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SHIELDING CALCULATIONS FOR A 400O-MeV LINEAR ELECTRON ACCELERATOR

R. G. Alsmiller, Jr., J. Barish,¥
R. T. Boughner, and W. W. Engle¥*

Abstract

Shielding calculations for a linear electron accelerator may conven-
iently be divided into four parts: 1) the electron-photon cascade,
2) photoneutron production, 3) particle transport through the shield, and
4) the conversion of particle current leaving the shield to dose. Calcu-
lations in each of these categories have been carried out to aid in the
design of the transverse shield of a 400-MeV linear electron accelerator.
In particular, neutron-transport calculations, which are carried out using
three approximation methods, 1) the straightahead approximation, 2) the
straightahead approximation coupled with a low-energy discrete ordinates
calculation, and 3) the straightahead approximation coupled with a Monte
Carlo calculation, are presented and compared. Shields composed of silicon

dioxide and silicon dioxide with 10% water by weight are considered.

*
Computing Technology Center, Union Carbide Corporation, Oak Ridge,
Tennessee.



1. INTRODUCTION

A series of calculations has been carried out to aid in the design of
the transverse shield for a 400-MeV linear accelerator. While the calcu-
lations refer specifically to an electron accelerator of this energy, the
electron-photon cascade calculations and the neutron transport through the
shield have been carried out using several different approximations, and
the intercomparison of the results obtained in these various approximations
have general implications.

When a high-energy electron strikes the walls of the accelerator, an
electron-photon cascade develops. The photons of the cascade interact with
the nuclei in the walls and produce photoneutrons which must be shielded
against. Shielding calculations for an electron accelerator may conven-
iently be divided into four parts: 1) the electron-photon cascade, 2) photo-
neutron production, 3) particle transport through the shield, and 4) the
conversion of the particle current leaving the shield to dose. The calcu-
laticns performed in each of these categories are described in sections 2,
3, 4, and 5, respectively. The results are presented and discussed in

section 6.

2. ELECTRON-PHOTON CASCADE

A computer code for the study of the longitudinal and lateral develop-
ment of the electron-photon cascade induced in matter by high-energy elec-
trons has been written by C. D. Zerby and H. S. Moran.!™ 3 Using this code
the photon track length, which is needed to calculate the photoneutrons pro-
duced by the cascade, has been calculated for the case of L00-MeV electrons

normally incident on an infinite slab of copper. This gives, of course,



only an approximation to the actual track length in the accelerator wall,
but for the high-energy photons, which are of primary interest here, it is
perhaps a reasonable approximation.

The calculated track length, T, is shown as a function of photon energy,
Ey’ in Fig. 1. 1In the figure the solid histogram shows the results given
by the Monte Carlo code and the solid curve drawn through the histogram
gives the values which have been used in all subsequent calculations in
this paper. Also shown in the figure for comparison purposes is the track

length (solid curve below EY = 280 MeV and dashed curve above EY = 280 MeV)

given by the often-used approximate expression,“
Eo
(E , E ) =0.57T2 — X ,
52 °
Y
where
EO = electron energy,
EY = photon energy,
Xo=raﬁaﬁonla@ﬂL

The approximate track length is in very good agreement with the Monte Carlo
results for photon energies of less than 280 MeV but becomes significantly

different from the Monte Carlo results at higher photon energies.
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3.

PHOTONEUTRON PRODUCTION

The energy and angular distribution of the neutrons produced by the

cascade may be calculated from the equation

where

do
dE4dQ

NO(E,COSG)

cosb

(E ,E,cos8)
Y

EO
f T(EO,E ) n
o Y

do
dE4Q

(EY,E,cose)dE R (3.1)

kinetic energy in the laboratory system;

cosine of the angle defining neutron emission

with respect to the direction of the incident
electron. (The assumption is being made that

the lateral spread of the cascade may be neglected
so that the cosine of the angle defining neutron

emission with respect to the direction of the

do
dEdQ

photon in may be equated with the cosine

of the angle defining neutron emission with
respect to the direction of the incident electron.)
number density of targets;

differential cross section in the laboratory
system for the production of neutrons by the
collision of a photon of energy EY with a nucleus.
(When integrated over all energies and angles,
E%%ﬁ gives not the total cross section for photon-
nucleus collision but rather this total cross

section multiplied by the average number of neutrons

emitted per collision.)



NO(E,cosG) = the number of neutrons per unit energy range per
unit solid angle produced by the electron-photon
cascade from an electron of energy Eo'

The differential cross section for photoneutron production is not well
known and cannot readily be calculated. By introducing many ad hoe assump-
tions and utilizing earlier work by J. S. Levinger5 and D. N. Olson,6
H. De Staebler, Jr.” has obtained an estimate of this differential cross
section. The cross section used in this paper has been calculated using
all of the assumptions and parameters of De Staebler. Since the many ap-
proximations used and the choice of parameters in copper are discussed in
detail in the paper by De Staebler,7 only the final results will be given

here.

is composed of two terms: one

o
In the approximation being used, 5%55

which arises from the absorption of a photon by a neutron-proton pair, that
is, by a "quasi-deuteron" in the nucleus, and one which arises from pion
production and reabsorption in the same nucleus, that is, a pion is formed
as a result of a photon-nucleon collision in the nucleus and the pion is re-

absorbed by two nucleons before it escapes from the nucleus.¥* If these two

d
terms are denoted by EE%E and , respectively, the photoproduction
i

cross section may be calculated from the equations+:

do
dEdQ

doc _ do
drEdQ ~ dEAD

do

* FEan
aD

, (3.2)

m

*
A third term that arises from the recoil nucleon following pion production
from a photon-nucleon collision should, in principle, be present. This
term, however, is zero at cos® = 90°, which is the only case actually used
in this paper.

