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Abstract  

Usifig a v a r f a t i o n a l  p r i n c i p a l  f o r  t he  guiding center  plasma, t he  

implicat ions f o r  absolute  s t a b i l i t y  of l o c a l  s t a b i l i t y  p l u s  interchange 

s t a b i l i t y  a r e  examined. The geometry chosen f o r  t h i s  a n a l y s i s  i s  open 

ended, with magnetic l i n e s  f r e e  t o  interchange a t  t h e  ends. 

The method of  a n a l y s i s  uses the f a c t  thak any admissable v a r i a -  

t f o n  away from an eqllillbrium can be decomposed i n t o  an interchange 

p l u s  a v a r i a t i o n  which vanishes a t  one end of the plasma domain. 

the second v a r i a t i o n ,  as a quadrat ic  form, i s  accordingly separated 

i n t o  th ree  terms which a r e  examined sepa ra t e ly .  

Then 

We f i n d  t h a t  i f  t he  s p a t i a l  magnetic f i e l d  and plasma g rad ien t s  

are s u f f i c i e n k l y  small, then l o c a l  s t a b i l i t y  plus a s t rong  form of 

interchange eta.bil.j.ty do s u f f i c e  for absolute  va r i a t , t ona l  s t a b i l i t y .  

This s t rong  form i s  act ,ual ly  weaker than most of the s u f f i c i e n t  condi- 

t i one  for interchange s t a b i l i t , y  which have previously been derived. 

Tt i s  shown t h a t  f o r  a plasma which s a t , i s f i e s  these c r i t e r i a  

s t a b i l i t y  i s  independent of t h e  plasma 1cngc.h; i. e. lengthening such 

a plasma does not des t roy  i t s  s t a b i l i t y .  
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1. Introduction 

This thesis is addressed to the general problem of stability 

of a plasma adequately described by the zero order guiding center 

theory. This theory is rigorously valid only in the ideal limit 

where the Larmor radius vanishes, since the plasma particles are 

identified with their guiding centers. However, it has been shown 

[1,2] that the true particle orbits are approximated asymptotically 

(in the sense of Poincare)) by the guiding center equation of motion. 

Guiding center motion i s  Hamiltonian, akin to the motion of a bead 

on a wire; hence we can write fluid equations (Liouville's equation) 

for a collection of such particles [3,4,5]. 

of such a fluid are that it is perfectly conducting, flux preserving 

(which implies the particles are "stuck" to a field line and move 

with it), and is macroscopically described by two pressure components, 

one parallel and another perpendicular to the magnetic field. 

The salient features 

We are concerned with the stability of static equilibria of 

such a plasma when confined by a magnetic field of "mirror machine" 

(i.e., open ended as opposed to toroidal) geometry. In particular, 

we investigate the relationship between stability against interchanges 

(these are motions which leave the magnetic field unchanged and merely 

alter the assignment of plasma) and general stability of low pressure 

plasma. There is considerable confusion in the literature on this 

score. 

runs somewhat as follows: the plasma is stable if its energy can only 

be increased by any motion. Now the energy change is composed of a 

The usual argument which relates the two types of stability 
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magnetic v a r i a t i o n  p l u s  a plasma v a r i a t i o n .  

of a low p res su re  plasma i s  e s s e n t i a l l y  a vacu.um f i e l d ,  hence a mini- 

rnim energy conftgurat ion.  For any motion which i s  not  an interchange 

t h e  plasma v a r i a t i o n  w i l l  he dominated by the p o s l t i v e  magnetic 

v a r i a t i o n  below some p res su re  l e v e l .  Thus, t he  only p o s s i b l e  unstable  

motions f o r  a low pres su re  plasma are  interchanges,  and i n  t h i s  case 

interchange s t a b i l i t y  implies absolute  s t a b i l i t y .  

The equi l ibr ium f i e l d  

The f a l l a c y  i n  t h i s  argument has been pointed ou t  i n  [6]. I n  

p a r t i c u l a r ,  we must always r e q u i r e  l o c a l  s t a b i l i t y  (def ined i n  t h i s  

t h e s i s  on page 10). 

s u i t a b l e  condi t ions we w i l l  show t h a t  i t  and interchange s t a b i l i t y  do  

imply absolute  s t a b i l i t y  a t  low pres su re  ( o r  sometimes even a t  moderate 

p r e s s u r e ) .  

But i f  we do a d j o i n  t h i s  requirement then under 

Thus t h e  p h y s i c a l  i n t u i t i o n  can be salvaged and made p r e c i s e .  

Caution should be given t h a t  our ana lys i s ,  while p r e c i s e  analy- 

t i c a l l y ,  encompasses only a small corner of plasma p h y s i c a l  r e a l i t y .  

For one thing, t he  guiding cen te r  model, while soph i s t i ca t ed  magneto- 

hydrodynamics, d i s t i ngu i shes  only some of t he  m i c r o i n s t a b i l i t i e s  which 

plague plasma physics .  For another,  we confine ourselves  t o  v a r i a t i o n a l  

s t a b i l i t y  a g a i n s t  i n f i n i t e s i m a l  pertu.rbation. Our d e f i n i t i o n  of s t a b i l i t y  

i s  r e a l l y  p o s i t i v i t y  of t he  second v a r i a t i o n ,  which i s  a t  most equivalent  

t o  boundedness o f  so lu t ions  t o  t h e  l i n e a r i z e d  equa,tions of motion. But 

i n  general  our d e f i n i t i o n  i s  even more r e s t r i c t i v e  Lhan t h i s ,  f o r  t he  

equivalence r equ i r e s  s e l f  ad jo in tness  o f  t he  a s soc ia t ed  operator  and a 

d i s c r e e t  spectrum i n  the neighborhood of t he  o r i g i n .  E x p l i c i t  examples 

can be given which v i o l a t e  t hese  c r i t e r i a .  
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Although many of ow r e s u l t s ,  most notably those i n  s e c t i o n  5 on 

the  plasma wi th  l i n e s  t i e d a t  one end, w i l l  g ene ra l i ze  e a s i l y  t o  the  

two f l u i d  case,  we consider  only a n e u t r a l  s i n g l e  f l u i d  plasma i n  

which charge sepa ra t ion  i s  neglected and i t  i s  assumed t h a t  E .  B = 0. 

We assume t h a t  t he  magnetic momentp i s  cons tan t  f o r  a p a r t i c l e  but  

we do not  r equ i r e  constancy of t he  second a d i a b a t i c  i n v a r i a n t  J. 

