

D i f f i cu l ty  i s  expected i n  remotely ad jus t ing  the  

Fuel s t i c k s  have been made a t  both GGA and ORNL. However, only 
l imited information i s  ava i lab le  on the  e f f e c t  of i r r a d i a t i o n  on the  
f u e l  s t i c k  matrix mater ia l .  
t ion ,  which may lead t o  cracking of t h e  matrix, a bonding agent with 
grea te r  amounts of s t ab le  carbon can be used. However, when more carbon 
i s  added t o  t h e  bonding agent, t h e  r e s i n  becomes more viscous, thereby 
lengthening the  t i m e  required t o  i n j e c t  it i n t o  the  molds. 

To combat matrix shrinkage during irradia- 

L i t t l e  work has been done on f u e l  s t i c k  inspection. A combination 
of a t tenuat ion  (gamma or x-ray) and gamma emission most l i k e l y  w i l l  be 
used t o  determine the  r e l a t i v e  amounts of 233U, 235U, and thorium 
present a s  a funct ion of pos i t ion  along t h e  f u e l  s t i cks .  

The prototype of the f i l l e r -b l ende r  device must be detail-designed, 
fabr icated,  and tes ted .  A bonding method must be developed t h a t  can be 
used i n  a remotely operated production f a c i l i t y  t o  produce a f u e l  s t i c k  
matrix s u f f i c i e n t l y  s t ab le  t o  i r r ad ia t ion .  
developed t o  nondestructively test  f o r  t he  required loading tolerances.  

Inspect ion methods must be 

If heavy mixtures of bonding r e s i n  and carbon a r e  required t o  obtain 
a matrix s u f f i c i e n t l y  dense t o  withstand i r r ad ia t ion ,  other  methods of 
loading the  f u e l  s t i c k  molds must be.developed t o  obtain the  production 
r a t e  necessary for a l a rge  f a c i l i t y .  
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Fuel Element Assembly, Fuel S t ick  Carbonization, and Fuel Element 
Inspection. - The f u e l  element must be loaded with approximately 
200 f u e l  s t i c k s  of one or more f u e l  mixtures and f u e l  s t i c k  diameters. 
Various s t i c k s  must be matched t o  the  proper holes i n  p red r i l l ed  carbon 
blocks. The f u e l  s t i c k s  must be carbonized a t  900°C; heat ing and de- 
gassing t h e  blocks a t  the  maximum operating temperature of t he  f u e l  
p a r t i c l e s  may be required.  
t ransferab le  contamination t o  l i m i t  buildup of contamination i n  t h e  
reactor .  

The f u e l  element must be inspected f o r  

Some conceptual design of equipment f o r  f u e l  s t i c k  loading, element 
t r ans fe r ,  element inspection, and element bakeout has been done. The 
s t i c k  loader  i s  envisioned t o  be a numerically control led posi t ioner ,  
which will a l i g n  the  element under it. 
element will be t r ans fe r r ed  between c e l l s  i n  TURF. During t h i s  t rans-  
f e r  t h e  surfaces of the element w i l l  be inspected f o r  contamination. If 
any i s  present,  t h e  cooling holes w i l l  be reinspected t o  assess  the  
l e v e l  of contamination. When the  element i s  found t o  be c l ea r  of t r ans -  
fe rab le  contamination, it will be placed i n  the bakeout furnace. 
bakeout, t h e  element w i l l  be canned and placed i n  the  casks used t o  sh ip  
the  spent elements t o  head-end processing. 