1-Some of the details of deriving these final equations, which are not given
explicitly by De Staebler, are given in Appendix I.



do OD(E )

- Y 2mE
A B T JD(E, cosh) S|E -

dEdQ -
QD cosOVE(E + 2m) + m - E
(3.3)
e —— i
J(E cosh) = V2 E(E + 2m) /éose[E(E t gm)]2 tE+m
D'\ T ’
VE cosO[E(E + 2m)]%-E+m
o (E) 2mE - % m?
S N I LA A (E, cos8) §|E - Ll
dEAn Ly m
m cos®V(2F + mﬂ)(QE— mﬂ)+ m- 2F
2V(2E + m ) (2E - m_)
J_(E, cosB) = (3.4)
Q(Ey)[cose/leE +m )(2E - m ) +m - 2E]
2 2 _ 2 1 b _ 2 2 1/2
oE ) - [m EY m m’ EY +xEmlo-m mﬂ]
Y m(2E, + m)
where

A = agtomic weight
OD = total cross section for dissociation of a deuteron

m = nucleon mass

OTr = total cross section for pion production in photon-nucleon
collision
mo = pion mass?

The photoneutron emission spectrum at 90O from 400-MeV electrons in
copper, calculated using Egs. 3.1 through 3.4, is shown in Fig. 2. The
functions NoD and NOTr are obtained by using Egqs. 3.3 and 3.4 separately in

Eq. 3.1, so
N =N_+0N . (3.5)
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In the case shown in the figure, NOTr contributes appreciably to No over a
significant part of the energy range. The high-energy cutoff in the photo-
neutron spectrum arises because the motion of the nucleons in the nucleus

has been neglected.*

4. PARTICLE TRANSPORT

The transverse shield of a linear accelerator may be visualized as
being roughly cylindrical in shape with the accelerator tube along the axis
of the cylinder. In principle, electrons of varying energy strike the
accelerator tube all along its length and the geometry that should be con-
sidered is that of a line source with both the energy and angular distri-
butions of the neutrons from the source varying as a function of position
along the line. Rather than treat this general problem, it is assumed
here that only high-energy electrons are of interest and that all high-
energy electrons may be assumed to strike the accelerator tube at nearly
the same point. The electron-photon cascade, which develops when a high-
energy electron enters matter, and the resulting photoproduction take place
over distances that are very small compared to the shield thicknesses of
interest, and thus to a reascnable approximation the photoneutrons may be
assumed to emanate from a point. Furthermore, it is unlikely that high-
energy electrons will strike the walls of the accelerator tube at angles
which are very different from zero degrees, so it will be assumed that
photoneutron emission with respect to the direction of the incident elec-
tron may be equated with photoneutron emission with respect to the accel-
erator axis. The minimum shield thickness will therefore be in the direc-

tion of those neutrons emitted with cosb = 900.

*
A calculation of NoD’ which includes this motion, has recently been carried
out by J. L. Matthews .89
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The geometry that is considered here is that of a point source of
neutrons on the axis of the accelerator. Because of the approximations
which are made in the transport equations, only neutrons emitted at a spe-
cific angle enter into the calculations, and results are presented only for
the case of neutron emission in the direction of minimum shield thickness.
Shields composed of silicon dioxide and silicon dioxide plus water are con-
sidered.

When a high-energy neutron enters matter, a cascade composed of neutrons,
protons, and photons will develop. At the neutron energies of interest here,
however, the protons and photons will be predominantly of low energy and
will contribute little to the cascade, so in general only neutron transport
is considered. In the remainder of this section, the various approximations
that are used to describe the neutron transport through the shield are dis-
cussed. In conjunction with one of the transport methods (see section L.b),
photon production and transport are treated.

a. Straightahead Approximation

In this approximation it is assumed that neutron emission following
either elastic or nonelastic neutron-nucleus collisions take place only in
the direction of the incident neutron. The energy distribution of the
neutron emitted in the forward direction must be specified. This energy
distribution may be obtained by integrating the energy-angle distribution
of the emitted neutrons over all angles or by integrating over some cone
in the forward direction; that is, one may simply neglect those particles
emitted at large angles. Throughout this paper the energy distributions are

specified by integrating over all angles.
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In addition to the straightahead approximation, it will also be
assumed that elastic collisions between neutrons and heavy nuclei, that is,
nuclei heavier than hydrogén, may be treated in a continuous slowing-down
approximation.

Under these circumstances, the neutron transport equation when thére

is a point source of neutrons may be written

;—r r2N(r,B) + {] n,lo, (B)(1-6,,) + op () 8,13 r2N(x,E)
1
- g% [S(E) r2N(r,E)] (4.1)

MAX 1 2 ' '
= Z é [Fi(E',E)nioIi(E')(l—GiH) + G, (E',B)ny op (B')8,4lr N(r,E')dE' ,
i

r = radial coordinate measuring depth into the shield from
the point source;

N(r,E) = neutron current per unit energy range, that is, the number
of neutrons per unit energy range crossing unit area at a
depth r in the shield. (In the approximation being used,
the neutron velocity at any point in the shield is in the

radial direction.)

n, = number density of nuclei of type i in the shield;
oIi(E) = nonelastic cross section for the collision of a neutron
of energy E with a nucleus of type ij
6iH = one if i is hydrogen and zero otherwise;

o_.(E) = elastic cross section for the collision of a neutron of

energy E and a nucleus of type 1ij
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S(E) = energy loss per unit distance that a neutron undergoes
because of elastic collisions with nuclei other than
hydrogen:

F.(E',E) = number of neutrons per unit energy range produced by the
nonelastic collision of a neutron of energy E' with a

nucleus of type i;

Gi(E',E) number of neutrons per unit energy range produced by the
elastic collision of a neutron of energy E' with a nucleus

of type 1i.

