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STRUCTURAL ANALYSIS OF S H I P P I N G  CASKS 
VOL . 6 - IMPACT TESTING OF A LONG CYLINDRICAL 

LEAD -S HIELDED CASK MODEL 

B. B. K l i m a ,  L .  B. Shappert, and W. C .  T. Stoddart 

ABSTRACT 

S e t t l i n g  of lead  i n  l e a d - f i l l e d  f i s s i l e  and radioact ive 
mater ia ls  shipping casks due t o  impact w a s  invest igated.  The 
cask t e s t i n g  f a c i l i t y  a t  the University of Tennessee i s  de- 
scribed. Results ind ica te  t h a t  when an unbonded c y l i n d r i c a l  
cask i s  subjected t o  an impact, l ead  w i l l  move r e l a t i v e  t o  
t h e  s t e e l  s h e l l .  A mathematical model i s  developed t o  quan- 
t i t a t i v e l y  pred ic t  the magnitude of the l e a d  movement. Data 
acquired i n  the  U.T. Testing Program and during the t e s t i n g  
of a smaller model by Franklin I n s t i t u t e  confirms the appl i -  
c a b i l i t y  of t h i s  developed equation t o  pred ic t  lead movement 
i n  an unbonded cask. 

1 . INTRODUCTION 

When it i s  necessary t o  ship o r  t ranspor t  radioact ive mater ia l  from 

one place t o  another, a shielded container  or cask must be provided so 
t h a t  the  mater ia l  can be handled without undue exposure of  personnel t o  

t h e  rad ia t ion .  

r i a l  i n  t h i s  country even though it i s  low i n  t e n s i l e  s t rength and i s  
e a s i l y  deformed under acc identa l  impact. 

and i n  a f i r e  it may m e l t ,  r e s u l t i n g  i n  a loss of shielding. 

inner and outer  s h e l l  i s  provided t o  contain the  lead  t o  minimize damage 

t o  the lead  from impact or f i r e .  
then f i l l e d  by pouring molten lead i n t o  the cavi ty  followed by seal ing off  

t h e  pour holes .  

Lead i s  probably the  most f requent ly  used shielding mate- 

It a l s o  has a low melting point  
A s t e e l  

These s h e l l s  a r e  prefabricated and 

Often, i n  the  pas t ,  the  heat t r a n s f e r  requirements have been over- 

shadowed by other  s t r u c t u r a l  problems. However, second and t h i r d  genera- 

t i o n  power reac tor  fue l s  will tax heat  d i ss ipa t ion  a b i l i t i e s  of t h e  casks 

t o  capac i ty ,  A bond between the  lead sh ie ld  and the  steel .  shell may be 
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desirable  t o  enhance the a b i l i t y  o f  the cask t o  d i s s ipa t e  the  heat load 

imposed on it by i t s  contents but  it i s  d i f f i c u l t  t o  pour lead t o  ensure 

a rrietallurgi.ca1 bond, p a r t i c u l a r l y  i f  the s h e l l  i s  fabr ica ted  from s t a in -  

less  s tee l .  

it now appears t h a t  the bond may be a l s o  des i rab le  t o  mechanically 

support the lead as  we l l  a s  t o  t r ans fe r  heat .  Recent information has 
been developed which ind ica tes  t h a t  i n  a hypothetical  accident,, movement 

on impact of lead  which i s  not bonded t o  i t s  s t e e l  s h e l l  niay c rea te  a 
void r e su l t i ng  i n  loss of shielding such t h a t  allowable dose ra tes  are 
exceeded, 

The present  regulations'. which have been developed t o  cover shipment 

o f  radioact ive and f i s s i l e  mater ia l  define l%ypothetical accident condi- 

t ions."  One of the hypothetical  accidents  requi res  the cask t o  be able 

withstand a "free drop" defined below. 

Free Drop - A  f r e e  drop through a dis tance of 30 f t  onto a f l a t  
e s sen t i a l ly  unyielding horizontal  surface s t r ik ing  the surface i n  a 

posi t ion f o r  which maxj.mum damage i s  expected. 

