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SIMPLIFIED CALCULATIONS FOR SMALL DEFLECTIONS
IN WALLS OF RADIO FREQUENCY CAVITIES

Abstract

The elastic behavior of two types of radio frequency
cavities considered for a separated orbit cyclotron was
analyzed to determine whether or not the magnitude and
distribution of the deflections in the walls of the cavi-
ties caused by atmospheric loading can be predicted and
controlled. Expressions were derived for the elastic
curves that describe the deflections in the walls, and
methods were devised to study the structural parameters;
the size, shape, wall thickness, and size and spacing of
the stiffeners. Computer programs were written to per-
form the numerical calculations, and these methods of
analysis were applied to different design conditions.

It was concluded that flexural rigidities can be made to
vary as required to obtain specific deflection patterns,
but this principle is difficult to apply to any degree
for the conditions and purpose considered.

1. INTRODUCTION

Several types of radio frequency cavities have been considered for
use in a separated orbit cyclotron. Radio frequency cavities produce the
electric fields that accelerate ion beams in particle accelerators such as
a separated orbit cyclotron. These cavities are vessels that are specially
shaped to resonate at a certain radio frequency, and any dimensional devi-
ation from the optimum size and shape of the cavity changes the resonant
frequency. The cavities or vessels are evacuated during operation, and
dimensional changes may result from atmospheric pressure loading caused
by this evacuation and from heating caused by radio frequency currents.

Maximum efficiancy is achieved when the cavity, by virtue of its size
and shape, resonates with the precisely controlled frequency of the radio
frequency input. A shift in resonant frequency resulting from a dimen-
sional deviation is a function of the distribution, magnitude, and direc-

tion of the deviation, and frequency shifts must be corrected with tumers.



This requires an increase in power input and results in a decrease in
efficiency. It is therefore important to be able to predict and control
both the magnitude and distribution of the deflections in the walls of
the cavities that are caused by atmospheric loading.

0f the several types of radio frequency cavities considered for a
separvated orbit cyclotron, two were studied in detail with respect to
their elastic behavior. These two are the single-gap cavity with either
tapered sides, as shown in Fig. 1, or parallel sides, as shown in Fig. 2,
for the energy region above 100 Mev and the double-gap (coaxial) cavity,
as shown in Fig. 3, for the energy region below 100 Mev. In analyzing
their elastic behavior, the essential difference between these two types
of cavities is that the single-gap cavity has side stays and the double-
gap cavity does not. The side stays of the single-gap cavity are the
result of economic considerations and space requirements, whereas the
size of the cavity and the space available in the accelerator permit the
walls of the double-gap cavity to be designed without stays.
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Fig. 1. Single-Gap Cavity With Flat Tapered Sides, Flat Parallel Top
and Bottom, Flat Ends, and Side Stays for the Energy Region Above 100 Mev.
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Fig. 2. Single-Gap Cavity With Flat Parallel Sides, Shaped Top and
Bottom, Flat Ends, and Side Stays for the Energy Region Above 100 Mev.
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Fig. 3. Double-Gap Cavity With Flat Tapered Sides, Flat Parallel
Top and Bottom, Cylindrical Ends, and No Side Stays for the Energy Region
Below 100 Mev.



The methods of mathematical analysis of the elastic behavior of the
two types of radio frequency cavities studied were developed, and these
are discussed in Chapter 2. Equations for the elastic curves, bending
moments, and end slopes for both types of cavity were derived. A multi-
parameter study of plate thickness, stiffener size, and stiffener spacing
had to be made to choose the combination desired for the cavity. This
choice is based upon permissible deflections, moments, and stresses with-
in the plate panels of the cavity walls, and two computer programs were
written to aid in the selection of the desired combination. One program
was designed to compute the characteristics of the composite structure
as a function of stiffener size and spacing and plate thickness. The
second program was designed to study deflections, moments, and stresses
of flat plates.

Four numerical examples of different approaches to the application
of these methods of mathematical analysis to the design of radio frequency
cavities are presented in Chapter 3, and the conclusions drawn from these

examples are given in Chapter 4.



2. METHODS OF MATHEMATICAL ANALYSIS

Two types of radio frequency cavities were studied in detail with
respect to their elastic behavior. These two types are the single-gap
cavity with either tapered or parallel sides for the energy region above
100 Mev and the double-gap (coaxial) cavity for the energy region below
100 Mev. A thorough and complete analysis of the elastic behavior of
the walls of these cavities would involve very complicated and tedious
mathematics. Therefore, assumptions were made to simplify the mathe-
matics. In spite of this, the simplified analysis appears to be ade-
quate and the numerical evaluations are sufficiently accurate to be

used for design purposes.

Assumptions

The type constructibn to be used for the walls of the cavities was
assumed to be as shown in Fig. 4. Both the single- and double-gap cav-
ities were assumed to be made of copper-lined carbon-steel plate, and
the numerical calculations were based on the use of 0.l-in.-thick OFHC

copper on 0.40-in.-thick carbon steel. However, the prototype cavity
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for a 50-Mev separated orbit cyclotron shown in Figs. 5 and 6 was
fabricated from 0.05-in.-thick copper on 0.45-in.-thick steel. The
walls of both the single- and dbuble-gap cavities have external stiffen-
ing members assumed to be in the form of T-beams, as shown in Fig. 4.
The flexural rigidity of a composite structure made by welding T-beam
stiffeners on steel plate was assumed to be equivalent to that of a
solid steel plate with an equal second moment of area. The equation

for the equivalent thickness of this solid steel plate is derived in

Appendix A.

ORNL Photo 73648

Fig. 5. Prototype of Radio Frequency Cavity for a 50-Mev Separated
Orbit Cyclotron During Construction.
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Fig. 6. Prototype of Radio Frequency Cavity for a 50-Mev Separated
Orbit Cyclotron After Addition of Stiffeners.

The single-gap cavity was assumed to have side stays, while the
double-gap cavity was assumed to have no side stays. It was also assumed
that there are no openings in the walls of the cavities. The effects of
the ends of the cavities were neglected. The effect of local deflections
in the panels of flat plate between the stiffeners was neglected in the
derivation of the elastic curve for the composite structure. Local
panel deflections were considered separately, and in calculating them,
the copper-clad steel plate was regarded as a solid steel plate of
equivalent thickness. The equation for the equivalent thickness of a
solid steel plate is derived in Appendix B.

The effects of adjacent steel panels upon each other caused by
gradual changes in the shape of the cavity were neglected. This assump-
tion will hold for the single-gap rectangular cavity with shaped top and

bottom and parallel sides if the change in shape occurs gradually. It



will also hold for the single-gap cavity with flat tapered sides and the
double-gap cavity with flat tapered sides if the angle of taper between

the sides is small,

Equations Derived for Cavity Without Side Stays

The expressions for the elastic curves that describe the deflections
in the walls of the double-gap cavity and the expressions for the bending
moments and end slopes are derived in Appendix C. For these derivations,
a cross-sectional slice of unit thickness is taken through the cavity
without side stays, and the height of this slice is denoted by the letter
a and the width by the letter b. The desired expressions are derived for
two cases: (1) the case where the flexural rigidity of the sides, EIa’

is different from the flexural rigidity of the top and bottom, EL and

b}
(2) the case where the flexural rigidity of the sides is the same as

that of the top and bottom.

Case 1

In the first case, EIa # EIb, the elastic curve (deflection) of the

sides, span a,

M xZ 3 4
1 1 wax~ WX
Ya T, |72 T 12 24) = Opx (1)
The deflection of span b across the top and bottom,
M x® 3 4
o1 1 wbx”  wx ‘
W TEL |2 YT 2% )+ Ia% - )
The moment,
. (aslb + bBIa
M = {—/—/—/——— . (3)
1 12 aIb + bIa )
The end slope, . - wab [ a2 - b2 @
A " 24 (aI_ + bI :
b a



Case 2
In the second case, EIa = EIb = EI, the moment,
A< 2
M = (a® - ab + b%), (5)
1 12

and the end slope,

_wab _(a - b)
O = 24E1 ) (6)

The deflection of the sides, span a,

L. NO- 2 2 _ .8 -
Y, = 24EI[ (a ab + b%)x + 2ax X ab(a b)] , (7N

and the deflection of the top and bottom, span b,

_ WX
Yo T 24ET

[—(az — ab + b®)x + 2bx® — x> + ab(a — bﬂ . (8)

The maximum deflection of span a (the sides) occurs at
x = a/2, and

__ _wa®
Ya max =~ = 384EI

(a® + 4ab - 4b3). (9)

The maximum deflection of span b (the top and bottom) occurs at
x = b/2, and ;
wh=

Yb max~ " 384Er (22 7 P) (6a - 5Db). (10)

Equations Derived for Cavities With Side Stays

The expressions for the elastic curves that describe the deflections
in the walls of the single-gap cavities and the expressions for the bend-
ing moments and end slopes are derived in Appendix D. For these deriva-
tions, a cross-sectional slice of unit thickness is taken through the cav-
ity with side stays, and the overall height of the section, £, is broken
by two stays. The distance between the stays is denoted by the letter a,
the distance from a stay to either the top or bottom of the cavity is
denoted by the letter b, and the width of the cross-sectional slice by

the letter c. The desired expressions are derived for three cases:
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(1) the case where spans a, b, and ¢ and the flexural rigidities EIa’

EIb, and EIC may be different from each other, (2) the case where span
a = span b but spans a and b may be different from span ¢ and the plane
moments of inertia Ia = Ib but Ia and T
Ly

p may be different from Ic, and

(3) the case where Ia = = IC = T and a = b but a and b may be

different from c.

