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MECHANICAL PROPERTIES OF 

GRAPHITES - A SURVEY 

ARTIFICIAL 

mPORT 

W .  L .  Greenstreet  

Abstract  

A review of published mechanical proper t ies  da ta  f o r  
a r t i f i c i a l  g raphi tes  i s  given i n  t h i s  repor t ;  high-tempera- 
t u re  as wel l  as room-temperature data a r e  included. The 
in t en t  i s  t o  provide a uni f ied  descr ip t ion  of t h e  complex 
mechanical behavior associated with these  mater ia l s .  The 
r epor t  a l s o  contains a b r i e f  h i s to ry  on graphi te  and discus-  
s ions  of c r y s t a l l i n e  s t ruc tu re  and of manufacturing methods. 

Introduction 

This repor t  w a s  wr i t t en  t o  provide a survey of mechanical proper t ies  

da ta  f o r  a r t i f i c i a l  graphi tes ,  or e lec t rographi tes .  Although b r i e f  r e -  

views of these da ta  a r e  t o  be found i n  the  l i t e r a t u r e ,  there  i s  a need 

for an ove ra l l  descr ip t ion  which u n i f i e s  the  many aspects  of the cmplex 

mechanical behavior associated with these  materials. This repor t  w a s  

wr i t t en  with such un i f i ca t ion  as a major object ive.  We have chosen t o  

l i m i t  our consideration, i n  the  main, t o  so-called "nuclear-grade, or 
equivalent, ' '  e lec t rographi tes ,  t h a t  i s ,  either m o l d e d  or extruded graph- 

i t e s  made from petroleum coke and coa l - ta r  p i t ch .  Included i n  t h i s  se- 

lec ted  group a re  premium qua l i ty  and spec ia l ty  graphi tes .  

A s  a prelude t o  t h e  discussion of mechanical proper t ies ,  a b r i e f  h i s -  

t o r y  on graphi te  i s  given. This is  followed by descr ip t ions  of c rys t a l -  

l i n e  s t ruc tu re  and of t h e  manufacture of a r t i f i c i a l  g raphi te .  The h i s to ry  

sec t ion  t r a c e s  developments leading t o  the  manufacture of graphi te  with 

b r i e f  mention of the  use of t h i s  ma te r i a l  i n  the  nuclear industry.  

Although the  d a t a  considered a r e  of a phenomenological nature on the 

macroscopic sca le ,  a knowledge of c r y s t a l l i n e  s t ruc tu re  and manufacturing 

methods is  necessary t o  the  understanding of graphi te  behavior. Hence, 
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rudimentary discussions of t hese  aspec ts  are included as e s s e n t i a l  p a r t s  

of t h i s  r epor t .  

Both room- and high-temperature data are reviewed with t h e  g r e a t e s t  

emphasis being placed on t h e  former. I n  t h e  case of room-temperature be- 

havior, simple t e n s i l e  and compressive s t r e s s - s t r a i n  curves f o r  monotonic 

and f o r  cyc l ic  loading a re  considered. L a t e r a l  as we l l  as long i tud ina l  

s t r a i n  da t a  a re  reviewed. The discussion of behavior under cmbined 

s t r e s s e s  i s  necessar i ly  b r i e f  due t o  the  paucity of reported data on t h i s  

. subjec t .  

Carbon and the  History of Graphite 

Aside from i t s  use as a f u e l ,  carbon plays a very important p a r t  i n  

our everyday ex is tence .  I t s  g r e a t  importance i n  indus t ry  is  emphasized 

by the  volume and d o l l a r  amounts of carbon and graphi te  products produced. 

Liggett  [1964] t e l l s  us t h a t  t h e  estimated world production i n  1962 w a s  

i n  excess of 1 . 4  b i l l i o n  pounds with a domestic value of about $400 m i l -  

l i o n .  The United S t a t e s ,  France, Japan, West Germany, and England a re  

t h e  major producers and expor te rs  of carbon and g raph i t e .  These f i v e  

countries account f o r  approximately 75% of the  world production. 

these ,  t he  United S t a t e s  i s  t h e  leader ,  producing i n  1962 a n  estimated 

410.2 mi l l ion  pounds with a value of about $151.7 mi l l i on .  

Of 

It would be superfluous t o  e n t e r  i n t o  a lengthy d iscuss ion  of car- 

bon and i t s  uses here s ince  our i n t e r e s t  cen ters  only on a r t i f i c i a l  graph- 

i t e s .  Uses of carbon i n  i t s  elemental or a l l o t r o p i c  and manufactured or 
fabr ica ted  forms are given by Mantel1 [1946]. The introduction i n  t h i s  

book contains an i n t e r e s t i n g  summary showing t h e  scope of app l i ca t ions .  

A recent account of the  uses i s  given i n  

of Chemical Technology, Vol.  4, 1964. 
Diamond and graphite are a l l o t r o p i c  

Nightingale [ 1 9 6 2 ~ 1  descr ibes  "amorphous 

bon found i n  nature,  as those carbons i n  

not completely developed or i n  which t h e  

t h e  Ki rk -Othe r ,  Encyclopedia 

c r y s t a l l i n e  forms of carbon. 

carbons," t h e  t h i r d  form of car- 

which the  graphi te  s t r u c t u r e  i s  

g raph i t i c  s t r u c t u r e  is  l imi ted  

t o  volumes on t h e  order of a few thousand angstroms. 

phous carbons" a r e  coa l  and l i g n i t e .  

Examples of "amor- 

Hence we see t h a t  a l l  n a t u r a l  forms 
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of carbon a r e  c r y s t a l l i n e .  Both graphi te  and diamond can be synthesized. 

Diamond is  completely converted t o  graphi te  when heated t o  2000°C (Black- 

man [196Ob]). 

A t  atmospheric pressure , graphi te  sublimes d i r e c t l y  i n t o  the  gaseous 

s t a t e .  Blackman [1960b] repor t s  t he  sublimation temperature as around 

3500 t o  3700"C, while Walker [1962] quotes a value of around 3350°C. 

These f igu res  ind ica te  the  p o t e n t i a l  of graphi te  as a r e f r ac to ry .  Graph- 

i t e  i s  character ized by high thermal conduct iv i t ies ,  low coe f f i c i en t s  of 

thermal expansion, low e l a s t i c  moduli, and s t rengths  which increase with 

temperature t o  about 2500°C. Hence, it i s  an exce l len t  high temperature 

ma te r i a l .  

While diamond i s  one of the hardest  substances known, graphi te  i s  

one of the  s o f t e s t .  The f i rs t  discoveries  of graphi te  are l o s t  i n  an t iq-  

u i t y .  

was used f o r  decorative purposes i n  p reh i s to r i c  b u r i a l  places  i n  Europe 

and i n  ancient  graves.  It was long confused with other minerals includ- 

ing ores  of lead,  molybdenum, antimony, and manganese. These were be- 

l i eved  t o  be one and the  same substance, or a t  least members of t he  same 

family.  Acheson [1899] a t t r i b u t e s  t h i s  confusion t o  t h e i r  outward resem- 

blance and t o  the  f a c t  t h a t  they produce marks on paper. Because of t h i s  

graphi te  w a s  ca l led  molybdaena, plumbago, graphi te  , and black-lead. 

Mantell [1946] t e l l s  us t h a t  it w a s  known i n  ea r ly  times s ince it 

The t r u e  iden t i fy  of graphi te ,  or plumbago, w a s  not recognized u n t i l  

l a t e  in  the  18th century when the  Swedish apothecary, Carl Wilhelm Scheele, 

demonstrated i t s  carbon content (Thorpe [1894]) . Mantell c r e d i t s  the 

German mineralogist  ( A b r a h a m  Gottlob) Werner w i t h  giving the mineral the 

name graphi te  (from the  Greek word graphein, " t o  wr i te" )  i n  1789. Aikin 

and Aikin [1814] concluded from the  r e s u l t s  of th ree  independent experi-  

ments on combustion, which a t  t h a t  time were recent ly  completed, t h a t  no 

decided chemical d i f fe rence  can be detected between diamond, pure plum- 

bago, and charcoal.  

The e a r l i e s t  use of graphi te  was undoubtedly as an instrument f o r  

drawing and wr i t ing .  The f irst  mention of it i s  found in  the Middle Ages 

where it is  described as a substance used . for  t h i s  purpose (Mantell  

[ 19461) . I n  1564 the  Barrowdale graphi te  deposi t  i n  Cumberland, England, 
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w a s  discovered with the  r e s u l t  t h a t  t h e  manufacture of lead penc i l s  on 

a commercial s ca l e  w a s  o r ig ina ted .  According t o  Seeley and Emendorfer 

[1949], au thent ic  records show t h e  use of clay-graphite c ruc ib l e s  i n  

Bavaria i n  1400. 

ma te r i a l  f o r  making penc i l s  and cruc ib les .  He s t a t e d  t h a t  powder of 

plumbago, with t h r e e  t i m e s  i t s  weight i n  c lay  and some h a i r ,  makes a n  

exce l len t  coating f o r  r e t o r t s ,  and, f u r t h e r ,  t h a t  t h e  Hessian c ruc ib les  

were composed of t h e  same materials. 

Thus, Nicholson [1795] gives the  use of plumbago as a 

Aikin and Aikin [1807] l i s t ,  i n  addi t ion  t o  the  above uses ,  t he  use 

of graphite as a lub r i can t  f o r  machining ins tead  of o i l  and as a sub- 

stance for t h e  pro tec t ion  of iron from r u s t .  F ina l ly ,  n a t u r a l  g raphi te  

i s  s t i l l  used today i n  t h e  manufacture of c ruc ib les ,  c e r t a i n  molds and 

other equipment f o r  foundry work and metal smelting, and f o r  penc i l s .  

It is  a major cons t i tuent  i n  l u b r i c a t i n g  mixtures and i n  the  rubber t i r e  

indus t ry  f o r  hardening and improving wear r e s i s t ance .  These a re  a few 

of t he  many uses; f o r  more information, see Seeley [1964]. 

Manufactured, or a r t i f i c i a l ,  g raphi te  i s  used i n  many app l i ca t ions  

made poss ib le  by t h e  existence of t h i s  product, and it can now be sub- 

s t i t u t e d  f o r  n a t u r a l  graphite i n  almost a l l  uses of t h e  l a t te r  m a t e r i a l .  

A r t i f i c i a l  graphite products can be made i n  a va r i e ty  of shapes and s i z e s ,  

and the  p rope r t i e s  can be adjusted during manufacture t o  t a i l o r  t h e  m a -  

t e r i a l  t o  the  s p e c i f i c  requirements of a given app l i ca t ion .  A r t i f i c i a l  

g raphi te  i s  a c t u a l l y  a c r y s t a l l i n e  graphi te ,  with the  only a r t i f i c i a l  

a t t r i b u t e  being t h e  method of production. While n a t u r a l  g raphi te  p r a c t i -  

c a l l y  always contains admixtured impur i t ies ,  a r t i f i c i a l  g raphi tes  with 

p u r i t i e s  t h a t  may exceed 99.99% carbon (Eather ly  and Piper  119621) can 

be manufactured. 

The h i s t o r y  of t h e  a r t i f i c i a l  g raphi te  industry i s  c lose ly  r e l a t e d  

t o  t h e  development of carbon e lec t rodes .  It i s  genera l ly  believed t h a t  

S i r  Humphry Davy w a s  t h e  f i rs t  t o  use carbon e l ec t rodes  with the  e l e c t r i c  

a r c .  

[1839]), Davy t e l l s  of f ind ing  t h a t  well-burned charcoal produces shock 

and sparks when connected t o  t h e  ends of a v o l t a i c  p i l e ,  o r  b a t t e r y .  

a l s o  t e l l s  of t h e  use of two long, t h i n  s l i p s  of dry charcoal (carbon 

I n  a l e t t e r  t o  Nicholson, which was wr i t t en  i n  1800 ( D a v y ,  J .  

He 
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e lec t rodes) ,  connected t o  a v o l t a i c  p i l e ,  i n  t h e  decomposition of water. 