F a c i l i t i e s  t o  t es t  casks i n  a 30-f t  f r e e  drop have been b u i l t  a t  

the University of Tennessee, Knoxville Tennessee and are  described i n  
t h i s  report,. 'Test cask weights a r e  1j.mited 'GO approximately 200 l b .  

An ana ly t i ca l  procedure has been developed t o  estimate the  extent  

of t h e  lead movemelit, as a r e s u l t  o f  a 30-f t  f r e e  f a l l  i f  t h e  lead  i s  not  
bonded t o  Yhe s t e e l  she l l .  A nodel was b u i l t  a t  OPm, and t e s t e d  t o  prove 

the  hypothesis developed. 

model at Franklin I n s t i t u t e  Research Laboratories i s  reviewed e 

Test work involving a f r e e  drop of a smaller 

Data co l lec ted  as a resul- t  of t e s t  work with casks confirms the  hy- 

pothesis  t h a t  unbonded lead  w i l l  be displaced as a r e s u l t  of t he  30-ft  

drop specif ied i n  the  "hypothetical  accident  This lead displacement 

could r e s u l t  rin loss of shielding unless adequate provisions a r e  made i n  
'&e design of the  l ead  cavi ty .  
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These data indicate  t h a t  the length of the contained lead column 
could be reduced as  rriuch as 2.5% as a r e s u l t  of the 30-f t  drop. 

The data  a r e  i n  good agreement wi th  $he values predicted using the 

equation herein derived f o r  the lead displacement as a r e s u l t  of t h i s  

"hypothetical accident." Therefore, t h i s  equation can be used t o  properly 

design t h e  lead cavi ty  so  t h a t  the loss of shielding can be minimized. 

3. THE 30-FT FREE DROP TEST FACILITY 

The 3O-ft f r e e  drop t e s t  f a c i l i t y  w a s  constructed a t  the  University 

of Tennessee, Knoxville campus. It i s  located i n  t h e  northwest corner 

of  the coal  bunker behind the old powerhouse east of Estabrook Hall. 
This s i t e  was chosen because of  i t s  i s o l a t i o n  from other  experimental 

a reas  and the general  public,  as well  as because o f  c e r t a i n  advantageous 
s t r u c t u r a l  f e a t u r e s .  The f a c i l i t y  i s  shotm i n  Fig.  1 .  

' 

3 .I The Drop Pad 

In  defining the  f r e e  drop condition, t h e  AEC required t h a t  the cask 

s t r i k e  a f l a t ,  e s s e n t i a l l y  w i e l d i n g ,  horizontal  surface.  The drop pad, 

constructed t o  meet t h i s  condition, cons is t s  of  a reinforced concrete 
base approximately 7 f t  square by 2 f t  th ick  which i s  surmounted by a 
c e n t r a l l y  located 42 x 34 x 4 i n .  s t e e l  impact surface. The s t e e l  p l a t e  
w a s  imbedded i n  Portland cement grout i n  order t o  be able t o  insure a 

level, sound, uniformJ-y-supported surface.  

The plan f o r  the  reinforced concrete pad i s  shown i n  Fig. 2 .  

drop pad and lower port ion of the drop tower a r e  shown i n  Fig. 3 .  
The 

3.2 The Tower 

A tower o f  cormnercially ava i lab le  s t e e l  scaffolding w a s  constructed 

because of i t s  lots cos t ,  f l e x i b i l i t y  of appl icat ion,  and ease o f  erect ion.  

The scaffolding chosen provides a js-f t -high tower having a 5-ft- 
square horizontal  sect ion.  This tower w a s  anchored t o  t h e  top of the 
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ex i s t ing  reinforced concrete w a l l s  of t h e  coa l  bunker, and i s  equipped 

with personnel working platforms and a hois t ing  mechanism. 

i n s t a l l e d  a t  heights  of approximately 7,  1 7 ,  and 27 f t  above the  top of 
the  pad, cons is t  of two center  sect ions hinged t o  ou te r  sect ions which are 
r i g i d l y  f ixed  t o  t he  tower. 

out  of the  path o f  a t e s t  specimen before it i s  dropped. 

