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CHAPTER I

INTRODUCTION

Review of the Literature

Let (Q,/5) be an arbitrary measurable space and let P and P be

two probability measures defined on 13. For any subfield 7 of B let

P.„ denote the restrictions of P. to J, i = 1,2. If [F, } is a finite
lJ l ' ' kJ

/5-measurable partition of Q and J is the finite subfield of 13 consisting

of all unions of the sets F, , then the quantity

(1-1) I(^) =Y P^V log [Pi7(Fk) /P2J(Fk}.

will be called the information in the field J" for discrimination between

P and P . In (l.l) and its extensions to be made in this paper the

natural logarithm will always be used and terms P „(F )log[P „(F,)/P^-(Fj]

will be assigned the value zero whenever P Jf, ) = 0 regardless of the

value of Ppy(F, ). The information I(J) is always non-negative [6]; each

of the terms in its defining sum is greater than -m- and I(-7) = +«> if

and only if P JY ) > P JF ) = 0 for some k.

The information measure I (J) above has been discussed by several

authors [6], [10], [11], and in 1959 the definition was extended by

G. Kallianpur [k] to cover an arbitrary Borel subfield (7 of B. The

basic property of I(.7) that underlies Kallianpur's extension of the

definition (l.l) is the following. Let 3 be a finite subfield of B

1
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generated by a refinement of the partition {F } of Q, then I(J,) >l(«7).

This is easily shown to be true by use of Jensen's inequality for

continuous convex functions. It is natural then to extend the defini

tion (l.l) in the following manner. For an arbitrary Borel subfield

a of B let

1(67) = sup I(J) ,
J c a

where the supremum is taken over all finite subfields of O.

By use of properties of martingales and semi-martingales,

Kallianpur derives necessary and sufficient conditions under which

I(67) is finite as well as an integral representation for I(67). The

main result of his paper is

Theorem 1.1. Let (7 be any Borel field of subsets of Q and let I(67) be

defined by (1.2).

(i) If ^-ya^ Fptf> (P167 is ncrt absolutely continuous with

respect to P?rt?), then I(67) = e».

(ii) IfPw«Pa? then

1(67) =J Xlog XdP2(7 =
o n

log XdP^,

where X is the Radon-Nikodym (R-N) derivative of P _

with respect to P , whether I(67) is finite or infinite.
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(iii) 1(67) is finite if and only if

^ P167<<P267
and

(b) E^lx log X| < oo,

where E.^ denotes expectation on the probability space

(n, a, p±(7), i = 1,2.

Theorem 1.1 is important because it relates the basic definition

(1.1) to an integral representation which was assumed to be the infor

mation in the general case by Kullback and Leibler in [6]; and which

has been applied extensively since that time to the theory of statis

tical hypotheses testing in the fixed sample size case.

Summary of Contents

In this paper we investigate the information as defined by

(1.2) in a sequential test S of simple hypotheses H., i = 1,2, which

is determined by cumulative sums of independent and identically dis

tributed random variables, X,,X„,...X„,..., and which terminates with

probability 1. For the problem of testing one simple hypothesis against

another, of all tests whose probabilities of incorrectly accepting the

second hypothesis are bounded above by given bounds, the Wald sequential

probability ratio test gives the smallest expectation of the sample size

under either hypothesis. For this reason, particular emphasis is given

to this special case of the general test S.
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By defining probability spaces (Q, B, P^), I = 1,2, appropriate

to any such test S, we derive integral representations for the infor

mation 1(67), 1(C), and l(Jb) in three particular Borel sub-fields Q, (3,

and 3 of B in terms of the conditional probability densities of the

cumulative sum variables. The fields Q, 63, and £• are chosen so that

the quantities I(67), I(63), and i(^) may be appropriately referred to

repsectively as the total information in the decision process, the

information in the sequential decision variables, and the information

in the stopping rule. In the special case of a sequential probability

ratio test of hypotheses H.:g(u) = g.(u), i - 1,2, on the density func

tion g(u) of an observable random variable U, we show that

CO , ,

l(<7) =E^(n) Jlog rfl^]gi(u)du .

This generalizes the familiar additivity property of the information in

fixed sample size random sampling, Kullback [7]-.

In general the Borel fields (7, & and Jfr have the properties that

1(67) > I(63) > i(J-), but necessary and sufficient conditions on the

conditional density functions of the cumulative sums will be stated

under which I(67) = I(63) and I(67) = 1(3) when I(67) < «., and I(63) = l(£)

when 1(63) < oo. Again, in the case of a sequential probability ratio

test, it is demonstrated that I(67) = I(63) whenever g.(u), i = 1,2,

belong to an important class of density functions, namely the exponen

tial family.
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All of the primary results stated previously are obtained for

the case in which all of the random variables under consideration admit

a Borel measurable density function; however, by interpreting integrals

as sums, and replacing Lebesque measure by the counting measure, the

results remain valid for the discrete case as well.

Care has been used to impose only conditions which are accepted

as basic in sequential analysis. In this connection see [12].



CHAPTER II

DEFINITION OF PROBABILITY SPACES

In this chapter we discuss the probability spaces (Q,B,P.),

i = 1,2, appropriate for a study of the general sequential tests S

mentioned in Chapter I. Such tests S will include those based upon a

random walk with independent increments and terminating barriers, -b

and a, defined as follows. For any sequence X ,X ,...X^,... of inde

pendent random variables with a common density function f(x) define the
2 N

sequence Z, = Xn , Z„ = .E. X.,... Z- = .E, X., Let the cumulative
H 1 1' 2 o=l y N j=l y

sums Z of the X.'s begin at Z = 0 inside (-b,a) and change (walk) by

independent increments Z - Z^ = X^ between (-b,a) until an increment

X„ takes Z outside (-b,a). The process then terminates at Z^ with a

type 1 termination if Z > a and with a type 2 termination if Z < -b.

Historically, Wald suggested using random walks of this special

type in his sequential probability ratio tests for deciding between

hypothesized density functions g (u), g (u). We extend Wald's idea to

the case of a sequential test which is determined by cumulative sums of

independent random variables and a more general type of random walk.