Case 1

In the first case, Ia # Ib # IC and a # b # ¢, the elastic curve

(deflection) of span a,

1 wx?  wax o
Ya = EI ( 26712 T2 ) e an
the deflection of span b,
R x“ M xZ
_ 1 wx® 3 3
b T EI_ ! 2% 7 e 2 ) O (12)
and the deflection of span c,
M x= -
1 { wx? wex > 1 :
Ye TEI_{T 24 2. " T2 " ox (13)

The reaction,

3ar _ 4,3 L _ 37 _ p2 _ TN
w (a I, b Ia)(bIC } CLb) (aIb + bIa)(c Ib 6b ch 3b Icz

[ i | .
4b (2bIC + 3ch)(aIb + bIa) bIa (bIc + ch)w (14)

i

R =
3

The moment
3 - 3 FRANE
w(a®L - b1 ) + 4b IR,

M = . (15)
3 12(aIb + bIa)
The end slopes 8b“R -~ 12bM =~ 3wb®
0, = = = (16)
A 24ET
b
and 12aM - wa®
6, = =t . (17)

G 24ET1
a
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The moment
24ET O, + we3
c A

Ml - 12¢ ) (18)
The stay load,
P=R_+o. (19)
3

For span a, the mid-span deflection that occurs at x = a/2,

4 a®M \ ad
¥ |

1 wa _ = e
a mid-span EI_ | 128 8 o (20)

For span b, the mid-span deflection that occurs at x = b/2,

3
L wt bR, ] bAM, ] b -
Yo mid-span ~ EL_ |~ 384 %8 8 2 - ¢

For span c, the mid-span deflection that occurs at x = c/2,

2
- 1 { we 5he + s (22)
Ye¢ mid-span EI_ | 128~ 8 | 2

All of the expressions for this first case are also applicable in
the second and third cases. However, the expressions for the deflections
at mid-span and the elastic curves are not simpler in cases 2 and 3 than
they are in case 1, and they therefore will not be repeated for the last

two cases.

Case 2

In the second case, a = b and Ia = Ib’ the reaction

w(3a®I + 6a®cl - ¢?1)
c a a

R = . (23)
P Za(3aIc + SCIa)

The moment

R . (24)
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The end slope,

a2
QA = 8EIa (2R3 - wa) (25)
and
2 8
.2 _ A
QG = 24E1a (2R3 wa) = 3 - (26)
The moment
24ET 0, we?
Ml = T7c . (27)
The stay load wa
P=R + > - (28)
3
Case 3
In the third case, a = b and Ia = Ib = IC = I, the reaction,
3 2. _ .3
R = w(3§ + 6a“c c) 29)
3 a (3a + 5¢)
The moment
_a,  w(3a®+ 6a%c - c?)
M=, " 712 Gas s - (30)
The end slopes
a® . acw (a© - c©)
= 8er @R, 7" = BET (3a 7 50) G
and
RPN S~ I (32)
¢~ 26E1 ‘T, T ¥ T T3 T 24ET (3a + S¢) ‘
The moment
3
v - 24E19A + wc ~ W(383 + SCZ,) (33)
- 12¢ T 12 (3a + 5¢)
The stay load B - .
lea3 . - o3
P - R + wa wiba” + lla“c c ] (34)

s 2 20 3a + S5c j
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Panel Deflections, Moments, and Stresses

In a composite wall structure, it is necessary to consider the
deflections and stresses within the flat plate panels between stiffeners
as well as the deflections of the whole composite wall, The problem
boils down to one of choosing a suitable combination of stiffener size
and spacing and plate thickness that will satisfy the criteria for both
the composite wall and the plate panels between the stiffeners. While
it must meet specific design criteria, the choice is usually also influ-
enced by economics and local situation factors such as the material
already on hand,

With deflection criteria established, values for the flexural
rigidity, EI, of the composite walls may be determined from expressions
that are derived in Appendices C and D. Values for the second moment of
area, I, follow when the materials of construction are known or selected.
With the value of the second moment of area known, a multi-parameter
study of plate thickness and stiffener size and spacing must be made
with the choice of the combination based upon the permissible deflec-
tions, moments, and stresses within the plate panels. After the combi-
nation is chosen on this basis, it must be confirmed by checking the
stresses in the composite structure.

Two computer programs were written to aid in the selection of a
suitable combination of plate thickness and stiffener size and spacing.
One of the programs, called TBEAM, is used to solve the equations of
Appendix A. The characteristics of the composite structure are com-
puted as a function of the T-beam stiffener size and spacing and the
plate thickness. The properties of 77 '"standard" T-beams are read into
the computer memory. These properties include weight (1b/ft), area
(in.e), depth of beam (in.), width of flange (in.), thickness of flange
(in.), thickness of stem (in.), moment of inertia (in.?%), and a value
representing the location of the centroidal axis (in.), as found in
steel handbooks. Several spacings for stiffeners (12, 15, 18, ..., and
39 in.) are also generated and stored, and a number of arbritrary plate

thicknesses are also read into the computer, such as 0.345, 0.375,
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0.4375, 0.461, and 0.500 in. The computer output consists of a listing
of some of the characteristics of the composite structure as a function
of the input parameters. The important output items include (1) the
total amount of inertia (in.?*) of the composite structure, (2) a unit-
ized moment of inertia (in.%*/in.) obtained by dividing the total moment
of inertia by the spacing (in.), (3) a unitized weight (1b/ft per in.)
obtained by dividing the weight per foot of length of the composite
structure by the spacing in in., (4) a relative efficiency term (in.*/
1b per ft) obtained by dividing Item 2 above by Item 3, and (5) a value
for the centroidal axis (in.) of the composite structure. A listing of
the properties of the T-beam is also included as computer output data.

Regardless of how determined, if the required unitized moment of
inertia is known, a combination of stiffener size and spacing and plate
thickness can be found to meet the requirements in an approximate manner.
Then, if the plate thickness and stiffener spacing are known, the most
efficient T-beam of all possible ones can be determined. The character-
istics of this T-beam can then be examined to determine its suitability
from the standpoint of depth and stress.

A second computer program used in conjunction with TBEAM, called
PANEL, was written to aid in the parameter study of the deflections,
moments, and stresses of flat plates. The input parameters are (1) plate
thickness (in.), (2) panel length (in.), and (3) panel width (in.).

The computer output lists the values for & and B, the maximum deflection
of the panel, Yy = 0, y = 0 where the coordinate axis is as shown in

Fig. 7, the moment, (MX)X and the maximum stress, S

=s8/2, y=0 max’

When the requirements of the composite structure and the panels
between stiffeners are known in terms of (1) the required moment of
inertia of the composite structure based on permissible deflections,
(2) the limiting stresses in the composite structure, and (3) the per-
missible moments, stresses and deflections in the plate pamnels, a suit-
able and perhaps the most economical combination of stiffener size and
spacing and plate thickness can be found from the output data of the

computer programs TBEAM and PANEL.
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Fig. 7. Coordinate Axis for Maximum Deflection of Panel
Determined by the Computer Program PANEL.

The particular plate used to construct the prototype double-gap
cavity for a 50-Mev separated orbit cyclotron was chosen because it
was available from surplus stock. Once the thickness of the plate is
chosen, the size of the T-beam stiffener will depend upon its spacing.
Thus, in the case of the prototype, the problem became one of deter-
mining the spacing of the stiffeners, which is the same as the width
of the panels. 1In the wall structure of the cavities, the panels are

rectangular and assumed to be fixed (clamped) on all four edges, but
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the panels will deflect somewhat between stiffeners, as indicated in
Figs. 4 and 7. Based on deflections or stresses, or both, the following
five expressions1 may be used to choose the widths of the panels., The
expressions for & and B are given in equation form to facilitate their

use in FORTRAN for computer programming.
Yo 0, y =0 = a'ﬁg; in.

0.0284

o = 5
1+ 1.05653T
lz

- 2 . - .
x = 8/2, y =0 pws® in.-1b/in.

0.0833
p = 30
1 + 0.623. =
i 2
_ M _ oM o2
Smax = 2 T t° 1b/in

Computer program PANEL output data for values of deflections,

moments, maximum stress, S

Ix = 0, y =0 (Mx) X =58/2, y=0 max’ &
and B, are given in Table 1 for selected values of panel lengths, z,

and panel widths, s. The format for Table 1 is as defined below.

