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Aquatic micl-ocosnis consisting of vns.ioim combinations of physical 

components ( so i l ,  water9 and container sw~face) and biological csmpener~ts 

de t smi  ne -the ef fec t  of increased b io t i c  complexity on mine rd  cycling 

p u m e t e r s ,  The s t a b i l i t y  o f  xniner2, cycling parmeters was tesked by 

tncreased w i t h  increased complexity, while for other corrp3stmeut s no such 

60 cosm c o q a ~ t m e n t s  were similar ;uiong: complexity levels,  but the 

patterns o r  m o s t  compm-tmends were dependent on tJhe co~wlexi ty  level. 

Cra f l u  

?he pat te rn  o f  "37Cs d i s t r i b u t i o n  arnong n~crcacom campastmerits was 

ixidepentknt o f  complexity md was one of f low through non-soil e o q a r t -  

merits w i t h  yapid a c c m d a t i o n  in the  soil. 

the 'OCo pathway pa t t e rns  depended on complexity level w i t h  a@cmuI.ation 

I n  contrast to 137Cs patterns,  

F 
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60 
of  

through non-soil  compartments t o  t h e  s o i l  i n  complex microcosms. 

Co i n  non-soil compartments i n  simpler microcosms and flow o f  6oCo 

Microcosm components assumed d i f f e ren t  mineral cycling r o l e s  based 

on changes i n  cycling parameters with hicreased complexity. Genmally, 

these ro l e s  were d i f f e ren t  f o r  "'Cs and 

f o r  each rad.i.oniiclide e 

60 Co and among complexity l eve l s  

Radiation s t r e s s  affected. 6oCo cycling but no radia- t ion e f f e c t  on 

60 133'7Cs cycling was observed. 

dependent on t h e  complexity l e v e l  and, i n  general, rad ia t ion  stress de- 

creased t h e  cycling ra-te of 

The r ad ia t ion  e f f e c t  on Co cycling was 

60 
Co. 

GeneralizatLons from thi.s study wwe t h a t  1) cycling parameters f o r  

d i f f e ren t  elemen-ts were diss imi la r  i n  l e s s  complex system 'out converged 

toward s h i l . a s i t y  as complexity increased; 2 )  microcosm components had 

one o r  more mineral cycling ro l e s ,  some of which changed with compl.exity 

levels ;  3)  increased funct ional  complexity had t h e  grea tes t  e f f ec t  on 

mineral cycling, although an increase i.n unifunctioiial. specie:: modified 

the  mineral cycling parameters; 4) ecosystem s t a b i l i t y  w a s  r e l a t ed  t o  t h e  

s e n s i t i v i t y  o f  t he  b io logica l  in te rac t ions  and not necessar i ly  t o  the  

s e n s i t i v i t y  of t he  organisms; and 5 )  on the bas i s  of mineral cycling para- 

meters, the  simpler microcosms were l e s s  s t ab le  than the  complex ones 

when subjected t o  a moderate r ad ia t ion  s t r e s s  (subl-ethal dose),  but more 

s-kable than complex systems when subjected t o  an extreme s t r e s s  ( l e t h a l  

dose).  

Tile use of microcosms as ecological research un i t s  provides a means 

of performing experiments which would be d i f f i c u l t  or i hp rac t i ca l  t o  con- 

duct i n  nature,  but  t h e  resul- ts  a re  subject t o  the  c r i t i c i sms  t h a t  they 



m a y  not be representative of a natural ly  occurring ecosystem. I%~ever ,  

if cer ta in  microcosm designs e m  be shown Lo wc-matel-y ref lect  an eco- 

system, then nierocos.ms can be used to t e s t  the  effect of unusual. environ- 

rnen-t~d stresses and hypcLbeses about ecosystenl beha?rior. 
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I. INTRODUCTION 

Studies of t h e  ecological e f f e c t s  of ionizing radia%i.on lizve been 

performed on indivjdii.a,ls, populations and comunitAes A t  t h e  l e v e l  of 

t h e  individual,  rad ia t ion  s tudies  of' aquatic m d  t e r r e s t r i a l  organisms 

have emphasized mOrph .GloS ;%Cal  abnorrnalities (Gunkel and Spary"ow, 1961; 

\JitIierspoon and TEylor, 1.966) ant1 e:ffects on various stages of l i f e  cycles 

(Wlllard, 1963; R.avera, 1967; Heaslip, 1.959; Eon.liam and Welander, 1963; 

and Witherspoon, 1967) 

s-iiressed le"cia.lity (Sparrow, 1Q361-k; Wither spoon, 1965; Palimbo, 1951.) , 
changes in population c h a r  a c t  e r i  s t j . ~  s (Max- s1ia1-1 , 1963 ) a:2d p p u ~ a t i o n  

iin-tersctions after rad ia t ion  t r ea tnen t  ( ~ ~ z y ~ . o c k ,  1968; ~c~or .m?.ck ,  1963) . 
Rzdiat im ef'feets at t h e  cormiwity l..etrel. h.ave been doci~j-nented i n  terms of' 

product ivi ty  ( ~ o o d w e l ~  arid ~ i ~ c r ,  1-953; and ~eyers, 1.96;j) 

coxrmimity s t ruc ture  (TIJoodwell en.d S p w ~ o w ,  1963; Dmiels ,  1.9613; M c C o m i ~ k  

and Platt, lg62), and most reeent1.y i n  terms of ccjnmunity fi.mct5.m 

(wootiwe11 as,< Dykeman, 1966). 

At the populxtion l.evel, r a d i a t i o n  s tud ies  have 

c~mnges i.n 

Rate of mineral eyeling i s  a paarasneter which has reLce lved  l i t t l e  

attea!;ion as an index of rad5ati.m s t r e s s  in ecosystems. Brown a.nd 

Taylor (1.965) reported long  t e r n  decreased h5Zn uptake by r e d  o a k  seed- 

l i n g s  a f t e r  exposure t o  acute doses of f a s t  neutrons. %rher and PJea.ry 

(1938) reported increased short t e r n  upta,ke oif non.- exchangeable 8GRb 

by Chlorella aftex- X-irrad.ia.tion m d  a decreased concentration i P  radlo- 

nuclide uptake occixred during i r r a d i a t i o n .  Such changes 2.n mineral. up-- 

take rates arid concentration o f  an element in a species could be Important, 

with respect t o  mairrteiiance of an ecosystem. 

where many of the  species are coi~pled in a mineral cycling pattern, a 

In coniplex ecosystems, 

1 



2 

s t r e s s  having a s ign i f i caa t  e f f e c t  011 niiner,d r e l a t i o n s  of one b i o t i c  

component i1ra.y disrupt  t h e  pa t t e rn  of' cycl ing among a l l  components r e l a t e d  

t o  it. 

'The objec-Lives of t h i s  study were t o  inves t iga te  t h e  uptake and mom- 

mrni; of raclio-cobalt and -cesium in increasingly complex ecosystems and t o  

determine the  effect ,s  of acute, fast, neutron r ad ia t ion  on Lhe flux of 

thcse  yadlonuclidex i n  the  system. 

An aquatic microcosm cons is t ing  o f  two plants ,  Elodea caxmdensis and 

Nqjas . . . .. . .- . f lex i l - i s ;  -. t h e  sna i l ,  __l.l.... Physa __ I heterostropha; and t h r e e  physical  com- 

ponents, soi . l ,  water ,  and t h e  container si~.i-fac_e, w a s  selkcted as a n  appro- 

p r i a t z  expriiT.ental ui1i.L. 

cosns conta in ing  s r l e c ~ t e c l  combinations of orgaaisms, some combinations 

recej.)-i.i2g acEt= doses of radia-tjnn (Ta10le 1). %bus, microcosm complexity 

levels (biotic zorqmsri t i o n )  amd f a s t  neutron rad ia t ion  were treatuients. 

Experiments were gerfoi-med wi 'ih tegged micro- 
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Microcosm ComqorienLs _.^_ ..- 

The p lan t s  used i n  these experimeiits, Elodea canadensis md Najas 
__Î .-- __ 

f l e x i l i s  were coll.ec+,ed frolji Clear Creek, Norr i s ,  Teimessee. These spe- 

ties Were iiltl-oduced i n t c  t h e e  60 gallon t a d s ,  which were naint:zined i n  

__.--.....-- 9 

a grcenhousc in f l o w h g  water. Col l  ect ions OP both species were wade a t  

4 month in t e rva l s  a n d  added t o  t he  cu l ture  tank in order t o  keep an abim- 

dant supyly of p lan t  mater ia l .  

The snail ,  -.Î Physa ..... ~ ~. heterostropha, ...-- which occu-s with ..., E. canadensis -.. and 

- N .  f l e x i l i s  i n  Clear Creek, was Lo be collect;rd from C l e w  Cpeek, bist; suf- 

f i c i e n t  rimfibers o f  this siiai.1 were not a-vaila'nle .t;hert. %pa heterostro-  ---- 
--.. phe were available in numbers a t  e, sprlng located 0.5 miles  no r th  o f  t he  

O a k  2 X g e  reservat ion i l l  Rome Couaty, T e m e s s c e  3iid a l l -  sna i l s   ere if01 - 

l ec ted  froii? t h i s  spyingS. The s n a i l s  were no t  c u l t u r e d ,  but were collected 

pr io r  t o  each experiment. 

The soil used f o r  t he  microcosm was  Huntington silt loam obtained 

from the south shore of Xa%t,s B a r  Lake a t  Clinch River Mile 13.5 %a Home 

County-, Tennessee. X-ray cliffraction anal.ysis of t he  clays showed t h a t  

they were prkarl.1.y micaceous with some kao l in i t i c  material.. T'ne pH of 

a soii-water iilicrocosm was 7.8 which agreed el-osely with t h e  ac id i ty  (7.7) 

of t h e  streaiii bed of C l e a r  Creek. 

Fhysical Microcosm and Experiment; Preparation 
I- - - -_I..._- 1_1--1.._- 

A microcosm uni t  w a s  designcd so t h a t  r ep l i ca t e  microcosms coii1.d be 

sacr i f iced  f o r  each sampling period. 

quart, wide mouth jar, l i ned  with a one q u a r k  polyethjrlene f reezer  bag and 

provided with a 'cop having an air i n l e t  and o u t l e t .  

The micorcosm consisted of a one 

4 
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When both plant. species were present, 5 individuals of each specles were 
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i n  order t o  allow f o r  s l i g h t  deviat ions due to cba,nges i n  syringes,  vari- 

a t ions  ili vohmc messmoments of water, and sub-sampling e r r o r .  

Xepljcate microcosms were tzgged on a delayed time sequence. S i x  

microcosm rzpresenting a given sampling period were tagged i n  p a i r s  , 
t he  t h e  i n t e rva l  between p6.i.tr.s being approxi-mateljr 15 minutes. Thi.s de- 

sign allowed time f o r  siimpiing a p a i r  of  micorcosrris silch t h a t  t he  ti.ino 

elapsed betweeii tagging 2nd sampling w a s  the samp for a l l  rnici-ocosms sac r i -  

f iced  a t  a given sample period.  

60 “3’7,, 
The tagging procedure consisted of drawing 2 m i  of  stock Co- 

solutioi.1 in to  a syringe a.n.d. eniptying the sy-fingc i n t o  t h e  water of each 

mic:roc.osm v i a  t h e  a i r  o u t l e t .  Eveii pressure was aqpbied t o  -the syri.ng;e t o  

avoid sp1asliiri.g the isotope Solu’c-ion o i ~ t o  the s ides  o f  ‘the container, Thc 

s p - l n g e  was di.rected t o  t h e  cen-ker of t h e  microcosms f o r  delive::)-. 

The mic:r:ocosms were sacrlfl.ced. oil ai? e,xponeritia,l t 3 . n ~  sel-ies o f  2n 

hi-, where n = 1:2,, . .,9. Th5.s t ime series was selected because t h e  i so -  

topes were d i s t r ibu ted  rap id ly  -i.n the  microcosms. 

Microcosms were i-e::lovzd from t h e  growth chamber at t he  spec i f ied  

j n  the vacant pos i t ions  i n  o r d p r  t o  minimiA,e changes i n  t h e  physical geo- 

metry of t h e  groi4h ehmbers.  I n  L h r  laboratory, t h e  water w a s  sampled by 

t r ans fe r r ing  a 7 ml a l iquot  from the center of the microcosm w a t e r  column 

t o  a 2:; x 170 m counting t11bt3. Pla,nts  were reiioved from the  microcosms 

with forceps and r i n s e d  three times i n  water and s o i l  was vashed from t h e  

r o o t s .  

tubes containing 1- mJ- of l& formaldehyde. 

The p lan t s  were drained of excess water- and then placed i n  counting 

Snari.1.s were removed from t h e  

microcosms with forceps mi? ri.nsed i n  t he  tagged water to  move loose soil 
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sm12i.e. Ifowever, i-t w a s  not always possible  t o  accumulate t h i s  many 

counts and iin t he  caseof  the  water samples as few as 5000 counts would 

be regisbered i n  e i t h e r  the  cesi.im or cobalt  channel for a 30 minute count .  

A s ign i f icant  counting probl-ern occurred from the  use of a dual t a g  

because o f  contr ibut ions o f  6oCo counts 'LO t he  137Cs channel. 

6C t i a l  uptake and retenbion of  

Differen- 

Co and 1-3'7Cs i.n both p lan t  species resulted. 

i n  up to 63% of t he  t o t a l  cobd-t  occurring i n  p l an t s  with cesiuii repre- 

senting only .?$ of the t o t a l  ccsiurn. 60 
When t h e  r a t i o  of Co to ' 3 [ c s  

was t h i s  la rge ,  acciirate determination of cesium a c t i v i t y  was not possible .  

6 3  - The e f f ec t  cf Co a c t i v i t y  l e v e l s  on the  act i -vi ty  determination of 

137Cs we s i,esS,er! exrerimentally.  Var..ioirs d i lu t ions  of 137Cs were prepared 

and counted, and .l p C i  of' 6@Co w a s  added to each d i lu t ion .  They were 

then recounted- on the dual channel spec trofnete:r and on a Packard m i i l t i -  

chaniiel. ail2lyzcr, wl;icii  cor rec ts  f o r  dead time. The counting 1.~esu1.t~ finor11 

the  multri.-cha.nnel analyzer were processed through a s ta t j - s t ica l  progi-mt, 

RES&>, which so3.ved for the  ac-tj.v-i.ty of several  isotopes.  The compari.soa 

o f  a c t i v i t y  esti.mates of 1-3'7Cs i n  t h e  presence of 60Co t o  t h e  absolute 

arrtmmt o f  13'7C!.5 Lhat was present  (Table 2) showed tkat both analyses weye 

equally poor in .  detect ing - h e  absolute amount of C s  presen-t when the  117 

r a t i o  of cobalt  to absolute cesi.um exceeded 1-0 t o  1. Based 011 these re- 

sults, t he  cesium l e v e l s  i n  p l an t s  were allowed t o  go t o  zero  when bhe 

cobalt a c t i v i t y  increased. 

of t h e  t o t a l  137Cs remained i n  t h e  p lan t ,  but it i s  not possible  t o  docu- 

1-I; i s  ressonable -LO assume t h a t  a t  l e a s t  .l$ 

ment thi.s assmipiion. 

NeuLron Radiation k s c i l  it;. 
__I-___ 

The Iie31tii Physics Xesearch Reactor (IIPKH) a t  Oak Ridgt= served as  a 

source o f  fission f a s t  neutrons f o r  these experiments. The resc tor  
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/- 

Table 2. 1'37Cs Assay i n  the Presence of O'Co 

Single Chamel Dual Ch%Imel Milltichannel 

J184 
e 0594 . 01 49 
.0014 
.oooQ 
.0001 

98.7 
100.7 
104.9 



f ac i l i . t y ,  described by Limdin (1962), i s  capable of del iver ing chronic or  

acu’Le doses. 

mu-trons having energies between 1 Kev aid 0.75 Mev, 38.5$ beLween 0.75 

and I.”?, 15.6$ be-t.itJ2ell 1.5 and 2.5 ,  ar?d 2l.”5$ less than 2.5 Mev. 

and thermal neutrons comprise the  remaining 0.6% of the  spectrum. 

reac tor  de l ivers  a mixed neutron-gamma dose, with a neu.tron/gama r a t i o  

of 9 between I and. 3 n from the  core. 

The average spec t ra l  energy (Fi.g. I..) i s  1 Mev w i L h  2$ of t,he 

Slow 

The 

Microcosms were tra,nsported t o  the  XPRR f a c i l r t y  and arranged i n  a 

sal-icTrc1.e appi”Ox.imaAely l m above the  coiicrete f loo r  and 2 m from t h e  

r e a c t o r ,  which was operated a t  1.7 m above the  ground. Doses were de- 

l ivered  acutely,  no more than 1 0  mimites being required f o r  x ~ y  reac tor  

run.  Calcula,tions of doses alii exqmsurt-e dis tances  were detemined by the 

HPRR personnel (Johnson and  Poston, 1966). In  a semicircle arrangement, 

a n d  a t  t he  distances stated above the  dose actua.lIy received iii.11 vary 

._ -!- . 7-05 fi-oE .ihc mcasmed. dose. 

specified f o r  various eqeriments  afid actua.1. measuremeats of dose de- 

liver& varied i n i i t h h  10% of .th= spec3.fied dose. 

t he  acute dose wUl be referred t o  a s  1.00, 400, o r  lC00 rads. 

Coses of 1.00, 400, and 1000 rads were 

i n  iiiese experiments, 

Distr ibut ion of close wj.t’r1j-n mi.cro@osms was de‘cei*rflil?ed wi%h Phylatron 

f a s t  neutron microdosimeters which were placed at various v e r t i c a l  and 

horizoiital pos i t ions  i n  a soil-water microcosm. 

Mater3 7.1- Balance - - ~  

The use of closed nicrocosms permits t he  assumption of t o t a l  radio- 

nuclide recovery by sampling, allowing var ia t ion  i n  i n i t i a l  tagging,, 

counting: and sub-sampling. The use of this assumption ~ rou ld  expedite 

calculatiori oP one o f  the  compartments by simply subtract ing t h e  sum o f  

a c t i v i t i e s  of a1 I the  other compartments from the i n i t i a l  a c t i v i t y .  
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Figme 1. F a s t  neutron spectrum f’rm the Health Physics Reseasch 
Reactor. 
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'The assumption of total .  recovery of radionuclide i s  not va l id  i m 1 . e ~ ~  

it i s  demonstrated experimentally. 

considered va l id  for. these s tud ies  based on a material. balance o f  1 3 ? C s  

cal.culated f o r  fou r  r e p l i c a t e  mi-crocnsms having water, s o i l  and a con- 

'The assimption of  t o t a l  recovery was 

t a i n e r  as  coinpanents (Tah1.e 3 ) .  

microcuries was based on measurements taken from 4 samples of 600 ml of 

water, each supplied with i 1111 of a standard 137Cs stock so lu t ion .  

percent, recovery on the  mean i .nocvlm, t h e  range of percent recovery w a s  

- i- 4$; t he  average recovery agreeing with t h e  average inoculum. 

pari.i.cular study it  appeared feasible t o  assume t h a t  total recovery of -the 

spi-kz was possible  and on t h i s  bas i s  tshe subtract ion method was used t o  

de'iei-mi-ne the  a c t i v i t y  i n  t h e  soil- foi- t he  l a t e r  expx:i.iiients. 

The i n i t i a l  a c t i v i t y  of 1.25 - i- .Ob6 

Rasing 

i n  t h i s  

I Radiosensi-t ivity Assay ~ _.__- 

The e f fec t  of' radiatrion on whole p l an t s  vas measured by observ.ing 

chaiige i n  &-I- wnigh'i, or l e n g t h  o f  p l a i t s .  D r y  weight m,s determined 

a.fter drjriilg 'he samples a.t 100 C for 24 hours and. then cooling t h e m  i n  3 

dess ica ior  for a n o t h e r  .24 hour period. El.ogal;ion o f  platlts was taken as 

a x  index of  g r o ~ t h .  1mlividua.l plan-1,s were measured t o  t h e  nearest  0.05 

cm wi-i;h a ca.l iper.  Measurements 'were made t o  the  t i p  of t h e  growing apex 

w i t h  the plant axis f u l l y  extended such tha-t curvature d id  not erfect  t he  

measurement of t o t a l  elongation. 

Mortali ty of snails was measured by determining the number of dead 

sna.ri1.s i n  each microcosm. In inany cases, the: bodies o f  t he  s n a i l s  were 

separated from the shell. It was observed t h a t  some snail. bodies remained 

i n  -the s h e l l  even though dead. These individuals  w e r e  determined by spray- 

ing a jei; of water between tile r e t r ac t ed  foot and shell. If the  s n a i l  was 
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d e a d  t he  body w a s  e a s i l y  pushed out of t h e  s h e l l  by the water presswe 

tjweloping behind i t .  If the s n a i l  was a l ive ,  jet, w a s  d i f f i c u l t  t o  d i r e c t  

the water bchind the  foot  and even then, the body was not pushed out of 

the she l l .  

St at i st, ic al Pr oc e d u  e s -- I 

Count dcterrnjnations Tor each mici-ocosm compartment were converted 

t o  picocuries  . These a c t i v i t y  dctzrmina-tS.ons w e ~ e  t ransforned -Lo conipart- 

rnental perceat of total red.ionuclide Fur. each r e p l i c a t e  microcosm. This 

conver s ion 1iiak.e s comparisons among cxper.i.men"i, s j.nd.ependeat, of d i f fe rences  

among in-l!:.-i8.1. concentrations o f  r a r t i  onncJ.id.es used i n  each experkerij;. 

The avera.gi;e pe-t-cent radionuclide f o r  each compartment was then calcula-ted 

frc:lj:;. s i x  i-eplicatc observations for each. of 9 sarq l ing  per iods .  

Uptake cilrves were compared w i t h  respeei  'LO the  m x i m u m  and  mil- 

poi.!it quanti t l e s  of t h e  rad-ionuclides. 'The fina>l,  o r  end-point, observ-a- 

t ions  G J W ~  made at ,312 hours aJ~t1-1011.gh the g r q h s  appearing i n  l a t e r  sec- 

tj-ons have a time scale exl;enc?eil t o  236 hourrs or t o  an observatton per iod 

beyond which EO a c t i v i t y  couJ.d be detectei:. CoLmparisons of fi.n.a.1 con- 

cent ra t ions  were made with t h e  data obtained a t  512 hours which usua.1ly 

d i f f e red  by less than 3$ from t h a t  a t  236 hours. 

A one-way analysis  o f  variance was used t o  make poin t  comjprisons. 

'The treatmen-t;s f o r  a given comparison consis ted of the d i f f e r e n t  ';y-pe:; 

of microcosms with a common conipartmen.t; I 

nuclide concentratLon was compared among treatments f o r  a specified s m -  

pl.ing period If the  F s t a t i s t i c  indicated differences .among treatments 

a t  t he  .O> l e v e l ,  then a D U I ~ C ~ I ' S  mul.tiple range t e s t  (Duncan, 1.955), 

The comprtinental. percent radio- 



hereaf-les referred to as Dimcan's test, was used to eonpare the mem. 

&stemiina.tions. The equation, Y = n i b I n  X, gave t h e  bes t  fit to t h i s  

sfon coefficients were then analyzed. by a multiple range t e s t .  

of treatments, t, wa,s defined as the  r a t i o  of the sua OS the res j .dud  s ims 



111. RESULTS ANE DISCUSSION 

Dosiine.t;ry Ln t h e  Microcosii?s -.. .-__ 

'The dose d.el.ivered t o  -the surface o f  a microcosm w a s  not representa- 

'The dose through a microcosm de- t i v e  o f  the d-ose through a microcosm?. 

creased wtth d is tance  from the  sur face  of the microcosm towwd .the 

rad-ia-Lion soii?:ce as a r e s u l t  of -Lhe water-neutron in t e rac t ion .  

Uose measurements a t  several .  poin ts  ins ide  and outside t h e  micro- 

cosm were m.zile r e l a t i v e  t o  .the s i x f a c e  dose and expressed as percent of 

1.7 surrfe.ce d-ose (Fig.  2 ) .  r'i lhe  gia-ss a t tenuated only- 5% of t h e  dose, where- 

as li cj;l o f  r a t e r  attenuaked xpprox-h.a.te!.y one-half the surface dose, t h e  ;"e- 

maining 4 cm of tirater at.Le-nua.ted the d.ose to one-fourth of the sur face  dose. 

As the posi-Linr!a of the ergmiisms i n  the microcosms were no'c speci-  

f i ed ,  a gi.ven oi-ganism could receive a r e l a t i v e l y  high or low dose C G ~ -  

pared to the incident  dose. Since it was des i rab le  t o  separate  the  

e f fec ts  o f  diffci.enL dose treatments,  doses were chosen which d id  not 

have overlagping ranges.  Thus, while t h e  e f f e c t  0-E  a n  absolute dose tax- 

not 'oe stated,  i t  i s  poss ib le  t o  compare -the e f f e c t s  of t he  two dose 

ranges represen-Led by an incident  surface dose o f  1000 and 100 rads. 

Dose Calcula-tiotis in the  Microcosm . . - _I_- _l__l___ 

Organrisms i n  the  microeosrns were subject t o  exp~sure  from t h ree  

possible  r ad ia t ion  sowees. : 

ces im and -cobaI_-k, 2) an external dose resulting from m.&io-cesium or 

-cabal-t i.n the surrounding media, and 3) a neutron dose which was a.n 

experimental variable . The acute neutron dose was measured, but the  

i n t e r n a l  a n d  ex terna l  chroriic dose due t o  t h e  rad.ioiiuc:l.ides had t o  be 

calculated.  Such ca,l.ciLations may be quite accurate where precise 

1.) an i n t e r n a l  dose from aksorbed radio- 

16 
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the numbers express the dose as a percentage of the inc idmt  dose. 
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information on the  d- i s t r ibu t ion  of nuclide, t he  b io log ica l  h a l f - l i f e ,  and 

t h e  geometry of t h e  t i s s u e  are <zvailable (Hine and Brownell, 1-9j6). How- 

ever, ce r t a in  assumptions aboiit radionuclide d i s t r ibu t ion ,  geometry, and 

half  1 i f e ,  which simplify dose czdculations,  ye t  provide reasonah1.e dose 

estixiates, can be made. Here it was assumed that  radionuclides were uni- 

formly d i s t r ibu ted  i n  t h e  t i s sue ,  t h a t  m a x i m u m  a c t i v i t y  concentrations 

were consta.nt, and tha t  geometry of t i s s u e s  approximated e i t h e r  a cyl inder  

or  a sphere. Calcillations based on these assimptions probably lead  t o  

overestimates of absorbed dose and are  intended t o  provide only an  iipper 

estimate of t h e  dose absorbed by an organism. 