The platforms, 

This permits t he  center  sec t ions  t o  be swung 

3.3 The Hoist and Release Mechanism 

The h o i s t  and r e l ease  mechanism, fabr ica ted  f rom commercially ava i l -  

ab le  components, i s  shown schematically i n  Fig. 4. 

The mechanism i s  at tached t o  two 2 x 1 2  i n .  hor izonta l  wood beams 

which a r e  a t tached t o  t h e  tower. 

these beams, wi th  i t s  axis i n  the  v e r t i c a l  d i r ec t ion  and d i r e c t l y  over t he  

center  of t h e  s t e e l  p l a t e  on t h e  impact pad. 

ou ts ide  of t h i s  pipe a t  i t s  lower end. Cable i s  s t m g  from t h i s  winch, 

over a pul ley  a t  the  top  of t h e  pipe,  and down through the  center  of t he  

pipe t o  t h e  quick re lease  device.  

A square carbon s t e e l  pipe i s  bol ted t o  

A winch i s  bol ted t o  the 

The quick r e l ease  device (see Fig.  5) i s  adapted from a commercial 

quick-release f i t t i n g  normally used t o  connect a i r  hoses, and has func- 

t ioned qu i t e  s a t i s f a c t o r i l y  during each t e s t ,  requir ing replacement only 

when damaged by s t r i k i n g  the  impact pad during some of the  t e s t s .  

the  female por t ion  of the  quick r e l ease  device i s  shown. 

i s  at tached t o  the  cable,, 

tua ted  when it comes i n  contact  wi th  t h e  lower end of t he  square pipe 

during the  f i n a l  one inch of t r a v e l  i n  hois t ing  the  t e s t  specimen i n t o  the 

drop pos i t ion .  

Only 
The male por t ion  

The quick r e l ease  device i s  automatically ac- 

Secondary f e a t u r e s  of t he  h o i s t  and r e l ease  mechanism include a 

safety device t o  prevent acc identa l  ac tua t ion  of the quick re lease  device 

and an e l e c t r i c a l  switch ( f o r  s t a r t i n g  da ta  acqu i s i t i on  equipment) which 

i s  automatically closed a t  the  i n s t a n t  of r e l ease  of t h e  t es t  specimen. 

Both a r e  operated by an aluminum a l l o y  s leeve which s l i d e s  on the lower 

end o f  the square pipe.  
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An o f f s e t  arm, as shown i n  Fig.  5, i s  used f o r  a t t i t u d e  cont ro l  of  
corner drops and the  turnbuckles a r e  used t o  l e v e l  t h e  cask. 

3.4 Data Acquisit ion 

Data i s  acquired through d i r e c t  measurement on the  casks before and 

a f t e r  dropping and through the use of  high-speed movies using a g r id  as 
a back drop. 

second. 

The movies of  t h i s  t e s t  were taken a t  2,000 frames per 

4. CASK TESTS - ORNL - U. T .  

A t e s t  model cask was fabr ica ted  a t  ORNL and t e s t e d  a t  the f a c i l i t y  

a t  t he  University of Tennessee. 

designed by Atomics In te rna t iona l  and b u i l t  by All ied Engineering Company, 

Alameda, Cal i fornia .  

It w a s  designed t o  model t h e  H a l l a m  cask 

Exact t e s t  model dimensions i n  r e l a t i o n  t o  the  Hallam cask a r e  shown 

i n  Table 1 but t h e  approximate ove ra l l  sca le  f a c t o r  w a s  1 t o  7.5. A cut-  

away i l l u s t r a t i o n  of the  t e s t  cask i s  shown i n  Fig. 6. 

Table 1 .  Comparison of Dimensions of ORNL Bui l t  Model 
t o  H a l l a m  Cask Dimensions 

ORNL Model Hallam Cask 
Dimensions Dimensions Ratio 

Cask o v e r a l l  height 30-3/8 i n .  

Outer s h e l l  thickness 0.202 i n .  

Inner s h e l l  thickness 0.095 i n .  

Lead thickness  0.936 i n .  
Lead f i l l  height 27-5/64 i n .  
Overall  diameter outs ide 4.900 i n .  