After  being loaded, the f u e l  

After  

STATUS OF RECYCLE DEMONSTRATION 

To demonstrate a technology f o r  HTGR recycle,  it i s  necessary t o  
complete the  following tasks :  t h e  supporting f a c i l i t y  design and con- 
s t r u c t i o n  f o r  p i l o t  p l an t  demonstration, t h e  design and development of 
engineering-scale equipment f o r  use i n  t h e  p i lo t - sca l e  f a c i l i t y ,  and 
f i n a l l y  the  operation of an in tegra ted  reprocessing and re fabr ica t ion  
system i n  t h e  p i lo t - sca l e  f a c i l i t y .  Although it has not been spec i f i -  
c a l l y  shown on the  schedule t h a t  has been presented, we have constructed 
a f a c i l i t y  f o r  t he  development of t he  various s teps  involved i n  the  
recycle of 233U-thorium f o r  HTGR's .  The f a c i l i t y ,  known a s  the Thorium- 
Uranium Recycle F a c i l i t y  (TURF), furnishes  the  necessary space, shielding, 
and f a c i l i t y  equipment t o  perform a l l  t he  operations required. 
f a c i l i t y  has been s ized t o  accommodate complete recycle  processes with 
equipment scaled down from ant ic ipa ted  production u n i t s  so t h a t  a 
r e a l i s t i c  and r e l i a b l e  bas i s  f o r  technica l  and economic analyses w i l l  
ex i s t .  
f u e l  elements of t h e  type used a s  reference i n  t h i s  paper. 
of t he  f a c i l i t y  i s  shown i n  Fig. 9, a cutaway view i n  Fig. 10, a plan 
view of t h e  f i rs t  f l o o r  i n  Fig. 11, and a sec t ion  e leva t ion  through the  
processing c e l l s  i n  Fig. 12. 
f a c i l i t y ,  cons is t ing  of s i x  shielded c e l l s  and associated glove mainten- 
ance room and a i r  lock, a r e  depicted i n  Fig. 13. More d e t a i l s  of the  
f a c i l i t y  a r e  reported i n  t he  l i t e r a t u r e .  [ 2 5 ]  

The 

I n  f a c t ,  the  f a c i l i t y  has t h e  capab i l i t y  of handling f u l l - s i z e  
A photograph 

The primary zone of containment of t h e  
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Although t h e  f a c i l i t y  has been placed i n t o  operation, the  only task  
accomplished i n  it has been the  preparation of 233U-bearing s a l t  f o r  t he  
Molten S a l t  Reactor Experiment. [26] N o  equipment f o r  HTGR recycle has 
been constructed. With t h e  exception of solvent ex t rac t ion  processing, 
none of t h e  equipment f o r  remote operation has progressed beyond the  
s tage of conceptual design. 
scale  development has been b u i l t ,  and some of it operated a s  indicated 
i n  the  previous discussion. The conceptual designs f o r  the various 
processes have been reported i n  severa l  places. [3,4,18,19] 

Certain prototype equipment f o r  engineering- 

STATUS OF FUEL IRRADIATION PERFORMANCE 

The extensive development of fluidized-bed coating technology has 
enabled one t o  def ine conditions f o r  deposit ion of pyro ly t ic  carbon 
coatings t h a t  have a wide range of propert ies .  [27] 
study of conditions f o r  deposit ion of S ic  has been less extensive, 
coatings with su i t ab le  s t ruc ture  and densi ty  can be r ead i ly  obtained. 
Results from i r r a d i a t i o n  t e s t i n g  of coated p a r t i c l e s  and of s t r i p  speci-  
mens of coatings ind ica te  t h a t  t o  withstand high fast-neutron exposures 
carbon coatings should have dens i t i e s  between 1.8 and 1.95 g/cm3 and 
must be i so t rop ic  o r  very near ly  so. [28,29] 

While the  systematic 

Mathematical models have been developed t h a t  incorporate the  data  
from observed behavior of f u e l  and coating mater ia ls  and enable one t o  
pred ic t  t he  performance of coated p a r t i c l e s  i n  a given environment. [30,31] 
Good cor re la t ions  between observed and predicted performance have been 
noted a t  fas t -neutron exposures a s  high a s  5 x 1021 neutrons/cm2 
(X.18 MeV) and burnups grea te r  than 30 a t .  % heavy metal, although not 
i n  the  same experiment. These r e s u l t s  suggest confidence i n  the  models 
and i n  extrapolat ions t h a t  enable one t o  design coated p a r t i c l e s  t o  
withstand t h e  f u l l  reference HTGR exposures, t h a t  is ,  20 a t .  f heavy 
metal burnup a t  f a s t  neutron fluences up t o  8 x 1021 neutrons/cm2. 
i n  progress by GGA and ORNL on systematical ly  selected coated f i s s i l e  
and f e r t i l e  p a r t i c l e s  should demonstrate whether these extrapolat ions 
t o  f u l l  exposure a r e  ju s t i f i ed .  