The boundary condition on Eg. 4.1 is that the intensity I, defined by

I(r,E) = r2N(r,E) , (h.2)

reduce to the energy distribution per unit solid angle of the source when

r goes to zero. Since in general this energy distribution will be a function

of the direction in which the particles are emitted, the solution will be
parameterized by the direction of emission.

In order to obtain a numerical solution to Eq. 4.1, a large amount of

physical data is required. The cross sections for nonelastic neutron-silicon

and neutron-oxygen collisions at energies greater than 25 MeV were taken

10511

from the calculations of Bertini. Since Bertini does not report data

for silicon, the data used were obtained by interpolation. The cross
sections for neutron-silicon and neutron-oxygen nonelastic collisions be-

2 In some in-

low 25 MeV were taken from the data compilation of Irving.1
stances when data for silicon were not available, data for aluminum were
used. The cross sections for neutron-hydrogen elastic collisions below
25 MeV were taken from the compilation of Irving12 and above 25 MeV from

the compilation of Bertini.l3
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The energy distributions of neutrons emitted from neutron-silicon and
neutron-oxygen nonelastic collisions above 25 MeV were taken from the cal-

10511 Tnegse distributions were obtained by integrating

culations of Bertini.
the energy-angle distributions of both the cascade and evaporation neutrons
over all angles. The energy distributions of neutrons from neutron-silicon

and neutron-oxygen nonelastic collisions below 25 MeV were assumed to be of

the form

e i E<E' , (4.3)

and the functions Ti(E') were calculated from the equations used by Dresner

% Equation 4.3 gives a neutron multiplicity which

in his evaporation code. !
is very nearly unity and which is roughly in agreement with the results
given by the Dresner evaporation code.

The energy distributions of the neutrons from neutron-hydrogen elastic
collisions were obtained by transforming the angular distribution in the
center~-of-momentum system to the energy-angle distribution in the laboratory
system and integrating over all angles.15 The angular scattering distri-
bution in the center-of-momentum system was taken to be isotropic for in-
cident neutron energies of less than 25 MeV, and above this energy it was

taken from the analytic fits given by Bertini to the measured distributions.

The stopping power S may be defined by the equation

S(E') = ] n, oy, (B') E’lrlog %']
i L 41

JESS— E'

1 L]

[mg %] =/ 6(8,E) log 3 aF,
-1 o]



1k

where all of the symbols have the definitions given previously and the sum
over i does not include hydrogen since neutron-hydrogen collisions have

been explicitly introduced into Eq. L.1. At neutron energies of several

MeV and below, the elastic scattering cross sections contain resonances,

and these resonances cause S(E'), defined by Eq. 4.4, to be a very rapidly
varying function of energy. To avoid the numerical difficulties associated
with this rapid variation, a smoothing procedure was used at the lower
energies. The distance R that a neutron will travel in going from an energy
E to some low energy Ec may be written

E 4E'
S(E")
C

R(E) = [ (4.5)
E
To obtain a smoothly varying stopping power, R(E), calculated using Egs. 4.3

and 4.4, was assumed to be of the form

8 .
Z a. EJ

R(E) = e 9 ° , (h.6)

and the coefficients, aj, were determined by the method of least squares.
Once the coefficients were determined, the stopping power was calculated

from the equation

a EJ

 e~3100

8
1 . J-1 J=o
ST C L]Z Ja, BT e : (4.7)

‘=0
The elastic scattering cross sections and the center-of-momentum angular
distributions, which were needed to obtain the energy distributions in

Eq. 4.4, were taken from the compilation of Irving.!Z?

The smoothing pro-
cedure discussed above was used at energies of less than 26 MeV. Above

this energy, S(E) is slowly varying and could be used directly.
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Calculations using the straightahead approximation have been carried
out for neutron energies greater than 0.5 MeV. There is, of course, little
justification for using the approximation at such low energies, and it is
to be expected that a considerable overestimate of the low-energy neutron
flux and the resulting dose will be obtained when this method is used. 1In
the next section an approximation method, which retains the straightahead
approximation at the higher energies but treats the low-energy neutron
transport more realistically, is described.

b. Straightahead Approximation Coupled with a Low-Energy Discrete

Ordinates Calculation

The transport of low-energy neutrons has been intensively studied for
many years. There is presently available a discrete ordinates code which
will solve the neutron transport equation with anisotropic scattering in
one space dimension for neutron energies of less than 14.9 MeV provided the
neutron source is known.l® In the approximation to be described in this
section, the straightahead approximation is used to transport the high-
energy (>1L.9 MeV) neutrons, and the calculated high-energy neutron flux
is used to construct a source of low-energy neutrons that is used in con-
Junction with the discrete ordinates code.