Specifically, for each k - 1,2,..., let \|t.(z), i = 0,1,2, be

three Borel measurable functions defined and non-negative on -oo<z<oo

and such that for each z,

(2.1) .EQ 1k(z) = I-



For each j = 1,2,..., N = 1,2,..., let X. and Z^ be defined as in the

random walk with terminating barriers. The walk with independent

random increments X_ is terminated at Z in a type 1 termination with

conditional probability i|r (z ), or in a type 2 termination with condi

tional probability \|r (z ), or is continued to Z with conditional

probability i|/ (z ). Clearly the walk with terminating barriers, -b and

a, is a simple case of this more general process. We refer to this

type of walk as a random walk with randomized terminations.

Now let g(u) be the probability density function of a random

variable u and let H.. : g(u) = g, (u), H : g(u) = g„(u) be simple hypoth

esis on g(u). Let S be a sequential test of H, against H? which is

determined by cumulative sums of independent random variables, X.. ,X ,.. .,

k k k
and which specifies the probability decision functions * , \|j , \|r„ with

the properties defined above. The decision rule for S is then the

random walk with randomized terminations as follows. If the termina

tion of the walk is of type 1, accept H, . If the termination of the

walk is of type 2, accept Hp.

For example, suppose S is a generalized sequential probability

5i(uj:
^7
glOH) n

ratio test as defined in [13]. Then X. = log —r-^ , Z^ = .E, X.for

k k k
each j = 1,2,..., N = 1,2,..., and \|f , i|t i|r„ are the indicator functions

of the respective intervals -bn < z < a.. , z. < a, z. < -bn for each
^ k k' k — ' k — k

k = 1,2,....



Before defining the probability spaces appropriate to the general

decision rule S, we note that the random variables X.. ,X ,...X^,. .. have

a common density function f.(x) according to H., and since Z.- Z =X

for j > 1, the conditional density of Z. given Z. must be f.(z.-z ),

where Z and z are equal to zero.

To define the probability spaces let Q be the set of points cjd

which are infinite sequences

uu — (Cd , CC ; . . ., u^, . . . )

in which each component a is a pair (z ,y ), where z is any real

number and y takes on one of the values of the subscript i of i|r.(z, ).

Each Q! will then denote a possible cumulative sum value and a possible

decision at that sum value. The following subsets are of particular

interest in connection with the decision rule S:

(A^ =Ha = (z ,0), j<k-l and ak = (zk,yk), yk =0,l,2}N

(2.2) { )
B = Ha = (z 0), j = 1,2,...} .

Note that B = lim A , and {A A A] is a partition of Q
v -. „ KU KO Jl Jd j-±
k

for each k = 1,2,

The sets A are special cylinder subsets of Cl. In general a

cylinder subset of fl is defined by any restriction on a finite number



of the a.'s. In particular, Borel cylinder sets are defined by
J

restricting z.,,...,z , for some finite m, to a Borel set in Euclidean
1 nr '

m space and by specifying a set of values of y., one for each index

j = l,2,...,m. The special sets A^. described above are Borel cylin

der sets and all Borel cylinder sets are subsets of finite unions of

the Akyk-
It is known that there exists a minimal Borel field B of subsets

of Q which contains all Borel cylinder subsets of Q. Moreover it is

known that if a function P(A) can be defined for all Borel cylinder

subsets A of Q in such a way that the axioms for a probability measure

are satisfied on the Borel cylinder sets, then P(A) can be extended

uniquely to a probability measure on the minimal Borel field B. Hence

we shall be content with the definition of P(A) for Borel cylinder sub

sets of Q.

Let A be a Borel cylinder subset of Q. Then A is described by

Borel set type conditions on ql ,0' ...,a for some m. Since

{A ., A... A.0}. n is a partition of Q, the sets
mO' jl' j2Jj=l * '

partition A .

Aki = Ac n Aki' i = 1>2> k = 1>2>--^m
^A =A 0A .

mO c mO
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Now id 6 1 ,, i = 1,2,.implies that

y± = i if k = 1

yl =#--= yk-l = °> yk = i if k = 2>-">m

and uj e A n implies that {y, = ..• = y = 0} . If k < m, let
mO 1 m

(v* y*) be any possible set of the y values of the indices
wk+l' ' nr

/ .v. \r

^k+l'-'-^m) be the subset of An . with the given
ki

k+1,...,m. Let A

(yn ..,.. . ,y ) values. Then
wk+l' ' m'

{• vki /,r* „r*\ partitions A .
(yk+r--->V ki

For any fixed index sequence (k,i,y, ,...,y ), the set A

is specified by (zn,...,z ) e B , a Borel set in R . For I = 1,2,
^ v 1' ' nr irr m

define

r;
B

m

k-1

;it^(Z )]^k(z )}kf (z )..4\(Z)]=1 0 3 X i k Jy£+i k y* m

. (yk+i^ •-ym),

<

.f„(z -z ,)f„(z .-z _)... f ,(zn)dzn .. .dz
£K m m-ly Xx m-1 m-2y V ly 1

if 1 < k < m.

m

X
riK(z.)i|r2Jt(z0)...i|rm (z )f.(z -z _)...£. (z.)
Tiv 1 ,*v 2; V* m H m m-17 lv 1

.dzn...dz ,
1 m '

if k = 1.

, m

m

»

V

A



and, by additivity,

P/\i)
k+l(y:

I

for 1 < k < m. If we now define

11

*v V ki

>ym)

-ym)

W
B

r-m-1

TT C(z, ) ^m(z )f ,(z -z n)• •-f, (zn )dzn . .k=l 0V ky_Tiv m; V m m-l; 1K 1J 1
m

and

f* f* m

dz
m

VAm0) =
Em °

TT *„(z, ) f„(z -z n)...f„(z. )dz_.£=!iT0v k'J 4V m m-ly £v 1; 1
. dz

m'

then

m 2

k=l i=i
VV = KIVAkiO+VAmo)>

and the definition of P. for an arbitrary Borel cylinder set is complete.

Clearly, P. satisfies the axioms for a probability measure on all Borel

cylinder subsets of Q since Q = A U A U A implies that

R

tj(z1)fx(z1)dz1+ J^(Zl)f (z1)dz1 +Jtj(z1)fi(z1)dz1

from (2.1)

[^(z1)+^(z1) +̂ (z1)] f1(z1)dz1= Jf1(z1)dz1 =1
R
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In order to guarantee that the sequential tests under consider

ation terminate with probability 1, and for other reasons which will

become apparent later, we make the following assumptions:

Assumption 1: There is a constant p, 0 < p < 1, and an integer

M such that for al.l pi > M the inequality

i- m

R R

r*k(Zl ) f„(z -z J...fn(z, )dz, ...dz <p±^0 k;J i.v m m-ly lv 1' 1 m - ^

is satisfied for & = 1,2.