1-37 
'The grea tes t  concentration o f  e i t h e r  Cs o r  6oCo i n  t h e  water was 

taken as 1.833 X 

th; gamma-ray dose r a t e  from t h e  medium (I I ine  and Brownell, 1956): 

pC/mS. The following equztion was used t o  ca l cu la t e  

R = 10-3 cp% r / k  (1) 

where C i s  concentration of nuclide i n  pc/ml, p i s  t h e  t i s s u e  dens i ty  i n  

g / c c ,  '1 i s  the  gamma dose r a t e  constant of t h e  radionuclide i n  cm2-r/mc-hr 

and % i s  a geome-Lrieal f ac to r  f o r  a cylinder 11 cm high and 4.3 crn r ad ius .  

was calculated by the Pol-lowing equation %, The geometrica,S. f ac to r ,  

( H i m  and Brownell, 1965) : 

where z i s  t h e  h$?ght of' t h e  water cylinder measured as 1.1.. cm, r i s  t h e  

mdi.us measured as  4.3 cm, and p i s  the  absorption coef f ic ien t  f o r  s o f t  

t i s s u e  0.03. 

The be ta  dose r a t e  from t h e  media was calculated by t h e  following 

equation (IIine and ~rownell, 1936) : 

R = 51.2 FBCf rad/day (3) 

where i s  t h e  average be ta  energy of t he  nuclide,  C j.s the radionuclide H 



concentration i n  pc/& and f i s  the  f r a c t i o n  of energy absorbed in a cylin- 

der of 4.3 cm rad ius .  

by Daugherty (1962) e 

Elodea was chosen t o  represent t h e  p l an t s  because the greatest con- 

This f rxe t fon  i s  given f o r  cyl inders  and spheres 

centz&-ki.cm of ei ther  radio-cesium or -cobalt s c c u ~ r e d  i n  Elodea. The 

concentration of '' 'Cs for wet El.csdea tissue was O.GO363 pCi/@ and far 
_F 

Co 0.0'7363 p C i / g m ,  The in te rna l  gamin dose rate was calEcul.ated by 
60 
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Figure 3. Relationship between complexity and cornpartmental Co 

dynamics . 
Complexity l e v e l s  represent  cembinations of microcosm components: 

A = physical  components only  

B = Physa and physical  components 

C = Najas and physical  components 

D = Elodea and physical. components 

E = Physa, Najas, and physical  components 

F = Najas, Elodea and physical  components 

G = Physa Na'as Elodea and physical  components 
- 2  1 9  -- 



60 
The loss  r a t e  of Co rrom the  water coqartment  var ied among com- 

p l e x i t y  treatments,  but there  were ilo s t a t i s t i c a l  dj-fferences (Table 5 ) .  

The results do suggest t h a t  treatments consis t ing of Elodea and other com- 

ponents e f f ec t  a more rapid Co lo s s  from t h e  water than the  twmining 
60 

treatments. 

'OCo from the water may rrsult from t h e  f a c t  t h a t  t h e  surface area of 

The apparent e r f e c t  of ~ . _  Elodea of  increasing t h e  loss r a t e  of 

Elodea was seven times grea te r  than t h a t  o f  w a s .  -- 

binerl with Najas had no e f f ec t  on the  loss  r a t e .  However, when Physa 

occurred with Najas and Elodea the  inost rapid l o s s  r a t e  of  6oCo from t h e  

water coimrpasl;ment was obtained. This suggested t h a t  t he re  was an i n t e r -  

Physa alone or com- 

act ion between Elodea and Physa, as Physa combined with Najas had no 

e f f ec t  on the  r a t e  as compared t o  the  physical  microcosm and I-.._____ Elodea com- 

biraed with Najas did not produce as rapid a l o s s  r a t e .  These da ta  sug- 

gested a t rend of increaser? l o s s  ra te  with increased surface area and 

possibly a t rend of increased loss  r a t e  with c o q l e x i t y  a s  exemplified 

by t h e  Physa-Najas-Elodea in te rac t ion .  

60 
T'ne Co content of t h e  water compartments at 512 hours was compared 

among complexity treatments (Table 6 ) .  Na,jas alone, t he  physical micro- 

cosm, and Physa alone formed a s e t  of treatments which l e f t  t h e  g rea t e s t  

amount of 6oCo i n  t he  water compartment. 

t i o n  formed a nonsTgnlficant s e t  which l e f t  more 6oCo i n  t h e  water compart- 

The p l a n t s  alone and i n  combina- 

ment than t h e  f i n a l  nonsignificant range cons is t ing  of snail-plant(s) 

treatments.  

60 
These da ta  showed a t r e n d  of decreased Co content of t h e  water com- 

partment with increased complexity. 

reduce the  6oCo content of t h e  water compartment any more than the  physi- 

c a l  microcosm. 

Physa alone and Najas d o n e  did not 

Elodea alone and Najas-Elodea decreased t h e  "Co content 



Table 5 .  Duncan's Comparison of 40Co Loss Rates From the 'Vater 
Compartment ,bong Cmplexity Levels 

Value of p* 2 3 4 1 5 6 7 

rp .05 2.919 3.066 3.160 3.226 3 276 3 315 

Treatment physic a1 physical physical 
Physa 

Na j as 

p hy s i c  a1 p h j s i c a l  physic& 
___ P h z a  
Na j as 1Vaja.s 

Eiodea Eiodea 

physicall 
Physs 

Elodea 
wa j as 

Mean(betaj -20.07 -21 -37 -21.71 -21.72 -23.18 -24.75 -26.29 

Sta t i s t ica l  
Significance 

* 
p represents the nmiber of means included in the ranked ocmparisoras. 
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of t h e  water which r e f l e c t e d  t h e  d i f fe rence  i n  surface area  between t h e  

p l an t s .  The sna i l -p lan t (  s )  combinatiorls fu r the r  seduced the  Co coriteent 
60 

of t he  water compartment and t h i s  suggested an in t e rac t ion  between the 

plants and s n a i l .  That such an in te rac t ion  ex is ted  w a s  evidenced by the 

fac t  t h a t  t he  combined surface area of Elodea and =as - did not, reduce the 

6oCo content of the water as low as the srtail-plant(s) cornhinations m a  

that  Pnysa done did not rec?uce t h e  

physical  microcosm, 

60 Co eontent as compared w i t l l  the 

The pa t t e rn  of 137Cs fEm in t he  water corrpwtmen-t- (Fig.  ha) ~ m s  

32 ho-m-s ard w3.s followed by a, period of slower ].ass to 256 hours. Among 

all treatments the water compartment had  reached or c1osel.y qproaehed a 

plexlty treatments containing Physa, formed a nonsignificant s e t  w f k h  loss  

r a t e s  significantly more rapicl t;hm ,dl other treatments. 'T~C treatments 

Physa i f  increasing t h e  loss r&te i s  indeperidcnt of the piant  combinations ~ 

The 137Cs content o f  the water compmtments w a s  compared m m g  treat- 

ments (Table 8) .  The snai l -plmt ( S I  combina-tions 3nGntx.ined. a significantly 



os32 w $20 2% 
?#LIE Ihl 

....... 

.............. 

Tim I*, 

........................... 

+28 2% 
rw l*I 

(*) 

Figure 4. 
137Cs dynamics 

Relationship between complexity and corqm.rtmcrital 

Complexity levels represent  combinations of rnicrocosrn components: 

A = physical  components on ly  

B = ~I Physa and physical  coraponents 

C = NaJas a_nd physical  components 

D = Elodea and physical  components 

E = Phxsw,, Najas, and physical  components 

F = Naja?, :lodes, and physical  components 

G = Physa, Najns ,  gc&e&,and physical  components 
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higher cesilm coiitent i n  " s h e  water thaa otlnei. complexity- trea-tnents I The 

mnlntainerl -!Ale Least mount of  137Cs i n  the  water 

compar-t;ntefit w i t h  increased ccrfiplexity. 

pared t o  the physical  mieroeosm.. iI'l~e p l a i t s  increased. the Cs content 

Physa a.l.ent. had EO e f  feet. coa- 

1 .y  

or" the  ~ u ~ ~ t e r  and the difference iiP%,wcen l\jt:Zas d o n e  and rl_ndea alone 

showed a swTace .wei effect, e 

s t r a t e d  a signifj.c-a,at i n t e rac t ion  between snails am3 plants as 137Cs i n  

t h e  water exeeecled that maintained by the p l a i t s ,  d o n e  o r  combined, and 

Physa alone. 

may be due t o  a plant  s iuface m e a  effect. 

I___. 

The s n a i l - p h n t  (SI combi!?.atiioas dwon- 

The difference between Yhysa-Najas and Fhysa-NaJas-Elodea. 

Radionuclide lo s s  rates from the  water compartment; showed no con- 

s i s t e n t  t rend  with increased complexity. The e f f e c t  of each consplexi-t;y 

treatment on t h i s  radionuelide l o s s  rake was apparently independent of 

t he  degree of complexity. The o n l y  exception occurred with t h e  Physa- 

Najas-Elodea combination which increased the loss r a t e  of  both radio- 

nuclides from the  water compartment over a l l  other  combinations (Table 9) .  

The radionuclide content of  the  water compartment a t  steady s t a t e  

(512 hours) had divergent t rends with increased complexity. T'ne 6oCo 

steady s t a t e  content decreased as complexity increased, 

no apparent e f f ec t ,  t he  p l an t s ,  d o n e  or  combined, decreased the  content, 

and t h e  sna i l -p lan t (  s )  combinations reduced t h e  steady s t a t e  content t o  

the  lowest mount.  

Physa d o n e  had 

The "'Cs s t e a d j  s t a t e  content increased with increased 
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P h y s f  d o n e  decreased the r a t jo ,  below 9 ,  b y  i nmens ing  t h e  137C!s loss 

rate as corqmed to t h e  physical  microcosm. "i'e =-ilJajas treatment 

increased the ra t io  as compared to Ihysa alone, althoilgh it was s t i l l  l e s s  

than 1 ., 

t h a t  of" P h y s a - w  t o  approximately 1. 

The combimiation of Physa-Najas-Elodea increased t h e  r a t i o  over - 

These data  showed t h a t  the  e f f e c t  of the p l m t  compartments was to 

increase the  Co/Cs l o s s  r a t e  r a t i o  while t h e  snail compartraent decreased 

t h i s  r a t i o ,  as compared t o  the  physical microcosm. The sna i l -p l an t ( s )  

tended t o  increase t h e  r a t i o  over t h a t  of Physa alone, 

t r a t e d  by these r a t i o s  i n  the water w a s  one of diverging loss  r a t e s  of 

The pa t t e rn  illus- 

''Co and 137Cs which were converged by .the e f f e c t  of" increased complexity. 

T h e  r a t i o  of per cent ''Co t o  "'Cs i n  t h e  water compartment a t  

steady s ta te  (Table 10) showed a consis tent  t rend w i t h  increased func- 

t i o n a l  complexity. Compazed t o  the physical microcosm, Physa alone 

s l i g h t l y  increased t h e  L37Cs content of the  w a t e r ,  which resulted i n  



Table 10. he Effect of Increasing Complexity on the R a t i o  of 
goc0 'Go 137Cs i n  the  %rater Corngar-tmect zz 312 E m u s  

physical php5ca.l pksysical physical pkjsical  Mi c r oc o sm physical physical 
Comb i n a t  ion Physa 

Kajas 
Elodea 

Najas 
Elodea 

Phys? 

najas 
Elodea 

$ Cobalt-60 3.69 3.68 3 *59 2.81 2.67 i .61 1 *53 

$ ~esi~um-137 0.29 0.39 0.82 1 . i o  1.03 1.77 2.03 

Ratio of Cobalt- 
60 t o  cesium-137 13.63 9.44 4.38 2 -55 2.67 0.91 0.78 

W 
Iv 
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60 
Table 11. D.wican's Corqarisori of Co 'UpLake Sa-tes of 

the  S o i l  Coqpsrtnen's Among Complexi-by Levels 

Value of p 2 3 4 5 6 7 

rp 005 2.870 3.017 3.12-4 3 .n82 3.235 3.276 

R; 10.62 11.17 11.53 11.78 11.98 12.13 

Treatment p'llysrieal p:rysicd physical pbysicKL physical physic& physical. 
Phy s a Piksa Pnys a 

E;- 'as Naja Nsjss NaJ'as 2% 
Elodea E,lodea Elodea. -- 

w 
c 

Mean (3 e t  a ) 6 .O@ 7.53 9.45 12.06 17.92 19.93 22 73 

St zt i s t i c  a1 
Signif icaxce 

3c 
3'  indicates the square r o o t  of t3e varriance. 
P 





5 3 
T a b l e  12. 3urcz .n '~  C O ~ P ~ ~ S G X  of  Zo Ir, -';he Solel Compzrtnent 

a-t 512 EOUTS Ariorioilg Corqdexi-ty Levels 

Value of p 2 3 4 5 6 7 

r .05 P 3 *237 3.278 

8. b2 8.65 9.13 9-33 9.$3 9 A0 RP 

~ 

Treatrient p'ny s i c  al pays i c d pky s I 2 iL 2hys i e al physical  p b j s i c s l  phy s i c a1 
9 s  a Pkysa Physa - 

Kaj ES Jsj as 22,; zs Najas 
Elodea 3lodea 31ocZea 

w rn 

Mean 30 -69 33.89 -42.43 s g  .85 74 99 88.13 91.81 

St at i s t i c a1 
Significance 



t h e  treatments involving p l an t s ,  t h e  evidence af EL surface area e f f e c t  i s  

t h a t  Elodea and Najss-Elodea produced a, lower content "tan Najas alone 

T h i s  same surface area e f f e c t  is evidenced in I- PIiySrsa-Na,jas ,and P h y s a - w -  

Elodea. 3 i m i . l a . r  t o  the results o f  the rate C O ~ ~ ~ X ~ S Q ~ I ~  increased com- 

p lex i ty  had the e f f e c t  of converging aivergellt 60co content of the soil 

--. 

cow ar Lment  . 
The pat tern of 13'7Cs flux t h x u g h  t h e  s o i l  corpmAmeat ( P Q e  hb, p .  

26) was similar for  a11 complexity treatments. 

which last& between 32 and 64 hours, was followed by a period of slower 

uptake. 

A period of rapid uptake, 

R11. trea%ments reached a steady s t & e  by 256 ho-i.rs. 

13) showed %hat d-1 treatments w i t h  ~ h p a  had a s ign i f i ca r%ly  f a s t e r  up- 

take r a t e  than other c o q l e x i t y  tre2tments, which together  fo-med t h e  

f i n a l  nonsignificant set with t h e  slowest soil uptake rates e 

The da ta  showed Ynat t h e  e f f e c t  of a11 Physa cornbinations was  t o  

h c r e a s e  the soil uptake rate of '37Csa The p lan t s  had o n l y  a s l i g h t  

e f f e c t  conpared t o  t h a t  of t h e  s n a i l s .  PA i n t e rac t ion  of plants and 

s n a i l s  w a s  not clearly shown. 

s o i l  uptake r a t e  which could be judged a r e s u l t  of in te rac t ion ,  Physa- 

Rajas-Elodea d id  not show such evidence. However, t h e  magnitude of d i f -  

ferences mong treatments containing Physa w a s  s m a l l  compared t o  t h e  d i f -  

ference between Physa combinations and other  microcosms e Thus, these da ta  

While Physa-Wajas appeared t o  e f f e c t  a 

show a s ign i f i can t  e f f e c t  of the snail. compartment on the s o i l  uptake rate 

of 137Cs, but show no trend with complexity. 

137 The steady state content of C s  i n  t h e  s o i l  compartments was com- 

pared among treatments (Table 1 4 ) .  The results showed a graded se r i e s  



38 

r- 

\o
 

In
 

3
 

M
 

cu p1 

k
 

0
 

3 > 

0
 

ch 
cu 
M

 

0
 

In
 

cu 
M

 

m
 

cn 

M
 

r-! r-l 
M

 

M
 

4 Ln 
M

 
0
 

0
"
)
 

0
3
 
a
 
a
 

cu 8
 PI 

k
 



Table 14 .  Duncan's Compwison of 137Cs i n  the Soi l  Compartment 
a t  312 Hours _bong Complexity Levels 

7 V a h e  of p 2 3 4 5 6 i 

2.873 3.020 3 .la6 3 2 8 5  3.233 3.278 

R 1.93 2.03 2.09 2.14 2 .I7 2.23 
P 

Treatment physical physical physical physical physical physical physical 
Phys 5 Phys a P1-y--s a 

Najas Baj as Najas NaJ as 
Elodea Elodea Elodea 

Me an 93.97 93 -38 97 93 97.82 97.95 98.48 99.41 

St a t  i st ical 
Signif ic anc e 



s e r i e s  of overlapping nonsignif icant  ranges. The difference between 

the  highest  and lowest content w a s  only 5 per  cent,  which showed that 

none of t he  complexity treatments vere s ign i f i can t  i n  terms of 13'9Cs move- 

ment t o  tile s o i l .  Even so, Physa alone increased the  amount of '"Cs i m a  

the  s o i l  and Elodea alone and Najas-Elodea appeared t o  s l i g h t l y  increase 

tine amount of' radiocesium i n  the s o i l ,  a l l  corapared t o  the physical  micro- 

cosm. Although the data showed some trends,  the lack  of la rge  differences 

. - . ~  

among treatments i n  the  137Cs content of the s o i l  w a s  of more s ignif lcance.  

These data demonstrated t h a t  t he  b io logica l  components were not par t icu-  

l a r l y  e f f ec t ive  i n  delaying 13''Cs transfer t o  t'k soil. compartment. 

Radionuclide uptake by the  s o i l  compartment showed a trend with eco- 

system complexity i n  the  case of 6oCo and a s ing le  e f f e c t  i n  the  case of 

'37Cs. s o i l  uptake rates of 6oCo 

increased when Physa w a s  present. 

s n a i l s  3,nd p lan t (  s )  converged the  

ponents considered independently . 

decreased vhen p lan ts  were present and 

increasing complexity by combining 

extrciiie e f f e c t s  of both b io logica l  c ~ m -  

s o i l  uptake rates of '37,s were uu- 

a-ffected by the presence of  p lan ts ,  but when Physa vas present the uptake 

r a t e  was increased 

Radionucl.ide concentra-tion I n  the s o i l  a t  512 hours showed a trend 

la -the case of radiocobalt  the  diver- f o r  'OCo and no t rend  f o r  "37Cs. 

gent e f f e c t s  of plants and s n a i l s  were converged when -these biological 

components w e r e  combined. Pa increase i n  complexity had no s iga i f i can t  

e f f e c t  on the s teady s t a t e  concentratlon of b37Cs la  the soil component. 

S o i l  uptake r a t e  r a t i o s  of 'OCo to "37Cs were compared (Table .15) 

and showed. t h a t  the physical  microcosm had a r a t i o  of 1.28 while a l l  

other  complexity treatments had a r a t i o  o f  less than 1. The r a t l o  for  
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Physa alone approached 9, al-U1ou.h the 6oCo and "'Cs r a t e s  were g rea t e r  

than those f o r  the  physical  microcosm. The r a t i o  f o r  p lan t  combinations 

was lowered t o  between 0.37 and 0.34 due t o  the  e f f e c t  of  the p l a n t ( s )  on 

the 60Co r a t e .  

t a ined  between 0.44 and 0.99. 

13r'Cs uptaki rate over the  physical  microcosm and increasing the  6oCo up- 

take r a t e  over the p l a n t ( s )  micjmcosms. 

complexity d id  not have an e f f e c t  on the Co/Cs uptake rak ratLos.  

si 'gnificant r e s u l t  was -that the  presence o f  bio logica l  components lowered 

-the r a t i o  as compared t o  that o f  Yne physical  microcosm. 

When E"3nysa was cornbhed wikh p l a n t ( s ) ,  the  r a t i o  was main- 

This w a s  a r e s u l t  of Pliysa increasing the 

Except f o r  Physa alone, increased 

The 

Considering tlie r a t i o  of 6 0 ~ o  t o  13''~s content of the  s o i l  conpart- 

iiieiit a t  512 hours (Table 16), Physa alone and the physical  microcosm had 

similar rattos of 0.9, although -ihe presence of  Physa increased the  amount 

of radio-cesium and -cobalt i n  the soil compartment. The p lan t  cornbina- 

t i ons  had r a t i o s  of 0 .3  t o  0.h and the cesium content w a s  unaffected while 

the  60Co content was lowered a s  cornpared t o  the physical. mlcrocosrn. 

combinatlion of Physa and p l a n t ( s )  increased the r a t i o  t o  0.7 due -to tine 

I^..__ Physa-p?lant( s )  i n t e rac t ion  which increased the 6oCo content of the s o i l  

compartment. 

increased complexity, but demonstrated the  e f f e c t  of t he  individual  bio- 

l o g i c a l  components i n  lowering the  r a t i o  and the  e f f e c t  of the b io logica l  

i n t emc t ions  i n  increasing the r a t i o  i. 

-I_.I 

The 

These Co/Cs content r a t i o s  showed no l i n e a r  t rend  with 

Container Surface Compartxaent - The "'Co flux pa t t e rn  t o  the  con- 

tainer surface compartments d i f f e red  among treatments (FTg. 3c, p. 21). 

The pa t t e rn  of uptake t o  a steady s t a t e  content w a s  cha rac t e r i s t i c  o f  the  

physical microcosm ( A ) ,  -- Physa alone ( B ) ,  Najas alone ( C ) ,  and 





Rajas-Elodea (F ) .  A p a t t e r n  of uptake t o  a maximum content with subse- 

quent l o s s  characterized Elodea alone (U), Physa-Najas (E) ,  and Physa- 

N a  jats -Elodea ( G )  . 
II__- 

Yne i n i t i a l  6oCo uptake rates w e r e  compared among complexity treat- 

ments (Table l7), except f o r  the treatment of Elodea alone i n  which uptake 

w a s  completed by 2 hours. The Physa-Rajas combinatLon had a s i g n i f i c a n t l y  

higher uptake sa-be than a l l  other  treatments.  

Elodea formed a s e t  wi.th s i g n i f i c a n t l y  higher uptake rates than t h e  re- 

Najas alone and Najas- 
I- 

maining treatments.  Najas-Elodea and the remaining combjnations formed 

a nonsignificant range with the  slowest uptake rates. 

The uptake r a t e  data showed t h t  the presence of Najas increased the 

upbake except when combined with Elodea and Physa. The presence of  Physa 

alone o r  combined w i t i n  Elodea and Najas ef fec ted  simllar r a t e s  which were 

low-r than those of the Bajas  co~nbinations. These data  showed that  Najas 

and Physa each had a d i s t i n c t  e f f e c t  on the uptake rate, and t h a t  the 

s p e c i f i c  r e s u l t  i n  combinatton w a s  no t  predictable  fzom knowledge of each 

componeot alone. 

A comparison of the m a x i m u m  'OCo content of the container surface 

cmpartment among treatments (Table 18) showed t h a t  all treatments wfth 

Najas alone or  combined wlth Elodea o r  Physa and the physical microcosm 

formed three successive overlapping ranges which hail sl.gnificanl1.y higher 

content than the remaining treatments of Physa alone, Elodea alone, and 

Physa-Najas-Elodea. The la t ter  treatments formed a aonsignificant range. -- 
These r e s u l t s  showed t h a t  the presence of Najas had the s ign i f fcant  

e f f e c t  of increasing tlie 6oCo content of the container surface campart- 

meat. Physs o r  Elodea alone reduced the conbent. The i n t e r e s t i n g  result 



Table 17. Dmcm's Comparison of 6oCo Uptake Rates of the  
Container Surface Coq3s-tmen-t Among Coqlexi ty  Levels 

Value of p 2 3 4 5 6 
~ 

rp .O? 2.933 3 . 097 3.190 3 255 3 303 

x;, 2.232 2.322 2.392 2.441 2.477 

Treatnent physical p hy s i c a l  physical physical phys icd  physical 
Physa Physa Plzys a 
NaJ  as N8 j as Na-Jas 
Elodea Elodea 

Mean (bet a 1 0.3838 0.5740 0.9416 1.5313 2.0319 3.264.9 

Scat i B t ic i L  
Significate 



Table 18. Emcan's Conparison of 6% bo Maxbia on the 
Container Surfeces h o n g  Complexity Levels 

Vdue of p 2 3 4 5 6 7 

rp 05 2.873 3.020 3.116 3 3 5  3 *237 3 -278 

3.44 3.62 3 .?4 3 232 3.88 

-?= 
o\ 

Treatnent pkysicai  phjrsical physical p h y s i c d  physical physical P ' h ; r S i C d  

Phys a Phys a 
1Vsj as 
Elodea Elodea 

Kajas 

Me an 1.29 2.60 2.62 

St at ist ic al 
Significance 

6.71 

~ 

9.16 11 .go 13.96 
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Na,ja.s predominated. However, when ?Sa jas was combined with  Elodea and 
l_l_ 

"c 'h t  t h e  In t e rac t ion  of Physc., and EZ.odea vas s ign i f i can t  i n  reducing tiie 

A comparison of the "Co content on the co~ta lsaer  surface a t  312 hours 

(Table 19) shoved tha t  1;he physical. microcosm and all Najas treatments, 
P 

except Physa-XaJas-Elodea, formed a nonsignificant rang.. x i th  a siggifi- 
PII_ 

caatly higher conteat; than t'ne remaining treatments which formed a non- 

s iLa i f i can t  range. 

t a in ing  a higher content i n  the contafner surface Lima Elodea CT Physa 

These data showed that Hajas was effeetlve in main- 

alone and Pliysa-Najsts -Elodea. Further, there was R trend of decreasIzlg -- 
6oco content for  na"jas combinations of increased complexity. 

The pa t t e rn  of 13TCs flux through the  container surface cwpartments 

(Fig. 4c, p. 26) w a s  d i f f e r e n t  among complexity treatments.  A perFod or" 

uptake -to a maximu%, which l a s t e d  ~ i p  t o  32 hours, was followed by a con- 

t i n u o ~ ~  l o s s  through 512 hours Tor treatments of plant  combinattons (G,D,F). 

All other treatments had a, pattern o f  uptake t o  a maxhurn, followed by 

loss  t o  a steady state content.  