The neutron transport equation may be written as

G-V o(r,E,8) + Y n, [o_.(E) +o..(E)] o(+,E 8)

o T Ei Ii
i

E
MAX ] +|_> ]
= g é {Fi(E ,E,Q'+2) n, o (E') (4.8)

+ Gi(E',E,E'-ﬁ) n, o (B')} o(r,E',0') aB'an'



where

B4

g
[

—~

53]

o

D

¥
]

v
1]

>
G.(E',E,Q'.
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position vector,
unit vector in the direction of the momentum,

angular flux of neutrons per unit energy range,

= the number of neutrons per unit energy range per

unit solid angle produced at the energy E and in

the direction ¢ when a neutron with energy E' going
in the direction 5' undergoes a nonelastic collision
with a nuclei of type i,

the number of neutrons per unit energy range per unit
solid angle produced at the energy E and in the
direction % when a neutron with energy E' going in
the direction a3 undergoes an elastic collision with

a nuclei of type 1i.

If Eq. 4.7 is rewritten in the form

3.7 o(r,E,Q)

1k

+ G,
i

we have the equation

+ ] n, Lo (B) + o, (B)] o(x,E,0)
1

.9
{F,(E',E)ﬁ'-ﬁ) n, o..(E") (4.9)

(E")} o(¥,E',%') ag'a®’ + s(¥,E,8) ,

DV

(E',E,8'-8) n

i 9mi

which, when specialized to one space dimension, the

discrete ordinates code will solve if S(;,E,a), defined by
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. (E")

>, > > >
+ Gi(E',E,Q'.Q) n, oEi(E')} o(r,E',Q") AE'4AQ" ,

(4.10)

is known. To obtain an approximate expression for S in the case of a one-

dimensional spherical geometry, it is assumed that the straightahead

approximation is valid for neutron energies greater than 14.9 MeV, so

> >
5(1-Qr.9)

—_—, E > 1k.9 MeV,

®(r,E,§r-§) = N(r,E)

where
_> 3 3 - 3 .
Qr = g unit vector in the radial direction.

Furthermore, it is assumed that

F.(E',E)
F.(E',E,0'-8) = - B
j_ 9 2 hﬂ E <
and
> >
) ' -
6. (E',E,8'-8) = G.(E',E) 8(1-0'-0) g,
i i 2 E <

where Fi(E',E) and Gi(E',E) are the quantities defined in L.a.

With these approximations the source S may be written

E F.(E',E)
> MAX i i .
S(r,B,0 %) =§ {u.g {7 n, oy (E")
(1-5?-5)
+ 5 Gi(E',E) n oEi(E')} N(r,E') 4E

1L.9 Mev
14.9 MeV

14.9 MeV
14.9 MeV ,

(h.11)

(4.12)

(4.13)

(4.1h)
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and may be calculated using the previously determined N(r,E). Using this
approximate source term in Eq. 4.9, in principle it is now possible to de-
termine the flux per unit energy range of low-energy neutrons with the dis-
crete ordinates code.

To avoid excessive computation and because the low-energy neutrons are
of little interest at the beginning of the shield, Eq. 4.9 was actually
solved for only r values greater than 600 g/cmz. In order to do this, it
was necessary, of course, to have an estimate of the flux at this r. This
boundary condition was obtained by assuming the straightahead approximation
to be valid at all energies for r 5_600 g/cmz. The boundary condition used

was

>

)

1}
=
—~
(o))
o
(@}
=1
S

6 (600,E,9 -
r

=0 E < 0.5

since N(r,E) was not determined for E < 0.5.

The data that were used to calculate the source term are the same as
those described in section L4.a. The data that were used in the discrete
ordinates code were taken from the work of Joanou and Dudek.l’

In calculating the dose and comparing the results, we shall be in-
terested in the current per unit energy of the particles emerging from the
shield and in the intensity. This poses a slight problem because at a
given depth r in a shield of radius R(R > r), the current per unit energy
is different than it would be if the shield were of thickness r, and thus,
in principle, to obtain the current of particles emerging from a shield,

the complete calculation must be repeated for each shield thickness. To
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avoid this difficulty here, it will be assumed that the current leaving a
shield of thickness r may be approximated by the current in the positive r
direction at a depth r in a shield of thickness R; that is, the current

leaving a shield of thickness r will be approximated by

1

2T N
J(e,B) = [ [ o(r,5,8 -8 d_-fag E < 14.9 MeV | (4.16)
o] 0]

where ¢ is the flux per unit energy at depth r in a shield of thickness R.
Of course the only estimate one has at the higher energies is that given by
the straightahead approximation. In the previous section, the intensity
was defined to be the current per unit energy multiplied by r2, and this
definition will be retained with the proviso that only the current in the

forward direction be used. Therefore,

I(r,E) = r2J(r,E) E < 14.9 Mev
(L.17)

r2N(r,E) E > 14.9 MeV

In addition to the neutrons that emerge from the shield, there will
also be some photons that emerge. The contribution of these photons to the
dose 1s not expected to be large, but in conjunction with the neutron trans-
port approximation described above, an estimate of the gamma-ray flux leav-
ing the shield has been obtained.

The gamma rays that emerge from the shield will be formed predominantly
from neutron capture and neutron inelastic scattering. Because the neutron
spectra in the shield are sharply peakéd toward low energy and because of
the lack of data on gamma production from neutron inelastic scattering,

only the gamma rays arising from neutron capture are considered here. The

neutron capture cross sections were taken from ref. 17 and the capture
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photon spectra were taken from the Reactor Handbook.!® It was assumed that
the photon spectrum from neutron capture is a function of the nucleus but
not of the energy of the neutron. The photons were transported using the
same discrete ordinates code that was used for neutron transport. The
photon source was calculated from the neutron flux obtained with the dis-
crete ordinates code. In transporting the photons, account was taken of
pair production, Compton scattering, and the photoelectric effect.