The gene ra l  p l an  of the  t h e s i s  i s  a s  fol lows:  i n  sec t ion  2 the  

v a r i a t i o n a l  p r i n c i p l e  and the  geometry of t he  problem a r e  discussed 

along with the  r e l evan t  boundary condi t ions  and some of t h e i r  impli- 

ca t ions .  Some of  the  more important concepts a r e  introduced and 

c l a r i f i e d .  

Sec t ion  3 i s  devoted t o  a de r iva t ion  of t he  second v a r i a t i o n  i n  

a form su i t ed  t o  the  problem. This i s  by far the  most ted ious  of  a l l  

t he  sec t ions  s ince  many of t he  formulas a r e  of necess i ty  long and 

involved. 

which d i sp lays  the  form of the  second v a r i a t i o n  which we use. It 

should be mentioned t h a t  t h e r e  i s  exac t  equivalency between (3.6) 

and the  o r i g i n a l  form; no approximations have been made. 

The most important equat ion i n  t h i s  s ec t ion  i s  (3.6) 

Sec t ion  4 o u t l i n e s  the  method of a t t a c k  on the  problem. This 

involves  s p l i t t i n g  a genera l  v a r i a t i o n  i n t o  two p a r t s ,  one an i n t e r -  

change and t h e  o the r  vanishing on one end. Then the  second va r i a t ion ,  

as a quadra t ic  form, i s  l ikewise  s p l i t  i n t o  a second v a r i a t i o n  f o r  

each of the  p a r t s  p l u s  a c ros s  term. 

I n  the  fol lowing sec t ions  each of the th ree  terms i s  analyzed 

sepa ra t e ly .  Sec t ion  5 shows when a plasma wi th  one end t i e d  i s  

s t a b l e .  Two theorems a r e  proven. Sec t ion  6 cons iders  t he  c ross  term 
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and an estimate is found for its magnitude. In section 7 the second 

variat,ion for an interchange is examined in light of the above estimate. 

Conditions are derived for  positiveness of the whole second variation. 

Thesc: conditions form the main result of the thesis, showing under what 

restrictions interchange etabil i ty plus local stability imply absolute 

stability. 

Section 8 discusses the results of lengthening the plasma and 

indicates the difficulties to be overcome before this analysis can be 

extended to toroidal geometries. We then examine our results and 

compare them with others in the literature. We find them to be quite 

general, enconipassi ag and extending even results obtained by purely 

formal perturbation methods. 

Acknowledgement: I would l i k e  to thank my advisor Professor 

Harold Grad who suggested this problem and contributed many valuable 

ideas to its solution. Thanks are also due to Professor Harold 

Weitzner who saved m e  froin at l ea s t  one serious mistake, and to Dr. 

Gareth Guest who broadened my perspective on the physics OF plasma 

physics. 

operated by Union Carbide Corporation for the U. S. Atomic Energy 

Commission. 

This research was sponsored by Oak Ridge National Laboratory, 
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2. Formulation of the Problem 

The terminology and variational principal which we employ have 

been developed by H. Grad [6,7,8], and whenever possible we follow 

the same notation. 

a motion, it is wise to review the origin of this motion. From the 

field equations 

Since we will constantly refer to a variation as 

aB 
at 
- +. curl E = 0 

and from Ohm's law for a perfectly conducting fluid 

E + U x 19 = 0. 

Combining these two equations 

- -  aB - curl (U x B) a t  

This equation indicates that the magnetic flux is frozen into the 

plasma (as can be seen by calculating the change in flux through 

a moving surface); it also relates the change in B t o  the motion 

of the plasma, For the variational principal we invert the logic 

of this relation. As is well known we can imbed an equilibrium 

field in a family of fields admissable to the variational problem 

and parameterized by a variable t such that the equilibrium field 

is B(O,x), all others are identified by B(t,x), and the variational 

notation 6B is replaced by 



A l t e r n a t i v e l y  we can use ( 2 . 1 )  t o  c h a r a c t e r i z e  the Val-iation by a 

v e l o c i t y  f i e l d  U; f o r  given any v a r i a t i o n  613 we can f i n d  a U which 

y i e l d s  t h a t  v a r i a t i o n .  

d i c u l a r  t o  B which en te r s ,  and we s h a l l  t ake  U t o  be perpendicular 

t o  B i n  order  t o  make use of t he  r e l a t i o n  

I n  f a c t  i t  i s  only t h e  component of U perpen- 

That U does r ep resen t  a motion is  seen by introducing t h e  

r ep resen ta t ion  (sometimes r e f e r r e d  t o  as a Clebsch transformation) 

of  t h e  so l eno ida l  R f i e l d :  

with which (a,P) constant  i d e n t i f i e s  a f i e l d  l i n e .  Then 

and (2 .2 )  together  with (2 .1 )  imply 

so that; the f i e l d  l i n e s  move with v e l o c i t y  U. 

D / D t  for the  p a r t i c l e  d e r i v a t i v e  moving with U . )  

(We s h a l l  reserve 

The q u a n t i t i e s  a and B can be used t o  def ine a Lagrangian 

coordinate  system moving with the f i e l d  ( a ,  6, 0 )  where (5 can be 

a rc l eng th  a t  some i n i t i a l  time and then i s  c a r r i e d  by the  motion. 

To r e l a t e  0 -to a rc l eng th  s we introduce the f a c t o r  5 :  
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A s  stated before the plasma is constrained to remain on its 

initial field line as this is carried by U. 

given line is governed by a Hamiltonian H(cr,p,t) where p is canoni- 

cally conjugate to 0. 

distribution f, a function of (o,p,t) directly and (a ,@,p )  as 

parameters. 

particle distribution F(x,c,t) by 

The motion along the 

Thus the fluid is described by a single 

This distribution f('s,p,a,@,p, t) is related to the usual 

f = 271Fm-' 

and the Jacobian relations 

, d e  = 27iBc dP 
B 

21T 271 

dx = 

dxde = p dadpddpdjl = ds2 

which imply 

Fd$= B<fdpdp> Fdxdc = fdQ 

(see L71). 
The variation of the distribution function is well described in 

[ T I .  Essentially we admit any function f which is obtainable from a 

given reference function by an incompressible mapping w in the (0,~) 

plane. Thus the variational class is broader than the class accessible 

byadynamic motion for we admit any Hamiltonian motion, and not just 

that derivable from the particular known Hamiltonian. A complete varia- 
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t i o n  i s  then given by two v e l o c i t y  f i e l d s  (U,w) which descr ibe ( 6 B , 6 f ) ,  

but  by using the p e s s i m i s t i c  v a r i a t i o n  we can f i n d  w as a func t ion  of 

U, l e av ing  U a s  the only v a r i a t i o n a l  f i e l d .  

