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CHAPTER I

INTRODUCTION

Review 9£ the Literature

Let (Q,B) be an arbitrary measurable space and let Pl and P2 be

two probability measures defined on B. For any subfield J of B let

Pir

B-measurable partition of O and J is the finite subfield of [ consisting

denote the restrictions of P, to J, i =1,2. 1If {Fk} is a finite

of all unions of the sets Fk’ then the quantity

(1.1) 1(7) =)

izPL;,(Fk) log i_Plg(Fk) / PQJ(FK)}

will be called the information in the field 4 for discrimination between

P, and P In (1.1) and its extensions to be made in this paper the

1 2"
natural logarithm will always be used and terms Plg(Fk)log[Plg(ﬂg/Iéy(FQ]
will be assigned the value zero whenever PLJ(Fk) = 0 regardless of the
value of P?g(Fk). The information I(J) is always non-negative [6]; each
of the terms in its defining sum is greater than -o; and I(7) = +e if
and only if PLJ(FK) > ng(Fk) = 0 for some kK.

The information measure I(J) above has been discussed by several
authors [6], [10], [11], and in 1959 the definition was extended by
G. Kallianpur [4] to cover an arbitrary Borel subfield ¢ of /3. The

basic property of I(J) that underlies Kallianpur's extension of the

definition (1.1) is the following. Let Ji be a finite subfield of A~

1




generated by a refinement of the partition {Fk} of Q, then I(Q&)E:ICD.
This is easily shown to be true by use of Jensen's inequality for
continuous convex functions. It is natural then to extend the defini-
tion (1.1) in the following manner. For an arbitrary Borel subfield
d of B let

(@) = sup I(J) ,
Tca

where the supremum is taken over all finite subfields of &.

By use of properties of martingales and semi-martingales,
Kallianpur derives necessary and sufficient conditions under which
I(d) is finite as well as an integral representation for I(&). The
main result of his paper is
Theorem 1.1. Let & be any Borel field of subsets of Q and let I(&) be
defined by (1.2).

(i) 1f Py K P, (Pld is not absolutely continuous with

respect to P, then I(d) = .

By

(ii) If P, << then

17 <= Porp

1(a) :J‘ X log XdPga :J‘ log Xdp
Q Q

1

where X is the Radon-Nikodym (R-N) derivative of P) 7

with respect to P whether I(d) is finite or infinite.

2a’




(iii) I(«@) is finite if and only if

<< P

(a) Py od

and

(b) EgaJX log X!| < o,

where Eﬂ7 denotes expectation on the probability space

(Q, a4, P, i=1,2.

2,

Theorem 1.1 is important because it relates the basic definition
(1.1) to an integral representation which was assumed to be the infor-
mation in the general case by Kullback and Leibler in [6]; and which
has been applied extensively since that time to the theory of statis-

tical hypotheses testing in the fixed sample size case.

Summary of Contents

In this paper we investigate the information as defined by

(1.2) in a sequential test S of simple hypotheses Hi’ i =1,2, which

is determined by cumulative sums of independent and identically dis-
tributed random variables, Xl’X2’°"XN""’ and which terminates with
probability 1. For the problem of testing one simple hypothesis against
another, of all tests whose probabilities of incorrectly accepting the .
second hypothesis are bounded above by given bounds, the Wald sequential
probability ratio test gives the smallest expectation of the sample size

under either hypothesis. For this reason, particular emphasis is given

to this special case of the general test S.




By defining probability spaces (Q, 7, Pﬁ), 4 =1,2, appropriate
to any such test S, we derive integral representations for the infor-
mation I(&), I(C), and I(H) in three particular Borel sub-fields &, C,
and B of 5 in terms of the conditional probability densities of the
cumulative sum variables. The fields &, C, and B are chosen so that
the quantities I(&), I(C), and I(B) may be appropriately referred to
repsectively as the total information in the decision process, the
information in the sequential decision variables, and the information
in the stopping rule. In the special case of a sequential probability
ratio test of hypotheses Hi:g(u) = gi(u), i =1,2, on the density func-
tion g(u) of an observable random variable U, we show that

re1 (u)
(@) = EL7(n) r log ——T—7]gl(u)du .

This generalizes the familiar additivity property of the information in
fixed sample size random sampling, Kullback [7].

In general the Borel fields &, C and & have the properties that
I(?) > 1(C) > 1(B), but necessary and sufficient conditions on the
conditional density functions of the cumlative sums will be stated
under which I(&) = I(C) and I(@) = I(B) when I(d) < », and I(C) = I(8)
when T(C) < ». Again, in the case of a sequential probability ratio
test, it is demonstrated that I(&) = I(C) whenever gi(u), i=1,2,
belong to an important class of density functions, namely the exponen-

tial family.




All of the primary results stated previously are obtained for
the case in which all of the random variables under consideration admit
a Borel measurable density function; however, by interpreting integrals
as sums, and replacing Lebesque measure by the counting measure, the
results remain valid for the discrete case as well.

Care has been used to impose only conditions which are accepted

as basic in sequential analysis. TIn this connection see [12].




CHAPTER II
DEFINITION OF PROBABILITY SPACES

In this chapter we discuss the probability spaces (Q,B,Pi),

i = 1,2, appropriate for a study of the general sequential tests S

)
mentioned in Chapter I. Such tests S will include those based upon a

random walk with independent increments and terminating barriers, -b

and a, defined as follows. For any sequence X ..XN,... of inde-

17X27

pendent random variables with a common density function f(x) define the

2 N
sequence Zl = Xl’ 22 = jél Xj"" ZN = jél Xj""' Let the cumulative
sums Z of the Xj's begin at 7, = 0 inside (-b,a) and change (walk) by

independent increments ZN - ZN_l = XN between (-b,a) until an increment
XN takes ZN outside (-b,a). The process then terminates at ZN with a
type 1 termination if ZN > a and with a type 2 termination if ZN < -b.
Historically, Wald suggested using random walks of this special
type in his sequential probability ratio tests for deciding between
hypothesized density functions gl(u), gg(u). We extend Wald's idea to
the case of a sequential test which is determined by cumulative sums of
independent random variables and a more general type of random walk.
Specifically, for each k = 1,2,..., let w?(z), i =0,1,2, be
three Borel measurable functions defined and non-negative on -« <z <w

and such that for each z,

(2.1)



For each j = 1,2,..., N =1,2,..., let Xj and ZN be defined as in the
random walk with terminating barriers. The walk with independent
random increments XN is terminated at ZN in a type 1 termination with
conditional probability w?(zN), or in a type 2 termination with condi-

tional probability ¢g(zN), or is continued to ZN+l with conditional

probability ¢g(zN). Clearly the walk with terminating barriers, -b and

a, is a simple case of this more general process. We refer to this

J

type of walk as a random walk with randomized terminations.

