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SCME EDDY-CURRENT PROBLEMS AND THEIR INTEGRAL SOLUTTIONS

C. V. Dodd W. E. Deeds?
J. W. Tuquire' W. G. Spoeri

Abstract

We have obtained integral representations for the
vector potential produced by a circular coil for a numwber
of different geometrical configurations. From the vector
potential we can calculate any obgervable electromagnetic
induction phenomenon. Our pregent solutions are limited to
cases with axial symmetry and linear media. The solutions
are in the form of multiple integrals of ordinary and modi-
fied Bessel functions.

The configurations that we have already solved include
colls with rectangular cross sections in the following loca-
tions: above or on each side of a two-conductor sheet bounded
by parallel planes, between two parallel.plane conductors,
encircling a tube or a rod consisting of one metal clad on
another, and inside a tube. The electromagnetic phenomena
that we have calculated include the coill impedance, the
phase and amplitude of the voltage induced in pickup coils,
the effects of small spheroidal defects on the impedance and
phase, and the forces generated in a metal by the eddy cur-
rents. The agreement between calculated and measured phenomena
is excellent in most cases and within experimental error in
all cases.

I. Introduction

One of the most important factors in any eddy-current test and one
of the most difficult to analyze is the coil that generates the eddy
currents. The electromagnetic field produced by an alternating current
flowing in a circular coil in the presence of a conducting material ig
generally quite complicated. The problem hags been analyzed a number of

times in the past by use of various physical models. The solutions have

lConsultant from the University of Tennessee, Knoxville.



gradually become more accurate and the models more sophisticated as the
actual problem is better approached. Today we have very accurate but
very complicated solutions, some of which are presented here.

An early series of paper by Forster®™ between 1952 and 1954
dealt with both the theory and practical aspects of eddy-current testing.
He analyzed a coil above a conducting plane, assuming the coil to be
a magaetic dipole, and an infinite coil encireling an infinite rod.
Hochschild” in 1959 also gave an analysis of an infinite coil and
included some eddy-current distributions in the metal. Waidelich and
Renken® in 1956 analyzed coil impedance by an image approach. Their
theoretical results agreed well with experiment for relatively high
freguencies. Libby’ in 1959 presented a theory in which he agsumed the
coil was a transformer with a network tied to the secondary. This
network representation gave good results when compared to experiment.
The diffusion of eddy-current pulses (Atwood and Libby,® 1963) can be
represented in this manner. TIn 1962, Russell, Schuster, and Waidelich,’
assumning that the flux was entirely coupled into the conductor, analyzed

a cup-core coll. The semiempirical results agreed fairly well with the

3Friedrich Forster and Kurt Stambke, Z. Metallk. 45(4), 166-179
(1954). o

°R. Hochschild, "Electromagnetic Methods of Testing Metals,"
Progress in Nondestructive Testing, Vol. 1, Macmillan Company, New York,
1959,

®D. L. Waidelich and C. J. Renken, Proc. Natl. Electron Conf. 12,
188-196 (1956).

"H. L. Libby, Broadband Electromaguetic Testing Methods, HW-59614
(1959).

8K. W. Atwood and H. L. Libby, Diffusion of fddy Currents, HW-79844
(1963).

°p, J. Russell, V. E. Schuster, and D. L. Waidelich, J. Electron,
Control 13, 232-237 (1962).




experimental measurements. Vein'® in 1962, Cheng®! in 1964, and
Burrows -° in 1964 gave treatments based on delta function coils, and
Burrows continued with the development of an eddy-current flaw theory.
Dodd and Deeds®? in 1963 and Dodd'% in 1965 gave a relaxation theory
to calculate the vector potential of a coil with a finite cross section.
While the relaxation theory is very versatile and guite accurate for a
very fine lattice, it requires a large digital computer and is very
expensive to use. Doddl® in 1967 and Dodd and Deeds’® in 1968 devel-
oped a set of integral equations that can be evaluated accurately on
a small computer. Unfortunately, the derivation of these equations is
complicated and must be repeated for various coil and conductor configu-~
rations.

This report presents the results for six cases of practical
importance with some experimental verification of the calculations.
For the computer programs used in evaluating the various formulas,

refer to the work by Iuquire, Dodd, Deeds, and Spoeri.!”

0p, B. Vein, J. Flectron. Control 13, 471-494 (1962).

11David H.S. Cheng, "The Reflected Impedance of a Circular Coil in
the Proximity of a Semi-Infinite Medium,” Ph.D. Dissertation, University
of Missouri, 1964.

12Michael Leonard Burrows, A Theory of Eddy Current Flaw Detection,
University Microfilms, Inc., Ann Arbor, Michigan, 1964,

13¢, V. Dodd and W, E. Deeds, "Eddy Current Impedance Calculated
by a Relaxation Method," pp. 300-314 in Proceedings of the Symposium on
Physics and Nondestructive Testing, Southwest Research Institute, San
Antonio, Texas, 1963,

g, v, Dodd, A Solution to Electromagnetic Induction Problems,
ORNL-TM-1185 (1965) and M.S. Thesis, the University of Tennessee, 19063,

12¢, V. Dodd, Solutions to Electromagnetic Induction Problems, ORNL=-
TM-1842 (1987) and Ph.D. Dissertation, the University of Tennessee, 1967.

160, V, Dodd and W, E, Deeds, J. Appl. Phys. 39, 2829-2838 (1968).

177, W. Luquire, C. V. Dodd, W. E. Deeds, and W. . Spoeri, Computer
Programs for Some Eddy Current Problems, ORNI~TM-2501 (in preparation).




IT. General Theory

For the cases consldered here, the vector potential adequately and
conveniently represents the electromagnetic field. In this section we
shall give the differential equation for the vector potential of a single
loop of wire, show how a number of similar vector potentials can be
superimposed to obtain the vector potential for coils of rectangular
cross section, and then derive equations for various physical phencmena

in terms of the vector potential,

A. Differential Equation Tor the Vector Potential

We shall assume that space is divided into regions of linear, iso-
tropic, and homogeneous media, one of which contains an infinitely thin
coil carrying current, I. We shall also assume axial symmetry and a
sinusoidal current in the coil, which is located at (ro, zo) in c¢ylindri-
cal coordinates.

The differential equation for the spatial part of the vector poten-

tial, A, is!?

- i¥-+ wiueh — jupoA + pIs(r-r )s(z-z ) = O . (2.1)
I‘Z 0 0

The solution of this differential equation is a boundary value
problem, and it will be effected for various geometrical configurations
in later sections. Once this linear differential equation for a partic-
ular conductor configuration has been solved, any number of delta
function coils can then be superimposed to build up any desired shape

of coil.

B. Superposition of Vector Potentials

We can write for the total vector potential produced at (r,z) by

the superpositioa of n coaxial delta function coils located at T, and z,

{ 3 — .
A\riz/total - ZA(P’Z}ri,Zi> . <2.2)



i

This eguation 1s valid for coils of any cross section. If we let
the current, I, in the delta function coils approach a continuous cur-
rent distribution of density i,(r,z), then the vector potential due to
this current will also approach a continuocus distribution. Denoting the
density of this vector potential distribution‘by‘AO(r,z,rO,zO), we can

write the integral form of Eg. (2.2):

A<r’z)total = U/\L/ A (r,z,ry,2,)dr dz, . (2.3)

coil
cross section
since A,(r,z,r,,z,) 1s proportional to i,(r,z), it will prove useful
for cases in which the current in each loop has the same magnitude and
phase to express Eq. (2.3) in terms of the current density. In such a

case,

ni
ig(r,z) = ——————— = constant , (2.4)

(coil area)

where T is now the current in each loop of wire,
Multiplying the integrand of Eq. (2.3) by io(r,z)/io(r,2) and
meking use of Eg. (2.4) yields

2A (rr; rq52, )
dr dz 5

where we have assumed the coil to have a rectangular cross section, as

—~
N
N
U
~—

A<r’z)total = ( 92mg. V(T omr
/l "'-’

shown in Fig. 1. Once the vector potential has been calculated for a
particular coil and conductor configuration, the total vector potential
produced by a coil with rectangular cross section may be obtalned simply
by allowing the delta function current to approach the current density,

io(r,z), and making use of Eq. (2.5).

¢. Calculation of Various Electromagnetic Phenomena

Ounce the vector potential has been determined, any electromagnetic

induction phenomenon can be calculated from it. In this section we



ORNL-DWG 68-10309

—~—l

Fig. 1. A Rectangular Cross-Section Coil.

shall give the equations for the phenomena that are of particular inberest

to the nondestructive tester.

1. Tnduced Voltage

We have, for the voltage induced in a length of wire,

V o= jwf[A-ds . (2.6)
For an axially symmetric coil with a single loop of radius r,

Eq. (2.5) becomes

V = ju2nrA(r,z) . (2.7)

The total voltage induced in a coil of n turns is then

I

vV = jZKuQZJriA<ri’Zi) . (2.8)

i:t: 1



We can approximate the above summation by an integral over a turn

density of N turns per unit cross-secticnal area:

J?nwh/ﬁh/ (r,z) Ndrdz . (2.9)

coil
cross section

For coils with a constant number of turns per unit cross-sectional area

jRrtwn '
V = J U/ L/‘ rA(r,z) drdz . (2.10)

coil cross section

coll
crogss section

If we specify a rectangular cross-section coil of length (zé-ﬂg)

- . l4 4 » o
and of inner and cuter radii rj and rs, respectively, we can write

2 r}

j2rwn’
= ( J’ d/‘b/‘rA (r,z)drdz . (2.11)
ﬁ ~E

By inserting the vector potential from Eq. (2.5) into Egq. (2.11), we
obtain the voltage induced in a coil (with primed parameters) by a

current, I, flowing in a coaxial coil:

J2mwnn’I u/ \/ h/ k‘/’Zl"Ao(r 37,10 20 ) S drd
= rodzadrdz .
(£,-2,)(2L=21)(x - ) (x]-x]) om0
2771V 2

2 '&7 I.I

(2.12)

For the special case of the self-induced voltage, we have

J?ﬂwﬂ T LI (r Z, rO,z )
dr dz drdz . (2.13)
(ﬁ —E '_r 0 0O

2. Mutual Inductance

- . . - . - 14 14 4
The voltage generated in a "pickup" coil with dimensions ra, riy, 42,
14 . - - . . - .
a curren owing in riv coil with dimensions rs, r1
41 by t, I, fl a "driver" coil with dimensions rp, ri,

zg, 2y 1is



v M a jWMT
= ermeen I [Y)
a J s
or
Y
Me o (2.14)

Using Eq. (2.12) to calculate the voltage we have

2mmn’ ﬁ” ¥ 2 rig(r,z,ro,20)
M = ulodZ drdz
1

(2,-2,)(28=20) (2 ymr, ) (2h-r]) ﬂl J

(2.15)

This 1s the mutual inductance between the driver coil and the pickup
coil. By the reciprocity theorem, this is equal to the mutual inductance

between the pickup coil and the driver coill.

3., Self Inductance

The coil's self inductance is a speclal case of the mutual Induc-
tance. We shall let the Hwo coils become one and the same and drop the

primes in Eg. (2.15), obtaining

£y Ty Uy T

2mm” 1 Thy(r z,ro,zo)
T = - 2¥/\L/ /P‘jf dradzodrdz . (2.16)
<£2"£1> (r2“r1>

4. Coil Tmpedance

From the self-induced voltage, we can calculate the coil impedance:

V = 4T

or

(2.17)



Q0

Substituting from Eq. (2.11) for the self-induced voltage gives

o)
£

,(“2

Jlmun
rA(r,z)drdz . (2.12)

Q“vﬁ

Z:
(£2—£l)(r2—rl

The coil impedance in the presence of a conductor is usually normalized

by dividing it by the magnitude of the coil impedance in alr.

7 - Zconductor
" 1z_. |
air
or
£y T,
J[\b/\ rA(r, z) conductor drd
7 = f Ty . (2.19)
n ,@pI‘p
J[ J[ rA(r z) 5 Ldrdz
5. Defects

Once we know the vector potential in a metal, we can determine the

effect of a defect. According to Burrows,18

we can represent a small
defect by the sum of a "current defect" and a "magnetic defect.” The
current defect is caused by an abrupt change in the metal's conductivity,
and the magnetic defect is the result of an abrupt change in its magnetic
permeability. The latter is of importance only in ferromagunetic mate-
rials. The defects must be small enough for the incident field to be
essentially uniform over the defect, and the defect dimensions must be
small compared with the distance from the defect to the nearest material
boundary.

