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ABSTRACT

r

With the Molten-Salt Reactor Experiment (MSRE) operating at 5 Mw, sawtooth

pressure perturbations were introduced into the fuel-pump bowl to determine the

amount of helium gas entrained in the circulating fuel. The pressure and neutron flux

signajs were simultaneously amplified and recorded on magnetic tape. Then the

signals were analyzed using auto-power spectral density, cross-power spectral

density, cross-correlation, and direct Fourier transform techniques to obtain the

neutron-flux—to-pressure frequency-response function.

An analytical model, developed previously to aid in me interpretation of the

fluctuations of the neutron flux in an unperturbed system, was used to infer from the

experimental data the amount of helium void (interpreted as a void fraction) entrained

in the fuel salt. A description of the analytical model and its experimental verifi

cation are included in this report.

The void fraction was determined to be between 0.023 and 0.045$. The

uncertainty of this inference is attributed to assumptions made in the model.
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INTRODUCTION

A technique for determining the amount of helium gas entrained in a nuclear

reactor, circulating fuel-salt system was developed and applied to the Molten-Salt
Reactor Experiment (MSRE) to determine the amount of entrained gas in the system

at any time. This information is useful for calculation of the overall reactivity
balance, since the amount of gas varies and consequently has a varying effect on

the overall reactivity balance. The technique is accomplished by introducing

small pressure perturbations in the fuel-pump bowl and then cross correlating the
resulting neutron-flux fluctuations with the pressure perturbations. Since the

perturbations are small, the technique can be carried out at full reactor power. The
technique is very sensitive; even with a poor signal-to-noise ratio, meaningful data

can still be extracted.

It has been demonstrated1 that the amount of helium gas entrained in the MSRE

fuel salt is a function of the system pressure, temperature, and fuel-pump bowl

level. The amount of gas in the system has been estimated from experimental data

from slow power transient tests,2 pressure release tests,3 mass inventory and zero-
power reactivity balance calculations,4 and analysis of the fluctuations (noise
analysis) in neutron density levels.1 The noise analysis technique is nonperturbing;
however, it allows determination only of the relative changes in the void fraction.

The other techniques are performed at special reactor conditions; hence, they are

not directly applicable at arbitrary reactor conditions.

'D. N. Fry, R. C. Kryter, and J. C. Robinson, Measurement of Helium Void

Fraction in the MSRE Fuel Salt Using Neutron Noise Analysis, ORNL-TM-2315

(Aug. 1968).

2J. R. Engel and B. E. Prince, The Reactivity Balance in the MSRE,

ORNL-TM-1796 (March 1967).

3MSRP Semiann. Progr. Rept. Aug. 31, 1966, ORNL-4037, pp. 29-35.

4MSRP Semiann. Progr. Rept. Feb. 29, 1968, ORNL-4254, pp. 3-7.



The manner in which the amount of void is determined from the technique

developed here is

1. The neutron-flux—to—pressure frequency-response is obtained from the

analysis of the varying neutron flux and pressure signals.

2. The neutron-flux—to—pressure frequency-response is obtained from an

analytical model, with the amount of void in the system as an unknown.

3. The moduli of the experimentally and analytically determined frequency

response are forced to be the same through the specification of the amount

of void in the system.

The model is described, and, due to the complexity of the model, experimental

results are presented and compared with predictions from the model for the purpose

of developing confidence in the model.

As stated previously, there is a small amount of void in the system, and we

propose a small pressure perturbation on the system. One would immediately question

the feasibility of the technique. Hence, data were collected and analyzed for the

conditions with and without pressure perturbations. From these tests, we believe

that it is established that the method is feasible. Then the experimental data were

analyzed by several different techniques and compared with predictions from the

model, from which the amount of void was determined.

The authors are grateful to C. B. Stokes for his assistance in performing the

measurements and to J. R. Engel and especially to R. C. Steffy for their assistance

in designing and implementing the experiment.