Assumption 2:

log
fx(x)
f2(x;

f (x)dx < oo

For future use we define three random variables, n(tu), Z / \(uo),
' v " n(co)v "

Y(u>), which are closely associated with the decision processes.

Definition 2.1. For each uj e Q - B, let n(cu) be the least positive

integer N such that the component a = (z ,y ) of o> has y equal to

one or two; that is, a / v is the component of au at which the test

terminates. Let Z / N(uu) be the random variable whose value is the
n(u))v '

value of z when n(u>) = N. Let Y(cjd) be the random variable defined by

Y(w) = {
1 if a) e U A, n

k=l kl

2 if oj e U A, _
k=l k2

where the sets A ., i = 1,2, k = 1,2,..., are defined in (2.2),
Kl
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It should be noted here that the random variables n(cu), Z , \(tu),
v " n(iu) '

and Y((d) are defined only up to a set of P. measure 0, (Assumption 1

quarantees that P.(B) = 0); however, this will suffice for our purposes.

Also note that

(2-3) Hn(o>) = k} =A^UA^ ,

for each k = 1,2,



CHAPTER III

INFORMATION IN THREE BOREL SUBFIELDS

Introduction

As mentioned in Chapter I, three Borel subfields of B are of

primary importance in connection with the information measure (1.2)

applied to the probability spaces (Q, B, P^), i = 1,2, defined in

Chapter II. We are now in a position to define these fields.

Definition 5.1.

(i) Let 67 be the Borel field generated by the collection

consisting of K • and all Borel cylinder subsets of An . for
° ki ki

each k = 1,2,..., i = 1,2, (here A^. is defined by (2.2),

and we take a Borel cylinder subset A of A . to mean that

A c A . and A is specified by (z ,...,z ) e B , a Borel

set in E. ).
k'

(ii) Let 63 be the Borel field induced by the random vector

(n, Y, Z ), defined in Definition 2.1.

(iii) Let 3 be the Borel field induced by (n,Y), where n and Y

are defined in Definition 2.1.

In this chapter we obtain analytical representations for the

information measures I(67), I(63), and l(Jfr) in the Borel subfields O, C,

and 3 described in Definition 3-1-

11+
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Background Material

Preliminary to a discussion of I(67), I(63), and l(JD), we require

the following definitions and lemmas.

Definition 3-2. A Borel field 3 is separable if it is generated

by (is minimal over) a countable collection of sets.

Definition 3•3. Let (M, 3) be a measurable space. A sequence

{#! } = {[m^].}00 of finite ^-measurable partitions of U is called
s ^ J s—x

i k
regular if for every s, M , e 7l\ , is a subset of some M e 1ft .

7 s+1 s+1 s s

Relating Definitions 3-2 and 3-3 is

Lemma 3.1- Let 3 be a separable Borel field. There exists a

regular sequence [7ft } of finite ^"-measurable partitions of M such
S S—X

that 3 is generated by U 3 , where 3 is the Borel field consisting
s=l s s

of all unions of sets of 7ft , ([8], p. 355).
s

Of fundamental importance in the proofs of the theorems to

follow is Doob's example on the theory of derivatives, ([1]), Example 1,

p. 3^). We modify and state his basic results as

Lemma J.2. Let (?/, 3, Q.), i = 1,2, be probability spaces with
• k

Q « QU and let {^0}°°_, = {{MJ} .f_ }°°_n be a regular sequence of finite
X. c. S S—X S J —X S—X

^-measurable partitions of U. For each s, let 3 be the field consist-
' s

ing of all finite unions of the sets of 1f[ , and let 3 be the Borel
S oo

00

field generated by U 3 .
s=l s
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If we define for each s = 1,2,...,

x
s

ks

w=y rvMj) / v^Hd-

where Q (M^)/Q (MJ) =0 if ^(M0) = 0, and let X be the R-N derivative

of Q y with respect to Q^y , then
oo CO

(X , s > l] is a uniformly integrable martingale with
s —

lim X (uj) = X (oo) a.s.(Q_7 )
S °° "'no

S -* oo °°

Kallianpur proves the following specialization of Theorem U.l's

(ii)(b) of Doob [1].

Lemma 3.3. If (i) {X , s > 1} is a uniformly integrable martin-
s

gale, so that lim X = X exists with probability 1, and (ii) cp(t) is
r, _» S 00S -» CO

a real, continuous, convex function of the real variable t such that

E|cp(X ) I < 00 for every finite s, then lim E[cp(X )] = E[cp(X )].
S ' s -* 00 s m

We shall make extensive use of this lemma throughout the remain

der of this paper.

Although the next lemma is only used in connection with the Wald

sequential probability ratio test, we include it here for completeness.

Lemma ~3.h. Let U be a random variable with density function g(u),

and let H.:g(u) = g.(u), i = 1,2, be simple hypotheses on g. Suppose

g (u) = 0 implies g (u) = 0 except on a set of Lebesque measure zero.
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If the random variable

X(u) =

g±(u)/g2(u) if g2(u) ^ 0

i
if g2(u) = 0

has probability density functions f.(x) under H., i = 1,2, then

r gi(u)-j
!l0g g-[u7J 81^)*°! =

R R

log
f1(x)1

f1(x)dm1,

where 0 log 0 is assigned the value zero, and m... denotes Lebesque mea

sure on the Borel sets B of the real line R.

Proof: Let Q and Qu be the probability measures defined on B1

by g and g respectively; that is,

Q (E) = g.(u)dm for each E e B.., i = 1,2.
X J X X X

E

Since g2(u) = 0 implies g,(u) a.e.(m), we have Q^ « Q^ « m , and it

follows from the definition of X(u) and an application of the property

dQx dQx dQ2
•5— = j7t~ j— a.e. (mn) of the R-N derivates thatdm dQ^ dm v 1;

dQx
X(u) =^a.s. (P2) .

,(i)Let QA ;, i = 1,2, be the probability measures induced by X(u) on the

Borel sets; that is,

(3.1) o4l)(E') =Qi(X_1(E')) for each E' e£.
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Since Q « QL, then Q^1' « \ , and so it follows from the R-N
theorem that exists a non-negative B -measurable function h such that

(3.2) qJ^CE1) =JhdQ^ for eachE' eB± .
E*

Now

(3-3) JhdQ^2) =Jh(X)dQ2 =JXdQ2 =QX(E), E=X_1(E')
E' E E

from (3-1), (3-2) and ([8], Theorem a., p. 3^2).