Tests 

In j ec t ion  techniques have been developed f o r  bonding coated p a r t i c l e s  
i n t o  f u e l  rods t h a t  have acceptable propert ies ,  but  few r e s u l t s  a r e  ava i l -  
ab l e  from i r r a d i a t i o n  t e s t i n g  of bonded f u e l .  
experiments a t  OFZlL on bonded carbon-coated U02 pa r t i c l e s ,  burnups grea te r  
than 30 a t .  % were observed without coating f a i l u r e ,  a s  shown i n  Fig, 14 
and as predicted by the  mathematical model. [32] However, maximum f a s t -  
neutron exposures i n  these experiments were only approximately 
1 .2  x 1021 neutrons/cm*. 
t a r g e t  region, i n  which bonded coated p a r t i c l e s  were i r r a d i a t e d  t o  f a s t -  
neutron exposures a s  high a s  6 x 1021 neutrons/cm2, showed t h a t  t he  binder 
carbon shr inks about 25 vol  %, a f t e r  which t h e  bonded rods have l i t t l e  
i f  any s t rength.  
i l l u s t r a t e d  i n  Fig. 15. These i n i t i a l  experiments were conducted on 

I n  two sweep capsule 

Results from a recent  experiment i n  the  HFIR 

The severe degradation of t h e  bonded specimens i s  
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Fig. 14. Polished Sections of Bonded Fuel Rods Containing U02 
Microspheres Coated with Buffer and Low-Temperature Isotropic Coatings 
Plus Additional Nonbonding and Sacrificial Layers. 
(b) Irradiated to 35 at. % burnup of heavy metal at 1250°C in experiment 
A9-15. 
layer and remains bonded to the carbon matrix. 

(a) Unirradiated. 

Note that the sacrificial layer separates from the nonbonding 
As polished. 20OX. 

. 
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coated p a r t i c l e s  t h a t  had a nonbonding layer  i n  the  coating. Further 
tests on f u e l  rods bonded by a l t e r n a t e  procedures a r e  i n  progress by 
ORNL and GGA. The r e s u l t s  t o  da te  ind ica te  t h a t  i n t e rac t ion  of t he  
binder with coatings during i r r a d i a t i o n  may impose severe stresses i n  
t he  outer  layers  of t he  coatings, and t h a t  bonded f u e l  rods cannot be 
expected t o  r e t a i n  appreciable s t rength a f t e r  i r r a d i a t i o n  t o  high f a s t  
neutron exposures. However, t h e  l i m i t e d  experience ava i lab le  ind ica tes  
t h a t  t he  bonded p a r t i c l e s  were retained within the  graphite sleeve i n  
which they were i r r ad ia t ed  t o  high fast-neutron exposure. 

PROJECTED ECONOMICS 

Although t h e  present  s t a t e  of development on an engineering sca le  
f o r  t he  various recycle processes i s  l imi ted ,  we have attempted t o  
pro jec t  t h e  economics for various modes of recycle operations. Recycle 
operations can provide considerable cost  savings i n  re fue l ing  reactors .  
However, i f  only one reac tor  ex i s t s ,  the  cost  of construction and 
operation of the  complex f a c i l i t i e s  necessary f o r  recycle would 
obviously not be j u s t i f i e d .  Therefore, it i s  appropriate t o  consider 
the cost  of the  various s teps  involved i n  both the non-recycle and 
recycle cases and t o  determine on t h e  bas i s  of these  costs  the optimum 
delay period before recycle operations should begin i n  a growing HTGR 
economy. We have examined t h i s  i n  some d e t a i l  a t  ORNL, using as a 
reference the  1000-Mw reac tor  recent ly  proposed by GGA and the  reference 

' flowsheet presented i n  t h i s  paper. [33] 

Cost of Various Steps i n  the  HTGR Fuel Cycle 

The cost  of the  various s teps  involved i n  the  f u e l  cycle f o r  HTGR's 
may be appl ied according t o  whether or not f u e l  i s  recycled. I f  not, 
cos t s  are incurred f o r  t h e  ore, i t s  conversion t o  m6, t he  separation 
costs,  and mater ia l  preparation and fabr ica t ion .  I n  addition, i n  non- 
recycle operation, t he  long-term storage of spent f u e l  blocks must be 
taken i n t o  account. The mater ia l  preparation, fabr ica t ion ,  and block 
storage costs  a s  a funct ion of p lan t  capacity are given i n  Fig. 16. 