We can modify Burrow’'s Eg. (5.12) to obtain the defect-induced

voltage in terms of the vector potential:

¥Michael Leonard Burrows, A Theory of Eddy Current Flaw Detection,
University Microfilms, Inc., Ann Arbor, Michigan, 1964.
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( /A,\ 3 /A w ”VmA

I

5 NS XA
V. = % Vol <ou? r~-‘1-‘- - ga I 2.20
2d ~ 2 ' \T./ N A I /U ' (2.20)

This is the defect-produced veoltage, ng, induced in coil 2 by a current
I, Tlowing in coil 1. Here, A; is the vector potential at the defect
produced by a current I; flowing in coil 1, and Kz is the vector poten-~
tial that wguld bE produced at the defect if a current I, were applied
to coil 2; a.and E are the current and magnetic scattering matrices,
respectively. For two axially symmetric coils the voltage due to any

shape current defect and a spherical magnetic defect is

V 3 Vol =gw? < ofy OAp
= 5 Vo Uw - o
=2 | \Iz/ ) urle IB 3z oz

633 MFAlj <}Eé3)J¥T1 - (2.21)

We shall first consider current defects.

If we take the special case of a spheroidal defect, as shown in

Fig. 2, we can write for the current shape and orientation factor
Opp = O cos®e + Qi sin“o (2.22)
where
2 2190 & 1l 811 _ oy
Q. = = ) ] -1 1~ - 2 1 — :
L= 5 [1moy/o1(1-[1-0 /o] [£2-1][ : ln\é”l) 11} (2.23)

for bfa < 1

ap = %'[l~Ud/J]{lw[lmoa/U][§2+1][l~g tan”l(l/g)]}'l (2.24)
for b/a > 1
4oL )
Gy = 3 [1-04/01(2-[1-0, /o]e[E~ 5 (£°-1)In g*; 137t (2.25)

for b/a <1



Fig.
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when the defect conductivity is taken to be zero.
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SHAPE AND CRIENTATION FACTOR

$=90° SPHERDIDAL DEFECT
va et ,mﬁ_,,gmeﬁmﬂk,,m
L2 |-$=60 45° |
Z - :
1 > ol
w—s_y
7 AT ‘ :
[ AN $=30°_..
oo mtse l
fo} ’ ‘ I
0.4 0.2 0.5

1ew/ay?)

symmetry semlaxis,

conductivity of metal,

- conductivity of defect.

asymmetry parameter,

= gemiaxis perpendicular to symmetry axils,

The Shape and Orlentation Factor of a Spheroidal Defect.

[1-0y /o1(2+[1-0, o] (26 (1+£%) tan™}(1/e) 1)

for b/a > 1

(2.26)

Figure 2 shows a plot of the current shape and orientation factor

The orientation

angle, ¢, is the angle between the theta (6) axis and the symmetry axis

of the spheroid.
spheroid becomes a flat disk.
and the ghape and orientation factor becomes infinite in such a way

that the product approaches

Tts volume (47b”a/3) approaches zero,

If we let the ratio of b/a approach infinity, the
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Vol Gpp = cos?o (2.27)

where b is the radius of the disk.
It is worth noting that we can divide the current defect equation

into two independent factors:

W

2a (3 2 (82 (B ] |
-—-I:, [2 oW (Ig) Il/JXLVol C(22~l . (2.28)

The factor in the first square brackets depends only on the problem
parameters, such as coll size and shape, frequency, and conductivity.
It has both real and imaginary parts and is called the "defect sensitiv-

1

ity factor." The factor in the second square brackets depends only on
the size, shape, and orientation of the defect. TIf we allow the two
coils to become one and the same, Eq. (2.2%2) represents the impedance
change due to a current defecth.

For a spherical magnetic defect, we have
. : . ) \\\ (2 29)
1 = s *‘d‘ -
! 22 K‘?uwd/ ’

where L and p_ are the permeabilities of the metal and of the defect,

d
respectively. TFrom Eq. (2.21) we have for spherical magnetic defects

v : /OA; OA 1 SrAy OrAs\ [ HEEN
2d 3 w 1 Az 1 2\ < dy!
_ 2. e rreenen e — § | X |2 Vol . .

L 53 T (\az — + = /J |2 Vo 2u-}~.ud>J (2.30)

0
N
W
Q/
R
Q/
R

Thus we can calculate the effects of a defect from the vector poten-

tial produced there.

6. Induced Eddy Currents

We have, from Chm's law

\—->

- = A e

Foof oo B judk . (2.31)
ot

Due to axial symmetry, Eg. (2.31) becomes

J = ~juwoA(r,z) . (2.32)



7. Digsipated Power

From the vector potential, the dissipated power density due to

the eddy currents can be calculated:

P = JE = oE? = — w?0A? , (2.33)

where A 1s the root-mean-~square vector potential. The negative sign

denotes a power loss from the field.

o

8. Electromagnetic Forces

We can also calculate the electromagnetic forces in any conductor
that may be present. The force density is given by Stratton'” as
N 1 1 X K, —1 oS

- - 2 o9 m ~
= oE + J X B =5 E® V& — 2 HVU + —e 2.34)
< c? ot

=M

Thig is the force exerted by an electromagnetic field on a unit volume
of isotropic matter, neglecting electro- and magnetostrictive forces.
Thege latter forces can justifiably be neglected, since they produce
deformation of the material but no net force. The first term vanishes
when the charge density, p, is summed over the electrons and ions. The
third term is also taken to be zero for the interior of a metal. The
last term is due to the light pressure and is negligibly swall, Thus,

the force density reduces to

F=JxB-2uwm

or
[ VA QU VL (2.35)
2 K
We shall first consider only nonmagnetic materials, which require
only the first term in Eq. (2.35). Substituting for the current from

Eq. (2.31) gives

F = - gé-x (WA . (2.36)
ot

9. A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company,
New York, 1941.
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Expanding the curl of A in cylindrical coordinates,

Z_o(_2ay, s Lora
v X A o= er(\ aZ/) + ez T ar y <2.3‘7>
yields
> A AL A 3ay 4 1 oA
F = e, SE-X Ler < v ) e, - J . (2.38)

By performing the vector operations, we find that

— ~ BA BA A C\)A 1 aI‘A
7o - on o L =222 2.39)
eZ o) St Sm er o St T or (

TIf the vector potential consists of the sum of a time-harmonic part and

a steady-state part,

A=A, + Ay, (2.40)

OA . > ~ A
= (A + Ag) — e U O E or(ay + Ao)

(2.41)
r 5t r or
We shall now consider only the z component of the force density,
although the treatment of the r component is similar, The time-
harmonic vector potential, Aw, and its derivative with respect to z

vary with respect to time according to

A, = |A,l cos(wt + o) (2.42)
OA OA
—2 - | cos(wt + ') . (2.43)
oz oz

Thus we have

DA,
cos(wt +9) + Sﬁ{} - (2.44)

OA
F = + wola, |sinflwt + o {’«——9
i w| ( ) oz z

Z

OA
Expanding in terms of the real and imaginary parts of A and gwg-gives
z



C OA OA T
wo ( W W
o= - Rl —— ImA  + Im — RIA cos 2wt
z 2 ,1 L Az W Oz wl ¥
T oA, OA, i
+ |RL —-—-RlA Im = ImA | sin 2wb
L Oz oz i
B T dAg
+ 2 Ionjcoswt + RlAquin th e
L oz
aA'(.L) SAL\) \
+ ImA, Rl —— =~ R1A,, Im - . (2.45)
oz oz

This 1s the z component of the force density. To get the total force on
the metal, we must integrate Eq. (2.45) over the metal., The last two
terms are the only ones that give a net force on the metal when the
force is averaged over one cycle. Due to the cylindrical symmetry,
there will be no net r component of force.

Iet us now consider magnetic materials. The Ffirst term in Eq. (2.35)
gives the Lorentz force density, which we have already calculated; the

second term is dvue to magnetic materials:
F=-z Bzvi— . (2.46)

Substituting the curl of R for B and expanding, we obtain

aA /1 dray | 1/u)
P, ==z \52/ \r or )} (2.47)
Y ORI

This force density must be integrated over the entire metal to
obtain the total force. However, the derivative with respect to 1/u
is usually taken to be zero except on the boundaries. Again, due to
symmetry there is no net r component of force. The total force is the

sum of the eddy-current forces and the magnetic forces,

9. Fourier Analyses of Nonsinusoidal Driving Currents

We have assumed that the applied current was sinusoidal, while in

most practical cases it is not. The current waveform in practice may
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range from a pure sinusoid plus a small amount of harmonic distortion
to pulses, However, we can represent any current as a Fourier series
of pure sinusoidal currents:

[ve]

a
ag ;
(%) = P + 24(amcosmw1‘t + bmsinmwlt) s (2.49)
m=1
where o T/g
\Jul s
&, = 3;'\/ T(t) cosmw;tdt (m = 0,1,2, ... )
-1/ (2.50)
T/2
- w1 /(/ / ! . 4L 3L
b = m;"\j I(t) sinmwitdt (m=1,2,3, ... )
~T /2
21
6 = FE, ana
T = the period of repetition.
For the coill voltage produced by the Fourier components of the
current we have
UM . a1
3 0 0w
Vo= EJV :::ﬁz; ed%m T oI , (2.51)
W [ m
W
or
[04]
0 Voo j )] (2.52)
\ == ZO'+2114m7_amgos(mw1t + @m) + bmgla(mwlt o )l .
m=1

where Zm_and Om-represent the magnitude and phase of the impedance at
the frequency mwi. This impedance can be read directly from curves of
the impedance, which has been normalized by dividing by wLO, The voltage

produced by the pulse is

8g7q —
Vst g Zmznm[amcos(mlt +0 ) + b sin(mnt + ¢ )] (2.53)
m=1

For an example we shall take a square wave pulse to be the applied

current, as shown in Fig. 3(a). The current can be written as
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}
I
{
172 T t
(&)
I(t)
+T/2 3
/I (t)dt = IO
-T
______ =0 ™
ZIN
3
(&

Fig. 3. Current Waveforms. (a) A square wave current pulse.
(b) A delta function current pulse.

I . 1. . |
(%) = I, t% + % (%1nw1t 3 sin3wit + %-s1n5wlt o >] s (2.54)

and thus the voltage in terms of the normalized impedance becomes

Zg 2w1LO
vV = IOLTE - — <%nlsin(wlt + 0q) + Znasin(Bmlt +o03) ... >] . (2*55)

For a second example we shall assume a unit impulse of current as

showm in Fig. B(b). For the current we have
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o0
w1 L —
o 149 '

2% T ot
m=1

U,‘lI

cos(muyt) , (2.56)

and thus the voltage in terms of the normalized impedance is

, 7 2 L
1lgZg Uil T
Vo= + m7_ cos{muit + ¢ ) . (2.57)
21 s o, m

=R

Now, as the frequency approaches infinity, the voltages for both the step
function and the unit impulse function would thecrebically become infi-
nitely large. For actual physical test cases, however, the series in
both Egs. (2.55) and (2.57) are terminated due to the limited bandwidth
of the system's amplifiers. They can neither generate the infinite fre-
quencies reguired to produce the driving currents nor amplify the infinite

frequencies of the voltages which would be produced.

ITI. BSome Important Special Cases

We have seen how various electromagnetic phenomena can be calculated
from the vector potential. 1In this section we shall present the vector
potential for some special cagses and uge it to calculate some of the

guantities of practical interest.

A. Coil above a Two-Conductor Plane

1. General Derivation

The coil above a two-conductor plane is shown in Fig. 4. The space
is divided into four regions, in sach of which the properties are homo-~

geneous. The differential eguation in each region is a specizal case of

Eg. (2.1).

In aijr (regions T and II) we have

~N2 ™ ~2
1\3:{\: + L t)—A— + oA A +owfpeA = O . (3.1)
or®  r or oz® r?

The differential equation in a conductor (regions ITIT and IV) 1s

A 2 . -
} - Sulag ;-5 Eow piEiA -~ priUiA = 0. (3.2)
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Fig. 4. A Delta Function Coil above az Two-Conductor Plane.

Setting A(r,z) = R(r) Z(z) and dividing by R(r) Z(z) gives

1 3°R(r) L om(x) 1 8%z(z) 1
R(r) o1 rR(r) or 72(z) dz? r?