Let B be the Borel field induced by X on R, (BQ = [E e/^lE =X- (F)

for some F e/?). We now have

Q2£„ (E) =J XdQ2 =jh(X)dQ2/9

for each E e B from (3-3), and hence

Thu s, obviously,

and therefore

(3-M

h(X)= X a.s.(Q
V3„

J log [h(X)l dQx = | log XdQx
R R

log hdQ^ =Jlog XdQ1
R

from [8], Theorem a., p. 3^2.
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By assumption, X has probability density functions f and f under H

and H? respectively, so

log hdQ^1) =̂ log fx(x) /f2(x)Jf1(x)dm1,
R

and finally, from (3-1+) and the definition of h,

log

R

f^x) /f2(x)]f1(x)dm1 =Jlog [gl(u) /g2(u)]g1(u)dm1

Integral Representations

We are now in a position to establish the

Theorem 3.1. If (Q, B, P.) &= 1,2, are the probability spaces

in Chapter II, and if P _ « P „ then the information in the Borel

field G of Definition 3-1 has the representation

CO 2 00 CO

:C*>-7(7
k^l i=l

, k f,(z.-z. .. k rk-l .
io^^f(zj-zj }r.Tf^(z.)

• M^VvVi^-V^V-^V
k-l .

where zn = 0, and TT ^(z.) =1 if k = 1.
0 j=l CP 3

Proof: Throughout this proof, whenever we say that a sequence

|Y j is a uniformly integrable martingale, or converges a.s., these
S S—X

statements will be understood as referring to the probability space
k-l .

(Q, a, P ), and we shall also let TJ ^(z-) = 1 if k = 1.
^u 3=1 0 3
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For each integer k = 1,2,..., let B^ denote the Borel sets of

R :(z ,...,z ). Since B. is a separable field, by Lemma 3.1 there
k 1 k k

exists aregular sequence {*sk}g=1 = ^Esk^j=l^s=l °f finite ^k"
OO

measurable partitions of R such that /? is generated by U <3gk, where

(3 n is the field consisting of all finite unions of sets of <S for
sk SK

each k = 1,2, For each EJ eS ,, let

"sk-^^ki^v---2^ eEsk}' 1=1>2->
x i -\ ^kthen, for each s= 1,2,..., k = 1,2,..., IM £}.=1 is a finite partition

of A, ..
ki

Define the collections 7ft , s = 1,2,..., of sets:
s'

\ =K-^^ i>-if11
3=1 J=l

vy^.vc.icc
a,

j=l r""^o'=l ' '^j=l ''"j=I

0=1 3=1 0=1 0=1

Since for each s = 1,2,... the sets comprising % are a finite G-

measurable partition of 0, A cA ,and M1Jlke 77( is a subset of

some M^e^ ,k = 1,2,..., i = 1,2, then [7ft }°° is a regular sequence.
SK S S S—X
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Let 3 be the field consisting of all finite unions of sets of 7ft and
s & s

CO

let 3 be the Borel field generated by the field U 3 , then clearly
oo s=2. s

3 = a.
00

Define the sequence of functions V (cd), s = 1,2,..., by
s

s xsk 2

(3-5) Vs(uj) KI[vMsk)/p267Kk):
k=l 3=1 i=i

•I in»
Msk

+[VAs0) /VAso) 1^ H,
SO

where P^M^j) /P^M^) =0if P^M^) =0.

It follows from Lemma 3.2 that [V (uj), s > 1} is a uniformly integrable

martingale and lim V (uj) = V a.s., where V is the R-N derivative of
S -» co S oo oo

P _with respect to P?^. Now let

( ^
It log t if t > 0

cp(t) = {
if t = 0

)

Since P « P _ we have E J|cp(V )|] < t» for each s = 1,2,..., and

it follows from Theorem 1.1 and Lemma 3«3 that

lim E^[cp(Vs)] =E^[cp(vj] =Elcp[log Vj =1(0).
S -* oo

Fix k, i arbitrarily and apply Lemma 3.3 to the uniformly integrable



22

martingale [v .1. , s > l} to obtain
S /i» . ^

ki

(3.6) lim I 9(Vs)dP267 = j cp(VjdP2e7 =J logV^dP^
S ~* oo

A' Akiki 4ki

From the definition of V we have
s

^sk

(3.7) \ <p(VjdP0/7 = V P^M^) log Fp^(M^) / Pp.(M^)
267 L 167v sky e L 167v sk; ' 267v sk;

0=1A-ki

Equations (3-6) and (3-7) combine to

^sk

S —* co

(3.8) 1m I P^) log [_P^(Msk) / P^J)
0=1

^VJdP267 =J l0§ ^VJdP167
4ki Aki

Thus if we show that the left-hand side of equation (3-8) is equal to

oo oo

•oo 0=1 2V 3 3-1' 0-1
(3.9)

where z = 0,

then the representation stated in the theorem will follow from

oo 2

1(67) =J cp(vJdP2^ ^l j qj(VjdP^
n k=l i=l Aki

,u*k,
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To obtain (3-9) for an arbitrary but fixed k and i, define

'Xki

k-l

••-JIEW>i<Wvzk-i>- ••Vzi)dzr •-dz

for I = 1,2, and for each Ee B, .
' ' k

By the definition of ~? on, m>.,. is a finite measure on B , (We assume
•MP ^£ki k>

[1,.,. is not identically zero for otherwise the result is trivial),
joki

Let

'jfcki

and define

OO CO

-k-l

•••J[iTri^^zj)>^zk)Vvzk-i)---Vzi)dzr--dz1

WE>
WE)
CXki

, I = 1,2, for each E e B,

Now Pn/7 « P -, by assumption, so, from the definitions of P. ., H = 1,2,
16/ 267 x<Kl

we have that Pnn . and P^n . are probability measures on B, and
lki 2ki e k

P « P « hl , where hi denotes Lebesque measure on /? .

4 ,

Since [<$ }°° = {{EJ } .^ }°° is a regular sequence of finite B -
SK. S—X SK J—X S—X -K-

oo

measurable partitions of Rk such that /?, is generated by U& -^, it

follows similarly to the first part of the proof that

^sk

(3-10) lim 7 riki(Esk) log rpiv*(Ecv) /WEaJlim
S ~* oo

0=1
L lkiv sk; "2kiv sk'J

Xk. log Xk. dP2k. lo§ Xki dPlki>
Ri Rt
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where X denotes the R-N derivative of P with respect to Ppki-

Consider the Borel measurable functions

r-k-1 „.