Now let g(u) be the probability density function of a random
variable u and let H,: g(u) = gl(u), H,* g(u) = gg(u) be simple hypoth-

esis on g(u). Let S be a sequential test of H, against H, which is

determined by cumulative sums of independent random variables, Xl’Xgi"”

and which specifies the probability decision functions ¢g, ¢§, ¢g with
the properties defined above. The decision rule for S is then the
random walk with randomized terminations as follows., If the termina-
tion of the walk is of type 1, accept Hl' If the termination of the

walk is of type 2, accept H2.

For example, suppose S is a generalized sequential probability
g1(uy) N
ratio test as defined in [13]. Then X = log -T_—7 ZN Z X for

k

0’ ¢1’ ¢2 are the indicator functions

each j = 1,2,..., N =1,2,..., and ¢

i i - < < < -
of the respective intervals bk z <&, 2 S8, 2 < bk for each

k=1,2

3o




Before defining the probability spaces appropriate to the general
decision rule S, we note that the random variables Xl’XQ""XN"" have

a common density function fi(x) according to Hi’ and since Zj- Zj_l::Xj

for j > 1, the conditional density of Zj given Zj- must be fi(zj-zj'1>’

1

where ZO and Zq are equal to zero.

To define the probability spaces let (2 be the set of points w

which are infinite sequences

w = (ocl, Cpyvnes ock,...)

in which each component ¢, is a pair (zk,yk), where z._ is any real

k k

number and y, takes on one of the values of the subscript i of ¢§(2k>'

Fach ak will then denote a possible cumulative sum value and a possible

decision at that sum value. The following subsets are of particular

interest in connection with the decision rule S:

il
it

{wla,

Tl < - s =
Akyk ; (zj,O), J<k-1 and o (zk,yk), Yy 0,1,2}

(2.2) :
[B

I
Il

{w]a,

5= (250), 3 =1,2,...1 . J

— 3 k
Note that B = lim Ako, and {Ako, Ajl, Ajg}j:l
k- o

for each k¥ = 1,2

2=

is a partition of Q

The sets Aky are special cylinder subsets of (2. In general a
k

cylinder subset of Q is defined by any restriction on a finite number




of the aj's. In particular, Borel cylinder sets are defined by

restricting z <5205 for some finite m, to a Borel set in Euclidean

190
m space and by specifying a set of values of y;, one for each index
J=1,2,...,m. The special sets Akyk described above are Borel cylin-
der sets and all Borel cylinder sets are subsets of finite unions of
the Akyk'

It is known that there exists a minimal Borel field & of subsets
of O which contains all Borel cylinder subsets of (). Moreover it is
known that if a function P(A) can be defined for all Borel cylinder
subsets A of 2 in such a way that the axioms for a probability measure
are satisfied on the Borel cylinder sets, then P{A) can be extended
uniquely to a probability measure on the minimal Borel field 5. Hence
we shall be content with the definition of P(A) for Borel cylinder sub-
sets of Q.

Let Ac be a Borel cylinder subset of Q. Then Ac is described by

Borel set type conditions on « A for some m. Since

15005

{a

m ‘rs
e Ajl’ AjE}j=l is a partition of Q, the sets

/

Aki

it
O>
D
>
.
H
1
'_l
\.[\_)
AYY
o
1
}._J
:r\)
B

I
=
0
D
=
2

AmO -

partition Ac.
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Now w € A i =1,2,.implies that

ki’
\

(y —i ifk=1
(V1 7T R T

and w € A implies that {yl =...=y =0}. If k<m, let

(y;+l,...,y;) be any possible set of the y values of the indices

(v¥ s oo Vm)
k+l,...,m. Let A ~k+l M/ be the subset of A . with the given

(y;+l,...,y;) values. Then
*
{A(Yi+l;"-;y )}
. artiti A L.
ki (y;+l,...,y;) partitions ki

(Ypyqs -+ m)
For any fixed index sequence (k,i,y;+l,...,y;), the set A 1 n

is specified by (zl,...,zm) ¢ B, a Borel set in R . For L =1,2,

define
( *TTW (z,) ] 5 <k>]vk*l ) V()
T (z -z )fﬂ(zm-l-zm-E)'” fﬂ(zl)dzl"'d2m>’
(Yk 1 if 1 < k <m.
Pyl

jw (2 (2) - ™, (208 (22, ) )onefy (2)

dz

if k =
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and, by additivity,

PE(Aki) - ( * E

*
K1 V)
for 1 S k < m. If we now define

p,(A ) = j];' JT I}ﬁllrg(zk)]w?(zm)fz(zm-zm_l). £ (2, )az, .. dz_

m
and

P (A ) = jB.n; .J[iwg(zk)]fz(zm-zm_l)...fz(zl)dzl...dzm,
then

m 2
PE(AC) - E(Z PZ(Aki)>+ PE(AmO)’
k=1 i=1

and the definition of P, for an arbitrary Borel cylinder set is complete.

4

Clearly, Pz satisfies the axioms for a probability measure on all Borel
cylinder subsets of Q since Q = AlOU All U AlE implies that
Pz(Q) = Pz(Alo) + Pz(All) + Pz(Alg)
=I ¢rl(z )f£,(z,)dz. + I \[,rl(z Y (z,)dz, + J q;l(z V£ ,(z2,)dz
0177 4MT1 L 1V 11 2 717741
R R R
1 1 1 ”‘j B
= Ttyd(z)) + 930z +yp(a)] £1(20)dz,= | £1(z))dz) =1
R R

from (2.1).
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In order to guarantee that the sequential tests under consider-
ation terminate with probability 1, and for other reasons which will
become apparent later, we make the following assumptions:

Assumption 1: There is a constant p, 0 < p <1, and an integer

M such that for all m > M the inequality

is satisfied for £ = 1,2.