2 . -
+ W [ el .= 0, .
) i€y J(piGl 0 (3.3)

We shall now choose a separation "constant,” &?. The positive sign

makes the equations easiler to evaluate for boundaries running in the
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r direction. We write for the z dependence

N2

1 1jé£52 = "constant" = o — wlu.c. + Jw.o. (3.4)
7(z)  oz? i7i i i
or

+ 2 2 A 2 2

Z(Z) = A e N s =W ui€i+Jw'LJ‘i.Oj. Z 4+ 0 e \/Oc - p,ieiJeriLiUi z . (3.5>
We define
. = 2_. )2 3 . 3.6

i VAT ~b ;,,Li€i+3wpi0i ( )
Equation (3.3) then becomas

1 o%R{r 1 OR(r) 1

(r) . LA R (3.7)

R(r) Or rR{r) or r?

This is a first-order Bessel equation and has the solutlion
R(r) = ¢ Jy(ar) + D ¥ (or) . (3.8)
Combining the solutions we have

+X{Z —X{7Z

Alr,z) = [A e + B e 1c Jl(ar) + D Yl(ar)] . (3.9)

We now need to delbermine the constants A, B, C, and D. They are
functions of the separation "constant” and are usually different for
each value of . Our complete sclution would be a sum of all the
individual solutions, if O were a discrete variable; but since O is a
continuous variable, the complete solution is an integral over the
entire range of «.

Thus, the general solution is

Alr,z) = [Tale) &7 4 Bla) ¢ 9P c(e) g, (or) + Dla) Y, (ar)] ax . (3.30)
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We must take A(@) = 0 in region I, where z goes to plus infinity.

Due to the divergence of Yl at the origin, D(a) = 0 in all regions. In

region IV, where z goes to minus infinity, B(a) must vanish. The solu-

tions in each region then become

2 (x,2) = [B, ()07 5, (0x) a0 (5.11)
220 (2,2) = [Plea(@) &% 4 (@) %) 5y(ar) @ (3.12)
A<3)(r,z) f:[c3(cz) 1% By {ct) PRty Jilor) dx (3.13)
(4) e Gp2 -
AV (r,z) = f( cila) e Ji(or) aox . (3.14)
The boundary conditions between the different regions are
IS RO (3.15)
NEY . (2)
%% (r,z)] = %% (r,z)] — uI &(r — ro) (2.16)
z=4 Z=,
2 (,0) = aC)(x,0) (3.17)
sq(2) (3)
LA (r,z)} = 5A (r,z)] (3.18)
o Oz M0z
Z=0 Z=0
A(‘3>(r,—c) = A.<4)(r,-c) (3.19)
Ak ] > (4) N
L oA | . 104 |
e ) T, (2-20)
Z==C L=

Equation (3.15) gives



o “'O! _ 0 g o~ 7 e
[ Byla) e 04 Jilar) da = [ [Co(ar) b, Bo(a) e 007 Ji(ar) do . (3.21)

If we multiply both sides of Eg. (3.21) by f%Jl(a'r)r dr and then
)

reverse the order of integration, we obtain

(o]

FOOB'L(OZ) e—OcOE . , o0
/ [fJikar) Jl(a r) cr dr] do = [
% o 0 0

+ Bp(a) eﬁjoz][fmJl(ar) Ji(a'v) ar ar] ao . (3.22)
0

We can simplify Eq. (3.22) by use of the Fourier-Bessel equation,

wnich is

pla’) = [r(a) [J (ox) T (a'r) ar dr do . (3.23)

Bl ’ C '0 B ’

= -5 e oY e o (3.24)

We can evaluate the other integral equations in & similar manner.

We shall drop the primes on the @ and make the following definition:

By o= (ny/uy) oy = \uo/ui)w/52 = W e,

; MU (3.25)

Applying the remainder of the boundary conditions gives
pplying

o ~0 Q Qnl @ ~Qin f .
—~ 2% Bje of _ o C,e 0r .8 B,e 0% o uTr gy (ar ) (3.26)
o o 0 o o
Co By C3 By
— o D e 2 (3.27)
o o7 o] o



0% A SPKe7 B3
0 ) 071 01 1
o —— — s -~ B
5 C2 TR e By = — (Cs 3) (3.28)
C B. c,
Zoate 2 e L D e (3.29)
o4 o oL
By e P1_ aje  Poa ~Ope
—= Qe 1F — =B = 2 Qe 2 3.30
a 2 a 3 4 ( )
We now have six equations with six unknowns. Thelr solution is
20y
1 (07 Ol(*,@ ['(ao,;_61>(gl__32) + (040-'51)(!3]‘*52)8 ‘]'c "Ofoﬂ'l
B'l ford —5 ;LII‘OJl<al‘O) b e - + L p - o [S] j
) C[O L (('10—'&1)(81.'52) + (a04,81>1\531+52)e 1 -
(3.31)
o ;
Cz “7]2; HIroJl((jro) m—— e“‘()log (3-32)
0
2004 C
1 . o J(Qfo'*Bl)(Bl"ﬁg) + (ao“g],)(ﬁljr@g) & 1‘"1 —Y
B, = % wIr,J,(ory) — ——r e 0
g Xy Yag-p1) (B1-Bz) + (Co+B1)(B182) e™1®)
(3.33)
~Cgb+20, C
QB +8 e 1
Cz = .uII‘oJl(DfI‘Q){r (DT 2) - vy _.1' (334)
(:X()"Bl)(ﬁl"ﬁg) + ((JO'PBL)<.BJ.’}§2) e -LL‘J
. X £
. a(p;-B2) & O
By = uII‘OJl(CZZ'O) b2 } (3.35)
(0g-B ) (B 1-B,) + (0gH ) (B 48,) e**1C
[ 208 Jlopra e g
C, = plrgd,(org)- :

1
431)(51”62) + (ao+ﬁl)(51‘*ﬁ2) o2 ¢/

The expressions for the vector potential in each region thus become



1 piIr . - 0
M) o J31(omy) 3, (ar) &0t %0
0
o [, (B (By-ps) f:aonemﬁsz TN (59
X e egd o~ (3.37)
a (098, (B,-B,) + (0gB,)(B,18,) e i
5 plr,
2 ) :—E—Jbﬁa%>%«m>e*%ﬂ
G

/ - “B5) + (-8 . 20y c N

L(@o-51>(51~52) + (1) (B1+Ro) e2X3¢

o]

<3>(r,z> = plir, /}1(afo)Ji(@T) %ot

oz O, 7
( (By4B,) e®1C 2517 o (B1-B,) & 17 1
pge] 1 . . (3.39)
(QO—51><31’52) + (Qo“"ﬁ])(.ﬁl"‘ﬁz) Gvalcj
&) r , Y f
A( s pIrOL/Jl(aro)lear) e Yot
0
{ 2op, o2t Oez *
X e (3.40)

{otg~8 (B 1-B,) + {0 B, ) (B 4p,) e

These are the equations for the vector potential of a delta function
coll above a two-conductor plane. We shall now use Eq. (2.5) to super-
impose the delta function coils to form a coil of rectangular cross
section as shown in Fig. 5. Substitutiug Eq. (3.37) into Eq. (2.5) and
reversing the order of integration gives
N INe 0

T —n L-0ln z
Ji{arg) I (ar) e "0° 07

()
Iy

dodrgds , (3.41)

(a3 1)(B1-B2) + (ap-81)(p1+B2) e2X1Cn
{2(XOL + ‘, ’
L(ao“5i)<51"52> + (ao+51><51+52> g2t |J
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Fig. 5. A Coil of Rectangular Cross Section above a Two-Conductor
Plane.

where N is the turn density and I is the current in each turn.

We shall express the integral over r, as

r, ar, ar,
) 1 ‘ 1 X 1
rod, (0ry)dry = = aryJd, (ary)dar, = =z xJ,(x) dx 35&§-d(r2,r1)
T =T, ory=or x=Qr

(3.42)
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£ £2
I (2 U)J\ 2008 L 4| q = o007 [ [ Gok | 0l "
U’ J -1\( . J
ﬁ:[ z::'.,@l
~¥nZ - .,
e | Goke Oofl> - (6;%9? _ e*%m) (3.43)
ay L

Upon applying Eas. (3.42) and (3.43); the equations for €the vector
potential in the various regions for a coil of rectangular cross sectlion

become

(g4 ) (81-8,) + (ag-py)(B1+8,) e1c-

o810 (B1-B,) + (agthy) (Byg,) 220

, - - Ie “ran, (3.45)
- ) . J

and
oo
(4, 1 , , s o
A (r,z) = HJNf J(r, . ). (ar) (e Goly _ OL?\
2. 2202/ \ /
3 0
{_ 20561 e(@zﬂ‘l)C e@zz
X = do (3.47)
Way-8 0 (B, -B,) + (ag+B.)(B1iB,) e2NC
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)

is valid for the region below the coil. We have

1
Equation (3.44) for A<
and Eq. (3.45) for A<d)

to give special treatment to region I-IX, between the top and bottom of

is valid in the region above the coil,

the coil. For a point (r,z) in region I-II, we can use the equabion
for A(l)(r,z) for the portion of the coil from z down to £1 and the

equation for A(Z)(r,z) for the portion of the coil from z up to fp. IT
we substitute 4z = z in Eq. (3.44) and ¢, = z in Eq. (3.45) and add the

two equations, we get

A(l’a)(r,z) L (e ,r )T (ar) {é - olety) o (2
2 P 2717 1
5 o2

e . L - . - 2()»10 —N
+ g"'aoz (e"aoﬂl — e“aozz> [(a(ﬁal)(Bl ﬁ?‘.) k (aO 61)(Bl+ﬁ>2) e

(o, ~B ) (B8,-8,) + (o8 ) (B + B,) 27P1%]
(3.48)

We have completed the general derivation of the vector potential
of a coil of rectangular cross section above a two-conductor plane. We
shall now use this vector potential to calculate a number of electro-

magnetic induction phenomena for this configuration.

2. Jmpedance of a Coll above a Two-Conduchor Plane

To calculate the coll impedance, we substitute the equation for
the vector potential at the coil, A(l’z)(r,z), into Eq. (2.18) and

perform the integration over the dimensions of the coil. The resulf is

o]

. 2 \
Wit 5 -t (8, -
ROENLE ;zfaslas P r,om,) {0100 + 2570
o Th~T -
2771 271 0

. <?*Qa0£2 Lo Ze—a0(£2+zl)>

(g B) (B -B,) + (0P, ) (By+ B,) ezalcil
>< ol
‘(ao"51)<51“62) + (a0+ 51)(Bl+52) e‘”o‘lcwJ

ace . (3.49)
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This equation can be made more general by normalizing all the dimensions

in terms of the mean coil radius, §; defined by

_ ry + 1
had Do esdmncanmmrana e
2

(3.50)

A1l lengths are divided by %,and all a's and B's are multiplied by .

After the dimensions are normalized, Eq. (3.49) becomes

ORG-S m
) Jumun<r €
7 = - - f —— ¥ {r,,r ) -{2%(}22-)21) + 2e
-f - - 04404 + -
<£2 ~1> (rz r1> 0
4
+ e ols 4 o

3 N sam —
p. =, - szr2w2u45.+3r2mp_0,
1

i~ \Hi/ i i

Q
1K

€

O

The impedance itself is normalized by dividing

of the air impedance. If we leb Gy =0, =B = =0y

magnitude of the air impedance

2 ‘ 2ann e b/“ 1 2(p EX

b= , T

ailr’ (ﬂ ) )2< " )2 QQB <. Ao 2R I
278/ TNT Ty

we obtain for the

it by the magnitude
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A computer program (CLADT) designed to calculate the normalized
coil impedance for this case 1s given by Luquire et gl.20 In all the
computer programs, ¢, is taken equal to . It is only in rare cases
that there is any appreciable difference between them. 1In fact, the
difference could have been neglected in Eq. (3.4) but has been carried

through to retain generality.