Term in Term in
Table I Definition Equation Unit
Z Panel length Z in,
S Panel width s in.
A alpha o dimensionless
B beta B dimensionless
Y Deflection y in.
XM Moment M, in.-1b/in.
ST Maximum stress S psi
max

R, J. Roark, p. 205 in Formulas for Stress and Strain, 3rd ed.,
McGraw-Hill Book Company, Inc., 1954,




Table 1. ©PANEL Computer Program Output Data for Panel Deflections, Moments, and Stresses for
Selected Values of Panel Lengths and Widths

Z = 36.0

S = 15.0 18.0 21.0 24.0 27.0 30.0 33.0 36.0
A= 0.02803 . 02749 . 02651 . 02493 .02271 .01994 .01687 .01381
B = 0.08303 . 08250 . 08130 .07898 . 07499 . 06892 . 06082 . 05132
Y = 0.00734 .01493 . 02667 . 04280 . 06244 . 08356 .10351 . 12004
XM = 274.6 392.9 527.1 668.7 803.6 911.8 973.6 977.8
ST = 7753.2 11093.0 14880.5 18880.2 22686.7 25742.9 27487.8 27605.7
Z = 42.0

S = 15.0 18.0 21.0 24,0 27.0 30.0 33.0 36.0
A= .02823 . 02797 . 02749 . 02668 . 02545 . 02374 .02158 . 01908
B = .08319 . 08298 . 08250 . 08153 . 07979 . 07693 . 07265 . 06680
Y = . 00739 .01519 .02766 . 04580 . 06998 .09949 .13239 . 16580
XM = 275.2 395.2 534.8 690.3 855.1 1017.8 1163.0 1272.6
ST = 7768.4 11157.9 15098.8 19490, 1 24140.7 28736.2 32834.9 35927.6
Z= 48.0

S = 15.0 18.0 21.0 24,0 27.0 30.0 33.0 36.0
A= . 02831 .02818 .02793 . 02749 . 02681 . 02580 . 02444 .02271
B = . 08325 . 08316 . 08294 . 08250 . 08169 . 08032 .07816 . 07499
Y = . 00742 . 01531 . 02810 . 04719 .07371 . 10831 . 14994 .19735
M = 275.4 396.1 537.7 698.5 875.4 1062.6 1251.2 1428.6
ST = 7774.0 11181.6 15179.5 19720.9 24714.5 29999.9 35324.0 40332.0
Z = 54.0

S = 15.0 18.0 21.0 24.0 27.0 30.0 33.0 36.0
A= . 02835 . 02828 . 02814 .02789 . 02749 . 02690 . 02605 . 02493
B = . 08328 . 08323 . 08312 . 08290 . 08250 . 08180 . 08068 . 07898
Y = . 00743 .01536 . 02831 . 04787 . 07559 .11272 . 15987 .21667
XM 275.4 396.4 538.8 701.9 884.1 1082.2 1291.6 1504.7
ST = 7776.2 11191.4 15213.0 19817.7 24959.3 30554.2 36464.5 42480.6

L1
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The computer calculations for the values given in Table 1 are based
on a panel plate thickness, t, of 0.461 in., a modulus of elasticity, E,
of 29,000,000 psi, and an atmospheric pressure load, w, of 14.7 psi.
The beam spacing on the prototype cavity is 21.35 in., and the approxi-
mate maximum deflections and stresses to be expected in the various
panels of the cavity can be deduced from the values given in the third
column of Table 1. Observe the lengths of the panels, z, have little
influence on the magnitude of the deflections and stresses for the

range of ratios of s/z tabulated.
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3. NUMERICAL EXAMPLES

The expressions for the elastic curves, bending moments, and end
slopes that are presented in the previous chapter cover a variety of
possible design conditions. The form of these expressions suggests
that they may be applied in several ways. Four numerical examples of
different approaches, of which some have no clear or definite possibil-
ities for design application, are described in the following material.
In all of the examples, the atmospheric pressure loading, w, is assumed
to be 14.7 psi and the modulus of elasticity, E, is assumed to be 29 X
10° psi.

Example 1

For the first example, comsider the double-gap cavity without side
stays illustrated in Fig. 3. The dimensions of the cavity for this

example are shown in Fig. 8.
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Numerical Example 1.
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In this example, the flexural rigidity, EI, and consequently the
second moment of area, I, of the walls are specified to be constant all
over; that is, Ia= Ib = 1 at each station. The value of I is to be
based upon a specified maximum deflection of side a at the small end of

the cavity. Arbitrarily, y - 0.019 in. at Station 1, which is at

a ma
the small end of the cavity.

From Eq. 9, the second moment of area, I = 2.856 in.%*/in. From Eq.
C.2, given in Appendix C, R = 504.4 1b per inch of cavity length at
each of the 10 stations. Vilues for Rl (Eq. C.1), M1 (Eq. 5), and GA
(Eq. 6) may be obtained at each of the 10 stations equally spaced along
the cavity, and the deflection curves at each of the 10 stations are
obtained from Eqs. 1 and 2.

These computations were made by using a simple computer program
called COAXCAV-5, The input for the program in this example consists

of a deflection condition, Ya = 0.019 in. at Station 1, and dimen-

sions to define the size of themizvity. The widths at each station,
indicated by the letter b in Fig. 8, are computed, and these widths and
the height, a, are divided into 10 equal spaces for computing the deflec-
tion curves. The computer program COAXCAV-5 values for b, Rl, Ml, GA’

I, and R are given in Table 2. The units for R, and Rz’ 1b/in., and I,
in.4/in.? are the result of taking a l~in.-thick (measured in the direc-

tion of g) sectional slice of the cavity,

Table 2. Computer Program COAXCAV-5 Qutput for
Reactions, Moments, and End Slopes for Widths at 10 Sta-
tions of the Double-Gap Cavity in Numerical Example 1

R M ]
b 1 1 A
Station (in.) (1b/in.) (in.-1b/in.) (radians)
1 20.81 152.92 4550.3 0.000505
2 24,49 180. 04 4444, 8 0.000549
3 28.18 207.15 4372.8 0.000578
4 31.87 234,27 4334,0 0.000594
5 35.56 261.39 4328,7 0.000597
6 39.25 288.51 4356.7 0.000585
7 42,94 315.63 4418.0 0.000560
8 46.63 342,74 4512.7 0.000520
9 50.32 369.86 4640.7 0.000467
10 54.01 396.98 4802.1 0.000401

I =2.8559 in.%/in. R, = 504.4 1b/in.
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We may observe in Table 2 that the end slope &, increases from

Station 1 to a maximum value at Station 5 and then éontinously decreases
to Station 10, The mid~-span deflections given in Table 3 also follow
this pattern. The elastic curves are symmetrical about a horizontal
plane passing through a/2 and a vertical plane passing through b/2. The
deflection patterns at Stations 1, 5, and 10 are illustrated in Figs. 9,
10, and 11, respectively, and the data for these graphs were taken from
Table 3.
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Table 3. Computer Program COAXCAV-5 Output for Deflections at 10 Stations of Double-Gap
Cavity in Numerical Example 1
NORMALIZED DISTANCE ALONG SPAN

STATION 0.0 .1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1 Ya 0 -.0044 .0097 ~.0145 -.0178 -.0189 .0178 . 0145 .0097 -.0044 -.0000
Y= 0 .0009 . 0016 . 0021 . 0024 . 0025 . 0024 .0021 . 0016 . 0009 0
2 Y= 0 -.0047 .0102 ~.0151 =-.0185 -,0197 . 0185 .0151 .0102 -.0047 -0
Y= 0 .0012 . 0021 . 0027 . 0031 . 0032 .0031 . 0027 . 0021 . 0012 -0
3 Y= 0 -.0049 .0106 -.0156 =-.0190 -.0202 . 0190 . 0156 .0106 -.0049 -.0000
Yi= 0 .0014 . 0025 . 0032 . 0036 . 0038 . 0036 . 0032 . 0025 . 0014 -0
4y 0 -.0050 .0107 -.0158 =~.0192 -,0205 .0192 . 0158 .0107 -.0050 -0
y§= 0 .001s . 0028 . 0036 L0041 . 0043 . 0041 . 0036 . 0028 . 0016 0
5 Y= 0 -.0050 .0108 =-.0158 -.0193 -.0205 . 0193 . 0158 .0108 -.0050 -0
Y= 0 .0018 . 0031 . 0039 . 0044 . 0046 . 0044 . 0039 . 0031 . 0018 0
6 Y, 0 -.0049 .0106 =-.0157 =-,0191 ~-.0203 L0191 . 0157 .0106 -.0049 -0
Y= 0 .0019 .0032 . 0040 . 0045 . 0046 . 0045 . 0040 . 0032 . 0019 0
7 v, 0 -.0048 .0103 =-.0153 =-.0187 =-.0199 .0187 . 0153 .0103 -.0048 -0
Y= 0. .0020 . 0032 . 0039 . 0043 . 0044 . 0043 . 0039 . 0032 . 0020 0
8§ y.= 0 -.0045 .0099 -.0147 -.0180 ~.0192 . 0180 . 0147 .0099 -,0045 -.0000
yz= 0 .0019 . 0030 . 0036 .0038 .0039 . 0038 . 0036 . 0030 . 0019 0
9 vy.= 0 -.0042 .0093 =-.0140 -.0171 ~-.0183 L0171 . 0140 .0093 -.0042 -,0000
y€= 0 .0017 .0025 . 0028 . 0029 . 0029 . 0029 . 0028 . 0025 . 0017 -0
10 = 0 -.0038 .0086 -.0130 -.0160 -.0171 . 0160 . 0130 .0086 -.0038 -0
& 0 .0014 . 0019 . 0018 .0016  ,0015 . 0016 . 0018 . 0019 . 0014 -0

(A4
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Fig. 11. Deflection Pattern at Station 10
of Double-Gap Cavity of Numerical Example 1.