While the neutron transport method described in this section treats
the low-energy transport realistically, the calculated flux at the low
energies is still approximate because of the use of the straightahead approx-
imation at the high energies. Furthermore, the only estimate of the neutron
current per unit energy emerging from the shield at the higher energies is
that given by the straightahead approximation, and thus appreciable error
in the dose may arise from the approximate nature of the high-energy current.
In the next section of this paper, an approximation method in which some of

these difficulties are avoided will be described.

c. Straightahead Approximation Coupled with a Monte Carlo Calculation

There is available a code written by Kinney19 that will solve the
neutron transport equation, Eq. L.8, for neutron energies of less than ap-
proximately 400 MeV. 1In principle, this code could be used to obtain a
complete solution to the neutron transport problem being considered. How-
ever, the code employs Monte Carlo methods and is not, at least in its
present form, capable of yielding adequate statistical accuracy in the case
of very thick shields. In this section, an approximation method is described
whereby the straightahead approximation is used to transport the neutrons
through the beginning of the shield and the Monte Carlo code is used to

transport the neutrons through the last few collision mean free paths.
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19 50 only

The Monte Carlo code has been described in detail elsewhere,
a few pertinent facts about the code will be included here. The code uses
the intranuclear-cascade data of Bertinil® to describe nonelastic neutron-
nucleus collisions above 25 MeV and the compilation of Bertinil3 to describe
neutron-proton collisions above 25 MeV. Below 25 MeV the data compilation
of Irving12 is used, and particle production from nonelastic collisions is
obtained from the Dresner evaporation code.!* In the Monte Carlo calcula-
tion aluminum data are used to represent silicon throughout.

The Monte Carlo code of Kinney will solve the neutron transport equa-
tion for an arbitrary incident neutron flux per unit energy range. In the
present instance, to avoid statistics problems the straightahead approxima-
tion was used to obtain an estimate of the flux per unit energy range at a
depth of 750 g/cm2 in the shield, and this approximate flux was used in
conjunction with the Monte Carlo code to estimate the flux at larger depths.
One further approximation was made: The spherical shell through which the
neutrons should be transported was approximated by a semi-infinite slab.

The actual procedure used was to assume that the incident flux per unit

energy to be used in the Monte Carlo code was given by

> >
.o 6(1-92-9)
9(z,E,Q, -Q) = EZN(r,E)] — (4.18)
z=750 g/cm? r=750 g/cm?
where
7z = a coordinate which measures depth into the slab,
52 = g unit vector in the z direction,

and N(r,E) is the guantity calculated in section 4.a; that is, in the Monte
Carlo calculations normal incidence on a slab shield was considered. 1In
the Monte Carlo calculations it is possible to treat several shield thick-

nesses simultaneously; that is, it is possible to calculate the flux at a
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depth z when the shield is of thickness Z, and this is the guantity that
has been calculated.

In calculating the dose and comparing the results we are interested in
the current per unit energy of the particles leaving the shield and in the
intensity. The current is calculated from the equation

em 1

J(z,B) = [ [ o(z,B,0,.8) 4.0 . (4.19)
¢] 0]

Because of the slab approximation it 1s not entirely clear how to define an
intensity which is comparable with that defined in the previous methods.
A reasonable definition would seem to be that the intensity is equal to the

current, that is,

I(r,E) = J(z,E) . (4.20)
Z=r

and this is the basis on which comparisons with the other calculations will

be made.

5. DOSE CALCULATION

The dose has been estimated from the particle current emerging from
the shield by using current-to-dose conversion factors. Once the current

is known, the dose is calculated from the equation

=]
1

= thermal energy

(@]
=
Il

current-to-dose conversion factor.
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The current-to-dose conversion factors for neutrons were taken from
Snyder and Neufeld?0 (<0.5 MeV), Irving et al.2! (0.5 to 60 MeV), and Zerby
and Kinney22 (>60 MeV). The conversion factors used in all cases were those
corresponding to the maximum dose for normally incident neutrons on semi-
infinite tissue slabs. The current-to-dose conversion factors for photons
were taken from the work of Henderson.?3 It must of course be understood
that the dose estimates obtained using these conversion factors are very
approximate. In particular, the use of the conversion factors corresponding
to normal incidence rather than to isotropic incidence is arbitrary. All of
the doses calculated here would be approximately a factor of two higher if

the isotropic conversion factors were used.

6. RESULTS AND CONCLUSIONS

Calculations have been carried out for shields composed of silicon di-
oxide and silicon dioxide with 10% water by weight. 1In all cases the density
of the shield material was taken to be 1.8 g/cm3.

The results for the spectrum shown in Fig. 2 incident on the silicon
dioxide shield are shown in Figs. 3-5. In Figs. 3 and 4 the neutron in-
tensities (see definition Egs. 4.2, 4.17, and 4.20) obtained in each ap-
proximation at a depth of 1000 g/cm2 are compared, while in Fig. 5 the doses
as a function of depth obtained in the wvarious approximations are compared.
The corresponding results for the shield composed of silicon dioxide and
water are shown in Figs. 6-8.