The success of t he  v a r i a t i o n a l  p r i n c i p l e  depends upon the con- 

se rva t ion  of t o t a l  energy which i s  the  sum of k i n e t i c ,  i n t e r n a l ,  and 

magnetic components defined by 

where 

1 
8 = fp" + pu 

If we a r e  c a r e f u l  t o  r e f e r  t o  t h e  equi l ibr ium when t = 0, then 5 = 1, 

and l e t t i n g  v r ep resen t  speed along the  l i n e  we can a l s o  w r i t e  

Conservation of energy i s  v e r i f i e d  i n  [TI; t h i s  i s  not t r i v i a l  

because of t he  s ingu la r  zero  order  guiding cen te r  l i m i t .  

The v a r i a t i o n a l  p r i n c i p l e  i s  c l a s s i c a l  i n  form; we t ake  as 

v a r i a t i o n a l  func t ion  CP, defined by 

A s t a t i c  equi l ibr ium i s  defined as a s t a t i o n a r y  value o f  @ ;  i t  i s  

a l s o  a s t a t i o n a r y  s o l u t i o n  of t he  equations of motion fo r  which 
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x =  0. 

f o r  any v a r i a t i o n  U. 

To s tudy s t a b i l i t y  we form S ” @  and a sk  whether i t  i s  p o s i t i v e  

Of course a v a r i a t i o n a l  a n a l y s i s  depends a s  much on t h e  admissable 

c l a s s  of func t ions  and the  geometry of t h e  problem a s  it does on the  

v a r i a t i o n a l  funct ion;  our problem i s  BC I1 a s  defined i n  [ 7 ] .  

We assume t h a t  we a r e  given a f ixed  tubu la r  domain D shown i n  

f i g u r e  1 with l a t e r a l  s ide  So and ends S, and S,. For B we admi t  

any f i e l d  which i s  topo log ica l ly  simple ( i . e . ,  the  f i e l d  l i n e s  

t r a v e r s e  D from S, t o  S,) and s a t i s f i e s  d iv  B = 0 a s  w e l l  as c e r t a i n  

boundary condt t ions .  

f l u x  s u r f a c e ) .  

sub jec t  t o  Bn > 0 on S, and Bn < 0 on S,. 

imposed t h a t  Beds + B * d S  = 0. 

On t h e  l a t e r a l  s i d e  So we have Bn = 0 (So i s  a 

On the  ends S, and S, Bn i s  spec i f i ed  a r b i t r a r i l y  

The f l u x  requirement i s  

Js, s2 

Phys ica l ly  these  boundary condi t ions  correspond t o  a p e r f e c t l y  

conducting plasma v e s s e l  with ends in su la t ed  from the  plasma. 

In a d d i t i o n  we impose the  boundary condi t ion  on the  .ends S,and S, 

that Jn = 0. 

which r e s u l t s  from the  v a r i a t i o n a l  a n a l y s i s ;  we impose it as w e l l  f o r  

any v a r i a t i o n  away from the  equi l ibr ium. 

f o r  no cu r ren t  can flow through an i n s u l a t o r .  

This i s  a n a t u r a l  boundary condi t ion  f o r  an equi l ibr ium 

This i s  phys i ca l ly  reasonable,  

These boundary condi t ions  imply c e r t a i n  r e l a t i o n s  which w i l l  be 

used l a t e r .  Bn f ixed  means n-aB/at  = 0 or by (2 .1)  

n . c u r l  ( U  x B) = 0 

The natural boundary condi t ion  Jn = 0 implies  

n -  c u r l . B = O  
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on S, and S z ,  s ince  k0J = c u r l  B. D i f f e r e n t i a t i n g  (2 .3 )  and ( 2 . 4 )  y i e l d s  

n - c u r l  a ( u  x B ) / a t  = o ( 2 . 5 )  

Relat ions (2.3) t o  (2 .6)  i n d i c a t e  t h a t  13 and U xB as w e l l  as t h e i r  

time d e r i v a t i v e s  a r e  a11 surface g rad ien t s  ( s e e  e.g. [g]) wherever 

t h e  corresponding boundary condi t ions hold. This f a c t  means t h a t  

such i n t e g r a l s  a s  JB x a ( U x B ) / a t  dS, which appears i n  (3.4), 

vanish, s ince  we have t h e  ca l cu lus  formula 9 Vcp x V$ . dS :: 0. 

The concept of l i n e  t y i n g  e n t e r s  i n t o  t h i s  ana lys i s ,  and it i s  

b e s t  defined by comparing ( s e e  [TI) the two boundary condi t ions BI1 I 

and BC 11. I n  Bc I a and f3 are spec i f i ed  on t h e  ends, which r e q u i r e s  

U = 0 the re .  I n  t h i s  case the  l i n e s  a r e  t i e d  on the  ends; they a r e  

not  f r e e  t o  move s i n c e  M and f3 a r e  f ixed.  The phys ica l  mechanism t o  

support t h i s  l i n e  t y i n g  must be good e l e c t r i c a l  con tac t  with t h e  

v e s s e l  ends through a p e r f e c t l y  conducting medium such as cold plasma. 

On t h e  o the r  hand i n  1x: I1 (OUT case)  we merely r e q u i r e  Bn f ixed  on 

the ends. This allows a motion of the l i n e s  which i s  equivalent  t o  

an incompressible mapping of  t he  ( a , p )  plane through the  r e l a t i o n  

We a l s o  introduce t h e  concept of l o c a l  s t a b i l i t y .  I n  [ 8 ]  it  i s  

shown t h a t  the necessary and s u f f i c i e n t  condi t ions f o r  s t a b i l i t y  aga ins t  

v a r i a t i o n s  which a r e  s u f f i c i e n t l y  l o c a l i z e d  i n  ex ten t  along a l i n e  a r e  

t h e  following i n e q u a l i t i e s  
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where fo is  the  equi l ibr ium d i s t r i b u t i o n ,  of necess i ty  a func t ion  of 

CT and p only through G, and C, i s  a c e r t a i n  moment of fo. 

c i e n t l y  l o c a l i z e d  v a r i a t i o n s  c e r t a i n  terms dominate i n  f j2@ ; these  

i n e q u a l i t i e s  a r i s e  n a t u r a l l y  t o  make those  terms p o s i t i v e . .  Local 

s t a b i l i t y  i s  then equiva len t  with (2 .7) .  

For s u f f i -  

F i n a l l y  we say  a word about interchanges.  We have def ined them 

as v a r i a t i o n s  which leave  B f ixed ,  but  o f t e n  we speak of them as incom- 

p r e s s i b l e  mappings of (a,f3) t o  (a’,@l). I t  i s  easy t o  show the equiva- 

lence  of these.  