Particularly notice the elastic curve of span b at Station 10 shown

in Fig. 11. The deflection is zero at zero distance, reaches a maximum

at about a normalized distance of 0.2, passes through a minimum at mid-

span, reaches a second maximum at normalized distance 0.8, and £falls off

to zero at normalized distance 1,0, Notice also that in this particular

example, the deflections of span a are always inward (negative) and the

deflections of span b are always outward (positive). We would suggest

that the deflections of span b would become negative in the region near

mid-span if the cavity were lengthened a sufficient amount and the same
side taper were kept,

The data for the cavity used in this example are that of the proto-

type for a 50-Mev separated orbit cyclotron. The dimensions given are
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those of the prototype as it was fabricated. The cavity is stiffened

by T-beams (ST 6B X 9.5) spaced 21.35 in., center to center. Based on an
equivalent plate thickness, te, of 0.461 in., the actual value of I
obtained is 2.727 in.*/in. This compares favorably with the computed

required value of 2.856 in.*/in. given in Table 2.

Example 2

For the second example, consider the double-gap cavity without side
stays illustrated in Fig. 3. The dimensions of the cavity for this

example are shown in Fig. 12,
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In this example, the flexural rigidity, EI, and consequently the
second moment of area, I, of the walls are allowed to vary along the
length of the cavity while Ia = Ib = 1 at any section taken normal to 4.
The values of I are to be determined at each of the 11 equally spaced
stations shown in Fig. 12, and they are to be based upon a series of
, at each of the 11 sta-

a max
tions. Beginning at Station 1, these values increase nearly linearly

specified maximum deflections of side a, y

along the length of the cavity to the maximum value at Station 11.
Following the specification of the 11 values of Yo max and the

computation of I at each station, values for R,» Ml, 6,, and the deflec~-

s
tion curves were obtained in the same manner as they w:re for Example 1.
The computations were performed by using a computer program called
COAXCAV-3, which is essentially the same as COAXCAV-5 except for the
deflection condition input, the calculation of 11 values of I instead
of one, and the resulting changes in the output format. The computer
program COAXCAV-3 output for widths, second moments of area, reactions,
moments, and end slopes for the maximum deflections specified are given

in Table 4, and the output for the deflection data at the 11 stations

are given in Table 5.



Table 4.
Slopes for the

Computer Program COAXCAV-3 Output for Widths, Second Moments of Area, Reactions, Moments, and End
Maximum Deflections Specified at 11 Stations of Double-Gap Cavity in Numerical Example 2

STATTON Ya max I Spacing Rl Ml GA

(in,) (in.) (in. */in.) (in.) (1b/in.) (in.=1b/in.) (radians)
1 17.44 -0.017 1.472 12.0 128.21 3075.9 0.000552
2 19.68 -0.019 1.305 12.0 144, 65 3022.8 0.000663
3 21.92 -0,021 1.172 15.0 161.10 2982.0 0.000772
4 24,16 -0,023 1.063 15.0 177.55 2953.4 0.000877
5 26.39 -0.026 0.973 18.0 193.99 2937.1 0.000975
6 28.63 -0.028 0.897 18.0 210.44 2933.1 0.001062
7 30.87 -0.030 0.832 21.0 226.89 2941.3 0.001135
8 33.11 -0.032 0.776 24.0 243,34 2951.8 0.001192
9 35.34 -0.034 0.727 24.0 259,78 2994,5 0.001228
10 37.58 -0.036 0.683 27.0 276.23 3039.6 0.001242
11 39,82 -0, 039 0.645 30.0 292,68 3096.9 0.001229

R = 415.3 1b/in.

2

9¢



Table 5.

Computer Program COAXCAV-3 Output for Deflections at 11 Stations

Cavity in Numerical Example 2

of Double-Gap

NORMALIZED DISTANCE ALONG SPAN

STATION 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1 Y= 0 -.0040 -.0087 -.0130 -.0159 =-.0169 =-.0159 =-.0130 -.0087 ~-.0040 0
Y= 0 .0009 -.0015 =-.0020 ~-.0022 =-.0023 -.p022 =-.0020 -.0015 ~-.0009 0
2 Y= 0 -.0047 -.0102 -.0151 =-.0185 =-.0197 -.0185 -.0151 =-.0102 ~-.0047 0
Yy= 0 .0012 . 0020 . 0026 .0030 .0031 .0030 .0026 .0020 .0012 -0
3 Y= 0 -.0054 -,0117 =-.0173 =~.0211 ~-.0224 -.0211 ~-.0173 -.0117 -.0054 0
Y= 0 .0015 . 0026 . 0034 . 0038 .0040 .0038 . 0034 .0026 . 0015 0
4 Y= 0 -.0061 -.0131 -.0193 ~-.0236 -.0250 ~-.0236 -.0193 -.0131 -.0061 0
Y= 0 .0019 . 0032 . 0042 . 0047 . 0049 . 0047 . 0042 . 0032 . 0019 0
5 Y= 0 -.0067 -.0145 -.0213 ~-.0260 =-.2076 =-.0260 =-.0213 -.0145 -.0067 0
V= 0 .0022 . 0038 . 0049 . 0056 .0058 . 0056 . 0049 . 0038 . 0022 0
6 v,= 0 -.0037 -.0157 -.0232 =-.0282 -.0300 -.0282 -.0232 -.0157 ~-.0073 0
Y= 0 .0026 . 0045 . 0057 . 0064 . 0066 . 0064 . 0057 . 0045 . 0026 0
7 Y= 0 -.0079 -.0169 =-.0249 ~-.0303 =-.0322 =-.0303 =-.0249 -.0169 -.0079 0
Y= 0 .0030 . 0050 . 0063 .0071 . 0073 .0071 . 0063 . 0050 . 0030 -0
8 Y= 0 -.0083 -.0179 -.0264 =-.0321 -.0342 =-,0321 ~-.0264 -.0179 ~-.0083 0
Y= 0 .0033 . 0055 . 0068 . 0076 . 0078 .0076 . 0068 . 0055 .0033 0
9 V= 0 -.008 -.0187 -.0276 =~-.0337 -.0359 =-.0337 -.0276 -.0187 -.0086 0
Y= 0 .0035 . 0058 . 0071 .0078 . 0080 .0078 .0071 . 0058 . 0035 -0
10 Y= 0 ~.0089 -.0193 -.0286 =-.0350 -.0372 =-.0350 =-.0286 =~.0193 -.0089 .0000
V= 0 .0037 . 0059 .0071 . 0076 .0078 . 0076 .0071 . 0059 . 0037 0
11 V.= 0 -.0090 -.0197 -.0293 -.0359 -.3082 ~-.0359 ~-.0293 -.0197 -.0090 0
Y= 0 .0037 . 0057 . 0066 .0070 .0071 . 0070 . 0066 . 0057 . 0037 0

Lc
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Again, we find that the elastic curves are symmetrical as they were

in Example 1. The deflection patterns at Stations 6 and 11 are shown

graphically in Figs., 13 and 14, respectively, and the data for these

graphs were taken from Table 5. Because of the varying flexural rigidity,

the deflection pattern is somewhat different from that in Example 1.

The end slope QA increases continuously from Station 1 through Station 11.

The mid-span deflections of span b (the top and bottom of the cavity)

increase continuously from Station 1 through Station 9 and then decrease

slightly at Stations 10 and 11. There are no points of inflection in

the elastic curves, as previously noted.
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The variable second moment of area, I, may be satisfactorily
approximated for the values computed by using T-beams (ST 4B X 6.5 on a
plate with an equivalent thickness of 0.461 in.) on a variable spacing.

The approximate spacing required is given in column 5 of Table 4.

Example 3

Again consider the cavity in Example 2 dimensioned in Fig. 12. For
this example, the series of maximum deflections on span a are imposed as

they were in Example 2, and in addition, the condition that Vb max- 0.080
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in. at each of the 11 stations is imposed. Therefore, Ia will not nec-

essarily be equal to I, at any section taken normal to £, and both Ia

b

and Ib will vary along £. The values for Ia and Ib to be determined at

each of the 1l stations are to be based on the imposed deflection require-

ments.

The values of Ia and T, cannot be determined directly from Egs. 1

b
and 2 because the expression for M given in Eq. 3 and the expression
1

for the end slope GA given in Eq. 4 are functions of both Ia and Ib.
They are found by using the iterative procedure described in the follow-
ing material.

At each of the 11 stations, an initial estimate was made for the

values of Ia and I, from expressions for the mid-span deflection of a

b
uniformly loaded beam with fully constrained ends. For the first esti-
mate,
4
wa”
a 384.0EA€

and

1 = wb*

b 384.OEAb ’
where Ah and Ab represent the imposed deflection conditions stated above.
In the second step of this procedure, values for Ml and QA were calculated
from Kgs. 3 and 4 by using the values estimated for Ia and Ib. The third
step of the procedure consisted of computing Yo max from Eq. 1 by setting
X = a/2 and using the values obtained in the first two steps of this
procedure and of computing Yy max from Eq. 2 by setting x = b/2. These

calculated values will in all probability differ from the stated imposed

deflection conditions. Therefore, Ia and Ib must be adjusted.
glnew) = 1 (o =
a
and
b max

Ib(new) = Ia(old)

AB

With new values for Ia and T the fifth step of this procedure consisted

b’
of returning to the second step and calculating new values for Ml and QA'

The procedure was continued until
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y
a max P
A~ S |k
a
and
y .
b maxS ikl

Ab 3
where k = some specified convergence conditiom.