~ M
r 1 }E_Wg(zk)] ff/(zm_zm-l)'"fl(zl)dzl"'dz < 0

g o

Assumption 2:
J tog T (x)
R 2

fl(x)dx <o,

For future use we define three random variables, n(w), Zn(w)(w)’

Y(w), which are closely associated with the decision processes.

Definition 2.1. For each w € Q - B, let n(w) be the least positive

integer N such that the component «

N equal to

(ZN’yN) of w has Vy

one or two; that is, an(w) is the component of w at which the test
terminates. Let Zn(w)(w) be the random variable whose value is the

value of z. when n(w) = N. Let Y(w) be the random variable defined by

<]

1 if w e kgl Akl

Y(w) - -
2 if w e kgl A J

where the sets A, ., 1 = 1,2, k = 1,2,..., are defined in (2.2).
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It should be noted here that the random variables n(w), Zn(w)(w)’
and Y(w) are defined only up to a set of P, measure O, (Assumption 1
quarantees that Pﬂ(B) = 0); however, this will suffice for our purposes.

Also note that

(2.3) {wn(w) = x} = A UA,

for each k = 1,2,....




CHAPTER IIT

INFORMATION IN THREE BOREL SUBFIELDS

Introduction

As mentioned in Chapter I, three Borel subfields of 5 are of

primary importance in connection with the information measure (1.2)

applied to the probability spaces (Q, B, PE)’ 4 =1,2, defined in

Chapter TII.

We are now in a position to define these fields.

Definition 3.1.

(1)

(i1)

(iii)

Let  be the Borel field generated by the collection

consisting of A and all Borel cylinder subsets of Aki for

ki
each k = 1,2,..., i = 1,2, (here Ay, is defined by (2.2),
and we take a Borel cylinder subset A of Aki to mean that

€ B a Borel

NS A, and A is specified by (zl,...,z -

)
set in Rk).

Let C be the Borel field induced by the random vector
(n, Y, zn), defined in Definition 2.1.

Let B be the Borel field induced by (n,Y), where n and Y

are defined in Definition 2.1.

In this chapter we obtain analytical representations for the

information measures I(d), I(C), and I(H) in the Borel subfields &, C,

and [ described in Definition 3.1.

14
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Background Material

Preliminary to a discussion of I(&), I(C), and I(B), we require
the following definitions and lemmas.

Definition 3.2. A Borel field J is separable if it is generated
by (is minimal over) a countable collection of sets.

Definition 3.3. Let (¥, J) be a measurable space. A sequence
{W%} =:{{Mg}j}::l of finite J-measurable partitions of ¥ is called

regular if for every s, M e W%+1 is a subset of some Mi € W%.

s+1

Relating Definitions 3.2 and 3.3 is

Lemma 3.1. Let J be a separable Borel field. There exists a
regular sequence {W%}::l of finite J-measurable partitions of ¥ such
that J is generated by ;il 3;, where Jé is the Borel field consisting
of all unions of sets of 7, ({81, p. 355).

Of fundamental importance in the proofs of the theorems to
follow i1s Doob's example on the theory of derivatives, ([1]), Example 1,
p. 34Lk). We modify and state his basic results as

Lemma 3.2. Let (¥, J, Qi), i = 1,2, be probability spaces with
Kg
J=1l’s=1

J-measurable partitions of ¥. For each s, let Jé be the field consist-

o j .
<< =
Q Q, and let {W%}s:l {{Ms} be a regular sequence of finite

ing of all finite unions of the sets of W%, and let 3; be the Borel

field generated by U J .
s=1 S




16

If we define for each s = 1,2,...,

kS
. e
x () =) Ta0d) 7 a o) Lrf),
J=1 s

where Ql(Mg)/Q?(Mg) = 0 if Qz(Mg) = 0, and let X_be the R-N derivative

of ng. with respect to Qgg;’ then

{Xs, s > 1} is a uniformly integrable martingale with

Lin X () = X (w) a.5.(Qyy )

S — oo

Kallianpur proves the following specialization of Theorem h.1's
(ii)(b) of Doob [1].

Lemma 3.%. If (i) {XS, s > 1} is a uniformly integrable martin-
gale, so that Slimm X, =X _ exists with probability 1, and (ii) @(t) is

a real, continuous, convex function of the real variable t such that

El@(xs)] < o for every finite s, then lim E[e(X)] = E[o(X )].
S — o ®

We shall make extensive use of this lemma throughout the remain-
der of this paper.

Although the next lemma is only used in connection with the Wald
sequential probability ratio test, we include it here for completeness.

Lemma 3.L. Let U be a random variable with density function g(u),

and let Hi:g(u) = gi(u), i = 1,2, be simple hypotheses on g. Suppose

gp(u) = 0 implies gl(u) = 0 except on a set of Lebesque measure zero.
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If the random variable

(@

g, (0)/g,(u) 1if gy(u) £
X(u) =

(@

1 if gg(u) =
\

has probability density functions fi(x) under H,, i =1,2, then

f (x

(u
”1£ [10g E—(—? g, (u =£ [10g —7—7] £ (x)

where O log O is assigned the value zero, and my denotes Lebesque mea-
sure on the Borel sets 51 of the real line R.
Proof: Let Ql and Q2 be the probability measures defined on Ei

by gy and g5 respectively; that is,

Qi(E) =:£ gi(u)dml for each E ¢ A, i =1,2.