For recycle fue l ,  t he  costs  l i s t e d  under the  non-recycle case are 
a l s o  incurred; and i n  addition, cos ts  f o r  chemical processing, recon- 
s t i t u t i o n  of fue l ,  re fabr ica t ion  of fue l ,  and waste storage a r e  involved. 
Figure 17 summarizes t he  cost  of these s teps  as a funct ion of through- 
put o r  capacity. Most of t h e  cos ts  as shown i n  these  two f igures  have 
been given i n  various ORNL reports ,  a s  well as  t h e  basis f o r  these  
costs .  [4,33-371 
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Integrated Costs 

The above cost  data can be combined t o  compare the  non-recycle case 
with the  recycle  f u e l  as a funct ion of throughput. 
provided i n  Fig. 1%. I n  formulating these curves, we assume t h a t  t he  
various processing f a c i l i t i e s  and storage f a c i l i t i e s  are operating i n  
an equilibrium cycle f o r  t he  given production r a t e .  This i s  not t r u e  
i n  a growing HTGR economy, but i s  j u s t  an assumption t o  s implify the  
presentat ion of Fig. 1%. 

This comparison i s  

Calculation of Optimum Delay f o r  Recycle 

To ca lcu la te  t he  economically optimum t i m e  f o r  recycle operation 
s ta r tup ,  the  complete f u e l  cycle f o r  both non-recycle and recycle modes 
of reac tor  operation, must be well understood. Figure 19 presents,  i n  
s implif ied schematic form, the  descr ipt ion of the  s teps  i n  both modes 
of opera ti on. 

We can a r r i v e  a t  t h e  economically optimum t i m e  f o r  recycle operations 
t o  s t a r t  by ca lcu la t ing  the  difference,  i n  cos t  t o  t h e  t o t a l  economy, 
between various delays i n  recycle operations compared with the  s t a r t u p  
of recycle operations when the f i r s t  1000-Mw HTGR i s  refueled. The ad- 
vantage of t h i s  approach i s  tha t  ce r t a in  i t e m s  t h a t  a r e  d i f f i c u l t  t o  
estimate accurately cancel. One such item i s  shipping. Whether t he  
reac tor  i s  being recycled or not, t he  used f u e l  blocks must be shipped, 
e i t h e r  t o  long-term storage o r  reprocessing. Another i t e m  t h a t  can be 
canceled i s  the  cos t  of thorium. This cost  would be extremely d i f f i c u l t  
t o  pred ic t  f o r  a long range study. We assume t h a t  t he  cost  of recycling 
thorium ( a f t e r  a 15-year storage period) would be comparable t o  purchasing 
f r e sh  thorium. Any e r r o r  i n  t h i s  assumption i s  minimized when t h e  cos ts  
a r e  considered on a present worth basis .  Hence, t he  thorium cos ts  vary 
an in s ign i f i can t  amount when the  recycle s t a r t u p  date  i s  var ied and thus 
can be neglected i n  the calculat ion.  

Other i t e m s ,  such as coating, cannot be neglected i n  the  calculat ions,  
Although the coatings required f o r  non-recycle and recycle operations are 
very similar, t he  r ad ioac t iv i ty  of t he  mater ia ls  being coated i s  s u f f i -  
c i en t ly  d i f f e r e n t  t o  requi re  hooded operation i n  the  non-recycle case 
and remote operation i n  the  recycle case. [38,39] 

To simplify calculat ions,  a l l  operations are grouped i n t o  four  

* 35U f u e l  element f ab r i ca t ion  (non-recycle element f ab r i ca t ion ) ,  
2 3 3 U  reprocessing and re fabr ica t ion  (recycle element fabr ica t ion) ,  

categories  : 