Inside diameter cavi ty  2.435 i n .  
Cask weight 163 l b  
Distance bottom of cask t o  

first g i r t h  weld 1 -55/64 i n .  

237.38 i n .  
1 .SO i n .  

.75 i n .  

7-1/4 i n .  
214 i n .  

37.25 i n .  
18-1/4 i n .  

71,130 l b  

13.88 i n .  

1 :7.81 
1 :7.43 
1 :7.89 
1:7.75 
1:7.90 
1 :7.60 

1 :7.49 
1 :(7.60)3 

1 :7.47 
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Fig. 6. ORNL Constructed I :75 Model of t h e  H a l l a m  6 Element Shipping Cask (HIIFF). 
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The cask i s  shown assembled i n  Figs. 7 a.nd 8. 
sure i s  shown i n  Fig. 9 .  

shown i n  Fig. IO. 

The bottom end clo-  

The top closure and t h e  l e a d  f i l l  holes  are 

This cask was dropped 30 f t  a t  the U. T. t e s t  drop f a c i l i t y .  It was 
intended t o  drop the  cask vel- t ical ly  so  t h a t  i t  would h i t  squasely on i t s  

end. A frame from the high-speed movies a t  the t i m e  of impact i s  shown 

i n  Fige 11 and shows t h a t  t h e  cask ac tua l ly  h i t  a t  an angle o f  h"32' from 

the  v e r t i c a l ,  Measurements of the deformatton of  t he  bottom end c1osur.e 
p l a t e  confirms t h a t  the angle was approximately 4". I n  Fig. 11, formati on 

of a bulge i n  the  outer wa l l  d i r ec t ly  above Uie po in t  of impact i s  c l ea r ly  
v is ib le .  

Both t h e  inside and outside of the cask were srnooth and no deforma- 

t i o n  occurred on the s ide  180 degmes away fPom the  point  o f  impact, while 

d i r ec t ly  above the point  o f  i-mpact both the outside and ins ide  s t e e l  
she l l  walls were deformed. The deformation of the  outside wal l  was a 

pronounced bulge which can be seen i n  Fig. 1 7 ,  Deformation of  t he  ins ide  
w a l l  was i n  the  form of a wrinkle which i s  c l ea r ly  v i s ib l e  i n  the same 
f i g m e .  

The cask measured 30-3/8 in .  long before the drop t e s t .  After the  

drop t e s t  the length of  the cask was measured a t  the point, of impact 

(presumed t o  be coincidental  wj.th the  maximum deformation) t o  be 30-3/16 
i n ,  ind ica t ing  a decrease of  3/16 in .  
s ide of the impact point,  t h e  cask length decreased by l /8  i n ,  Opposite 
the poin t  o f  impact, the lerigth oP t h e  cask shortened s l igh t ly ,  approxi- 
mately 1/32 i n .  

A t  po in ts  90 degrees on e i the r  

Measurements of the outside diameter were made a t  th ree  point  paiys  

60 d e g e e s  apart ,  a t  nine positri-ons along t h e  length  of t h e  cask both 
before and a f t e r  the drop (see Table 2 ) .  

An exaggerated p l o t  of  the  differences,  along the three planes, 
determj-ned by the poj-nt pairs as noted i n  Table 2, i s  shown i n  Fig. 13. 
It was assumed i.n drawing these p l o t s  t h a t  a l l  the  deformation occurred 

i n  two quadrants of t he  outer s h e l l ,  and t h i s  i s  j u s t i f i e d  by close 

examiriatj.on of t he  model cask af ter  the  drop. 
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Since impact apparently occurred between poin ts  A and B none of the  

p l o t s  shown i n  Fig. 13 correspond t o  the  maximum deformation. Such mea- 

surements were made, however, when t h e  cask was sectioned through the 
m a x i m u m  deformation, thought to  correspond t o  the  plane labeled G-11 i n  