'lki ^ ~3

k-l

tM(v-'V--^{Ct!fo(V)i(zA(vvi)-Vzi)

W2i"--'zk> =ct: {[ H^(^K^A^vv^-y^
'2ki ^ j=l

They have the properties that

W^ =J^^ WE> - J wnfor each Ee/v

and so, by the R-N theorem, are equal a.e.fo ) to the R-N derivatives

dP2ki dP2ki
-?—— and respectively. From the definitions of u,., . and P .,
duv dm, J&ki £ki'

dP dP dP
lki lki 2ki

and an application of (3-10) and the property - = -r^ — ofdrn^ dP2.k dm^

the R-N derivatives, we obtain

I sk

11* 7 P1w(eJ.) log fpiK(EJj / Pom(eJ. )
S ~* co

0=1

C2ki 1= log -z + p lim
lki lki s - o.

lkiv sk' lkiv sk; ' 2kiv sk'J

JL°sk

»WEsk> lQS kki^sk) / W^J
0=1

Xki l0S Xki dP2ki



log X. . dP_. .
ki lki

lki 1
log ^ +

2ki lki -co -co

k-l
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... log
S- f1^3-Z3-l]f k

£ WJ VWvW-V^r^V

where z = 0.

It now follows that the integral in (3-9) is equal to

and thus to

since

I sk

im y ^lkl(EsJk) loglim
S - oo J=1

*sk

lim 7 P^M^) log
O CO . -.

0=1

r*iki(EBk>

WEsk>

-VMsk)

VMsk)

^m(eL) = Pn^i) ^d ^(Ei) =P^J),lkiv sky 167v sk 2kiv sk' 267^ sk;

for each j = 1,2,..., £gfc, s = 1,2,

If the test S under investigation is a Wald sequential probability

ratio test of H :g(u) = g (u) against H :g(u) = g?(u), then for each

k = 1,2,..., N = 1,2,...,

giK)
X, = log 7 r , ^k g2(uk) N k=i

N

k ,k ,k

' ZN = L *k' ^ V *1' *2
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are the indicator functions of the intervals (-b,a), z < -b, z < a

respectively, where a and b are positive real numbers. In this case

the infinite series for I(67) reduces to

co a a ' k f (z -z )

log {TT fV. '̂j}Vvzk-i>"• fi(zi)dzr' -dz*o 0-1 2K 3 3-1'
(3.31)

k=l -b -b

a a co

^(Wi>
v „ 0 -x 2v ,n ,i -1'

-b -b a

z0 = 0.

Now let (R , S , P ) be the probability space induced by the
CO CO CO

above stochastic process when P is generated by f (x), (the components
co X

of sequences X = (x ,x ,...) in R all have the same density f (x) and

they are totally independent random variables). Define n*(X) on R to

be the least positive integer N such that one of the inequalities

N

*N = £l xd > a or ZN
N

.Z., x. < -b holds. It follows at once from the
0=1 0 -

definitions of P and P-.-that the sum (3-11) is equal to
co 1U

(3.12)

and

(3.13)

n*(X) f (x )
EII ^f^T-

0=1 ^ J

E^n) =1+^ ?1(7(n> k)
k=l

1 + ) P (n > k) = E (iT)
CO 00

k-l
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Thus if it is shown that the quantity (3.12) is equal to

E>*) J Llog FTxTJ Vx)dx >

then by Lemma 3•k and from (3.13) we shall have

Theorem 3.2. In the case of a Wald sequential probability ratio test,

1(67) = E^n) log
pg1(^)-1
§2(u)

gx(u)du

Proof: As remarked above, it suffices to show that

n*(X)
ry 1o'JxE! l 1os fT^jJ =E> >J !l0« TTWJ Vx>dx-
j=l ^ 0 -oo 2

fx(x).

For this purpose, let

'A'Mj =̂ j£n£ •c
• fi(xi'i1o* y^yJ W ^ <

and S, =.Zn [W.-C] for each 3 = 1,2, . . ., k = 1,2,
K O-l 0

Consider {(& >£^}™ , where ^L is the Borel subfield of $ induced by

Xn, ...,Xn . Since W. . is a Borel measurable function of X, ., , it
1 k k+1 k+1'

follows that X ,...,X , W are independent and S is afl-measurable.



Thus

28

Wi'^ =EJsk+{wk+i-c}!=V

=EJskK] + EJ[wk+i-c},^]

= sk + EJwk+i] "c =sk a-s-

and hence Usk^)3k=1 is a martingale. Since

E [ S. . - S
ooL ' k+1 k1 ^ =EJI\+l-Cl]<EJlSlll

for k < n*(X) a.s.(P ), then, according to Doob [1], (Theorem 2.2,

p. 302), the sequence [S , S „ } obtained by optional sampling is a

martingale with

n*(X)"

E [SI = E [S * ]
co l ro n (X)

It follows that

or

n*(X)

0=EJSn*(X)3 =E^.^ W^ "EjWl] *Jn*h

n*(X)

y fi(xo}
0=1 2 J

-f^x).
E> ) J log !t(T)i fi(x) dx>

—oo 2
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Remark: Kullback [7] has shown that if H.:h(v) = h.(v), i = 1,2,

are simple hypotheses on the density function h(v) of a random variable

V, and we define

r rVv)i:(1,2;0.) =Jlog Lh-^pyJ \(v)6y

to be the information in a sample of size 1 for discrimination between

H, and Hp, then the information l(l,2;0 ) in a random sample of size N

is Nl(l,2;0.). Theorem 3.2 is thus an extension of Kullbacks result to

Wald's sequential probability ratio test. It is easy to obtain Kullback's

result from the infinite series of Theorem 3-1 in the following manner.

k k k
Let if , if , \|j be the indicator functions of (a^., tO, z < -b ,

0 12 k k — k

z < a respectively, where a = b = +co for 1 < k < N and a^ - ~

k > N.

In this case, from Theorem 3.1,

= -b„ for

!(*) =

f N f (z.-z. ).

J~± 2 3 .1-10 o-

.f (z1 )dz^ .. .dz.
'N

-00 —00

• loe{ JTfVrJTTf^xJdx
iM ^3=^t2[ yJ 0=1 J J

[ Llos %^ fi(xi)dxi
—i ™

-CO —CO

N oo

N log ^T
where z = 0.
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We next obtain a representation for 1(63) that is similar to the

representation in Theorem 3-1-

Theorem 3.3. Let 63 be the Borel field given in Definition 3.1.