The values for b, Ia’ R, M, and 8, were computed at each of

Ly R M A

the 11 stations by using a computer program called COAXCAV-2. Values

for R and the deflection curves were also computed by using the program.
The iiportant difference between program COAXCAV-2 and the COAXCAV-3
program used for Example 2 is that COAXCAV-2 performs the iterative
procedure just described. It also has a different deflection condition
input and a different output format. The values computed for the widths,
second moments of area, reactions, moments, and end slopes for the
specified maximum deflections at the 11 stations of the double-gap
cavity in Example 3 are given in Table 6, and the computed deflection

data are given in Table 7.



Table 6. Computer Program COAXCAV-2 Output for Widths, Second Moments of Area, Reactions, Moments, and End Slopes
for the Maximum Deflections Specified at 11 Stations of Double-Gap Cavity in Numerical Example 3.

b Ya max b max Ia Ib Rl Ml eA
STATION (in.) (in.) (in.) (in.*/in.) (in. %*/in.) (1b/in.) (in.~1b/in.) (radians)
1 17.44 -0.017 -0.080 3.664 0.001 128.21 377.3 0.000939
2 19.68 -0.019 -0.080 3.173 0.002 144,65 481.7 0.001053
3 21.92 -0.021 -0.080 2.773 0.004 161.10 599.4 0.001163
4 24,16 -0.023 ~0.080 2.439 0.005 177.55 730.4 0.001270
5 26.39 -0.026 -0.080 2.154 0.007 193.99 875.1 0.001372
6 28.63 -0.028 -0.080 1.908 0.010 210.44 1033.4 0.001469
7 30.87 -0.030 -0.080 1.690 0.013 226.89 1205.5 0.001559
8 33.11 -0.032 -0.080 1.497 0.017 243,34 1391.4 0.001640
9 35.34 -0.034 ~-0.080 1.322 0.022 259.78 1591.1 0.001709
10 37.58 -0.036 ~-0.080 1.163 0.027 276.23 1804.5 0.001765
11 39.82 -0.03¢9 ~-0.080 1.017 0.034 292,68 2031.3 0.001801

R = 415.3 1b/in.
2

(4%




Table 7. Computer Program COAXCAV-2 Output for Deflections at 11 Stations of Double-Gap
Cavity in Numerical Example 3
NORMALIZED DISTANCE ALONG SPAN

STATION 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1 Y= 0 -.0053 -.0100 -.0137 -.0161 ~-.0169 ~-.0161 -.0137 =-.0100 -.0053 0
Yu= 0 -.0094 -,0318 =-.0559 =-.0736 -,0800 -.0736 -.0559 =-,0318 -.0094 .0000
2 Y, 0 -.0059 -.0113 -.0155 ~-.0182 =-.0191 -.0182 -.0155 =-.0113 =-,0059 0
Y= 0 -.0092 -.0316 =-.0558 =-.0735 -.0800 -.0735 -.0558 =~-.0316 =-.0092 0
3 Y= 0 ~-.0065 -,0125 =-.0172 =-.0202 =-.0213 ~-.0202 ~-,0172 ~-.0125 -,0065 0
V= 0 -.0089 -.0313 -.0556 =-.0735 -.0800 -.0735 ~.0556 =-.0313 =~,0089 -.0000
4 Y, 0 -.0072 -,0137 =-.0190 =-.0223 =~-.0235 -.0223 -.0190 -,0137 -.0072 0
Y= 0 -.0086 -.0310 =-.0554 =-.0734 -.0800 ~-.0734 -.0554 -,0310 -.0086 .0000
5 4= 0 -.0078 ~-.0150 ~-.0207 =-.0244 -.0256 -.0244 -,0207 -.0150 -.0078 0
Yoo 0 -.0083 -.0307 -.0552 -.0734 -.0800 ~-.0734 -.0552 -~-,0307 -,0083 .0000
6 Y= 0 -.0084 -.0162 -.0224 -.0264 ~-,0278 =.0264 -.0224 -.0162 ~-.0084 0
Y= 0 -.0079 -.0303 -.0550 -.0733 -~.0800 =-.0733 -.0550 -.0303 -.0079 0
7 Y, 0 -.0090 -.0174 ~-.0241 -.0285 =-.0300 -,0285 =-,2041 =-.0174 ~,0090 0
Y= 0 -.0076 =-.0300 =-.0548 =-.0733 ~-.0800 ~.0733 =-,0548 -.0300 -.0076 -.0000
8 Y= 0 -.0095 -.0185 ~-.0258 -.0305 =-.0321 -,0305 =~-,0258 =-,0185 =-.0095 0
Y= 0 -.0072 ~-,0296 -.0546 -.0732 ~-.0800 -,0732 =-,0546 =-.0296 -.0072 .0000
9 Y= 0 -.0100 ~.0196 -.0275 =-.0326 =-.0343 -.0326 =-.0275 =-.0196 -.0100 0
Y= 0 -.0069 -.0293 =~,0544 =-.0731 =~.0800 -.0731 -.0544 =-,0293 -.0069 .0000
10 Y= 0 -.0105 -.0207 -,0291 =-.0346 =-.0365 -.0346 -.0291 =-,0207 -.0105 .0000
Y= 0 -.0065 -.0289 =-,0542 =-.0731 -,0800 ~-.0731 -.0542 -.0289 -.0065 .0000
11 Y= 0 -.0109 -.0217 =~-.0307 -.0366 =-.0387 -.0366 -.0307 ~-.0217 -.0109 0
Y= 0 -.006z -.0286 ~-.0540 -.0730 =~-.0800 =~.0730 -.0540 =-,0286 -.0062 .0000

€e
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As in Example 2, we again find that the elastic curves are
symmetrical. The deflection patterns at Statioms 1 and 11 are illus-
trated graphically in Figs. 15 and 16, respectively, and the data for
these graphs were taken from Table 7.

Judging from the range of values of Ia and Ib given in Table 6, it
might be concluded that this approach has no practical application in
the design of radio frequency cavities, and it might also be suspected
that the range of validity of the assumptions made has been exceeded.
That is, if a cavity structure were built with the variable flexural
rigidity indicated, it is not certain that the deflection behavior

would be similar to that indicated by the computations.
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Example 4

The single-gap cavity with flat tapered sides, flat parallel top

and bottom, flat ends, and side stays illustrated in Fig. 2 is considered
in this example. If the curvature of the top and bottom of the cavity is
slight, the sides may be considered as being rectangular. For this
example, it was assumed that all sections normal to the lengthwise direc-
tion are the same, and the dimensional designations for these sections
are illustrated in Fig. D.1 of Appendix D, For this example, a = 44.5
in., b = 44.5 in., and ¢ = 85.0 in. The derivations for this example are

given in Appendix D, and the reactions and moments are shown in Fig. D.2.
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The following deflection condition was imposed for this example.

Ya(x = 3/2) = yb(X = b/2)= Yc(x - C/2) =A = 0,030 in.

The second moments of area Ia’ and IC will be made to take on

Ib,
values that satisfy the imposed deflection condition. Values for Ia’
Ib’ and IC cannot be determined directly from expressions already
derived, but they were determined by using the iterative procedure
described in the following material.

The first step in the iterative procedure was to make an initial

estimate of the values of Ia, and IC by using expressions for the

I
bJ
mid-span deflection of a uniformly loaded beam with fully constrained

ends. For this first estimate,

[ = —vat
a  384.0EA °
I _ Wb4
b 384.0EA °
and
T oo ooves
c ~ 384.0EA °

Using these estimated values, the second step involved computing the

£
values for RB, Ms’ QA, GG’

derived in Appendix C. The third step then consisted of using these

and M by using Eqs. 14, 15, 16, 17, and 18
1

values to obtain values for Ya mid-span’ Yy mid-span’ d e mid-span

from Eqs. 32, 33, and 34. 1In all probability, the values obtained will
differ from the deflection conditions imposed. Therefore, the fourth

step in the procedure involves adjusting the values for Ia, and IC.

Ib’

y .
. B a_mid-span
Ia(ncw) = Ia(old) ~ P

y .
_ b mid-span
Ib(new) Ib(old) A s
and y
_ ¢ mid-span
Ic(new) Ic(old) A .

With new values of Ia’ Ib’ and IC, the second, third, fourth, and fifth

steps of the procedure were repeated until
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v .
a mid-span ol
=R kg,
y .
b mid-span o
~ S k|,
and
y .
¢ mid-span i1
A s R

where k = some specified convergence criterion.

The procedure just described would be rather tedious if performed
manually; however, it is handled quickly with a computer. The iterative
procedure was applied to computer values of Ia, Ib’ Ic’ R, MB, GA, GG,
and M through the use of a computer program called CAVSAG. Values for
R, Rl, R , P, and the deflection curves were also computed by using this
piogrim. 4The input for the program consists of sets of deflection condi-
tions that the walls of the cavity must meet under the imposed loads and
the dimensions of the cavity. The output consists of one set of data for
each set of deflection conditions. Computer output data for the cavity
dimensions and deflection conditions of this example are given in Table 8.