Fig.  13. A photograph of the sect ion through the maximum deform t ion  

(Fig. 1 2 )  c l e a r l y  shows voids between the lead  and the outer  s h e l l  which 

w a s  formed as a r e s u l t  of  the impact. Also shown i s  the wrinkle i n  the 

inner s h e l l .  Dimensions were taken of the ins ide  and outside surfaces t o  

determine def lec t ions  i n  the metal. 

s i t a t e d  choice of a r t i f i c i a l  l i n e s  f o r  these dimensions. The reference 

used t o  measure the outer  s h e l l  was determined by a s t r a i g h t  l i n e  running 

between the two points  marked Y and Z (Fig. 1 2 )  and on Lhe inner s h e l l  by 

poin ts  W and X (F ig .  1 2 ) .  
po in ts  which a r e  believed t o  have moved very l i t t l e .  
data  i s  given i n  Table 4 and the data  i s  shown i n  an exaggerated p l o t  

beside a sketch of the  cask i n  Fig.. 14. 

Lack of pre-defined references neces- 

These two reference l i n e s  a r e  based on four  

Tabulation of the 

The dis tance from the top of the cask $0 the lead surface w a s  mea- 

sured through the lead fill holes before and a f t e r  the drop t e s t  (see 
Fig,  IO); the  data  a r e  presented i n  Table 3. 

Table 3 .  Measurements of  Lead Posi t ion 
Before and After Drop Test Measured from Top of  Cask 

Distance from Top of F i l l  Hole 
F i l l  Hole Inc he s Lead Settlement 
De signa t i o n  Before Drop After Drop Inches 

B 2.023 2.723 0.700 

C 1 .740 2.442 0.702 

D 1 .724  2.41 3 0.689 
- 

Radiographs taken before and a f t e r  the  drop confirm tne dis tance of 

the lead  settlement and the f a c t  t h a t  t h e  lead set,tled uniformly. 
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Table 4. Dimensions’- Taken of ORNL Test Cask 
a t  Section Through M a x i m u m  Deformation 

Outer Edge%% Inner Ed e>L\’Y ,\ 6% 

Distance Deviation Distance Deviation 
From Bottom End (Inches) From Bottom End ( Inc he s ) 

0 
1 /4 
1 /2 
3/4 
1 .ooo 
1-1/4 
I -1/2 
1 -3/4 
2 000 
2-1 /4 
2-1/2 
2-314 
3.000 
3-1 /4 
3-1 / 2  
3-3/4 
4.000 
4-1 /k 
4- 1 /2 
4- 3/4 
5.000 
5’-1/4 
5-1 /2 

15’/1 6 
1 -1/16 
1 4 /16  
I -5/I 6 
I -7/16 
I -9/l6 
1-1 1/16 
I -I 5/I 6 
2-1 /I 6 
2-3/16 
2-571 6 
2-7/16 
2-9/16 
2-1 1/16 
2-1 3/16 
2 -1 5/16 
3-1 /I 6 
3-3/1 6 
3-5/7 6 
3-7/7 6 
3-9/16 
3-1 1/16 
3-1 3/16 
3-15/76 
4-1 /I 6 
4-3/16 
4-571 6 
4-7/16 
4-9/76 
4-1 1 /I 6 
4-1 3/16 

- .00U 
- .0021 
C .  0041 
+. 0245 
+. 0380 
+.0156 
- e 0045 
+. 0067 

+ 0067 
+ .005 
+.0038 
+ .0023 
+. 002 
+ ~ 001 
+. 001 
0. 
0. 
-, 001 
-.0015 
-.0015 
-.0048 
-.0015 
+*  001 
+ ~ 001 
0. 
0, 
0. 
0. 
0. 
0, 

C.0072 

~~ -~ ~ 

-::-These dimensions a r e  taken from two a r b i t r a r y  reference l i n e s ,  

-::“.:-Outer edge l i n e  through Y-Z, 

-::-::-%Inner edge l i n e  through W-X. 
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5. CASK TESTING - FFLANKLIN INSTITUTE 

A small model (see Fig. 15) of a radioactive mater ia l  shipping cask 

was subjected t o  impact t e s t s  to invest igate  lead s e t t l i n g  a t  Franklin 

I n s t i t u t e  Research Laboratories", The lead w a s  not bonded t o  t h e  mild 

s t e e l  s h e l l .  