Since gg(u) = 0 implies gl(u) a.e.(m), we have Q << Q, «<m, and it

follows from the definition of X(u) and an application of the property
dQl B dQl ng

dml B dQ2 dml

a.e.(ml) of the R-N derivates that

Let Qél), i =1,2, be the probability measures induced by X(u) on the

Borel sets; that is,

(3.1) Q,}((i)(E') = Qi(X_l(E')) for each E' € 3.
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Since Ql AN Qg, then Qél) < Q§2>, and so it follows from the R-N

theorem that exists a non-negative Ei—measurable function h such that

(3.2) QQ((I)(E') :f th?((g) for each E' ¢ B
E'
Now
.3) [ naal®) = [ nwa, = [ xaq, = (), 8 = x @)
E

E! E
from (3.1), (5.2) and ([8], Theorem a., p. 5L2).
1
(

Let S, be the Borel field induced by X on R, (5, = (E 6/31|E =X " (F)

for some F eﬁa). We now have

QQBO(E) :£ K40y = £h<x>d9%

for each E € Eb from (3.3), and hence

hX)= X a.s.(QLG )
0

Thus, obviously,

f log [h(X)] aQ, = J log XdQ,
R R

and therefore

(3.4) J log th&l) :.[ log XdQl
R

from [8], Theorem a., p. 342.
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By assumption, X has probability density functions fl and f“2 under Hl

and H‘2 respectively, so
[ 106 na (1) _ [ 108 [£.(x) / (x) Jr, (x)am
QX 1 2 1 1’
R R
and finally, from (3.4) and the definition of h,

[ 10g [£,00) / 2,00 oy (x)amy = [ 20 ) (w) / gy(w) Jey (w)am,
R R

Integral Representations

We are now in a position to establish the

Theorem 3.1. If (Q, B, Pz) £ = 1,2, are the probability spaces
in Chapter II, and if Pld << Ped’ then the information in the Borel
field & of Definition 3.1 has the representation

o]

2 o 00
_ N ] kf‘(zJ -l)
@ =3 (T [ s {7 2t [ ke

i -J=1

k
wi(zk)fl(zk—zk_l) . .fl(zl)dzl. ..dz,,

where 24 = 0, and J_U-lwg(zj) =1 if k = 1.

Proof: Throughout this proof, whenever we say that a sequence
{YS}:_l is a uniformly integrable martingale, or converges a.s., these

statements will be understood as referring to the probability space
k-1

Q, @, P and we shall also let ﬂl¢g(zj) =1 if k = 1.

24) ’
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For each integer k = 1,2,..., let Ek denote the Borel sets of

:(zl,...,zk). Since 5 is a separable field by Lemma 3.1 there

; exists a regular sequence {5sk} = {{ }J l}s 1 of finite B -
| measurable partitions of Rk such that B is generated by U C'k, where
? cék is the field consisting of all finite unions of sets of 5sk for
| .
5 - J
each k = 1,2,.... For each E' ¢ 5sk’ let

iJ _ J, jk}
My = fw e Aki[(zl,...,z ) € Bl

1j zsk
then, for each s = 1,2,..., k =1,2,..., } _; is a finite partition

of Aki'

Define the collections ms’ s =12,..., of sets:

)/ )/

11 {M } ll}

m - a Gnd)
3= -1 j=1

1 Lo’ 11

¢ O\pl

n - A ;Mla} o1 ;Mzg} o1 {Mu}‘gg {M;'J gp}
J <1’ Jj=1

n - {n, JMla"

s sl

)
sl [MQJ sl {M ss’{Mig ss}
=1 j=1

J= l

Since for each s =1,2,... the sets comprising ms are a finite d-
‘s ij .
C
measurable partition of Q, As+10 - Aso’ and Ms+lkf:ms+1 is a subset of

ip . 0 .
some M_ e, k = 1,2,..., 1 = 1,2, then {W%}s:l is a regular sequence.
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Let 3' be the field consisting of all finite unions of sets of W% and

let 3' be the Borel field generated by the field U 3' then clearly
s=1

g =d.

0

Define the sequence of functions V (w), s =1,2,..., by

s sk 2
G.5) v =) ) () [p0eid) 7 pgedd |o s
k=1 j=1 i=1 Mk

* [Pld(AsO) / Pzd(Aso)]' Idso(‘”)’

ij ijy . ijy _
where Pld(MSk) / Pgd(Msk) = Q if Pgd(MSk) = 0.
It follows from Lemme 3.2 that {V (w), s > 1} is a uniformly integrable

martingale and 1lim V (w) = V a.s., where Voo is the R-N derivative of

S 7 »

with respect to Pgar Now let

(

it logt if t >0
}

Pa
p(t) =
0 if t = oJ

Since P; , << P, , we have Egaifm(vs)[] < o for each s = 1,2,..., and

it follows from Theorem 1.1 and Lemma %.3 that

S ? ®

Fix k, i arbitrarily and apply Lemma 5.5 to the uniformly integrable
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martingale {VS.IA , 8 > 1} to obtain

ki
(3.6) Slimm J cp(Vs)dPgd = J cp(Voo)dPgd = J log V_dP, , .
Axi Aki Agi
From the definition of VS we have
zsk
i i i
(3.7) J o(V,)dP, , = ?; PLQ(M log FP 17MG5) J / Py M J)] .
Agi =1
Equations (3.6) and (3.7) combine to
zsk
ij ij
G.8) ) e i) tog [P ) /R0 ]

J'__

:J ‘P(Voo)dPgazj log (V )dP, ,
ki Py

Thus if we show that the left-hand side of equation (3.8) is equal to

59[ _log{Ul"i'Z—;lS}yW’”‘ J’J’ o) T (2= ) (2022,

where ZO = 0,

then the representation stated in the theorem will follow from

o D
() =J cP(Vm)dPgd=z (2 J ‘P(Vm)dPgd>
Q
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To obtain (3.9) for an arbitrary but fixed k and i, define

k-1
B et ==L...I[f;liwo(zj)]wg(zk)fz(zk—zk_l)...fz(zl)dzl...dzk

for £ = 1,2, and for each EeBk.

By the definition of P is a finite measure on B, (We assume

@ Mok

Mok is not identically zero for otherwise the result is trivial).

Let

00 00

k-1 . Xk
Corei = j...£m£¥ﬂji¢g(zj)]wi(zk)fz(zk-zk_l)...fz(zl)dzl...dzk

=00

and define

b (B)

(B) = 57—/,
Lki Czki

P £ =1,2, for each E ¢ Ek.