1. 
2. 
3 .  i r r ad ia t ed  f u e l  block storage,  
4.  reprocessing by-product storage. 
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The f irst  category, 235U f u e l  block fabr ica t ion ,  includes a l l  
operations from the  purchasing of 235U from the  gaseous d i f fus ion  p lan t  
t o  the  f i n a l  assembly of t he  f u e l  block. (See Non-Recycle Process i n  
Fig. 19.) This series of processes i s  used f o r  a l l  t h e  f u e l  f o r  non- 
recycle operations and i s  a l s o  used f o r  makeup f u e l  i n  recycle  operations. 
The second category, 233U reprocessing and re fabr ica t ion ,  i s  concerned 
w i t h  the  s teps  i n  receiving 233U from the  spent f u e l  blocks and refab- 
r i c a t i n g  t h i s  mater ia l  i n t o  f u e l  blocks f o r  recycle  operations. (See 
Recycle Process i n  Fig. 19.) The t h i r d  category, i r r a d i a t e d  f u e l  block 

' storage,  cons is t s  only of s to r ing  spent f u e l  blocks which a r e  not pro- 
cessed i n  a recycle f a c i l i t y ,  as  would be the  case when the  reac tor  
industry i s  operating before recycle f a c i l i t i e s  are completed, The 
four th  category, reprocessing by-product storage,  i s  a combination of 
a l l  storage connected with the  reprocessing industry.  The main items 
i n  t h e  storage a r e  the  235U, which i s  contaminated with 236U and f i s s i o n  
products, and thorium, which i s  contaminated t o  a l e s s e r  degree with 
f i s s i o n  products. 

Once the  cos ts  of t he  four  categories  mentioned above a r e  obtained 
f o r  d i f f e ren t  p lan t  s izes ,  they can be combined with the  mass balances 
f o r  non-recycle and recycle operation of a 1000-Mw HTGR [40] and the  
assumed growth r a t e  of the  HTGR industry t o  give the economically 
optimum t i m e  f o r  s t a r t u p  of recycle operations. 

A s implif ied out l ine  of the ca lcu la t iona l  procedure i s  shown i n  
Fig. 20. The mass balances, industry growth, and assumed s ta r t  of 
recycle operations are combined t o  give the  t o t a l  mass balance f o r  t he  
HTGR industry.  From t h i s  mass balance, demand curves f o r  t he  four  
categories of t he  HTGR f u e l  industry a r e  calculated.  Next, p lan t  
construction schedules f o r  each of t he  four  categories a r e  se lec ted  
by an optimizing procedure, [41] and p lan t  s i z e s  and cos ts  are calculated.  

The p lan t  costs ,  235U f u e l  block f ab r i ca t ion  costs ,  233U reprocessing 
and re fabr ica t ion  costs ,  f u e l  block storage costs ,  reprocessing by-product 
storage costs,  and demand curves are combined t o  give year ly  costs.  These 
year ly  cos ts  are then converted t o  present worth and added t o  give the 
cost  of a l l  t he  items considered f o r  a p a r t i c u l a r  time of recycle  s ta r tup .  
The e n t i r e  ca lcu la t ion  i s  repeated f o r  o ther  times of recycle s ta r tup ,  
and t h e  optimum t i m e  can be se lec ted  and t h e  r e l a t i v e  add i t iona l  cos ts  
of other  s t a r t u p  dates  can be found. 

The assumptions used i n  the  delay ana lys i s  were a s  follows. 
Enriched 235U was assumed t o  cos t  $11,175 per  kg. 
1 kg of 235U can be replaced by 0.833 kg 233U.  
on t h e  amount of 235U t h a t  can be replaced. 
t i o n  made was t h a t  the  233U and 235U would be fabr ica ted  i n  separate  f u e l  
blocks, s o  the  235U could be fabr ica ted  i n  a hooded p lan t  and the  233U- 
bearing f u e l  elements i n  a remote plant .  This i s  j u s t  a cursory descrip- 
t i o n  of t he  method used i n  t h i s  analysis .  Further d e t a i l s  are given i n  
other  reports .  c41-43 1 

It was assumed t h a t  
There were no r e s t r i c t i o n s  

One other  simplifying assump- 
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To ca r ry  out t h e  ana lys i s ,  t h e  growth r a t e  of Fig. 21 was used i n  
the  study. Using t h i s  growth curve, t h e  cos t  adjusted w i t h  a present 
worth f a c t o r  of 7% t o  1974 f o r  t h e  various items of HTGR recycle  a r e  
shown i n  Fig. 22. The t o t a l  curve exh ib i t s  a minimum, which i s  t h e  
optimum time f o r  s t a r t  of recycle.  A more e x p l i c i t  method of presen- 
t a t i o n  of t he  minimum t i m e  f o r  delay i s  shown i n  Fig. 23, which shows 
the  d i f fe rence  i n  cos t s  between recycle  operations s t a r t i n g  i n  1981 
and recycle operations s t a r t i n g  a t  economically unfavorable dates .  
Inclusion of the development cost  does not s h i f t  t he  economically 
optimum t i m e  f o r  s t a r t  of recycle  s ign i f i can t ly .  