Later,  i n  1802, Davy described a spark "of v iv id  whiteness" which w a s  ob- 

ta ined  when pieces  of well-burned charcoal were connected t o  a b a t t e r y  

(Daw, J. [18391). 

and i n  h i s  wr i t ings  published i n  1812 (Davy, J .  [1840]) Davy talks of 

po in ts  of charcoal connected t o  a b a t t e r y  producing "a l i g h t  s o  vivid,  

During succeeding years ,  bat ter ies  with increased power were made, 

t h a t  even t h e  sunshine compared with it seemed feeble  . I 1  I n  t h i s  same 

reference,  w e  f i n d  that Davy used a powerful 2000 double-plate b a t t e r y  

of t he  Royal I n s t i t u t i o n  (sometimes referred t o  as the  "great ba t te ry"  

of the  Royal I n s t i t u t i o n )  with two pieces  of charcoal, each about 1- in .  

long and 116 in .  i n  diameter, t o  produce a constant discharge of a t  least  

4 i n .  i n  length which produced a b r i l l i a n t  a rch  of l i g h t .  

he w a s  able t o  produce a discharge 6 or 7 i n .  i n  length in  a p a r t i a l  vac- 

uum. This was t h e  forerunner of grea t  developments. 

I n  addi t ion ,  

During most of t he  19th  century, t h e  majori ty  of t h e  development 

work i n  the  carbon industry w a s  d i r ec t ed  toward giving improved e lec t rodes .  

Hinckley [1921] poin ts  out that  impetus f o r  th i s  w a s  provided by the in- 

vention of the  dynamo and the  development of g rea t  quan t i t i e s  of hydro- 

e l e c t r i c  power a t  Niagara F a l l s .  

opments during t h i s  period are given by Mantel1 [1928, 19461.) 
Frenchman, M. F. Car&, i s  ca l led  t h e  founder of t he  arc-carbon industry.  

H i s  e lec t rodes  were made of pulverized pure coke, calcined lampblack, 

and sugar syrup; t h e  mixture w a s  patented i n  1876. 
gredients  together  and kneaded them i n t o  a hard paste ,  then pressed the 

pas te  hydraul ica l ly  and baked it a t  high temperature. The supe r io r i ty  

of h i s  product w a s  described by him i n  Carr; [1877]. 

( D e t a i l s  of t h e  carbon e lec t rode  devel- 

The 

H e  pounded these  in-  

Car& therefore  es tab l i shed  the  crude beginnings of the  i n d u s t r i a l  

operations of calcining,  grinding, mixing, shaping, and baking. These 

genera l  operations i n  t h e  manufacture o f  e lec t rodes  are l a rge ly  followed 

today, although improvements have been made i n  every one of these s t eps .  

Carrc's mixture a l s o  ind ica tes  the  r a w  materials used i n  making manu- 

fac tured  carbons. 

bulk of t h e  product, termed "body" materials, and ( 2 )  "binders," which 

These are (1) the  carbonaceous p a r t i c l e s  making up the  
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serve t o  hold together t h e  f i n e l y  ground p a r t i c l e s  of t h e  "body" materi- 

als.  Miscellaneous substances a re  added t o  t h e  mixture t o  give ce r t a in  

s p e c i f i c  physical  or mechanical p rope r t i e s .  

Hinckley [ l 9 2 l ]  r epor t s  t h a t  before 1850 s m a l l  q u a n t i t i e s  of graph- 

i t e  were made i n  an  e l e c t r i c  furnace and the  t i p s  of carbon e lec t rodes  

a f t e r  use f o r  some time were found t o  be converted t o  graphi te .  However, 

t h e  commercial production of a r t i f i c i a l  graphite d i d  not begin u n t i l  near 

t h e  end of t h e  19th  century. Castner w a s  granted a United S t a t e s  pa ten t  

f o r  e l e c t r i c a l  baking of carbon e lec t rodes  i n  1896 (Castner [1896]), and 

i n  the  same year,  Acheson, then of t h e  Carborundum Company, obtained a 

patent (Acheson [1896]) f o r  t he  manufacture of graphi te  i n  an e l e c t r i c  

furnace. 

Acheson discovered t h a t  graphi te  can be produced i n  an e l e c t r i c  f u r -  

nace while studying the  e f f e c t  of very high temperature on carborundum, 

or s i l i c o n  carbide.  He found that t h e  material decomposed wi th  t h e  s i l i -  

con being vaporized and carbon being l e f t  behind not i n  t h e  amorphous bu t  

i n  a g raph i t i c  form. F i t zge ra ld  [1897] i n  describing t h e  manufacture of 

carborundum re fe r r ed  t o  t h e  formation of pure graphi te  next t o  t h e  core 

of t h e  furnace. He t o l d  of Acheson's conclusion t h a t  graphi te  i s  not 

formed simply by t h e  process of subjec t ing  amorphous carbon t o  very high 

temperature. Instead, the  carbon e n t e r s  i n t o  chemical combination wi th  

some other element and t h i s  compound then decomposes, leaving carbon i n  

g r a p h i t i c  form. Additional discussion about t h e  formation of graphi te  i n  

t h e  e l e c t r i c  furnace i s  given by Acheson [1899]. 

f o r  t h e  production of graphite he s t a t e s :  

Concerning h i s  method 

"This method of manufacturing graphi te ,  I would def ine ,  as con- 
s i s t i n g  i n  hea t ing  carbon, i n  assoc ia t ion  with one or  more oxides, 
t o  a temperature s u f f i c i e n t l y  high t o  cause a chemical reac t ion  
between t h e  cons t i tuents ,  and then continuing t h e  hea t ing  u n t i l  
t he  combined carbon separa tes  i n  the  f r e e  state.  It i s  not ,  
however, l imi ted  t o  t h e  use of oxides, as pure metals, t h e i r  
s u l f i d e s ,  and other salts  may be used; bu t  f o r  various reasons 
the  oxides are t o  be prefer red ."  

Although many metal  carbides do decompose t o  y i e l d  we l l  c r y s t a l l i z e d  

graphi te ,  Acheson's conclusion is  f a l l a c i o u s .  

1930's, i nves t iga to r s  a t  the  National Carbon Company disproved h i s  con- 

clusion i n  many cont ro l led  experiments. It is ,  f o r  example, poss ib le  t o  

During t h e  1920's and 
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show t h a t  a pure petroleum coke undergoes a t  l e a s t  as high a degree of 

graphi t iza t ion  as one with added i ron,  i ron  oxide, or other s i m i l a r  i m -  

p u r i t i e s  (MacPherson [1968]) . 
The s tages  of manufacture of carbon and of graphite e lectrodes a re  

very similar. True e lec t rographi tes ,  or a r t i f i c i a l  graphi tes ,  a r e  made 

up as "amorphous" carbons or graphite carbons, but  are given a f i n a l  very 

h igh  heat  treatment t o  transform microcrystal l ine carbon i n t o  c rys t a l l i ne  

graphi te  (Kingswood [1953c]). 

process.  

involved i n  graphite production w i l l  be discussed present ly .  

This last s t ep  i s  ca l l ed  the  graphi t iza t ion  

The differences between carbon and graphi te  and the  temperatures 

Mantel1 repor t s  t h a t  i n  June 1897, Acheson produced the  f irst  graphi te  

e lectrodes.  These were made a t  the  request of Castner f o r  use i n  e l ec t ro -  

chemical processes. Three years  after t h e  patent  f o r  graphite manufacture 

w a s  granted, the  Acheson Graphite Company w a s  incorporated and began t o  

bui ld  a plant  a t  Niagara Fa l l s ,  which became the  center  of the  industry.  

By t h a t  time [1899] Acheson had used the  furnaces of t he  Carborundum Com- 

pany f o r  a year or more and had produced over 200,000 carbon electrodes 

l 5 - i n .  long and having a cross-sect ional  area of 1 in.2 f o r  use i n  the  

Castner a l k a l i  process, both in the  United S ta t e s  and in Europe (Acheson 

[1899]).  

e lectrodes ungraphitized. 

- 

The l i f e  of these electrodes was many times t h a t  of the  same 

E l e c t r i c  res i s tance  furnaces of t h e  type invented by Acheson [1895] 

a re  used today f o r  t he  graphi t iza t ion  process. H i s  w a s  t he  f irst  e l e c t r i c  

furnace i n  which temperatures approaching 3000°C, as needed f o r  graphi t -  

i za t ion ,  could be a t t a ined .  

A s  s t a t e d  by Walker C1.9621: 

"This marked the  beginning of a new e r a  in  which the  carbon i n -  
dustry expanded and developed improved baked and graphi t ized 
carbon for use pr imari ly  i n  (1) e l e c t r o l y t i c  manufacture - e.g. ,  
of a l k a l i e s ,  chlor ine,  aluminum, and manganese; (2 )  e l ec t ro -  
thermic production - e .g . ,  of calcium carbide and s i l i c o n  car- 
bide; and (3)  e l e c t r i c  furnaces - e.g. ,  f o r  s t e e l ,  copper, fe r ro-  
a l loys ,  and phosphorous. Then i n  1942, when Fermi and a group of 
s c i e n t i s t s  produced a se l f - sus ta in ing  nuclear chain reac t ion ,  
they used graphi te  as a moderator i n  t h e i r  reac tor .  This opened 
up a whole new o u t l e t  f o r  graphi te  and a t  t he  same time produced 
mater ia ls  problems on which much research and development s tud ies  
a re  s t i l l  i n  progress." 

I 
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We must add t o  t h i s  by saying t h a t  nuclear r eac to r  app l i ca t ions  and t h e  

more recent uses i n  t he  aerospace f i e l d s  have demanded a thorough exami- 

na t ion  of t he  mechanical p rope r t i e s  of a r t i f i c i a l  g raph i t e s .  

e r t i e s  received l i t t l e  a t t e n t i o n ,  as evidenced by published works, p r i o r  

t o  t h e i r  use i n  these  advanced technological appl ica t ions .  

These prop- 

Currie, Hamister, and MacPherson [1956] poin t  out t h a t  g raphi te  was 

se lec ted  as a neutron moderating ma te r i a l  i n  t h e  f i r s t  nuclear r eac to r s  

because it w a s  t h e  most r ead i ly  ava i l ab le  ma te r i a l  t h a t  had reasonably 

good moderating p rope r t i e s  and a low neutron capture c ross  sec t ion .  I n  

addi t ion ,  i t s  use w a s  made widespread due t o  i t s  low cos t  and the  ease 

with which it can be p rec i se ly  machined. Smyth [1948] gives a h i s t o r i c a l  

account of t h e  f i rs t  uses of graphite i n  t h e  nuclear indus t ry .  Night- 

ingale [1962b] l ists  75 graphite-moderated r eac to r s  which were i n  opera- 

t i o n ,  under construction, or d e f i n i t e l y  planned a t  t h e  time of wr i t i ng .  

The number a l s o  includes r eac to r s  which were taken out of operation but  

omits a few low-power t r a i n i n g  and educational r eac to r s .  G w i n n  [1949] 

s t a t e s  t h a t  t h e  use of graphi te  as a moderator i n  the- plutonium p i l e s  i n  

the  atomic energy p l an t s  a t  the  University of Chicago and Hanford, Wash- 

ington, i s  perhaps t h e  most dramatic and widely publicized appl ica t ion  of 

t h i s  ma te r i a l .  This app l i ca t ion  w a s  announced i n  1945. 
I n  addi t ion  t o  t h e  appel la t ion  " a r t i f i c i a l  graphite,  I t  t h e  terms "syn- 

or  "graphite" t h e t i c  graphi te ,  I t  "graphitized products, ' I  "e lec t rographi te ,  

r e f e r  t o  those products in which "baked carbon" i s  f u r t h e r  hea t  t r e a t e d ,  

generally i n  a n  e l e c t r i c  furnace, a t  temperatures of 2200°C o r  higher 

(L igge t t  [19641). 

ganic ma te r i a l  t h a t  leaves a high carbon residue on hea t ing .  

s ince  the  beginning of t h e  industry,  t h e  p r i n c i p a l  material used f o r  

making up the  bulk of t he  f in i shed  a r t i c l e  ( c a l l e d  "body material" or 

" f i l l e r  material") w a s  probably petroleum coke (MacPherson [1968]) . 
growth of t h e  petroleum indus t ry  r e su l t ed  i n  increased a v a i l a b i l i t y  of 

petroleum coke, which was found t o  be t h e  pures t  form of carbon ava i l ab le  

i n  l a rge  q u a n t i t i e s .  Thus, petroleum coke has remained t h e  p r i n c i p a l  ma-  

t e r i a l  f o r  graphi te  manufacture, and t h i s  preeminence is  held throughout 

t h e  world today. 