3. Inductance of a Coil in Air

From Eq. (2.16) the inductance of a coil in air is

2run?T A1 - -
L = Hz ?k/\3 - Jz(r2,r1) {éo(gz_zl) + e o(ﬁz ﬁl) — 1}.@_
(8. -2 )3y v )RYcox
2 71 2 71 0 0

A program (AIRCO5) designed to carry out this integration is presented

elsewhere. 0

4. Defects in the Cladding Material

We can use Eq. (2.28), with the driving coil and the receiving coil
being the same coil, to obtain the impedance change due to a small

current defect:
2
r 3 2 é
2" =5 0?(3) Vola,, . (3.57)

For defects in the cladding material, A is the vector potential in

region IIT. The impedance change due to a small defect, in terms of

normalized dimensions, is
2,2

o]
3n%010%°T? Vol Oao AN} ~ L -4
=3 })2 E ] o7 Ira,wa)d (o) (e 707 — 7072
2(Ly=by)* (ry-r J g

y [CY(BJ_+52) 2201 012 4 (B, -p,) ‘O‘J P}z

(aO-Bl)(Bl~62) + (ao+ﬁl)(al+52) 2201C

(3.58)

207. W. Luguire, C. V. Dodd, W. E. Deeds, and W. G. Spoeril, Computer
Programs for Some Eddy Current Problems, ORNI~TM-2501 (in preparation).
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This impedance change may be made dimensionless by normalizing the
impedance by dividing by the magnitude of the coil impedance in air:

o8]

3 - [ 1 /o f L B
7! = — (wuoi7?) Vol a u/\ J(r,,r,)J (ar) (e 071 . g 70%2
n o (wuoy 22 T\O aoaz 2,1/ K

' S A
malp +B,) e?1C % v (B B ) o

1 ~ 2
' DN
X (X

L(QO*BI)(Bl-BZ) + (a0+ﬁl)(51+52> 220 ¢C

[ et (fo-d ki
i / ~3.3 T2 (ry,r:) G (L,-0,) + e 007 . Lpdx . (3.59)
5 aoa ~

To obtain the defect sensitivity factor, we divide Eq. (3.59) by
Vol Gsa. A program.(DEFECB) designed to caleculate this factor for a
single, siwall, current defect in the cladding material is given by
Luquire gg‘gi.zo In the same work there is another program (DELAT) for

calculating the defect sensitivity factor for a defect at a poiut on a

lattice in the cladding material.

5. Defects in the Base Material
The derivation for defects in the base material is similar to the
preceding one, excepl the vector potential in region IV is used. We

obtain for the normalized impedance change

X0

r P
> 7 - _y —y
2y = %) Vol 0y, 4 (r_,r ( YoF1 072
Zn e (wpoa7?) Vol 22 'b/ra2g J\rz,ll)Ji(ar) e 0 e
0 0
( - - )
;F 20/61 e\_a2+al)c gazé _‘
X! 5 o N(a Lo ZQICJ o
"(ao‘51)<91“82> * (@OfPlz\P1+p2> e
~ l _ ( y
# [ e 32,0 Mg (0y-0,) + e %027 h) qlay L (3.60)
22°1 o Y21
33
0 0

We have designed a program (DEFECB) to calculate the defect sensitivity

factor for a small current defect in the base material.<C
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6. EBEddy~Current Force

The eddy-current force density at a point in a conductor can be
calculated by substituting the integral equation for the vector poten-
tial into Eq. (2.45). We will now compute the net force of a coil above
a single conductor. The vector potential in a single conductor reduces

to

g (_X]_Z
3,4 A a e
LSRN pINf = glr_,r )T (or) <e'%ﬂl - e’aoz2>-—-——-——~ a
e 271l a8
0 0 0 "1
(3.61)
and the only net force density, when averaged over time, is
[63]e) N (3;/“") 3 4 aA(3,4) -
Fo= — (Im.A(3’4)(r,z) R1 %é (r,z) -~ RL A( ’ )(r,z) m — (r,z)
Z 2 L Az dz -
(3.62)
By inspection we can write Eq. (3.62) as
(3,4) %"
1, 3,4 OA
F, = Rl (— 5 Juo A( ’ >(1";Z) <‘B‘“Z‘ (r,z)> ’ (3.63)

where the asterisk represents the complex conjugate.
To get the total force on the metal, we integrate the force density

over the volume of the metal:

Fiotal = f
-0

=

o]

. y ( ’4) *
/Rl [ - % jwo-A(%"*)(r,z) gﬁi ’ (r,z)> ] 2nrdrdz . (3.64)

e Z
r==0

Substituting the vector potential from Eg. (3.61) into this equation and

setting QX gives
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o © ) oe y .,z
roor M1 - o, e
FLAt] = / Rl’ m.% &manZI‘/ - J{r_,r )J_(ar) e—agl—e{w2>~ul<wmw«dq
cotal _:{o UQ -~ % 3 2 1°71 o6 N

| . - _ ! ""CC,;@:L . '—@’22> N l ’_} o v
Xu// (;“-—,3 J<r2’rl)d1<a I‘)(@ e ) \W-‘/ ac J 2trdrds

We can reverse the order of integration and perform the integration

over r Tirst. We shall use Lthe fact that

r) dr = ala-a’) . (3.06)

In addition, we shall let p=1, so that 8,~0. and write G, in terms of

1ts real and imaginary parts:
oy o= w vy, (3.67)
Equation (3.65) thean becomes

Ytotal ©

‘o

@wl\ /J

:Qfl>Z

X

adaJ ; (3.68)

After performing the integration in the 2z direction, substituting for

Lhe turn deasity N in terms of n, and taking only the real part, we

have
W 2(71')212_:2 I(DS N N
¥ o O LT [l 2 73 ~cid Y1
2( ﬂ*wl) ( ) o O Xl[(Oé+xl) ‘+le
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This is the net eddy-current force produced on the conductor. A
computer program (FORCE5S) designed to caleulate this force is given by

Tuquire et E}_zo

B. Reflection Coil above a Two-Conductor Plane

A reflection coil, as shown in Fig. 6, is usually used in the phase-

£.21222  Tmis configuration is actually

sensitive eddy-current instrumen
a combination of special cases of the single coil above a two-conductor

plane.

1. Voltage and Phase of a Reflection-Type Coil

We shall obtain the difference between the voltages induced in the
two small pickup coils by a current in the large driver coil. The pick-
up colls are comnected in opposition so that, in air, the voltage dif-
ference vanishes. However, when the coils are placed near a metal,
there exists a voltage difference caused by a "reflected wave" coming

back from the metal. The net volifage induced in the pickup coils is

V=v =V _ (3.70)

where the first pickup is nearer the metal than the second pickup.

According to Eq. (2.11) the voltage in terms of the vector potential is

£, Ty,

0

i2non’ ) )
Vo J j[‘J/ rA<l’2)(r,z) drdz
(£6"Z5)(r4'r3)é5 v

Jemun’ A4 ne )
— )k/ L/ rA(l’z (r,z) drdz. (3.71)
-7
3
S
3

(E4‘23)(r4

Due to the symmetry of the pickup coils, f,-f; is equal to £,-4,,

and the colls are recessed an equal distance from the ends of the driver.

2lc. V. Dodd, Mater. Evaluation 22(6), 260-263 (1964).
22C. V. Dodd, Mater. Bvaluation 26(3), 33-36 (1963).
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Substituting the vector potential from Eq. (3.48) into (3.71), per-
forming the integration over r and z, and normalizing the dimensions gives
[on]

Jwrunn' Ir

Vv = J(r r{)J(r ,T )
(rz—rl)(ré-rB)(ﬂg—El)(ﬂ6—ﬁ5)ana6 ' 2

4 —f ) A ~Y Y
(e o, el L, 23}
e

N

, =B ) (B14B,) e2H1C
« Q?Maﬂl ~aﬁ > {/a+51 (B1-B2) + (a-B, 1+62) e }‘&1 . (3.72)

AL c

(G=B1) (B1~B2) + (atB1)(B14B2) e

We can make the following definitions:

=
)
il

length of the driver coill,

j
&
il

length of the pickup coll,
L = distance the pickup coils are recessed,

L = spacing between driver coil and metal or "lift-off.”

Substituting these into Eq. (3.72) yields

<«

., . Fr

Jwnunn® Ir 1 e _ 57

V = - J(l v )J(I’ ,13) . 20¢Ls o (%(L2~2L5 Lg) -1
(r,-1,)(ry=15) LT o) 2771 4773

% <e—aL5 _ p—a(L6+-L5> /:L _ 8~aL2>{(06+61)(Bl—52) + (a-8,) (B, 48,) ezcclc} N
| ) \ (a“51>(5l—ﬁ2) + (a+§1)(gl+52) A

(3.73)

A computer program (RFICT) designed to caleulate the phase and amplitude

of this voltage mway be found in the literature.??

235, W. Tuquire, C. V. Dedd, W. E. Deeds, and W. G. Speeri, Conmputer
Programs for Some REddy Current Problems, ORNL-TM-2501 (in preparationS.
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2. Lift-Off Compensation in the Phase-Sensitive Fidy-Current Instrument

For reflection-type coils, a variation in 1ift-off produces small
variations in the phase shift and large variations in the amplitude of
the reflectad wave. Moreover, the discriminator in the phase-sensitive
eddy-current instrument may be adjusted to minimize these variations 3in
the phase shift. Figure 7 shows the voltage wave form for zero Lifi-

the

N
0

cF

off and maximum 1ift-off. We want the discriminator to trigger a

same point in time with zero lift-off and with maximum lift-off. This

requires that we adjust the discriminator to trigger at voltage V

1)
given by
. N 77
VvV, = A, 51n(¢1+ OT) (3.74)
where
Ay, sin 5, — Ay sin 3,) N
¢, = arctan -, (3.75)
: ‘ 5 A, COs O,
Ay cos O, — A, COS O]
QRNL—-DWS 68—-10340
[\/(ﬂ
\
A2sin[un+52) /A'sin(wH—SJ
(MAXIMUM LiFT - (ZERO LIFT OFF)
OFF)
V,
Fig. 7. Voltage Wave Form for Zero Lift-0ff and Meximum Lift-Off.

Any other signal with magnitude Ai and phase shift 5i will trigger

the diseriminator when it passes through V,, or when

/

v, = Ai sin (o, 1 oi) . (3.76)
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To determine the phase shift from 4, due to a change in lift-off,

thickness or conductivity, we subtract ¢i from ¢; to get

// V]_ \
Phase Shift = ¢, — ¢, = ¢. — arctan { ——————_ | + &_ . (3.77)
1 i 1 \ /"““"""“‘““A?L ~ Vi/ i

Tuguire et EL.ZB give a program (DISC) designed to calculate this phase
shift. In addition they give another program (RFICYC) designed to cal-
culate the phase shift for an incremental thickness change. It Tirst
calculates the phase and amplitude of the voltage at zerc and maximun
1lift-off for the nominal thickness value, sels the discriminator to
trigger at the proper voltage V,, and then calculates the phase shift
for small variations Irom the nominal thickness. The program will

perform these calculations for a number of different values of ?2wpd.

3. Defects in the Cladding Material

We can write the equation for the voltage induced in the pickup
coils by the presence of a current defect when a current, I, is flowing
in the driver coil simply by substituting the vector potential for

region IIT in Eq. (2.28) to obbain

o0

2 r 2 -
o,wnn’u* Vol &,,1 1
= 22l f-—-—3 J(rz,rl)Jl(Oir) <eﬂ£l — e”a£2>
(ﬂz-ﬂl)(24—£3)(r2-rl)(r4~r3) o ¢

h =

oW

4@(81#82) e21e 1%y @(Bl—fiz)e—alz}
X
Ha-B1)(B1-B2) + {(a+B1)(B148,) e21C

oo
7

1 /=il Ty —xf TN
N = - 5 Y “h 4 . 3
x}/ v J(rA,rj)Jl(ar) \é 5 e ) + e Y
0

—a]_Z

X {Q(Bﬁﬁz) *18 &M% 1 alpy-pa)e }
(0-81) (B -B2) + (4B1)(By#B2)e*C

acr . (3.78)

We shall now normelize the dimensions in Eq. (3.78) and again write
the equation in terms of the dimensions of the driver coil, the pickup

coil, the pickup coil recess, and the lift-off:
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oC
. . BUSNUR S ~
3 e / wustnn” vl 1 \
V2d = 27: (I“w}JUl> { > Vol Gyo U/ C(TB u‘(}gz,rl)JI(ar)
) (r2 )(L4~W ) [ C
7 =X %
4 T Q(Blﬁgz) e?.Odlc eal/ -+ Q(Q 2)@ 14
(l - ° -12> . 20, ¢ ot
A (-8 )P -B,) + (aB,)(B,48,) &1

X / 2 3(r,,r)3 (ar) & <e—a(L2”2L5_L6) + l> (gﬂuﬁ) -2 Q(%HC)\,
J a3 47371 J/
(B 8,) ¢2®1C 1P 1 (s 8, )l LF
{ : / e }d@: , (2.79)
(0-B1)(B1-B2) + (a4B ) (B1#Bo) ¢°1C

which when divided by I,Vol o,, yields the defect sensitivity factor.
A program (RFDFL), given by Luguire et al.,?® has been designed to cal-
culate the defect sensitivity factor for this case. In the same work
there is also a program (RFDFI2) designed to calculate this factor for
defects located at any one of a number of points on a lattice. Another
program (BASREAD) will read the results of (RFDFI2) and recalculate the

phase shift with lift-off fixed.