<
Now PL7 Pzd

we have that Plki and P2

by assumption, so, from the definitions of P, ., £ = 1,2,

2ki

ki 2re probability measures on Ek and

< < .
Plki P2ki m where m denotes Lebesque measure on 5&

'}2Sk 00

. S _ J
Since {6sk}s=l = ({8 j:l}s:l

K is a regular sequence of finite Ek-

loe)
such that Ek is generated by U it

measurable partitions of R c .,
s=1 sk

k
follows similarly to the first part of the proof that

2sk

. J J J
(5.10) S ;:l Pryes (Fgi) 108 [Plki(Esk) / PZki(Esk)]
J:

= J Xy 108 Xyy Aoy = [ 108 Xei Prgso

J

Ry Ry



2k

where in denotes the R-N derivative of Plki with respect to P

Consider the Borel measurable functions

2ki’

N k-1 .
Bei (P00 2) = Tt { [j::lwg(zj)Jwi(zk)fl(zk-zk-l)'"fl(zl)}
k-1 .
Eoxs (2100 02y) = CEii { [;lj wg(zj)1¢§(zk)f2(zk'zk-1)"'fg(zl)}'

They have the properties that

Plki(E) = J LU PEki(E) = j t,yidm, for each E eE&?
E E

and so, by the R-N theorem, are equal a“e.®k) to the R-N derivatives

dP?ki dPEki
dmk and dmk respectively. From the definitions of Mgy and szi’
ap, . . dp., . 4P, . .
and an application of (3.10) and the property Lki ki 2kl ¢
dap,. dmk
dmk 2ik
the R-N derivatives, we obtain
Lsk
. N J J J
) P (B tog P10 / oy (51|
J=1
Lsx
Coxi 2 ¥ j ; 3
Sleg—tg MUm ) pgy (Bly) Tos {ulki(Esk) / uEki(Esk)J

ki 1ki S8 =@ 53

J Xy 108 Xy APy
Ry
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k f (z

L] v ] i)

lk1 -0 = l

o
. [-;1; Wg(zj)] W?(Zk)fl(zk 2y _ l . (z )dz .dzk,

h = 0.
where zO 0

It now follows that the integral in (3.9) is equal to

J) .
sk dJ
j Myt Egre)
lim ulklﬁl log | ————m——
S M oo . i (EJ )
§=1 Pki' sk
thus t .
and thus to 2sk . (MlJ)
lim y P d(M ) log I——]g—%— ] s
S ™ o . =
J—l Pzd(Msk)

since

Joy _ ij J oy _ ij
by Bar) = PrMy) and by s (B ) = P (M),
for each j = 1,2,..., 4 s =1,2,....

If the test S under investigation is a Wald sequential probability
ratio test of Hl:g(u) = gl(u) against szg(u) = gg(u), then for each
k=1,2,..., N =1,2,...
N
g, (0,)

Xk = log m ) ZN = kEle; and 1l‘o) ‘L'l) ¢2
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are the indicator functions of the intervals (-b,a), z < -b, z < a

respectively, where a and b are positive real numbers. In this case

the infinite series for I(&) reduces to

©» aa -b k f (Z -zJ 1)
(5.1) Z[ff f 10%{ fl(zk-zk_l)...fl(zl)dzl...dzk
k=1 -b-b - T(z5m25)
a a 00
k f (z )
37751 } _ J
' r J" Hoe {3:1 £, (z -z, £ (22 _q)--- f(7)dzy .. dz, |
bbb a 371
zO = 0.

Now let (Rm, 8_, Pm) be the probability space induced by the
above stochastic process when POo is generated by fl(x), (the components
of sequences X = (xl,xg,...) in R all have the same density fl(x) and
they are totally independent random variables). Define n*(X) on R_ to

be the least positive integer N such that one of the inequalities

N N

Zy = §1 x > a or zN j l x < -b holds. It follows at once from the
definitions of P and P, that the sum (3.11) is equal to

x

n” (X) ¢ (x )
(5 .12) Em[ y log —<—yj|

J=1
and

[ee] [ee]

(3.13) Ew(n) =1 + /T Pw(n> k) =1 +y Poo(n* > k) = Ew(n*)
k=1 k=1



27

Thus if it is shown that the quantity (3.12) is equal to

f (x

E (n I [log —_T'TJ f (x s

then by Lemma 3.4 and from (3.13) we shall have

Theorem 5.2. 1In the case of a Wald sequential probability ratio test,
I l‘g (u
1(@) = By n) | log —(-ﬂgl

Proof: As remarked above, it suffices to show that

n*(x)

B f (x £ (x)
E] ) log ——T__TJ =F (n I log % ] f (x
J=1
For this purpose, let
fo(x,) I £o(x.)
W, = log L C = I [log 1 ] fo(x,) dx
J f (x.)’ fPZx.i 17 i’
22 -0 20
k
and 8 =g, [W,-C] for each j = 1,2,..., k=1,2,....
» . o - . 3
Consider {(Sk,ik)}k:l, where £ _1is the Borel subfield of § induced by
Xl""’Xk' Since wk+l is a Borel measurable function of Xk+l’ it

follows that XqseeesX are independent and S, is Zk-measurable.

k’ wk+l k
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Thus

il

E I8, + (i, - CY]

E [s 2]+ E [{w, 5 - cll]

it

i

c=8_ a.s.,

S + E W 4] - k

k

and hence {(Sk,fk)};:l is a martingale. Since
B (18,17 8] [ = B - 1 < B T18, 1]

for k < n"(X) a.s.(P_), then, according to Doob [1], (Theorem 2.2,
p. 302), the sequence {Sl, S ,, .} obtained by optional sampling is &

n (X)

martingale with

Em[S1] = Em[sn* ]

(x)
Tt follows that
n” (X)
0= 5,15 ] 7 B rj};l wj] - E_[W,] E_(n),

or

n*(X) fo(x.)

Em)[jzj log ?izgijl = Ew(n*):iglog r;i;;;} fl(x) ax,

=1
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Remark: Kullback [7] has shown that if Hi:h(v) = hi(v), i=1,2,
are simple hypotheses on the density function h(v) of a random variable

V, and we define

o0

h, (v)

1(1,2;0.) = r log l_—(—ﬂ h (v)dv

to be the information in a sample of size 1 for discrimination between
Hl and H2, then the information I(l,E;ON) in a random sample of size N
is NI(l,2;Ol). Theorem 3.2 is thus an extension of Kullbacks result to
Wald's sequential probability ratio test. It is easy to obtain Kullback's
result from the infinite series of Theorem 5.1 in the following manner.

Let ¢ be the indicator functions of (ak, bk), z < -b

k,

< il = = 00 < < = -
z < ay respectively, where 8 bk +o for 1 < k <N and &y bN for

k > N.