2. THEORETICAL CONSIDERATIONS

2.1 Introduction

In this section the theoretical model will be described briefly with emphasis

on the basic assumptions. This description will be followed by a comparison of

model predictions with experimental data for the purpose of developing confidence

in the model.



2.2 Development of the Analytical Model

Since the technique described herein for determining the helium void consists

of analyzing those fluctuations in the neutron flux signal that are caused by induced
pressure fluctuations in the fuel pump-bowl, a model was required to relate the
neutron flux to pressure. In the development of this model, the compressibility of
the entrained helium gas was postulated as the mechanism having the greatest effect

on that reactivity induced by pressure perturbations. The primary governing equations

are, therefore, the equations of state, conservation of the mass of the gas, of mass
of the fuel salt, of momentum, of energy, of neutrons, and of delayed neutron

precursors. In particular, with the assumption of one-dimensional flow, the governing

equations are:

Equation of state for gas,

p =P/RT. (1)
g

Conservation of mass for the gas,

_L_ Tp a\ +_S_r p V a =0. (2)
St g J 9z l. g g j

Conservation of mass for the fuel salt,

ArPf(l-a)"; +̂ -rpfVf(l -q)">0. 0)
01 _ I J O Z L. V T _i

Conservation of momentum for the gas-salt mixture,

9 r

3t
[pf Vf(l - a) +pg Vg«] +£• [PfV/ (1 - a* +PgVg2* J

oP PW r n v. (4)

5L. G. Neal and S. M. Zivi, Hydrodynamic Stability of Natural Circulation

Boiling Systems, Vol. 1, STL 372-14 (June 1965).



The assumed relationship between Vf and V is

V = SV, , (5)
a tg

where S, the slip relationship, is given by

S=-1^ . (6)
D K -a

Conservation of energy in salt-gas mixture,

°|Pl

o

where y is the fraction of the "unit cell" power density generated in the liquid.

Conservation of energy in the graphite moderator,

dT., • •• 3 T..
r kA — =0-v) Q +kM —p- . (8)MM pM 0t M dy*

Coulomb's law of cooling,

"_U/'W "F

Power density,

q =h (TUI - Tc) • (9)

a =cKif0, do)

where C is the conversion constant from fission rate to the desired units for power
K

density.



Conservation of neutrons (one-group diffusion model),

6

V"l M. = vDv0 +Fv(l -0) f Sr-L I0+Y X.fn.C
not L pfaJZ^iDii

Precursor balance equations,

oC

i=l

(ID

at
=0.v Ef0 - X.C. - -2- (VC.) , (12)

It I I O Z I

for i = 1, 2, ... 6.

Since the interest is in small deviations about steady state, it was assumed that

a linearized representation of Eqs. (1) through (12) would adequately describe the

system. Furthermore, it was assumed (a) that the velocity fluctuations would not

significantly affect the precursor balance, and (b) that the fluctuations in the density

of the gas are proportional to fluctuations in the pressure. This latter assumption is

based on the linearized version of Eq. (1), i.e.,

»,•>*[£•£]• (,3)
where pis the mean density of gas, and the Aquantities represent deviations about

the mean. The ratio of the mean temperature T_ to the mean pressure P-. is in the

range of 40; therefore, the last term in Eq. (13) was ignored.

With the assumptions set forth above, the linearized equations generated from

Eqs. (1) through (6) can be solved independently of those obtained from Eqs. (7)

through (12). The former set of equations is referred to as the hydraulic model and

the latter set as the neutronic model.



The dependent variables in Eqs. (1) through (6) are V„V , a, p , and P.

This set can be reduced to a set of three coupled differential equations with three

dependent variables in their linearized version. The dependent variables retained

in this study were AVf , Aa , and AP. Therefore, the equations defining the hydraulic
model were transformed to the frequency domain and written as

A(z,s) dXjZ's) +B(z,s)X(z,s) =0,
az

where X(z,s) is the column matrix

X(z,s)

AV(z,s)

Aa(z, s)

AP(z,s)

and A(z,s) and B(z,s) are 3x3 square matrices.