4. Defects in the Base Material

The derivation for defects in the base material is the same as the
preceding one, except that we use the vector potential in region TV

g

from FEq. (3.47) and obtain

N o
nrm 1“11 ' T
l - au
Voo = ( o) < )Vol Upy | == Jr,,r,)J(oxr)
2d rﬂmf Y r4~r3) LI, 22 | o3 221l
/ 208 ; e(OC]_*‘Oﬁz)C eCth
12 )
\} - g L J ac
/ (a-ﬁl)(81_62> + <OJ~)1/<' l+|32) e2alc'
[l . _ £~ ”"(\XL / "Q(Lz—gL - ""O’T.x;— "'CL(L:—"'"L(] )\
X% E;;‘ d\ft,*,.fz‘)Jl\u}?) e \e 5 + l) g 2 )

(Oﬁﬂg ) eulg Z

2
Wl e Lo (3.80)

L<Oéwﬁl)(61-m82) + (a2 ) (B,48,) g0 c
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A program (RFDFIB) presented elsewhere?> is designed to calculate
the defect sensitivity factor for a small current defect in the base

material.

C. Through Transmission

A through-transmission coll arrangement is shown in Fig. 8. Here
we have a signal, transmitted by a large driver coil through a metal
plate, received by a pickup coil. This case is almost identical to the

reflection case except that the pickup coil is now lceated in region IV.

1. Voltage and Phase of a Through-Transmission Coil

We shall obtain the phase and amplitude of the voltage induced in
the pickup coll by a current flowing in the driver coil. Substituting
the vector potential in region IV, as given by Eq. (3.47), with 7,0
into Eg. (2.11) gives

l4
. ! oo Z:"'( C+I& f2
Jenuwnn pl

V= 7 ,Jf \/P /A§§ J(rz,rl)rJl(ar) e“ag<? Mléﬂ)#).

(ro-r  Mro-2l) T T
2 7htem =0 ze—(CH+4 +77)

1

. e(aﬂl)c 27

X ~ , drdzdx , (3.81)
(OH_Bl)z e‘U‘lc _ (Ofwﬁl)“ 2

where £ and T (E’ and T') are the lift-off and length of the driver

(pickup) coll, respectively. Performing the integration yields

(o]

Jérwunn' Ty 1 ~aT ’”\

Vo= [ ' ;;J( 22% Jalx ')< -
(rz—rl)(r2~r1) T o

-cy(m By e

X dox . (3.82)
(o)) 292C — (a-g,)?

We have presented elsewhere®’ a computer program (THRUS5) designed
to calculate the phase and amplitude of the voltage for a through-

transmission coil.




40

ORNL-DWG 68-7343

Fig. 2.

A Through-Transmission Coil Arrangement.

2. Defects in a Plate

We can easlly write the eguation for the voltage in the pickup

coil induced by the presence of a current defect wnen a current flows

in the driver coil. This is the same as the refliection

case, except

that now the pickup coill is on the opposite side of the metal. The

vector potential produced at the defect by a unit current flowing in

the pickup is given by the same expression as that for the driver,
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except that the distance of the defect beneath the metal now is set

equal to c-z. If we normalize the dimensions by r and let 0,=0, we

have

3(}:' WO Wusnn I‘I
v M--~il >Rm1a k/' v ,r )0 (aw) &Y
2d __r ) _1.. ) rl_T' 22 (/CS 1 1
2 1

.z

(ﬁ <)  Feha) T S alepy) o
L o— e
(

B )2 2?18 (.p,)?

dox

f_ J(r’,l )7 (or) T <l - eﬂT')

alorp ) e*hC ale-a) alu-B,) ;ale-z) (3.83)
~ doy 3.83
(0B, )? 221 — (05 ,) s

which we divide by I, Vol ¢33 to obtain the defect sensitivity factor.
In the work of Luquire et al.?? there is a program (THRUDF) designed to

calculate the defect sensitivity factor for this case.

D. Colil between Two Conducting Plates

t
. . . . . 24 .
This configuration is used for spacing measurements,“”™ and is shown
in Fig. 2.

>

1. General Derivation

The differential equation for this case is Eg. (2.1), and the
general solution is given in Eg. (3.10). However, when we write the

equations for the vector potential in each region we obtain

[0

A“%nﬂ:/Egmeﬂﬂng)w, (3.84)

0

2%C. V. Dodd and R. W. McClung, Fuel Element Coolant Chamnel and
Other Spacing Measurements by Eddy-Current Technigues, ORNI-TM-129 (1962).
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Fig. 9. A Delta Function Coil between Two Conducting Plates.

T,%z) = {CQ(O&) e+ Bala) @
0
A(B)(r,z> = [ {sz(@) &+ By(a) ewozsz Jilar) ax
o

and

The boundary conditions belween the different regions

A(l>(r,c) = A(Z)(r,c) 5

are

58- 734R

(3.85)

(3.806)

(3.87)

(3.88)
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1 aal?) an(2)
;: —; (r,z)] = S; (T,Z)] R (3.89)
Z=C z=c
2,0 = 2,0, (3.90)
(2) - L, (2)
oA (r,Z)J _ oA (r,z)] , (3.91)
Az dz
z=4 z=4
a3 (o) - A(‘*)(r,o) , (3.92)
(3) (4)
DA 1 oA .
o (r,Z)} R (z,Z)} (3.93)
20 70

We can substitute Egs. (3.84) through (3.87) into Egs. (3.88)
through (3.93), multiply by J J,(a'r) rdr, reverse the order of
J

integration, and use the Fourier-Bessel integral to simplify them. We

then get

By éﬂxlc = Co éjc + Bso éﬁjc 5 (3.94)
P1 —c o - -

- Bye ' =C,e €~ B, e ¢ s (3.95)

¢, & en, e o, e Y, (3.96)

(07 o X -
C, e = B, e Cy e . Bs e pirgd, (ory) (3.97)
Cy + By = Cyp (3.98)
P2 < )

C, — B, = — Cs . 3.29

3 3 o 4
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We have six equations and six unknowns. If we solve for each
constanl and substitute the results into Egs. (3.84) through (3.87),

we get for the vector potential in each region

o0

~X .7

1% 2ux e<alma)c

1), Ta .
A( (r,z) = = roJ,(ar,)J, (or) e
0
~CLh

(B, ) 4 + (@~52) e :
X [ W'MCJ ax , (3.100)
(0P ) (@B, ) —~ (a8, )(0-8,) e

o0
A

A(Z)(r,z) = 2;1/ rojl(aro)J1<ar)[(a+52> e&ﬂ N (amﬁz) e~a£]
0
3 (a"-Bl) ea(2w2c) + (C{—{-Bl) emOiZ HJ ( )
x : Ao 3.101,
l-(a%J<a-=~62> ~(a-8,) (o-p,) e0e]
A<3)(T,Z> oz EélfrOJ1<ar0)J1(ar)[(amﬁ‘l) 8“2050 eaﬂ N (a_‘_ﬁl) e_ﬂZ]
0
o [ (@i8,) % + (0-8,) &F } v, (3.102)
<a+81)<@+§2> — (a-B1)(a-B5) emaycj
and
(4) R A i o,z
A (r,z) = ZT"/ rod;(arg ), (ar) 2ne™2
E
X {: <QAB1) 6”2@8 ecw + (Oé+.81) e—-Oé,g ‘] doy (3 103)
(a+81)(a+52) —'<a”61)(Q°B2> e—2@c.

We now have the equations for the vector potential due to the
curreat In a delta function coil between two conducting planes. We can
use Bq. (2.5) to superimpose the vector potentials of delta function
coils to find the wvector potential produced by a coil of rectangular
cross section as shown in Fig. 10. Since we ars concerned only with

the region containing the coil, region TI-III, we have
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Fig. 10. A Coil of Rectangular Cross Section bebween Two Conducting
Plates.

(2,3) f2 5 Agz)(r:r »%,2)
A7 (r,z) = NI f f 9 dryds

Lo

ra=r, £=L1

T

z2
: (2)
A T,r5,%,4
+ NI j f g (z;70, 2, )drocm . (3.104)

Lo

r =r ;=L
0 1 £

Carrying out this integration yields
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L ey aepy) P
Pz}rl)dlkar) 12 +

T

— (CHBl)(OHBz) e“azz + (OC“BI)<OH‘52> e"‘“?@(C'*OCE2 _ (Cﬁ“Bl)(Q+ﬁ2> QNZQCW‘Q.ZIJ

(a%l)<a+8‘9> - (Oé——Bl)(a_BZ) e"'EOﬁC

~14

+ e TR (B ) (0-B,) ¢ L - (o ) oms,) &

(3.105)

(1) (a-B) e—%]} o

This is the equation for the vector potential of a coil with rectangular

cross section in region IT-ITI.

2. Impedance of a Coll between Two Conducting Plates

To calculate the coll impedance, we substitute the equation for
the vector potential in region TI-III into Eq. (2.18) and integrate
over the dimensions of the coil. Tn addition, we normalize the dimen-
sions in terms of r. We then have

[l

. 2.~ Il i D

WP~ 1t 1 !

Jwpn®s \/ 53“J2<r2}r1) “2(g,-4,) + £(a) + f(ﬂl)j’da , (3.106)
/ .

7 =
L V20 g )2
(ry-2 )7 (0,-0)

where f{a) is defined by

(£o-27) “ky Gl

ol ey O - o
olo) = B [z(msz)(e 1) + (a=-B,) (e (3.107)

< (08 ,) (048,) — (a-8,)(0-B,) ¢ 0¢

This impedance may be normalized by dividing by the magnitude of the air
impedance, given in Eq. (3.55). A computer program (BTNCO) designed to cal-

culate the normalized impedance for this case is given by Luquire et 5&.23

2%J. W. Luguire, C. V. Dodd, W. E. Deeds, and W. G. Spoeri, Computer
Programs for Some Eddy Current Problems, ORNL-TM-2501 (in preparation) .
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E. Coil Encireling a Two-Conductor Rod

We shall assume a delta function coil encircling an infinitely

long, two-conductor rod, as shown in Fig. 11.

1. General Derivation

The general differential equation is the same as Eq. (3.3) for a
colil above a conducting plane. If we neglect the displacement current

term, we have

1 o°R(r) 1 oR(r) 1 0°z(z) 1
+ + — o Jpo = O (3.108)
R(r) or? rR(r) Or 7(z) Oz r?

Now, however, we shall assume the separation constant to be negative:

1 32%7(z)
~—7£- = "constant" = -~ @f . (3.109)
Z(z) oz?
Then
7(z) = F sina(z~zo) + G cosa(z-z,) (3.110)

and Eq. (3.108) becomes

, O°R(r)  rOR(r)
r +

Or? dr

- [{(a® + jmugi)rz + 1] R(r) = 0O . (3.111)

The solution to Eq. (3.111) in terms of modified Bessel functions

is
4 i
R(r) = CIl[(a2 + jmudi)ar] + DKl[(a2 + jwpgi)2rJ . (3.112)
We can now write the vector potential in each region. We shall

use the fact that it is symmetric (with respect to z-z,) to eliminate

the sine terms and the fact that XK;(o) and I;(«) both diverge to
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Fig. 11. Delta Function Coil Encircling a Two~Conductor Rod.



eliminate

we have

A(l)(r,z)

A(z)(r,z) -

A

(4)(

The boundary conditions between the different regions are

[
-
03
~—
i

1
o0 £
fo ()1, [(e® + Jwuo ) “r] cosa(z-z,) A% ,
!

[e¥]

0

r,z) =

o«

o]

X .
+ Dy{a) K, [(a® + Jupo, ) rl) cosc(z-z,) 4%

1

A(l)(a,z) = Aﬂz)(a,z) s

)
Jie,(@) 1 [(e® + juwuo,)°r]

49

their coefficients in regions I and IV, respectively.

= ZTC3(U)Il(ar) + DB(Q)Kl(ar)] cos@(z-zo) dor

fD4(a)K (ar) cosa(z-z,) do .

3a(2) -
1 oal? (T;Z)J ’

r=a

10 A(l)(r,Z)] i
w, Or Ly Or
T

22 (p,0) - A

(2) (3)
1 dA 1 ooa ,
;; g; (T;Z)} = " 57 (r,z J P)

=
A(B)(ro,z) A(4)(ro,z) ,
> (3)
dA S (&)
o (r,z):‘ -2 (r,z):l
T =7

Thus

(3.

(3.

