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ABSTRACT

Equilibrium and non-equilibrium crystallization reactions in the system

LiF-BeFg-ThF^ are analyzed in relation to their potential application to

molten salt reactor fuel reprocessing. Heterogeneous equilibria in the

temperature range from the liquidus at 590°C to the solidus at 350°C are

described quantitatively and in detail by means of ten typical isothermal

sections and by three temperature-composition sections. The implications

of metastable fractionation in this temperature interval are discussed

as a possible feed control step in reductive extraction reprocessing of

molten salt breeder reactor fuels.
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INTRODUCTION

The ORNL Molten Salt Reactor Program is devoted to the development

of molten salt breeder reactors which employ mixtures of molten fluorides

as core fluids. Until recently, the most promising approach to the

development of molten salt breeder reactors appeared to be a two-

region reactor with fissile and fertile materials in separate fuel and

blanket streams. Thorium would be carried in the blanket salt, in a

salt stream which would consist of a 7LiF-BeF2-ThF4 mixture. Advances

in chemical reprocessing have provided evidence recently that 233Pa and

possibly the rare earth fission products can be separated from mixed

thorium-uranium salt by reductive extraction methods employing liquid

bismuth. This development, along with other design developments, makes

possible a single-fluid breeder reactor, one which has greater simplicity

and reliability than the two-fluid reactor. The fuel for the single

fluid reactor would be composed of 7LiF, BeF2, ThF4, and 233UF4, and

might be expected to contain ~ 12 mole <f0 ThF4. Optimization of the 7LiF

and BeF2 concentrations is not complete, because the trade-off values

of several significant factors have not yet been established. These

include selection limitations imposed by the equilibrium phase behavior

of the LiF-BeF2-ThF4 system (233UF4 concentration will be only 0.2 mole

<jo, and is therefore of little consequence in this connection), physical

properties such as viscosity, vapor pressure, thermal conductivity, and

the relations of LiF-BeF2-ThF4 composition to the development of

chemical processes for removal of protactinium and the lanthanides.

Effective separation of the rare earth fission products from

fluoride salt streams which contain thorium fluoride is the keystone to

development of semi-continuous reprocessing in single-fluid molten salt

reactors. Several methods for reprocessing spent LiF-BeF2-ThF4-UF4 fuels

are currently under investigation. The method' which is regarded as most

tractable for engineering development involves the selective chemical re

duction of the various components into liquid bismuth solutions at about

600°C, utilizing multistage countercurrent extraction operations. The

current status of engineering development of this process has been
2

described by Whatley et al. The initial steps remove uranium and
3

protactinium by reductive extraction. A strong incentive then exists to

remove the rare-earth fission products from the remaining salt. The most

nearly feasible approach to this separation seems to be their extraction
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into bismuth alloy, even though the recycle volumes of extractant are

marginally acceptable. The efficiency of this separation step would

be greatly enhanced if the concentration of the rare earths in the

salt mixture were increased by at least tenfold, and if the residual

salt solutions were of a much lower concentration of thorium fluoride.
L

That the LiF-BeF2-ThF4 phase diagram shows the occurrence of low

melting mixtures of low thorium fluoride content which are producible

from MSBR single-core fluids by metastable crystallization has suggested

the possibility that non-equilibrium fractionation reactions might be

exploited as a feed control step in the reductive extraction process.

Because of its relative complexity, the unpublished version of the

LiF-BeF2-ThF4 phase diagram may experience less frequent or less

effective application in molten salt reactor technology than is

warranted by the developments cited above. We therefore describe in

this report further detailed aspects of equilibrium and non-equilibrium

behavior in the system.

LIQUID-SOLID PHASE REACTIONS IN THE SYSTEM LiF-BeF2-ThF4

Methods for interpreting polythermal and isothermal phase diagrams
5

are described extensively in an earlier report where the phase relation

ships in a number of fluoride systems were analyzed in detail. Interpre

tation of the equilibrium behavior in the system LiF-BeF2-ThF4 (Figure l)

is somewhat more complex than for the systems analyzed because of the

occurrence of an unusual solid solution which is produced as the compound

3LiF'ThF4 crystallizes from LiF-BeF2-ThF4 melts. The crystal phase of

nominal composition, 3LiF-ThF4, precipitates as a ternary solid solution

which, at its maximum in composition variability (near the solidus),

is described by a composition triangle with apices at LiF-ThF4 (75-25

mole </0), LiF-BeF2-ThF4 (58-16-26 mole <0, and LiF-BeF2-ThF4 (59-20-21

mole °jo). Two substitution models may provide an explanation for the

single phase solid solution area: (l) a substitution of one Be ion
+ 4+

for a Li ion with the simultaneous formation of a Th vacancy for every
2+ +

four Be ions substituted for Li ions to provide electroneutrality and

(2) substitution of a single Be ion for a Li ion with the simultaneous

formation of a Li vacancy. Model (l) would afford a solid solution
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limit in good agreement with the leg of the triangular area with the