If PIC <K P263> then

where

OO 2 °°

1(63) =y (y j log r
k=l i=i -00

Vzk^
*i(zk} hlk(zk)dz^'

°° k-l

/•••/[jT+^^^Vv^-^^^r-^k-i-
-co —oo J —-L

\if k > 1

f£(zx), if k = 1
J

(3.1M h^(zk) =

Jo = 1,2.

Proof: Since the proof of this theorem resembles very closely that of

Theorem 3.1, most of the details will be omitted. Let B denote the

Borel sets of the line R. As in the proof of Theorem 3.1, there exists

a regular sequence [<$ ]°° = {[eJ] .^ }°° of finite B -measurable parti-
S S—_L S 3 —-L S—_L J-

oo

tions of R such that B^ is generated by U =£. , where -JL is the field
1 s=l s s

consisting of all finite unions of sets of 8 .
D s

For each E° e 8 , let
s s

Gsk = ^eAkilzkeEs^ i = i'2-
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For each s = 1,2,..., k = 1,2,..., {G1^.} .f, is a finite partition of
sk 3—1

ki'

J< ={A n, {G1?/8 , {G2?/8 ,...,{Gld}^S , [G2^S }S L SO' L SlJj=l' L SlJ -^ ' C SSJj=1^ L ssJ. -^

is a finite 63-measurable partition of fi; [J' } is a regular sequence;
s S—X

and if )V is the field generated by Js , then the Borel field generated
s s

CO

by U >V is 63. Proceeding in the same manner as in the proof of
s=l s

Theorem 3-1, we need only show

*s
(5#]c\ I,-™ V -n rn^-y-i It. fn1^ I t. fn1^-

^ l VGs£>lo8 .VGsk> I WGsk>S -» 00

0=1

r rhik^zk^-
• Llog! ^?- ♦i<WVa2k

for arbitrary k, i, where h ,(z ) and h (z.) are given by (3.1U). Fix

k, i, and for each F e B, let

(3.16) WF>=J *i(zk)VZk)dV *= 1>2
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From Fubini's Theorem and the definition of P.. , the set functions

X„n ., £ = 1,2, are finite measures on 6.., and

(3.17) ^kl(Es) = PjC^sfc) for each J = 1>2>"->V s= 1>2>

The absolute continuity of P,,, with respect to Pp- and the definition

of L. ., £ - 1,2, give X... . « > . . « m. where m, denotes Lebesque
4ki' ' ' lki 2ki 11

k
measure on B-. . Since the functions i|r.(z )h (z ) in (3-l6) are Borel

1 i K xK K

measurable, it follows precisely as in the proof of Theorem 3-1 that

lim y\ .(Ej)logr^ft^
L ikiv s; & , 3\

0=1 ^2ki(V

log rVfk>-
*2~^~ *i(zk)hlk(zk)dV

The result now follows from (3-17)

We conclude this chapter with

Theorem 3-k. Let 3 be the Borel field given in Definition 3-1-

If Vl3 K< V23> th6n

I(^) W log Lpu>(V / WVj
k=l i=l
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Proof: In Lemma 3.1 let (U, 3, Q.) be (fi, 3, P^), ^ = 1,2, and take

S i°o{7ft T = {{A n, A.., A0.}. ,} -,
L sJs=l sO' lj' 2jJj=lJs=l

From the choice of [7ft } _,, it follows directly that
S S—X

and

3=3

s 2

Xs^ =I Q W / WAid0 +VAsO> / P2(AS0}
0=1 i=l

for each s =1,2,

Also,

lim X(u>) = Xft a.s.(P .) ,
S —• 00

3 —^23'

where X„ is the R-N derivative of P „ with respect to P „.

Clearly, E _(|x log X |) < 00 for each s = 1,2,..., and so Lemma 3-2
C-JJ S S

gives

lim
S -* 00 Xs l0g Xs ^23

Q

X^ log X^ dP^
n
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Now since

s 2

lim JXs log Xs dP^ = lim {IQI P^(A )log [•
S —* co S -• oo

0=1 i=l

P^Asq)-

n

and

+̂ ^ log L^^?J

rP^(As0)-
lim Pl*(AsO> l0S !-P2^(As0)-S ~* co

from Assumption I in Chapter II, the theorem is established.



CHAPTER IV

RELATIONSHIPS BETWEEN THE INFORMATION IN THREE BOREL FIELDS

It follows readily from the definitions of the Borel fields 67, C,

and 3 described in Definition 3-1 and from (1.2) that I(67) > I(63) > l(3)

with equality between any pair [l(Jf), l(=d)} of I(67), I(63), and l(3) if

and only if

(^.1) sup 1(8) = sup I(K) ,
8cJ? Kcz£

where the supremum is taken over all finite subfields 8 contained in J<

and K contained in •£. However, it is not clear from the abstract

definition (1.2) what restrictions the equality (^+.1) imposes on the

conditional densities of the cumulative sums and the probability deci

sion functions used to define the probability measures P , £ = 1,2, in

Chapter II. We now use the rperesentations for I(67), I(63), and l(3)

given in Theorems 3-1, 3-3, and 3.^ respectively to obtain necessary

and sufficient conditions in terms of the conditional densities of the

cumulative sums and the decision functions for 1(67) = 1(3), l(67) = I(63)

when 1(67) < oo, and I(63) = l(3) when I(63) < oo.

The primary result which will be used to derive the conditions

above is the following lemma due to Kullback [7], and which is in

essence Jensen's inequality.

35
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Lemma k.l. Let (si,J) be a measurable space and let p, ^ 0, \i„

be two finite measures on 3 with p, « \i . If X is any measure on 3
d^ d^2

with \i, « X and q and q^ are the R-N derivatives -rr— and ir

respectively, then

- ^
log

V
c^dX > ^(=£) log --^y

with equality if and only if

\ *2
a.e.(X)

Theorem k.l. If I(67) < oo, then I(67) = 1(3) if and only if

k-l r- k-l

les^^w*^ ' jiK^n^w^iJ
w w

for any pair of indices (k,i) such that P.. (Z, .) > 0, i = 1,2
k-l

k = 1,2,..., where z = 0, and JT *q(z •) =1 if k = 1.