$(a ,@)  such t h a t  

If a(d,@l)/a(a,@) = 1, then the re  i s  a flux func t ion  

Now 

as @ = v s  x vg + va x v- a t  a t  a t  

and a B / a t  = 0 i s  equiva len t  t o  (2.8). 

d i r e c t i o n :  

We e x h i b i t  t he  proof i n  one 

i n s e r t i n g  (2.8) i n t o  (2.9) y i e l d s  

(2.9) 

and the  conclusion follows. 
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3 .  Deri.vation of' t he  Second Var i a t ion  

From among t h e  var ious ( equ iva len t )  forms f o r  t h e  second varia- 

t i o n  we s e l e c t  f o r  our ana lys i s  one which manifests t he  r o l e  of l o c a l  

s t a b i l i t y .  For t he  f l u i d  v a r i a t i o n  we can use the  r e s u l t s  of [7] and 

[SI, but we s h a l l  de r ive  the  magnetic v a r i a t i o n  i n  a form appropriate  

t o  o u  boundary conditi.ons. 

t h e  following form f o r  the f l u i d  variat;ion,and the brackets  <> 

an average defined by (7.7) of [7]. 

Reference [7] gives i n  equation (10.24) 

denote 

- 
DU 

S2U = Ip,G, f pzGz + 5 - d i v  P dx 
i 

where 

i3U G,= 4 ( b  * -)" 
as  

If we transform t h i s  as suggested i n  [8] by eva lua t ing  the  term 

involving $we f i n d  

fj2u = j{(p2- p l )  ( b  x s)2 au -t (2p, - C2$) (b * - au - d i v  U)'] dx 
as 



The most direct way of deriving the second magnetic variation is 

to use Lagrangian coordinates. We p a r a l l e l  [73, but there are sub- 

tleties in handling the boundary terms. 

The domain D is fixed in Euler ian  coordinates, but not in Lagrangian. 

The velocity of the boundary in Lagrangian coordinates is - ( v a n ) .  

have 

We 

The final boundary term vanishes since 

a ( @ U )  * dS = f at (B x U x B) * :dS 

and as shown in section 2 the boundary conditions imply that both 

B and U x B as wel l  as their time derivatives are surface gradients. 

For the other boundary term in (3.1) a direct calculation y ie lds  

1 D B  l. 1 -- 4 5B - (-) U dS = - 5 [ F  Pdiv U - B ‘ B  * W]U.dS 
2cLO Dt 5 WO 

If we work out the volume term as in equation cl0.32) of [7] then 

t h e  second magnetic variation is 
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where 

To achieve the  des i red  form f o r  t he  second v a r i a t i o n  r equ i r e s  

f u r t h e r  manipulation of ( 3 . 2 ) .  The f i r s t  boundary term i s  expanded 

as follows: 

This can be s impl i f i ed  using t h e  i d e n t i t y  

€ ? -  au = B x - ( U x B ) - @ x U x B - 2 B ( U . ~ )  a a t  a t  a t  a t  

which follows immediately from the r e l a t i o n s  

a 
a t  a t  a t  a t  R x - ( u  x B) = 9 - B(B * z:) 4- U ( B  - 



This identity and (3.3) then yield the form desired for the first 

boundary term of (3.2) : 

1 DU - B x E x B ' .  - dS 

Dt --I 

- 
Bx---(UxB) a - -  i t x U x B  . d S  

J at 

+ - p  1 -  - $ @ ( u * V U ) + B ( B . U - V U ) " d S .  - 
i Po L 

Now the first of these two term vanishes because of the boundary 

conditions; thus the second magnetic variation is 

DU B x curl B dx 

[B (B - U - VU) - $ E? (U VU)] dS 
IJ.0 

+-I 1 [ F @  1 divU - B - B * VU] U dS . 
10 

Combining this form of the magnetic variation with the fluid 

variation, and using the equilibrium condition 

div P = J x B, 

yields for the full second variation 

+ (- E? + 2p2 - $C2) (b * - aU - div U)" dx 
P O  as 

(3.43 
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1 1 
i- -4 [ F  B.? d i v  U - B B - W] U - dS 

PO 

We s h a l l  have the  des i r ed  form a f t e r  performing two i n t e g r a t i o n s  by 

parts on the  term involving p,, 

- 2 i E ? ( U  d i v  U - U - W).dS 
2PO 

Making t h i s  s u b s t i t u t i o n  gives 

+ p2-pl ) (b  x E)'dx + J(- E? + Pp,-€?C,)(b-E - d iv  U),dx 

a s  PO 

1 
( U  * J x B) U * dS - -4 ( U  - U * W) B - dS 

W O  
+ 

where we have used the i d e n t i t y  

We sha l l  give for r e fe rence  a form fo r  the second v a r i a t i o n  where 

L we do not  perform the  second i n t e g r a t i o n  by p a r t s  on t h e  p* berm. 

i s  

Th i s  
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= I(- + p a -  p , ) ( b  x g ) a d x  + r(" + 2p - dC,)(b*g - d i v  U)" dx 
! Po PO 

( 3 . 7 )  +- ~ v p ,  r - ( U  d i v  U - U VU) dx - <e2 afo ds1 a<  

+ (U B - v B ) U  dS - '4 ( U  U vB)B * dS 
PO PO 

To allow l a t e r  e s t ima tes  and t o  make e x p l i c i t  the  e f f e c t s  of s ca l ing ,  

i t  i s  h e l p f u l  t o  introduce a c h a r a c t e r i s t i c  l eng th  and f i e l d  s t r e n g t h  and 

t o  de f ine  new v a r i a b l e s  i n  terms of them. Let % be t h e  r ad ius  of the 

domain D and $ the  maximum f i e l d  s t r e n g t h  i n  D. 

v a r i a b l e s  by 

Then de f ine  new primed 

i % X i '  = x 

% B i t  = Bi 

I n  terms of these  v a r i a b l e s  (3 .6)  becomes 

+ 4 (U J' x B ' ) U  - dS' - (U * U V B ' ) B '  * dS'} 

However it i s  only i n  s e c t i o n  6 where we r e q u i r e  t h i s  form to make e s t i -  

mates such as 2ab c a2 + b2 where i n  t h e  o r i g i n a l  form a and b have 

d i f f e r e n t  dimensions. S a c r i f i c i n g  r i g o r  for c l a r i t y ,  we use the  unprimed 
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variables and (3.6) instead of (3.6a); f o r  the change merely intro- 

duces dimensional constants which are unimportant f o r  the success 

of the estimates. 