lesser ThF4 content whereas model (2) would give a line extending from

3LiF-ThF4 toward BeF2-ThF4 (60-40 mole <0. This is a limiting line

which permits considerably higher ThF4 content than that found experi

mentally. Accordingly, it appears that both models are simultaneously

applicable for the crystallization behavior of 3LiF>THF4 a3 it crystallizes

from LiF-BeF2-ThF4 melts. Once the crystal structure of 3LiF'ThF4 has

been established (a study of the structure is currently in progress )

it will be possible to appraise the validity of these models.

Application of ternary phase diagrams to technology often requires

a knowledge of the identities and compositions of the various phases in

equilibrium at specific temperatures. Such information is represented

by equilibrium phase diagrams. Typically, phase diagrams of ternary

systems are presented as projections of temperature-composition prisms

on their basal planes. When such schematic representation includes

liquidus temperatures, equilibrium crystallization and melting reactions

can be described in a quantitative manner. Here, the use of isothermal

sections is often valuable, particularly if the phase diagram is complex.

The chief feature of the isothermal section is that it provides informa

tion both about the identity and relative masses of coexisting phases.

The crystallization behavior of the 3LiF-ThF4 ternary solid solution

determines the composition sequence as LiF-BeF2-ThF4 melts are cooled.

A series of equilibrium isotherms is shown in Figs. 2 to 11, which

describe all the equilibrium reactions in the temperature interval from

590°C to 350°C, i.e., the liquidus-solidus interval of chief relevance

to the compositions which are likely to have application in molten salt

reactor technology, and in which all 3LiF-ThF4 solid solution melting-

freezing reactions occur. Within this interval all the solid phases

of the system are involved; The equilibrium behavior of chief importance

to us is described further by the temperature-composition sections,

3LiF-ThF4-2LiF-BeF2, LiF-ThF4-2LiF-BeF2, and LiF-2ThF4-2LiF-BeF2, shown

in Figs. 12-14 (schematic, not to scale).
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Fig. 4. Isothermal Section of the System LiF-BeF2-ThF4 at 562°C.
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The isothermal sections included in Figs. 2 to 11 are drawn to scale

and represent the experimental results which were the basis of the

previously published phase diagram. Composition-temperature relations

in the LiF-BeF2-ThF4 system for LiF concentrations greater than 50 mole

<f0 are shown in detail in Fig. 15.

The straight lines appearing in Figs. 2 to 11 are tie-lines (or

"conodes") connecting two phases which are in equilibrium. In Fig. 16,

point P, as a point on such a tie-line joining points b and z, represents

a mixture of the phases (or compositions) b and z with the mole fraction

of b equal to the ratio of line lengths zP/zb.

In the case of a mixture of three phases, such as the points a, b, c

making up the total composition at point P (Fig. 16), the relative

amounts of the phases a, b, c making up P may be determined as follows,

with the three fractions defined as x of a, y of b, 1-x-y of c. Then:

(1) Graphically: extend the line bP to fix the point z on the

line ac. Then y = zP/zb, and x = (zc/ac) (1-y).

(2) Analytically: let the fractions of the components A and B

at each of the four points (a, b, c, P) be

Aa *b Ac V
B B. B B-.
a d c P

Then by similar triangles, we have

= a
B -B

a z
B -B

= a c

A -A
a z

A -A
a c

VBz =
A^-AVAz

= s

Then B = Bl - £A + pA = B - OA +
Z D D Z cL El

Hence A = a d P d a

Then

a

Bz =Bb "PAb +P(Az}

Y = B - B
P z

=b - B
z

A A
and x = z - c

A -
a

A
c

(l-y),

qA
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ORNL DWG. 69-7559

Fig. 16. Schematic Drawing for Use in Calculating Relative Fractions
of Coexisting Phases at Point P.
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POTENTIAL APPLICATION OF FRACTIONAL CRYSTALLIZATION

IN CHEMICAL REPROCESSING

Under equilibrium conditions, the crystallization end-point in

three component systems such as in the LiF-BeF2-ThF4 system, depends

on the "compatibility" or three solid phase triangles of the equilibrium

diagram. As an example, compositions in the triangle LiF - 3LiF-ThF4-

2LiF-BeF2 have their crystallization end-point at the 444°C peritectic
7

reaction point. As noted previously, dynamic crystallization of

LiF-BeF2-ThF4 mixtures does not follow the equilibrium crystallization

diagram exactly; instead, non-equilibrium crystallization proceeds

characteristically by sub-cooling (i.e., delayed crystallization under

dynamic cooling), and by incomplete recombination of liquid and solid

phases at the peritectic reaction points. Thus, liquids are produced

from mixtures which are of interest to us, primarily those containing

high concentrations of LiF, which are richer in BeF2 than their

equilibrium counterparts, and which crystallize as described by the

lower melting areas of the phase diagram. The consequence of non-

equilibrium fractionation is thus to produce liquid residues which are

lower in ThF4 content than at equilibrium.