O) ‘lrl) we

In this case, from Theorem 5.1,

PR f (z
l;..[wlog TI'——T———-QZ_S} f (zN-zN 1) (z )dz ...dzN

(@) =
= T J log { TT l(x )} TT f (x )dx
N = Xy
z; ‘[ log f;é—;; f (x )dx
=N J log {f (X } l(x dx
where Zy = 0.
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We next obtain a representation for I(C) that is similar to the
representation in Theorem 3.1.
Theorem 3.3. Let C be the Borel field given in Definition 3.1.

<<
If Phg. Paa’ then

e @ z
1c) - (E [ 108 f 11‘( )] ¥ i(z,) by (z)dz, )

1_

where

p

o0 20 k_l j

(3.18) hy(z,) = -J;..;L [j-[‘]—lwo(zj)]fﬁ(zk-zk_l)...fﬁ(zfdzl...dzk_l,
it k>1

£,(z), if k=1 !
g=1,2. ° )

Proof: Since the proof of this theorem resembles very closely that of
Theorem 5.1, most of the details will be omitted. Let Bl denote the
Borel sets of the line R. As in the proof of Theorem 3.1, there exists
a regular sequence {651 = {{E J}J l}s l of finite Ei-measurable parti-
tions of R such that B is generated by U £, where £s is the field

s=]
consisting of all finite unions of sets of £S.

For each Ei € 65, let

1 ={weAa . lz e Ei}, i=1,2.

ki
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)
For each s =1,2,..., k =1,2,..., {Gzi}jil is a finite partition of

Ayys

. A ) )
2, = {ay (o) %, (o] } ""{Gii}.sl’ 2 5

S Jj= J= j=l

is a finite C-measurable partition of Q; L&S}: is a regular sequence;

=1
and 1if %é is the field generated by,£s, then the Borel field generated

by U %é is €. Proceeding in the same manner as in the proof of

. Theorem 5.1, we need only show
Lg
NN ij ij J
(3.15) Sl_@w 'Ll PE(G )log i_PK,/(G )/ ch(Gsk)
J:

(z,)
I log FELETE—TJ ¢?(zk)hl(zk)dzk

2k 'k

for arbitrary k, i, where hlk(zk) and h2k(zk) are given by (3.14). Fix

k, i, and for each F ¢ Ei, let

J

(3.16) xzki(F) =f ¢};(zk)hzk(zk)dzk, L =1,2 .
F
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From Fubini's Theorem and the definition of sz, the set functions

A £ =1,2, are finite measures on 6&, and

£ki’

(3.17) Ay (BY) = Pﬂz(G:i) for each j = 1,2,...,4_;

IKi g4 8 = 1,2,....

The absolute continuity of PLQ,With respect to P83 and the definition

= i << <<
of A, ., £ =1,2, give xlki ngi m, where my denotes Lebesque

Lki 1

. . k .
measure on 5. Since the functions ¢i<zk)h£k<zk) in (3.16) are Borel

measurable, it follows precisely as in the proof of Theorem 5.1 that

rxlki<Eg) ]

L
. J
lim Ej Xlki(ES) log ; (Ej)
J=1 oki's

S 2 o

< h,. (z. )
1k 'k k
:.{ Log [h2k32k5] 1in<zk)hlk<zk)dzk'

The result now follows from (3.17)

We conclude this chapter with
Theorem 3.4. Let . be the Borel field given in Definition 3.1.

If P, <<

1p PgﬁJ then

2 —
I(5) =) Gj Palhg) 208 | Praling) / Boslag) | )
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Proof: In Lemma 3.1 let (¥, J, Qz) be (Q, B, Pzﬁ)’ £ =1,2, and take

S

{77( }S=l = {{ASO’ Alj) Agj}jzl}s___l ¢

S

From the choice of {W%}:=l’ it follows directly that

J =0

and

n
N

X (w) = L C_:l P plAsy) / P2.B(Aij)> + P plage) / Ba(Bgy)

for each s = 1,2,....

Also,

lim X(w) =X, a.s.(P.g)
S b ob

where xﬁ is the R-N derivative of PLB with respect to PZB'

Clearly, E2ﬁ({xs log XSI) < » for each s = 1,2,..., and so Lemma 3.2

gives

sl_nfnmi X, log X_ dB,, :I X log X dP,p .
Q
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Neow since

s 2
lim IX log X  dP,, = lim 7(7%@ j)1og F;ﬁé@.}])
s ™ 57 J—:lljl 2b
+ Py p(A ) log l_—l"iéA—-)ﬂ}
and
lim P, o(A_) lo rw(ASO)]—O
s = 1877sO g'PE‘BA -

from Assumption I in Chapter IT, the theorem is established.




CHAPTER IV

RELATIONSHIPS BETWEEN THE INFCRMATION IN THREE BOREL FIELDS

It follows readily from the definitions of the Borel fields &, C,
and b described in Definition 3.1 and from (1.2) that I(@) > I(C) > I(H)
with equality between any pair {I(&), I@)} of I(@), I(C), and I(H) if
and only if
(L.1) sup I(&) = sup I(K) ,

& Kcd

where the supremum is taken over all finite subfields & contained in .%
and K contained in #£. However, it is not clear from the abstract
definition (1.2) what restrictions the equality (L.1) imposes on the
conditional densities of the cumulative sums and the probability deci-

sion functions used to define the probability measures P 4 =1,2, in

0’
Chapter II. We now use the rperesentations for I(&), I(C), and I(5)
given in Theorems 3.1, 3.3, and 3.4 respectively to obtain necessary
and sufficient conditions in terms of the conditional densities of the
cumulative sums and the decision functions for I(&) = I(8), I(Q) = I(C)

. when I(d) < », and I(C) = I(H) when I(C) < .