The solution to Eq. (14) is

X(z,s) =exp I" f Z(z',s)dz'l X(z.,s) ,
L J

where

Q(z,s) =A_1 (z,s) B(z,s) ,

and the matrix expT jQ(z', s'dz' can be evaluated using matrix exponential
z.

i

techniques similar to those described in ref. 6. Before the solution can be com

pleted, the boundary conditions appropriate to the system must be specified.

(14)

(15)

(15)

(16)

6S. J. Ball and R. K. Adams, MA TEX P, A General Purpose Digital Computer

Program for Solving Ordinary Differential Equations by the Matrix Exponential

Method, ORNL-TM-1933 (Aug. 1967).
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To assign boundary conditions, a physical description (model) of the actual

system must be considered. The model chosen to represent the more complex actual
system is presented in Fig. 1. In particular, six regions (identified as L] through L$

in Fig. 1) were chosen:

1. the region from the primary pump to the inlet of the downcomer, Lj;

2. the downcomer, L2;

3. the lower plenum, L3;

4. a large number of identical parallel fuel channels, L4;

5. the upper plenum, L5;

6. the region from the reactor vessel to the primary pump, L«$.

The, perhaps, significant features left out of the physical model are the

heat exchanger and details of the pump bowl. The omission of the heat exchanger

will certainly restrict the lower frequency of applicability of the neutronic model,

but we do not believe that this would affect the hydaulic model. The effects of the

pump bowl on the system were approximated by the boundary conditions between

regions 1 and 6.

The matrix represented by the exponential term of Eq. (15) was generated

for each region. Then, continuity equations were applied between each region,

along with the pressure fluctuations inserted at the pump bowl, to permit the solu

tion to the closed loop system; i.e., the output of region 6 was the input to region 1.

This permitted the evaluation of the void fraction distribution up through the MSRE

core, which will be required for the solution of the equations describing the neutronic

model.

For the neutronic model, the equations of interest are Eqs. (7) through (12).

The solution to this set of equations could be generated using techniques analogous

7The reactor actually consists of hydraulically different parallel channels, but

to date, no attempt has been made to model them.
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Fig. 1. Model Used to Approximate the MSRE Fuel Salt Loop.
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to those used in the hydraulic model, but a simpler scheme has been pursured here.

To demonstrate, consider Eq. (12) after it has been linearized and transformed into

the frequency domain,

V -4- AC.(z,s) +{\ +s) AC.(z, s) =P.vXU0(z,s) . . (17)
o dz i i i it

The assumption is made that the flux is separable in space and time, i.e.,

0(z,t) = H(z)N(t), (18)

and fluctuations occur only in the time-dependent coefficient N(t); therefore,

A0 (z, s) is given by

A0 (z,s)=H(z)AN(s) . (19)

By use of Eq. (19) and since the precursors leaving the upper plenum return at a

later time (determined by external loop transport time) to the lower plenum, Eq. (17)

was solved for AC. (z, s) as a function of z and AN(s).
i

A scheme similar to that used for the precursor equations was applied to the

energy conservation Eqs. (7) and (8) to obtain a solution to AT_(z, s) and

AT., (z, y,s) as a function of axial position z and AN(s).
M

Now, attention is given to the neutron balance Eq. (11), and a series of

operations is performed: substitute Eq. (18) into Eq. (11); multiply through by

H (z)N (t), where H (z) is a weighting function taken to be the steady-state

adjoint and N (t) is the assumed adjoint time dependence; integrate over the volume;

and require variations of the resultant with N (t) to be zero (the restricted variational

principle).8 This series of operations leads to:

8J. C. Robinson, Approximate Solution to the Time Dependent Multlgroup

Neutron Diffusion Equations Using a Restricted Variational Principle, Ph.D. thesis,

Univ. Tenn. (Dec. 1966).
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<-vH*-DvH - H*E H+ fH vEfH > N(t)
a t

6

"I PifDi<H*vZf H>N(t)
?=1

dN+£<HVD.C.(r,,)>=<H'v-'H>^,

where

(20)

TMi-3)fp^ e.fDI, (2D
i=l

and < > indicates integrals over the reactor volume. The reason for introducing

f will be clarified below.