A r t i f i c i a l  g raphi te  can be made from almost any or- 
However, 

The 
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I n  t h e  f irst  ed i t i on  of h i s  book on the  carbon indus t r ies ,  Mantell 

[1928] lamented the  paucity of information by wri t ing:  

"While most indus t r ies  have a more or l e s s  abundant l i t e r a t u r e ,  
with numerous books, pamphlets, and a r t i c l e s ,  the  manufacture 
of carbon electrodes i s  a notable exception. Were it not t o  be 
considered sarcasm, the  industry might even be re fer red  t o  as a 
'black a r t ' ,  f i rs t  because of t h e  secrecy usual ly  surrounding 
i t s  processes, and second, because of t he  absolute physical  
d i r t i n e s s  of the  usual  e lectrode p lan t .  Carbon works have 
general ly  been regarded as f o r t i f i c a t i o n s ,  through whose gates  
only t h e  i n i t i a t e d  might en te r .  Most of t he  manufacturers have 
been of the  opinion t h a t  the  l e s s  said on the  subject t he  b e t t e r  
f o r  them. One reason f o r  t h i s ,  perhaps, i s  t h a t  i n  Europe, the  
art of manufacturing high-grade electrodes w a s  always regarded 
as a sec re t ,  of which only a f e w  had d e f i n i t e  knowledge." 

An echo t o  t h i s  s t a t e  of a f f a i r s  i s  perhaps represented by the  choice of 

t i t l e ,  "Black Magic," by Speer Carbon Company [1949], f o r  t h e i r  booklet 

issued on the  occasion of t h e  50th anniversary celebrat ion of t he  company. 

However, t h e  s i t u a t i o n  changed d r a s t i c a l l y  a f t e r  t h a t  time, par t icu-  

l a r l y  s ince 1950, and dear th  has been replaced by deluge. The l i t e r a t u r e  

now abounds with published works on carbons and graphi tes ,  with a notable 

exception being t h e  subject  of mechanical behavior of graphite under com- 

bined stress s t a t e s .  Survey a r t i c l e s  have been wr i t t en  by Kingswood 

[1953a, 1953b, 1953c, 1953d], by Currie, Hamister, and MacPherson [1956], 

by Blackman [1960a, 1960b, 1 9 6 0 ~ 1  , by Walker [ 19621 , and by Shobert [1964]. 

The a r t i c l e  by Currie e t  a l .  d e t a i l s  t h e  influences of raw materials and 

processing methods upon var ia t ions  i n  proper t ies  of a r t i f i c i a l  graphi tes .  

Books on t h i s  subject ,  i n  addi t ion t o  those by Mantell [1928, 19461, 
a re  Ubbelohode and Lewis [1960], Nightingale [1962a], and Union Carbide 

Corporation [1964]. 

e s t  since it i s  devoted t o  nuc lear - i r rad ia t ion  e f f e c t s  on graphi te .  

The book by Simmons [1965] i s  of l e s s  general  i n t e r -  

S t ruc ture  

The hexagonal l a t t i c e  s t ruc ture  proposed by Bernal [1924] i s  now 

accepted as the  idea l  s t ruc tu re  f o r  graphi te .  

t u r e  and i s  composed of a system of i n f i n i t e  layers  of fused hexagons, 

t h a t  is, t h e  atoms of carbon i n  graphite l i e  i n  planes i n  which they form 

s e t s  of hexagons. The ne ts  a r e  i n  successive p a r a l l e l  planes superposed 

This i s  a layered s t ruc-  
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so t h a t  ha l f  t h e  atoms in  one n e t  l i e  normally above ha l f  t h e  atoms i n  

the  ne t  beneath, while t h e  o ther  h a l f  l i e  normally above t h e  centers  of 

t h e  hexagons of t h i s  net;  see Fig.  1. Since a l t e r n a t e  n e t s  l i e  atom f o r  

atom normally above each other,  t h e  stacking sequence i s  ABAB . . . . . 
0 

The carbon atom spacing within a plane i s  1.415 A, while t h e  separa- 
0 

t i o n  between p a r a l l e l  l aye r s  i s  3.3538 A (15’C)(Walker [1962]). The theo- 

r e t i c a l  dens i ty  f o r  t h i s  s t r u c t u r e  i s  2.267 g/cm3 (Blackman [1960a]). The 

carbon atoms i n  the  l a y e r  planes a r e  held by strong valence forces ,  where- 

as t h e  in te rp lanar  binding fo rces  are very weak. Joined atoms between 

l aye r s  a re  pinned by weak fo rces  allowing adjacent planes t o  be e a s i l y  

displaced p a r a l l e l  t o  each o ther  or  r o t a t e d  around an a x i s  perpendicular 

t o  t h e  planes.  I n  addition, t h i s  f ea tu re  probably accounts f o r  t h e  aniso- 

t r o p i c  proper t ies  of graphite c r y s t a l s  such as shown by e l e c t r i c a l  con- 

duc t iv i ty ,  thermal conductivity,  and l i n e a r  expansion measurements. The 

e l e c t r i c a l  and thermal conduct iv i t ies  a r e  g rea t e r  i n  d i r e c t i o n s  p a r a l l e l  

t o  t he  l a y e r  planes than normal t o  them, while t h e  thermal expansion is  

g r e a t e r  i n  t h e  d i r e c t i o n  normal t o  t h e  l a y e r  planes.  

Although t h e  most common s tacking  i n  graphi te  i s  hexagonal, i n  some 

cases a s m a l l  percentage has a l a t t i c e  i n  which t h e  carbon hexagons have 

shared edges, bu t  the  s tacking  of hexagonal p l a t e s  i n  l a y e r s  is such t h a t  

every fou r th  l aye r  i s  i n  jux tapos i t ion  with respec t  t o  the  c-axis ( t h e  

a x i s  normal t o  the  planes) . Thus, t h e  stacking sequence i s  ABC ABC . . .; 

Fig. 1. S t ruc tu re  of t h e  Hexagonal Form of Graphite (Seeley [1964]). 



see F ig .  2. 

Lipson and Stokes [1942]. 

i t e ,  but  i s  found i n  na tura l  graphi te .  

spedt t o  t h e  hexagonal form from which it may be produced by mechanical 

deformation, as i n  f i n e  grinding (Bacon [1952]). 

agonal form on heating t o  l 3 O O " C .  

This modified l a t t i c e ,  ca l led  rhombohedral, w a s  proposed by 

It i s  not usual ly  present i n  a r t i f i c i a l  graph- 

This form i s  metastable with r e -  

It reve r t s  t o  the  hex- 

Deviations from the  i d e a l  graphite s t ruc ture  among most carbons of 

commercial i n t e r e s t  a r e  prevalent (Walker [1962]). 

deviat ion i s  t h e  presence of stacking disorders  between layer  planes i n  

carbon. 

carbon and graphi te ,  t h i s  deviation w i l l  be described here.* 

The most important 

Since it allows us t o  br ing  out an important d i s t i nc t ion  between 

The simple analogy of Seeley [1964] i n  terms of a deck of playing 

cards provides a c l e a r  i l l u s t r a t i o n .  Suppose each card represents  a s in -  

g l e  plane of hexagons i n  which the  carbon atoms are  ordered i n  two dimen- 

s ions with the  proper spacings. When the  deck i s  evened a t  t h e  s ides  and 

* 
Chemically, there  i s  a ready means f o r  d i f f e r e n t i a t i n g  between amor- 

phous carbon and graphi te .  
t r e a t e d  with three  p a r t s  of potassium chlorate  and su f f i c i en t  concentrated 
n i t r i c  ac id  t o  render t h e  mass l iqu id .  The mixture is  then heated on a 
water bath f o r  severa l  days. Graphite i s  converted i n t o  golden yellow 
f l akes  of graphi t ic  acid,  while amorphous carbon is  a l t e r e d  t o  a brown 
substance soluble in  water (Mantell  [1946]). 

One pa r t  of the  substance t o  be t e s t ed  is  

A 

Fig. 2. Structure  of t h e  Rhombohedral Form of  Graphite (Seeley [1964] ) . 
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at  t h e  ends, ready f o r  dealing, it has three-dimensional ordering and may 

be considered as representing graphite s t r u c t u r e .  A f t e r  t h e  cards a r e  

d e a l t ,  played, and bunched without evening t h e  ends and s ides  nor r o t a t i n g  

t h e  cards f o r  redealing, t h e  deck represents  t u r b o s t r a t i c  s t r u c t u r e .  

This i s  the  s t r u c t u r e  of so-called amorphous carbon, t h a t  is, t h e  cards, 

though p a r a l l e l ,  a r e  without order i n  t h e  t h i r d  dimension.* 

Refinements a r e  required t o  complete t h e  analogy. Hexagonal graph- 

i t i c  s t r u c t u r e  requi res  t h a t  every o ther  card i n  t h e  ordered deck be moved 

l a t e r a l l y  t h e  same d is tance  and t h a t  t he  cards be t h e  equivalent of 3.3538 
A apa r t .  

o r  d, spacing i n  the  c r y s t a l l i n e  s t ruc tu re .  

0 

The v e r t i c a l  d i s tance  between cards represents  t h e  i n t e r l a y e r ,  

Franklin [1951] concluded from an ana lys i s  of many nongraphitic and 

g r a p h i t i c  carbons t h a t  two d i s t i n c t  and well-defined i n t e r l a y e r  spacings 

e x i s t  f o r  a system of p a r a l l e l  carbon macromolecules. 

between adjacent misoriented l aye r s  and 3.354 A between co r rec t ly  or ien ted  

l aye r s .  Hence, t he  t u r b o s t r a t i c  s t r u c t u r e  of carbon requi res  t h a t  each 

card i n  t he  bunched deck be separated by a min imum of 3.44 A .  

These are 3.44 
0 

0 

Through t h e  work of Franklin [1951] and Bacon [1951] the  d spacing 

has been r e l a t e d  t o  the  proportion of d i so r i en ted  l aye r s ,  p. With in -  

creased d isorder  of t h e  l aye r  stacking from i d e a l  graphi te ,  p va r i e s  from 

0 t o  1. Thus, using X-ray d i f f r a c t i o n  pa t t e rns  t o  determine p, t h e  r a t i o  

of g raph i t i c  carbon t o  nongraphitic carbon i n  a specimen can be estimated 

from i ts  mean d spacing. 

Manufacture 

To complete the genera l  desc r ip t ion  of a r t i f i c i a l  g raphi te ,  we w i l l  

give a b r i e f  summary of t he  manufacturing sequence. This w i l l  a id i n  

understanding t h e  bulk behavior of t h e  ma te r i a l  and he lp  t o  r e l a t e  micro- 

scopic t o  macroscopic a spec t s .  Since w e  are i n t e r e s t e d  i n  nuclear-grade, 

or equivalent,  g raphi tes ,  t he  primary sources of information used a r e  

Eather ly  and Piper [1962] and Union Carbide Corporation [1964]. 

* 
The term " tu rbos t r a t i c "  w a s  coined by Biscoe and Warren [1942] t o  

descr ibe  t h i s  unordered ma te r i a l .  
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A s  a l ready mentioned, i n  most cases, a r t i f i c i a l  graphi tes  a r e  pro- 

duced from petroleum-coke f i l l e r  mater ia l ,  which i s  t r u e  of nuclear 

graphi tes .  The binder i s  coa l - t a r  p i t ch .  The petroleum coke i s  a by- 

product i n  the  r e f in ing  of petroleum crude, and today it i s  l a rge ly  ob- 

ta ined  by the cracking of a heavy r e f ine ry  o i l .  When heated t o  a tem- 

perature  of 2800 t o  3OOO"C, the  carbon from petroleum coke achieves a 

high degree of c r y s t a l l i n i t y  ( o r  degree of g raph i t i za t ion ) ,  t h a t  is ,  the 

c r y s t a l l i n e  proper t ies  ( l a t t i c e  dimensions) approach those of a per fec t  

c r y s t a l .  A highly c r y s t a l l i n e  graphi te  has high thermal and e l e c t r i c a l  

conduct iv i t ies  and a la rge  c r y s t a l l i t e  s i z e .  

The r a w  cokes from the  r e f i n e r i e s  have textured,  p a r t i a l l y  aligned 

s t ruc tu res .  The c r y s t a l l i t e s  show no three-dimensional order,  but  t he  

lamellar  order i s  s u f f i c i e n t  t o  cause alignment of adjacent  c r y s t a l s  t o  

varying degrees. 

t o  1000°C) i n  p r a c t i c a l l y  a l l  of t he  petroleum cokes used ranges from 

85 t o  9%. The v o l a t i l e  content ranges from 7 t o  16%, with a t y p i c a l  

value of 11%. Other cons t i tuents  a r e  ash and var ious impuri t ies .  