The deflection data given in Table 8 are illustrated in Fig. 17,
and we again find that the elastic curves are symmetrical. In this
example, the mid-span deflections of spans a, b, and ¢ have arbitrarily
been required to equal each other. However, the mid-span deflections may
differ from each other in any manner as long as the values chosen permit
a real solution. If the sides of such a cavity were made from flat steel
plate, the values of Ia’ Ib, and Ic given in Table 8 could be attained

approximately by using plate thickness of

t, = 1 3/8 in.,
€ =1 1/4 in.,
and tC =4 3/4 in,

While such an arrangement might be unusual, it is quite possible. From
an economical consideration, the design for such a structure would likely
result in a composite wall structure such as that illustrated in Figs. 4
and A.1 even though the transition from one value of I to ome of a greater

or lesser value might be difficult from a design standpoint.



Table 8. Computer Program CAVSAG Output Data for the Single-Gap Cavity of Numerical Example 4
y = -0.030 in. R = 318.2 1b/in.
a max 3
Vb max— -0.030 in. R4 = 327.1 1b/in.
y = =0.030 in. M = 2744.3 in.-1b/in,
¢ max 1
I, = 0.19 in. */in. M = 2348.7 in.-1b/in.
3
I = 0.138 in. 4/in. 6, = 0.001036 radians
I, = 8.636 in. */1in. 6c = 0.000304 radians
R = 336.0 1b/in. P = 645.3 1b/in.
1
R = 624.8 1b/in.
2
Deflection Data at Normalized Distance Along Span
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Y, = 0 -0.0047 -0.0131 -0.0216 -0.0278 -0.0300 -0.0278 -0.0216 -0.0131 -0.0047 -0
Vy = 0 -0.0033 -0.0121  -0.0215 -0.0281 -0.0300 -0.0266 -0.0188 -0.0090 -0.0010 -0
y = 0 =~0.0090 -0.0174 ~0.0241 -0.0285 -0.0300 -0.0285 -0.0241 -0.0174 -0.0090 -0

8¢



39

ORNL. Dwg. 67-9079

-0.0i74
-0.024)

—-0.0010

\' —0.0090
.\,_.___

\
\ ~0.0188
4

\! —-0.02686
\
| —0.0300

,' -0.0281
|
/| -o0.0215

44.50in.

b=

[
0.0121

/
] -0.0033

H [¢]

—0.0047
"

\3 -0.013l
\

\ -0.02i8
——k———-—__—_

22.25in.

o ‘1 -0.0278

|
| -0.0300

T

e

Fig. 17. Deflection Pattern for Single-Gap Cavity of Numerical
Example 4.
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4. CONCLUSIONS

It may be concluded from the analysis methods developed and the
numerical examples illustrating the application of the methods that
flexural rigidities can be made to vary as required to obtain specified
deflection patterns in radio frequency cavities. However, application
of this principle to actual designs for cavities is sometimes difficult.
The numerical results obtained in Examples 3 and 4 of Chapter 3 suggest
the difficulty of applying this principle to any great degree in the
applications considered here. In the particular case of the prototype
cavity for the 50-Mev separated orbit cyclotron, consideration of the
available material, the probable increase in cost, the difficulty of
fabrication, and the problems in the design of the cavity resulted in
the decision to use plate of the same size, stiffeners of the same size,
and the same stiffener spacing all around the cavity.

Even with conscientious effort exerted in the shop to keep deviations
to a minimum, experience has shown that dimensional deviations that result
during fabrication may be several times greater than those caused by
elastic behavior. Strong stiffeners are very helpful in controlling
fabrication deviations, particularly in correcting warping of the flat
plate caused by welding.

However, the principle of varying flexural rigidity and the associated
derivations may be useful in certain special applications. The necessary
calculating with mathematical expressions such as those derived in this
veport can be done with simple computer programs. Perhaps the greatest
benefit derived from using computer programs in this application is the
ability to use wider ranges of variability in multi-parameter calculations.
Greater accuracy and closer spaced data are usually obtained by using
computer programs, and while the calculatory portions of the programs are

usually simple and straightforward, the output may be tedious.
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Appendix A

COMPOSITE WALL STRUCTURE CONSIDERED AS AN EQUIVALENT SOLID PLATE

In the analyses described in this report, the flexural rigidity of a
composite structure made by welding T-beam stiffeners on steel plate is
considered to be equivalent to that of a solid steel plate with an equal
second moment of area. The equivalent thickness of the solid plate is
derived in the following material, and cross sections through the composite

structure and an equivalent plate are illustrated in Fig. A.l.

ORNL Dwg 67-~9062

|
STEEL T-BEAM —L__FZ__ 7 4

"
3- _ —
d ? ! .
2 b yc
c- - -c
l ds dc
(-2 B > > Sverrs e L e e ] -2 v,
Lt, COPPER 8-2
-1
Mt sTeEL
s COMPOSITE STRUCTURE
wd 7 7 Z. . - /4 A _,
7 /A Z ta

»

EQUIVALENT PLATE

Fig. A.1. Cross Sections Through A Composite Wall Structure and A
Steel Plate of Equivalent Thickness.

The terms used to derive the equivalent thickness of a solid steel
plate are defined by referring to Fig. A.l where

Ab = the area of the T-beam, in.?,
A_ = the area of the steel plate, in.2,
s

= st , and
s
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AC = the equivalent area of copper cladding, in.?,

Ee
= E; Stc’
where
ES = Young's modulus for steel, psi, and
EC = Young's modulus for copper, psi.

The location of the centroidal axis of the composite structure is expressed
by the equation,
+ +
B Abyb Asys Acyc

Ye-e ~ A+ A + A
b s c

The second moment of area or moment of inertia of the composite structure,

= + A dZ o+ +Ad? +
Ic-c Ib3_3 b™b 152—2 s s Icl

The second moment of area of a solid plate equivalent in flexural rigidity

+Ad?
- cc

to the composite structure,

st 3

e
Ie4.4 " 7 Lee

Therefore, the equivalent thickness of a solid steel plate,
121 /e
t =

e | s |
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Appendix B

COPPER-CLAD STEEL PLATE CONSIDERED AS SOLID STEEL PLATE

In the calculations for panel deflections, copper-clad steel plate
is regarded as solid steel plate with an equivalent thickness. The equi-
valent thickness of the solid steel plate is derived in the following
material, and cross sections through the copper-clad plate and a solid

steel plate of equivalent thickness are illustrated in Fig, B.l.

ORNL Dwg. 67-9068
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dc ds e et 9
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=1 i
-c 1

—RsT T

L, STEEL
COPPER-CLAD STEEL

.._.5__1 ‘_i
3 ‘\\\ )
t_

EQUIVALENT PLATE

3

e

Fig. B.1. Cross Sections Through A Copper-Clad Steel Plate and a
Solid Steel Plate With An Equivalent Thickness.

The terms used to derive the equivalent thickness of a solid steel

plate are defined by referring to Fig. B.l where

AS = the area of the steel plate, in.?,
= st _, and
s
A, = the equivalent area of the copper cladding, in.?,
Ec
== st_,
s
where
Es = Young's modulus for steel, psi, and
E_ = Young's modulus for copper, psi.
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The location of the centroidal axis of the clad plate is given by the
equation
A +
- s's Acyc
YETA 1A
s c
The second moment of area or the moment of inertia of the clad plate,

I =1 +Ad® +1 +Ad?
c-c S5 -g s s G-, ¢c¢
The second moment of area of a solid plate equivalent in flexural rigidity
to the clad plate,

st 2
e

Cg -3 12 - Cc=C
Therefore, the equivalent thickness of the solid steel plate,

(121C_C\?1 /2

te:li 3 i
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Appendix C

MATHEMATICAL DERIVATION OF ELASTIC CURVES,
BENDING MOMENTS, AND END SLOPES FOR CAVITY WITHOUT SIDE STAYS

A cross-sectional slice of unit thickness taken through the cavity
without side stays is shown in Fig. C.1. The height of this cross-
sectional slice is denoted by the letter a, the width by b, and the end
slopes by BA, eB, eC’ and eD at points A, B, C, and D, respectively.

The loading, w 1b/in., is the atmospheric pressure all around the outside
surface of the cavity that results when the cavity is evacuated during

operation. The plane moments of inertia of the beams with spans a and b
are Ia and Ib’ respectively. The corners at points A, B, C, and D were

assumed to be rigid but subject to rotation. Therefore, by symmetry,

0, = 8g = -8, = -0

A C D’
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Fig. C.1. Cross-Sectional Slice of Unit Thickness Through Cavity
Without Side Stays.
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To obtain expressions for the bending moments and reactions, free
body diagrams of spans a and b were drawn, as shown in Fig. C.2, and a
sign convention was adopted. Positive deflection is upward, as shown for
span b in Fig, C.2. If the tangent to the elastic curve rotates counter-
clockwise, the angle of rotation is positive, and those moments acting in
a clockwise direction on joints are positive. 1If deflections are small,
bending moments caused by axial end reactions are small when compared with
bending moments caused by transverse loads and reactions. Since the amount
of deflection in the cavity must be limited to small values, we may neglect

axial end reactions and simplify the mathematics greatly.

ORNL Dwg 67-9064

| w/in.
ALL SPANS

+y Rz

Fig. C.2, Free Body Diagrams of Spans A and B in Cavity Without Side
Stays (Axial End Reactions Not Shown).
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From the free body diagrams shown in Fig. C.2, the following

equations were obtained.