The primary result which will be used to derive the conditions

above is the following lemma due to Kullback [7], and which is in

essence Jensen's inequality.
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Lerma 4.1. Let (£,7) be a measurable space and let u, E O, i,

be two finite measures on J with My << Mo If A is any measure on J

. o | A
with Ko << X\ and ql and q, are the R-N derivatives T and T

respectively, then

- q by (£)
i log LE] d)\ > p,:L(:f, log —r—y

with equality if and only if

41 9
calamne R

Theorem 4.1. If I(d) < », then I(7) = I(FH) if and only if

ck . k kel . K
UL HCR N R I R O AR N
= a.e.mk

Py (Byy) Po(Bys)

for any pair of indices (k,1) such that P (Zk ) >0, 1=1,2,
k-1 j
k =1,2,..., where z_ = 0, and TE_W (z,) =1 if k =
0 j=1 0 J

Proof: For each i = 1,2, k =1,2,... let

Ckf@--; log{ T2 <z 3 }FTTwz ) ez,

1
. f ( Zy "2 _ l .f (z .dz ) P (A Jlog —;Tﬁiij:>,
k-1

where z_ =0 and ] y9(z.) =1 if k = 1.
Y j=1 0 J
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It follows at once from Theorems 3.1, 3.4, and the assumed finiteness

of T(&) that

® 2
(L.2) Hd)-Iw):Y?<ZCkQ.

k=1 i=1

Fix k,i arbitrarily and assume Pl(Aki) > 0. Since, (as was indicated

in the proof of Theorem 3.1), the set functions defined by
b s (B) :T_E iﬂ! T:T I, )] (2)F (22, _1)en T, (2 )z .. dz,

for each E ¢ /2, are finite measures on B with uzki(Rk) =P A

ﬂki( ki)’

£ =1,2, and pips << Boki << m it is easily seen from Lemma 4.1 that

)
(4.3) Cry 20,

with equality if and only if

-k-1 j 1 Kk k k j
SURECAIHCRIENCRINY ) JT:Tl% BIFHE )TT £, (2525 ) .
P, (A, ) PQ(Aki) K

If Pl(Aki) = O the equality in (4.3) is trivially satisfied. It now
follows from the inequality (4.3) and equation (4.2) that I(d4) = I(Q@)

if and only if C.. = O for each 1 = 1,2, k = 1,2,.... The conditions
ki

for Cki = O now establish the theorem.
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Theorem L.2. For each k = 1,2,..., let h ., b, be the func-

I(H) if and only if

tions defined in (3.14). If I(C) < =, then I(Q)

vi(zhy (z)  ui(e ), (z)

Py (Rys) Py(Ay;)

@D
—~
=2
=
p—

for each pair of indices (k,i) such that Pl(Aki) >0, i=1,2,
k=1,2,....

Proof: For each £ =1,2, i =1,2, k =1,2,..., let
\ .(E):Mk(z Yh (z. )dz. .
2ki iV K
E

for each E ¢ 5&.

From the proof of Theorem 3.1, A A are finite measures on Bl

1ki’ "2ki
with the properties

<
Mg SShogs <™y

and

Mii (R) = PplAg ), doyy (R) = Py(R,).

The proof now follows along the same lines as the proof of Theorem 4.1
from Theorems 3.1, 3.4, and the finiteness of I(C).

Theorem L.3. For each k =2,3,..., let hlk’ h2k be the func-
tions defined in (3.14) and let Gy = {ne Rllhlk(n) #£0}. If 1(9) < =,
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then I(d) = I(C) if and only if
k-1 .
LT i (en e (o o o)ty (2)) /By ()

k-1 . Xk
= [ Tz WO, (B )e (2 gy )-8y (5) / By (6) e (my )

for each € ¢ G,, except perhaps on a subset of G, of Lebesque (ml)

k

measure zero, i = 1,2, k =2,35,....

Proof: For each i =1,2, k =2 3,... let

0, () =50 [ ..[ 20g {251 TEf e BRIy TM’(z 2]

ROR £,(5-2, ;) TT (2525 )

. fl(g-zk_l)fl(zk_l-zk_g)...fl(zl)dzl...dzk
and
ri(8) = ¥(8) hyy (2) log |ny () / by (€) ]

for each € ¢ R, where 25 = 0.
It follows from the finiteness of I(&) and from Fubini's theorem that
the functions qik(g) and rik(g) are integrable and hence finite except

on a set Eik of Lebesque (ml) measure zero for each i=1,2, k=2,3,....

We thus obtain from Lemma L.l the inequality




Lo

qik(g) >r ( ) for each € ¢ R - E, 30 With

equality for any point € ¢ R - Eik such that'

hlk(g) # 0 if and only if

k-1
(”'L‘)/ “’}i{(g)[ JE wg(zj)]flw-zk-l)fl(zk-l—zk-E)"'fl(zl) / 1y (8)

!

K k-1 .
A BT NCENNENCRE NN RE AR M)

\ a.e.(mk_l)

N

for each i = 1,2, k = 2,3,....
Now hlk(g) = 0 implies qik(g) = rik(g) = 0 and so from (4.4) we have

[ (e)ae - [ r, (£)a > o,
R

with equality if and only if equality holds in (L.L) a.e.(ml) on G, .

Hence it follows from Theorems 3.1, 3.3, and the finiteness of I(&)

that

1(d) - I(C)

< J u[log{ f(Z i }[ jiwlii(zj)]wlii(zk)fl(zk’zk-l)"'fl(zl)

1R

15/13
1 o

T
o

hlk(z )

. dzl...dzk] - j log _—_Y——T ' (z )h (z )dz ‘>

2
<:§1 [ I qik(g)dg - I rik(g)di]‘> >0
R

R
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with equality if and only if

(k.5) [, @ - [ r, (@ =0,
R R

for each 1 = 1,2, k = 2,3,..

The conditions for equation (4.5) to hold now establish the theorem.
Corollary 4.1. If the common density functions fi(x) of the

random variables Xl’XE""’XN"" under the hypotheses Hi’ i=1,2,

have the property that fl(x) = exfg(x) for each x ¢ (-»,®), then

I(7) = 1(C), whether I(&) is finite or infinite.