30 f t  onto a massive s t e e l  anvi l .  The lead s e t t l e d  a distance of 0.1~09 

i n ,  which i s  equal t o  2.3% of  i t s  i n i t i a l  height.  This t e s t  data  i s  

compared t o  an a n a l y t i c a l  examination of  the drop i n  Sect.  8.  

The cask, or iented v e r t i c a l l y ,  w a s  dropped from a height of 

6. ANALYTICAL TFCEATMENT OF LEAD MOVEMENT UNDER IMPACT CONDITIONS 

The k ine t ic  energy o f  a cask a t  impact must be diss ipated e i t h e r  i n  

the cask or  i t s  environment before it w i l l  come t o  r e s t .  Since regula- 

t i o n s  s t i p u l a t e  t h e  impact surface must be e s s e n t i a l l y  unyielding, v i r -  
t u a l l y  a l l  the  energy must be absorbed by e l a s t i c  and p l a s t i c  deformation 

of  mater ia l  which may o r  may not be p a r t  of  the  cask proper. 

propert ies  under dynamic conditions must therefore  be known i n  order t o  

a n a l y t i c a l l y  study the e f f e c t  of impact on t h e  cask. 

The mater ia l  

Since t e s t s  t o  determine proper t ies  of fe r rous  mater ia ls  at, the s t r a i n  

r a t e s  expected during impact ind ica te  t h a t  r e l a t i v e l y  small increases i n  

the y i e l d  point  s t r e s s  l e v e l s  a r e  experiencedJ3Y4it i s  recommended t h a t  

the  s t a t i c  y i e l d  point  s t r e s s  be used f o r  s t e e l  s h e l l s ,  heads, f langes,  

e t c .  i n  the  determination of p l a s t i c  deformations, 

The dynamic proper t ies  of  lead have been invest igated inany times and 

some of the  references 

propert ies  of chemical 

a r e  as  follows5: 

and t h e i r  f ind ings  a r e  presented. 

lead under s t a t i c  conditions a t  room temperahure 

The mechanical. 

Cast lead 

Modulus of e l a s t i c i t y  
Poisson's r a t i o  

Tensile s t rength 

$ Ultimate elongation 
Br ine l l  hardness No. 

2 x I O "  p s i  

.Lo t o  .45 

- 33% 
4.0 - 6.0 

2300 - 2800 psi  



4 - 1 3  NUT- 6- l/4 

WELDED - 
TUBING 

S E A M L E S S  - 
TUBING 

0.120 

O R N L  DWG. 67-12889 

THIS SURFACE WAS 
3.00 DIAM.--- FACED OFF AFTER 

WELDING 

A L L  DIMENSIONS I N  INCHES, NOT TQ S C A L E .  

Fig .  1s. Drawing of Franklin Institute Research Laboratory Test 
Cask Model 22. 
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Based on Br ine l l  hardness number of 4.0, the s t a t i c  flow pressure 

of lead has been calculated t o  be 5300 p s i ,  

defined a s  the amount of energy required t o  displace a u n i t  volume of 

material  under dynamic conditions i s  reported by several inves t iga tors  

t o  be higher than t h i s  value. 

The dynamic flow pressure,  

The dynamic flow pressure o f  c o m n  plumbers lead as measured by 

J. H. VincentG w a s  found t o  be between 8700 p s i  and 18,850 p s i ;  t h i s  

wide range wa.s a t t r i b u t e d  t o  var ia t ions  i n  the c r y s t a l  s i z e  or orienta-  

t i o n  and possibly mater ia l  impuri t ies .  Another invest igator ,  J .  P o  
Andrews7’8, found t h a t  the impact, energy versus apparent removal o f  
mater ia l ,  i n e o ,  displaced volume, p lo t ted  as a s t r a i g h t  l i n e  i n  the 

range of v e l o c i t i e s  invest igated f o r  a p a r t i c u l a r  sample of mater ia l .  