(3

.113)

L114)

.115)

116)

.117)

.118)

.119)

.120)

121)

.122)
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It we multiply both sides of Eqg. (3.117) by cosa'(zwzo) and

integrate from zero to infinity, we obtain

«© 1
[ [ ey(@r(e? G, )2 ] cos@(z»zo) cosa’(zmzo) do d(z~zg)
0 0

5{02(@)11[Qx2+ Junm,)fr] + Do)kl (a? + ijU2)§r)]}

i
o9

X [cosx(z-2z4) cosa'(zmzo)] a d(z-z,) . (3.123)

We can reverse the order of integration and use the orthogonality

roperties of the cosine integral or use the Fourier inbtegral theorem
prox g

o

g f(a)[écos@(zwzo) cosa’(zwzo) d(z—zo)] ax = rla’) . (3.124)

’__l

=

Thus, we can solve the integral Egs. (3.117) through (3.122). We shall
1

use O, to designate (a? + jwpgi)E and P, to designate Eg-ai. We shall

use primes to designate derivatives with vespect to thelargument. We

get from the integral Egs. (3.117) through (3.122)

C, I () = C, T, (0,a) + DK, (@) (3.125)
5,7 (ca) = 08,11 (a,a) + DBLK (aya) (3.126)
CoTy(ayb) + DK (a,b) = CyI,(ob) + DyK, (ab) .(3.127)
CofpTr(a,b) + DyB,Ky(a,b) = €0 (ab) + Dok, (ab) (3.128)
CyIy(ary) + DyKy(ar,) = DK, (ary) (3.129)

- L
%a%ﬁnb)+Dfmﬁa%):1%mq&wJ = (3.130)
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We now have six equations with six unknown constants. The

equations may be solved to give the constants. We shall make the

following definitions:

D(ct) = [y (o)X, (a,b) ~ B,K;(a,b) K, (0m) 116, T4 (058) T (ga)
— B, I (aqa) T (o,a) 1+ [B K, (a,2) T (0q8) — B, K (0,8) I (0a)]
x [p, 1, (0,0)K, (ab) = o (a,b)K;(aw)] , (3.131)
and

s(a) = m {Kl(agb)[lel(ala)l’l(a2a) — BT, (0ya) T (cya) ]

+ I(a,b) [B1 K (c,a) T} (0a) — B8,K; (a,8) T, (¢8)] — bD(Ot)Il(Otb)} . (3.132)

The constants can then be written as

prOIKl(arO)
€] = e (3.133)
abnD ()
pr, IK (o)
ulr K, (or,) ' , ,
c, = -m—— [5_1,K1((12a>11(a1a) - 621{1(042&)11((113«)] s (3.135)
uIr K, (or.) )
Cs = R ; (3.136)
1
pulr K. (or.)s(x)
Dy = — 20 , (3.137)
b
nlrg
D4 = T [KI(Cer)S(OZ) + Il(al‘o)] . (3']—38)
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We can now write for the vector potential in each region

B [Th T, K1 (Oéro) ] , )
s ;g _EE§T«~ Il(alf) cosa(znuo) s (3.139)
0

L

N

~—
!

- K, (ory) [
S i£6211<ala) Ia(aza) W‘BlIl(aza)Ia(ala)] Kl(azr)

e
—
N
-
o
N
S
I
e
e
«__

bd(ar)

+ [8.K (a,a) 17 (2a) -vBzKi(aza)Il(ala)]Il(aar)}'cosa(z—zo) ac , (3.140)

A(B)(r,z) = %%‘/ArOKl(aro){Il(aP) + 8(a)K (or)} cosa(z-z4) do (3.141)
0

and

A (e 20 < B Lk (or ) (K (o )8(a) + T,(ary)) cosalz-ng) ax . (3.142)
0

These are the equations for a delta function coil encircling a two-
conductor rod. e shall now superimpoge these solubions to form a coil
with rectangular cross section as shown in Fig. 12. This involves sub~
stituting Eqs. (3.139) through (3.142) into Eq. (2.5) and performing
the integration over the dimensions of the coil. We make the following

definitions:

r, ar, or,
ok (o )dr = s | ok (e )dom. - 2 (x)ax = 5 K(r, =)
0: r1 aroujrl Xmlrl
(3.143)
and similarly
r, N
f roI,(ary) dar, == ir,,r)) . (3.144)

R
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Fig. 12. A Coil of Rectangular Cross Section Encircling a Two-
Conductor Rod.

We then get for the vector potential produced in the different

regions by a coil of rectangular cross section

oo

I .
2 (r,2) “’i“faziiz;z K(r,,z )simo(z-£,) — sim(z-2,)] azt, (3.145)

0
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(2 m [ K(rz,r1) -~
A () o B f 2L k(o) (B, Ty (0g8) T (a0) ~ 6,1, (0,8) T (0ya)]
o J a?on(a) '
v T (o,r) [B K, (0a) T (ay8) — BEK'I(oc2a)Il(ala)]}
X [sina(z—ﬂl) - sino&(zmﬂz)] dor , (3.146)
w [K(r,,r,) | )
A(B) -k / (rp01 JIIl(ocr) + S(oz)Kl(ozr’)JL [sina(z~£,) — simx(z-2,)] dx
T J 3
8 (64
(3.147)
4)  pIN [ Ki(or) - : :
A( ) = — / - QLK(rz,rl)S(oz) + L(rz,rl) [sina(z-£,) — sma(z«ﬂz)] do .
C
(3.148)
In the region of the coil, between regions TIT and IV, we have
£y r (4) F2,(3)
) VA rz,rg,e,) A T,%,Tq,2
A(3:4)(r,z) = NI f J‘ / )‘; 20 drg +J 9 <.’ 207 O>dr0} az,
\ . lO lO
Zo=£1 ro=ry =Y
(3.149)

or

24 g - —del} {Kl(cxr)K(rz,rl)S(a) + Ky(ar)T(r,r,) + K(rz,r)Il(ar)}
0

X [sina(zwﬂl) -~ silﬂ(z—ﬂz)] Ao . (3.150)
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3,4
It is theoretically possible to evaluate A( 7 ) and its integrals

over r and z. However, the Integrals

Ta

¥
/’rKi(ar)I(r r.)dr and k/‘ rK(rz,r)Il(ar)dr

ry ry

s

would require a very difficult numerical evaluation, and it is possible
to obtain these in terms of a previously defined function. Fason et g&.Zé

have shown that

[2ed o]

ﬁ/2k/ Jy(ary )T, (or) eﬂj(z‘zO) Ay :b/le(arO)Il(@r) cost(z-z,) dx . (3.151)
0 D

We must have z-z; > O and r, > r in the above equation if it is to remain
finite. To do this we break the solution into two reglons, using the
ones that remain finite din their respective regions. We then multiply

by r,dr,dz, and integrate over the cross section of the colil. We get

00

(e}
1 / o gep (o 1
o h
+ K(r,,r) I (or) I [sinc(z-£L,) — sin(z-£,)] do. (3.152)
By using this result in Eq. (3.150) we can write

A<3’4)(r,z) _ HLN‘/p {k (cir)s(c) K(rp, )T Mimj(z,ﬂl) -pina(z—£2)1

wofa

3y, )Jl\fxr)Q (2-2,) e“@(z‘%)} . (3.153)

Thus, we have cobtained the vector potential for a coll of rectangular

crogs section in terms of an integral of somewhat simpler functions.

®G. Fason, B. Noble, and I. N. Sneddon, Phil. Trans. Roy. Soc.

(London) Ser. A 247, 529 (1955)
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2. Impedance of a Coil Encirecling a Two-Conductor Rod

To calculate the coil impedance, we substitute the equation for the
>

vector potential at the coil, A(3’4)(r,z) into Fq. (2.18) and perform

the integration over the dimensions of the coil:

[oe]
i 2(,«):[12 1
g - Jen E — Jéxz(r ,r)8(@)[1 ~ cosa(£,-4,)]
(4,210 (x,-1 )% Y% ot ’ i
274 2773

v w32 (r,, e M ols,-0,) — 1 + é“y(£2”£])]}-da : (3.154)

Normalization with respect to r gives

oG
-

,f\l 2 ) N Zla
az~{%K (rz,fl)S<a) sin t§~(£2-£l)
o

jawnfyur

(£2—£l)2(r2—r1>2‘

+ wI%(r,, v ) [alf,-0,) — 1+ e‘a(ﬂ2”zl)1}-da . (3.

A computer program (ENCCO5) performs this rather difficult integration.?”

3. Defects in the Outer Material

We can write the equation for the impedance change due to a current
defect in region II by putting the vector potentizl for region IT into
Eq. (2.28). If we normalize the dimensions by r and the impedance by

the air impedance, then

273. W. Luquire, C. V. Dodd, W. E. Deeds, and W. G. Spoeri, Computer
frograms for Some Eddy Current Problems, ORNI-TM-2501 (in preparation).
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0
— 1 /“K(rz,rl)
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WUT» T Vol o e ey
( A ) 22 {% CXBbD(Oﬂ)

7! 3
B 3

1

: {chaér)[szzlma)riwga)
e

— BTy (opa)1i(aia)] + Ti(a,r)(8;K, (aya) 1o, a) -52Ki(a2a)11(ala){}

co
.
. s . 1 2.
(otoci(a-1,) - stw(a-s,)] @} s [ L 52, e ) i00s,0,)
0

o Lp-t1)

+ e ~ 1) ax , (3.156)

from which we easily obtain the defect sensitivity factor since

Z/
defect sensitivity factor = —_— (3.157)
Vol &,

Luquire et §£.27 give a program (ENDFTS) designed to calculate the defect
sensitivity factor due to a single defect in the outer conductor. In

the same work is a progran ( ENDFTL) designed to calculate the defect
sensitivity factor for a defect located at successive points of a lattice

of positions in the outer conductor.

4., Defects in the Inner Material

Substitution of Hg. (2.145) into Eq. (2.28) yields the normalized

impedance change due tc a defect in region 1:

2

«©

- ( rK(r,,r )1, (o, r) —
Al 723-(mu01r2) Vol ﬁ‘jf 2 . [sinc(z-2,) — sinofz~2,)] a&%l
o Ay . a?abD(a) f

i

0
(> o]
1 ~o(foty) .
0

A program (ENDFB5) designed to calculate the defect sensitivity factor for

this case is also given by Luquire et al.®’



5. Differential Coil System

A differential coil system, as shown in Fig. 13, is frequently used
in the inspection of tubes. This coil arrangement is used both with the
coils encircling a rod or tube and with the coils positioned inside a
tube. The coils are usually connected in a bridge arrangement, as shown
in Fig. 14. We shall assume that the two coils are identical and are

driven by currents I, and I,. The totel voltage induced in coil 1 is

Vi (total) = T)Zyy + TaMip + 11714 + IaMiag (3.159)

Zyq7 1s the self-impedance in the presence of metal but not the defect,
M;, is the mutual coupling between the two coils,
%413 is the defect impedance due to 2 current in coil 1,

My,q is the mutual coupling between coils 1 and 2 due to the flaw.

For current defects and spherical magnetic defects, we have
o 2

2 ‘ 3A NV d(rh, N
R = P N i PO S Gl It
Zld =5 v {O(L <Il> 0622 J o LI? 67. a1 I$r2 K Sy [333JJ (3.]_60)

and

( o T JA, OA
Mipq = 2 v {ow? é&,éﬁ.a?? -3 = | = 22
e U S B LI T, 3z oz

Bi1

d(r 3{r h
L L (rA,) o(ra,) 833”” (3.161)

I, I r? or or
We also have a similar equation for Vg(total):

Vy(total) = I,2,, + TqMyy + T,Z,5 + TiMyqy - (3.162)
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Fig. 13. A Differential Encircling Coil System.
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Pig. 1l4. A Bridge Arrangement Used with Differential Coilsg.

Now M,, = le and M12d = M21d in general, and, since we defined the two
coils to be ldentical, le = 222. Therefore, the voltage difference is
Vp = 21y (I-T,) + My, (I3-T5) + Mypq (I3-I,) + Gigqlq = 29T, - (3.163)

The circuit is generally operated near null, so that I,-~T, is very
small. Since M,,5 is also small, this term can usually be neglected.

The voltage difference due to a defect then becomes

Vig = %1aT1 = ZpgTs = (Z1g = Zpq) Ty - (3.164)
Now if we take s as the center-to-center spacing between the coils,
we have

(3.165)

v
~—

sz (r,z) = Zld(r,zur

Furthermore, if we have only current defects we can write for the

voltage difference
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Vpg = «{% o2 KAl(II"Z)f_ (Al(r:_s))?.ﬂ a,, Vol I . (3.166)
1 1 -

The term in the braces can be called the differential defect zmensi-

tivity factor and is obtained by subtracting one defect sensitivity
factor from the other. We have presented elsewhere?’ a program (READIN)
designed to calculate the differential defect sensitivity factor for a
defect at points on a lattice from a lattice of wvalues of the defect

sensitivity factor.