Proof: For each i = 1,2, k = 1,2,... let

'ki
R R

k f. (z.-z. ,)-.rk-l .
tt lv 0 0-lir-r-r.O,los ^^-^l^^v]^^

fi^k-zk-i)---fi^zi)dzr--dzk)- Wlog HO
2V kiy

k-l

where z = 0 and TT l^2-) = 1 if k = 1
0=1 0V 0

a.e (V
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It follows at once from Theorems 3-1, 3-k, and the assumed finiteness

of 1(67) that

CO 2

(^•2) i(a) - 1(3) = ) {) c
k=l i=l

Fix k,i arbitrarily and assume P (A ) > 0. Since, (as was indicated

in the proof of Theorem 3-1), the set functions defined by

k-l

*m(E) ={.../ iatj(v)^k)vvzkj-vzi)dv-dzk *
E E

for each E e B, , are finite measures on B with p, ,.(R ) = P ,.(A ),

£ = 1,2, and ^ k- « |j, ,.« itl_, it is easily seen from Lemma k.l that

(It.3) Ck. > 0 ,

with equality if and only if

k-l . -, k r k • k
k>

a.e.(mk)

VAki> P2^Aki)

If P (A .) = 0 the equality in (^.3) is trivially satisfied. It now
1 ki

follows from the inequality (k.3) and equation (^.2) that I(67) = I(63)

if and only if C . = 0 for each i = 1,2, k = 1,2,.... The conditions

for C, . = 0 now establish the theorem,
ki
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Theorem k.2. For each k = 1,2,..., let hni , h^n be the func-
' ' ' Ik' 2k

tions defined in (3-lM- If l(<3) < », then I(63) = 1(3) if and only if

W P2<Aki>
a. e. (m )

for each pair of indices (k,i) such that P (A .) > 0, i = 1,2,
X KX

k = 1,2,....

Proof: For each £ = 1,2, i = 1,2, k = 1,2,..., let

WE)=J^zk)Vzk)dzk-£kiv
E

for each E e /9, .

From the proof of Theorem 3.1, ^-ik-.> ^Pk- are finite measures on B

with the properties

Xnlr. « Xn, . « mn
lki 2ki 1

and

Alki(R) =P1(AM), X2ki(R) =P2(Aki).

The proof now follows along the same lines as the proof of Theorem k.l

from Theorems 3.1, 3A, and the finiteness of I(63).

Theorem k.3. For each k = 2,3,..., let hn: , h-n be the func-
' Ik' 2k

tions defined in (3-lM and let G, = {Tj e R |h (T)) fi 0}. If I(67) < oo,
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then 1(67) = I(63) if and only if

k-l .

[i*o<z3'>i(5)f1(5-Vi)fl(\-i-V2'---fi^i) /Vs>
•k-l

=[1'S+^^)>i(5)f2(5-zk.l)f2(zk_l-zk_e)...fl(zl) /h2k(?) a.e.(Vl)

for each § e G,, except perhaps on a subset of G, of Lebesque (m )

measure zero, i = 1,2, k = 2,3,....

Proof: For each i = 1,2, k = 2,3,..., let

k-l

qlk(5)=*J(l)
R R

• fi^-zk-i)fi^zk-i-zk-2)- •-fi(zi)dzr •-dzt

and

rik(5) =ti(5) hlk(5) log f^v(5) /hov(§)'lkv L lkv 2kv

M 0V 3-

for each E e R, where z„ = 0.
s ' 0

It follows from the finiteness of I(67) and from Fubini's theorem that

the functions Q.ik(§) and r k(5) are integrable and hence finite except

on a set E of Lebesque (m ) measure zero for each i=1,2, k=2,3,

We thus obtain from Lemma k.l the inequality



ko

qik(§) - rik^) for each § e R " Eik' with
equality for any point £ e R - E such that1

lk

hlk(§) ^ 0 if and only if

(k.k)/ *J(?)r0r1*o(zo»]fi(*-\-i'f1(zlt-i-v2)---vzi) / V?)

*i^)[Tf*^^)>2(5-\-l'f2(Vl-V2»---f2(Zl) /W«>
a.e K-i»

for each i = 1,2, k = 2,3,

Now h (§) = 0 implies qn.v(§) = rn.v(§) = 0 and so from (k.k) we have

r

Hkx ikv

J V(5'd? -J rlk(5)d5 > 0,
R

with equality if and only if equality holds in (k.k) a.e.(m ) on G, .
1 k

Hence it follows from Theorems 3.1, 3.3, and the finiteness of I(67)

that

1(67) - 1(63)

2

=vrv r
L V L i " * _

k=2 i=l R R

. dz, . . .dzn
1 k_

h V Wihr ^log{ TT :
,i=l •<J -1- d 3 3-1 J--1-

R

hlk(zk) k
log n—?—v ty • (zi )h, (z, )dzn& h (z ) Yiv ky lv k; k

k=l i=l R
*ik^ "J rik^d?. > 0,
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with equality if and only if

(^•5) IcLik(5)d? "I rik(5)d? = °>

for each i = 1,2, k = 2,3,

The conditions for equation (^+.5) to hold now establish the theorem.

Corollary k.l. If the common density functions f.(x) of the

random variables X ,X ,...,X^,... under the hypotheses H., i = 1,2,

have the property that f (x) = e f?(x) for each x e (-00,00), then

1(67) = 1(63), whether I(67) is finite or infinite.

and

Proof: Since f (x) = e f?(x), then

k z k

TT f (z -z ) = e TTf0(zk-zk 1>d=1 1 0 0-1 j=1 <• k k-l

z k-lhlk(zk) =e*l...j r_TT*J(z.)]f2(zk-zk_1)...f1(z1)dz1...dzk_1
R R 0 =1

6\^

k-l .

for each k = 1,2,...,where z_ = 0, and T[ T^(z.) = 1 if k = 1.0 j'=1 rcr 3'



Thus

OO CO

Z^ =I(U--ilog{

r--dzk). dz

2

k2

=){) j...|iog{jr MlJ^J'"1)}klfTo(Zi)T-(zk)f1(vzk i>-kti i=iR ^ l0=lf2(Zj Zj-ljJ 0=1 o 0 i k 1 k k-l

k-l

W

k=l i=lR

lJii;0(zJ)f1(zk-zk_1)...f1(z1)dz1...dzk_1
R RJ

2

k=l i=i
log thrfsry] ^(zk)hi(zk)dzk

VZk>
R -h2k(2k

from Theorems 3.1, 3.3 and Fubini's Theorem.