Clarke, i n  another study” presents a nondimensional s t r a i n  f a c t o r  as a 
function of impact veloci ty;  t h i s  f a c t o r  may be r e a d i l y  converted t o  a 

dynamic flow pressure.  

value of 8500 p s i  f o r  the dynamic flow pressure of lead may be calculated.  

By using h i s  d e f i n i t i o n  of r a d i a l  s t r a i n ,  a 

These data  ind ica te  t h a t  l ead  tends t o  r e s i s t  deformation under 

dynamic conditions more than under equivalent s t a t i c  conditions; f o r  

example, it w a s  assumed i n  r e f .  7 t h a t  the  energy required t o  displace 

one cubic inch of l ead  i s  approximately fou r  times the s t a t i c  t e n s i l e  

s t rength.  This assumption i s  a l so  v e r i f i e d  approximately i n  r e f  + 10, 
which gives a value of lO,3OO p s i  for the dynamic flow pressure.  

From the above data i t  i s  c l e a r  t h a t  the dynamic f l o w  pyessure of 
lead  i s  a r e l a t i v e l y  uncertain quantity dependent upon t e s t  specimen con- 

f igura t ions  and methods of cor re la t ion .  A reasanable and consemative 

value which may be used appears t o  be the s t a t i c  flow pressure of  lead, 
o r  about 5900 p s i ,  

6.1 End Drop 

A l imi ted  amount of t e s t  data ind ica tes  t h a t  the s t e e l  weldments of 

a lead-shielded c y l i n d r i c a l  cask constructed with f u l l  penetrat ion welds 

w i l l  withstand a 3O-ft impact on end without rupture or excessive d i s t o r -  

t i o n  of the s h e l l s .  If the end drop i s  perpendicular t o  the drop pad, 
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then the  lead, if unbonded, w i l l  receive l i t t l e  support from e i t h e r  the  

inner o r  outer  shell; the  lead w i l l  then s e t t l e  i t s  maximum amount, possi-  

bly creat ing a void i n  the  annular shielding cavi ty  opposite the end of 
impact . 

Assunring lead t o  be an incompressible medium and considering a toro i -  

d a l  element, i n  which the  diameter of  the inner hole does not  change under 

an a x i a l  force  (Fig. 16), the  r a d i a l  s t r a i n  i s  found t o  be related -Lo t he  

axial s t r a i n  as  noted i n  Eq.  6.1. 

F ig .  16. Schematic Drawing of a Toroidal Element 

That is, 

n ( R z  - r") dy = n [ R "  ( 1 + 6,)" - rz] ( 1  - E ) dy (6.1) Y 
where 

E = increase i n  radius due to settlement o f  l ead  divided by the r 
o r ig ina l  radius ,  

E = decrease i n  length of l ead  due t o  settlement divided by the  
Y 

o r i g i n a l  length,  

r = inner radius  of or i -ginal  lead,  
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R = outer rad ius  of oyiginal lead, 

dy = incremental length of lead. 

By simplifying Eq. 6,l and neglecting a l l  higher order i n f i n i t e s i -  

m a l ~ ,  it can be shown t h a t :  

(6.2) 

The s t r a i n  energy i n  the l e a d  may be calculated by: 

E 

where 

R = outer radi.us of lead, 

r = inner rad ius  of  lead, 

= dynamic flow s t r e s s  i n  lead,  
OPb 

E = the  s t r a i n  energy absorbed i n  the  lead, 
Pb 

E = overa l l  length of lead. 

Rearranging Eq, 6.3 a f t e r  subs t i tu t ing  from Eq, 6,2 f o r  t: 
Y 

The s t r a i n  energy absorbed i n  the outer s h e l l  of the cask, Es, may 
be calculated as follows: 

E 

where 

ci = t e n s i l e  s t rength of outer s h e l l  material ,  
S 

E = the  circumferential  s t r a i n  i n  the  she l l ,  
c 

t = thickness of outer shell. 
S 
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This l eads  t o  : 
E 