For the  assumed HTGR economy, Table I1 shows the  optimum plan t  
s t a r t u p  dates ,  p lan t  sizes, and c a p i t a l  cos ts  f o r  t h e  235U f u e l  block 
f ab r i ca t ion  p lan ts  and the  233U reprocessing and r e fab r i ca t ion  plants .  
The p lan t  sequences were optimized with a code t h a t  uses c a p i t a l  cos t  
and operating cos t  a s  a funct ion of p lan t  s i z e  and a l s o  accounts f o r  
t he  cost  of unused overcapacity. [41] The f i r s t  non-recycle f ab r i ca t ion  

Table 11. Plants  Selected i n  Optimum Case 

Type Plant 
S ta r tup  Size cost  
Date (kg heavy ($  mill ion)  

metal/day) 

235U f u e l  element f ab r i ca t ion  1974 54 0 35 
(non-recycle p l an t )  1977 1230 49 

1992 630 37 
'U Reprocessing and refab- 1981 1190 141 

r i c a t i o n  (recycle  p l an t )  1996 1080 136 

p lan t  s t a r t s  i n  1974. The second p lan t  s t a r t s  i n  1977 and runs con- 
cur ren t ly  with t h e  f i r s t  p lan t  u n t i l  t h e  f i r s t  p lan t  i s  obsolete i n  1989. 
The t h i r d  p lan t  s t a r t s  i n  1992 when t h e  second p lan t  i s  declared obsolete. 
The f i r s t  recycle p lan t  s t a r t s  i n  1981. 
when the f i r s t  p lan t  i s  declared obsolete. 

The second p lan t  s t a r t s  i n  1996 

Other growth r a t e s  were used a s  input  t o  the  program. The t o t a l  
cost  curves, with sca les  modified f o r  curve comparison, a r e  presented i n  
Fig. 24. 
(39 r eac to r s ) ,  a higher leve l ,  longer growth period curve (105 r eac to r s ) ,  
and a growth curve t h a t  reaches a maximum growth r a t e  and continues 
growing a t  t h a t  l eve l .  
more than one year from t h e  minimum exhibi ted by t h e  o r i g i n a l  case, 
regardless  of t he  g rea t ly  d i f f e r i n g  growth curves. 

The curves included a r e  t h e  growth curve previously discussed 

No minimum i l l u s t r a t e d  i n  Fig. 24 was displaced 
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An important f a c t o r  concerning the HTGR recycle cos t  was t h e  
i n t e r e s t  r a t e  (7% i n  t h i s  study) used i n  ca lcu la t ing  the  present worth. 
Figure 25 shows the  t o t a l  costs  on a present worth bas i s  f o r  i n t e r e s t  r a t e s  
varying from 0 t o  14%. 
f o r  a l l  curves, thus reveal ing the  i n s e n s i t i v i t y  of t h e  optimum delay 
period t o  the  i n t e r e s t  r a t e .  The reprocessing and re fabr ica t ion  cost  
estimates were based on the bes t  ava i lab le  data. The source of grea tes t  
e r r o r  would be the  sca l ing  f ac to r  used i n  es t imat ing the  savings i n  
c a p i t a l  and operating cos ts  a s  the  plant  s i z e  i s  increased. To tes t  
the  e f f e c t  of such an e r ro r ,  t he  estimated sca l ing  f ac to r s  of 0.51 f o r  
c a p i t a l  and 0.62 f o r  operation costs  were increased t o  the  highly con- 
serva t ive  values of 0.75 f o r  c a p i t a l  and 0.9 f o r  operation costs .  The 
e f f e c t  of t h i s  s h i f t  2 s  shown i n  Fig. 26; t he  r e su l t i ng  minimum point  
shifted only one year. 