4. Method of Analysis 

The boundary condition E fixed on the ends means that on the 

end any variation U is limited to an incompressible mapping of the 

(a,@) plane, i.e., an interchange. We exploit this fact by selecting 

(to be definite) the end S, and extend the interchange produced on 

S,by U throughout D. Thus, given any variation U, we can define an 

interchange U , such that U-U vanishes on S,. Naming this difference 

U we have 

n 

i i 

0 

u = ui + uo 

i 0 where U is an interchange and U vanishes on S,. 

quadratic form Q(U), is written as 

€I"@ == Q(Ui) + Q(LJi,Uo) + Q(Uo) 

To find when 62@ is positive we examine each 

Then b2@ , as a 

(4.1) 

term separately. 

Q(Ui) is the full second variation for an interchange. 

tulate interchange stability (and we do) it is positive by hypothesis. 

Q(Uo) is the full second variation f o r  a general variation which 

vanishes one end. 

i.e., a plasma with one end tied. In section 5 we consider this 

problem and show that Q(Uo) is positive definite for (speaking impre- 

cisely) either a short plasma or a smooth plasma which is locally 

stable. 

ti2@ will be positive if 

If we pos- 

This corresponds to Bc 1 on end S, and E I1 on Sz, 

i o  Accepting these conditions we estimate Q(U ,U ) in section 6. 

Q(Ui,Uo) < Q(Ui) + Q(Uo) (4.2) 



20 

The estirnate which is found is 

where 6, and 6,’ functions of the tensors VB and a2p,/axiax 

made arbitrarily small by choosing their arguments small enough. To 

derive (4.2) from (4.3) requires the estimate 

can be 
j’ 

Q(Ui) > C s(U’)” dx (4.4) 

This will not be true in every equilibrium. For example if there 

are neutral surfaces (4.4) will obviously fail. 

In section 7 interchanges are studied to find when (4.4) is valid. 

We are able to weaken (lC.4) and strengthen (4.3) to include equilibria 

with neutral surfaces. We find a simple and general requirement on the 

equilibrium to permit these estimates. This includes as a special case 

Grad’s sufficient condition for interchange stability [lo]. 



21 

5.  Q(Uo) : Plasma With One End Tied 

Following [8] we assume l o c a l  s t a b i l i t y  and seek condi t ions under 

which the obviously p o s i t i v e  terms i n  6’9 dominate a l l  o the r s .  

c r u c i a l  f a c t  i n  t h i s  a n a l y s i s  i s  t h a t  s i n c e  U vanishes on S, we can 

est imate  both J(Uo)2dx and sS,(Uo)” dS i n  terms of s ( b  x 3Uo/as)‘dx. 

To e s t a b l i s h  these est imates  we l e t  L be a quan t i ty  l a r g e r  than the  

The 

0 

* 

l eng th  of any magnetic l i n e  i n  D, i . e . ,  

max d s  -: L . 

Thafrom U = j’ (aU/as) d s  we have 

I; L ( U  %)2 ds + L (b x %2 ds 

or 

where 0 i s  t he  maximum of U on a given l i n e  and u t he  maximum of u 

i n  D. 

( b u t  no t  mult iply and nowhere tangent t o  a l i n e )  

I n t e g r a t i n g  (5.1) over any smooth su r face  S c u t t i n g  a l l  l i n e s  

- 

* 0 I n  t h i s  s e c t i o n  w e  s h a l l  drop the s u p e r s c r i p t  on U . 



22 

( b  x dx max 
B 

l-Ti2L2 
j P d s  < 

the  f a c t o r  involving B a r i s e s  s ince  dS = dadg/(B"n) where n i s  t h e  local 

normal t o  the surface,  and dx = dadpds/B(a,@,s). 

over D and the  minimum over S.  

t i c u l a r  on the end Sa 

The maximum i s  taken 

C a l l i n g  t h i s  f a c t o r  7, we have i n  par -  

I n t e g r a t i n g  (5.1) over dadp and then ds (and r e c a l l i n g  dx = dad@ds/B) 

where y '  = Bmax/Bmin, both taken over I). 

With these  est imates  we can prove the  following theorems: 

Theorem 1: I f  the plasma i s  s h o r t  enough so  L can be made 

s u i t a b l y  small, then l o c a l  s t a b i l i t y  p l u s  boundedness of 

t he  t enso r s  VJ3 and azp,/axiax. ensure s t a b i l i t y  of the 

plasma. 

J 

Theorem 2 :  I f  t h e  t enso r s  vB and a 2 p , / a x . a x  a r e  s u f f i -  

c i e n t l y  small then l o c a l  s t a b i l i t y  ensures s t a b i l i t y  of 

t h e  plasma. 

1 3  

Theorems l and 2 a r e  p a r a l l e l ,  i n  both cases the  small  q u a n t i t i e s  

allow the terms i n  b2@ made p o s i t i v e  by l o c a l  s t a b i l i t y  t o  dominate 

all o the r s .  

terms) i s  proven i n  [ 8 ] ;  accordingly we prove only theorem 2 and then 

The analog of theorem 1 f o r  both ends t i e d  (no boundary 



i n d i c a t e  the est imate  of boundary terms required f o r  theorem 1. 

Refe r r ing  t o  t h e  expression (3.6) fo r  62@ , l o c a l  s t a b i l i t y  

( s e e  (2.7)) implj-es t h a t  the f i r s t  two terms p l u s  the  term involving 

af /& a r e  a l l  p o s i t i v e .  

two dominate a l l  o t h e r s  under t h e  condi t ions of the theorem. Now local 

s t a b i l i t y  i n d i c a t e s  t h e r e  i s  a p o s i t i v e  number M such t h a t  

0 
We ignore the l a t t e r  term and show t h e  f i r s t  

From t h e  equi l ibr ium equation ( s e e  e.g. ( 9 . 7 )  of [6]) 

Thus for the  t h i r d  term of (3.6) 

Jvp* - U d i v  U dx 5 M F [ J I U (  (U-x+div U)dx + ~ l U l ( U - x ) d x ]  

- 1  < Mx [z v d x  + $ (U+t+div U)”dx +zJ@dx]  

which (5.3) and (5.4) show t o  be smaller than the  dominant terms i f  

- 
u i s  small enough. 

The o t h e r  volume term i s  e a s i l y  estimated by 

which again i s  made a r b i t r a r i l y  smaller  than the  dominant terms i f  

a” p,/axiax i s  small enough. 
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The boundary terms a r e  estimated as 

which (5 .2)  shows t o  be dominated i f  VB i s  small enough, proving 

theorem 2. 

I n  proving theorem 1 the  boundary terms a r e  estimated exac t ly  as 

i n  (5.8);  i n  t h i s  case (5.2) i n d i c a t e s  t he  i n t e g r a l  

a r b i t r a r i l y  small with L compared with t h e  dominant terms. 