F. Coll inside a Two~Conductor Tube

A delta function coil ingide a two~conductor tube is shown in

Fig. 15.

1. General Derivation

We can start with the same general equation, Eq. (3.112), in terms
of modified Bessel funchtions that we used for a coil encireling a two-
conductor tube and write the vector potential in each region. Again, we

can drop the sine terms and the coefficients of K, (o) and I,(w). We

then have for the vector potential in each region

[es])

A(l)(r,z) :L/él(a)Il(@r) cosa(z—zo) dx (3.167)
ODO

22 (2, 2) ::ﬁcz(a)ll(a'r) + D, (e)K, (or)] cosoz-z,) dct (3.168)
8]

2Pz 2) :ﬁczga)zl(alrnD3<a)1<1<a,,r)] cosa(z-2,) @t (3.169)
0

A(4)(r,z) :k/54(a)K1(a2r) costi(z-2z4) A . (3.170)
0

The boundary conditions for a delta function coil at (ro,zo) are
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Fig. 15.

A(l)(ro;z) A(2)<ro’z) ’

BA(l)(r,z)} ~ SA(z)(r,z
dr - dr
rer r=r,

2 a,2) = 20 (a,0)

d

A Delta Function Coil inside a Two-Conductor Tube.

(3.171)

(3.172)

(3.173)

(3.174)

(3.175)



1 5A<3)(r,z)} ) 1 6A<4)(r,z)
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_L.Ll or n }.L2 aor
r=b
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} . (3.176)

r=b

We shall first substitute Eqs. (3.167) through Egs. (3.170) into

these six equations, again multiply both sides by [ costt’ (z-zy) d{z-zg)
; ) 0 0/

reverse the order of integration, and use the orthogonality properties

of the cosine integral. We then obtain

Ci1y(ary) = €I {ar,) + DK (ary) , (3.177)
0C,T1 (ary) = ac,Ti(ar,) + aD,Ky(ary) + H; , (3.178)
C,I;(ca) + DK (ca) = ¢;T (wqa) + DK (0p8) (3.179)
aC,Ii(ca) + ab,Ki(aa) = B,C,I{aa) + BD,K (ya) , (3.180)
CyI, (b)) + DyKy (b)) = DK (o,b) (3.181)
B,C;I7 (o) + BD,K (b)) = B,D,Ky(a,b) . (3.182)

We now have six equations with six unlmown congtants. We shall make

the following definitions:

D(ct) = [B1Ki (0qb)Kq(asb) — BoK7 (b)) Ky (ae0) [T, (0qa) 17 (0a)

— p T (0,2) T, (ea)] + (oK, (0ga)1" (0a) — K (0,0) T, (za)]

X [B,K] (,0)T(aqb) — BT1(aqb)K, (b)) ], (3.183)
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s(a) - {Il(ala) (K (o, 0) K, (b)) — B K (o, b)K (o, b)]
() = o7 - DK (.o
ll(aa) a.0(ct) i B I Tl 21\ 1V
K-L(Oc'ls) Y s 1
— [p,K (a,0) I (b)) = 31T (ab)K (a,b)] — Ky (ea) b . (3.184)
ap(ct) : ? J
Then the constants can be writben as
pIrO [ . ~ o
Cqla) = - 4{leocro)s(oc) + Kl(aro)j s (3.185)
pIroll(arO)
Cy(@) = el 5(a) (3.126)
LIrqy Ly (Or
Do) = - :F( ------- 9—> s (3.187)
pIroil(arO) , ,
Cy(Q) = e [B1 K7 (27 0) Ky (b)) — B,K7(0,0) K, (b)) ], (3.188)
naD(a)
, uIr, I, (arg) , PP
Dya) = S [B,K) (a,b) T (ayb) ~ B Ti(ab) Ky (a,b)] (3.189)
ulrgTq(ary)
D, (a) = — ks (3.190)

ﬂabulD(a) )

We shall now substitute these constants into their respective
equations to obtain the vector potential in each region due to a delta

function coil:

L
2,0y 2B Lt (e frany) sto) Kl(aro)}-cosa(zwzo) o, (3.191)
/ |
ul
A(Z)(r,z) = %r roll(aro) {il(ar) s(a) + Kl(ar)}'cosa(zmzo) do (3.192)

0



T [Ty (crg) ,
Az, - %f% T, () [B K (D) K, (0,) ~ B,K, (0,b)K, (00)

[oe]

T r.TI. (Olr,)
A(4)(r,z) = - E—L/m—g—iw-*g— K1(a2r) cosa(z~zo) ace . (3.194)
T ) abulD(a) :

These are the equations for a delta function coil inside a two-
conductor tube. We shall now superimpose them Lo obtain the results for
a coil of rectangular cross section, as shown in Fig. 16, We do this by
substituting Eqs. (3.191) through Eqs. (3.194) into Eq. (2.5) and
integrating over the dimensions of the coil. We get for the vector poten-

tial in the different regions

1 mw Iy
2 a2y = B T o) fite 2 500 + Knym,) )
]
[sin&(z—ﬁl) —-simx(z—ﬂz)] o, (3.195)
(2) pmw [ I(ry,ry) j N ]
A. (r, Z) = - J Cé,} LIl(al)O(QC) -+ K]_(fo/
[sinc(z-£,) — sin(z-£,)] do ,  (3.196)
wIN L I(r,,r.) ,
2N, 2) - 0 [ 22227 dy (02 8, K (o B) Ky (0p) = 82K, (pb) K, (b)) ]
T / ax’D(or)
+ K, (o r) [ K (o,0) T, (b)) ~ Bll’l(alb)Kl(azb)]}
[sin¥(z-g1) — sina(z-2,)] ax , (2,197)
and

[o ]

. uIN I(xr,,r,) . . .
A( )(r,z) - — \/nabplaiD(é) Kl(aer)[51na(z-zl) - smn@(z—ﬂQ)] ax . (3.198)

i
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In the region of the coil, between regions T and II, we have

,@2 r 2) I“2 (l)
A(l’z)(r,z> . INJ/\ { f AO <r}zirO:ZO)drO N f AO (r)z:rO:ZO)drO} dZO
i o i

i i
=f, I,=7, o S o
ZoThy  IpTYy o=T
pl ml [ ( - .
- T &5 iLl(rz,rl)I\ar)S(a) + il(r,fl)Kl(ar)
0

Y

- Il(Otr)Kl(rz,r)j- [sina(z-£,) ~ sinc(z-2,)] do . (3.199)

By using Eq. (3.152), we can write Eq. (3.199) as
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A(l,Z)(rJZ) = Eéﬁk/ﬁég {kI(rz,rl)Il(ar)S(a)][sina(z—ﬂl) — sino(z~£,)]
0

+ (ﬁ/2)J(r2,r1)Jl(ar) <? _‘ea(z-ﬂz) —-eﬂy(z—zlzj}-d% . (3.200)

We have now obtained the vector potential in each region.

2. TImpedance of a Coil inside a Two-Conductor Tube

To calculate the coil impedance, we substitute the equation for the
vector potential in region I-IT into Eg. (2.18) and integrate. After

normalizing the dimensions with respect to the mean coil radius we get

iy, D b r

Jauwn“uy 1 . 07
JFaZ'{%Iz(rz’rl)s(a)Slnzti'(22"£l)}
0

T (1,-2,)2(x,o19)°

+ Tth(r?,'rl)[ot(,z?-ﬂ,l) -1 + eﬂ(zz-g])]} dx . (3.201)

A computer program.(lNNCOi) has been desligned to calculate the normalized

impedance for this cage.?8

3. Defects in the Inner Material

We can write the equation for the impedance change due to a current
defect in region IIT by substituting the vector potential in region III
into hg. (2.28). If we normalize the dimensions by r and the impedance

by the air value, we obtain

283, W. Lugquire, C. V. Dodd, W. E. Deeds, and W, G. Spoeri,
Computer Programs for Some FEddy Current Problems, ORNL-TM-2501
(in preparation).
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s3]
3 — [Llry,e) |
7. = -7 (opo,72) Vol oy, 2 T, () [8,K (o b)K, (D)

P Qx)

o

~ £, K] (a,b)K, (ayp)] + K (oyr) [B,K (a,0) 1, (ayb) — BlIi(alb)Kl(azb)]J

2
X [simj(z-zl) w~sina(z~£2)] dox r

o

-
R . o—ale,-0,)
—.-j &"é“ J (TZ)TI)[G(EZM"@I) e 2 1 - l} da 2 <320?)
0
from which we can readily find the defect sensitivity factor, since this
. . 4
is Just Znﬁxzz Vol.
There is a program ( INDFT5 ) designed to calculate the defect sensi-
tivity factor due to a small curreunt defect in the inner conductor. 28
In addition, there is a program_(INDFTL) designed to calculate the defect

sensitivity factor at all points in a lattice in the inner conductor.

4. Defects in the Outer Material

Substitution of Eqg. (3.198) into Eqg. (2.28) gives the normalized

impedance change due to a defect in region 1IV:

, 3 r,,r ) K (a,r)
Z ———'(wPGﬂTZ\ Vol Qoo {;/P M ; L2 [sina(z-2 ) — sinz( ] d%}
D 3 abu,0’d(@)

«©
1 -
/“z J2(ry,ry ) lale,-6,) + b)) an . (3.203)
8]

There 1s a program.(INDFBB) designed to calculate the defect sensi-

tivity factor for a current defect in the outer conductor. 28

IV. Calculated Results for Some Important Applications

We have derived the equalbions for some physical properties for the
six different coil and conductor configurations shown in Fig. 17. We

shall now present computer evaluations of some of these properties.
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{g) CASE {: COIL ABOVE TwO-CONDUCTOR PLANE.

(4} CASE 2; REFLECTION~TYPE COIL (AS USED IN
PHASE -SENSITIVE INSTRUMENT ) ABOVE A
TWO~CONDUCTOR PLANE .

(d) CASE 4 COIL. BETWEEN TWO-CONDUCTING
PLANES (FOR SPACING MEASUREMENTS.

{¢) CASE 3: THROUGH - TRANSMISSION COILS (AS
USED IN PHASE -SENSITIVE INSTRUMENT. A1

/ /// A/ //////// / /,/’://

{e@) CASE 5: COlIL. ENCIRCLING TWO CONDUCTOR ROD.

(£) CASE B: COil. INSIDE TWO CONDUCTOR TUBE.

Fig. 17. Eddy~Current Problems Treated Here.
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The first quantity is the impedance of a coil above a two-counductor
plane. Figure 18 shows how the impedance varies as the cladding thick-
ness is varied from zero to infinity. There are two different curves
corresponding to two different base materials of different conductivities.
These curves indicate the accuracy of measuring cladding thickness and

the effect of a change in conductivity of the base material.
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Fig. 18. Impedance of a Coll above a Two-Conductor Plane.

As a further application, we have calculated the defect sensitivity
Tactor for a coil above a conducting plate. We have calculated the factor
at points in a lattice and plotted contours of constant defect sensitivity.
Figure 19 shows the defect sensitivity factor contours superimposed on a
scale drawing of the coil and conductor. We can use these contours to
calculate the impedance change due to a current defect at any location
in the metal or due to movement of the defect past the coil. The
normalized lmpedance change 1s the product of the defect sensitivity

factor, the volume of the defect, and the shape and orientation factor.
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Another application involves the reflection-type coil. We are
attempting to determine the optimum operating conditions for maximum
sensitivity to an incremental thickness change Trom a certain nominal
thickness. Figure 20 shows how the phase shift per incremental thickness
varies as a function of the operating conditions for four different
nominal thicknesses. From this graph, one can choose the optimum fre-

quency for a particular coll, material, and thickness range.
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Fig. 20. The Phase Shift for #10% Thickness Variation from Nominal

For a coil encircling a two-conductor rod, Fig. 21 shows the
normalized impedance as a function of the radius of the inner conductor.
The conductivity of the inner conductor differs for the two curves, but
all other parameters are the same. This example demonstrates the range
and sensitivity of clad thickness measurements and the problems resulting

from a change in the conductivity of the inner conductor.