The maximum content of the container c m p r t m e n t  was compred among 

treatments (Table 20) .  The treatment of Elodea alone .had a s i g n i f i c a n t l y  
__s" 

higher conten% than a l l  other treatments.  Na jas alone, PJaJas-Elodea and 

the physical  microcosm formed two overlapping ranges w i t h  s ign i f i can t ly  

higher eontent than the remaking treatments of Physa combi3mtions. The 

Phyyas cmbj.wtions formed 8 nonsignificant range with the lowest 137Cs 

content.  
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These results shoved t h a t  the presence o f  p l a n k  e i t h e r  s i q j f i c a n t l y  

increased the  radiocesium content o f  the container surface or had no 

e f f ec t  as compared t o  t h e  physical mlcrocosin, whereas the  presence o f  tile 

s n a i l  reduced the  content as compared t o  the physical  microcosm. Among 

plants ,  tine data indicated that increased surface area increased the "'Cs 

content, as Elodea w i t h  the g rea t e s t  sui-face area  had t'ne g rea t e s t  content.  

The t rend of these data  showed that  plants  alone o r  combined increased 

the  content, the snail. alone decreased bhe  content, and when the  s n a i l  

and p l a n t ( s )  were combived the e f f e c t  of t'ne s n a i l  predominated. 

The 1 3 r r C ~  content of the container surface a t  312 hours vas compared 

among complexity treatmeats (Table 21). The treatment of Na jas-Elodea 

maintained s ign i f i can t ly  more "'Cs on the container surface than a l l  

ot,her treatments.  Elodea alone and the physicalslicrocosm formed a 

range vhich had a s l g n i f i c a n t l y  higher 137Cs cantent -than the I-emaining 

-*I.I- 

trea'cments. Najaa alone and a l l  Physa treatments formed the f i n a l  rwge 

with the J-owest content.  

compartments main-Lsimed approxlmately the same "3'1Cs content on the con- 

-~ 

h general, these da ta  shoved. tha t  the plant 

t a i n e r  surface as the physical  microcosm, while the s n a i l  compartment slg- 

n i f i c s n t l y  reduced the  '37Cs content of the conta:iner surface compartment. 

Changes in complexity changed the  fl~x pa t t e rn  of botin radionuclides 

through the con-talner auzlface compartment. The pa t t e rn  showed no s i m i -  

h - r i t y  between radionuclides for  a given complexity leve l ,  except for the 

physical  microcosm, Physa alone, and Elodea alone. In general, t he  be- 

havior of e i t h e r  radionuclide vas not predictable  from knowledge of the  

behaxior of the other  radionuclide.  
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'The r a t i o  o f  m a x i m u m  60co t o  '37,s content of the container surface 

compartment (Table 22) showed- t h a t  the  physical microcosm had a r a t i o  of 

0.89, similar t o  that; of Najas alone of 0.98. 

change, the re la t ionship  of  Yr,ese two nuclides -remained constant. Elodea 

alone had a s i g d . f i c m t  e f fec t  by reducing the r a t i o  t o  0.16. 

increased the ratio t o  6.43 and a l l  other treatments increased tine r a t i o  

Except f o r  a magnitude 

-I____ Physa-Najas 

over t h a t  of the physical microcosm. Tinus, the relat ionship of these 

maxima a t  higher complexity l e v e l s  was not  predictable  from the results at 

lover  complexity l e v e l s  

The r a t i o  of "Co t o  "37C!s content o f  the container surface a t  512 

hours (Table 23)  shoved t ha t  the plants ,  combined or alone, had a var ied 

e f f e c t  on the Co-Cs r a t i o .  IIawever, the intermediate response of the corn- 

binabion could have k e n  pre&ic-ted from .Lhe results of both plants  alone. 

Likewise, the nature o f  the  r a t i o  fo r  Physa-Najas and Physa-Rajas-Elodea 

could be predicted from knowledge of each caiaponenl al.one. These .results 

-. I__ .-.- -- 

indicated t h a t  the re la t ionship  o f  radio-cobalt t o  -cesium could be pre- 

dj.cted f o r  a combination of courposlests 'oy information of the Co-Cs ratLos 

f rem component cons M e  red independen t ly . 
These data showed t h a t  the presence of Ebsdea e i ther  alone or c m -  

-.,--.-..J 

bined w i t h  Najas, maintained tile same o r  higher ccsi imi  content than the 

treatments of Najas alone or  Physa combinations, Ti.1 general, the  plant  

compaptments maintained the sme content as the physical microcosm while 

the  s n a i l  compartment significantly reduced "37Cs  content; of the container 

surface.  

Physa Ibdy Compartment - The p a t t e r n  of 6oCo flu through the Physa. 

body compartment w a s  s h i l a r  for a l l  compl.exity l e v e l s  (Pig. 3d, p. 21). 
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Tzbk 23. The Effect  of increasing Coxplexity on the Ratlo of  6oCo -to 
1 3 7 ~ s  Con%ent of the Zontainer Swface 3mpxrtrnent at 512 HOWS 

Treatment phys i cd  physical  physical  physical  physical  physical  physical  

Naj as 
Elodea 

Physa 
Xaj as  

A 

Elodea 

co 
60 

7-63  1.05 9.37 5.22 2.02 6.71 0.89 

' 37cs  2.67 2.95 0.69 4.65 0.11 0.08 0.10 

Co l  
137,, 

60 
2.83 0.35 12.13 1.33 18.36 83.87 8.90 



values at 33.2 hours represented a st.eady state conlent, the difference re- 

flected the difference in p t t c r n  a d  time among t h e  treatments. The loss 

from the Physa bsdy canpastment was slower in the treatment of Physa alone 

than e i ther  Physa-Najas or Physa-Najas-Elodea and the loss from the Physa -- -I__ 



Table 24, Duncan's Comparison of 6oCo Uptake Rates of -the 
Physa Body Cornparhelit Among Complexity Levels 

Vallee of p 2 3 

'p 0 05 3 055 3,200 

I________ 

Treatment physical. 
Physa -- 

physic a1 
Physa 
Na jas 

physical 
Phys a. 
N a j  as 
Elodea 

Me an (b e t a) 0.20 0.36 0.67 

S t a t i s t i c a l  
Significance 



I_.- 
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Table 26. Duncan's Comparison of Co i n  the  Physa Body 

Comparrtment at 512 Hours fmong Complexity Levels 

Value of p 2 3 

1" .05 3.01.4 3.160 
P 

0.24 

- ~- 

0.26 

Tr e at me nt physical 
F l i p  a 

p hy s ic al. 
Physa 
N a  j a s  
Elodea 

physic a 1  

Najas 
,Fh;Ys a 

Me a31 0.34 0.44 0. 

S t a t  i s 1; ical 
Significance 



body of Pflyss-Na,jas -Elodea began earXies than that, of Physa-Najas and 
_I__p I__ -J 

g m ~ e n t  of the total a c t i v i t y  and appeayed Lo represeat, a steady s t a t e  

content e 

The efff?c.,ta 

body capartment  



60 

delayed the t h e  at, which a peak ceslum concentration occurred and i f  

both plants were present Y e  duration of t h i s  peak. concentration w a s  in-  

creased as we.7.1. For 6oCo, Idle addi t ion of a single plant decreased the 

time a t  which 8 l u a x i m m  content was reached but, had s o  e f f e c t  on the 

duration of t h i s  m a x i m m  phase. When two plants  were present %he t h e  at 

whlch a rnc"lxiinim content was reached was fl-srther reduced and %he duration 

creased the cycling t i n e  of a37Cs through the Physa body and decreased 

the cycling t h e  of 6QCo t h o u g h  the Pnysa body. 

Physa She l l  Compar%ment - "he f l u  p t % e m  of G°Co tkrougka the  

she.1.l conpartmeat (Fig. 3e, p.  2%) showed a period of uptake for a l l  c 

plexi ty  l eve l s .  

Physa-Najas (E) had a mare gradual increment t o  256 hoizs while the Pliym- 

Najas-Elodea treatment ( G )  had loss  o f  6oCo after 44 hours, 

A f t e r  thJ  s Initial. perlod of uptake, e alone (B) zlsdd 

The i n i t i a l  6oCo upt&c rates for 1;3ie Physa shells were cmpamd 

jehysa alone ma. ~hysa-~ajas form a non- among t r e a t n ~ n t s  ( ~ a h l e  267). 

s ign i f i can t  s e t  w i t h  uptake rates significantly higher tllasa Phpn-Na jas- 

&Elodea 

Inspection of the  6oCo pa t t e rn  i n  the Physa s h e l l  cemnpsartment (Fig, 

3e) showed t h a t  increased camplexity reduced the  duration of the uptake 

phase. 

t o  256 hours, while i n  Physa-Najas-Elodea the  Phy-sa she39 upt 

terminated a t  16 hoius. Thus, i n  addi t ion t o  decreasing the  uptake rate 

of 6oCo, i ncEased  complexity decreased the length. o f  Vne uptake period. 

Physe. alone md Phpa-Najas showed evidence of continued uptake -- 

The miurimum 6oCo l eve l s  i n  %he Physa shell cmpartment were c q a r e d  

The 6oCo content of t h i s  cmparkent among complexity l eve l s  (Table 28). 



Treatment p h y s i c a l  
Phy s a 
Naj a s  



Table 28. Duncan's Comparison o f  60Co Maxim of t he  Physa Shel l  
Compartment Among Complexity Leve Is 

Value of p 2 3 
--̂  

1" .03 3.014 3.160 
P 

R 
P 

1.71 1.20 

Treatment phys i ca 1 phys I c a l  physical  
Physa Physa Physa 

N a  jas Najas 
Elodea 

_I_ 

Mean Q,80 2.30 4.30 

S"b t i s t i ca l  
Significance 



i n  ~- R’ilysa alone was s i g n i f i c a n t l y  higher than t h a t  when plants were pre- 

s m t .  

with the  lowest m a x i m i m  C o  content.  These da ta  shew a Lrend of de- 

creased Co eonten’i, i n  t h e  Physa shell compartment with increased com- 

Physa-Naj%s and Physa-Najas-Elodea formed a nons igut f iemt  range -____ _I___ -_I_ 

€0 

60 

plexi ty  . 
0- I Lhere w a s  a s ign i f i can t  d i f fe rence  among these  treatments i n  the  

60 
time a t  which t h e  rnaximim. CO concentration occurred. I n  Physa d o n e  

t h i s  peak was at  256 hours. 

w a s  aktained by 32 hours and when - Pia& m d  Elodea were present with Physa 

the peak occurred even e a r l i e r ,  a t  16 liowrs. 

m m i m m  “CO content of the  Physa she l l  cnPi?yPastment, inexwised complexity 

When - &I.. was present  with Pkrysa the peek 

Thus, with regasd .to the 

reduced t h e  ma=ximur;l eontent, and czlso redu..eed t h e  time required for %his 

m a x i m ~ m  l e v e l  t o  be reached. 

60 
The Co content o f  t h e  P~-ijrsa she l l  compartment at  512 hours was 

poi.nt contenbs were compwed among tzeatuients (Table 29). The results 

shaved an overlapping of nonsignificant ranges with the trend of de- 

creased “~o content wit5 increased eonrp1exir;y. ‘?he end point  measure- 

m e n t  fo r  ~fiysa-ll~a,,jas-E~odec?. mzy represent a steady- state l e v e l  s However, 

for  the other  t w o  treatments it w a s  not possible  t o  determine i f  the  drop 

i n  60Co at 512 hours represented a trend toward l o s s  or Jus t  an unusually 

l a rge  va r i a t ion  i n  t h e  sampling. 

The l o s s  rates of 60Co f r o m  the Physa s h e l l  compartment in t h e  Physa- 

Najas-Elodea treatment had a s ign i f i can t  l o s s  r a t e  while t h e  other  t r e a t -  

ments showed no l o s s .  Since t h e  nature of‘ t h e  pa t t e rn  of 6oC!o behavior 

for  t h e  Physa alone and Physa-Najas w a s  not d i scern ib le  from t h e  obser- 

vat ions it i s  reasonable t o  assume that they e i t h e r  d id  n.ot change o r  
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Tabbe 29. Duncan's Comparison of 60Co on P'hysa Shells 
a t  512 Hours Among Complexity Levels 

Va1"ue of p 2 3 

0.94 0.99 

Treatment physical 
Phys a 
Najas 
Elodea 

physical physical 
Physa Physa 
Najas 

Mean 

St at i s t i c  al 
Significance 

0.39 1.28 2.17 



began a period of net  6oCo loss. I n  e i t h e r  event, t h e  most complex 

treatments showed no l o s s .  

'The p a t t e r n  of 137Cs f l u x  through the  Physa shel l  compartment (Fig.  

be, p .  26) showed t h a t  each treatmeat had m uptake phase extending t o  

16 hours, which was foll.owed by an immediate and continued Loss. Com- 

paris02 of uptake arid l o s s  r a t e s  among treatments and maximmi and f i n d  

13?Cs content of t h e  Physa s h e l l  compartment showed no s t a t i s t i c a l  d i f -  

ferences, The content of this compartment by 512 hours had dropped t o  

less than O.l$ of the t o t a l  L37C!ss These data indicated Lhat t h e  mve- 

m e ~ t  of 137Cs though the P h y s ~ ,  shell compartment was rapid and 13Tc1, 

There was no evidence of any effect. of wniplexity on t h e  itlux of 13'C!s 

through the  Physa shell eompastment ., 

The e f f e c t s  of complexity on the Kl1.m of both radior?uel..ides were 

d i f f e r e n t .  

e o q l e x i t y  However, for  Co, Ilzcreased complexity i.nr3reased. the cycling 

I n  t h e  rase  of '-37C!s, cycling appeazed t o  be independent of 

60 

r a t e  by redwing  bath the durat ion of the uptake phzse tirid the m a x i r i m  

content, as w e l l  as inducing a p a t t e r n  of 60~o l o s s  *om t h e  Physa 

s h e l l  connpartment . 
Go k j a s  Compartment - The p a t t e r n  of  Co flux through the Najas corn- 

gartmeiit (F ig .  3f, p.  21) was d i f f e r e n t  among complexity treatments,  I n  

treatments which had only p l an t s  (6, F)  Najas had an uptake t o  a maximum 

which was maintained as t h e  steady s t a t e  content t o  512 hours. 

w a s  present  (E ,  G ) ,  t he re  w a s  a s imi la  i n i t i a l  uptake, but  after a, m a x i -  

mum w a s  reached the re  was a period of loss which continued through 512 

When Physa 

hours. 
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A comparison of t h e  net uptake rates f o r  t h e  Najas compartment 

(Table 3 0 )  showed t h a t  i n  t h e  treatment of Najas alone, Najas had a s ig-  

n i f i c a n t l y  higher uptake rate than i n  a l l  other  treatments.  The remain- 

ing treatments formed a nonsignificant range. The addi t ion of Physa, 

Elodea, or both, caused a reduction i n  t h e  uptake r a t e  of 6oCo i n t o  t h e  

Najas compartment. The net e f f e c t  of increased complexity was  t o  reduce 

t h e  uptake r a t e .  

Although t h e  flux pa t t e rns  of “Co i n  t h e  Najas compartment were 

s imi la r ,  there were temporal differences among t h e  pa t t e rns .  In  t h e  

treatment of Najas alone, Najas reached a maximum content by 64 hours. 

When Najas w a s  combined with Elodea or Physa, t h e  m a b u m  6oCo content 

w a s  a t ta ined  by 32 hours, Combining Najas, Elodea, and Physa resu l ted  i n  

a maximum content between 8 and 16 hours. Thus, increased conrplexity re -  

duced t h e  time required for t he  Najas compartment -to reach a maximum con- 

t e n t  of Co. 
60 

60 
The m a x i m m  Co content of t h e  Najas compartment was compared among 

complexity treatments (Table 31). When Najas w a s  alone, a s ign i f i can t ly  

grea te r  amoiint o f  
60 

Co accumulated i n  t h e  Najas compartment than i n  a l l  

other treatments.  The remaining treatments formed a nonsignificant range, 

The presence of Elodea or Physa with Najas reduced t h e  maximum by approxi- 

mately one-half and when all three components were combined t h e  maximum 

was even W t h e r  reduced. These data show the  t rend of decreased m a x b u m  

Co content of  t h e  Najas compartment with increased complexity. 
60 

Radiocobalt i n  the  Najas compartment a t  312 hours w a s  compared among 

complexity treatments (Table 32). I n  Najas alone t h i s  compastment main- 

ta ined a s ign i f i can t ly  higher content than i n  a l l  o ther  treatments.  



Table 30. Duncan’s Compwison of G°Co Uptake Rates o f  the 
N a J a q .  Compartment Among Coraplexity Levels 

I$ 6.09 6.39 6.58 
-.-- ---I- 

T r  e 3tnen-t phy s i e a.1 

Napi &S 

-- St at i s t 5 I: :a1 
Signifies nc e 



Table 31. Duncan's Comparison of 6oCo Maxima in t h e  
Na j a s  Compartment Among Complexity Levels 

V d u e  of p 2 3 4 

x *O? 2.950 3 -097 3 *I90 

R 7.59 '7.97 8.21 

I_ 

P 

P 

Treatment phys i c  81 p by s i c a.l physical  physical  
Pbys a 
Na jas 
Elodea 

Phys a 
Najas Na j a8 
Elodea 

Najas 

Me an 16.87 a 06 a. 36 43 067 

S t  a t  i s t  i c a l  
Significance 



Value of  p 2 3 

- 

4 

Treatment physical.. physi.ea.l physical 

Ma.3 as 
Elodea 

Najas 

- SS, 8% i s t  i c a l  
Significance - 



Najas-Elodea and Physa-Najas formed a nonsignificant range with s i g n i f i -  

can t ly  higher content than with Physa-Najas-Elodea. -- 
and Physa-Na,jas-Elodea formed a range with the l e a s t  content a t  312 houFs. 

These da ta  showed a t rend of decreased 

Final ly ,  _- PhEa-Najas 

60 
@o content with increased complex- 

i t y .  

The p a t t e r n  of "'CS f l u x  through t h e  Najas compartment (Fig.  4f, p .  

25) d i f f e red  among conipl-exity l e v e l s .  A11 treatments had a period of up- 

take t o  a maximum by 4 hours. When _- Najas was alone ( C ) ,  t h i s  ma;xkmun was 

maintained through 32 hours, a f t e r  which there  was a loss .  When Elodea 

o r  Physa w a s  combined with Najas (E ,  F) ,  t h e  durat ion of t h e  maximurn per iod 

was reduced to 16 hours and followed by a l o s s .  Tn t h e  combination of 

Physa-Najas-Elodea (G), a maximum w a s  reached a t  2 hours and followed 

ilnmediately by a lo s s .  Increased coirplexity changed t h e  pa t t e rn  of "'Cs 

flux through t h e  Najas corrrpartment toward a more rapid cycling. 

The maxhxim radiocesium content of  the Najas compartment was compared 

among complexity l e v e l s  (Table 33). The treatments of Physa-Najas-Elodea, 

Pinysa-Nsjas and Najas alone formed a nonsignificant ramge with s i g n i f i -  

can t ly  higher 13'Cs i n  this compartment than i n  t h e  remaining treatment 

of Najas-Elodea. -I_____ 

one-half, but when Physa was added t o  t h e  combination of Najas and Elodea 

t h e  e f f e c t  of Elodea w a s  negated. 

can t ly  a l t e r ed  the  re la t ionship  of Najas and Elodea. 

The combination of Najas-Elodea reduced t h e  m a r , b i m  by 

Thus, t h e  presence of Physa s i g n i f i -  

The behavior o f  both radionuclides i n  t h e  Najas compartment was 

s ign i f i can t ly  changed by increased complexity. I n  t h e  case of ''(20, t h e  

pa t t e rn  of a steady s t a t e  rmximun!. was changed t o  t h a t  of l o s s .  For 13'C!s, 

t he  pa t t e rn  of a period of durat ion of a maximum w a s  changed t o  tha t  of no 



Table 33. C u n c m ' s  Compwison of 137Cs Maxima in the 
Najas Compartment Anlong Goniplexity- Levels 

Value of p 2 3 4 

Tr 13 xtme r r t  physical physic aL physical physiczl 

Najas 
Elodea 

TTa jas 
Phys a 
Najas 

Phys a 
Na.i as 
El0d.e  a 

Stat is t ic  8.1 
Signi f ieance 

0.30 

- 

0 .y 0 *53 0.63 
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steady s t a t e  m a x i m u m .  For both radionuclides,  increased complexity de- 

creased the  time required f o r  a maximum content t o  be a t ta ined .  

increased complexity induced temporal. and p a t t e r n  changes in:  t h e  6oCo and 

'L37Cs f lux which e f f ec t ive ly  increased t h e  cycling r a t e  of these  nuclides 

Thus, 

through t h e  Najas compartment. 

There was a grea t  d i f fe rence  i n  t h e  quant i ty  of 6oCo and "37Cs accum- 

ulated i n  t h e  Najas compartment. 

as  compared t o  maxima of l e s s  than I.$ f o r  13 'Cs ,  

6oCo accu7nirlation i n  t h e  Najas coitrpa.rtment was much grea te r  than t h a t  of 

6oCo maxima ranged between 1 ' 7  and 46% 
7 

In these microcosms, 

l37C s . 
Elodea Compartment - 'The pa t t e rn  

-> 

c o q  u t m e n t  d i f f e red  among t F eatment s 

had a per iad of uptake to a rnaxhm. 

60 
of  Co flux t'nrough t h e  Elodea 

(F ig .  3g, p .  21).  treatments 

I n  Elodea alone (D) and Najas- 

Elodea (F) ,  t he  maximum content was mainzained as a steady &ate  through 

312 hours. In  the  cornbi.nat,ion of e - N a j a s - E l o d e a  ( G )  a maximum con- 

t en t  w a s  reached a f t e r  which there  w a s  an M e d i a t e  a^nd continuous loss  

from t h i s  compartment through 512 hours. Increased complexity resu l ted  

i n  changing the  pa t t e rn  o f  'OCo flux.. 

60 I n  addi t ion t o  t h e  pa t t e rn  change, the time a t  which a Co maximum 

w a s  reached i n  t h e  Elodea compartment; d t f f e red  among treatments.  I n  

Elodea alone, t h e  maimurn content was  reached between 64 and 128 hours. 

When m a s  - was combined with Elodea., t h e  maximum was a t ta ined  by 64 

hours. 

~ - - -  

The combination of Physa-Najas-Elodea resulted i n  a maximum being 

reached by 32 hours. The t rend of these data  showed t h a t  increased com- 

p l e x i t y  decreased the  time required f o r  a 6oCo maximum t o  be reached by 

t h e  Elodea coqaxtrnent;. -- 
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Uptake rates of the Elodea compmtment were compared among complexity 

l eve l s  (Table 34). The treatment of Elodea alone had a. s ignificamtly 

higher iiptake rate than the other treatments and the microcosm con&s-ting 

s%a.%e for treatments of Elodea d o n e  ( D )  and Najns-E7.otIea (I?), after which 
_Î  -___ 



'7 4 

60 
Table 34. Duncan's Comparison of Co Uptake Rates of t h e  

Elodea Compartment Among Complexity Levels 

Value of  p 2 3 

r .03 3.199 3.339 P 
X I  

R P 2 -64 2.75 

Treatment physical  

Najas 
Elodea 

phy s i c a1 
Phys a 
Najas 
Elodea 

physical 

Elodea 

Me an (bet a )  

St a-t i st; i c al 
Si.gnif icance 

8.03 
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3 2 

r. .cg 3 . O l i l  3.160 
P 

Mr: a n 35.08 50.06 69, ;f; 



Table 36. Duncan’s Comparison of ‘OCo in the Elodea Com- 
partment a t  512 Hours Among Complexity Levels 

value of p 2 3 

P “05 3.014 3.160 
P 

R. 
P 

8.13 8 .p 

Treatment physical phy s i c a1 physical 

Elodea 

Mean 15.63 35 08 63.44 

S t a t i s t i c a l  
Significance 
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there  was a loss. 

m a x i m u m  was resched. and immediately wzs followed by a, loss. 

However, in t h e  case of Physa-~~ja~-Elodea (G) a 

Pn addition t o  pabtern differeacea, there were ?mnporiL differences 

-- 
resilPt,ed i n  a. faster I' 'Cs  cycling ra te  t?ms.u.gh the Elodea compatment; I 

an? PTajas, The presence of -__I Physa was significant in chmgirlg the  rela- 

charged to .Ithat of na duration of a max5xnm content. The time a t  which 

a m a x h u m  6*Co conkzit WSLS reached decreased with increased complexity, 

and for L37C!sy the d ica t ion  of the steady s t a t e  m a x i m a m  wets decreased 

w i t h  increased complexity. Increased corfiplex5ty effected temporal and 



Table 37. Duncan's Comparison of 137Cs Maxima i n  the  
Elodea Coripartment Among Complexity Levels 

Value of p 2 3 

rp .05 3 .Oak 3.160 

1.29 1.36 
-. I 

% 

Treatment physical 

Najas 
Elodea 

physical 

Elodea 

physical. 
Physa 
N a j  as 
Elodea 

Mem 0.82 3 -69 4.28 

Statistical 
Significance 
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iindiocobalt - Thc! transfer of "Co through the physical microcosm 

(Fig .  5%) showed a net trans?er of 7% o f  the total " C O  from t h e  water 

compartment t o  t he  container s u r f a c e  compmtment, which reached a steady 

s t a t e  af te r  32 hours. There was a transfer of 8% of the  60Co from the 
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Figure 5 .  

The axrows represent net  f low pathways and the  c i r c l e s  represent  

The effect  of' complexity on radionuclide flux pa t t e rns .  

microcosm compartments. S i ze  of' c i r c l e  represents  r e l a t i v e  accumulation 

of radionuclide i n  the  compartment a t  time of steady s t a t e .  

Conipastments : 

W -  

s -  

c -  

pB - 

water 

soil 

container surface 

Physa body 

- P'nysa she l l  ps I__I 

N - Najas 

E - Elodea 
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The presence of  Physn zlone caused changes i n  botai nzagnitude and -time -- 
to steady s t a t e  of the system. T'he pattw-n of  pathways In,  the phys ics l  

system weye not changed by the preseme of Physa (Fig,  3b). 

shell. gajaed 2% of  the '*Co Prom the wa.ter cmpastmol; and reached. a 

s-teady state a f t e r  72 hours. 

'Oca from ttLe water comprtment and reached steady state content after 

The ...---- Physn 

The containe? suzxhce also gained 2% of  the  

64 hours, 32 hours longer than t h e  physical. system, The Physa body ccm- 

partment, which had both net gains sod losses ,  held 0.34% o f  the '%I a t  

512 hours and d id  not reach steady state. 