The condi t ions of theorems 1 and 2 guarantee t h a t  h 2 @  

@ d S  becomes 

i s  a c t u a l l y  

p o s i t i v e  d e f i n i t e ,  s ince  (5.2) and (5.3) show t h a t  U 0 if h26 = 0. 
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6. Est imat ing the  Cross Teras 

The i n e q u a l i t y  t o  be derived i n  t h i s  s ec t ion  was s t a t e d  i n  sec t ion  

4: 

where 6,and 62 become small with t h e i r  arguments VB and a”p*/ax.ax 

and Q ( U  ,U ) a r e  the  c ros s  terms corresponding t o  (3.6) which a r e  

defined by (4 .1 ) .  

1 j’ 
i o  

For an interchange c u r l  ( U  i x B) = 0, and the  fol lowing i d e n t i t i e s  

hold 

i i VB 
d i v U  = - u . ( y + ~ )  

Hence t h e  cross terms have the  form 

i auo 

VI3 auo 
B a s  

i o  r P  
Q ( U  j U  ) = 2 j (- + pz - p i )  ( U  . Ob) * ( b  x -) dx 

Po as  
r p ; ?  + 2 j (g + 2p2 - PC,) (Ui  - --> ( b  - - - div  Uo) dx 

+ 2 [ [ (Ui  - Q++) div  Uo - (Uo Vp,){Ui - (s VB + K)]] dx 

+ 6 ( U i  - J x B) lJo dS + 4 (U” * 5 x B) Ui - dS 
J 

(6.2) 
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To e s t a b l i s h  the est imate  (4.3) f o r  t he  volume terms of (6 .1)  we 

note t h a t  a l l  t hese  terms have t h e  form 

‘ Ui q f ( U o )  dx J 

where ’1 i s  a v e c t o r  (or t enso r )  whi.ch becomes small  with i t s  argument, 

V I 3  o r  a2p*/axiax . 
i s  b x a U  /as .  

For example, i n  t he  f i r s t  term q i s  Vb, while f ( U o )  
j 

0 
Thus f o r  each of t h e  volume terms the following est imate  

holds : 
1 
f. r Ui * q f (Uo) dx 5 \{I[ 1’ (Ui)“ dx f (U0) ’  dd’ 

5; $ 1.11 [- (Vi)’ dx + r f ( U 0 ) ”  dx] 
J J (6.3) 

(Here we have used the  i n e q u a l i t y  2ab < a2 + b2 which r equ i r e s  t h a t  

U It  i s  f o r  t h i s  reason t h a t  a 

dimensionless length,  f i e l d  s t r eng th ,  and p res su re  were introduced i n  

sec t ion  3 . )  

dominant con t r ibu t ion  t o  Q(Uo), hence for the  volume terms (4.3)  does 

hold.  

i 0 
and f ( U  ) have t h e  same dimension. 

But J f ( U o ) ”  dx i s  i n  every case bounded i n  terms of  t h e  

0 The term i n  ( 6 . 2 )  containing af /a, can be estimated w i n g  the  

0 i i d e n t i t y  (where gi and g r e f e r  t o  t h e i r  r e spec t ive  arguments U and Uo) 

which i s  e a s i l y  proven and i s  i m p l i c i t  i n  (10.10) of [TI. Now 

1 
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and us ing  (1.25) of [SI 

whence fol lows immediately an es t imate  of the  form 

which aga in  has the  form of (4.3) s i n c e  6 i s  small  w i th  OB. 

To achieve the  same type of es t imate  f o r  t h e  boundary terms we 

Since Ui i s  m u s t  show s (Ui)'dS i s  bounded i n  terms of s ( U i ) 2  dx. 

an interchange,  t he  ex is tence  of such a bound i s  obvious; it i s  der ived 

i n  the  Appendix and w e  f i n d  

s2 

(6.5) Ui)' dS < cons t -  (UiI2 dx 

which i s  similar t o  t h e  es t imate  i n  (5.2) f o r  U". Then the  boundary 

t e r m s  a r e  est imated (we do only t h e  first term as a t y p i c a l  ease)  as: 

Then using (5.2)  and (6.5) it fol lows 

Combining (6.31, (6.4) and (6.6) y i e l d s  t h e  des i red  es t imate  (4.3). 
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' 7 .  Stability Theorems 

Thus far we have shown 

b 2 %  > Q(Ui) + Q(Uo) - b l J  dx - S2 Q(Uo) 

If Q(Ui) satisfies the inequality 

Q(Ui) > const. s(Ui)2 dx 

which can be interpreted as a strong form of interchange stability, 

then under the conditions we have found in sections 5 and 6 S2Q 

be made positive definite. We summarize these conditions in the 

following theorem: 

can 

Theorem: an equilibrium, i.e., a stationary solution of 

the variational problem, is a stable equilibrium if the 

following conditions are satisfied: 

1. it is locally stable. 

2. The tensors VB and a2p,/axiaxj are sufficiently small 

throughout D, where x and x are directions locally 

perpendicular to 5. 
i j 

3. It is strongly interchange stable in the sense that 
i the second variation for an interchange U has the 

property ; 

r C > O  6" Q 
J( Ui)2 dx 

In cases such as axial symmetry where there are neutral surfaces, 

i requirement (7.1) will not; be met (merely let U be a neutral inter- 
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change s o  6”cP = 0) .  However, t h e  r e s u l t  o f  a n e u t r a l  interchange i s  

aga in  an equi l ibr ium. Thus i f  U i s  a, n e u t r a l  interchange and U any 

o t h e r  v a r i a t i o n  

i 
n 

Q(U + I$ = Q(u) 

Expanding (7.2),  we f i n d  t h e  c ros s  terms must vanish,  or 

Q(U,$) = 0 

i 
We can use t h i s  fact to weaken the  requirement (7.1) on Q(U ) . 
an interchange i n t o  i t s  components 