R =2 (c.1)
R, = 2 (C.2)

For span a,
M(x) = -1+ T - %‘f— : (C.3)

For span b,
M(x) = -M + -"%ﬁ - ‘—“j-— . (C.4)

The differential equation for the elastic curves has the following

EI %Zg = M(x)

Two or more of the conditions listed below will be needed to soclve for

general form.

the constants of integration. These conditions are
1. y =0 at A, B, C, and D;

2, dy/dx =0 at a/2 and b/2;

3. for span a at D, dy/dx = -6, at x = 0; and

A
“ &l -wl
L "R
The fourth condition is an expression of continuity between two beams
connected at a joint. The condition is that at the joint of the beams,
the slope of the beam on one side of the joint is equal to the slope of
the beam on the other side of the joint. This follows from the assumption
that the corners (joints) are rigid but that they may rotate.

For span a,

Py __1 wax _ wx’)
&F T EL ('yﬁ ) 2 1" (€.5)
Integrating once,
dy __1 wax® _ wx®)
ax ~EI ( Mx + = 6l "o - (C.6)

Condition 3 given above is applied to evaluate (.

G = -BA . (c.7)
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Combining Eqs. C.6 and C.7,
d 1 waxe wxs
Eﬁ ~EI {'NHX L3 ] 9 (C-8)
gl
and integrating again,
1| M wad  wx)

Ya T EL Ry a I JC (€.9)

Condition 1,y = 0 at x = 0, is applied to evaluate G;.

C, =0 . (C.10)
Combining Eqs. C.9 and C.10,
y, = Eia - Nhég " wi;? - w?i? 7S L
By analogy, for span b,
%ﬁ = E%; [-Myx + Eéfi - E%iE +0, (c.12)
and

b
To obtain the equation for the moment 1, , the second condition,

dy/dx = 0 at a/2 and b/2, is applied to Eq. C.8,

1 Ma | wa) B
ET (' 7 "o T80 (C.14)
and to Eq. C.12,
l { Ml b bi : _
EI, 2 T h, T 0y =0 (€.15)

Rewriting Eqs. C.14 and C.15,

a wa?
NI S S (c.16)
a a
and
b wh®
" 7ET, Mo+ 0y =~ 24ET_ (.17

Adding Egqs. C.16 and C.17, changing signs, and rearranging, the moment

£I. + 1 \
b _al (3)
AT S



Substituting the expression for M; given in Eq. 3 into Eq. C.16, the

end slope

2 2
9A=¥nga§ ;EI N )
b aj

By Substituting the expressions for M; and eA given in Eqs. 3 and 4
into Eqs. 1 and 2, the more customary type of expressions for Vg and b
without the terms M; and eA may be obtained, However, it is simpler to
use Eqs. 1 and 2 in their present forms than in the more customary form
when one wishes to express them in FORTRAN for computer programming.

Since there seems to be no compelling reason to obtain the more customary
expressions, we will avoid the algebra and leave Egqs. 1 and 2 in their
present form.

At this point it may be worth observing that Eqs. 1 and 2 permit Ia
to be different from Ib. We may have been even more general and permitted
I to vary along the span and to be different at each side and at the top
and bottom. Consideration of the available material, costs, and problems
of design and fabrication have led to the belief that it is more practical
in at least the case of the prototype of the 50-Mev "coaxial" radio
frequency cavity to use the same size plate and the same size and spacing

for the stiffeners all around. This is to say that the flexural rigidity

of the walls will be constant all around.

Letting Ia = Ib = I, the moment
w
PI]. = "]':'é'(az - ab + bZ) ) (5)

and the end slope

6 - wab(a - b) ) (6)

A~ 24ET
Substituting Eq. 5 into Eq. 1 and simplifying,

y, = gpasl- (£ - ab + ¥)x + 2a - ¥ - abla - D)] , )

and substituting Eq. 6 into Eq. 2 and simplifying,

WX

ybzm-(aB-ab+b2)x+2bx2-x3+ab(a-b)]. (8)

Equations 7 and 8 are expressed in the customary form.
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Expressions of the maximum deflections will be useful. For span a,

Ymax CCCUTS at x = a/2. Substituting a/2 for x in Eq. 7 and simplifying,
g =N 4 hab - 4R (9
a 384E1
max

For span b, Yoax OCCUTS at x = b/2. Substituting b/2 for x in Eq. 8 and
simplifying,
wh®

b = T 3BLEL
max

(2a - b)(6ba - 5b) . (10)

An easy check on these derivations may be obtained by letting Ia =

1, = I and a = b = £. Making these substitutions in Eqs. 3, 4, 1, and 2
and performing the appropriate algebriac operations,
wie
M = 3 7 (C.26)
6,y = 0, (C.27)
and
oy ey oo 8
Vg =Y, =Y 7 5apTt - X7 . (€.28)

These are the familiar expressions for the end moments and deflections of

a uniformly loaded beam with fully constrained ends.
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Appendix D

MATHEMATICAL DERIVATION OF ELASTIC CURVES,
BENDING MOMENTS, AND END SLOPES FOR CAVITY WITH SIDE STAYS

A cross-sectional slice of unit thickness taken through the cavity
with side stays is shown in Fig. D.l. The overall height of the cross-
sectional slice is denoted by the letter g, the distance between stays
located at points C and H and G and D as a, the distance from the stays
to either the top oxr bottom of the cavity as b, and the width of the
cross~sectional slice as c¢. The slopes at points A, B, C, D, E, F, G,
B QC’GD,GE’ GF, QG’ and OH. The loading
w 1b/in.,, is the atmospheric pressure all around the outside surface of

and H are designated as GA, 8
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Fig. D.1. Cross-Sectional Slice of Unit Thickness Through Cavity
With Side Stays.



54

the cavity that results when the cavity is evacuated during operation.
The plane moments of inertia of the beams with spans a, b, and ¢ are

Ia’ T and IC, respectively.

s
?he corners at points A, B, E, and F were assumed to be rigid but
able to rotate, and the points, A, B, C, D, E, F, G, and H were assumed
to remain stationary except for rotations. Therefore,

y (deflection) = 0 at A, B, C, D, E, F, G, and H,
and by symmetry

9, = 8 = =6, = -6,

and GD = QH = —@C = -QG.

To obtain expressions for the bending moments and reactions, free
body diagrams of spans a, b, and ¢ and the load point between spans a
and b were drawn, as shown in Fig. D.2. The sign convention previously
adopted for the derivations in Appendix C was also applied in this case.

From the free body diagrams shown in Fig. D.2, for span c the 2V = 0 and

we = 2R =0 (D.1)
2
R=§£. (D.2)
2
For span b, 2l = 0, and
wb -R -R =20, (D.3)
i 1 3
LMR =0 + ), and e
= M -—— 4+ Rb-M =0. (D.4)
1 2 3 3
For span a, ZH = 0, and
wa - 2R =0 (D.5)
4
R=g—a—. (D.6)
4
For joint H, ZH = 0, and
R +R -P =20, (M.7)
3 4

Substituting the expression for R4Vgiven in Eq. D.6 into Eq. D.7,

R + 22 - p., (D. 8)
L2

We may observe from Fig. D.2 that the loadings of spans a, b, and

c are similar. They each have axial and transverse end reactions, end
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Fig. D.2. Free Body Diagrams of Spans a, b, and ¢ for Cavity With
Side Stays. (Axial End Reactions not Shown.)

moments and uniform span loading. We need only to solve one general
problem to obtain expressions for the bending moments, end slopes, and
the elastic curves that apply to all three spans in general terms., If
deflections are small, the bending moments caused by axial end reactions
are small when compared with the bending moments caused by transverse
loads and reactions. Since the deflections in the cavity must be limited
to small ones, we may neglect axial end reactions and simplify the mathe-
matics greatly. The free body diagram of a span labeled in general terms

applicable to spans a, b, and ¢ is illustrated in Fig. D.3.
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Fig. D.3. Free Body Diagram of a Span Labeled in General Terms.