6oCo from the water and had either closely approached o r  reached a steady 

The soil gained 91% o f  the 

state content by 512 hums. 

a f t e r  512 hours. 

The water compartment reached steaay s t a t e  

Compared t o  the  physical microcosnis, the preseoce of Physa delayed 

the rise t o  stezd- state of the water and s o i l  compartments, decreased -the 

the content of the soil compartment. The riagaj tude and Lernporal changes 

can be relasted t o  the a c t i v i t y  of Pbysa I n  the micrococnns The accimu-. 

several days p r l o r  to tagg;ing, there  were no visl'ule s l g - p  of psrlieul.ate 

matter on the container surface a t  t h e  t i m e  the radionuclides were added 



t o  the  water compartment. 

smaller quant i ty  of 6oCo on the  container surface.  

s t a t e  content of t he  s o i l  and water. compartments and the  increased quan- 

t i t y  of 6oCo i n  the s o i l  may be r e l a t e d  t o  the  e f f e c t  of Physa on the  

s o i l  compartment. I n  moving over the  s o i l ,  t he  s n a i l s  a l t e r e d  t h e  micro- 

topography of t h i s  surface.  

crease the e f f ec t ive  surface a rea  of t he  s o i l .  Since t h i s  a c t i v i t y  con- 

t inued throughout the experiment, it can be assumed t h a t  the s n a i l s  i n -  

creased the  depth of 6oCo penetrat ion i n t o  the soil by turning over t he  

s o i l  and exposing the deeper l aye r s .  Also, Physa had a d i r e c t  input t o  

the s o i l  i n  the form of feces .  Since organic matter has a grea t  a f f i n i t y  

f o r  cobal t ,  it w a s  possible t h a t  t h i s  s i t u a t i o n  increased the  capaci ty  

of the s o i l  compartment for  6oCo. 'This a c t i v i t y  of Physa i n  the  micro- 

cosms e f f ec t ive ly  incyeased the capaci ty  of t he  s o i l  for 6oCo accumula- 

t ion ,  which delayed the occurrence of s teady state content of the  s o i l  

This f m c t i o n  of __I- Physa coidd explain the  

The delayed steady 

The ne t  e f f e c t  of t h i s  a c t i v i t y  w a s  t o  in -  

and consequently the water compartment. 

Although Physa accumulated only a s m a l l  percentage of the  t o t a l  60C!a, 

Y'e e f f e c t  of Physa a c t l v i t y  on the  physical  compartments changed the  

d i s t r i b u t i o n  and s i g n i f i c a n t l y  changed the  time t o  s teady state of the  

compartments. 

po ra l  parameters. 

pat'nway pa t t e rn  of ne t  input  with no net loss  was unchanged as compared 

t o  the  physical  microcosm. Thus, the s o i l  regulated the pathway pa t te rn .  

The pa t t e rn  of pathways among the  compartments w a s  not  changed when 

Physa regulated both the  pa t t e rn  of d i s t r ibu t ion  and t e m -  

Except f o r  the  expected loss  from the  Physa body, t he  

Najas alone w a s  added t o  the physical  microcosm (Fig. 5c, p. 80). 

there  were changes i n  the pattern of distribution and time t o  s teady state 

However, 



C J ~  the  microcosm cmprtments  . The container surface eoniparlment, similay 

to t h a t  5.0 the physical rai.crocosm, gained 8% of the “Co from the water 

and w a k r  compooents w a s  redmed. one-half. 

l a t e d .  the pat tem of distribution and. time to steady s t a t e .  Sjnce no 

In t h i s  microcosm, Najas regu- 

p ~ ~ t ; h ~ < ~ y s  of n e t  loss  were observed, the pa,f;kivay pattern was s t i l l  regu- 

1s.ted by the soil. 

The addi t ion of  Elodea alone to the  physical microcosm changed the 

pattern of pa-bh~ays of Co (Fig. 5d, p. 80), the  dis t r lbueion pattern, 

and - t . ime t o  steady state of the microcosm cornpal-tmeuts. The contujner 

60 



The changes which occurred w i t h  the  addition of Elodea t o  the 

physical microcosm can be r e l a t ed  t o  surface arpa e f f e c t s  of Elodea. 

Elodea accumulated 65% of the t o t a l  “‘Co, which exceeded that accumulated 

by Najas alone. 

g rea te r  capacity fo r  accumulation. 

Elodea w i t h  a g rea te r  surface area Lhan Najas had a 

By reducing the quant i ty  of 6oCo t o  

be d i s t r ibu ted  among the physical conipastments, -the time required -Lo 

steady s t a t e  of the water and s o i l  was -reduced t o  64 hours, 4 times e a r l i e r  

than in the physical microcosm. The Increased capacity of Elodea f o r  

accmulaticm induced an addi t ional  pathway of ne t  input from the container 

surface, and delayed the time t o  steady s t a t e  of t h i s  compartment. On the 

bas i s  of changes i n  patliway and d i s t r ibu t ion  pat terns  and time t o  steady 

s t a t e  of the compartments’, Elodea w a s  the  regulatory compartment. 

The combination of Elodea and NaJas with the physical compartments 

resu l ted  i n  no changes i n  the pathway pat terns  as compared t o  the 

physical microcosm (Fig. ye, p. 80). However, the d i s t r ibu t ion  pa t te rn  

and time to steady s t a t e  of compartments were changed. The container 

surface gained g$ of the 6oCo fram the water and reached steady s t a t e  

by 64 hours. “ne Najas compartment reached steady s t a t e  by 32 hours 

w i t h .  a net  gain of 1% from the water. T h i s  quant i ty  represented l e s s  

than one-half that  o f  Najas alone and the time t o  steady s t a t e  a l s o  was 

reduced by one-half. 

ne t  gain of 35% of the 6oCo from the  water. 

Elodea reached steady s t a t e  by 64 hours with a 

T h i s  quantity represented 

slightly more than one-half of that when Elodea w a s  alone and the tllme 

t o  stead,, s t a t e  was also reduced by one-half. The summation of the 

6oCo content o f  Elodea and Najas represented 3&$ of the t o t a l ,  a 

quantity less than that in Elodea alone, and more than t h a t  i n  Najas 



alone. I n  f a c t ,  t h i s  quant i ty  was the same as the a-rerage calculated 

fronz that  i n  treatments of Elodea and MaQes alone. The s o i l  compart- 

ment had a ne t  gain of 311$, of t he  6cCo from the wate-r and ’uoth a:’ thesc 

i n  Elodea alone, but %he time t o  steady state w a s  .the s m c  ass that  i n  

Najas alone. 

compartment and the  time t o  s teady s t a t e  was regulated by the %8.,jas com- 

The pa t t e rn  of f i s t r ibu t fon  was regil3ated by the Flo&u 

partment. 

the  physical. microcosm, t k  regulatiori of pathway pa t te rns  was by the 

Since there were 30 new pathways of ne t  loss,  as canpared t o  

s o i l  compartment. 

When Physa w a s  combi.ned w i t h  Najas there  was a. s ign i f i can t  change 

i n  d i s t r ibu t ion  and pathways pa t te rns  (Fig. Tf, p. 80) and times t o  

s teady state of the crmpartments. Tlie c o n t a h e r  surface had 8. ne t  g i i n  

frm the w a t e r  w i t h  a subsequent new psthway which represented a ne t  loss 

Lo the soil compartment. 

w a s  7% and no s teady s t a t e  was reached during the  expr iment .  

s h e l l s  gained 1% of the “Co from the  water and reached a s teady s t a t e  

after 32 hours. 

The content of t h i s  compartment ai; 512 hours 

The Physa 

Tne Najas compa.rtment had a n e t  gain from the water 

followed by net losses  t o  the s o i l  and Physa b0d.y compartments. These 

losses  represented two new pathways from the Najas compartment. N a j a s  

had continued ne t  losses of  6oCo dovn t o  14% a t  312 hours and there  was 

no evidence tha t  a s teady state was being approached i n  this compartment. 



The Physa body compartment had a content o f  0.7% o f  the  “Co a t  312 hours 

and t h i s  value was twice as  grea t  as t h a t  i n  Physa alone. This evidence 

indicated t h a t  Physa had an add i t tona l  input  from the Najas compartment. 

There w a s  an expected net l o s s  of 6oCo t o  the s o i l  and the  Physa body did 

not  reach st;eady state by ’312 hours. 

s teady s t a t e  by 256 hours with a ne t  content of 1.5% of the ‘OCo a t  312 

hours. The s o i l ,  with t’ne addi t iona l  new inputs,  did not reach a s teady 

state durling the  experiment and had a content of n$ of  the  6oCo at 512 

hours. 

The water compartment reached a 

l%e increase of ne t  inputs  t o  the  s o i l  compartment were r e l a t ed  t o  

the  in t e rac t ion  of Najas and Physa. I n  addi t ion t o  the  e a r l i e r  e f f e c t s  

of Physa movement on the  phys ica l  components, t he  s n a i l  a l s o  crawled 

over the surface of Najas. There was no evidence t h a t  Najas t i s s u e  vas 

consumed by Physa, but; microscopic observation o f  Najas indicated the  

presence of  periphyton. Thus, it i s  possible  t h a t  -tine snails d id  consume 

the  periphyton and perhaps small amounts of Najas t i s s u e .  There were 

other  possible explanati_onzs f o r  t he  increase of net pathways t o  the  s o i l .  

The increased surface a rea  due t o  the constant turning over of the  s o i l ,  

p lus  the  presence of s n a i l  f e c a l  mater ia l ,  may have increased the 

mount  of 6*co i n  the s o i l .  

continued t o  shov a loss without reaching a steady state, t h i s  hypothesis 

i s  supported. 

Since the container surface compartment 

The condition of a. steady s t a t e  6oCo content, which w a s  charac te r i s -  

t i c  of almost a l l  corripartments i n  other  microcosms, did not occ11z’ here 

except i n  the water compartment. This imbalance of gains and losses ,  

shom by adiLitiona1 pabhways of net loss, was the result of increased 



functiona.l. complexity. Thus,  the  regulat ion of d i s t r i h t i o n  a.nd pnb1iwa.y 

'Iiioiogicsl i n t e rac t ion .  

The combirmtian of Elodea, Naja.sj, and Physa with the physical com- 

partments did not, change the  quali-tg- of results fror,-~ the  __I mysa-l'hjas --I t r e a t -  

~nexyt (Fig." 3g> p. 80). 

s o i l  coinpxtments and furtlzcr changes i.n coripart;ilen-Lxl. 6oCo content and 

€IOsN'ev~pl~ there  were addi t iona l  ne t  inputs  to the 

The c o n l a h e r  surface and Physa shell compartnients each had a 

ne t  galn f rcm the water and a subsequent ne t  l o s s  t o  the  soil.. The net  

loss from the Physa shell compartment represented a new paylway. 

eon-tatner surface had less than 1% of Lhe 6oCo and the Physa she l l  liad 

Less then .?$ 6oCo afteP 71'2 hours. 

The 

Hcither carupartment reached a s teady 

state during the experiment+ 

Yae water compartment w i t h  a ne t  l o s s  t o  the soil. 

Elodea represented another new pathray of 6oCo movcment 

compartmenl; reached a s teady s t a t e  by 512 hours and Elodea had 16% and 

Xajas -. lC$ of the  total .  6oCo at the  end of the experiment. The water 

compartment reached a s teady s t a t e  after 32 hours and a ' O C o  content of 

1.6$ at  512 bolus. The s o i l  had accumulated 7@ of the total .  '*Co from 

m t h  Hajas and Elodea had a net  gAin f i - s m  

The n e t  l o s s  frcm 

F k j t h e ~  p lan t  

the various ne t  inputs  by 312 hours and did not reach a steady s t a t e  during 

the experiment a 

The increased p lan t  surface area i n  t'ne Elodea cmpartment increased 

the number of pathways o f  ne t  moverflent, decreased the  tbie  t o  steady s t a t e  

of the water cmpartrrent, and decreased the  6oC!o content of various c m -  

partments. The container surface and Physa s h e l l s  had a lower 6oCo content 
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than t h a t  i n  previous microcosms and the s h e l l  compartment showed a new 

pathway of ne t  loss t o  the s a i l .  These changes can be a t t r i b u t e d  t o  the 

Elodea compartment and i t s  capaci ty  f o r  accumulation of  Co s ince these 

events dtd not occur when Elodea w a s  absent. The content of  the Najas 

compartment a t  512 hours vas lover .than that  i n  Physa-Najas. T h i s  sug- 

ges ts  an e f f e c t  of a grea te r  accimulation capaci ty  of Elodea for 6oCo 

and i s  analogous t o  the s i t u a t i o n  i n  Xajas-Elodea. Tlie r ap id  l o s s  of 

6oCo from the water compartment of  t h i s  microcosm was a r e s u l t  of the  

60 

-_I__ 

___I -- 

presence of Elodea as t h i s  

Bhysa-Na jas . Finally,  the  

ment was l e s s  than that of 

l a t i o n  of 6oCo by Elodea. 

p_s_ 

Although the  presence 

cmpartment had a much slower l o s s  rate i n  

s o i l  6oCo content a t  tine end of the experi-  

Physa-Na jas microcosms because of the accwnu- 
_l_lll_ 

of Elodea had a d i s t i n c t  e f f e c t  on some 

compartments, all. t he  changes which occurred could not be explained by 

the  simple addi t ion of Elodea t o  Piysa and Najas. 

partment i n  Elodea alone had the  fastest time t o  steady s t a t e  (64-128 

hours) t h i s  compartment o f  the  current  microcosm reached a s teady s t a t e  

in 32 hours, 2 t o  8 t i m e s  f a s t e r  than i n  a l l  o ther  microcosms. 

While the watey com- 

The ne t  l o s s  from the Elodea compartment was a r e s u l t  of the Elodea- 

Physa in te rac t ion .  The possible explanations of t h i s  induced ne t  l o s s  

from Elodea were given e a r l i e r  f o r  the Najas compartment. 'In the  case 

of Elodea there  w a s  additional. evidence tha t  Physa w a s  removing p l an t  

t i ssue  without ingesting it. In many instances ,  the lower leaves of the 

plant, a x i s  were p a r t i a l l y  or  wholly missing and inspection sf t he  micro- 

cosms revealed an accumulation of pa r t i cu la t e  green matter on the s o i l  

surface. T'nis indicated tha t  the  s n a i l s  moved senescect p lan t  organs t o  





90 

assuined thc r o l e  o f  pj-.ocessors. ' i ke  r o l e  of the snail did riot change 

when coixiriiiecl w i t h  plants, bul; i t s  cat:zi.jitir, e f fec t  on 6oCo cyr1.1.ng was 

state . When t h y  1m-e combined, patterms of d i s t r i b u t i o n  aud pat;mays 

these biological coixponenLs, 

P 

part-raent and t'ne very low 13'(ss content of the water showed ,that tlic 



pa,-thwey and dis tp ibut ian  pat terns ir this physical  microcosm were regu- 

compartments , The container surfrace reached a steady state %s content 

of O.l$ a f t e r  236 hours. Physa shells, which hac. net input; f;*om the water -- 
and net, .l.c7ss to the sci l ,  drid not  reach a steady s t a k  and bid EO 

detectable 137Cs a t  7.12 hours. The Physa body compartment had fn ne t  

u vain from the w s - t e r  and loss .Lo the soil. The snails did not  reach 

steady s t a t e  and had a content of 0.08% of  tile '37,s a t  tile of tile 

The presence of Pliysn lowemd t%c 13'Cs content of the container 

surface and l.ncresscd that o f  the  s o i l .  These effects czo be a t t r i bu ted  

regula.ted this pa t t e rn ,  

d i s t r t b u t i o n  and t i m e  t o  steady state of compartments . 
However, -- Physa regidn-kd both the patters of 

The com'olnation of Bnjas -11- with the physical  compartments e f fec ted  

DO changes i n  tile pa t t e rn  of  pathways ( H g .  32, p. 801, but changes 

occwred in t ~ m e  t o  steady sta-te and ' 3 7 ~ s  content of microcosm compart- 

ments. The c o n t ~ k ~ e r  sxrface did no-t reach a, steady state and had 0.7$ 



of the 137Cs a t  312 hours.  

compaytnient and a subsequent ne t  l o s s  t o  the sotl. Najas had a 

coatent of *2$ a t  64 hours and d id  not  reach a steady state by t h l s  time. 

Najns had both a r e t  input fym the water 

1"c9 

The s03.l. did not reach a stea.dy state and had a 137Cs content of 98% a t  

312 hours. The water compartment reachec? steady sta-tc between 236 and 

Najas had no large accumulation 0% 137Cs, but did  increase the con.- _-- 
t e n t  of this radionuclide i n  tile water as coirqm~-erl t o  both the physical 

and Riysa treatments.  Also, the 1"3'Cs content of  the coa tzher  surface 
r-. 

compartment w a s  reduced as compared. t o  t h a t  of the physical.. micinocosm 

Since Najas accmulated l i t t l e  of Y w  137Csi the e f f e c t  of Najas of i n -  

creasing the v a t e r  content of t h i s  radionuclide can be attribiit,ed t o  a 

rap id  exchange of 137Ct3 between the water and Najas. NaQas increased the 
_lll___l 

physical microcosm. Ne1 they the container surface nor the soil. reached 

both compwtxents reached a steady state.. 

Since ";E pat te rn  of pathways t o  the s o i l  compartments was uncharged 

as compared t o  the physlcal microcosm, the  s o i l  mginlatxed th5.s pa t te rn .  

However, the pa t te rn  of radionuclide d i s t r i b u t i o n  and tLim bo s tearly state 

of the cmpart;iiwnts were regulatcd bj N5Ja.s. 

The addition of Elodea to  Lhf. physical  microcosm had no e f f e c t  on 
_I__ 

the  pa t te rn  of pathway-c o f  137Cs .to LIE s a i l  (Fi.g. 5k, p. 30) .  However, 

t'nc L i m  t o  steady state and ' 3 7 ~ s  content o f  cmpartmeo'ts was affected.  

The container sur face d i d  not reach a stcady state and had a 137Cs content 

of 3$ a t  312 hours. Elodea had a net  iaput  frcrra the water and a. net  loss 
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bhe t h e  ta steady state o f  the water compartment. The soil accuri7fiated 

l e s s  137Cs i n  this microcosm than i n  the phjrsical. microcosm and neither 

the  soil nor the  wn ta ine r  surface cmparbrnents reached a steady state, 

a condition absemed f o r  both compartmcn's;~ i n  the physical  microcosm. 

Similar t o  the pre~Tous microcosm with biological, corflponents present,  

the soil regulated the pathway pattern and Elodea regulated the di.str5- 

bution pa t t e rn  and time t o  steady state of compar-trfients. 

When Elod.ea and Najss were combined with the physical  cornpartmen-bs, 

there w a s  no change i n  the  path7m.y pa t te rns  (Fig. 51, p. B O ) ,  but there  

were changes i n  the  d is t rzbut ion  pa t t e rn  and time t o  stea.dy state of 

compartments. The container surface reached a steady s t a t e  137Cs cantent 

of 4 9  a f t e r  123 hours .  

water and net  loss to the  soil and r.cither reached a steady s t a t e .  Najas 

had a coateat  of O.L4$ of 

228 jiours. 

Hzjas and Elodea both had net input from the -- - 

""Cs a t  64 houm arid Elodea had O.@ a% 

~ ~ i c  s o i l  compartment acc.umdatcd 93$ o f  tlic '37,s by 512 hours 

and did  not reach R steady state. 

steady s t a t e  between 128 and 236 hours with a content of l$ a t  512 hours. 

The water compartment reached a 



94 

The e f f e c t  of  bhe Elodea and N- combination on t h e  137Cs content 

of  the w a t e y  w a s  simil,w t o  t h a t  of each species occurring alone. The 

time t o  steady state of the water w a s  intermediate between t h a t  of either 

species alone. The contairrer s w f a c e  compartment. did not reach a steady 

st.zte when e i t h e r  Najas or Elodea occimred alone, but, i n  t h i s  eleperhent 

the  container surface d id  reach a steady- state and t h e  l 3 ? C s  content was 

greater  than t h a t  when ei ther  species occurred alone (I 

A s  i n  the preceding microcosms, the soil compartment rebrulated t h e  

pathway p a t t e r n .  The ttme t o  steady s t a t e  of compartments and. the dis- 

tyibik-t;ion of 137Cs was e-egulated by t h e  in te rac t ion  of t h e  pl.mt specjes. 

The addition of Ph;Slsa -. and Najas t o  the  physica.l microcosm effected 

no change i.n the p a t t e r n  o f  pathways (Fig. 3m, p .  BO), but t h e  pa,z.meters 

of time t o  steady s t a t e  and. 137Cs content of cowartments were changed. 

The contaiiier sixface reached steady s t a t e  a t  256 hours with a. content 

of  0.14 at; 51 2 ho-us.  

loss t o  t h e  soil, did not reach steady s t a t e  during t h e  experiment and 

The I_p_ Physa shells, which had input from the  water and 

had a content of 0.18 of the 137Cs at 31.2 hours. N0  steady state w a s  

reached by the  Physa bod.y compartment and continued net losses resulted 

i n  a content of O.l$ of the  137Cs a t  312 hours. 

steady s t a t e  by 64  hours and had a. content of 0.4% of t h e  137Cs a t  that 

time. 

Najas did not; reach a 

'The soil yeaached a steady state a f t e r  128 hours and had accumulated 

98% of the  t o t a l  137Cs by 5.12 hours.  The water mached a steady s t a t e  

between 128 and 256 hours and had a 137Cs content of 2% at 71.2 hours. 

The combination of Pinysa and I__..._ Najss .--- increased t h e  I3'Cs content of 

the  water OVPP t h a t  when e i t h e r  species occwred 4.one and the t h e  t o  

steady s t a t e  was intemiediale between t h a t  when either species occumed 
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alone. T h e  low 13'7,s content of t h e  container surface and t h e  time t o  

in.crer+sed content (I:? the w3.%er prob&ly resu l ted  from a rapid exchmtge of 

partmen.l;s was regi.il:iteG by the  interact ion of Physa and ~ajas ./ ~. - 

'i'he comhjxia-bion OS Plqrsa, Xajas a,nd Elodea, with the physical com- __-.._- _I_" 

poner?ts ha.3 no e f f e c t  an t h e  pathway pa,ttern (Fig. 511, p.  80) and the  

i n t e r w t i o n  ajnoilg the biological. components produced. the sanie r e s u l t s  as 

did the  __p Physa-rajas II- in te rac t ion  except Tor t h e  1-37Cs content of 3:bode.l arid 

-_I__ Najas? hnd the time t o  steady s t a t e  of  the  container surface conpartment. 

ELod-ca had a l3?'C!s content of' .6$ a t  128 hours and -- Najas had -2$* 

container s u r f x c  reached a steady s t a t e  content of 0.6$ of the 137Cs 

The 

a f t e r  1?8 hours. Thus, a3 observed in the r e s u l t s  f o r  Physs-Najas micro- 

cosms, t h e  s o i l  regulated t h e  p a t t e r n  of pathways and t h e  biological in-ter- 

act ion rcgulahed the d i s t r i b u t i o n  p a t t e r n  and time t o  steady s t a t e  of the  

compartments . 
Physical cmmpartments had several r o l e s  i n  the cycling of  '-37Cs i n  

the  microeqsms . 'The water eompas-tment served as a medim through which 

l j 7 C s  w;26 distribuked t o  the other campartments and, when p lan ts  were 

present,  t h e  wztrr ,.,l.so served a s  the storehouse of avai lable  radiocesium. 

Container surfaces represented 2 tenrporwy s i n k  of avai lable  137Cs and  t he  

mngni.tiuiie of this s ink  changed with the  various complexity l e v e l s ,  The 

s o i l  was a permment s ink  of ra.d.ioces.iwn. Of these physical components, 



t h e  s o i l  regulated the pa t t e rn  of pathways among the other  compartments 

a t  a11 complexity levels. 

All S io logica l  components had s b i l a r  functional. r o l e s  i n  Lhe cycling 

Plants, d o n e  o r  combined, and the  sna i l  alone of' 137Cs I n  t h e  microcosm. 

increased t h e  137Cs content of t h e  water. 

were combined, t h e  137Cs content of t h e  water vas increased even more. 

When t h e  p l a n t s  and the snail 

Since none of t h e  biological- ccmponeiiLs accumulated la rge  amounts of 

137f;s, the  funct ional  r o l e s  of  these  biological  components wen? t h a t  of  

processors.  When om? o r  more biologica.1. compatments were present ,  both 

the  pa t t e rn  of d i s t r i b u t i o n  and time to steady s t a t e  of compartments were 

thereby r egda ted  = 

Coba1.t-60 and 137Cs cycling WM d i f f e ren t  i n  microcosms of similaz 

complexity and t h e  cycling was affected d i f f e r e n t l y  by increased conplex- 

i t y .  

partments, or combinations of compartments, and t h e  funct ional  r o l e  of 

6oCo and "'(2s cycling p a r m e t e r s  were regul.ated by d i f f e ren t  com- 

a given conqatment was not always similar for t h e  t w o  radionuclides.  

The pa t t e rn  of pathways among compartments f o r  60Co and 137Cs (Fig.  

3 ,  p.  80) was s t r i k i n g l y  d i f f e ren t  i n  the  microcosms. Radiocesium cycling 

w a s  charac-kerized by pathways of net; input and Imss from a l l  conrpartments 

e x c q t  the sai.1. md water. In a37Cs cycling, t h e  number of non-soil com- 

partments w a s  equal t o  the  number of net inputs  t o  t he  s o i l  compartmer,t 

and this 1:l ra , t io  was not changed with increased complexity, 

cycling was character ized by an increase i n  t h e  number of pathways t o  

Cobalt-60 

the  s o i l  compartment with an increase in f'unctional complexity. When no 

b i o l o g i c d  components wex? present ,  o r  i f  b io logica l  components with t h e  

same funct ional  r o l e  were present,  t he  ratio of nomoi1  compartments t o  



t h e  number o f  net  inputs  t o  t h e  s o i l  was 2 : l  o r  g rea t e r .  Thus, a,l-Lhough 

t h e  behatrior of 6oC!o and '37Cs was e n t i r e l y  d i f f e r e n t  a t  the  simpler 

l e v e l s  of complexity, i n  t h e  higher complexity l e v e l s  t h e  pa t t e rns  of 

Co pathways among compartments con-rerged toward s i m i l a r i t y  t o  those of 60 

60 
The d i s t r i b u t i o n  of Co or  137Cs was regulated by t h e  biological 

compartments o r  t h e i r  in te rac t ions .  The b io logica l  coqponents affected 

the  d i s t r i b u t i o n  of 137Cs among all other conrpartments . However, the 

e f fec t  on the s o i l  contcnt :mounted t o  only a f e w  percent of  t h e  t o t a l  

"7~s. 

of the  to t a l ,  '37C!s was associated with nonsoil  compartments. 