S p l i t t i n g  

where now $ i s  perpendicular  t o  t h e  n e u t r a l  surface,  the o r i g i n a l  form 

f o r  t he  second v a r i a t i o n  becomes 

&”@ = Q(Uo + 4 i- $1 

= Q(Uo) + Q(Uo,U:) + 

Thus requirement (7.1) can be weakened t o  

Q(& > const .  j (u;)’ dx 

Now (7.3) i s  a f a i r l y  weak requirement and i s  included i n  a number 

of s u f f i c i e n t  condi t ions f o r  interchange stability. To show t h i s  we 

analyze t h e  second v a r i a t i o n  f o r  interchanges using t h e  methods of 

clod. Since an  interchange i s  an incompressible rearrangement of  

magnetic l i n e s  i n  t h e  X = (a,@) plane, t h e  a n a l y s i s  i s  s i m p l i f i e d  

by using these  coordinates  and r ep resen t ing  the  v a r i a t i o n  of 
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l i n e s  by an 

v e l o c i t y  u i s  r e l a t e d  t o  U by 

incompressible v e l o c i t y  f i e l d  u = ax/at. This f l u x  

The p e s s i m i s t i c  v a r i a t i o n  r equ i r e s  f t o  be a func t ion  of  (o ,p )  only 

through t h e  a c t i o n  i n t e g r a l  J i f  we impose t h e  necessary condi t ion 

a f / a c  r; 0. Since t h e  magnetic f i e l d  i s  unchanged we consider  only 

the  f l u i d  v a r i a t i o n  and s e t  

where 

Performing the  f i r s t  v a r i a t i o n  

N o  boundary terms appear s ince  f = 0 a t  the boundary of D. A necessary 

and s u f f i c i e n t  cond i t ion  t h a t  u cx dX vanish f o r  a r b i t r a r y  incom- 

p r e s s i b l e  u i s  t h a t  a be a g rad ien t ,  a = &p/aX.  

eaf/aL = acp/aX so t h a t  cp and then G. are  constant  on constant  f contours.  

Taking the  second v a r i a t i o n  

Thus 6 4  = 0 implies 

Spec ia l i z ing  now t o  e q u i l i b r i a  with a x i a l  symmetry o r  o the r  n e u t r a l  

surfaces  so tha t  f i s  a func t ion  of  (a,@) only through Q [f=f(J,p,,$(a,f3))], 

t h e  vanishing f i r s t  v a r i a t i o n  implies  also 



so t h a t  

It i s  obvious t h a t  a n e u t r a l  interchange i s  one which s a t i s f i e s  

u - a$/& = 0. 

by u+) p a r a l l e l  t o  ag/ax, and 

Thus Ui i s  equiva len t  t o  the  component of u (denoted 

s ince  (a$/ah)”= 1. 

equiva len t  t o  

From (7 .4)  we see  t h a t  t he  requirement (7.3) i s  

$- dJ$ < 0 

on each n e u t r a l  sur face  Jr. 

non-pos i t i v i ty  of 7.5.) 

v a r i a t i o n  and  i s  i n s t e a d  a p rope r ty  of t he  equi l ibr ium alone.  

( Interchange s t a b i l i t y  a lone r e q u i r e s  

I n e q u a l i t y  (7.5) i s  independent of t he  

This condi t ion  i s  s a t i s f i e d  i f  G r a d ’ s  s u f f i c i e n t  condi t ion  for 

interchange s t a b i l i t y  [lo] holds.  

condi t ions  as t h a t  of Rosenbluth and Longmire [ll], namely 

When i n t e r p r e t e d  proper ly  such 

or t h a t  quoted by Fur th  [12] 
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a r e  a l s o  s t ronger  than (7.5) and a r e  all l e s s  general .  

We can summarize t h i s  a n a l y s i s  i n  t h e  following theorem: 

Theorem: an equi l ibr ium with n e u t r a l  surfaces  ( e . g .  

a x i a l  symmetry) i s  a s t a b l e  equi l ibr ium i f  the follow- 

i n g  condi t ions a r e  s a t i s f i e d :  

1. It i s  l o c a l l y  s t a b l e .  

2. The t e n s o r s  VB and a2p-x,&xiax a re  s u f f i c i e n t l y  
3 

small. 

3. On each n e u t r a l  su r f ace  t h e  i n e q u a l i t y  holds 

t h a t  
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8. Sca l ing  Analysis and Conclusions 

There i s  a psychological b e l i e f  t h a t  a sho r t  plasma w i l l  be e a s i e r  

t o  s t a b i l i z e  than a long one. It i s  t h e r e f o r e  of value t o  examine 

our es t imates  more c l o s e l y  t o  determine the  e f f e c t  of s t r e t c h i n g  the  

domain D lengthwise while keeping the same @ and plasma rad ius .  

F i r s t  we note t h a t  as L becomes long the  behavior of n i s  N - 
For i f  b i s  almost p a r a l l e l  t o  t h e  plasma axis ,  the component perpen- 

d i c u l a r  t o  t h e  plasma axis s c a l e s  as L-l and t h e  d e r i v a t i v e  a/& also 

s c a l e s  as Z1. 

To analyze t h e  e f f e c t s  of  lengthening t h e  plasma we must write 

down the  s p e c i f i c  q u a n t i t i e s  involved i n  the es t imates  of Q(Uo) and 

Q($,Uo). 

e s t ima te  the volume terms. 

Looking f irst  a t  Q(Uo), we focus on (5.6) and (5.7) which 

Now J” 3 dx - L2 and U - L-”, s o  the e s t i -  

* 
mate of t he  term ( 5 . 6 )  becomes no worse. To expand a2p /&xiax 

use (5.5) t o  form 

which implies a”pJaXi& - H. Thus (5.7) is also unchanged as L be- 
j 

comes l a r g e r .  

The es t imate  (5.8) of t h e  f i r s t  boundary term i s  s i m i l a r l y  done; 

f o r  
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which goes down l.ike L-’, whi3.c U“ dS - 1,. I n  the second boundary 

Now U B - VB = F? U N. - N, but U - pB2 is unchanged as the  plasma 

i s  lengthened. However, i f  we i n i t i a l l y  ori.ent t he  su r face  S z  t o  

be perpendicular t o  t h e  ax i s  o f  t h e  plasma, then U - dS - L-l  and 

t h e  est imate  i s  unchanged as 1, inc reases .  

We summarize t h i s  a n a l y s i s  i n  t h e  fol.lowing theorem: 

Theorem: i f  i n  a plasma with one end t i e d  the  end p l a t e  

on the  f r e e  end i s  o r i en ted  perpendicular  t o  the  plasma 

ax i s ,  then an equi l ibr ium s t a b l e  by the  est imates  of 

s ec t ions  5, 6 and 7 remains s t a b l e  i f  the  plasma i s  

lengthened Beeping the  same @; b2@ remains p o s i t i v e .  