In Figs. 3 and 6 the lowest energy point shown for the discrete ordi-
nates calculation is 0.01 MeV. The spectrum, of course, does not stop at

this energy but continues to increase very rapidly with decreasing energy
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from 0.01 MeV to thermal energy. The thermal-neutron intensity, as given
by the discrete ordinates code in the case of the silicon dioxide shield
1 -1

(see Fig. 3), is approximately 3 x 10° ! neutrons MeV ! steradian™! sec

electron ! sec and in the case of the silicon dioxide and water shield is

1 ~1 electron ? sec;

approximately 2 x 10”2 neutrons MeV ! steradian ! sec
that is, the thermal intensity is approximately 6 orders of magnitude larger
than the intensity at 0.01 MeV at a depth of 1000 g/cm?.

In Figs. L4 and 7 the neutron intensity calculated using Monte Carlo
methods and the straightahead approximation shows a local minimum and maxi-
mum in the energy range 10 to 50 MeV. This feature of the intensity arises,
at least to some extent, because a different nuclear model 1s used to cal-
culate particle production from nonelastic collisions above 25 MeV than is
used below 25 MeV, and the two models do not agree at 25 MeV. Because of
this difficulty with nuclear data, the shape of the spectrum in the energy
region must be considered to be very approximate.¥

In Figs. 3, 4, 6, and T the intensity calculated in the straightahead
approximation is considerably larger at the lower energies than that given
by either the discrete ordinates calculation or the Monte Carlo calculation.
This overestimate given by the straightahead approximation could presumably
be reduced by introducing removal cross sections, that is, by discriminating
against particles scattered at large angles, but this has not been done here.

The intensities obtained using the discrete ordinates and Monte Carlo methods

are in rough agreement, but the discrete ordinates intensity tends to be

*

Calculations recently published by K. O0'Brien and J. E. McLaughlinzL+ in a
case similar to those considered here do not give maxima and minima but
do give a very flat spectrum in this energy region.
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slightly higher than the Monte Carlo intensity at the lower energies

(<2-3 MeV). Since the straightahead intensity at the higher energies
(>14.9 MeV) is larger than the Monte Carlo intensity, the source of low-
energy (<14.9 MeV) neutrons that is used in the discrete ordinates calcula-
tion is larger than that used in the Monte Carlo calculations, and it is to
be expected that the discrete ordinates intensity will be larger than the
Monte Carlo intensity at the lower energies. In the method which employs
the discrete ordinates code, the only estimate of the intensity above

14.9 MeV is that given by the straightahead approximation. It is to be
noted in Figs. 4 and 7 that there is a large difference between the straight-
ahead intensity at 14.9 MeV and the discrete ordinates intensity at this
energy. This means that the straightahead approximation is not valid at
energies as low as 14.9 MeV. It further means that in estimating the dose
using the discrete cordinates method as applied here, that is, coupling with
the straightahead approximation at 1L.9 MeV, one must use an intensity that
is discontinuous at 1L4.9 MeV, and one necessarily obtains an overestimate
of the dose from the neutrons with energy greater than 14.9 MeV.¥* An esti-
mate of how low in energy the straightahead approximation can reasonably be
used may be obtained by comparing the Monte Carlo intensity with the straight-
ahead intensity in Figs. 4 and 7. 1In Fig. 4 the two intensities are in
rough agreement for energies greater than 50 MeV, while in Fig. T the Monte
Carlo intensity is slightly lower than the straightahead intensity at most
of the energies shown. On the basis of this somewhat limited amount of in-
formation, it would seem that the straightahead approximation can be ex-

pected to give reasonable results only for energies of the order of 100 MeV

The fact that 14.9 MeV was used as the coupling energy was largely a matter
of convenience. Given the differential production cross sections, the dis-
crete ordinates code in principle can be used to transport higher energy
neutrons.
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or more. It must be emphasized, however, that this is not a very firm con-
clusion because the Monte Carlo calculations have been carried out only
over relatively short distances (250 g/cm? in Figs. 4 and T), and the error
at the higher energies may become more pronounced at larger depths. Further-
more, the energy at which the straightahead approximation becomes valid may
depend on geometry and on the energy spectrum of the neutrons in the shield.
In Figs. 5 and 8 the doses obtained in the various approximations are
compared. Since in the discrete ordinates method as used here the dose
from neutrons with energies greater than 14.9 MeV must be obtained from the
straightahead approximation, the dose from neutrons with energy less than
14.9 MeV, as well as the dose from neutrons with all energies, is shown in
the figures. Also shown is the photon dose obtained from the discrete
ordinates code. To obtain the total dose the photon dose must be added to
the curve labeled "discrete ordinates.” In both the discrete ordinates and
Monte Carlo calculations the contribution of the thermal neutrons to the
dose is included. 1In the discrete ordinates calculations the contribution
of the neutrons with energy less than 0.4 eV was obtained separately, and
it was found that these neutrons contributed approximately 10% of the dose
obtained from all neutrons with energy less than 14.9 MeV; that is, approx-
imately 10% of the dose shown in Figs. 5 and 8 by the curves labeled "Dis-
crete Ordinates (E < 14.9 MeV)" is due to neutrons with energy less than
0.4 eV. The fact that the neutron dose obtained in the discrete ordinates
calculation approaches that given by the straightahead approximation at
r/Ao = 6 and the fact that the neutron dose obtained in the Monte Carlo
calculation approaches that given by the straightahead approximation at

r/>\O = 7.5 are a direct consequence of the manner in which the calculations
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were done, The rapid variation of the dose at depths just larger than

r/lO = 6 in the discrete ordinates calculations and r/)\O = 7.5 in the Monte
Carlo calculations is indicative of the fact that the "equilibrium" energy
spectrum obtained in the straightahead approximation is very different from
the "equilibrium" spectrum obtained in the discrete ordinates and Monte Carlo
calculations. The region of rapid variation is larger in the case of the
silicon-dioxide shield than in the case of the silicon-dioxide and water
shield because the very low energy neutrons come into "equilibrium" very
slowly when there is no hydrogen. This is particularly noticeable in the
case of the photon dose because the photon production is determined primarily
by the capture of the very low energy neutrons. At sufficiently large depths
all of the dosges have a dependence on depth which is roughly exponential.