Ignoring the  slight e f fec t  on t h e  s o i l  ccntent, o;L~y about 5% 

The dis-  

t r i b u t i o n  of t h i s  58 was changed with an increase i n  funci;ional complexity. 

For the water connpwtment,, the p l a n k s ,  e i t h e r  alone or combined, axid the  

s n a i l  alone kiad a shi.1.a ef fec t  of increasing the quant i ty  of "37Cs i n  

t h e  water When functional. complexity was increased, even more 137, ,s 

w a s  mainta,ined i n  the  water. 

greater  e f f ec t  on the d i s t r i b u t i o n  0.f Co among compartments, changlng 

t h e  "Co content- o f  t h e  s o l l  by up t:) 30$ of" t h e  total . .  

l e v e l s  reduced the 6oCo i n  t h e  water. When funct ional  compl.exi.ty was 

increased, t h e  mount sf 60Co maintained i n  t h e  water w a s  fur ther  de- 

creased. 

Biological corflponents had a. re la t ively 

60 

Lower complexity 

Thus, 'increased complexity had opposite effects for "ro and 

60 137Cs3 the  amount of 137Cs in t h e  wakeer increased and t h e  amount of Co 

in. t h e  wsber decreased. The net result  of these  changes i n  ra,dionuclide 

eontent of  t h e  water w a s  to conveyge t he  morunts o.f ra,dionuelide i u n t i l  

60 the r a t i o  of  lo t o  '37,s was approximately 1. Comparison of t he  e f f ec t  

of" t h e  bioloyi;ical components on the  distribiitiori. o f  the  radionuclides 



The e f f e c t s  of increased complexity on t h e  time t o  steady s t a t e  

of compartments w a s  d i f fe ren t  fo r  t h e  two radionuclides.  

p l ex i ty  decreased t h e  time t o  steady s t a t e  of Co i n  t h e  water and in -  

creased in t h e  case of 13'7Csa 

Increased com- 

60 

Xadiocesiulli cycling through nonwater eoni- 

partments was character ized by few steady s t a t e  conditions f o r  compartments 

a t  the I-ower l e v e l s  of complexity and by steady s t a t e  conditions at t h e  

higher I-evels of complexity. Radiocobalt cycl-ing through rionwater com- 

partments w a s  chwaeter ized  by steady s t a t e  conditions a t  the lower con- 

plexity I.evehs and few steady s t a t e  conditions a t  higher complexity l e v e l s  e 

Increased complexity reduced the  tirrie t o  steady s t a t e  of '37Cs i n  compart- 

ments and increased the  time t o  steady s t a t e  of "Co. 

The furictional roles  of the  inicrocosm components were not always 

iden t i ca l  f o r  6oCo and 137Cs cycl-i-ng. The container surface and s o i l  

compartments had s imilar  r o l e s  fo r  both 'OCo and " "Cs cycling. The 

water compartment served as a dis t r i .but ion medim for  both 6oco and "'CS. 

i n  t h e  case o f  137Cs, t he  water a l so  served as a temporasy reservoi r  o r  

pool .  The p lan t  corfqartments acted e i t h e r  a s  storehouses or  processors 
/ 

i n  "'Co t r ans fe r s ,  whereas i n  1-3''Cs cycling t h e  p l an t s  had only t h e  role 

of precessors. l_l.- Physa acted both as a catalyst;  and processor in 'O@o 

cycling and only as a processor i n  '3 "Cs cycling. 

The comparison of compartmental ro l e s  i n  t h e  cycling of 137Cs and 

Co shows t h a t  1) r o l e s  may be interchangeable between phxsical  and 
60 

bio logica l  cornponents (storehouse),  2) t h a t  t h e  s m e  component (p lan ts ,  

snails) may have e n t i r e l y  d i f f e r e n t  ro les  i n  the cycling of d i f f e r e n t  

nuclides,  3) t h a t  the  same componen-t (water, s n a i l s )  may have more than 

one ro le  i n  t h e  cycling of a given nuclide, and. 4) t h a t  a ro l e  which i s  
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s igni f icant  i n  the cycli.ng of  one nuclide m y  not even occur i n  the 

cycling of another nuclide ( c a t a l y s t  ) . 
RadiosensitiiTity -- of  - O~ganisms 

In order t o  use rad ia t ion  s t r e s s  e f f e c t i v e l y  as an e q e r i m e n t a l  

parameter it i s  necessary to determine the r a d i o s e n s i t i v i t y  of the  species 

t o  be iused. It w a s  desired %ha% t h e  doses t o  the  microcosms be siublethal,  

but  capab2.e of producing e f f e c t s  which would range from no detectable  

growth effects to inhibitory- effec-ts I) BiologicaL end points cons~dered 

were mortL;lity, growth r a t e ,  mnor-phological chmge, and uptake and con- 

centration or" radionucl.i.tles . 
Elodea _I .- 'The e r f e c t s  o f  doses of 10G, 400, and 1000 rads of fast  

neubrons were observed on Elodea cultured i n  spring water under the given 

elrperimentrzl. conditions . 
The growt;h and elongation p a t t e r n  f o r  the four treatments (Fig- 6) 

showed 110 essentkal differences among the  treatments from 0 t o  430 hoims. 

A t  thLs tinct both  the controls and 100 rad treatment s?iilwed reduced growth, 

while the  plants  receiving higher doses continued to grow. 

A iiormal norphological development m d e r  the conditions of t h i s  

e - q e r h e n t  was the  formation of l a t e r a l  shoots aad roots  on the Elodea 

axis. Ti i j  s diI"fereritiatior1 was followed f o r  d.1. treatments and the re- 

sults (Fig.  ' 7 )  showed -t;ha.t the  100 rad dose had no e f f e c t  on t h e  i n i t i a -  

t i o i l  of lateral. shoots, but d id  ir ihibit  adventit ious root f"ormation f o r  

7'5 hours (. 

Cormation t o  60$ of t h e  value f o r  t he  controls .  

treatments ink ib i ted  lateral shoot el-ongation corripared to the controls + 

However, &he er,d point  measurements o:P 80 8nd 90s indicated evidence of 

____ 

Ultimately, the 100 rad treatment l imited a.dventitous root 

The k00 and I000 rad- 
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Figure 6. 

The hatching indicates a port ion of the l i n e  which is qigfiifica.nt1.y 

The effect of fast neutron rad ia t ion  on E l o d e a  growth. 

different  from the control  group. 
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Figure 7. The e f f e c t  of fast neutron r a d i a t i o n  on shoot-root 
i r z i t i a t ion  by Elodea. 



recovery from the  r ad ia t ion  e f f e c t .  Root formation on t h e  Elodea axis 

was inh ib i ted  during this expe rhen t  a f t e r  doses of 400 and 1000 rads. 

The uptake of '-3r'Cs by the  cont ro l  groups exceeded uptake by a l l  

r ad ia t ion  t r ea t ed  groups, even dul-i.:ng t h e  e a r l y  observations (Fig. 83, 

During t he  f i r s t  200 hows  o f  t h e  experiment, -tile uptake curves foP" a l l  

treatments were lower than t h e  controls and were s t a t i s t i c d 2 . y  lower as 

indicated by a "t" t e s t  fo r  most of this period. After 348 hours, when 

shoot-root i r i i t i a t i on  occurred i n  t h e  controls  and 100 rad treatment, 

t h e  13'7Cs concentration w a s  observed t o  decrease with increased dose 

Considering the  time of shoot-root i n i t i a t i o n ,  t he  a r ray  of end 

poin ts  for b3'Cs concentration may be the  r e s u l t  of  a difference i n  sur- 

face area and mi to t ic  a c t i v i t y .  However, t h e  differences i n  ""Cs con- 

cent ra t ion  before shoot-root i n i t i a t i o n ,  a t  a time when elongation was 

sLxilax for a l l  treatments, ca.nnot be explained on t h e  bas i s  of  differen-  

tial s w f a c e  area. The ea r ly  di.fferences can 'oe a t t r ibu ted  t o  t h e  e f f ec t  

of r ad ia t ion  on mitof;ic ra te  o r  physiological  mechanisms e 

GO 
The uptake o f  Co (F ig ,  9) w a s  i n i t i a l l y  f a s t e r  than t h a t  of 137Cse 

A t  64 hours t he re  was l i t t l e  difference i n  t h e  end poin t  concentrations 

f o r  t'ne control ,  400, o r  1000 rad  treatments, all. of which were higher than 

t h e  100 rad t.mPeatment. 

100 rad dose showed t h a t  t h e  end poin ts  were s ign i f i can t ly  d i f f e r e n t ,  

A "t" t e s t  comparison of t h e  control  against  the 

The uptake curves f o r  each treatment showed the  same pat tern,  but 

t h e  uptake r a t e s  and times of maximum concentration showed d i f femnces .  

The lowest dose, 100 rads, had t h e  e a r l i e s t  peak with a subsequent rapid 

l o s s  t o  a concentration l e s s  than t h e  controls .  The m a x i m u m  arid minimum 

concentration of t he  100 rad dose were t e s t ed  against  t h e  controls  fo r  
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Figwe 8. The effect  of f a s t  neutron radiation on 137Cs accumulation 
by Elodea. 

The hatched l i n e s  ind ica te  portiisris of  t h e  uptake curves which are 

s ign i f i can t Jy  d i f f e ren t  f r o m  t h e  eofitrols . 
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Figure 9. The effect of f a s t  neutron rad ia t ion  on 60 Co accumulation 
by Elodea. 

The hatched l i n e s  indicate port ions of the uptake curves which a r e  

s ign i f i can t ly  d i f f e ren t  from the cont ro ls ,  



each hour using a ' I t "  t e s t  which showed s igni f icant  differences between 

.these treatments f o r  most of the  comparisons. T'ne iuptake r%-Les of  the 

control  and 400 rad  treatment occurred la.ter and was higher than t h a t  

of t h e  controls .  The  i n i t i a l  uptake r a t e s  of t h e  100 rad treatment 

appeared lower than t h e  controls ,  and. the  f irst  -three poin ts  of the  uptake 

curve were s t a t i s t i c a l l y  differerit  from the controls  The m a x i m u m  con- 

cent ra t ion  of Co f o r  t h i s  treatment occurred later than e i t h e r  t h e  con- 

t r o l s  or 400 rad Lreatrnent. 

Go 

60 Since the  major differences i n  uptake =id concentration of Co 

occurred before shoot-root in i t ia . t ion ,  differences i n  surface area would 

not account for  them. A dj.fference in ml.totic a,ctivil;y coidd be postu- 

l a t e d  as a causal factor, However, there  was no evi.ilence that su.eh d i f -  

ferences exis ted as the growth and elongation of these pl-ants d.wri.ng 

t h F s  period were s imilar ,  s ince  C;o uptake r a t e s  f o r  the  1-00 nnd 400 rad 

treatments were similar t o  the controls .  

60 

Physa - Physa mortal i ty  i n  t h e  Phy-sa-Najas-Elodea combination a l t e r  

fast neutron doses of 0, 1.00, ,and 1000 rads was calci.iLat;ed f o r  d i f f e r e n t  

sample periods arid f o r  the  e n t i r e  experiment (Tab1.e 38). 

mortal i ty  by sampling period., mortal i ty  occurred early i n  both rad ia t ion  

treatments a 

rads, while mortal i ty  a t  1000 rads exceeded both t h e  controls  and the  

100 rad trea.tment. 

by 3376. 

fac tor  of 1.1 a n d  the  1000 rad dose by a fac tor  of 2.4. 

---I_ __I _ll_l 

C o m p a i ~ i g  percent 

A t  236 hours, control. mortal i ty  exceeded mortal i ty  at 100 

By 512 hours morta l i ty  a t  100 i-a&s exceeded controls  

Total mortal i ty  f o r  t h e  100 ra.d. dose exceeded controls  by a 

Fast neutron doses of 100 and 1000 rads represented two rad ia t ion  

treat,ments which can be eonsidered d i f f e r e n t  as a r e s u l t  of t h e i r  e f f e c t s  



Table 38. Physa Mortali-ty i n  the  Physa-Najas-Elodea 
Combinat ion  

Do s e (rad) 0 100 1000 

Per c erit MortaLity 
by hour (xi j/18) 

32 
64 
128 
236 
712 

00.00 
00.00 
00.00 
00.00 
22.22 

00.00 00 " 00 
00.00 ZL "I1 
5 *55 
1.6.66 
33.33 

5 -55 
38 e 88 
55.55 

'Total. Percent 
6 .L7 12.96 
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on Pkiysa and Elodea. 

and Eorph0log.y of  Elodea, While Physa had an ll$ higher mor ta l i ty  than 

t h e  con-brols iLt I00 rads,  t h i s  dose had an e f f e c t  which was e ~ s e n t i ~ i l l y  

independent of events leading t o  death of t h e  s n a i l s .  T h u s ,  t he  100 rad 

dose may b~ considered 8 s  suble tha l .  A t  1000 rads there  was a more notice- 

ah3.e e f f e c t  on F,lodea,and Physa morta l i ty  was 33% higher than cont ro ls .  

Therefore, t h e  1.000 rad dose reprezented a r ad ia t ion  l e v e l  considerably 

more inh ib i tory  t o  Elodea and l e t h a l  f o r  3G'$ of t h e  Physa population. 

The 100 rad dose showed l i t t l e  e f f e c t  on the  growth 

Radiakion EFfec: ts  I on 0rganism.s 3 Microcosms 
______I_ 

Elodea - i n i t i d  d r y  weigELt measurements of Elodea i n  microcosms 

w i t h  >:lodes alone were converted t o  mg/individu,d e 

l l * 6 ,  and 11.9 mg/individud for  tyeatments of" 0, 100, and 1000 rad,= 

Mezn values of 11.4 ,  

wore compared by a,nal.ysis of variance which showed 110 s ign i f i can t  dif- 

ference.  In a comparison of all means a t  312 hours (Table 34) there  

was no diff'erence between the 0 and 100 rad treatmenLs which were both 

s ign i f i can t ly  higher than the  lS00 rad treatment.  

LOO a d  1000 rad  dose showed t h a t  t he re  was no s ign i f i can t  difference 

A ~orcp~wison  of t he  

between t h e  t w o  means. 

1 n i t j . d  mean weights for Elodea in combination with Najas and Phjrsa 

receiving 0, 1.00, and 1000 rads were 12.6, 7.6 and 9.31 mg/individual 

w i t h  final weight  dues of lI*'(, 8.9 and 8.9 *ng/individud. 

of  va.riance showed no s ign i f i can t  differences between i n i t i a l  and f i n a l  

Axl ,analysis 

dry weights for any treatment.  

In microcosms with Elodea alone, t he  control  plants  had a constant, 

weight increase during t h e  experiment. l'he p l an t s  receiving 100 rads 

showed evidence of d r y  weight increase only a f t e r  128 h o u r s  and t h e  p l an t s  

ai; 1000 rads showed no evidence of weight gains  e 
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Table 39. Duncan's Cornparisoil of F ina l  Weights of Elodea 
(Elodea Alone) Among Radiation Treatments 

Value of p 2 3 

rp .OJ 3 .oi 3.16 

Kp 1 .a0 1 .9'7 

Radiation 
Treatment (rads) SO00 100 0 

13 .i 14.1 16 .o 

- __g___ 

St a t  i s-t i c  d 
Significance .-I- 



The l ack  of a d i f fe rence  between i n i t i a l  snid Pi.nal dry weights o f  

Elsd .ea  i n  combination with ---- Physa arid NaJas may have been p a r t i a l l y  due 

to t3he presence o f  F'hysa. The lower l-e~ivt?s were xxlissing from rriany stems 

and observations of t h e  microcosms revealed. 1.eaf Trap-ents on the s o i l  am1 

i n  t h e  wa-ber. Also, i n  experim.!ents whwz mplica,t,es were used, it 

was possible  to begin an eqer.ini.ent, wherei.n the f i n a l  replj-zabcs of some 

microcosms had l e s s  plant mass than the i n i t i a l  replixates o f  others, 

t h e  resu l t  beir,g no evidence of' growth. This  situa-ti.on probably occu~~?red 

i n  these e x p e r b e n t s  sirwe t h e  rileaiz dry  wel.ght for -yl- Elodea controls a t  236 

hours W ~ S  13.9 mg, which exceeded both i n i t i a l  and final. dry weights. 

Inspection of e a r l i e r  weight values for %he 100 mi? 1000 rad  dcses showed 

no t rend  toward wei.g%t increase.  It i s  believed tha t  t h e  c o ~ i i n a l i o n  of 

s n a i l  a c t i v i t y  an3 the experimental. error cited ahove masked a weight 

gain i n  the Elodea cont ro ls .  

-, 

~ - -  

Najas - I n i t i d  dry weights of Najas i n  trea-tments of Naja~ d o n e  

of 3.2, 4.5 and 5 .O mg/individual were compwed t o  f i n a l  m e a 1  weights o f  

3.3, 5.5 and 4.8 mg/individual for treatments of  0, 100, and 1000 rads. 

A n  analysis  of variance showed no s ign i f i can t  d i f fe rences  between i n i t i a l  

and f i n a l  dry weights. 

Najas i n  combination with Physa and Elodea had i n i t i d  weights of 3.7, 

3.4 and 3.4 mng/individual with f i n a l  weights of 3.7, 3.4 and 3.4 mg/indi- 

vidual fo r  treatments of 0, 100, and 1000 rads .  Comparison of i n i t i a l  

and final dry weights by analysis  of variance demonstrated no differences 

between these  values fo r  any treatment.  

Observations of Najas a t  each sampling period i n  each experiment 

showed t h a t  t h e  p l an t s  were elongating and otherwise growing during 
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the  experiment. NaJas g r e w  more slowly than Elodea i n  t h e  cu l ture  tanks, 

and t h e  slow g r o d h  r a t e  coupled with t h e  low weight and high v a r i a b i l i t y  

among r ep l i ca t e s  contributed t o  the  lack  of  s t a t i s t i c a l  d i f fe rence  between 

i n i t i a l  and f i n d  weights. 

Physa - In  t h e  treatment of ___I- Physa alone, Physa mor ta l i ty  a m e r  doses 

of O a n d  1.000 rads of f a s t  neutrons was calcula.ted f o r  d i f f e r e n t  smpke 

periods and for t h e  e n t i r e  experiment (Table 40) .  Comparing percent 

mor t a l i t y  by sampling period, mor ta l i ty  occurred e a r l y  i n  the  radki.ation 

treatment.  A t  236 hours, cont ro l  1iiort;dity exceeded mor ta l i ty  a t  1000 

rads, but by 312 hours mor ta l i ty  a t  1000 rads exceeded control-s by 11%. 

Total Physa mor ta l i ty  for t he  1000 rad  dose exceeded controls  by a f ac to r  

o r  P.7. 

Dry weight measwement of Physa {Physa alone) bodies which had re-  
~ _ I _  

ceived 0 amtl 1000 rads of f a s t  neutron r ad ia t ion  were converted t o  mg 

dry weight per  individual .  A compap.ison of these weights w a s  made among 

rad ia t ion  treatments and time per iods.  Individual weights were pooled 

f o r  sampling times up t o  64 hours an.d coinpared t o  the  weight values a t  

128, 236 and 512 hours. Duncan's t e s t  w a s  used to  compare mean weight 

values within a treatment.  The cont ro ls  {Table 4.1.) showed a s ign i f icant  

weight l o s s  by 512 hours while t h e  1000 rads treatment had a s ign i f icant  

weight loss by 256 hours. 

The same t rend  of wei-ght l o s s  a t  l a t e r  observation periods was 

seen i n  -I Phy-sa (Physa-Najas-Elodea) f o r  treatments of 0, 100 and 1000 

rads. Conparing pooled observations between 2 and 64 hours t o  those at 

128, 236 and. 51-2 hours by Duncan's t e s t  (Table 42) showed a s igni f icant  

weight decrease a t  512 hours f o r  controls  while t h e  100 and 1000 rads 

treatments had s igni f icant  decreases by t h e  128th and 256th hour per iods.  



P e r ~  ent  Morta l i ty  
by l?Cllr(X< j/18) 

32 
64 

00.00 
00.00 
00.00 
22 e 22 
3.55 

5 -55 
27 77 
11.11 
3 -55 
16.66 

2.78 7.40 
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Table 41. Duncan's Comparison of mg Dry Wei.ght/Physa 
Individual. { Physa Alone) Among T i r e  Periods 
Witl1i.n Radiation T r e a h e n t s  

T r  eatmeiit s Value of p 2 3 4 

r .05 2.858 3.006 3 . lo2 
P 

0 rads 
1000 yads 

I .616 1.700 1.754 
1.802 I .895 1.. 956 

0 rads 
Me 3.n (mg/ 
indivi.d-ua1) 5 .388 7 0575 7.688 8.986 

S t a t  i s  t i c al 
S ign i  Ci. c anc e -_-_- 

1000 rads 

~ime(h2.) 512 2% 1-28 2-64 

Mean (mg/ 
individual  ) 6.616 8.078 10.585 11.778 

S t a t  i s t i c al 
S igni. f i.. c m c  e 



Table 1+2, Duncaii’ s Corflpaison of rng Dry Weight/lhysa 
Individual (Physa-PSa jm-ELodes) Among Time 
Per iod  s \Ti t hin Radi a t  ion T r  e stmen-1; s 

~- 
-- 

r P .03 2.838 3.06 3.102 

0 rads 
100 rads  
1000 rads 

0 rads 

100 rads 

_L 

St a t  i s t i c  a1 
Significance 

--_. -- 

1.1. .05 

LOO0 rads 

T h e  (hr ) 512 236 1.28 2-64 

Me ;in 5.17 6 - 0 5  6.63 8.05 

Significance - 
S L a t  li 5 t i c a l  
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The consideration of weight change gives some indica t ion  of degree 

of rne.Labo1i.c disturbance. 

t he  laboratory f o r  about 20 days a t  which time a l a rge  por t ion  o f  t h e  

population died.  Thus, t he  weight loss  i n  t h e  cont ro ls  a t  512 hours 

wr,s not unexpected. The s ignif icance o f  t h e  r 'adiation e f f e c t  i s  not, 

therefore ,  i n  weight loss  but  r a the r  i n  t h e  t i m e  t h a t  weight l o s ses  

occurred. 

Populations o f  Physa could be maintained i n  

Rad-fation Effects  I__. on 60Co Cycling 

60 Elodea s.l.one - The general p a t t e r n  o f  Co flux through t h e  micro- 

cosms containing only Elodea (Fig.  10 )  showed no change within a cornpart- 

men!. am-ong rad.iation treatments Ho~~ever ,  the rad ia t ion  treatments d id  

appear t o  affec-t -the r a t e s  of Co flux, tho Co content of a compast- 60 60 

ment, arid delayed t h e  occum-enee o f  steady s t a t e s  and m a x i m m  concen- 

t r a t i o n s  in compartments . 
~ i i e  pa t t e rn  of 

60 
co f l u x  f rom the  water compartment ( ~ i g .  l o a )  was 

60 
simiJ-ar f o r  all treatments,  but  more Ca remained i n  the  water i n  t h e  

100 and 1000 rad treatments.  The comparison o f  i n i t i a l  Co l o s s  rates 60 

from the  water compartment by Duncan's t e s t  showed no difference among 

treatments.  However, t h e  l o s s  rates o f  -34.55, -22.22 arid -20.28$/ln hr 

f o r  doses of 0, 100, and 1000 rads showed a consis tent  t rend o f  decrease 

with increased. r ad ia t ion  s t r e s s .  

Although 60Co content o f  t h e  water compartment a t  190 and 1000 rads 

remained higher than t h a t  of  t h e  controls  through 256 hours, t h e  d i f f e r -  

ence among t h e  troa.tmerrts became less as the water compartment approached 

a steady s t a t e  content.  A comparison of t h e  6oCo content of t h e  water 

compartment a t  512 hou-s (Table  43) showed tha t  t h e  100 and 1000 rad 



ii5gm-e 10 The e f fec t  of- fast neubron yadia,t icm an compartmental 
Co d y n m i c s  in microcosms of" Elodea and physieal conipofients e Go 

( e )  Container Surface compartment 

(13) Elodea compartment; 
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Table 43. Duncan's Comparison of 6oCo in the Water 
Compartment; (Elodea Al.one) at 512 Hours 
Among Ra.il ia, t ioa Treatments 

RP 0 73 0.076 
I-..̂.. _I -.- -.-.- ~ 

--.I_ -..---- 

0 1000 100 

Mean 2.80 3 -03 3 -73 

St at i st i c a 1  
Significance 

.II. 



treatments formed a nonsignificant su'osel; w i t h  a significwrKly higher 

GO 
Co cofitent than the con t ro l s .  73.e 100C rad and 0 rad treatments also 

formed a nonsignificant range w i t h  a hwer Co contt.-.n-t. Although there  

w a s  a stal;is-Lic:d difference anlong these e o q a s t m m t s  a t  312 hours, the  

impor-tant point  i s  that there 

controls am3 irradiated.  nicracosms a T;iu:i, the Co contezt of t'ne water 

cornpartnerat was sirclila-r miwig . k e a  en.ts at 312 1-kc:uSo II 

60 

i~dy a, difference of I$) between the  

Go 

60 
T,osses of (20 from the water cornpastmeat li2 t he  j.ssadiated m i c r o -  

cosms were not  as rapid as those fTom tile coritro1 microccs!n an.c2 the  hoeo 

content o f  the  water C O ~ Q E L ~ ~ I T E I I ~ S  i n  the r .&I i a t io~  tTeated micjyoCcsjXs 

rem..;ined higher timi that of the contro3.s thmug'n 236 Izoixs j) :Ioiijwever 

a s  this cofrpar2;men-k approached ii stead-y s h t e  at 31-2 t:1oiws, the differ- 

ence among the  treatments was reduced * Thus, aLthough the rad ia t ion  

stress caused an i n i t i a l  per turbat ion of .the Co movements i n  t h e  water 

%here were no effects on t h e  pat te rn  or f i n a l  content or" %he water @om- 

partment . 