Remark: Let the probability density function g(u;9) of a random

variable U be given by

(^•6)
/ ,Qv 9u+r(u)+q(9);(u:9) = e \ ; ma /

for u in some subset of the real line, independent of 9. Suppose that

S is a Wald sequential probability ratio test of the simple hypotheses
w

H^gCuje) = g(u;9 ), i = 1,2, on the parameter 9 of g. It is easy to
g(u;9-, )

show that X = log , \ has density functions f.(x) under H., i = 1,2,
g(iu,y2j iv i' ' '

with the property f (x) =exf?(x); and thus l(67) = l(63) for the test S.

from Corollary k.l. Density functions of the form (k.6) include an

important class used in applied statistics. Particular examples are

w
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the normal, Poisson and binomial densities. In the binomial case, for

example, the density (probability function with respect to counting

measure) is

,m. x,_ Nm-x
L)P (1-p) = e

xlog(^-)+log(x)+mlog(l-p)
, 0 < p < 1.

It might appear that the hypothesis of Corollary k.l not only

guarantees I(67) = I(63) but also I(67) = I(63) = l(3). The following

example shows that this is not the case.

Example k.l. Let g(u) be the density function of a random

variable U, and let S be a sequential probability ratio test of

H,:g(u) = g,(u) against H :g(u) = g„(u), where

gx(u) =
2u, 0 < u < 1

0, elsewhere
, g2

Now X = log—7—r = log 2u has density functionsg2(u)

1 2x

;

(u) =

f
1, 0 < u < 1

>
0, elsewhere /

)

2e 'fx(x) =
< x < log 2

0, elsewhere

J

>* f2(x) ={
1 x
— e ,-oo < x<log 2

0, elsewhere

x.under H,, Hp respectively, so, clearly, f (x) = e f?(x) for each

xe (-oo,co), and the hypothesis of Corollary k.l is satisfied. For ease

of computation, we shall assume in the following that the terminating
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barriers, -b and a, associated with S satisfy the inequality
w

a + b < log 2. From Theorem 3•2, we have

Here

and

So,

r rfi(x)i1(67) =E1(n) J log |JXT-xJfi(x)dx.

E (n) =1+J P (n >N)
N=l

oo a a
N

= 1 + y
N=i -b -bJE VWl'^

oo a a

N=l -b -b 2

2Z*> *e dz1...dzN

^ry^y-lje-e---
V 2 J T

N=l

-fl(x)l
log 2

, r r n „ n, if x^, log it-i°SLFTxTJ fi(x)dx = 2 J xe dx = —S^
0 <~ —OO

1(67) = |~1 +
2a -2b-

e -e

Mi- ^)"
"log k-l'

From Theorem 3.k, l(3) =£(£ \(^±) log^1/*1*] ), and it i
N=l i=l ^?-

Ls easy
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to show that here we have

-2b*/k if N = 1, i = 1.

2a

w =

(k-e"a)/k if N = 1, i = 2.

e?f-2 (^) f^ if n>i, i
,a+b,N-2f2(e2a-e-2b)-e2a(a+b)"

if N > 1, i = 2.

Also,

/2 if N = 1, i = 1.

a
(2-e )/2 if N = 1, i = 2.

P2<V (^)N-2(^)(e-b/2) if N>1, i=l.

,a+bvN-2 2(ea-e" )-ea(a+b) if N> -,_ ±

Thus, in this case,

-2b

K^) r

-b , 2a , 2a
e k-e _, 4-e

log -— + -p log
2 k 2(2-ea)

N-2n

+(I(^) MC
N=2

- -u-n "2b -b
a+b\ e . e

-J — l0S —

2a -2bv 2a, 2a -2bv 2a-^2(e -e"u).ea(a+th (2(e -e~'u)-e"°-(a-fb)
+V 8 J °gS[2(ea-e-b)-ea(a+b)]
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Evaluating I(67) and l(3) for a = b = — log 2, we find that

1(67) = .3039 and l(3) = .2529

to four significant digits, and hence

1(67) > 1(3)



CHAPTER V

CONCLUDING REMARKS

In this paper we considered the information in a sequential test

S of simple hypotheses which is determined by cumulative sums of inde

pendent random variables; and we derived analytical representations for

the information I(67) in the decision process, the information I(63) in

the sequential decision variables, and the information l(3) in the

stopping rule. These results are not limited to this particular type

of sequential test. The probability spaces defined in Chapter II can

easily be modified so that representations similar to those given in

Theorems 3.1, 3.3, and 3.k can be found for more general types of

sequential tests of simple hypotheses.

In the particular case of a Wald sequential probability ratio

gi(u)
test we showed that the information I(67) is equal to E, (n) E, [log—7—r],r ' 1 Bg2(u)J'
where n is the termination sample size and g (u) and gp(u) are hypoth

esized density functions of an observable random variable U. It should

be clear that with minor modifications of the proof of Theorem 3.2 the

same result is also valid for the generalized sequential probability
-p ( \

ratio test. The writer conjectures that l(67) = E (n)E [log „ , v] even
x 1 ip\xj

for the randomized test and this is presently being investigated.

It should also be pointed out that the representations given by

Theorems 3.1, 3.3, and 3.k can be obtained by determining the explicit

kl
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dP167 dPl63 dPl^ .. n w
form of the R-N derivatives —— , -r=— , and —— respectively. How-

dP267 dP263 P2^

ever, this approach becomes quite difficult in generalization.

Equality between any pair of I(67), I(63), and 1(3) is closely

related to the concept of sufficiency of a Borel field, (see [3] for

the definition of sufficiency). It is known [6] that a Borel field

3 c 3 is sufficient for the set of probability measures {^-.j, M*2^} if

and only if l(3 ) = 1(3). From the viewpoint, Theorems k.l, 4.2, and

4.3 then give necessary and sufficient conditions for 3 to be sufficient

conditions for 3 to be sufficient for {P^, P^} ,3 to be sufficient for

[P^, F }, and 63 to be sufficient for {P^, P^} respectively. It is

hoped then that the results of Chapter IV can be used as a basis for

the study of sufficiency in sequential tests in terms of the technical

sense of information.

By way of further research, in addition to that above, we mention

the following topics:

(1) investigate the information in sequential tests of

simple hypotheses when the basic random variables

are not independent;

(2) investigate the information in multiple decision

problems;



49

(3) use the information measures as a means of comparing

sequential tests.
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