The f ixed  carbon ( t h e  carbon remaining a f t e r  heat ing 

Coal-tar p i t ch  is  the  heavy residue derived from the  d i s t i l l a t i o n  

of coa l - ta r  from by-product coke ovens used i n  preparing meta l lurg ica l  

coke. This coke i s  derived from the  des t ruc t ive  d i s t i l l a t i o n  of bitumi- 

nous coal, and it i s  the  chief reducing agent employed by the  s t e e l  i n -  

d u s t r i e s  i n  the  blast-furnace reduction of i ron  ore .  Coal-tar p i t ch  is  

an exce l len t  mater ia l  f o r  graphi te  manufacture because it i s  s o l i d  a t  

room temperature and f l u i d  a t  higher temperatures; i n  addi t ion,  it has a 

high carbon content .  The thermoplastic property allows f o r  thorough mix- 

ing of t he  f i l l e r  with the  binder,  f a c i l i t a t e s  the  forming of t he  f i l l e r -  

binder mixtures, and permits storage and handling of t he  formed a r t i c l e s  

a t  room temperature without adversely a f f ec t ing  the  shape of the product. 

The carbon content of coa l - ta r  p i t c h  i s  approximately 9376, and a f t e r  

heat ing t o  1000°C about 55% of t h e  p i t ch  remains as binder carbon. Be- 

cause of i t s  high carbon content it has been described as a form of " l i q -  

uid carbon," which, through the  addi t ion of 7% a l loy ing  cons t i tuent ,  has 

a softening point a t  100°C. 

The processing s t eps  i n  the  manufacture of a conventional, extruded, 

nuclear graphi te  a r e  summarized i n  F ig .  3. The r a w  petroleum coke i s  



14 

RAW PETROLEUM COKE 

-I- 
CALCINED AT 13OO0C P 

CALCINED COKE Y 
MILLED AND SIZED 

EXTRUSION OIL 

MILLED AND SIZED 

EXTRUSION OIL 

Fig. 3. Flow Diagram f o r  
and Piper [1962]). 

f i rs t  calcined a t  temperatures 

COOLED 

EXTRUDED 

GREEN ARTICLE LT-1 
BAKED TO 800°C 

BAKED ARTICLE 

IMPREGNATED 
WITH PITCH 

GRAPHITIZED 
TO -30OO0C 

I I 

Manufacture of Nuclear Graphite (Eather ly  

up t o  14OO0C, usual ly  i n  a l a rge  ro t a ry  

gas- or o i l - f i r e d  k i l n .  The purpose i s  t o  remove v o l a t i l e  hydrocarbons 

and t o  a f f e c t  a shrinkage of t h e  f i l l e r  material before  it is incorpo- 

r a t ed  in  the formed a r t i c l e .  

lost during t h i s  process.  During ca lc ina t ion  the  a l igned  s t r u c t u r e  of 

t h e  r a w  coke i s  preserved, but  t h e  l a y e r  planes of carbon atoms increase 

About 25% of t h e  weight of t he  r a w  coke i s  



15 

i n  dimension over t h a t  present %n the  r a w  coke. The calcined petroleum 

coke is ,  as ye t ,  a t u r b o s t r a t i c  carbon. 

Af te r  ca lc ina t ion ,  t h e  mater ia l  is broken down by crushers and m i l l s  

and sized, through screens, i n t o  a s e r i e s  of ca re fu l ly  cont ro l led  f r ac -  

t i o n s .  

s i z e  of 0.015 i n .  f o r  most e lec t rode  and spec ia l ty  graphi tes ,  while t he  

coarses t  f r a c t i o n  has p a r t i c l e s  as la rge  as 0.5 i n .  Selected s i z e  f r a c -  

t i o n s  a r e  recombined t o  produce a dry aggregate wherein the  proportion 

of f r a c t i o n s  and f r a c t i o n  s i z e  a r e  varied,  within l i m i t s ,  t o  cont ro l  t he  

proper t ies  of t he  end product. The maximum p a r t i c l e  s i z e  f o r  a coarse- 

grained nuclear graphi te  i s  1/32 i n .  

The f i n e s t  f r a c t i o n ,  termed coke " f lour , "  has a maximum p a r t i c l e  

When t h e  calcined coke i s  crushed or  milled,  t he  individual p a r t i -  

c l e s ,  although i r r e g u l a r  i n  shape, tend t o  have one dimension longer than 

the  o ther  two. The shapes of t h e  p a r t i c l e s  and t h e  alignment of t he  

rudimentary c r y s t a l l i t e s  i n  these  p a r t i c l e s  depend on the  coke source, 

t h a t  is ,  they depend on t h e  r e f ine ry  p rac t i ce  and the  charge stocks em- 

ployed. However, t h e  predominant o r i en ta t ion  of c r y s t a l l i t e  l aye r  planes 

i s  p a r a l l e l  t o  t h e  longer p a r t i c l e  dimension. 

The next s t e p  i n  t h e  manufacturing sequence i s  that of mixing the  

dry coke aggregate wi th  t h e  coa l - t a r  p i t ch  t o  make a formable p l a s t i c  

mix. 

t o  170°C, where the  binder i s  q u i t e  f l u i d .  

t r i b u t i o n  of t h e  p i t c h  i n  t h e  petroleum-coke f i l l e r  mater ia l s .  I n  the  

i d e a l  s i t u a t i o n ,  each coke p a r t i c l e  i s  coated with a f i l m  of p i t c h .  When 

forming is  done by extrusion, about 30 parts by weight of b inder  a r e  

added t o  100 p a r t s  of f i l l e r .  

The mix i s  heated t o  a temperature normally i n  t h e  range from 165 
This allows f o r  a good d i s -  

The proportions may d i f f e r  from these when 

t h e  product i s  t o  be molded. 

Furnace blacks or  extremely f i n e  (<lop) coke p a r t i c l e s  may be added 

t o  t h e  coke mixture t o  increase the  bulk dens i ty  of t h e  a r t i f i c i a l  graph- 

i t e .  These add i t ives  f i l l  voids t h a t  would otherwise e x i s t  between the  

l a rge  p a r t i c l e s .  Also,  when extrusion is  t h e  forming method t o  be em- 

ployed, t h e  addi t ion  of l ub r i ca t ing  o i l  t o  t he  mix is  common p rac t i ce .  

The o i l  serves t o  reduce the f r i c t i o n  between t h e  surface of t h e  d i e  and 

t h e  mix. Thus, t h e  quant i ty  of p i t ch  otherwise necessary f o r  reasonable 
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r a t e s  of extrusion i s  reduced, which i s  des i r ab le  because t h e  evolution 

of add i t iona l  v o l a t i l e s  during t h e  baking operation g ives  r i s e  t o  a s t ruc -  

t u r a l l y  poor product with i n f e r i o r  p rope r t i e s .  

A s  noted above, t h e  coke-pitch mix i s  formed e i t h e r  by ex t rus ion  or  

by molding. I n  forming, t he  long a x i s  of t h e  c'bke p a r t i c l e s  take  a pre- 

f e r r e d  o r i en ta t ion  e i t h e r  i n  t h e  d i r ec t ion  of extrusion or  perpendicular 

t o  the  d i r e c t i o n  of molding. The f i n a l  graphi te  product r e t a i n s  t h e  same 

p a t t e r n  of g ra in  o r i en ta t ion .  The with-the-grain d i r e c t i o n  i s  p a r a l l e l  

t o  t he  ex t rus ion  a x i s  i n  extruded graphi te  and perpendicular t o  t h e  d i -  

r e c t i o n  of molding pressure i n  a molded piece.  The against-the-grain d i -  

r e c t i o n  i s  perpendicular t o  t h i s .  Hence, there  a r e  marked d i f f e rences  

i n  proper t ies  between t h e  two d i r e c t i o n s  wi th  t h e  anisotropy i n  molded 

graphi tes  being genera l ly  l e s s  than t h a t  found i n  extruded materials. 

Mrozowski [1956] poin ts  out t h a t  t h e  anisotropy of physical  prop- 

e r t i e s  i s  due t o  two causes. One i s  the  c r y s t a l l i t e  alignment i n  t he  

p a r t i c l e s ,  as discussed above, and the  other i s  purely geometrical i n  

na ture .  I n  t he  l a t t e r ,  t he  p a r t i c l e  alignment c rea t e s  an anisotropy due 

t o  the  r e l a t i v e  frequency of binder-bridges per u n i t  path i n  d i f f e r e n t  

d i r ec t ions .  The r e l a t i v e  cont r ibu t ions  of t h e  two sources of anisotropy 

depend on the  type of physical  property inves t iga ted .  

The a r t i c l e ,  a f t e r  forming, i s  ca l l ed  a "green" carbon body and con- 

s is ts  of calcined petroleum-coke f i l l e r  bonded by coa l - t a r  p i t ch .  

body i s  then baked i n  a gas- f i red  furnace t o  convert t h e  p i t c h  f r o m  a 

thermoplastic mater ia l  t o  a n  in fus ib l e  s o l i d  while a t  t h e  same time main- 

t a i n i n g  t h e  shape imparted by forming. This operation i s  c r i t i c a l  and 

must be c a r e f u l l y  cont ro l led .  

This 

The green carbon loses  i t s  s t r eng th  during t h e  f irst  p a r t  of t h e  

cycle, and the  v o l a t i l e s  i n  t h e  p i t ch ,  which y i e l d  a s i zeab le  volume of 

gases,  must escape through a r e l a t i v e l y  impermeable mass without d i s rup t -  

i ng  the  s t r u c t u r e .  Polymerization and cross l i nk ing  proceed within the  

binder and between binder and f i l l e r  mater ia l s  so  t h a t  t h e  p l a t e l e t s  of 

t he  p i t c h  increase i n  s i z e  from t h e i r  o r i g i n a l  dimensions of a f e w  ang- 

stroms. 

temperature),  t he  cross-linking process causes the  carbon t o  become ex- 

When the  temperature reaches 800 t o  1000°C ( t h e  f i n a l  baking 

tremely hard and b r i t t l e .  A t  t h e  same time, t h e  binder shr inks  about 



17 

5% by volume, c rea t ing  high s t r e s s e s  t h a t  can crack t h e  carbon body. 

Mrozowski [1956] states t h a t  because of the  ca lc in ing  operation i n  which 

the  f i l l e r  has been preshrunk, the  only way i n  which the  shrinking binder 

surrounding a coke p a r t i c l e  can decrease i t s  volume i s  by way of opening 

cracks perpendicular t o  t h e  p a r t i c l e  surface.  The .en t i re  baking cycle 

may take from a few weeks t o  two months, depending on the  furnace s i z e  

and the  methods used. 

The baked carbon has a porosi ty  of about 25%. I n  order t o  reduce 

the  porosi ty  and thus increase the  bulk densi ty ,  a n  impregnation opera- 

t i o n  i n  which coa l - ta r  p i t c h  i s  forced i n t o  the  pores or  voids i n  the 

body i s  used. The impregnating p i t ch  d i f f e r s  somewhat from the binder 

p i t ch  i n  t h a t  some of t h e  heavier f r ac t ions  normally pr.esent i n  the  binder 

p i t ch  a r e  missing. 

bon t o  a temperature above 2OO0C,  immersing it i n  molten p i tch ,  and pres- 

sur iz ing  it i n  an autoclave t o  a pressure of t he  order of 100 p s i  f o r  

severa l  hours. 

The impregnation i s  performed by preheating the  car- 

The ul t imate  c r y s t a l  o r i en ta t ion  and s i z e  a r e  inherent i n  the r a w  

mater ia l s ,  bu t ,  even a f t e r  t h e  gas-baking process, t he  carbon possesses 

l i t t l e  t r u e  c r y s t a l  s t ruc tu re .  Both long-range order and i n t e r n a l  per- 

f ec t ion ,  although l a t e n t ,  a r e  not ye t  developed. It i s  t h e  purpose of 

the  las t  s t e p  i n  the  manufacture of graphi te  stock t o  a f f e c t  c r y s t a l  

growth and t o  per fec t  t h e  i n t e r n a l  order, t h a t  is, t o  convert carbon t o  

graphi te .  This i s  the  graphi t iza t ion  process mentioned e a r l i e r ,  and re- 

qui res  a temperature i n  t he  2600 t o  3OOO"C range. 

Upon heat ing the m a t e r i a l  during graphi t iza t ion  the  dominant process 

between 1500°C and about 2500°C i s  c r y s t a l  growth with i n t e r n a l  c r y s t a l  

s t ruc tu re  s t i l l  imperfect. Above 25OO"C, continued minor c r y s t a l  growth 

occurs, but  the  major e f f e c t s  a r e  d i f fus ion  and annealing. 

of p a r a l l e l  planes a r e  ordered according t o  the  layered s tacking of graph- 

i t i c  s t ruc tu re  i n  t h i s  last s tage  of heat ing.  The g raph i t i za t ion  opera- 

The s tacks 

t i o n  takes  about two weeks. 

Tests  have shown t h a t  the proper t ies  of any piece of graphi te  are 

d i r e c t l y  dependent upon the  highest  temperature reached in graphi t iza t ion .  