The observable deviation of the discrete ordinates neutron doses from ex-
ponential behavior in the region r/)\O > 13 is due to the fact that the dis-
crete ordinates calculations were carried out for a finite shield with a
maximum r/AO of 14. Tt is significant to note that the neutron dose obtained
in the discrete ordinates calculations has essentially the same attenuation
length as the dose obtained in the straightahead approximation. To some ex-
tent this is to be expected because the neutron source in the discrete or-
dinates calculation is obtained from the straightahead approximation. The
error bars on the Monte Carlo points represent one standard deviation calcu-
lated on the basis of batch statistics. In spite of the fact that the error
bars on the last few points shown in Figs. 5 and 8 are not large, these
points are probably not as statistically reliable as the points at smaller
depths. Because of the relatively short distances over which the particles

are transported in the Monte Carlo calculations and because of statistical



34

fluctuations, it is difficult to obtain an accurate attenuation length from
the Monte Carlo results. In the silicon-dioxide shield, if one neglects the
points at r/ko > 10.75 as being somewhat unreliable, the attenuation length
obtained in the Monte Carlo calculations seems to be roughly comparable to
that obtained in the other calculations. In the case of the shield contain-
ing silicon dioxide and water, however, the Monte Carlo calculation seems

to give an attenuation length which is different from that given by the
other calculations. In considering these attenuation results, it must be
remembered that the geometry used in the Monte Carlo calculations is not ex-
actly that used in the other calculations and therefore the attenuation
length in the Monte Carlo case is not completely comparable to that obtained

in the other cases.
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Insofar as magnitude is concerned, in both shields the dose obtained
in the straightahead approximation is too large. The curves labeled "dis-
crete ordinates" are also too high because they contain an overestimate of
the contribution of the neutrons with energy greater than 14.9 MeV. The
dose values given by the Monte Carlo calculations, at least at values of
r/>\o sufficiently large compared to 7.5 that equilibrium has been approxi-
mately established, are presumably the most correct. The difference between
the Monte Carlo doses and the curves labeled "discrete ordinates (E < 1L4.9 MeV)"
is an approximate estimate of the actual contribution of the neutrons with
energies greater than 14.9 MeV.

In Fig. 5 the photon dose is small compared to the neutron dose at the
larger depths shown in the figure. It must be understood, of course, that
over much of the region shown in the figure the photon dose reflects the
large overestimate of the neutron flux given by the straightahead approxi-
mation and is therefore not meaningful. In Fig. 8 the photon dose is small
compared to the neutron dose at all depths. In considering the photon dose,
it must be remembered that the contribution from photons produced by non-
elastic neutron-nucleus collisions has been neglected and therefore the

calculated photon dose is somewhat too small.
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APPENDIX T

In this appendix a few of the details associated with the photoneutron
production which are not given by De Staebler are presented.¥* If one intro-
duces all of the assumptions of De Staebler, the differential cross section
for photoneutron production in the laboratory system from the quasi-deuteron

model may be written

o (E ) vt
dgngQD = a - s[E'- Hy(E )] i (A.1)
where

A = gtomic weight

op = photodissociation cross section of the deuteron

EY = laboratory photon energy
HD(EY) = kinetic energy of the produced neutron in the center of

momentum

dg'de’ _

a0 - Jacobian to transform the differential cross section from
the center-of-momentum to the laboratory system
E',E = kinetic energy in the center-of-momentum and laboratory
systems, respectively. (Throughout this appendix primes
will be used to indicate center-of-momentum quantities.)
In the above the center-of-momentum system is by definition the center-
of-momentum system between the photon and quasi-deuteron which is at rest in
the laboratory system. The Jacobian in Eq. A.1 may in the usual manner be

written as

dE'dQ _ p

IEaaT T p (2.2)

*¥The derivation presented here is due to Dr. F. S. Alsmiller.
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where
p,p' = momentum of particle in laboratory and center-of-
momentum systems, respectively.
Since in Eq. 3.1 in the text the differential cross section is integrated
over dEy, it is necessary to rewrite the delta function in Egq. A.1l in a
form which is convenient for this integration. This may be done by means

of the theorem

s[r(x)]ax = ar ar (A.3)
dx
Thus Eq. A.l becomes
o (E )
do - Dy e 1
TEan QgGD A —p o G(GD) % SEA (A.L)
dE
Y
where
G = E'- H(E
( Y)
and, after a trivial change in notation,
o (E )
do D'y B 1
——| daE_ = A , S[E -~ 1] a8, (A.5)
AEA4R QD Y i P Y D dGD Y
dE
Y
where ID is now the value of E_ such that
G.(E)=0. (A.6)