The minimum i s  observed t o  occur a t  the  same t i m e  

From the  study conducted, we conclude t h a t  t he  economically optimum 
time f o r  s t a r t  of recycle operations i s  7 f 1 years a f t e r  s t a r t u p  of t he  
i n i t i a l  1000-Mw HTGR. 

SUMMARY 

High-temperature gas-cooled reac tors  using the  t h ~ r i u m - ~ ~ ~ U  f u e l  
cycle a r e  being developed because of t h e i r  po ten t i a l  f o r  achieving low 
power costs  and high f u e l  u t i l i z a t i o n .  
depends on successful ly  developing HTGR f u e l  recycle.  Accordingly, a 
comprehensive f u e l  recycle program i s  required having a s  i t s  object ive 
construction and operation of a commercial cen t r a l  reprocessing and 
re fabr ica t ion  p lan t .  

Attainment of t h i s  po ten t i a l  

The work i s  focused on a reference recycle f u e l  element f o r  a near- 
The reference element i s  s imi la r  t o  the  term 1000-Mw ( e l e c t r i c a l )  HTGR. 

f u e l  element cur ren t ly  designed by Gulf General Atomic f o r  t he  Public 
Service of Colorado For t  S t .  Vrain Reactor. The reference recycle f u e l  
particle i s  a sol-gel-prepared ( 2 3 3 U , ~ ) 0 2  p a r t i c l e  w i t h  pyro ly t ic  carbon 
and Sic coatings. Non-recycle f u e l  p a r t i c l e s  a r e  mixed with recycle 
f u e l  p a r t i c l e s  and molded i n t o  s t i c k s  w i t h  a carbonaceous binder and 
inser ted  i n t o  carbon f u e l  blocks during the  fabr ica t ion  process. 

The development work includes processes f o r  removal of i n t a c t  
p a r t i c l e s  from spent f u e l  blocks, separat ion of 235U p a r t i c l e s  from the 
others,  d i sso lu t ion  of the f i ss i le  and f e r t i l e  mater ia ls ,  separat ion and 
pu r i f i ca t ion  of these  products by aqueous processing, manufacture of 
mixed oxide p a r t i c l e s  by the  sol-gel  process, and re fabr ica t ion  of t h e  
pr ismatic  f u e l  elements. 
i s :  (1) laboratory and small-scale hot c e l l  deveLopment work has been 
done on head-end processing, (2) aqueous processing methods have been 
demonstrated on an engineering sca le  f o r  pu r i f i ca t ion  and separation 
of t he  f i s s i l e  and f e r t i l e  components, and (3) the  sol-gel  process and 
the  r e fab r i ca t ion  processes have, i n  general, reached the  s tage where 

The present s t a t u s  of t he  recycle  development 
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engineering-scale equipment can be designed. The technology f o r  the  
manufacture of p a r t i c l e s  t h a t  meet t h e  required burnups and conditions 
of HTGR's i s  w e l l  known. However, requirements f o r  bonded s t i c k s  and 
methods f o r  formation of f u e l  s t i c k s  a r e  not ye t  f u l l y  developed. 

What i s  required now i s  a design and engineering e f f o r t  aimed a t  
scaleup of t h e  known processes, some add i t iona l  research t o  develop 
s a t i s f a c t o r y  process s t eps  i n  severa l  areas ,  and construct ion of equip- 
ment and systems f o r  demonstration of HTGR recycle technology. Shielded 
f a c i l i t i e s ,  although they a r e  general ly  not equipped, e x i s t  f o r  carrying 
out t he  necessary p i lo t - sca l e  development. 

Through economic analyses of growing HTGR economies, we have shown 
t h a t  a cen t r a l  recycle p lan t  i s  optimally scheduled i f  it i s  brought on 
l i n e  i n  1981. This conclusion was reached through the ana lys i s  of a 
number of d i f f e r e n t  HTGR growth r a t e s ;  assuming i n  each case t h a t  t he  
f i rs t  1000-Mw ( e l e c t r i c a l )  reac tor  would be placed on l i n e  t o  produce 
power i n  1974. Another conclusion of t h e  economic study i s  t h a t  both 
reprocessing s teps  and r e fab r i ca t ion  s teps  bene f i t  subs t an t i a l ly  from 
the  e f f e c t  of increasing p lan t  s ize .  
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