However, very l i t t l e  change occurs in  the  room-temperature mechanical 

proper t ies  on heat ing above 2500°C. 
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Although t h e  t h e o r e t i c a l  dens i ty  f o r  a graphi te  c r y s t a l  i s  2.26 g/cm3, 

a t y p i c a l  value of t h e  bulk dens i ty  f o r  a r t i f i c i a l  g raphi te  i s  1.70 g/cm3 

a t  room temperature. 

and between c r y s t a l l i t e s  within both the  f i l l e r  and binder carbon. 

methods i n  f a b r i c a t i o n  such as forming and baking a carbon a r t i c l e  under 

pressure and t h e  use of a hot-working process, which produces a reor ien-  

t a t i o n  and r e c r y s t a l l i z a t i o n  of t h e  carbon, have l e d  t o  graphi tes  with 

bu lk  d e n s i t i e s  i n  excess of 2 . 1  g/m3 (Eather ly  and Piper [1962]).  

ma te r i a l s  have higher t e n s i l e  s t r eng th  than  the  more conventional lower 

dens i ty  graphi tes .  

This i s  due t o  poros i ty  between f i l l e r  p a r t i c l e s  

New 

These 

From t h e  preceding discussion it is  seen t h a t  t h e  anisotropy a s soc i -  

a t e d  with a r t i f i c i a l  g raphi te  should have a n  a x i s  of symmetry with prop- 

e r t i e s  i n  a plane normal t o  t h i s  a x i s  being independent of d i r e c t i o n ,  

t h a t  i s ,  t h e  ma te r i a l  may be c l a s s i f i e d  as t r ansve r se ly  i s o t r o p i c .  

a x i s  of symmetry i s  i n  t h e  d i r e c t i o n  of molding pressure (aga ins t - the-  

g ra in )  or i n  t h e  d i r ec t ion  of t he  ex t rus ion  a x i s  (with-the-grain) , de- 

pending on t h e  forming method used i n  t h e  manufacture. 

i s  supported by s t r e s s - s t r a i n  measurements made by Kennedy [1961], who 

examined the  s t r e s s - s t r a i n  behavior of an extruded graphi te  i n  t he  d i -  

r e c t i o n  p a r a l l e l  t o  t h e  ex t rus ion  axis and i n  two orthogonal d i r e c t i o n s  

normal t o  t h i s  a x i s .  The ma te r i a l  exhib i ted  deformation r e s i s t ance  i n -  

d i ca t ive  of r o t a t i o n a l  symmetry, but t h e  da t a  a l s o  show t h a t  t h e  u l t imate  

s t r eng ths  and elongations do not necessar i ly  follow t h i s  p a t t e r n .  

The 

This hypothesis 

Mechanical Proper t ies  

A r t i f i c i a l  g raphi tes  a r e  b r i t t l e  ma te r i a l s  with low s t r eng ths  a t  

ordinary temperatures i n  comparison wi th  metals. These g raph i t e s  have 

l a rge  va r i a t ions  i n  proper t ies ,  as might be in fe r r ed  from t h e  descr ip-  

t i o n  of t h e i r  manufacture. A piece of t h i s  ma te r i a l  may be described as 

a mixture of graphi te  and poorly graphi t ized  binder carbon. The va r i a -  

t i o n s  i n  p rope r t i e s  stem not only from t h e  r a w  materials used but  a l s o  

f r m  t h e  s i z e  and shape of t h e  f in i shed  a r t i c l e .  Differences a r e  found 

from piece t o  piece i n  a given l o t  and grade, with some va r i a t ion  i n  

p rope r t i e s  within each p iece .  Ind ica t ions  of v a r i a t i o n s  in  dens i ty ,  
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e l e c t r i c a l  r e s i s t i v i t y ,  modulus of e l a s t i c i t y ,  and f l e x u r a l  s t rength  t o  

be expected within formed pieces ,  molded and extruded, a r e  given by 

Wright [1956]. 
diameter of a la rge  piece may be expected. 

and s t rength  decrease with dis tance from the  outer  edge of a t ransverse 

sec t ion .  Despite these  var ia t ions ,  which the  manufacturers a r e  s t r i v i n g  

These da ta  show that d i f fe rences  of 15 t o  3 6  across  the  

I n  general ,  both the  modulus 

t o  reduce, d e f i n i t e  c h a r a c t e r i s t i c s  a r e  associated with the  proper t ies  

of graphi te  as a c l a s s  of mater ia ls ,  and it i s  t h e  purpose here t o  focus 

a t t e n t i o n  upon these .  The discussion w i l l  be l imi ted  t o  mechanical prop- 

e r t i e s .  The review a r t i c l e s  and books already c i t e d  contain summaries 

on e l e c t r i c a l  and physical  p roper t ies .  

Room-Temperature Proper t ies  

Typical room-temperature proper t ies  f o r  a nuclear graphi te  a r e  given 

i n  Table 1. The values a r e  f o r  a fine-grained extruded piece about 

4 i n .  by 4 i n .  i n  cross sect ion.  

the s t rengths  and e l a s t i c  modulus a r e  grea te r  i n  the with-the-grain (pa r -  

a l l e l )  d i rec t ion ,  which i s  general ly  t r u e  f o r  a r t i f i c i a l  graphi tes  as 

would be expected from the  discussions on c r y s t a l  s t ruc tu re  and manu- 

fac ture .  Complete s t r e s s - s t r a i n  diagrams f o r  simple tens ion  and compres- 

s ion a r e  p lo t t ed  together  i n  Fig.  4. 
graphi te  and the da ta  a r e  f o r  the  with-the-grain d i r ec t ion .  A s  indicated 

i n  F ig .  4, the  s t r e s s - s t r a i n  curves f o r  graphi te  a r e  nonlinear even a t  

low s t r e s s  l eve l s ,  and the re  a re  pronounced d i f fe rences  between both 

stress and s t r a i n  a t  f r a c t u r e  i n  tension and in  compression. Typically, 

f r a c t u r e  s t r a i n s  on the  order of 0 . 1 t o  0.2% and 1 . 0  t o  2.07% a r e  found 

in  tens ion  and i n  compression, respec t ive ly .  

From t h i s  t ab le ,  it may be seen t h a t  

The mater ia l  i s  a nuclear-grade 

Arragon and Ber th ie r  [1958] performed compression t e s t  s tud ie s  on 

216 specimens made from extruded, petroleum-coke, i n d u s t r i a l  graphi te .  

Three types of t e s t  were used: (1) simple compression, ( 2 )  cyc l i c  t e s t s  

(loading-unloading-reloading) i n  which t h e  cycles  were made from in- 

creasing s t r e s s  l e v e l s  spaced a t  equal i n t e rva l s ,  and ( 3 )  cyc l i c  tests 

between zero s t r e s s  and a f ixed  maximum. The simple compression tes t  

curves did not show any abrupt changes i n  slope corresponding t o  t h e  

incipience of p l a s t i c i t y .  This lack of observable breaks i n  the  curves 
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Table 1. Room-Temperature Proper t ies  of a Typical 
Nuclear Graphite (Ea the r ly  and Piper [1962]) 

Standard 
Deviat i on Value 

Bulk dens i ty ,  g/cm3 

E l e c t r i c a l  r e s i s t i v i t y ,  pohm-cm : 

I I t o  gra in  

1 t o  gra in  

Thermal conductivity,  cal/(  see) ( em) ( "C)  : 

I I t o  gra in  

1 t o  g ra in  

Tensile s t rength ,  p s i :  

I I t o  gra in  

1 t o  g ra in  

Compressive s t rength ,  p s i :  

I I t o  gra in  

1 t o  g ra in  

F lexura l  s t rength ,  p s i :  

I I t o  g ra in  

1 t o  gra in  

1.70 0.02 

734 

940 

0.543 

0.330 

1440 

1260 

5990 

5960 

2400 

1970 

59 

111 

254 

308 

638 

918 

506 

509 

1.49 x 106 

1.11 x lo6  

0.14 x io6 

0.09 x io6 

Young's modulus, p s i :  

I I t o  g ra in  

1 t o  gra in  

Coefficient of thermal expansion, per "C: 

I I t o  gra in  2.22 x 0.39 x 

1 t o  gra in  3.77 x 0.42 x 
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Fig. 4.  Uniaxial S t ress -St ra in  Curves, P a r a l l e l  t o  Extrusion Axis 
( Greenstreet e t  a i .  r1965] ) . 

i s  i n  accordance with concomitant occurrence of both e l a s t i c ,  o r  revers- 

i b l e ,  and p l a s t i c  s t r a i n i n g  throughout t he  s t r e s s  range. The slopes of 

t he  s t r e s s - s t r a i n  curves a t  t h e  o r ig ins  were of t h e  same order of magni- 

tude as given by sonic measurements. 

comparisons between sonic moduli and t h e  slopes a t  zero s t r e s s  as mea- 

sured from t e n s i l e  and compressive s t r e s s - s t r a i n  curves for severa l  

grades of molded g raph i t e .  

Seldin [1966a] a l s o  found good 

Arragon and Ber th i e r  demonstrated t h a t  h y s t e r e s i s  loops a r e  pro- 

duced on unloading and reloading. For i l l u s t r a t i o n ,  a s t r e s s - s t r a i n  d ia -  

gram f o r  t e s t  type b i s  shown i n  F ig .  5 .  The curves are concave toward 

t h e  load a x i s  on unloading and s l i g h t  concavities toward t h i s  a x i s  a r e  

found on reloading. But, i n  f i r s t  approximation, t h e  reloading curves 

a re  s t r a i g h t  l i n e s .  A "compression l i m i t "  (-700 p s i )  w a s  a l s o  reported.  

Above t h i s  l i m i t ,  t he re  i s  r e s i d u a l  permanent deformation upon unloading 

which increases with unloading s t r e s s  up t o  rupture .  The authors repor t  

t h a t  below t h i s  l i m i t ,  cyc l i c  loading curves rec lose  a t  t h e  or ig in ,  

leaving no permanent deformation. 

It i s  i n t e r e s t i n g  t o  note t h a t  ne i the r  concavity toward the  load 

a x i s  f o r  reloading curves nor a l i m i t  corresponding t o  the  compression 

l i m i t  described above have been reported by Andrew, Okada, and Wobschall 

[1960], Losty and Orchard [1962], and Seldin [1966a]. The f i r s t  authors 

inves t iga ted  hys t e re s i s  e f f e c t s  i n  bending and to r s ion ,  while t h e  o thers  
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Fig. 5 .  Stress -St ra in  Diagram for Compressive Tests of Type b 
(Arragon and Ber th ie r  [1958]). 

performed cyc l i c  loading t e s t s  i n  simple tens ion  and compression. 

r e s i d u a l  s t r a i n s  on unloading were observed t o  increase always with in- 

creasing maximum stress. 

t u r e s  of t h e  curves obtained by Arragon and Ber th i e r  may be explained by 

The 

Jenkins [1962a] speculated t h a t  curious f ea -  

end e f f e c t s  i n  t h e  specimens. 

Arragon and Ber th i e r  found t h a t  cyc l i c  compressive t e s t s  of type b 

cause t h e  apparent dens i ty  t o  increase .  The h y s t e r e s i s  loops increase  

i n  s i z e  with increased maximum s t r e s s ,  and the  s lopes  of s t r a i g h t  l i n e s  

connecting t h e  unloading and reloading po in t s  decrease with increased 

s t r e s s .  (The slope of a l i n e  connecting t h e  t w o  po in t s  of one cycle is  

termed t h e  "pa rae l a s t i c  modulus. ' I )  

t h a t  for simple compression. 

The envelope curve corresponds t o  

The r e s u l t s  from t e n s i l e  and compressive tes ts  which were conducted 

by Losty and Orchard [1962] and Se ld in  [1966a] corroborate these  f ind -  

ings concerning t h e  h y s t e r e s i s  loops and the  charac te r  of t h e  envelope 

curve. The s tud ie s  made by these  inves t iga to r s  w i l l  be discussed shor t ly .  

I n  t h e  case of t es t  type  c, each specimen w a s  subjected t o  12 cyc les .  

During t h e  f i rs t  cycles t h e  t o t a l  deformations a t  t h e  unloading and re- 

loading po in t s  increased with increased cycle number, b u t  after t h e  s i x t h  

cycle these  deformations were e s s e n t i a l l y  constant.  The form of t h e  hys- 

t e r e s i s  loop remained constant as d i d  t h e  p a r a e l a s t i c  modulus. There was 
a s l i g h t  increase i n  the  apparent dens i ty  during cyc l ing .  
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Using a s t r e s s - s t r a i n  diagram corresponding t o  t e s t  type b y  Arragon 

and Ber th i e r  discovered t h a t  s t r a i g h t  l i n e s  drawn through t h e  unloading 

point and t h e  point a t  zero s t r e s s  f o r  each cycle converge a t  a s ingle  

po in t .  