In a like manner, making all of the assumptions of De Staebler, the
differential cross section in the laboratory system for photoneutron pro-
duction by pion production and reabsorption in the same nucleus may be

written



o (E ) p de
do _ Yy om 1
<5qq| 46y = |-8A F (6 ) 13T 37| 96 ° (A.7)
T s s
dE _
Y eﬂ—2E
where
G =E' -H(E)
ki m TUY
g = total cross section for pion production from pion-nucleon
i
collision
pﬂ,p% = pion momentum in the laboratory and center-of-mass systems,
respectively
H%(EY) = kinetic energy of the produced pion in the center-of-

momentum system
¢ = the total energy of the produced pion
and the symbol [ ]e —oF means that the pion total energy is to be re-
placed by two times thg neutron kinetic energy. The center-of-momentum
system in this case is defined to be the center-of-momentum system between
the photon and a nucleon at rest in the laboratory system. Changing

variables as before, we have then

A9 ) ar = |.8a 0 (E) S(E - 1) 1= . dE (A.8)
dEdQ| "y Y Y T Iﬁ?;l'dE y
dEy Eﬂ=2E
where I1T is the value of EY such that
G (E)=o0. (A.9)



To evaluate the functions occurring in Egs. A.5 and A.9, consider the

process

Yy + S ~»

where if the target S is a quasi-deuteron, n

if the target is a nucleon, n,

taken to be the nucleon.

In the laboratory system the total energy ¢

written before the collision as

>
PT =

and after the collision as

jgv 22
1]

N
and the velocity of the center-of-momentum £ may be written

>
B =

In the center-of-momentum system
Bt
T

' =
L

before the collision and

Uy

™
1

after the collision. The invariant

+
RS

€' + ¢!
Y S

mass m
T

and n_ are both nucleons, and

A B
will be taken to be the pion and n

T

is given by

>
and momentum P

will be

may be

(A.

(A.

10)

.11)

.12)

.13)

L1k

.15)

.16)

L17)

18)



- 2 _ p2 =
m, € P en - (A.19)
In the laboratory system
my, = /(E + ms)2 - p2
Y (A.20)
YA
me + 2EY ng
while in the center-of-momentum system
= ‘2 2
Mg, /eA + €Lt (A.21)
and, after some algebra,
2
(m?2 + m2 - m?) m? m2
V2 42 - A B T A B (
p'?2=pL? = - A.22)
A B
L2 m2
T T
2 4 2 2
m, Q@ my
. (A.23)
A 2m
T
2 4 w2 - p2
SR B B (n.2k)
B 2m :
T
Furthermore, from the Lorentz transformation we have
>
[ - _ .
eh = Youles = Bow'Pyl o
so
+e D D
g = EY S £, - pY "A (A.25)
A M, A eY+aS
and N
+ . 2 2 _ .2
) (eY ES)EA PP, Mg *omy - mg
G = - - . (A.26)
m m, 2m
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The value of the photon energy for which G(EY) is zerc is from

Eq. A.26:

€, €, - %(m2 +m

2
A %8 S
EY - Py cosf - e, + m * (4.27)

where
cosB = the cosine of the angle between the momentum of
particle A in the laboratory system and the incident
photon direction.
Because of the delta function in Egs. A.5 and A.8, we shall be interested
in the quantity p' éé_; evaluated at the zero of the delta function, that

dE
is, at the value of EYYgiven by Eq. A.27. It will be convenient to express

the various quantities in terms of the invariant mass Mq, SO for future

reference we note

- (2 2 _ 2
) ey o~ elmg +my - mp)] o
thy, = {ms + 2mg } (A.28)
G=0 Py cosf - € + Mg
Also,
d(mTG) =1 gg_.+ G EEZ (A 29)
dE T dE dE '
Y Y
50
4G 1 d(mTG)
ak m, dE (A.30)
Y |1G=0 T G=0
and, from Eq. A.26,
€, - p, cos6 - m
aG A A S
= = - X (A.31)
Y |G=0 T|G=0
Now, using Eqs. A. 22, A.28, and A.31, the quantity g“ dé - can be
dE_ |

evaluated explicitly. Y'[G=0
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In the case of the deuteron model,
€ = 2m (A.32)
where

m = nucleon mass,

so (going to kinetic energies) from Eq. A.27

T = 2 , (A.33)

cosOVE(E+2m) - E + m

and from Eq. A.28

D L
Mplgeg = 2m {1+ . b (A.3k4)
cos8VE(E+2m) - E + m
From Eq. A.31
aG _ E - cos8 VE(E+2m)-m (A.35)
= = . .
4E l6=0 mT{G=o
and from Eq. A.22
B 1
2 2
, _ mT’G=O a2
P ‘G=O n -
- (A.36)
- 1
_ om2E, 2
cos0VE(E+2m)-E+m
Combining these results we have finally
1
2
JD(E’ cos8) = |B— 52 - /§-¢E3E+2m5 [cos8VE(E+2m)+E+m] , (A.37)
P 53?1 VE cos6VE(E+2m-E+m
Y1e=0

and then Egs. A.5, A.33, and A.37 give explicitly Eq. 3.3 of the text.
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In the case of pion production and reabsorption,

so from Eq. A.27

cose/ef;-m2

- € +m
™ TT

and from Egs. A.22 and A.31

m?2 12 - mm?2 I+ % m* - n2 m?2%
N m Toom ﬂ

Pl = »
G=0 m(2 I+ m]*
_ 2_m2 _

ac B €, cose/e1T m_ m
= T
dEY G=0 [m(2 ITT +m)]”°

Combining these equations and evaluating the result at e, = 2E, we have

2/T§E+mﬂ)(2E—mﬁj

= Q(I“)[cose/(2E+m“)(2E-mﬂ)_2E+m]

and then Egs. A.8, A.39, and A.42 give explicitly Eq. 3.4 in the text.

(A.38)

(A.39)

(A.2%0)

(A.L1)

(A.42)
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