Proof: Since fl(x) = exfg(x), then

k Zy k
gtg_fl(zj-zj'l) = e Ilif?(zk—zk_l)
and
zk r o~ k=1 3
n(z,) = e 1];£ wjﬂ:rlwo(zj)]fp(zk-zk_l>...fl(zl)dzl...dzk_l

=€ khzk(zk>

k-1

for each k = 1,2,...,where z_ = 0, and |1 y9(z.) = 1 if k = 1.
0 j=1 07

il




42

Thus

@) _y@j [es {1

k=1 i=1R

. dzl...dz£>

-1
E:<:§1[ zkw (z )dzk J I jjiwo(zj)fl(zk-zk_l)...fl(zl)dzl...dzk_l

k=1 i=1 R

k f (z
'1}TM (2 V()8 (2ymzy Do -£1(2)

_§<§J log | - 11‘(2 )] ¥z )0, (2, )dz,

=1 i R

= I(C)

from Theorems 3.1, 3.3 and Fubini's Theoremn.
Remark: Let the probability density function g(u;6) of a random

variable U be given by
(4.6) g(u:8) = eeu+r(u)+q(6)

for u in some subset of the real line, independent of 6. Suppose that
Sw is a Wald sequential probability ratio test of the simple hypotheses
Hi:g(u;e) = g(u;e ), 1 =1,2, on the parameter 6 of g. It is easy to

“e(u; 61) :
show that X = log éT——g—y has density functions f. (x) under H,, i =1,2,

u;6,
with the property fl(x) = e fg(x); and thus I(@) = I(C) for the test 8,
from Corollary L.1. Density functions of the form (4.6) include an

important class used in applied statistics. Particular examples are
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the normal, Poisson and binomial densities. In the binomial case, for
example, the density (probability function with respect to counting

measure) is

m
xlog(i%5)+log(x)+mlog(l—p)

m,_X m-X
(JP (1-p)" " =e , 0<p<1l.

It might appear that the hypothesis of Corollary 4.1 not only
guarantees I(?) = I(C) but also I(d) = I(C) = 1(H). The following
example shows that this is not the case.

Example 4.1. Let g(u) be the density function of a random

variable U, and let S be a sequential probability ratio test of

Hl:g(u) = gl(u) against Hé:g(u) = gg(u), where

!

2u,O§u_<_11 1, 0<u<l
g (u) = < , 8y(u) =

0, elsewhere ( 0, elsewhere |

!

L ) j

g, ()
Now X = log = log 2u has density functions

ggiui

% egx,-oo < x < log2 %ex,—mSXilogQ
£(x) = » T,(%) =

0, elsewhere 0, elsewhere

under H,, H, respectively, so, clearly, fl(x) = exfg(x) for each

x ¢ (-=,»), and the hypothesis of Corollary L.l is satisfied. For ease

of computation, we shall assume in the following that the terminating
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barriers, -b and a, associated with Sw satisfy the inequality

a+ b < log 2. From Theorem 3.2, we have

£, (x)
(@) = (n) J log ’-——-(iy:lf (x)dx.
Here El(n) =1 +Z Pl(n > N)
=1
© & a o
=1 +NZ]_ J:b .J:b JE £ (z -2 l)dzJ
x & @ 1 2zN
=1 +NZl N {b? e dzl dzN
1 m@b ey
and - . (x) ldg2 h
J log‘——ﬁ} fl(x)dx = %J‘ xe®dx = _J_.&g_g_;l
So, I(a) = '_l + " a+b }[log he l:l .

©oua- 22

From Theorem 3.4, I(5) ‘?(? P <A]\11> log[ - ANI ]

N=1 i=1

>, and it is easy
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to show that here we have

e/ if N =1, i=1.
2a, . .
(L-e"7)/h if N =1, 1 = 2.
Pl(ANi) N (a+b)N-2 (a+b) -2b iEN>1, 11
2 ! haad .
_ 2a_,-2by_a.28
(a+b)N e(e(e e - )-e (a+b)] iPN>1, i 2.
Also,
-b . .
e /21fN=1,1=1.
a . .
(2-e7)/2 if N =1, i = 2.
P,(A.) = |
2 ANl (a+b)N-2( -b/2) ifFN>1, 1= 1. i
atb\N-2 2(ea-e'b)-ea(a+b)
(= 5 ) " ifN>1, i =1.
Thus, in this case,
e -2b -b lL_e2a h_e2a
I1(h) = n log + T log
2(2-e2)
+<Y<M®M6{<%®e£bhg€b
No n 2
2a -2b -2b
-

L (2l “%(asb) 2(%-
¢ ) 208 (225

22 (a11p) )1

( +b)]
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Evaluating I(&) and I(H) for a =b = % log 2, we find that
I(d) = .3039 and I(fH) = .2529

to four significant digits, and hence

(@) > 1(5)




CHAPTER V
CONCLUDING REMARKS

In this paper we considered the information in a sequential test
S of simple hypotheses which is determined by cumulative sums of inde-~
pendent random variables; and we derived analytical representations for
the information I(&) in the decision process, the information I(C) in
the sequential decision variables, and the information I(B) in the
stopping rule. These results are not limited to this particular type
of sequential test. The probability spaces defined in Chapter II can
easily be modified so that representations similar to those given in
Theorems 3.1, 3.3, and 3.4 can be found for more general types of
sequential tests of simple hypotheses.

In the particular case of a Wald sequential probability ratio
test we showed that the information I(&) is equal to El(n) El[log g—;%],
where n is the termination sample size and gl(u) and gg(u) are hypoth-
esized density functions of an observable random variable U. It should
be clear that with minor modifications of the proof of Theorem 3.2 the
same result is also valid for the generalized sequential probability
ratio test. The writer conjectures that I(&) = El(n)El[log ;i%;%] even
for the randomized test and this is presently being investigated.

It should also be pointed out that the representations given by

Theorems 3.1, 3.3, and 3.4 can be obtained by determining the explicit

L7
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dap dap dap
. . 1ad 1C
form of the R-N derivatives —— , T’ and i

4P, ; o B

respectively. How-

ever, this approach becomes quite difficult in generalization.

Equality between any pair of I(&), I(C), and I(B) is closely
related to the concept of sufficiency of a Borel field, (see [3] for
the definition of sufficiency). It i1s known [6] that a Borel field
Ji c 7 is sufficient for the set of probability measures {ulg, ugg} if
and only if I(Ji) = 1(J). From the viewpoint, Theorems 4.1, 4.2, and
4.3 then give necessary and sufficient conditions for b to be sufficient -
conditions for B to be sufficient for {Pl&” PQ&}’ B to be sufficient for
{Phﬁ’ P}, and C to be sufficient for {Pl&” PE&} respectively. Tt is
hoped then that the results of Chapter IV can be used as a basis for
the study of sufficiency in sequential tests in terms of the technical
sense of information.

By way of further research, in addition to that above, we mention

the following topics:

(1) investigate the information in sequential tests of
simple hypotheses when the basic random variables
are not independent;

(2) investigate the information in multiple decision

problems;
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(3) wuse the information measures as a means of comparing

sequential tests.
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