Orchard* and by Seldin,  one f i n d s  add i t iona l  support f o r  t h i s  f ind ing . )  

(Using the  curves from compression t e s t s  given by Losty and 

The coordinates of t h i s  point a r e  both negative ( t a k i n g  compression as 

p o s i t i v e ) ,  and it w a s  reasoned t h a t  t h e  existence of t h i s  po in t  i s  a 

manifestation of t he  h i s t o r y  of t h e  v i r g i n  specimen. (During manufac- 

t u r e ,  d i f f e r e n t i a l  thermal expansion causes i n t e r n a l  s t r e s s e s  tha t  a r e  

probably qu i t e  high, as explained l a t e r  .) 

curve was i d e n t i f i e d  as a s e p e n t  of a hyperbola with asymptotes para l -  

l e l  t o  t h e  s t r e s s  and s t r a i n  axes. 

The envelope s t r e s s - s t r a i n  

For the  t e s t s  of type b y  conducted by Losty and Orchard, t he  speci-  

mens were machined from extruded graphite stock ma te r i a l .  The curves 

obtained a r e  a l l  convex toward t h e  s t r e s s  a x i s  on loading and concave 

toward t h i s  a x i s  on unloading. The reloading curves i n  both tens ion  and 

compression asymptotically approach the  envelope s t r e s s  - s t r a i n  curve 

a f t e r  each cycle of loading, unloading, and reloading i n  t h e  same manner 

as shown by Arragon and Ber th i e r  ( s e e  F igs .  6 and 7) .t Seldin [1966b] 

found from h i s  tests on molded graphi tes  [1966a] t h a t ,  i n  general, t he  

reloading curve passed through t h e  unloading poin t .  A t  s t r e s s e s  g rea t e r  

than those a t  unloading, t he  reloading curves were coincident with ex- 

t r apo la t ions  of t he  corresponding i n i t i a l  loading curves. Thus, i n  com- 

parison, t h e  point of tangency t o  t h e  envelope curve i s  s h i f t e d  more 

toward the s t r e s s  a x i s  f o r  these  molded graphi tes  than for the  extruded 

graphi tes  t e s t e d  by t h e  other i nves t iga to r s .  

Losty and.0rchard found the  slopes of t h e  curves a t  low s t r e s s e s  i n  

extruded graphi tes  t o  be about t h e  same i n  tension and compression, t h a t  

* 
Additional discussion w i l l  be given shor t ly .  

'The slopes of t h e  s t r a i g h t  l i n e s  drawn through t h e  hys t e re s i s  loops 
i n  Fig.  7 correspond t o  t h e  p a r a e l a s t i c  moduli mentioned above. 
slopes of t h e  th ree  sho r t e r  l i n e s  i n  t h e  loop obtained a f t e r  p re s t r e s s ing  
t o  about 3000 p s i  and reloading ind ica te  t h e  p a r a e l a s t i c  moduli corre- 
sponding t o  the  stresses of 700, 1500, and 2250 p s i  on reloading. By 
extending the  s t r a i g h t  l i n e s  f o r  the  fou r  loops, one f inds  t h a t  they  es -  
s e n t i a l l y  converge a t  a s ing le  poin t .  

The 
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is ,  Young's modulus w a s  approximately 

This  w a s  t r u e  f o r  both with-the-grain 

t h e  same f o r  t h e  two loadings. 

and against-the-grain d i r ec t ions .  

These authors a l s o  measured l a t e r a l  s t ra ins  during t e s t i n g .  The s t r a i n  

r a t i o s  reported a r e  of t h e  order of 0.10, and t h e  r a t i o  of s t r a i n  i n -  

duced i n  the  p a r a l l e l  d i r e c t i o n  f o r  a perpendicular ( against-the-grain) 

specimen i s  a l i t t l e  less than one-half t h a t  induced i n  the  perpendicular 

d i r e c t i o n  f o r  a l l  s t r e s s  l e v e l s .  

specimens loaded both with-the-grain and against-the-grain were essen- 

t i a l l y  independent of stress. 

The s t r a i n  r a t i o s  f o r  compressive 

Se ld in  [1966a] conducted a d e f i n i t i v e  study us ing  e i g h t  d i f f e r e n t  

grades of molded graphi tes  and employing various uniax ia l  tests.  These 

include cyc l i c  t e s t s  i n  tension and in  compression and cycling between 

given t e n s i l e  and compressive stresses. I n  each case, l a t e r a l  as we l l  

as longi tudina l  s t r a i n s  were measured. The t ransverse ,  or  l a t e r a l ,  

s t r e s s - s t r a i n  diagrams obtained have d i f f e r e n t  shapes i n  tens ion  and 

compression; t h e  diagrams f o r  tens ion  a r e  concave toward the  s t r e s s  

axis while those f o r  cmpress ion  a r e  convex. 

t u d i n a l  s t r a i n  r a t i o s  a r e  independent of stress, y ie ld ing  constant values, 

i n  compression. However, t he  r a t i o s  i n  tension a r e  func t ions  of s t r e s s ,  

decreasing as t h e  s t r e s s  i s  increased. These r e s u l t s  f o r  compression a r e  

i n  good agreement with those of Losty and Orchard. Greenstreet  e t  a l .  

[1965] also found from t e s t s  on an extruded graphi te  t h a t ' t h e  r a t i o s  i n  

compression are approximately constant,  and t h e  r a t i o s  tend  t o  decrease 

cont inua l ly  with increas ing  s t r e s s  i n  tens ion .  

The transverse-to-longi- 

Snyder [1966] a l s o  s tudied  the  s t r e s s - s txa in  behaviors of molded 

graphi tes .  He used compression and f l exure  t e s t s ,  and, i n  each case, 

t h e  program was t h a t  of loading t o  a given s t r e s s  l e v e l ,  unloading, and 

reloading t o  f a i l u r e ,  giving a two-cycle t es t .  He obtained e l a s t i c  mod- 

u l i ,  Poisson's r a t i o s ,  and f a i l u r e  data; h i s  e l a s t i c  data f o r  ATJ* ( t h e  

* 
ATJ graphi te  i s  a fine-grained (maximum p a r t i c l e  s i z e  of 0.006 i n . ) ,  

premium-quality molded graphi te  made by Union Carbide Corporation, Car- 
bon Products Division. It i s  similar t o  nuclear-grade graphi tes  and is  
o f t en  used as a "standard" i n  making property measurements and compari- 
sons.  



26 

graphi te  grade common t o  both s tud ie s )  a r e  i n  good agreement with those 

of Seldin [1966a]. 

The t ransverse ,  r e s i d u a l  s t r a i n  w a s  pos i t i ve  f o r  a l l  graphi tes  

studied by Se ld in  regard less  of whether t h e  load w a s  a t e n s i l e  o r  a com- 

press ive  one. 

t e n s i l e  stress than  an equal and opposite compressive s t r e s s .  Thus, t h e  

volume of a specimen pul led  i n  t ens ion  and re leased  i s  increased s ince  

a l l  l i n e a r  dimensions a r e  increased. I n  addi t ion ,  t h e  long i tud ina l  re- 

s idua l  s t r a i n  w a s  g rea t e r  in  t ens ion  than  compression. 

?Inis r e s i d u a l  s t r a i n  w a s  s l i g h t l y  g r e a t e r  f o r  a given 

These r e s u l t s  were borne out by cyc l i c  tes ts  as w e l l  as t e s t s  where- 

i n  t h e  specimen w a s  subjected t o  e i t h e r  simple tens ion  or  compression. 

Cyclic tests between equal s t r e s s e s  i n  tens ion  and compression produced 

s t r a i n s  i n  t h e  against-the-grain d i r e c t i o n  t h a t  increased s l i g h t l y  with 

each cycle regard less  of whether t h e  long i tud ina l  a x i s  of t h e  specimen 

w a s  i n  t h e  with-the-grain or  against-the-grain d i r e c t  ion. Thus, f a t i g u e  

f a i l u r e  i s  poss ib ly  assoc ia ted  with t h i s  s l i g h t  increase i n  s t r a i n .  The 

occurrence of cumulative damage with repeated reversed loadings w a s  dem- 

ons t ra ted  by D a l l y  and Hjelm [1965]. 

Se ld in  f u r t h e r  shows that a t e s t  specimen can be made t o  reproduce 

i t s  o r i g i n a l  s t r e s s - s t r a i n  responses i n  t h e  longi tudina l  and t ransverse  

d i r e c t i o n s  by annealing it a t  i t s  g raph i t i za t ion  temperature. Provided 

it i s  genera l ly  t r u e ,  t h i s  i s  a revolutionary discovery i n  graphi te  tes t -  

ing ,  e spec ia l ly  i n  t h e  p o t e n t i a l  it provides f o r  removing unce r t a in t i e s  

i n  d a t a  analyses and i n t e r p r e t a t i o n s  t h a t  a r i s e  because of t h e  inev i t ab le  

va r i a t ions  i n  graphi te  p rope r t i e s .  

I n  first approximation, t h e  s t r e s s - s t r a i n  curves a r e  i d e n t i c a l  i n  

Exceptions t o  t h i s  may be found by comparing tens ion  and compression. 

t he  against-the-grain d a t a  f o r  some g raph i t e s .  

close inspection of the r e s u l t s  from h i s  t e s t s  t h a t  i n  each case t h e r e  

i s  a tendency toward g rea t e r  deformation r e s i s t ance  i n  compression than  

i n  tens ion .  

Se ld in  found through 

It i s  o f t en  s t a t e d  t h a t  p re s t r e s s ing  a graphi te  specimen i n  compres- 

sion reduces t h e  e l a s t i c  modulus, E ,  i n  tens ion ,  and, l ikewise,  pre- 

s t r e s s i n g  i n  tens ion  reduces t h e  modulus i n  canpression. See Losty and 

Orchard [1962] and Se ld in  [1966a], f o r  example. I n  t h e  case of these  
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wri t e r s ,  t h e  modulus r e fe r r ed  t o  i s  found from t h e  s t r e s s - s t r a i n  d ia -  

gram, and t h e  changes observed may be explained, i n  p a r t ,  as follows. 

I I n  view of t h e  demonstrated nonl inear i ty  of t h e  diagram, the  slope of 

t he  curve obviously depends upon t h e  pos i t ion  along t h e  curve. Consider 

t h e  schematic s t r e s s - s t r a i n  diagram i n  F ig .  8 which corresponds t o  pre- 

s t r e s s i n g  a specimen i n  tension t o  t h e  point A, unloading t o  poin t  B,  

and loading i n  compression. The slope a t  point 0 i s  t h e  same as t h a t  

a t  t h e  i n s t a n t  of unloading from A and represents  t he  e l a s t i c  modulus. 

Now, t h e  curve from A t o  B i s  an unloading curve, and the  segment from 

B t o  C i s  c l e a r l y  a continuation of t h i s  nonlinear curve. Therefore, 

s t r i c t l y  speaking, t h e  only slope along t h e  unloading curve which can 

be expected t o  have meaning i n  terms of an e l a s t i c  modulus i s  t h a t  a t  

t h e  unloading point,  A, and not t h e  one a t  B .  Comparisons f o r  deter- 

mining changes i n  modulus due t o  p re s t r e s s ing  are probably b e s t  made by 

using dynamic modulus measurements a t  low s t r a i n  amplitudes. 

I n  regard t o  dynamic moduli, Jenkins [1962b] has shown through res- 

onant frequency measurements t h a t  p re s t r e s s ing  i n  compression does de- 

crease t h e  apparent e l a s t i c  modulus. This inves t iga t ion  w a s  conceived 

as a r e s u l t  of h i s  f r a c t u r e  s tud ie s  i n  which he observed i so l a t ed  crack- 

ing a t  s t r e s s e s  below those requi red  f o r  major f r a c t u r e s .  H e  reasoned 

ORNL-DWG 67-7659 

Fig. 8. Schematic S t ress -St ra in  Diagram for Explaining Change i n  
Modulus Due t o  Pres t ress ing .  
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t h a t  because of such i so l a t ed  cracking t h e  bulk phys ica l  and mechanical 

proper t ies  of t h e  material should change. I n  p a r t i c u l a r ,  t h e  dynamic 

modulus of e l a s t i c i t y  f o r  very low s t r a i n s  should change. 