GO 

The 6oco flux p a t t e r n  i n t o  tlie s o i l  corrqartment (Fig+ l.ob, p.  11.3) 

was s h i l a r  f o r  the 0 aiid 100 r a d  treatments In  that both compartments 

ha4 an i n i t i d  uptake of Co and 2:eaehed a steady s t a t e  content at about. 

64 hours, 

i n i t i a l  uptake an& then a slower uptake phase which lasted t h o u g h  512 

hours. No  steady state Co content was reachecl by t h i s  cornpartmen-t 

during t h e  experiment. 

60 

The soil conputmerit o f  t h e  1000 rad .  treatrnexlt had a shii1ar 

60 

60 
The net  Co uptake rates of t h e  soil cornpartmen-t were compared among 

rad ia t ion  treatments (Table 44). The resu lk s  showed t h a t  treatments of  

100 and 1000 rads formed a nonsignificant subset w i t h  s i g n i f i c w t l y  higher 



Table hit. Duncan's Comparison of  6oCo Uptake Bates 
of the  Soil CoiiiparCment (Elodea Alone) 
Among Radia%ion Tre3;ti-nen-L~ 

Value of p 2 3 

0 100 1000 

Me an (be t  a 6 -95 g .iG 9 983 

St a t  i s i; ic zl 
Significance 



upteke r a t e s  than the  cont ro ls .  

uptake rate of t h e  s o i l  cornpartmen%. 

The r ad ia t ion  s t r e s s  increased t h e  60Co 

The r a d  iocohs7-t content of t h e  s o i l  eol?ipat3xnent; i n  t,h.e radiat icn 

tretz"sment.s appe~zed t o  be higher tlxn thzt  of the con t ro l  treatment, at 

52.2 :iouy"s. A c o q C x i s o n  among the -t;reatments (Tah1.e 43) showed that t h e  

6 ~ .  1000 r a d .  f;rci:at~~.en% a ,ce~~~r iK I~s . ted  ~ i g ~ : i . f ? ~ a n t l y  D K I ~ ~  CO than bhe 0 or  100 

rad treatme-rks 'The con-t;rol arid 100 rad treatments formed a nc:insignifi- 

cant  range vi tb  Lbe l o w e r  content Although of no s t a t i s t i c a l  s ign i f i -  

cance, the 2-00 rad  trt?&iiieIl.l; had more CO than t h e  ~ o n % r d . s .  These data 

Showeci a. tPend Gf incrrrC?a.snd ''e0 content  i n  the  S o i l  comparhment with in- 

creased rad ia t ion  stress. 

60 

T h e  r ad ia t ion  p ~ t ~ b a t i o n  i n i t i a l l y  resifited i n  increased uptake 

r a t e s  of  t h e  s o i l  c ~ q ~ ~ r t ; ; c i e n f ; .  :io'i,r"ever, the  lower dose treatment reached 

a steady sba te  content, about %be same hime as the control trea2;:nen.t. In 

the case of tE:e 1080 rad treatment, the radiation de7.a:yed a steady st,a,te 

i n  t h e  soj.1. compartment i -u r t i l  512 hours or l a t e r .  Radiation stress in-  

creased the Co content of the soi.1 corrrpwtment i n  these microcosms. 60 

60 
TIE co t'lux t'mough t h e  container surface compartments ( ~ i g .  IOC, 

Radiocobalt content of the con- p .  113) WiZS similar for a l l  treatxnents. 

t a i n e r  surface coqartmen. t  5.n t h e  control treatment was a t  a rn~txinm by 2 

hours. Haever, maxima. were reached i n  t he  100 rad treatment only a f t e r  

16 burs an13 i n  the  lG00 rad treatul.ent a f t e r  614- hours. The maximurn con- 

t e n t  w a s  maintained from 2 -to 32 hours i n  the  control,  16 t o  64 hours in 

t he  100 r a d  treatment, and 64 t o  256 hours i n  the  1000 rad treatment.  

Thus, while the  pa t t e rn  w 2 s  not changed, increased r ad ia t ion  stress de- 

layed the times a t  which maxima occurred and increased t h e i r  duration 

time i n  the container surface compartment. 
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Table 45. Duncan's Comparison of 6oco in the  soil 
Compartment (Elodea Alone) at 512 Hours 
Among Rad i.at ion Treatments 

Value of p 2 3 

W eatment 
(rad) 

0 1-00 1000 

S t a t i s t i c a l  
Signif i c  m c  e 



60 ??ze magnitude of the  maximum Co content of the contsiner siirface 

h comparison of t h e  m a x h a  (‘I’a,ble compartmen-t var ied among treatments 

46) showed t h a t  t h e  1000 rad treatmerrt a,cctumu_la,ted s i g n i f i c a n t l y  more 

Co than t h e  other treatments whic l z  Porrrted a nonsignificant range. The 60 

maximum conn-tent of t h e  100 rad treatment was higher. tlian ’chat o:f the 

controls,  even though not statistica.l.1.y so. These d a t a  showed. t h a t  in- 

creased rad ia t ion  s t r e s s  increased t h e  rna~inm “Co content, of the eon- 

t a i n e r  s u r f a c e  compartment. 

While the container surface i n  a.13- treatments had a net  l o s s  of 

Co, t h e  t h e  a t  which a mininium steady s t a t e  content occurred iricreased 
60 

with the  rad ia t ion  s t r e s s .  In t h e  con t ro l  treatmenl; this steady s-take w m  

reached by 256 hours. 

512 bows i n  the 100 rad treatment but in -the 1000 rad t reatmmt it was 

delayed until af te r  312 hours. The i.ncrenscd radiati.nn s t r e s s  delayed 

the  occurrence of 8 sti.ady- s t a t e  mi-p.iirnUm i.n t h e  con.ta,iner simfa,ce com- 

partment e 

The steady s-t,at,e minim?xrr, WR.S appailrmtly reached by 

60 
T h e  Co flux p a t t e r n  o f  t h e  -_I_ Elodea cornpartmen+, (F ig .  10d, p .  115) 

60 w a s  sirfiil.ar for a l l  treatments.  Af’ter a period of ustake, a maxinim Co 

corntent was reached and maintained as a steady state f o r  t he  du.r:iti.on of 

the experiment. 

reached. between 32 and 611 Zl0~u-s  for  the cantrob treatnient. The s-beady 

s t a t e  rnur im-ur i  was delayed t o  256 ’no.ms in t h e  1.00 rsd. treatment and t o  

128 hours i n  t h e  10013 rad treatmelit. The f a c t  t h a t  the  LO0 red dose d.e- 

layed t h e  atezcly state rnwirnurn Longer -bhan t h e  1000 rad dose suggesf;s that; 

there  may have been recovery from the e f fec t  of t h e  100 rad dose:, I n  

addition t o  {;he delay i n  reaching a stead.y s t a t e  maxirrtum, the quantity 

o f  60Co a t  this steady s t a t e  w a s  decreased with rad ia t ion  stress. 

The maximum 6oCo content of t h e  l_l_ Zlodes compartment w a s  
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60 
T&Ae 16. Duncan's Comparison of Co M a h a  on the Container 

Surface (Elodea Alone) Among Radiation TTea&nenls 

r .O? 
P 

3 .Ob4 3.160 

Tr ea'cment 
(rads) 

0 100 

~- __ 

1000 

St at i s t i c  al_ 
Signif icance 

2.60 lc.23 

. - . . . . . . . . 

9.06 



The i n i t i a l  net  uptake r a t e s  of  the Elodea conipartment were compared 

among treatments (Table 4’7). 

w a s  s ign i f i can t ly  higher than those of both the 100 and 1.000 rad t r e a t -  

Tke uptake rate of  t h e  control  treatment 

ments, which formed 8. nnnsignificant range. The 100 rad dose appeared 

t o  he  a ttirqshold f o r  this e f f e c t  on the  uptake r a t e  a s  there was no 

s t a t i s t i c a l  difference between t h e  rates 8t 100 and 1000 reds.  These 

data showed t h a t  t h e  ra .diat ion s t r e s s  decreased t h e  uptake r a t e  of t he  

Elodea eorqmrtment a 

60 
The Co content of  t h e  Elodea com1pa;rtment was corngased mong ra.dia- 

t ioii  trea;tments (Table 48). 

ment, ELociea accuniuhted s igr i i f ican t ly  more Co than in t h e  100 rad 

treatnient 

The r e s u l t s  showed t h a t  i n  the control  treat- 

60 

which accumulated signkf”ica,ntly more “eo than the  1000 rad 

treatment a Increased r ad ia t ion  stress decreased the steady s t a t e  mzi,xim~.m 

conbent o f  the _l__l Elodea,  coqmrtment e 

i n  t h e  non-irradiated microcosm i h  wh:i ch Elodea occurred alone, 

t h c  pl_;tl>.C regul.ai;ed 6GCo pa.thwa;rs atld d i s t r ibu t ion  pattern and the t i n e  

t o  s-teady s t a t e  of eompartmevrts The Punctional. role of I _ ~  Elodea was t h a t  

of a storehov.se of Co. Thus, any changes i n  t h e  Co flux through tbe 

El..odea conqa-tment \ g i l l  be re f lec ted  by changes I n  other microcosm com- 

ponents . 

60 60 

I___. 

60 Radiation s t r e s s  affected n . l l  the p,wmeters  of Co cycling. In 

60 
t h e  100 rad treatments,  t he  pzth-u~ays of Co from the  container surface 

t o  Elodea .- ._^_. was util ized-,  but a new p2thwa.y from the container surfa.ce t o  

the soil. compartment w a s  evident (~ig. ~la,b). 

r a d s ,  t he  pathway from tlle contai.ner surface t o  Elodea was lost and only 

the net; pstln.ria>- fmn the contaliier si-wfaee t o  t h e  s o i l  was evident 

After treatment; with 1000 
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60 - 
Table 47. Duncan's Compa,rison of C o  @take Rates of the Elodea 

Compar tmen t  (Elodea Alone) Among Radiation Treatments 

Value of p 2 3 

1" .05 3.033 3.178 P 

1.0.34 10.84 

1000 100 0 

Mean (b et a) 3.30 io. 31 17.36 

Sta t i s t i ca l  
Significance 



GO 
Table 48. Dunran's Cornpal-ison of Co in t h e  Elodea Corriprtrnent 

(Elode;. Alone) at 312 IIours Awong Radiation Ti-eatmefits 

3 

r .O5 3 .OL4 3.160 

R 5.84 6.13 

P 
- ~ - - - .  

P 
__ 

Treatment 
(Tads ) 

1000 1.00 0 

Me an ($ ) 46.14 59 28 65.44 

S t a t i s t i c a l  
Signif  icstnce ' 



60 Figure ll. The pa t t e rn  of net Co flux among microcosm conrpart- 
ments as affected by fast, nextron Tadistion. 

(a-2) ~lodea mil physical  components 

(d-f) 

( g - i )  

..̂....._--I Najas and physical components 

Physa, Najas, Elodea and physical  coxqonents 
1- 

'The area of the  crircie:: represents  the percent 6oCo i n  t h e  eompart- 

The broken l i n e s  show pathways which ment z t  the end of  t h e  experiment. 

did not OCCIITP i.n t h e  cont ro l  experiment. 
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(Fig. I l c ) .  

pathways of Co movement mong compartments e 

Thus, r ad ia t ion  treatment r e su l t ed  i n  a new pa t t e rn  of 

60 

GO 
The pat'iern of d is t r ibu- t ion  of Co mong t h e  compartments also 

clianged (Fig.  I l a - e ) .  

tainer sixface and s o i l  coirpartment had increased accimulation with 

increased r ad ia t ion  s t r e s s .  F i n a l  Co concentrations i n  the  water corn- 

partment var ied less  t h m  1% mong treatments and were indepenaent of 

r ad ia t ion  s t r e s s .  

.___. Elodea had decreased acemula t ion  and t h e  con- 

60 

The t h e  t o  steady s t a t e  (5$ remaining) i n  t h e  water compartment 

was increased with in-creased r ad ia t ion  s t r e s s .  In  t h e  cont ro ls  t h e  

w a t e r  compartment reached steady s t a t e  between 64 and 128 hours. 

doses of 100 arid 1000 rads, steady s t a t e  conditions were delayed -to 

between 200 and 512 hours. The time t o  steady s t a t e  of t h e  other  com- 

p a t m e n t s  was previously di.scussed, and i n  a l l  cases, r ad ia t ion  increased 

t h e  time t o  steady s t a t e  conditions.  

Af'ter 

These r e s u l t s  showed t h a t  t h e  regulatory r o l e  of Elodea was s i g n i f i -  

cen t ly  lessened by sublethal  r ad ia t ion  stress, 

decreased t h e  net  accumulation rate of Elodea, thereby changing the  pat-  

.terns of  d i s t r i b u t i o n  and pathways of 6oCo and the ttme t o  steady s t a t e  of 

compartments . 

Increased r ad ia t ion  stress 

Fast neutron r ad ia t ion  d id  not change t h e  f 'unctionsl r o l e s  of t h e  

microcosm compartments from tha t  described e a r l i e r  f o r  t he  non-irradiated 

microcosm. However, t h e  water compartment assumed an addi t ional ,  new r o l e  

i n  t h e  i r r a d i a t e d  microcosms. The decreased net accumula.tive capaci ty  of 

Elodea a f t e r  r ad ia t ion  s t r e s s ,  created a n  "excess" amoimt of Co i n  t h e  

other microcosm compartments as compared t o  the  cont ro ls .  Tflis ''excess" 

60 
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was availab7-e f o r  d i s t r i b u t i o n  among conipastments and the  changes which 

occurred i n  the d i s t r i b u t i o n  and pathways pa t t e rns  were r e l a t e d  t o  d is -  

t r i b u t i o n  of t h i s  "excess". 

60 
I n  the  100 and 1000 rad treatments,  t h e  Co content of t h e  water 

compartment exceeded t h a t  of t h e  controls  between 0 a,nd 256 hours. The 

amount of "excess" i n  the wate-r was similar f o r  both rad ia t ion  trea-kments. 

From. 256 t o  512 hours o°Co content  of t h e  water decreased continueally 

until.  it w a s  similar t o  the controls a t  512 hours. 

r 

The "excess" had 

moved from t h e  water t o  other corrpartments i n  t h e  i r r ad ia t ed  microcosms. 

Beginning as e a r l y  its 8 hours, t h e  container surface compartment i n  

60 
the 100 and 1000 rad treatments showed an increased Co content over t h e  

60 
cofitrals (F ig .  l O c ,  p .  11'). I n  t h e  100 rad treatment t h e  Co content o f  

the container surface reached a maximum by 16 hours and remained a t  steady 

s t a t e  through 64 hours. In  t h e  1000 rad treatment,  uptake t o  a maximum 

continued to 61+ hours with a steady s t a t e  preva i l ing  through 236 hours. 

While some of the t'excessi' G°Co remained i n  t h e  water compartment during 

the ea r ly  p a r t  of t h e  experiment, p a r t  of it moved i n t o  the container 

swf.face compartment (F ig  a l l b , c ,  p .  126). 

During the  time p$riod from 0 t o  1.6 hours t he  mount of 6oCo i n  t h e  

s o i l  compartment was similar for  a l l  treatments (Fig.  lob, p .  115). 

of the  "excess" 6oCo moved i n t o  khe s a i l  cornpartmen-t. 

60Co content of t h e  s o i l  i n  t h e  100 and 1000 rad treatments was higher 

than. t h a t  o f  t he  cont ro ls .  The s o i l  compartment of t h e  controls  and 100 

None 

A t  32 hours, the 

rad  treatments reached a steady s t a t e  at about 64 hours. 

16 and 64 hours paxt of  t h e  'texcessf' 6oCo i n  t h e  water compartment; of t he  

100 rad treatment moved i n t o  t h e  s o i l  compartment. 

Thus, between 

The s o i l  compartment 



of t h e  1000 rad treatment d id  not reach a steady s t a t e  during t h e  experi- 

ment, ind ica t ing  -the "excess" 

ously in-to t h e  s o i l  compartment. 

I:n t h e  cont ro ls  a net  

60 Co i n  t h e  water must have moved continu- 

60 
Co loss  followed t h e  period of steady state 

niaxixm i n  t h e  contaFner surface cmpzrtment, while the water compartment, 

a l so  continued t o  lose Co (F ig ,  10z,c, p. 113). Togetaher, these  losses 

represented 4% of -the t o t a l  O ' C ~  which appeared as a gain of approximately 

h.'$ i n  the Elodea eonipxtmerit hetween 64 and 128 ~ O I J . T S  (Fig.  IOd, p ,  1-13). 

In  -the LOO rad trea.tment, 8. steady state m a x i m i m  i n  t h e  container sur fa .ee 

compartment; extended t o  64 ~ G U S S ,  a f t e r  which time a net. l o s s  of 

from. this ccqar tment  exte:nded. t o  5.12 borirs The water compartment also 

had a, loss  between 64 and. 256 hours and the: total l o s s  Trnn; both m,ter am1 

c o n t a k e r  s.lirface compmtments w a s  8$1~ 

appeared as gains i n  the Elodea ccrr-partment, up t o  256 hoinrs (Fig a l l b ,  

p 1-26). A:fter t h i s  time, 1-osses from the container smface arid water 

moved i n t o  t h e  soil compartment (F ig  I) 1 . l ' ~ ~  p . 126). 
treatmen-t t h e  eoili;aincr surface ccmpar"i.ment was a t  a, steady state niaxj-- 

mwn w k i l  256 hours, after which t - i m e  there was a net Loss of  2*3'$ 60Co. 

The water compartment was also losing 

LOSS from tiiese two cornpartments fmn 128 t o  51.2 hours -was 6 

conditions Fn the control-s and 100 rad h.-ea.tiiicnts, t h i s  addi t iona l  l o s s  

w m  not  ref lected.  by a gain i n  t h e  Elodea conrrpastment, k:lut appeared a,s 

a gain i n  t he  soi.?. corrgxxtment (Fige l l e ,  p .  1226) 

60 

/ 

60 
co 

As i n  t h e  ci3iitm1.s9 these losses  

111- 

E'er [;he 1000 rad 

60 Co s f t e r  2.28 hours .  'The to-LaL 

I U L L ~ I W  

The c?eta.il.ed a.na.l-ysis of t h e  net mo-vement of the "exee~-~-" L> a 60Co demon.- 

s t r a ~ t e d  an addi-tional new r o l e  of the water comy~zrtment. as tha t  of a 

~&rnporaqf storehouse of read3. l~ av~i lab1.e  Co * The hiportanre of  i;he 
.L bo 
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60 r o l e  of the .container surface as  a temporary s ink of Co was  a lso denion- 

s t r a t e d  i n  t h a t  increasing amounts of Co were s tored on t h e  container 

surface w i t h  increased r a a i a t i o n  s t r e s s .  

60 

60 Functional roles which provide for  temporary storage of Co may be 

of  ecological importance a s  a mechanism contr ibut ing t o  the homeostasis 

of dis-Lributioti and pathway pa t t e rns  within the microcosm. Homeostasis 

of pa t te rns  occurred i n  t h e  microcosm receiving t h e  100 rad close. 

accuiiiiil.a.ted most of t h e  “cxcess” “Co which had. been stored i n  t h e  watei 

and con-tainer sii:~fa.ce csmpartmeii-ts, w i th  t he  resii.lt that  the  pattern o f  

di s t r i bu t  :ic:m and- 17 a t  hw s o f  Co among coinpartrnents was s i m i l a r  t u  t h a t  

of the cootro; treatment . Thus, the compartmeiits o f  temporary storage 

represented a homeostatic mechanism i n  tha t  they provided a means through 

which t h e  pattern of dis t r ibut ;  ion and  pathways of Co among conipar”ii1e~ts 

coulci be  maintained. All;lioixg’n. the  same bomeostatic mecha,ni.sm was oyera- 

t i v e  i n  tiit. 1000 rad treatment,  Elodea was w1ab.J-e t o  aaccusnuiate much of 

. This coiiditimi res-dted i n  a s ign i f i can t  change in t h i s  “access 

t h e  d i s t r i b u t i o n  and p8.thwa.y pa t t e rns  of Co among comprtments . The 

new role of the water as a temporary- s tomge compartment contributed t o  

t h e  preservat ion of t he  pa-Lhway pattern as w i l l  be showa I.ater Inor t h e  

Na.ias microcosm. 

~ Elodes . . . . . . .- 

60 

60 

Goc0 

60 

60 
Radiation s t r e s s  perturbed Co cycling in the Elodea microcosms 

as demonstrated by changes i n  t he  cycling parameters, There changes i n  

cycling p a m e t e r s  were r e l a t ed  t o  t h e  e f f e c t  of rad ia t ion  on the uptake 

r a t e  and possibly the accumulative capaci ty  of  Elodea. A tendency toward 

homeostasis of t h e  d i s t r i b u t i o n  and pathway pabterns was demonstrated f o r  

the 100 rad treatment, but d id  not occur i n  t h e  1000 rad. treabment. 



60 
The rrxchanlsms of  homeostasis with regard t o  

GO 
t o  -t,eurpor.ary storage o f  

of' conipIlrtments t o  p lay  d u d  ro les  i n  element t r a n s f e r s .  

Co cycling were r e l a t e d  

Co i n  the physical. compartments and t h e  capaci ty  

60 
Najas alone - T'ne p a t t e r n  of Co f l u x  through the  microcosm eorn- 

pa,rtn:ents (F ig  e 12) showed differences among rad ia t ion  treatments i n  a l l  

excepl; the  wa.ter compartment. The i n i t i a l  compartmental uptake or  loss 

rates were similar f o r  a1.l r a d i s t i o n  treatments.  However, there  were 

differences among rad ia t ion  l e v e l s  i n  the  m o m t  or f l u  p a t t e r n  of 6oco 

i n  conyutments 

60 60 
The Co l o s s  p a t t e r n  and t h e  ,momit of Co i n  the  water compartment 

were siiiiilar f o r  aJ-1 treatments ( F i g #  1.2a) . 
.the Co con'ce:o;t; of t h e  .i.rater eompa3ment to 64 hours which was fol.lowed 

by a. slower d.ecrease from 64 t o  512 h o i ~ s ,  a t  which t,i.me t h e  eoqfartment 

appareat1.y reached a s'.,eady state. Loss r a t e s  o f  (lo from t h e  water 

cooipa.rtment vs.rled between -19.8 and -22,O$/ln h r  arid. were not s t t t t s -  

tical3.y difi 'erent. TLie quant i ty  o f  CD in the water compartmnt at 512 

bows varied. betweeri 2'.7 and 3 *6$ with no statistical di.f"i'erence among 

t h e  -i;;-eatments e These d.ata. zhow the water comparrtrneul; t o  be independent 

of rad ia t ion  e f f e c t s .  

There was a rapid decline i n  

60. 

60 

60 

€0 The soil. corip:wtment had a pat,tern o f  rapid C o  uyi;a,ke to 611. hours 

for* d l  radiat :i.on treatmezt s (~ ' i .g  12'0 ) . 
s l i g h t  ne t  gain to 1.28 hovrs a f t e r  which time t h i s  conipstment appeared 

tu 'oe i n  .a steady state. Both t h e  100 and 1000 rad. t;a*eatments showed 

coiitinu-ed CO  lake into the roil compartment; t o  128 hoi-ws. Mier this 

L;.ne the  t rend 07; both uptake curves singgested add,iti.on,zl net  Co gains. 

The ixptake r a t e s  of 6cCo by the soil eoiiipa.rl;ment va.ri.ed between g.'.('j and 

]In the  cont.ro~.s, there  w a s  2. 

GO 

I. - GO 



0 

( c )  Cori-Laiiier surface component 

( d )  NaJas componer;t 



60 
lO.O@/ln ’m and were not s ta t i s t ica l1 .y  d i f f e r e n t .  

.tile soil at 512 hours sms canpaxed mong rad ia t ion  treatments (Table 49). 

The results showed t h a t  t h e  100 rad. dose ef fec ted  the highes-t ,o content 

i n  t h e  s o i l  cmqar-t;ment and the  1000 rad dose resulted. i n  a s ign i f i can t ly  

higher 60C~ content i n  the soi.1 com’artmerrt; than in the  c:o:ntrols. T h e  

e f f ec t  of r ad ia t ion  s t r e s s  on t h e  s o i l  compartment was 8, change i n  t h e  

flux pattern of “Co which resu l ted  i n  hi-gher Co accumulation i n  the  

s o i l .  

The Co content o f  

Go, 

60 

The p a t t e r n  of 6oCo flux ttrorigii the  container surface corrqartment 

(Fig. P%C, p .  132) was t h a t  of a rapid i n i t i a l  uptake t o  a rrwrin?wn by 32 

hours. In t h e  controls ,  t h e  container surface reached a, steady s t a t e  con- 

t e n t  between 32 and 64 hours which extended t o  512 hours. For t h e  PO0 m d  

1000 rad treatments t he re  w a s  a net, loss of Co from t h i s  compartment 

after. 32 hours which continued t o  312 hours. 

r a t e s  varied from 1.20 t o  2?.65$/ln Izr and were not s t a t i s t i c a l l y  d i f f e r e n t .  

The maximum ‘‘60 content of t h e  coritainer surface compart;ment was not 

s t a t i s t i c d l y  d i f f e ren t  among rad ia t ion  treatments.  However, t h e  compari- 

son of the 6oCo content of  th i s  compartment a t  312 hours (Table 30) showed 

t h a t  t h e  controls  hcd s ign i f i can t ly  more “Co than t h e  100 and 1000 rad 

treatment a ,  while t h e  1000 rad treatment had s ign i f i can t ly  more “Co than 

the  100 rad treatment.  These resul ts  indicated t h a t  r ad ia t ion  s t r e s s  

changed t h e  flux pa t t e rn  of “Co i n  t h e  container surface compartment. 

Co flux through t h e  Najas compartment (Fig.  E d ,  

60 

The i n i t i a l  net  uptake 

60 
The pa t t e rn  o f  

p .  132) showed. a period of rap id  uptake t o  64 hours f o r  a l l  treatments.  

In t h e  cont ro ls  t he re  w a s  a slower uptake t o  128 hours a f t e r  which time 

t h e  Najas compartment appeared to be i n  a steady s t a t e .  

- 

For the  100 and 



60 
Tab le  1-19. Duncan's Comparison of Co in the Soil Compartment 

(Najas _l..._l Alone) at 312 I-Iows .bong Radiation Treatments 

Value of 11 2 3 

7.95 8.34 % 

___I.-_ ____.-.- 

Treatment 
(rads) 

0 1000 LOO 

Me m 42.3'1 50.92 59 9 78 

Stat i st ic. a 1  
Significance 
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Value 02 p 2 3 

rp .05 3.014 3 .I60 

Treatment 
(yads)  

100 1000 0 

Mean('$) 

St at i st i c a l  
Significance 

2.34 5.32 8.37 



1000 rad treatments there  w a s  a l s o  a period of' slower uptake which coli- 

t inued t o  256 hours. 