Let us examine the difference between equilibrium and non-equilibrium

crystallization behavior of a liquid composition that would partially

typify the reactions of MSBR salts. Suppose the composition c, LiF-

BeF2-ThF4 (63-32-5 mole $,), undergoes equilibrium crystallization.

On complete solidification, the frozen salt will consist of the three

crystalline phases, 3LiF-ThF4 ss, 2LiF-BeF2 and LiF-2ThF4 in proportions

given by the position of point c in the corresponding triangle of Figs.

9, 10, and 11.

For non-equilibrium crystallization this triangle has no signifi

cance. The non-equilibrium process consists of four consecutive steps,

seen on the basis of the following diagram:
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LiF-2ThF4 (=D)

3LiF-ThF4

LiF

2LiF-BeF2 (= H)

Step (1): freezing starts at ~ 446°C for composition c, and the

liquid travels on the solid solution liquidus surface to reach curve

Pi - P3 at some point I (at ~ 440°C), while precipitating some solid

solution of composition between a and b, say a' as average.

Step (2): liquid travels on curve P1-P3, to reach P3 (433°C),
while precipitating a mixture of solid solution (of composition between

b and s, say b' as average) and 2LiF-BeF2.

Step (3): liquid travels on curve P3-E, to reach E(356°) while

precipitating mixture of LiF-2ThF4 + 2LiF-BeF2.

Step (4): liquid at E(356°) freezes to mixture of LiF-2ThF4 +

2LiF-BeF2 + BeF2.

Quantities involved for 1 mole of starting composition c:
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Step (1): draw straight line a'c and extend it to curve P!-P3,

to fix point {,:

Moles of liquid reaching & = a'c = mx;
&'£

Moles of ThF4 precipitated (in step 1, or between 446 and 440°)

= xa, (1-mi) = Pi,
in which x , = mole fraction of ThF4 at a', etc.

Step (2): draw straight line b'-H, and extend straight line £P3

back to fix point y on line b'-H:

2LiF'BeF2 f=H)
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Moles of liquid reaching P3 =^ (mi) = m2;
yP3

Moles of ThF4 precipitated (in step 2, or between 440° and 433°)

=V ^H (ml"m2) =P2-
Step (3): draw straight line DH and extend straight line P3E

back to fix point z on the line DH:

LiF

LiF-2ThF4

(=D)

2LiF-BeF2 (=H)

zp
Moles of liquid reaching E = -=-*• (m2) = m3;

Moles ThF4 precipitated (in step 3, or between 433° and 356°)

3\DH/ (m2-m3) =P3,
since x.

D
2/3.

Step (4): moles ThF4 precipitated in this step (at 356°)

= xc - (Pi + P2 + P3>«
Thus, given the original composition c on the phase diagram as we

have it, one can make estimates regarding what happens in steps (l) and

(2), and these estimates fix what happens in steps (3) and (4), for the
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limit of non-equilibrium behavior. This means a process in which there

is never any interaction between precipitated solid and solution. Actual

behavior will of course be somewhere between this and the equilibrium

process.

Since non-equilibrium fractionation of LiF-BeF2-ThF4 melts

produces final liquids which are low in thorium, and since the

concentrations of rare earths in the solutions are expected to be about

20 ppm at the time when fuel processing is economically mandatory, one

might anticipate that a semi-zone refining step might well produce

and transport liquids of low thorium concentration and containing a

relatively high concentration of rare earths (the solubility of the

lanthanide trifluorides in any of the melts one might encounter is

almost certainly to be at least 200 ppm at the low temperatures which

would be present in this part of the feeder apparatus). The efficiency

of this concentration step could possibly be impaired seriously if the

rare earth trifluorides either formed intermediate compounds (such

compounds are formed only for the lanthanides of = 63) which interacted

with the crystallizing phases or otherwise formed solid solutions with

any of the crystallizing phases. The structure of 2LiF-BeF2 and
9

LiF«ThF4 are known and believed to be incapable of serving as solid

state hosts for the rare earth fluorides. The 3LiF-ThF4 solid solution

is an unknown factor in this consideration and could conceivably act as

a solvent for lanthanide ions. This possibility as well as the

possibility that LiF-2ThF4 might also serve as a solid state solvent

for lanthanide ions could be examined easily through a small scale

laboratory program.
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