To t e s t  t h i s  hypothesis, dynamic modulus measurements were made on 

extruded nuclear graphite specimens a f t e r  p re s t r e s s ing  i n  compression t o  

progressively higher l e v e l s .  It is  repor ted  t h a t  t h e  b e s t  f i t  t o  t h e  

da t a  up t o  f r a c t u r e  i s  given by 

E = exp[-ko/(oc - a ) ]  , E 
O 

where 

E = apparent modulus a t  zero s t r e s s ,  

E = apparent modulus a f t e r  p re s t r e s s ing  t o  a given s t r e s s ,  

k = nondimensional constant,  

CJ = s t r e s s ,  

0 

= a c r i t i c a l  stress. 

The da ta  do not exh ib i t  any s i g n i f i c a n t  d i r e c t i o n a l  dependence f o r  t h e  

d i r ec t ions  normal and p a r a l l e l  t o  t he  ex t rus ion  a x i s .  

From t h e  d a t a  given, E/Eo '2 0.70 near f r a c t u r e ,  and the  f r a c t u r e  

var ied  from 4500 
s t rengths  ranged from-3700 to-4700 p s i .  

found t o  have a constant value of about 0.08, and 0 

t o  5000 p s i .  

It i s  repor ted  t h a t  k w a s  

C 

Because of t h e  nature of graphi te ,  t h a t  i s ,  the 'mater ia l  c o n s i s t s  

of d i s c r e t e  f i l l e r  p a r t i c l e s  embedded i n  t h e  graphi t ized  b inder  which 

forms a more or  l e s s  continuous matrix with random s t r u c t u r e ,  r e l a t i o n -  

sh ips  between spec.imen s i z e  and mechanical p rope r t i e s  appear l i k e l y .  

Thus, s t r eng th  versus specimen diameter s tud ie s  have been made. .Losty 

and Orchard 119621 inves t iga ted  specimens ranging i n  diameter from 0.282 

t o  0.798 in. Their ma te r i a l  was extruded nuclear-grade graphi te ,  and 

both  d i r ec t ions  with respec t  t o  the  ex t rus ion  a x i s  were examined. The 

s t rengths  were independent of diameter f o r  t he  t h r e e  l a r g e r  sizes with 

those f o r  t he  smaller diameter being j u s t  s i g n i f i c a n t l y  lower. I n  a 

s i m i l a r  study using f l e x u r a l  specimens ranging i n  c ross  sec t ion  from a 

square, 1/4 i n .  on a s ide ,  t o  a 3/4 i n .  square, no s i g n i f i c a n t  e f f e c t  

of specimen s i z e  on f l e x u r a l  s t r eng th  w a s  found. 
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Digesu and Pears [1963] used ATJ graphi te  specimens of four  d i f -  

f e r e n t  diameters ranging from 0.063 t o  1 . 0  in .  

s t r eng ths  f o r  t he  th ree  smaller s i z e s  were about t h e  same, but  t h e  

s t rength  f o r  the  l.0-in.-diam specimen was about 11% l e s s .  These in-  

The ul t imate  t e n s i l e  

ves t iga to r s  a l s o  found s m a l l  decreases in  s t rength  f o r  a given specimen 

with increase i n  s t r a i n  rate and with increase i n  surface roughness. 

Greenstreet  e t  a l .  [1965] found t h a t  f o r  specimen diameters ranging from 

0.128 t o  0.750 i n .  s i z e  e f f e c t s  i n  terms of f r a c t u r e  stress and s t r a i n  

and e l a s t i c  modulus were s m a l l  or  nonexistent.  The maximum p a r t i c l e  

s i z e  f o r  t h e i r  material w a s  1/32 i n .  

F lexura l  tes ts  are commonly used f o r  con t ro l  purposes i n  manufac- 

t u r e  (Curr ie ,  Hamister, and MacPherson [1956]) . 
The most widely used i s  t h a t  of applying t h e  load a t  t h e  center  of t he  

beam supported near i t s  ends. The second i s  t h a t  of applying t h e  load 

a t  two poin ts  s o  a g rea t e r  length of beam i s  under maximum stress. This 

i s  the  recommended t e s t  (Curr ie  e t  a l . )  and is  designated as the  " th i rd-  

point  Loading" t e s t  by ASTM [1964]. 
ca lcu la ted  using simple beam theory based on l i n e a r  e l a s t i c i t y .  

ing t o  the  above authors,  the  second t e s t  gives  s t rength  values 20 t o  

354 lower than the  s ingle-point  loading t e s t .  

t h e  r a t i o  of t e n s i l e  s t rength  t o  f l e x u r a l  s t rength  from single-point  

loading as about 0.53 with  a range of 0.47 t o  0.68. 

Two types are employed. 

I n  e i t h e r  case, t h e  s t rengths  are 

Accord- 

I n  addi t ion ,  they repor t  

Through tes t s  and data ana lys i s  i n  which nonl inear  behavior as w e l l  

as d i f fe rences  i n  s t r e s s - s t r a i n  proper t ies  i n  tens ion  and compression 

w e r e  accounted for i n  bend specimens, Greenstreet  e t  a l .  [1965] m a d e  

comparisons of bend and un iax ia l  t e s t  r e s u l t s .  A s  expected, t he  r e s u l t s  

from bend tes t s  were shown t o  agree with those from uniaxia l  t e s t s  i n  

regard t o  s t r e s s - s t r a i n  diagrams and t o  f r a c t u r e  s t r e s s  and s t r a i n .  

Andrew, Okada, and Woschall [19603 observed creep i n  end-loaded 

graphi te  cant i lever  beams a t  room temperature. The creep s t r a i n  had a 

logarithmic t i m e  dependence ind ica t ing  the  absence of viscous creep, 

and, over t h e  range of time observed (-1200 min), t h e  creep deformation 

w a s  s m a l l  i n  comparison t o  the  t o t a l .  Kennedy [19611 conducted un iax ia l  

creep tes ts  on nuclear-grade graphi te  specimens a t  temperatures of 78, 
750, and 1100°F. A t  each temperature, t he re  w a s  s l i g h t  i n i t i a l  creep 
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which sa tura ted  i n  a few hours and no creep occurred a f t e r  t h a t  f o r  t o -  

t a l  time dura t ions  up t o  2000 hours.  

f l e x u r a l  t e s t s .  However, using more s e n s i t i v e  measuring techniques, 

Kennedy C1963] l a t e r  found t h a t  low l e v e l  creep does p e r s i s t  over time 

i n t e r v a l s  of 2000 hours. 

S imi la r  r e s u l t s  were found using 

Kennedy [1960, 19611 a l so  examined t h e  influence of r a t e  of loading 

on t e n s i l e  specimens a t  temperatures of 78, 750, and 1100°F. 

short-time and incremental loading t e s t s  i n  which t h e  loading rates were 

approximately 600,000 ps i /hr  and 2 ps i /hr ,  respec t ive ly .  There appeared 

t o  be no s i g n i f i c a n t  d i f fe rences  between t h e  s t r e s s - s t r a i n  curves from 

He used 

t h e  short-rtime t e s t s  a t  78"~ and those from incremental loading tes ts  a t  

78 and 750°F. I n  addi t ion ,  t he  r e s u l t s  indicated t h a t  t h e  f r a c t u r e  

s t r e s s e s  and s t r a i n s  a r e  e s s e n t i a l l y  time and temperature independent. 

Derived S t r e s s  -S t r a in  Relationships 

S t a r t i n g  from mic ros t ruc tu ra l  considerations and r e l a t i n g  micro- 

s t r u c t u r a l  aspec ts  t o  bulk ma te r i a l  behavior, Jenkins [1962a] deduced a 

mechanical analogy f o r  use i n  pred ic t ing  s t r e s s - s t r a i n  behavior i n  ten-  

s ion  and compression. 

t i o n  blocks connected by spr ings  with equal s t i f f n e s s e s .  

of t h i s  model, i n i t i a l  loading i s  described by 

This mechanical analog i s  a s e r i e s  of equal  f r i c -  

On t h e  b a s i s  

where 

= t o t a l  s t r a i n ,  

0 = s t r e s s ,  

A = 1/E = e l a s t i c  compliance, 

B = a material constant which cha rac t e r i zes  the  p l a s t i c  

deformation. 

Thus, t h e  f i rs t  term on t h e  r i g h t  of E q .  ( 2 )  represents  t he  e l a s t i c  

s t r a i n ,  and the  second 

loading from a maximum 

€ -  m 

gives t h e  p l a s t i c  s t r a i n .  The equation f o r  un- 

stress, (r i s  m' 

c = A(o - 0) + -B(o 1 - 0 1 ~  , 
m 2 m  
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where c 

IJ 5 om, the  equation i s  

is  the  s t r a i n  a t  o . Finally,* f o r  reloading from oo, with m m 

Calculated r e s u l t s  were compared with loading-unloading-reloading 

curves i n  compression, and t h e  r e l a t ionsh ips  were found t o  hold f o r  

s t r e s s e s  t o  1200 p s i .  The ca lcu la ted  r e s u l t s  were found t o  dupl ica te  

t h e  envelope curve, the  r e s i d u a l  s t r a i n  on unloading, and t h e  hys t e re s i s  

loops t o  a good degree of accuracy within t h e  range oft a p p l i c a b i l i t y  

es tab l i shed .  

Other s t r e s s - s t r a i n  r e l a t ionsh ips  were derived by Hesketh [I9641 

and by Woolley [1965]. The equation due t o  Hesketh i s  

IJ = (5 -; k), 
where E i s  the  e l a s t i c  modulus f o r  a s ing le  c r y s t a l  and s is  t h e  y i e l d  

s t r a i n  f o r  a s ingle  c r y s t a l .  I n  inverted form, the  expression i s  
Y 

IT6 25 E c  
Y 5 E  

+ 5 ( $ .  aer + ...I . (6 )  

I n  t h i s  form it i s  evident t h a t  the equation of Jenkins, Eq.  ( 2 ) ,  corre- 

sponds t o  the  f i r s t  two terms. 

Woolley based h i s  der iva t ion  on a model f o r  d i s loca t ion  movement 

and reasoned t h a t  subgrains become p l a s t i c  progressively.  H i s  r e l a t ion -  

s h i p  i s  exponential i n  form and i s  given by 

* 
I n  h i s  paper, Jenkins took the  s p e c i f i c  case oo = 0. I n  t h e  paper 

of Jenkins and Williamson [ 19631, i l l u s t r a t i o n s  of s t r e s s - s t r a i n  curves 
deduced from t h e  model a r e  given f o r  s t r e s s e s  both i n  tension and com- 
press  ion. 
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where E i s  t h e  e l a s t i c  modulus of bulk material and eo  i s  a constant .  

This equation, with appropriately determined constants,  w a s  shown t o  f i t  

a l l  po in ts  of both t e n s i l e  and compressive curves f o r  a nuclear-grade 

graphi te .  

Because a l l  th ree  equations,  Eqs. ( 2 ) ,  ( 5 ) ,  and (7 ) ,  give good f i t s  

t o  s t r e s s - s t r a i n  da ta  a t  low s t r a i n s ,  Jenkins [1965] compared them on 

the  basis of slope,  d(T/de, versus s t r e s s .  Equation (2 )  gives  a curve 

convex toward the or ig in  which agrees wel l  with t h e  experimental da ta  

up t o  a compressive s t r e s s  of 2000 p s i .  On the  other hand, t he  equation 

of Hesketh gives a curve concave toward the  or ig in ,  while t h a t  of 

Woolley gives a s t r a i g h t  l i n e ,  ne i ther  of which f i t  t he  da ta .  

Seldin [1966a] examined the  model of Jenkins by comparing predicted 

and experimental r e s u l t s  f o r  severa l  molded graphi tes .  The lower and 

intermediate stress l e v e l  da ta  were used, and the  conclusions a re  as 

follows. 

s t r e s s - s t r a i n  curve and t o  the  compressive curve up t o  approximately 60% 
of the  breaking s t rength .  Equations (2 )  and (3)  pred ic t  a r e s idua l  

s t r a i n  of 

zero s t r e s s .  The experimental r e s u l t s  show t h a t  f o r  t e n s i l e  tests these 

s t r a i n s  a re  proport ional  t o  3, but  they a re  greater than  predicted.  I n  

compression, they a re  proport ional  t o  (T , where n ranges from 1.6 t o  

1.9,  and they a re  l e s s  than predicted.  The shapes of t he  stress-strain 

curves and widths of t he  hys t e re s i s  loops on re lease  and reappl ica t ion  

of s t r e s s  as given by the  model agree wel l  with observations.  