73

ORNL~DWG 68-7218

D4 prememesemsre s ‘
w,ua'{r'z 59.94
200833
062 el VRSN AN e ‘ o —
\ | j 0325
0.60 ;- P =MEAN COIL RADIUS - ;
1= ANGULAR FREQUENCY \ /
H= PERMEABILITY L4
@ = CONDUCTIVITY
-
Z
W 058 o N [P e g - —{
[»] {
= 72212069
% wpa T =20,
o 0=0.833%
I
>
£
O 056 - R e ey s ]
<X i f
& , L 0,825 5 ‘
£0.810
0.54 1
0.52 b AN 07 TS e T -
0.50 [ /
07 08 09 10 44 12 43 14 45 18

RESISTIVE COMPONENT

Fig. 21, Impedance Variation as a Function of Inner Radius.

V. Experimental Verification

While we do not yet have experimental measurements for every case
derived, we do have results for enough cases to verify the general tech-
niques. It is very difficult to control the coil dimensions precisely
enough to obtain good agreement between calculated and measured results.

Our first experimental measurements are of the inductance of a coil
in air. They are compared with calculated values in Table 1.

The measurements were made on a bridge with a reported accuracy of
+0.2%. We feel that most of the errcr is due to small variations in the
coil windings.

We have constructed a family of four colls of different sizes but
with the same relative dimensions. We measured the impedance of each

coil at six different frequencies and at four different spacings above
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Table 1. Calculated and Measured Coil Inductance
Coil Measgured. Calculated Error
Number (mh) (rn) (%)
1 11.38 11.1688 1.8
2 14.595 14..3438 1.72
3 134.7 135.216 0.38
L 3.157 3.16425 0.23

a large, thick aluminum plate.

in Fig. 22.

the four different coils.

lated values is excellent in the regions of the plot representing the

Fig. 22.

The results were normalized and plo
Fach experimental point represents the average of values for
O

The agreement between experimental and calcu-
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higher frequencies. At the lower frequencies, the experimental measure-
ments are relatively inaccurate. The agreement is within the l1imits of
experimental error in all cases.

We have obtained some experimental results for a reflection coil
above a conducting plate. We measured the amplitude and phase of the
voltage in the pickup coil as a function of lift-off and plate thickness.
Figure 23 compares the measured voltage with the calculated voltage, and
Fig. 24 shows the measured and ecalculated phase shifts. In addition, for
the through-transmission case, we measured the phase and amplitude of the

voltage of the receiver coil as a function of lift-off and metal thickness.
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Figure 25 shows how the magnitude of the measured voltage compares with
the calculated values, and Fig. 26 shows the measured and calculated
phase shifts. The agreement is fairly good and within the limits of
experimental error.

We have measured and calculated the eddy-current force exerted on
a large, thick aluminum plate by an alternating current flowing in a coil.
The force was measured for two coils of different sizes but the same
relative dimensions. It was then divided by the square of the number of
ampere-turns and multiplied by 107.  The averaged results are given in
Table 2.
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Table 2. Calculated and Measured Force

2 Measured Force/r?I? Caleulated Foree Error
TRo (x 1077 newton/amp? (x 1077 newton/amp?) (%)
Lift-0ff/r = 0.0476

3.082 1.053 1.12146 6.1
g.628 2.663 2.80859 5.0
24.65 4.834 5.11163 5.4
77.05 7.148 7.52462 5.0
329.8 9.326 9.82756 5.1
362.8 10.54 10.7935 2.3
Lift-0ff/r = 0.0952
3,082 0.9414 0.987604 4.7
8.628 2.316 2.41421 4.1
24.65 4,140 4.29660 3.6
77.05 5.988 6.17141 3.0
329.¢8 7.692 7.85378 2.1
g862.8 §.575 8.53364 ~0.5
VIi. Accuracy of Calculations

This technique, like most others wused in engineering, is "exact,
except for a few assumptions we have to make in order to work the problem.”

We will now discuss the probable errors in some of these assumptions.

A, Axial Symmetry

This is a very good assumption, but we cannot easily wind coils that
have perfect axial symmetry. This error will vary with the winding tech-
nique and will decrease as the number of turns on the coil and the coil-
to-conductor spacing increases. This error will be effectively reduced
when normalized impedance is calculated. TFor a typical coil it should be

less than 0.01%.

B. Current Sheet Approximation

This error arises because we have assumed a current sheet, while we

actually have a coil wound with round, insulated wire. Some correction
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formulas are given by Rosa and Grover?”? for the inductance of a coil in
air.
From Eq. (93) by Rosa and Grover we have

T av 4 Py P_ - 'L
AL = + panr {}n 37 .leJ . (

[0
>
=
~—r

The symbols D and d are the wire diameters with and without insulation,
respectively. This correction is positive and is usually & small frac-
tion of the total inductance. Using the approximate Ig. (&7) from Rosa
and Grover for the inductance we can write for the fractional inductance

change

L n

aMs e 8
oL | [0.5058rp — 0.2742r; + 0.44 (£5-27)1 <}n % . 0.155> } (6.2)
where all dimensions are normalized by the mean coil radius. For a
typical coil with 100 turns, the change in inductance is 0.19%. In
prachice most coils‘are not wound in precise layers of wire as assumed
by Rosa and Grover. Instead, the windings are randomly plled on each
other until a coll form is filled. This effect should be a very short-
range one, It will have a much smaller effect on some other phenomena,

such as normalized coil impedance, which depend on the metal.

C. High Freguency Effects

There are a number of high frequency effects, and they are probably

the most serious sources of error in this calculation technigue.

1. The Skin Effect

As the frequency increases, bthe current density ceases to be uni-
formly distributed over the crogs section of the wire but becomes concan-
trated near the surface. The resistance of the coll increases, and the
inductance decreases. As a first approximation the registance, R, of a

circular cross section of straight wire 1820

??E. B. Rosa and F. W. Grover, Nat. Bur. Std. (U.3.), Tech. News
Bull. 8(1), 1-237 (1912).

2 . . -
*OFrederick W. Grover, Inductance Cslculations Working Formulas and
Tables, Dover, New York, 19G2.
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NG
R ~ Rg tl P (¥o) ] , (6.3)

where Ry is the low frequency resistance, rp is the wire radius, and 5
is the skin depth. Thus the effect is less than 0.13% as long as © is
greaber than 2r,. We have calculated the frequency produciang this much

effect for some different sizes of copper wire. They are listed below:

Brown and Sharp Frequency
Wire Gage Number Migggpglw
20 6.6 x 107

30 67 x 10°

40 680 x 103

%) 1.1 x 10°

I'ne self-inductance decreases slightly at higher frequencies due to
the concentration of current on the surface. For a length of straight

wire, £, the self-inductance changes from

e 5 \\\\ . \\
22 <ln 2L _ %/ x 1077 to 2% (in 2 . 1) % 1077
v Yo / N To /
A 2 oSSl E ~ -G
as the frequency goes from zero to infinity, or a net change of-§ x 10 h.
This represents a net change of less than 10 ppm on a typical coil. The

skin effect for the case of a straight wire is modified considerably when

the wire 1s wound into a coil. However, these equations may be used for

order-of-magnitude estimates.

2. Interwinding Capacitance

The interwinding capacitance is the distributed capacitance between
the individval turns of wire, and it decreases as the thickness of the
wire insulation is increased. Wnile it is a distribubed capacitance, it
acts much as a lumped capacitance in parallel with a series inductance

and resistance. This produces the resonant frequency

Wy = —— . (6.4)
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At frequencies much below the resonant frequency (w <L wo), the resgistance

and inductance vary as follows: 20

R

2
{

R [1 + 2(w/wy)?) , (6.5)

L

2

LI+ (wfw)®] . (6.6)

Near resonance, the reactance changes rapidly from maximum inductive
reactance through zero to maximum capacitive reactance. The current,
being capacitively coupled between the turns, tends to flow across the
loops of wire rather than through them. In general, coils are used well
below their resonant frequency. This effect also is sghort range and

tends to cancel oub in normalized inductance calculations.

3. Coil-to-Sample Capacitance

The capacitance between the coll and the sample is generally con-

siderably smaller than the interwinding capacitance. It can be approxi-
mated by
(Area of Coil Surface Next tc Conductor)
C = 8.85 x 10712 x - . (6.7)
(Lift-0ff)

For most coils, this will be on the order of 10 picofarads or lesg. The
effects of the coil-to-sample capacitance can be reduced by winding the
coil so that the turns nearest the sample are electrically near alternating-

current ground.

4. Displacement Current Effect

In the actual calculation of the results, we have neglected the dis-

placement current terms. We made the following approximation:

s — 2 22 -
o =7 Ay = .V/Gf ~rTWiG ey . (6.5)

To determine the amount of erryor introduced by this approximation, we
calculated the normalized impedance of a coll both with and without the
approximation. We chose a coil 1 m in mean radius, a frequency of 1 Miz,
and a sample resistivity of 2.63 x 107 uQ-cm. These extreme values were

chogsen 30 that some effect could be observed. The error in the normalized
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real and Imaginary parts of the impedance was +59 ppm and +113 ppm,
respectively. The error in the coil inductance wag ~140 ppm. For the
coils and conductors normally used in eddy-current work, the effect is

completely nesgligible.

5. Assumption of Linear Media

We have assumed that the media are linesr — that is, B = uH and
D = ¢E, where 1 and ¢ are constants. This is a good assumption if the
materials are nonferromagnetic or if 2ll the magnetic domains in a ferro-
magnetic material arce saturated. For ferromagnetic materials, the wedium
is not only nonlinear, but it frequently has a large amount of hysteresis.
While the effects are fairly small for low currents and the ferrite mate-
rials, experimentzl measurements indicate that typical calculated values

may be in error by about 10% for ferromagnetic materials.

VIT. Conclusiogg

o

These integral solutions offer an accurate way to calculate tLhe
observed effects of actual eddy-current tests. The agreement belween
experimental and calculated effects is good, although the number of
experimental measurements is still somewbat limited. It is hoped that

N

the ability to calculate these eddy-current pehnomena accurately will
lead to eddy-current instruments which can make direct measursments of

the physical properties of a specimen without calibrabtion standards.
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APPENDIX

List of Symbols

In the first column the symbol used is given and in the sescond
column the name. In the third column the meter-kilogram-second (MKS)
units are given. In the last column the dimensions are given in terms

of mass (M), length (L), time (T), and electric charge (Q).

Symbol Name MKS Units Dimensions
. weber ML,
] al A o
A vector potenti i i)
B magnetic induction M, M
meter? TQ
c clad thickness meter L
. . coulomb Q
D electric displacement R ~
’ P meter L?
E electric intensity volt ﬁ%.’._
meter T<Q
H magnetic intensity ampere &
meter TL
I 2pplied current ampere %
i, applied current density ampere Q.
meter? TL?
T2
(ry,ry) ai/rOIl(ur())dro
ry
J current density EIEE—ei? 9—-;-
meter< TL~
J square root of minug one
T2
I(ry,ry) C‘i/roJl(O‘Tc))dro
1
o

x( rz,r]_) a?jr*o K, (Ocro )dro

ry



Syrabol Name MKS Units Dimensions
. MLA
L inductance henry é?m
Lo distance from metal to top of the coil meter L
£ distance from metal to bottom of the coil meter T,
2
. ML=
M mutual inductance henry -
Q
. turn 1
N turns per unit area 3--5 —
meter L2
n number of turns turn
r, coil inner radius meter L
r, coil ocuter radius meter L
T mean colil radius meter I
t time second T
T period second T
ML?
Vv voltage volt -
2
=Q
. ML?
Z lmpedance ohm ereeeme
2
Q
Zy distance from metal to delta function coil meter L
Zn normalized impedance
. N -1 1
o separation constant meter T
o current scattering matrix
2 2 5 1
.2 ~ 2 . - .
Uy (a® — w Hovo) meter™* T
2 2 5 1 ]
. - 2 - A
. s — Wi, e. + JWu.o, meter ~ E=
i ( Hi®s J Hy 1> te L
5! magnetic scattering watrix
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Symbol Name MKS Units Dimensions
L 1
0 1 ) 1
— (0~ WPu,e, + Juu.o,)? a1 =
Bi by (@ w M€y J(“'uioi) meter =
fa, me A2
€ dielectric constant farad T ?
meter ML
) permeability henry ﬁ%
meter Q
o conductivity mho TqQ
meter ML~
W ansular freguenc radian _];
netay freaneney second T






1-2.
3.

4—23.
24,
25.
20.
27.
23.
29.
30.

31-80.
a81.
82,
83.
84,

103,
104,
105,
106~115.
116.

117,
118.
119,
120.
121.

122.
123.
124,
125126,
127-128.
129,
120.
131,

132,
133-327.
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