40 

After 236 h o - i s  t he re  was  an apparent net loss of 

Co from the  Najas compartment. 

The comparison of  i n i t i a l  6oCo uptake rates of t h e  Najas corrrpartment 

by Duncan's t e s t  showed no s ignif icar i t  d i f fe rence  among treatments. 

However, t h e  ra te  of 9.8@/1n hr for the  cont ro ls  was higher than t h a t  

of approximately 8.0@/1n hr f o r  %be microcosms a t  100 and 1000 rads. 

T'nese da ta  suggested t h a t  t h e  r ad ia t ion  s t r e s s  reduced the  uptake ra te .  

60 
The Co content of t h e  Najas compartnient a t  512 hours was compared 

The r e s u l t s  showed t h a t  t h e  con- amoiig r ad ia t ion  treatments (Table 51)-  

trol and 1000 rad treatments fornied a nonsignificant range and contained 

s ign i f i can t ly  more 6oCo than t h e  1.00 rad treaLment . 
The Najas compartment has been shown Lo be coupled t o  t h e  physi.cd 

compartments and it regula tes  both the  p a t  terrl of d i s t r i b u t i o n  and t h e  

time t o  steady skate  of compartments. Therefore, a r ad ia t ion  s t r e s s  

whjch a f f e c t s  6oCo KLux through the Najas compartment w i l l  a l so  cause 

changes i n  60Co cycling through the physical  coqartmeiits. 

60 
The pa t t e rn  of  d i s t r i b u t i o n  of' Co has already been shorn t o  change 

w i t h  rad ia t ion  stress, Iiicreased rad ia t ion  stress was shown t o  decrease 

t h e  f i n a l  

t he  content o f  the soil compartment. 'The f i n a l  Co content of the  water 

60 
Co con-teiit of -.. Najas md the  c o r $ x h - x  surface and increase 

60 

compartment was independent of r ad ia t ion  stress. 

The time t o  stettdy state of most compartments was shown t o  be increased 

w i t h  increased r ad ia t ion  s t r e s s  and t h e  s o i l ,  t h e  container surface,  and 

Najas compartments d id  not reach a steady s t a t e  a f t e r  treatment with 100 

or 1000 rads.  The water compartment reached steady s t a t e  (5$ remaining) 

a f t e r  256 hours i n  d.1 treatments.  
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60 
Table 51. Duncan's Comparison of Co in t he  ___.I Najas Compartxient 

(Najas Alone) a t  pl? H a x s  ARlong 3indiation Treatments 

3 2 

Tr e a t ixn t  
(rads) 

100 1000 0 

Mean ( f ) 35 903 41.07 46.67 

S t a t i s t i c a l  
S 1 gii i f  i c anc e 



60 
The pa t t e rn  of net Co pathways among compastments w a s  changed 

a f t e r  a r ad ia t ion  s t r e s s  (F ig-  1161-f, p .  126).  TTm new pathways leading 

from t h e  container. s u r f a c e  t o  Najas and t o  t h e  soil. cornpwtment occurred 

in both the 100 and 1000 rad t reatments .  

These resu3.t~ showed t h a t  t he  regula-Lory role of Najas i n  6oCo 

cycling was changed. 

eo have been reduced a f t e r  radiaLion treatinent, t h e  regulatory r o l e  of 

N a j a s  was enhanced. 

f i n a l  distrj.bul;ion and. time t o  steady s-La-Le of cornpa.x=t;ments, Najas \d.so 

i-egulated t h e  pathway pattern of  Co among compas-tments . 

Although the accunuJ-ation r a t e  of t h i s  p lan t  appeared 

i n  addj-tian t o  the  r q p l a t i o n  of t he  pa t t e rn  of 

40 

The ra.di.xt5.on s t r e s s  did not change t h e  functioi?a.J- ro l e s  of the 

vari01.i.s microcosm compartmenLs from tha t  descrj-bed e a r l i e r  for t h e  

control itiicrocosms . However, t he  rad ia t ion  stress demoi?stra.ted t h e  

impor tarice of  tempora.ry storage as a regulat ing mechanism i n  Co cycling ~ 

The decrease2 acciimulation r a t e  of  Najss a f t e r  r ad ia t ion  treatment created 

an "excess" amount of 

as comyared t o  t h e  control. 

t h e  change 7.n pathweys and d i s t r ibu t ion  pa t t e rns .  

60 

60 co i n  tile 0the.p compartments of  the  microcosm 

The f a t e  of -this "zxc_ess1' was r e l a t ed  t o  

60 
Since the  Co content o f  t h e  water conipatrnent a t  m y  time during 

.LIE experiment WRS sinilw f o r  a l l  treatments (Fig.  12a, p .  132), most o f  

the l'excess" Co must not have remained i n  the  water. The soil compxrt- 

men% o f  t he  i r r ad ia t ed  microcosms had a grea te r  6oCo content than t h a t  of 

60 

t h e  control beginning as rmly as 8 hours 

the  container siirface accumulated no more 

excess 60Co apparently moved t o  t he  s o i l .  

i r m d i e t e d  Najas 'netween 32 and 256 hours 

Co trom t he  water and container smface 
ho 

(Fig. l2b,  p .  132) and since 

Co -than the  control,  t h i s  60 

The coixtinued rapid uptake by 

resu l ted  from the  movement, of' 

compartments i n t o  Najas 



The change i n  t h e  6oCo flux p a t t e r n  of t he  Najas - compartment s t ressed  

t h e  60Co r e l a t i o n s  among coinpartments e 

i n t o  a, permanent sink, leaving %he o n l y  avai lab le  "Co i n  the water and 

container surface compartments. The accumulation of t h i s  60Co i n t o  t h e  

Najm compartment effected the  change in t h e  p a t t e r n  of d, is t r ibut ion and 

pathways of t h e  container surface compartment. 

The "excess1' "Co immediately moved 

The physical  compartment's r o l e  of temporary storage of  6oCo i n  the 

Najas microcosm provided a mechanism by which Najas cou7.d accumulate t h e  

expected -mount; of  this radionuclide even though t h e  ne t  accumulation r a t e  

of t h e  p l an t  was 3pp:arently reduced. 

of a physical  compa,rtmen-b was %'ne mechanism maintaining homeostasis of 

t h e  b io logica l  component. 

~- 

The change i n  t h e  pathw8.y p a t t e r n  

60 Radiation s t r e s s  per'twbed Co cycling i n  NaJas microcosms as 

demonstrated by changes i n  cyc l ing  parameters. The changes were r e l a t ed  

t o  the effect of radiation i n  a l t e r i n g  t h e  f l u  pa t t e rn  of 

w i t h u . i t  reducing i t s  accrunii!-ative capacity.  The lack o f  adequate tem- 

porary storage of ' O C o  i n  t he  water compartment and the continued "demand1' 

of 

compastment . Terrqoruy storage of Co i n  t he  c o n t a h e r  surface compart- 

ment was shoibm t o  be a homeostatic mechanism fo r  t h e  b io logica l  c o q a r t -  

ment e 

60 
Co t o  Na.jas, 

60 
cio by Najas mea-ted new pathways of  "Co from t h e  container surface 

66 

60 Rrysa d o n e  - %he f l u x  of Co tkirough t h e  microcosm compartments 

(F ig ,  1.3) showed no differences i n  pa t t e rns  between the  controls  and the  

1000 rad treatments.  Both f l u x  rates and content i n  a cornpar-Lment were 

s b i l a r  bet-ween treatments and the re  was no indicat ion o f  temporal d i f -  

ferences j.n t h e  f l u x  o f  Co through a corqartrnerit. 
60 
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Figure 13. The e f f e c t  of  e a s t  neutron r ad ia t ion  on conpartmental 
Co dynamics i n  microcosms of Physa and physical  components. 60 

( 3 )  Water coqoneni  

(b  ) Soil.. component 

( c )  Container Surface component 

( d )  Physa She l l  corrqonent 

( e )  Physa Body component 
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fereacc between lo s s  r a t e s  o r  the s.teady sta1;e c9nterzl.t of the  water ",r::m- 

partment, and the '*Co content 7iJas similar a t  a1-l ob:seiTatiOn periods 

effects on the  water ~ompar.tieuL I 

30th the  cont ro l  and khe 1000 rad ti-eatment had a ne t  increase i n  

the  '*Co content, of the s o i l  compartment u n t i l  128 hours, a t  which 

time t h i s  compartment reached a steady s t a t e  content (Fig. 13b). 

w a s  no s t a t i s t i c a l  dlfference between s o i l  uptake rates. 

There 

The 'OCo con- 

t e n t  of the s o i l  compartment w a s  similar a t  each observation period and 

a comparison of 6oCo i n  soil.  compartments between 128 and 31'2 hours 

showed no s t a t i s t i c a l  difference between treatments.  Yhere was no 

evidence of a rad ia t ion  e f f e c t  on the  s o i l  compartment from these data.  
/ 

Tine behavior of D°Co i n  the container surface compartment (Fig.  l 3c )  

showed a period of uptake t o  a maximum a t  64 hours after which there  w a s  

e s s e n t i a l l y  no change. The maximum. 6oCo content of 7.3$ i n  the 1000 rad 

treatment was s t a t i s t i c a l l y  higher than the 3$ i n  the control .  A e m -  

parison of the 6oCo content of  th is  compartment between the treatments 

a t  512 hours gave results similar t o  the  comparison of the m a x i m i w  con- 

t e n t ,  

was e r r a t i c  f o r  the 1000 rad treatment. 

However, t he  behavior of 6oCo i n  the  container surface compartment 

Although it had a higher 6oCo 

content than the control ,  the e r r a t i c  behavior plus  the small difference 

of 3% between t r ea tnen t s  suggests tha t  rad ia t ion  e f f e c t s  here were 

e i t h e r  nonexistent or of l i t t l e  consequence. 
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The Yhysa s h e l l  compartment had a similar 6oCo behavior pa t te rn  

i n  both treatments (Fig.  l3d, p. 140). A period of uptake t o  a m a x i m u m  

content was followed by a steady s t a t e  of t h i s  maximum at 31e2 hours. -4 

com1)srison of the u p t a h  rates betwcen treatments showed no s t a t i s t i c a l  

difference.  Althouzh a s t a t i s t i c a l  difference can be obtained i n  a 

conparison of  the 6oCo content of these coqxwtments a t  312 hours, the 

r e l a t i v e l y  e r r a t i c  behavior of t M s  compartment precluded a v a l i d  com- 

parison a t  any one potnt .  These data  were presumed t o  represent f luc tu-  

.ztion about a steady state content which at most would have a difference 

of  less t i a n  1.7% betwwn treatments.  

The f l u x  of 60@o through th:, -- Fiysa body compartment (Fig. 13e, p .  

140) was similar f o r  both treatments. 

t o  a rnaxjmiim conteilt a t  32 hows and t h i s  level w a s  maintained t o  128 

hours. A f t e r  128 hours there  was a ne t  l o s s  of 6oCo from ._-__( Physa. bodjes 

There was x period of uptake 

which continued through hours. 'There w a s  no s ta t is t ical  difference 

between treatments i.11 uptake o r  l o s s  r a t e s ,  maximum '0Co val-ues or 

content a t  312 hours. 

had cons is ten t ly  lower 6oCo content; than t h a t  o f  the control. suggests 

t h a t  the 60Co content o f  'the i r r a d i a t e d  Physa body was lowered as a 

res-ir1.t of the rad ia t ion  treatmien't . However, the  difference between 

That the Physa body coiapartrnent a t  1000 rads 

treatrfieiits 7.s less than e.?$. T h a e  data  do not show any s t a t i s t i c a l l y  

s ign i f icant  eff'ects 011 the I__ Physa body compartment. 

Physa-Najas-Elodea - The pa t te rn  of "Co flux tiwlaugh each comnpart- 

ment (Flg. 14) w a s  similal- among radiat ion treatments, except for the 

container surface, the Physa s h e l l ,  and the Najas and Elodea compart- 

ments. 

well  a!; 60co content of a given compartnient among tine treatments. 

However, there were differences among uptake and l o s s  rates its 



Figure 14. The e f f e c t  of fzst neutron raldiation on compartmental 
6oCo dynamics l a  microcosms cons is t ing  of  Physa, NaJas, Elodea and 
physical  components e 

-- 

Water component 

Soil component 
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Physa Eady componeni, 

Elodea component 
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The water compartment of  a l l  treatments had an i n i t i a l  period of 

rapid 6oCo .loss f o r  32 hours (Fig, ].&a). Duncan’s comparjson of  the 

ra-te of loss  among treatments showed no slgnifican-i; difference among 

treatments. 

the  controls -Lo -2!2.26%/1n hr f o r  the 1000 rad  treatment which suggested 

a possible r a d i s t i o n  e f f e c t .  

in the 100 an& 1000 rad treatments w a s  cons is ten t ly  lower than t h a t  of 

the control u,p t o  64- houlas. 

i n  60Co content  among .treatments and. between 256 and 912 hours a11 

treatments had- a similar conteat varying between 1.3 and 2.e. 

parison of the 6oCo content of  the water compartment among treatments 

showed no s t a t i s t i c a l  difference.  

ment i n  i r r a d i a t e d  microcosms was higher ,than that o f  the control  a t  

f irst ,  lmt there w a s  no d i f f e r e m e  i n  the time at which steady s t a t e  

occurred on i n  the steady s t a t e  ‘‘Co contents of Llie water caiipartraent. 

The calculated l o s s  ra-Les decreased from -26 e’2yj/J-~i h r  f o r  

The “Co content of the water compartment 

A t  128 hours there  was on ly  a 2% d-iffereace 

A com- 

The ‘OCo content of the  water compart- 

60 
The Co f lux  pat tern t2nroug;h the s o i l  conqartment of all .  treatmentis 

(F ig .  lkb, p.  143) showed a period- of rayJid uptake t o  128 hours, w i L h  

a constant but slower uptake from 2-28 t o  512 hours. 

from o -to 6)c liours the J O ~ o  content of tile s o i l  conipartment vas similar 

f o r  zll treatments. A f t e r  t h i s  tI.Iie there  was a marked red.u.ction i n  

t‘he content of the s o i l  ccjinptrtment a t  1000 ra&. The i q take  r a t e s  

were compared among treztmeats by IX1Plcran ‘ s  t e s t .  Although no sl.g;nificant 

diffesenee was indicated,  the c o i ~ t r o l  and the 100 rad treatment had rates 

of 12.07$,/ln h~ as caiipamd t o  9.32$/ln hr f o r  the 1000 rad treatment. 

The conqm5son of 6oCo i n  s o i l  a t  312 hours (Table 52)  showed tha t  the 

control  accumulated more 6oCo than the 100 rad treatment and these two 

During the period 

6 



i n  the  Soil 
Hours Among 

C ompartment 
Radiation 

Value of' p 2 3 

3.014 3.160 

-- I 

Treatment 
(rads) 

1000 100 0 

S t a t i s t i c a l  
Significane e 



treatments formed a nons igni f icant  range with s i g n i f i c a n t l y  more 6oCo 

than the 1000 rad treatment. 

flux p a t t e r n  of the s o i l  compartment and no s t a t i s t i c a l  difference mong 

uptake rates. hi-t ia1l.y;  .there was no difference i n  "Co content of the 

s o i l  compartment aniiorig treatt t iwts but by 322 hours, the data showed a 

trend of decreased content with increased radiat ion stress, 

cl'here was no rndtation ef fec t  on the 6oCo 

The pat te rn  of flux through Lhe container surface conpartment 

(E'?-g. lhc;  y. 111.3) was similar f o r  the  0 and. 7.00 rad treatments w f t b  a 

period of ugtake Lo m w c l r n a  followed by a sl.l.ght loss  t o  a steady state 

contenk . The 1000 rad treatment iiad. a siniTI.ar i n i t i a l  uptake, fol.lowd 

by a:cnotber slowel- per iod of  uptake t o  236 hours;, a f t  

no apparent  change in 'OCo conten'i through 512 hours. 

s t a l i s t i c a l .  difference %K?I~ q'Lake r a t e s  or arrrong thi. ri~irnm "'CO con- 

ueLIub of t h i s  corilpr'tilierit. The cnrqlarrison of  Co content  a t  3i2 hours 

( ~ a ~ n  $3) shove?. Lhat the  c0ata:Lr;er sul.f;?ce a t  100 rads arcwnul.at,ed 

sie;rilr'i.caii-tly molie 

a nonsignifican-l; mnge. 

which "clnere isas 

Ti'h.ere vas no 
f l  

4. - J . . .  60 

6 n, 
LO than the 0 and 1000 rad treatments which formed 

The ~ * ~ s I I I . ~ s  f o r  the contr,i.-ner sunface compartment showed a ra.cliat:i.cjn 
/, 

ef fec t  o n  the "OCo f1.m pattei-n i n  the 1000 rad treatxrrent. 

s-i;s.t;.:,stj.cal d.j..yfe:mixe among t h e  :Iptaka ratps 9-r maxinzlvu 6oco contents 

017 the co?:~tainer s : J . I -~~.c~  co!npartmerrt7 but i n  the 100 treetrient 

t h i s  coi-qJa:rZ;nit::at accumulated sign-iflcantlly more 6oCo than the other trrea-b- 

ments. H O W ~ V ~ T ,  t h i s  difYccrea.ce was on.1.y 1%. of grea ter  tmport w a s  the 

dfcfferenee ia patten-i between the 0, 100 r a d  t-reatinrnts aad the 10(>0 rad-  

treatinenti- The 0 and. 100 rad treatments had a similar pattex-n, but  

there were temporal. differences between the patterns. The period o f  

There 'y18.s no 



Value of p 2 3 

T r  e atmenl; 
(rads ) 

1000 0 100 

Mean($> 0 *115 0.89 1.68 
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uptake to a m a x i r u m  conteat continued t o  16 hours f o r  Yne cont ro l  tl-eat- 

meat and 64 bows f o r  t'?e 100 rad treatment. After t h i s  m a x i m u m  w a s  

reached. there  was R s l i g h t  decrease i n  the  60Co content t o  64 ho-ups, 

after whi-ch this C G I I I ~ X ~ ~ E I X ~  remained in a ste8d.y state t h r o w h  512 hours. 

The container surfaces 5-71 -the 100 rad treatrm:it had 8 s l igh t  Loss a f t e r  

64 hours, w i t h .  a steady state being i-naintained through 312 hours. This 

pa t t e rn  fore the 0 and. 100 rad trzatments was contrasted t o  the pat tern 

of the 1000 rad ti-ea-Ltiient which had continued uptake t o  236 hou-s with 

no apparent change af i ;e~  til& time. 

contalne:p s - u f ~ c e  was t o  delay the occinrrenee of a steady s ta te  c o ~ t e n t  

or to chtmgc t'le pa' t tern of Co f lux through. t h i s  co~npartme:xt. 

ilk e f f e c t  o f  radiat ton on the 

60 -, 

40 
'Tile f lux  o f  Co through Liie --I_.- Fhysa s h e l l  C o m p r t i i i e r z t  (Fig.  lkd, p. 14-31 

showed. a s i m i l . a i -  pat-tem of  in.ii;rial uptake .Lo inmri.ma for a.11 compartments . 
A compai%son of these rates sliowzd no s t a t i s ' t i c a l  d.ri ffere-nce amng  the 

ueatments .  The coi2'irOl and. 100 rad trzatnents reached a m,ajcimui whlich I 

/, 

d by a n e t  l o s s  of O0Co through 31.2 hours. The 1000 rad 
r 

treatifient reached a maxinilmi wi-th DO apparent change tn "'Co comteo'c after 

t h i s  value -i~as reached.. A ~ ~ i ~ p i ~ r i . s o a  of the mexi.rnm content of this 

corfipar"ixr~em-i; among treatixeil"is showed t h a t  t2i2 3-00 rad treatment accumulated. 

s ign i f i can t ly  mo.re 6oCo than the 3the:r treetments . Iiovever, this d i f f e r -  

ence was less than I$. By 512 hours zll treatmeuts 'had reached a s i rnLZar  

content: apparently a t  or approaching a steady state content.  These data 

showed no i-adiatlon s f f e c t  on the Pkysa sine1.1 co~upartmel-it 8t the  100 

rad.  dose, but 'th? 6oCo f l u x  pa t t e rn  was changed by 8 dose of 1000 :rads. 

The 6nCo flux p t t e m  through the ~- Physa body compartment (Fig.  14e, 

p.  143) was s imi la r  fo r  a l l  t xa tmen t s .  A period o f  rapid- uptake t o  a 



mczxirnim was falloved by a net  l o s s  which continued t o  37.2 h o ~ ~ s .  

was no s t a t i s t i c a l  difference among uptake r a t e s ,  maximram content, or 

l o s s  rates. However, t h e  t h e  a t  which the rnmimwn content occurred d i f -  

fered among treatments.  

w e ~ e  reached. a t  16 hours wliile the L W O  rad -trea.trut.n-t delayed t h i s  event 

t o  32 hours. mien 6*co contents of tile Physa body colnpsrtmen't, were com- 

pared, t h e  resuLf;s showed no statist5.ca.J- ciiSfk:rence among treatmerrt:; I 

There 

I n  the cont ro l  aad 100 rad treatments, mLzxima. 

---- 

60 
These d a t a  showed no rad-latior. effects on Go cycling i n  tqhe Pliysa 

bc;cIy c~mpar-tment, except; for the: delay i n  ' c . 1 ~  .tLme at .t~hick* a niajiimm 

'Go content occui-red i n  this eompe:rS;mrenb,. Even ti~ougki the differeace 
6 

between the  cont ro l  and 100 rad treatments was not staGistically s L & , f i -  

cent, tile 'o~o content at the 

c0nt.ro.l treatment,  This  s<me re la t ionship  w a s  t r u e  of the Phgrsa 'ocdy 

compartment; i n  microcosm of Physa alone Since th i s  resinti; o c e m ~ e d  

twLce, it suggests t h a t  there  w a s  a. reductioo i n  th% @Co content of' 

t h i s  compartment i n  the  1000 rad treatment.  

:i=acl. dose wits ~cmer than t h a t  of tjie 

The pa t te rn  of 6*Co PLiUr throucqh the E.lodea compartment (Fig. l l c f ,  

p .  lh3) w a s  simi1.a.r fo r  a l l  treatments.  

t o  a maximutin was followed by a net l o s s  of 60Co through 312 hours. 

comparison of  i n i t i a l  uptLake rates of  the Elodea compartment among t r e a t -  

ments (Table 54) showed t h a t  t he  cont ro l  had a s i g n i f i c a n t l y  higher 

uptake rate than e i ther  the 100 or 1000 rad treatments, which formed a 

nonsignificant range. The maximum ' O C o  content of the compartment was 

compared among treatments (Table 35)  and showed that  each. treatment formed 

an independent s e t ,  with the control. higher than e i ther  rad ia t ion  treat- 

ment and the  1000 rad treatment higher than the 100 rad t2reatrnent. These 

An i n i t i a l  period of  rap id  uptake 

The 



T a b l e  
60 5'4 ~ Duncan's Compari son of Co Uptake RaLes 

oi' t h e  Elode2 Compartment (Physa-Rajas- 
~ -... 

value of p 2 3 

r .03 
P 3.261 3.399 

100 1000 0 

Mean ('0 et a, 8 .?9 10.29 13.33 

SLat i. st ical 
S i gni f i c za c e ....... I I 

.......... ~ .11-_1- 

__c__I. .-. ..... __--- ~ ........... ._I- 
...... -. - 



LOO 1000 0 

M e m  ($I ) 1L3.44 50.06 
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data showed t h a t  both the uptake r a t e  and. m a s r i m u n  6oCo content of Elodea 

were reduced with increased rad.iation s t r e s s .  

The loss r a t e  of 6oCo from the  Elodea comprtment h7as coinpared anlong 
____l_ 

treatInent (Table 3 6 ) .  

f a s t e r  than those of the 100 and 1000 rad treatments. The l o s s  rate in 

-the 100 r a d -  treatment exceeded. t h a t  of -the 1.000 rad. treatment, but there 

was 110 s t a t i s t i c a l .  d i f  fereuce betweer, .i;lzm. 

E ILodea compartment a-i 312 hours was compared among -treatments (Table 3‘0 

and showed t h a t  i.n the 1000 rad treatment Elodea had s i jg j - f ican t ly  higher 

6oCo content than In the 0 or 100 rad treatments. 

The 1.05s r a t e  in the control  w a s  s i g n i f i c a n t l y  

/ 

The O0Co content of the 

~ I _  

Ei.odea acemulabed 

621 less Co i n  Llie conti-01 than i n  the 100 Tad treatment, but these two 

formed a nonsignificant ran.ge. Thus, the increased rad ia t ion  s t r e s s  

reduced the .loss r a t e  of  “CO from the Elodea _._.....___ compartment and t h i s  r e -  

su l ted  i n  a build.-up of ‘OCo i n  the p lan ts .  

The r e s u l t s  f o r  the Elodea compar-tmcnt showed that Llie radia.tion 

s t r e s s  reduced 6oCo uptake rates and m%?.mum 6oCo conten.L, while it 

l.owered l o s s  r a t e s  and tncreased “Co co-ntent of t h i s  compartment. 

fo r  5nc difference i n  pat tern,  -t%ese r e s u l t s  a re  the same as those ob- 

Except 

ta ined  f o r  the Elodea compartment when Elodea ~- occurred. alone. Xowever, 

l a  the Elodea compartment of t h i s  l a t t e r  experiment, there w a s  a t x m d .  

of decreased “Co uptake ra-tes and content with increased dose. 

not t rue  of the Elodea compartment in the Physa-Na jas -Elodea treatmen.t. 

I n  t h i s  experrimen’t, there  w a s  a grea te r  reduction i n  6oCo uptake rate 

-_I 

T1i:i.s w a s  

_.-- ly___. - 

and content a t  100 rads than a t  1000 rads.  ‘These data  suggest an addL- 

t i o n a l  e f f e c t  on the Elodea compartment al; 100 rads, which may be related 

Lo complexity. 

-_.-.I__ 
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Table 56.  