Equation ( 2 )  usual ly  gives  a good f i t  t o  t he  e n t i r e  t e n s i l e  

Bo2 f o r  loading t o  the  s t r e s s ,  (5 2 m  m’ followed by unloading t o  

n 

Temperature Ef fec t s  

Pioneering work regarding the  influence of temperature upon mechan- 

i c a l  p roper t ies  w a s  done by Malmstrom, Keen, and Green [1951], who sys- 

tematical ly  s tudied changes in  short-time t e n s i l e  s t rength  and e l a s t i c  

modulus. They a l s o  s tudied t e n s i l e  creep behavior a t  temperatures i n  

the  approximate range of 2100 t o  2900°C. Subsequently, t h e  temperature 

dependence of s t rength  has been Cnvestigated by Green [1953], by Wagner, 
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Driesner, and Kmetko [1958], by Martens, J a f f e ,  and Jepson [1959], by 

Lund and Bortz [196O], by Martens, Button, Fischbach, and Jaffe [1960j, 

by Digesu and Pears [1963], and by Smith [1964a]. I n  these t e s t s ,  com- 

mercial  as wel l  as laboratory-made graphi tes  were used. The r e s u l t s  f o r  

t he  various types a re  somewhat d i f f e ren t ,  but  t he re  a re  general  t rends 

as  follows: 

1. The short-time s t rength  increases from room temperature t o  ap- 

proximately 2500°C where the  value may range t o  twice t h a t  a t  room tem- 

pera ture .  Above t h i s  temperature the  s t rength decreases rap id ly .  

2 .  The s t rength  increases with bulk dens i ty .  

3 .  The elongation a t  f r ac tu re  i s  s m a l l  a t  room temperature (on the 

order of 0 .1  t o  0.2%) and remains so up t o  about 2000°C, above which it 

begins t o  increase with a la rge  increase occurring between 2500 and 

2750°C. 

t u r e  were reported by Martens e t  a l .  [196O], although the  values a re  

usua l ly  much less than t h i s .  

Elongations a t  rupture up t o  about 40% a t  the  higher tempera- 

4 .  The d u c t i l i t y  decreases with increase i n  s t r a i n  r a t e .  

5 .  Graphites a re  stronger and less d u c t i l e  when loaded i n  tension 

i n  the  with-the-grain d i rec t ion  than when loaded i n  t h e  against- the-  

grain d i r ec t ion .  

6. The densi ty  decreases during t e n s i l e  t e s t i n g  and increases 

during compression t e s t i n g .  

A s  an i l l u s t r a t i o n  of s t r a in - r a t e  e f f e c t s ,  we w i l l  s m a r i z e  the  

work of Smith [1964a], who made a ca re fu l  inves t iga t ion  of these e f f e c t s  

i n  terms of t e n s i l e  s t rength and rupture elongation on a molded, nuc- 

lear-grade graphi te .  The elongations measured by Smith a re  low in  com- 

parison t o  values f o r  other graphi tes .  H i s  t e s t s  were made i n  a helium 

atmosphere and i n  vacuum a t  s t r a i n  r a t e s  of 0.005, 0.5, and 2 .O (min) -' . 
The influence of atmosphere w a s  s m a l l ,  so t h i s  f ac to r  w i l l  be ignored 

i n  summarizing the  r e s u l t s .  A t  t he  lowest s t r a i n  r a t e ,  the s t rength 

increased by a f a c t o r  of almost th ree  between room temperature and 

2500°C. 

f i c a n t l y  from those a t  0.005 (min)" only a t  temperatures above 2000°C, 

where the  slope of the  s t rength  versus temperature curve was reduced. 

A t  2.0 (min)-', t he  increase in s t rength over t h e  range from room 

The intermediate s t r a i n  r a t e  gave r e s u l t s  which d i f f e red  s igni -  
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temperature t o  2500°C was about 50%. 
independent of s t r a i n  r a t e  up t o  about 2200°C. 
crease i n  elongation a t  2500°C (1% elongat ion a t  2500°C) a t  the  lower 

s t r a i n  r a t e ,  but  t he  elongation remained a t  t h e  0 .1  t o  0.2% l e v e l  f o r  

t h e  higher rates. 

The elongations a t  rupture  were 

There w a s  a d i s t i n c t  in- 

Dynamic e l a s t i c  modulus measurements ( using v ib ra t ing  beams) were 

made by Malmstrom, Keen, and Green [1951], by Fa r i s ,  Green, and Smith 

[1952], by Davidson, Losty, and Ross [1958], and by Lund and Bortz 

[19603. 
s t r a i n  curves by Digesu and Pears [1963]. 
a range of graphi te  grades.  Although d i f fe rences  e x i s t  between various 

graphi tes  and between dynamic values and those obtained from s t r e s s -  

s t r a i n  curves, there  i s  again general  agreement between the  r e s u l t s .  

The ove ra l l  t rend  i s  a n  increase with increas ing  temperature t o  about 

2000°C followed by a decrease.  

an increase over t he  range from 25 t o  2000°C of about 30% i n  the  with- 

the-grain d i r ec t ion  and about 9% i n  t he  against- the-grain d i r ec t ion  f o r  

Moduliwere obtained from the  low s t r e s s  por t ions  of s t r e s s -  

These s tud ie s  a l s o  covered 

A s  an example, F a r i s  e t  a l .  [1952] found 

one grade of extruded ma te r i a l .  The moduli a l s o  increase with increase 

i n  dens i ty .  

Mrozowski [I9561 pointed out t h a t  "frozen-in" stresses are respon- 

s i b l e  f o r  changes i n  short-time s t rength  with temperature.  These 

s t r e s s e s  arise from the highly an iso t ropic  nature  of t he  graphi te  crys- 

t a l  f o r  which he took thermal expansion coe f f i c i en t s  of 1 x lov6 and 

35 x ("C)-l as average values over t h e  range from 0 t o  2500°C i n  

t h e  d i r ec t ion  of t he  basa l  plane and perpendicular t o  t h i s  d i r ec t ion ,  

respec t ive ly .  This anisotropy leads  t o  d i f f e r e n t i a l  shrinkages as graph- 

i t e  cools from the graphi t iza t ion  t o  room temperature. He reasoned t h a t  

on cooling from the g raph i t i za t ion  temperature t o  2300-2500"C t he  

s t r e s s e s  induced a r e  re l ieved  by creep, and he d id  not expect any appre- 

c i ab le  p l a s t i c i t y  below 2000°C. 

conducted by Smith [1964b]). 
t o  room temperature. The increase i n  short-t ime s t rength  with tempera- 

t u r e  according t o  t h i s  hypothesis i s  then due t o  t h e  gradual  r e l ease  of 

"frozen-in" s t r e s s e s  on reheat ing.  

i s  due t o  t h e  onset of rap id  creep. 

(These views a r e  supported by t e s t s  

Thus, l a rge  s t r e s s e s  bu i ld  up on cooling 

The drop in  s t r eng th  above 2500°C 
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A common explanation f o r  t he  increase i n  e l a s t i c  modulus with t e m -  

perature is  expansion of the  c r y s t a l l i t e s  i n t o  voids between them and a 

consequent t igh ten ing  of t he  s t ruc tu re .  However, Davidson and Losty 

[1958a] suggest instead t h a t  a n  increase i n  

with increased temperature i s  the  important 

c r y s t a l  shear res i s tance  

f a c t o r .  

Creep 

The creep of graphi te  i n  f lexure  and to r s ion  w a s  studied by David- 

Measurements were made over t he  tempera- son and Losty [1958a, 1958bI. 
ture range 1000 t o  2000°C. 

mation followed by a slow, time-dependent creep deformation and over 

t h e  range 1200 t o  2000°C was bes t  described by a n  equation of t he  form 

The t y p i c a l  behavior w a s  an i n i t i a l  defor- 

A t = A + k R n t + B t ,  ( 8)  

where 

At 
A = i n i t i a l  deformation, 

B,k = temperature and stress-dependent parameters. 

= t o t a l  deformation a t  time t ,  

Thus, both t r a n s i e n t  and steady creep a r e  exhibi ted in  t h i s  range. The 

parameters B and k were found t o  be l i n e a r  functions of s t r e s s .  When 

the  load i s  removed, t h e  t r ans i en t  component of t h e  creep is  recovered 

according t o  

A = m R n t .  t 

Short-time t e n s i l e  creep w a s  measured i n  t he  range 2000 t o  3OOO"C 

on a number of d i f f e r e n t  commercial graphi tes  by Malmstrom, Keen, and 

Green [1951] (as mentioned above), by Wagner, Driesner, and Kmetko 

[1958], by Martens, Button, Fischbach, and J a f f e  [19603, and by Seldin 

[1964]. Wagner e t  a l .  a l s o  studied compressive creep; creep in f lexure 

w a s  measured by Seldin and Draper [19611 and by Seldin [1962]. There 

i s  not general  agreement on the  form of the  expression f o r  describing 

the  t r ans i en t  creep. The 'steady, or secondary, creep r a t e  depends on 

0 , where values of n ranging from-2 t o - 4  have been reported.  

difference i n  reported values may be a t t r i b u t a b l e  t o  d i f fe rences  i n  

n The 
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mate r i a l s .  The exponent appears t o  be independent of d i r e c t i o n  with re -  

spect t o  gra in  o r i en ta t ion .  

For a given s t r e s s ,  t h e  steady creep r a t e  increases with increased 

temperature, and the re  does not appear t o  be a m i n i m u m  corresponding t o  

t h e  peak i n  short-time s t r eng th .  I n  concert with t h e  general  tendency 

f o r  g rea t e r  short-time s t rength  i n  the  with-the-grain d i r e c t i o n ,  t he  

r e s i s t ance  t o  creep i s  g rea t e r  i n  t h i s  d i r ec t ion  than against-the-grain.  

Recovery occurs when t h e  load i s  removed, bu t  it amounts t o  only a f r a c -  

t ion 

ge st  

were 

t u r e  

of t h e  t r a n s i e n t  creep deformation. 

The creep t e s t s  were mainly of fixed-time duration, wi th  the  lon- 

time being about 2 hours. Thus, rupture-elongation data usua l ly  

not obtained. For those specimens which d id  f r a c t u r e ,  maximum rup- 

elongations of roughly 20 t o  3O$ at  t h e  higher temperatures were 

observed. Wagner e t  a l .  found two types of behavior i n  compression. I n  

t h e  f i r s t ,  f a i l u r e  occurs during the  secondary creep stage,  as is  t h e  

case i n  t e n s i l e  creep t e s t s ,  while i n  t h e  second t h e r e  i s  acce lera ted  

creep followed by f r a c t u r e .  

Combined S t r e s s  Behavior 

Although a g rea t  d e a l  of information i s  ava i l ab le  concerning uni- 

a x i a l  behavior, t he  l i t e r a t u r e  contains very l i t t l e  concerning combined 

s t r e s s e s .  Theore t ica l  analyses have been made t r e a t i n g  t h e  ma te r i a l  as 

l i n e a r l y  e l a s t i c  bu t  tak ing  t ransverse  isotropy i n t o  account. Two such 

analyses a r e  given by Weng [1965] and by W i t t  and Greenstreet  [1966]. 

Ely [1965] t e s t e d  tubular  specimens of graphi te  under cmbined in- 

t e r n a l  pressure and a x i a l  loads.  The specimens were machined from two 

grades of extruded tube stock t o  give uniform gage sec t ions  3 1/2-in.  

long, 1 .0  i n .  i n  ins ide  diameter, and 0.060 i n .  i n  w a l l  th ickness .  Only 

s t r eng ths  are reported; these  correspond t o  t e n  b i a x i a l  stress condi- 

t i o n s .  

The b i a x i a l  f r ac tu re  s t r e s s e s  were b e s t  co r re l a t ed  by a combination 

of f a i l u r e  t h e o r i e s .  I n  t h e  tension-tension quadrant f o r  t h e  two-dimen- 

s i o n a l  s t r e s s  space, f a i l u r e  appears t o  be governed by t h e  maximum nor- 

m a l  s t r e s s ,  while i n  t he  hoop-tension, axial-compression quadrant t h e  

r e s u l t s  seem t o  c o r r e l a t e  with a n  expression due t o  Stassi-D'Alia [1959]. 
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The l a t t e r  expression i s  given i n  terms of p r i n c i p a l  s t r e s s e s  by 

where 

cr0 = s t rength  i n  simple tension, 

0: = s t rength  i n  simple compression. 

This equation represents  a paraboloid of revolution i n  p r i n c i p a l  s t r e s s  

space. Note t h a t  f o r  p = 1 t h i s  reduces t o  a von Mises surface as used 

i n  the  mathematical theory of p l a s t i c i t y ,  t h a t  is ,  an i n f i n i t e  c i r c u l a r  

cy l inder .  

I 
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