P 

E = 2 n R t  CT 
S s s J & r d Y  

O 

since 

E = & for a cy l ind r i ca l  s h e l l .  r C 

The two energies  given by E q s ,  6.4 and 6.6 must equal t h e  k ine t i c  

energy of the  cask a t  impact. If the maximum s t r a i n  i s  ac tua l ly  desired 

one must now choose a form f o r  the outer  s h e l l  def lec t ion  curve i n  order 
t o  evaluate t h e  in t eg ra l .  If the change i n  volume of the annular cavi ty  

i s  desired,  it may be determined without evaluating the  i n t e g r a l  by con- 

s ider ing the following: 

where 

AV = the  void volume created by t h e  displacement of lead, 

.e = o r i g i n a l  length of t h e  volume of l e a d ,  

This equation s impl i f i e s  t o  
E 

AV = 2nR2 [ c r  dy 
c 

0 

(6.7) 

when higher order inf ' initesimals a r e  neglected. 

Since a l l  k ine t i c  energy must be absorbed i n  the  cask as  noted above, 

Eqs .  6.4 and 6.6 may be combined as noted below: 

E 
n 

where 

W = weight of t h e  cask, 

H = height of drop. 
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Rearranging Eq. 6.9, we have 

e 

Rearranging Eq. 6.8 

Combining Eqs, 6.10 and 6.11 gives:  

(6.10) 

(6.12) 

Since the  change i n  the height of  t h e  lead column, Ah caused by the  

impact i s  : 

then 

R2 
n(R2 - r2) ( R t  ZI -t R23 Ah = 

s s  

(6.13) 

(6.14) 

It should be reemphasized t h a t  Eq.  6.14 cannot be used i f  the  lead 

i s  bonded t o  t h e  s t e e l  s h e l l s  since support i s  provided t h a t  i s  not taken 

i n t o  account. 

7 .  APPLICATION OF ANALYSIS TO ORNL-BUILT 1:7.5 
SCALE MODEL OF HALLAM CASK 

Data w a s  obtained during the drop t e s t  of the 1 :7.5 scale  model of 

the  Hallam cask, 
be t r ea t ed  here as though it was. 
analyze the  lead  movement problem i s  given below: 

While the drop was not qui te  f l a t  onto i t s  end, it w i l l  
Per t inent  data  of t h e  cask used t o  



W = 163 l b ,  

B = 30 f t  or  360 in . ,  
R = 2.248 i n ,  

r = 1.3125 in . ,  

t = 0.20 in . ,  
S 

0 = 45,000 p s i  (seamless cold drawn tubing) ,  
S 

= 5500 p s i  (This dynamic flow pressure was assumed. It i s  close 
OPb 

t o  the  s t a t i c  flow pressure discussed on page 26). 

From Eq. 6.14 

AH = 

= .SO in .  sett lement 

(2.25)‘ (163) (360) 
n[ (2.25)’ - (1.31 >“I [ (2.25) (0.20) (45000) + (2,25)2 (55OO)l 

Experimental da ta  of t h i s  drop ind ica ted  the lead  ac tua l ly  was dis- 

placed 0.7 i n .  which i s  i n  reasonable agreement wi th  t h a t  predicted above. 

The lead  displacement of 0.7 in .  i s  equivalent t o  a reduct ion i n  the  length 

of the  contained lead column of 2.6%. 

8. APPLICATION OF ANALYSIS TO THE FMNKLIN INSTITUTE 1 :12.5 
SCALE MIDEL OF HALLAM CASK 

Data was obtained during t h e  drop t e s t  of the  1 :12.5 sca le  model of 
the  Hallam cask. 

Per t inent  data  of the  cask used t o  analyze t h e  lead movement problem 

a re  given below: 
Model 22 

w = 41.52 Ib,  
H =  

R =  1.380 in. ,  
r =  0,628 in . ,  

30.00 f t  o r  360 in . ,  

,120 in., - - 
tS 

o =  45,000 ps i ,  
S 
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From Eq. 6.14 

= .335 i n .  settlement 

The t e s t  cask Model 22 a c t u a l l y  had a lead  displacement of O.kO9 i n .  

which i s  i n  reasonable agreement with t h e  calculated 0.335 i n .  The lead  
displacement  of 0.409 i n .  i s  equivalent t o  a reduction i n  the length o f  

the contained lead column o f  2.3%. 
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