The differential equation of the elastic curve,

p=
ET 9—«3 = M(x), (D. 9)
dx
and
2
M(x) = M - 3—”325-— + R X . (D.10)

Substituting the expression for M(x) given in Eq. D.10 into Eq. D.9,

2 2 i
%y _ 1 ! S L Rx -M L. (D.11)
dxZ EI \ 2 fo) o }

Integrating once,

d 1 | WX
E% = EE i - “g—' + "E—" - MOX } + Cl . (D.12)
A

To evaluate C , we apply the condition
1

jdy .
dx i x = 0 o
and
Cl = 90 . (D.13)
Combing Eqs. D.13 and D.12,
R x2
{%E}: E% - E%E + g - M x 8 . (D. 14)
Integrating again,
1] et R x° M x2‘
Yy =1 \~ 2% 6 - + e x+ C . (D.15)

| 2
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To evaluate C , we apply the condition y = 0 at x = 0, and
2

cC =0 (D.16)
2
Combining Eqs. D.15 and D. 14,
1 ! wx* RoXB M0X2
=E1 24 Vv 7% -3 + Gox . (D.17)

By making simple substitutioms in Egs. D.14 and D.17, expressions
for the end slopes and elastic curves of spans a, b, and c may be
g =9

obtained. For span a, g =a, 9 = 8 I=1T,M =M, and

0 G’ 2 H’ a [o] 3
R =R = wa/2.
o 4
dy _ 1 | _wx®  wax®
ax TEI_ |76 i T Mx h % (D.18)
a
M xZ
1 ’ wx® wax” < )
Ya TEL_ | 2 12 2 |t % an
For span b, g = b, 80 = QH = -QG, Gz = QA, I = Ib’ Mo = Ms’ and Ro = R3
R %%
dy _ 1 | _ wx® A | .
T " FL =+ = M x , 8 - (D.20)
R x5 M xZ
1 [ wx? o o
b T EI 24 6 "2 | % (12)
For span ¢, 4 = ¢, 60 = QA’ dﬁ = GB’ I= IC, MO = Ml, and R0 = R2 =
we/2.
3 2 )
dy _ 1 _ WX . wex _ 3
Togr -5 e T (D.22)
c |
M x%
1 | owx? wex3 1
Ye TET_ T 2% T 12 T2 T OOpx - (13)

To find expressions for M , M, R , QG’
1 3 3
¢, I, I, I, E, and w, five equations in these terms will be needed.
a b c

and QA in terms of a, b,

Applying the condition

%ajL= % r°

setting x = a in Eq. D.18, and noting that QH = - QG ,



The expressions

are expressions
They state that

one side of the

side of the joint.

and stay points
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1 [ wa® wa® !
A owAan wan L9 = - D. 24
EIa et g Mqa ; QG QG ( )
6, =6 and 6, =6
i L i R A L A R

of continuity between two beams connected at a joint.
at the joint of the beams, the tangent to the beam on
joint is equal to the tangent to the beam on the other
This follows from the assumption that the corners

are rigid but may rotate. The subscript H of the

expression QH refers to joint H and the subscript A of the expression

6, refers to joint A.

A

and setting x =

Applying the condition

b in Eq. D.20,

R b~
1 ! WbS 2 _ .
EIb T e T - Msb - QG = QA (D.25)
Applying the condition yc\x - p 0 to Eq. 12,
R b% M bZ
1L [ _ wb*® 3 3 . _
ET_ L 24 6 2 %P = O (D.26)
Applying the condition ycl e T 0 to Eq. 13,
2
1 1 we*  we? ¢
i - 37 i + 6, =0 . (D.27)
Equation D.4 containing the terms Ml, M?, and RS will be used as the

fifth equation.
and D.27 yields

give expressions for R3

Simultaneous solution of Egs. D.4, D.24, D.25, D.26,
14, D.29, D.30, D.31, and D.32.

, M, 8, 6

Egs. These equations

and M in terms of a, b, ¢, 1,
1

G’ a

Ib’ IC, E, and w, and these expressions may be checked by substituting
them into the original equations from which they were derived.
3r 1.3 _ 3t _ gpR  An3T Y
R w (a Ib b Ia)(bIC + ch) (aIb + bIa)(c Ib 6b ch 3b Ic%
S - ;
4b ;(ZbIC + 3ch)(aIb + bIa) bIa (bIc + CIb)J (14)
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W
M = (a’1
5 l2(aI + bIa)

_ W3
, - P7I_ +bL)

T + - 31 - gh2 _ an3T YV
(a Ib b Ia)(bIc ch) (aIb + bIa)(c Ib 6b ch 3b ch
+ -
(26T 3ch)(aIb + bIa) bIa(bIc +cI) kD-29)
oot [y P |
AT 2hET al, + bI_ }
| a3 - B3 - 3 - 2 - 3 \
!(a I, b Ia)(bIc + CIb) (aIb + bIa)(c I, 6b ch 3b Ic)i
(ZbIC + 3CIb)(aIb + bIa) - bIa(bIC + CIb) f
a3Ib - b31 i
v et 2';
e 3b | (D.30)
b a A
a®1, - b31 ! b1 :
o = aw b a , ! a !
G 24E1_ : al_+ bI “al, + bI ;
a ! b a ] b a:
L o n3 _ 3 - 2 - 2R3 Y
(a Ib b Ia)(bIc + ch) (aIb + bIa)(c Ib 6b ch 3b IC) .
\ (ZbI_ + 3el,)(al, + bI) - bI_(bI_ + cI) j
) (D.31)
W | bIc i bIa X
M:-""—'\'_"EZ" :
1 12¢ 0Ty . aly + bIa/
<
fia3 o B3 ¥ - 3 _ 2 AR
i(a I, - b3 )(bI_ + L) - (al, + bI )(e’L - 6bZ%T, - 3b Ic)\
\ (2bT_ + 3cT_)(al, + bI_) - bL_(bI_+ cI) /
"
a®1, - b1 ? l
—b __a 32| + 3 (D.32)
al., + bl {
b a |
The expressions for R3’ M3’ GA, QG’ and M in Egs. 14, D.29, D.30,

D.31, and D.32 may be substituted into Egqs. 11, 12, and 13 to obtain
expressions for Yoo Ypo and Yo in the customary form. However, it is
simpler to use Eqs. 11, 12, and 13 in their present form for FORTRAN

computer programming. It is necessary that the expression for R, in



Eq. 14 be in terms of a

6

G’

for Ms, QA,

and M
1

handle in manual computations can be obtained.

given in Eqs. 15, 16, 1

the solution of Eq. D.8

60

, b, ¢, Ia’ Ib’

that are easier to express in FORTRAN and to

IC, and w, but simpler expressions

These expressions are
7, and 18, and the expression for P derived from

is given in Eq. 19.

wfa3T - h3 2
w{a Ib b Ia) + 4b IaRg

M = (D.15)
5 12(aIb + bIa)
8b=R - 12bM - 3wb?
- a 3
O = 4ET (16)
b
12aM - wa®
% = TT2u4ET a7
a
24ET B, + wc®
M - —OC4 (18)
1 12¢
P=R + 2> (19)
a2
Expressions for the maximum deflections would be useful. However,

these are not easily ob

necessarily occur at th

tained because the maximum deflections do not

e middle of the span. Expressions of the deflec-

tions at mid-span will be obtained on the assumption that for small

deflections and reasonable designs, the maximum deflection is likely to

occur at the mid-span o
For span a R

P » Ya mid

in Eq.

ya mid

For

Eq.

span b, b mid-span
12 and simplifying,

b mid-span

For span c,

Ve mid-span

Eq. 13 and simplifying,

f spans a and ¢ and near the mid-span on span b,

11 and simplifying,

occurs at x = af2. Substituting a/2 for x
~span
2 i
- l V\Iaé1C _ & Mq \1; + _a_;_Q_g_ (20>
-span EIa 128 8 2
occurs at x = b/2. Substituting b/2 for x in
2 A
- 1!"-‘“"°4+b3R‘°ﬁ-bM'*—E?—(i 21)
EIb ' 384 48 8 ; 2
occurs at x = ¢/2, Substituting c¢/2 for x in
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c? co

M
" we 1 A
Ve mid-span ET_ 128 3 S (22)

2

In a particular design case, a is set to equal b and Ia = Ib'
Therefore,

w(3a%1l + 6acI - ¢31)
c a a

R = , (23)
3 2a(3aIC + 5cIa)
M =2Rr | (24)
3 6 3
22
GA = 8EIa (2R3 - wa) , (25)
2 9
a A
QG = 24Ela (2R3 - wa) = 3 (26)
24EIC9A + we3
Ml = 12¢ ’ (27)
and wa
P=R + rl (28)
3
In another design case, a = b and Ia = Ib = Ic = 1. Egs. 29

through 34 result from these conditions, and they were obtained from
Eqs. 23 through 28 by dropping the subscripts from the terms Ia and IC
giving I. They are expressed both in the form of the original equations
and in terms of a, ¢, w, E, and I. 1In the latter form, the I's cancel

out of the expressions for R , M, M , and P.
37 3 1

_w(3a® 1+ 6a®c - %)

RB - 2a(3a + 5¢) (29)
_a _w(3a® 1+ 6a%c - c®)
M =gk, = 12(a + 503 (30)
a= _acw(a® - c®)
O = BEI (2R3 " Wa) = SET(3a T 50) (1)
P (2R - wa) = Sa | _acu(a® - o) (32)
G~ 24EX 3 3 7 24E1(3a + 5¢)
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_ A w(3a® + 5¢9)
Moo= 17¢ T T12(3a + 50) (33)
3 Z. . .3
p-p +¥a_uw [ba"+ llac - ¢ (34)

3 2 2 3a+5C

These derivations may be checked easily by letting a = b = ¢ = g4
and Ia = Ib = IC = I. Making these substitutions in the set of equations
from Eq. 14 and Eqgs. D.29 through D.32; Eq. D.8, Eq. 11, Eq. 12, 7,
and Eq. 13; or the set of equations from Eq. 23 through Eq. 28 and per-
forming the appropriate algebriac operations, Egs. D.53 through D.59

are derived.

R =¥t (D.53)
5 2
=2
M o= 2L (D. 54)
s 12
9, = © (D.55)
QG = 0 (D.56)
WE
M = wh_ _ M (D.57)
1 12 3
P = wy (D.58)
2
_ _ _ WX _ =]
Yo = Yy TV, SepL & X) (D.59)

These are the familiar expressions of the end moments and deflections of

a uniformly loaded beam with fully constrained ends.
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