We can prove a similar theorem ifor t h e  plasma with bo th  ends f r e e  

But s i n c e  t h e r e  are so  (BC 11) by analyzing the  e s t ima te  of Q(Ui,Uo). 

many terms i n  Q ( U  ,U ), i t  i s  e a s i e r  to w r i t e  down a l l  t he  terms a t  
i o  

once in s t ead  of consider ing each term sepa ra t e ly .  i n  d e t a i l  t h e  e s t i -  

mate (4.3) i s  
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A l l  t he  terms i n  the  f a c t o r  mul t ip ly ing  s ( U i ) 2  dx s c a l e  as L 

the  except ion of vLB which i s  unchanged. 

no worse. 

i s  unchanged while t h a t  i n t e g r a l  s c a l e s  a s  L - l  s( Ui)' dx. 

t he  plasma leaves  the  es t imate  involving U 

wi th  

Thus t h i s  es t imate  becomes 

S i m i l a r l y  ( A . 3 )  shows t h a t  t h e  f a c t o r  mul t ip ly ing  J(Ui)2dS 

So lengthening 

i unchanged. 

The t e r m s  involv ing  Q(Uo) a r e  also unchanged. I n  the  f i r s t  of 

t h e s e  t h e r e  i s  a f a c t o r  L 2 , but  H and a2p-&xiax s c a l e  as L -2 so 
3 

these  cancel .  The second term, r e s a t i n g  from the  boundary i n t e g r a l s ,  

s c a l e s  j u s t  as i n  the  plasma wi th  one end t i e d .  The es t imate  i s  

unchanged a s  L inc reases  i f  t h e  end i s  o r i en ted  perpendicular  t o  t h e  

plasma a x i s .  I n  summary we s ta te  the  fol lowing theorem: 

Theorem: If  the  es t imates  of sec t ions  5, 6, and 7 

y i e l d  a p o s i t i v e  6"@, so t h e  plasma equi l ibr ium i s  s t a b l e ,  

then lengthening the  plasma while  keeping the  same @ w i l l  

no t  produce i n s t a b i l i t y  i f  the  end p l a t e s  a r e  o r i en ted  

perpendicular  t o  the  plasma a x i s ;  62Cp remains p o s i t i v e .  

Since r ecen t  r e s u l t s  [13] i n d i c a t e  t h a t  i n  mirror  machines t h e  

c l a s s i c a l  s c a t t e r i n g  i n t o  the  loss  cone i s  perhaps much worse than 

o r i g i n a l l y  p red ic t ed  [14], a t t e n t i o n  i s  tu rn ing  t o  t o r o i d a l  machines 

as t h e  prime hope f o r  con t ro l l ed  thermonuclear fus ion .  It would be 



of value t h e r e f o r e  t o  extend om- r e s u l t s  to t h e  t o r o i d a l  case.  However, 

a t  l e a s t  two d i f f i c u l t i e s  preclude doing t h i s  with t h e  p re sen t  a n a l y s i s .  

The f i r s t  of t hese  i s  t he  f a c t  t h a t  the p e r f e c t l y  uniform f i e l d  i n  the  

straigh.t; machine becomes an azimuthal. 1 / R  f i e l d  i n  the t o r o i d a l  machine. 

Thus i n  t h e  l a t t e r  case t c -  1 / R  a t  bes t .  

cumference, L R. So i t  i s  not  p o s s i b l e  t o  reduce K independent 

of t h e  plasma length,  and f u r t h e r  the est imates  become worse as the  

And s i n c e  L i s  now the c i r -  

l eng th  increases;  f o r  t h e r e  a r e  terms i n  (8.2) involving 

d i f f i c u l t y  could be circumvented i f  the  est imate  J(Uo)" dx - L Q(Uo) 

could be improved; e f f o r t s  t o  do t h i s  have been unsuccessful.  

ILL. This 

2 

The second d i f f i c u l t y  i s  t h a t  we have used end p l a t e s  t o  r e s t r i c t  

t he  v a r i a t i o n  on t h e  ends t o  an interchange. This a r t i f i c e  i s  obviously 

imprac t i ca l  i n  a t o r o i d a l  machine. However, we might s t i l l  make use of 

t he  technique of s p l i t t i n g  up 6"1 by introducing a mathematical c u t  

through the toraus and w r i t i n g  U on t h a t  su r f ace  as an interchange p l u s  

a compression. 

ducing guiding cen te r  e q u i l i b r i a  i n  a torus ,  so t h i s  a n a l y s i s  might be 

vacuous except f o r  simple geometries such as a x i a l  symmetry. 

A s  pointed out i n  El53 t h e r e  a r e  d i f f i c u l t i e s  i n  pro-  

I n  a r ecen t  paper Taylor and Hast ie  [iGj consfdered a problem 

similar t o  ours:  a p e r t w b a t i o n  about a uniform magnetic f i e l d  2, 

with p res su re  o rde r ing  p1 << pz << Bo2 and the g rad ien t  order ing apl /ax << 

ap,/3x,= - aB/axdl. 

condi t ions,  t h e  fol lowing s u f f i c i e n t  condi t ion ( i n  (4 .2 )  of  L1-61) 

0 

They f ind ,  i n  add i t ton  t o  the l o c a l  stability 
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O u r  sufficient condition (7.5) includes as a special case Grad's 

sufficient condition for interchange stability (in (8.4) of [lo]), 

which in the above limit can be written as 
* 

Inequality (8.3) is much more restrictive than (8.4) because it includes 

a term lacking in (8.4): 

which is almost always positive except in a magnetic well. 

(8.3) is very hard to satisfy except in a magnetic well, whereas (8.4) 

can be satisfied in any long thin plasma, almost independent of field 

geometry [SI. 

In fact 

O u r  exact analysis confirms that the Taylor and Hastie condition 

is approximately correct (modulo the details of the field and pressure 

gradients) but is rather crude for it is unduly restrictive of field 

geometry. Also their analysis is only formal, being an expansion 

around a uniform field and zero @ which has not been proven to con- 

verge (o r  be asymptotic) for any finite @ or field non-uniformity. 

*see [6] for a similar comparison. 
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4.0 

Appendix. Estimating l(Ui)” dS in Terms of S(Ui)‘ dx 

This estimate results from t.he familiar one-dimensional inequality 

relating the max norm of a function to its integral norms: 

To apply this inequality we choose 4, and L such that 

with both min and max taken over all lines. Then along any line 

Squaring , 

Integrating as in (5.2) over any transverse surface and as there letting 

y = B  rnax/BI1min 

-/”2 Here use is made of the identity 

For a n  interchange, curl (U 

f g dS rr J r? dS $ dSj . __ 
i x R) :: 0, and from this we find 

(A,. 2) 

Using (A.2)with ( A . 1 )  it is easy to see that 

Ui)’dS < const.S(Ui)’ dx 
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The precise estimate, which is required for sec t ion  8 ,  is 

j ( U i ) " a s  5 {f + 7L (lo,bl+ >" 



J+ 2 

Figure  1. Plasma Domain D 
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