Treatment 
(rads) 

1000 100 0 

Mean (bet a) 

S t  at i st; ie aJ1 
Significance 

-4.90 -6.5'7 -13.08 

...- 



Ta,b 1. e 57. Duncan’s Comnarisoii of ‘‘(20 in the Elodea 
, I -  L 

Compartment (Physa-Najas-Elodea) -- at 512 
Hours Among Radiation Treatments 

Value o f  p 2 3 

xqp .05 3.01b 3.160 

Rp 8.34 8.75 

z”r eatrnent 
(rads) 

0 100 1000 

.. . 

:.:e an ( $5 ) 15 -63 19.13 

Stat i- s t i c a l  
Si gni f i c anc e ___. 

28 “55 



The p t , t e rn  02 6oCo flux throi.igh the Najas eonipartments (Fig.  14g, 

p. 143) was s imi la r  f o r  t.he 0 and 1-00 rad treatments,  while a d i f f e r e n t  

pa t t e rn  w a s  e f f ec t ed  i n  the  1000 r a d  treatment.  Al .1  'treatmen%s had a 

period of  i q i d .  uptake t o  a maximmi concentration. In the 0 and lOGO r a d  

Lrea%rnents there w a s  a ne t  loss  of 6oCo from the  Najas  corcpartment a f t e r  

the imxirmnri content vas reached, wh.5I.e i n  the 1000 rad treatment the 

nmximm content was maintained as a steady s t a t e  content thrciugh 312 hours, 

The ccmparisoa of i n i t i a l  uptake r a t e s  of the Najas compartment by 

Dmc2n ' %- test, showed no s ign i f i can t  difference ~inong treatments.  

maximtun 60Cn content of the Najas compartment was compared among treatments 

(Table 33). 

formed a nonsignificant range w i t h  ; ign i f icant ly  higher "Co content than 

Thc: 

'Yhese resul.Ls showed that the LOO and 10'30 rad treatments 

the controls .  The 1000 m d  treatment a l s o  formed a nonsignificant range 

with the coxllxol treatment.  The data f o r  uptake rates and content of 

-the Naj.is compartment showed no r e l a t ion  t o  r sd i a t ion  stress. 

The Loss r a t e s  of "Co from the  Najas compartment after the bOG rad 

treatment, was -9 .h$/lu hr. wiiich was s i g n i f i c a n t l y  d i f f e r e n t  (D1mcan's 

t e s t )  from the loss rate o f  -1.8$/1n hr  for t h e  controls .  The Najas com- 

partrnent after the  1000 rad treatmec-t had no ne t  l o s s .  The l o s s  r a t e  

of 6oCo from the  Najas compartment between 32 and. 128 hours w a s  slmilar 

f o r  the controls  and 100 rad treatment.  However, including the lass  

period t o  912 hours, the r a t e  w a s  slower i n  the  controls  than i n  the 

200 rad treatment.  The Najes compartment i n  the cont ro l  treatment 

apparently approached a steady s t a t e  after 128 hours, while the 100 rad 

treatment bad a continued l o s s  t o  512 hours. A t  5512 houp's, %he comparison 

of the 6oCo content of" the  Najas compartment among treatments (Table 5 9 )  



60 
Ta.bLe 58 .  Duncan's Comparison of Co Maxima i n  

the  Na,'as Compartment (Physa-Najas- -- 
Elod&kong Radiation T r e a t m e n t s  

Value of p 2 3 

r .O? 2.888 3 035 

R 4. '1-9 5.13 

- 

P 
.__.... -- - 

P 

Ti- e atment 
(rads) 

0 1000 100 

Mean($ )  16 .1.5 18.42 22 .?j 

St at i st i c a l  
Signif icancc - 



60 Table >9. Duncan's Comparison of C o  i n  t h e  Najas Compartment 
(Physa-Na __I_II jas-Elodea) a t  5l2 Hours Among Radiation Treatments 

Value of p 2 3 

r .Os 
P 

~- - 

3.160 

K 
P 

4.46 4.68 

Treatment 
(rads) 

0 3-00 

S t a t i s t i c a l  
Significance 

1.0.53 3.1.38 116 64 



sbowed t h a t  the 1000 rad treatment maintatned a s i g n i f i c a n t l y  higher 

content Ynan the other  treatrueats which were not s i g n i f i c a n t l y  d i f f e r e n t .  

On the  bas i s  of  these resul ts ,  there  was no e f f e c t  of ra<di.ation on the 

pa t te rn  of fJux tiirou.gh thp Najas compat-tmenL i n  the control  o r  100 rad 

treatments, and both treatments reached the same 6oCo content by 512 

hours. There vas a s i g n i f i c a n i  change i n  Lhe flux pat te rn  of the  1000 rad 

treatment as there was no ne t  loss from the Najas compar.tme-at. 

I n  the microcosms containing Physa, N e ,  and Elodea t’ne regulation 

of 6oCc was shown t o  be a function of the in te rac t ion  of the three bio- 

l o g i c a l  components. Therefore, a radiat ion s t r e s s  which a f f e c t s  the i n t e r -  

act ion of tl-iese species w i l l  a l s o  a f f e c t  60co cycling among all components. 

The pat te rn  of f i n a l  distri-bution of 60Co has already been discussed 

for  each compartment. The results showed that a. dose of 100 rads had 

l i t t k  or no e f f e c t  on the f i n a l  d i s t r ibu t ion  pa t te rn  among compartrflents, 

although there  was a t rend toward higher content i n  the plant  compartments 

and I.ower content in the s o i l  compartment. After treatment with 1000 

rads, the pa t  Lern of d i s t r i b u t i o n  among compartments w a s  s i g n i f i c a n t l y  

changed witin a hrigher content i n  the p lan ts  and a lower content i n  the 

soil.. 

The pa t te rn  of ne t  6oCo pathways among compartments was not affected 

by a dose of 100 rads, but w a s  changed by a dose of 1000 rads (Fig. l lg-1,  

p .  126). 

from the contai.ner surface, the Physa she1.1, and the Najas compartments 

The change i n  pa t te rn  a t  1000 rads was the l o s s  of the pathtrays 

to the s o i l  compartment. 

Complexity, Hadlation Stress ,  -- and “CO Cycling 

On the basis of resuJ_-l;s from microcosms consisting of Najas and 

Elodea alone, i t  was expected t h a t  the sublethal  dose would change the 
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pat te rns  of f i n a l  d i s t r i b u t i o n  and pathways of 60Co flux i n  the microcosms 

consis t ing of  Physa Najas, and Elodea. The lack of  change i n  these 

pa t te rns  a t  the sublethal  dose demonstrated an increased degree of homeo- 

stasis i n  tho more complex microcosms and the change i n  the pa t te rns  

a t  1000 rads pr imari ly  r e f l e c t e d  the e f f e c t  of rad ia t lon  on the plant- 

s n a i l  in te rac t ion  * 

-’ - 

The functional r o l e s  of the various compartments i n  the more complex 

microcosm were not changed a f t e r  treatment by 100 rads from those des- 

cribed e a r l i e r  f o r  the cont ro l  mlcrocosm. Howevel”, there were differences 

i n  the  pa t te rn  of d i s t r i b u t i o n  during the e a r l y  p a r t  of the experiment. 

TIE maximum accumiilation of ‘OCo by Elodea a t  100 rads w a s  lower than 

that of the cont ro l  Elodea, while the maximum accumulation of Najes a t  

100 rads w 9 s  higher than t h a t  of the control  Nnjas ,  This s i t u a t i o n  

suggests tinat Elodea was inore a f fec ted  by the lower dose than was Najas. 

The results f o r  Najas and Elodea alone (Fig.  10, p. 115 and Fig. 12, p. 132) 

showed that such was possible, as the e f f e c t  of both 100 and 1000 rad 

treatments produced the same severe cff‘ect on Elodea i n i t i a l l y ,  while 

the  i n i t i a l  e f f e c t  of  these doses on Na.ias w a s  not as severe and l a t e r  

there  w a s  evidence of “recovery“. 

Physa functioned as a c a t a l y s t  i n  the complex microcosms and there  

was no evidence t h a t  “Co cycling through the Physa body compartment 

w a s  af€ected by the radiat ion stress of 100 rads.  Since the exact nature 

of the c a t a l y t i c  e f f e c t  of Physa on the plants  was no$ defined by t‘nese 

experiments, the conclusion is  t h a t  the lG0 rad  dose apparently did not 

impair the funct ional  r o l e  of Physa. 

I n  the 1000 rad treatment, the functional ro le  or“ Najas was changed 

That the 6oCo maximum from t h a t  of a processor t o  t h a t  of a storehouse, 
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i n  Elodea at, 1000 r a d s  exceeded t h a t  a t  100 rads suggested t h a t  both 

Elodea and Najas were severely a f fec ted  by the 1000 rad dose. The 

chaoge i n  the p a t t e r n  of 6oCo flux through Najas and the slower l o s s  rate 

from Elodea at; 1000 rads suggested t h a t  t h i s  dose s i g n i f i c a n t l y  a f fec ted  

Lhe funct ional  ro le  of the Physa conipartment. 

Experimental -I.estiLts f o r  Physa were too inconclusive t o  demonstrate __.- 

a radiat ion e f f e c t  on 6oCo cycling thi-ough t h i s  cornpartmerit. Hovever, 

consistent, %:rends of differences between control and i r r a d i a t e d  ...___ Physa i n  

.t;he combhation of  Physa alone and Physa-Rajas-Elodea suggested an e f f e c t "  

miat there  were differences between control  and irrad.Sated Physa w a s  eon- 

firmed by the lack of an e f f e c t  of Physa on the "Co f lux through the 

plant cornpa:c=tments i n  this mlcrocosrn. 

--1- -.1.1- - 

Radiation perturbed 6oCo cycling i n  the microcosm combination of 

Physa-Na jas -Elodea as demonstrated by changes i n  the cycling parameters 

during the e a r l y  o r  l a t t e r  stages of the experiment. Changes i.n the 

-. - 

cycling parameters were r e l a t e d  t o  the e f f e c t  of radiat ion on the iqtake 

r a t e s  of the plan-ks and on the  functional ro le  of Physa. Homeostasis 

of the final.  d i s t r i b u t i o n  and pathway pat terns  was demonstrated f o r  the 

100 rad dose, bui; not i n  the 1000 r8.d -I;reatment. 

I n  the k s s  complex microcosms, a radiat ion stress of 100 o r  1000 

rads reduced the i n i t i a l  flux r a t e s  of 60Co i n  compartments and increased 

the time t o  s-beady s t a t e  or the duratTon of 8 maximum steady state con- 

t e n t  wi-t'nin some cornpastmen-t;s. In  the more complex microcosms, a radiat ion 

s t r e s s  of 100 rads had 1i t t I .e  e f f e c t  on the i n i t i a l .  "Co f lux  rates and 

no e f f e c t  on temporal parameters. A stress of 1000 rads, however, had a 

s i g n i f i c a n t  e f f e c t  on flux r a t e s  and increased the time to m a x i m u m  or 



steady state content of compartments. 

on both simple and complex microcosms w a s  s i r a i l a r ,  i n  t h a t  the cycling 

r a t e  w a s  reduced wTthin the s y s t e m ,  

accompllsh t h i s  i n  the more comple:: microcosm. 

The e f f e c t  of rad ia t ion  s t r e s s  

It me~e ly  requi.red a. higher dose t o  

The e f f e c t  of radiat ion cm the pat terns  of final d l s t r i b u t i o n  and 

pathways of "oca movements (Fig. I?-, p.  126) s~ioxed t k n t  the lower 

dose hail DO e f f e c t  on these p a t t e r m  i n  .the most complex rriicrocosms while 

i n  the less complex microcosms both f i n a l  distribution and pa-thways were 

changed. 

microcosms ' ~ m s  similar t o  t h a t  obse~ved at 100 rads.,, 

pat te rns  i n  the more complex nieroeosms m r e  s i g n i f i c a n t l y  changed by 

the  higher dose. These r e s u l t s  suggest t h a t  the homeostatic capacity 

of a simple system, as measured by s t a b i l i t y  of mineral cycling para- 

meters, i s  greater  than t h a t  of a mare complex system when sxbjected 

t o  a s t r e s s  of la rge  magnitude. 

the more complex system exhib i t s  g r e a t e r  borneostatic capacity.  

The e f f e c t  of .the higher dose on patterns i n  the less cornplex 

Kowever., -tAe 

In the  case of a smaller stress, however, 

Kadintion Effects on 

The r e s u l t s  f o r  

I 

microcosms i.ndica.-ted 

' 3 7 ~ s  Cycling 

analyses of m G a t i o n  effects  on ' 3 7 ~ s  cycling i o  

no differences among rad ia t ion  treatit ients within 

a given complexity l e ~ r e l .  

ments does not  preclude a p o t e n t i a l  r ad ia t ion  e f f e c t ,  as evidenced by 

the f a c t  t h a t  f o r  Elodea cul tured i n  spring water (Fig. 8, p. 103) 

showed a s i g n i f i c a n t  reduction i n  "'Cs accumulation a f t e r  rad ia t ion  

treatment 

The lack of differences among rad ia t ion  t r e n t -  

The lack of an observed rad ia t ion  e f f e c t  on 137Gs cycling i n  the 

microcosms can ke a t t r i b u t e d  t o  rapid. f ixa t ion  of cesium i n  the s o i l  
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(Tmnina and Jacobs, 1960). The comparison of b i o t i c  uptake r a t e s ,  a 

parameter of importance i n  the ana lys i s  of rad ia t ion  e f f ec t s ,  w a s  not 

possible  due t o  the rap id  accumfiation of  "'(2s i n  the s o i l .  The r e su l t i ng  

lov a,ccumu.lal;ion of l3''Cs i n  the  b io t a  was associated with large e r r o r  

terms which made the measurement of maximum nccimiula tion of no analybical  

value.  Final ly ,  it w a s  not possible to measure the loss r a t e  of 

from the  biota due t o  t ' n ~  interference of 6oCo i n  the 137Cs radiometric 

13'7,, 

deteiminations . Although a po ten t i a l  rad ia t ion  e f f e c t  on 137Cs cycling 

w a s  predicted,  t h i s  e f f e c t  was not revealed i n  the microcosm s t u d i e s .  

Signlficance I_ of  Results 

This research has u t i l i z e d  aquatf-c microcosms i n  studying the  e f f e c t  

o f  increascd b i o t i c  complexity on mineral cycling and the e f f e c t  of  

ionizing rad ia t ion  on mineral cycling a t  d i f f e ren t  bi-otic ccrmplexity 

l eve l s .  The i-esul-ts emphasize a n  e f f e c t  o f  changes i n  b i o t i c  complexity 

on nii leral  dynamics which i s  re la t ive ly  independent of  changes i n  the 

a b i o t i c  environment. FurLher, these results define the s t ab i l - i t y  of 

differen-t; coi-fiplextty leve ls  i n  terms of  the ecological  ro les  of the 

pa r t i c ipa t ing  organisms and t h e i r  i n t e rac t ions .  

Changes in .  ecosystem complexity are usual ly  associated with changes. 

t h a t  occur i n  s tages  of  succession and. such changes imply major a l t e r -  

a t ions  i.n the b i o t i c  and ab io t i c  environment (Cowles, 1899, Johnson and 

Oduni,  1956). The f a c t  t h a t  succession occurs ind ica tes  t h a t  earlrier 

successional s tages  have less s t a b i l i t y  t'nm the f i n a l  or  cliinax stage 

of succession. This s ta i s i l i ty ,  o r  res is tance t o  change (Pat ten and 

Witkamp, l.967), i s  a cha rac t e r i s t i c  of the climax community (Clemeats, 

1916). However the  r e l a t i v e  contr ibut ion of the  a b i o t i c  and b i o t i c  



factors t o  this s t a b i l i t y  usually cannot be separated i n  na t i i r s l ly  occur- 

r ing  ~ c o s ; ~ s ~ c ~ ~  (00s  t ing,  1936) * 

TIE s ignif icnncc of t h i s  stud;$ is  that  the same species were s tudied 

i n  various comhim-tions, OR" complexity leve ls ,  w h i l e  the control lable  

ab lo t io  eriviromnent was held constant.  It follows from t h i s  tl.i:irt, with 

-LIE exception of' uncontrollz 'bie ab?otlc differences,  only biotic e f f e c t s  

oa mixera1 cycling w r e  observed.. The resu_lt;s sha-e& that  an increase i n  

the fuct,ional. 'l.e~re1 of complexity increased the number of 6oCo flux paths 

among conipartrrienls and a l so  increased t'ne cycling r a t e  through t h t :  b io t a  

t o  the  s o i l .  The cycI.ing patterns of 60Co and 137Cs were shown t o  be 

d i f f e r e n t  Tn less complex niicrocosrris, while the eyeling pattern of "Co 

converged toward that o f  13'7Cs when the funct ional  level of conplexity 

was increased.  heref for-e, it i s  predictable  that cycling pa t te rns  of 

d i f f e r e n t  elements would be ye l s t ive ly  d iss imi la r  i n  less complex eco- 

systems and tend to become mn-e similar i n  more complex ecosystems. 

An increase i n  the level of funct ional  cmplexi t*y w a s  observed t o  

be of grEater importance %hsn 3,n increase i n  d i v e r s i t y  of a given 

functional l eve l .  H o w w e r ,  an increase i n  m i f u n c t i o n a l  species had 

a raodifying e2fecl; on t ' :~  exact pat tern and general  rate of  cycl ing.  

~ h u . s ,  i n  -the study of ecosystems, both the d i v e r s i t y  of" "functional" and 

tLxonomic s p e c k s  would contribute to  a re f ined  ecosystem analysis  

and allow :I i n Q E  ineaningf1.d. eo:trprison of ecosystems 

Tlxo L@L the t e  c hni que of  s Tmthr? s i z ing incre  as ing 1.y cmmp lex m i  cro - 
cosms, it was possfble t o  define the functional role of a species or 

eompa,rtaicnt i n  various complexity s5ates  The funct ional  ro le  of a 

species was observed t o  reaain constant when combined with mothe r  spec-ies 
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of similar function. However, the r o l e  of nonbiotic compartmenks (water 

and soil) d i d  change wd-er such circumstances. 

function were combined, ro les  of the briotic compartments were changed 

as a r e s u l t  of the in te rac t ion  of  the "flmctlonal" species.  Therefore, 

When species of d i f f e r i n g  

A1 t.,ne increase i n  fwct i .onal  complexity resu l ted  i n  s i g n i f i c a n t  ecological  

in te rac t ions  and these new in te rac t ions  changed both tlie pa t te rn  of 

mineral d i s t r ibu t ion  and flux r a t e  through the system. 

Rad-iation stress of  tile iuicroecosysterns demonstrated the possible 

consequences of radiat,fon hazard t o  na tura l ly  occurring ecosystems and 

a l s o  t e s t e d  the s tabi . l i ty  of complexity states. Generally, ionizing 

rad ia t ion  reduced the cycling r a t e  and bio-accumulation of 6oCo, but had 

no observable e f f e c t s  on "'Cs cycEng. Hcj~eve~,  the spec i f ic  e f f e c t  of 

a given -r.ad.iation stress w a s  dependent on the degree of complexi-ty of 

the s t ressed  system. 

The minei-d. cycling pa t te rn  of complex sys.tems w a s  more r e s i s t a n t  

t o  sublethal  s t r e s s  than -tinat of simpler rnicroecosystems. This i s  i n  

agreement with current theories  t h a t  more complex systems can absorb a 

grea ter  stress, without change, t ' n m  less comp1.ex systems (Margalef, 

1963). 

t h a t  complex systems are  more g r e a t l y  a f fec ted  by a larger s t r e s s  than 

a r e  slxq3le systems. 

The experimental r e s u l t s  a lso supported the inverse theory, 

The in te rac t ion  of the "fmctional"  species i n  the complex micro- 

ecosystems prmided addi t ional  mineral cycling s t a b i l i t y  t o  the l e s s e r  

s t r e s s .  The disruption of the s m e  in te rac t ions  a l s o  resu l ted  i n  the 

greater  change i n  mineral cycling pa t te rn  of the complex systems a f t e r  

a greater s t r e s s .  The lack of  s ign i f icant  change i n  mineral cycling 



pa t t e rn  of t i e  simpler systems can be a t t r i b u t e d  t o  Yne absence of 

these in te rac t ions .  

change after a stress has been r e l a t e d  t o  t'ne s e n s i t i v i t y  of i t s  i n t e r -  

ac t ions .  

Thus, t he  capaci ty  of a complex system t o  reslst 

The cur ren t  study supports the  hypothesis ' that complex systems, 

having grea te r  d i v e r s i t y  of species a g rea t e r  amber o f  "functional" 

species,  and comequ.ently more In te rac t ions ,  woxld have a grea te r  i n -  

t r i n s i c  s t a b i l i t y  under moderate stress than less complex systems. 

Further, the  degree of ecosystem s tabi l i ty  following 3 grea te r  s t r e s s  

would be related t o  the  s e n s i t i v i t y  of its i n t e rac t ions  and not neces- 

sari ly t o  the s e n s i t i v i t y  of the  organisms. 

Accepting the 'hypothesis of sensitiv-i-ty o f  in te rac t lons ,  it i s  

fur ther  hyrothesized t h a t  a certain minimal ecosystem complexity ex i s t s ,  

after which fur ther  increased complexity (while providing more s t a b i l i t y  

t o  a slight stress) results i n  less s t a b i l i t y  t o  moderate s t r e s s  than 

the system of minimal complexity. 



Aquatic: microcosms consisting of various combinations of physical  

( s o i l ,  water, container) and b io log ica l  (Physa, Najas, Elodea) components 

were used t o  de terrnine 'die e f f e c t  of increased complexity on radionuclide 

f l u x  r a t e s ,  pa t te rns  i n  each component, and pa t te rns  of radionuclide 

d i s t r i b u t i o n  among the microcosm components. The s t a b i l i t y  of the com- 

partmental r a t e s  and flux pat te rns  and the  pa t t e rn  of d i s t r ibu t ion  path- 

ways among compartments was t e s t ed  by s t r e s s i n g  se lec ted  complexity 

levels  .with suble tha l  and l e t h a l  doses of f a s t  neutron rad ia t ion .  

Compartmental f l ux  rakes were shown t o  vary among complexity t r e a t -  

€0 
ments. The l o s s  r a t e  of  C o  from the water compa.rtment and the uptake 

r a t e  of ' 3 ' C s  by the  soi.1. compartment increased as complexity increased. 

For other compartments, increased complexity e i t h e r  resul ted i n  d i f -  

f e r en t  pa t te rns  of  r a t e  changes o r  had no predictab1.e e f f e c t  on r a t e  

The 137Cs flux pa t t e rn  of most microcosm components was similar 

60 
a,mong complexity leve ls .  The Co f lux  pa t t e rn  of t he  .dater and F'hysa 

components was s imi l a r  among coniplexity I.evels, while the  f lux  pabtern 

of the remaining components was dependent on the  complexity l eve l .  

The pa t t e rn  of d i s t r i b u t i o n  of  137Cs among the  microcosm compait- 

60 
ments was independent of the coiizplexity level ,  while t h a t  o f  Co vas 

dependent on the  level. of compl.exity. The pathway pa t t e rn  of 137Cs among 

compartments was one of flow through noilsoil compartments and rapid 

accimulation i n  the s o i l .  I n  contrast ,  Co accumulated i n  nonso i l  com- 

partments i n  less complex microcosms, while i n  more complex microcosms 

Co flowed through nonsoil compartments arid accumulated i n  the soil. 

60 

€0 
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60 Increased funct ional  complexity converged the pathway pa t t e rn  of (:o 

toward thmt of ’-77Cs. 

An increase i n  complexity increased t h e  r a t e  of movement of both 

r e t e n t i o n  by nonso t l  compartments was decreased when complexity w a s  in- 

cressed. Tile final. d i s t , r i bu t ion  of Co occurred more rapidly i n  the  

Less complex microcosms. LIowever, s ince  the Co would eventually berome 

60 

60 

incorporated i n t o  the organic matter of  the  s o i l ,  increased complexiby 

a l s o  decreased the  cycling time of ‘‘Co. 

Xadiation s t r e s s  affected both compartmental flux rates and pa t te rns  

60 
a n d  the pathway pa t t e rn  of Co d i s t r i b u t i o n  among the microcosm components. 

However, the  e f fec t  of a given r ad ia t ion  s t ress  was dependent on the  

l e v e l  of microcosm complexity. 

60 
The rate of Co uptake and t o t a l  secmmla’iion by the  b i o t i c  com- 

ponents was generally reduced a f t e r  r ad ia t ion  treatment. The changes i n  

thesc parameters f o r  t he  physical components r e f l ec t ed  the  changes which 

occurred i n  t h e  b i o t i c  components. I n  addi t ion t o  changes i n  uptake 

r a t e s ,  t h e  time t o  s teady s t a t e  o r  t o  rnraxirrim accumulation of 

t h e  b i o t i c  compartments was increased a f te r  rad ia t ion  s t r e s s .  Generally, 

60 
Co i n  

t h e  e f f ee t  of r ad ia t ion  within a given complexity l e v e l  was t o  decrease 

60 
t he  r a t e  of Co cycl ing.  

On the  bas i s  of mi;ieral dynamics, t he  simple microecosystems were 

found to be less s t a b l e  than the complex ones when subjected to moderate 

stress, but more stable than complex systems when subjected t o  an extreme 

stress. The difference i n  s t a b i l i t y  was re la ted  to the  e f f e c t  of rsdi- 

s t i o n  on the in te rac t ion  o f  b i o t i c  components and not necessarily on 



organisms. This r e s u l t ,  plus the  d e f i n i t i o n  of ecological  r o l e s  and 

in te rac t ions ,  l ed  t o  - the  hypothesis t ha t ,  while the most complex s e l f -  

sustaining ecosystem may be more s t a b l e  t o  a model-ate s t ress  Lhan a 

s i m i l a r ,  minimally complexed sys tern, Lhe s y s t  2-m of minimal complexity may 

be more stab]-e t o  a g rea t e r  range of s t r e s s  than the more complex ecosystem. 

The use of  synthesized miCrGCosmS as ecological research u n i t s  pro- 

vides a means o f  performing ce r t a in  d i f f i c u l t  o r  otherwise impractical  

ecological experiments. Kesults from such s t u d k s  are subject t o  ca re fu l  

extrapolat ion t o  na tura l ly  occurring ecosys Lems . However, i f  mi.crocosms 

can be shown t o  haxe chaxac ter i s t ics  s i m i l a r  t o  n a t u r a l l y  occurring eco- 

systems, then microcosms may be used t o  t e s t  unusual envirormental s t r e s s e s  

and hypotheses about; ecosystem behavior. 
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