The static reactivity is defined as

v - v
c

p.
s V

which is the algebraically largest eigenvalue of the equation

[vDv-S]f +(1 - P )f vLt =0 .
as s t s

We furthermore consider the solution to the equation

[vDv-E ]%* +(1 -p)(FvZpV =0 ;
as s t s

(22)

(23)

(24)

this equation is defined to be the adjoint to Eq. (23). Then Eq. (23) is multiplied
through by \|r and integrated over the volume to obtain

9B. E. Prince, Period Measurements on the Molten-Salt Reactor Experiment

During Fuel Circulation: Theory and Experiment, ORNL-TM-1626 (Oct. 1966).
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<-vt* • Dvili -I Sii + * f v Eri|f >s s s a s s t s (25)

< ik fvEJ >
S T S

In Eq. (20), by choice

H(f) =+s(r) , (26°)

and H*(7) = i(7). (26b)
s

At this point it is possible to calculate the value of p which is required for a

critical system. This is the procedure that is normally pursued in criticality cal
culations; therefore, the quantity F was introduced in Eq. (20) so that the formulism
could be reduced easily to conventional static formulation. Accordingly, we

introduce the definition

<-vH*-DvH - H*Z H+ H*rvSrH>
p(t) , 2 *— , (27)

Jf
<H fvSrH>

where the reactivity p(t) is, in general, a function of time, since the nuclear
parameters will be changing in time due to feedback, rod motion, etc. It follows
from Eq. (27) that p(o) is the static reactivity if the reactor were "just" critical at

t = 0. We now introduce the definitions

<-vH*- DvH> = <-H*DB2H>, (28)

A=<H* V"1 H>/<H*f" v£fH >, (29)

and write Eq. (20) as



p(t)N(t)-£ (p.fD./f )N(t)
1=1

15

dN

+1 Q<"\fticfi't)>y<H*f vEfH >=A_dT
j=i

Since the spatial mode H(r) was chosen to be the flux distribution at critical

[eigenfunction of Eq. (23)1 N(0) is unity. Then p(0) from Eq. (30) is

,(0) =£
6 p.f_. <H*X.fn.C.(7, 0)>

i Di i Di i

. , f <H*fv ZrH>
i=l f

(30)

(31)

At this point, Eq. (30) is linearized by introduction of

N(t) = l + N'(t) , (32a)

p(t) = p«»+p'(t), (32b)

and

C.(7,t) =C.(T,0) +C:(7,t), (32c)

where the primed quantities will be assumed to be small deviations about the mean.

Equation (32) is introduced into Eq. (30) and the products of small quantities are

ignored to obtain

6 <H*\.fn.C.(r# o)> £ <H*\.fn.C./(7*,t)> ,M/ , ip'(t)_Y L2U N'+Y L^U =A^- .03)
. . <HfvLH> . , <H fvLH>
i=l f i=l t
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To reduce Eq. (33) to a more useful form, we define

-DB2 - £ +T\> Er

<H fvEfH>/<H H>

where the 6 represents deviations about the mean. Then p'(t) becomes

<H*pL(T,t) H>
p'(t) = f (35)

<H H>

and Eq. (33) can be written as (dropping primes and transforming)

i. <H\.lD.C.fi0)>sAN(s) +V rDi-i'"" N(s)
<H*fvLH>

6 <H*X.f_.C.(r,s) > <H*p.(r,s) H>
-V L_2u = L .(36)

. . <H*f vErH> <H* H>
i=l r

Although pL(r,s) could be evaluated directly from Eq. (34), a somewhat simpler
approach is to expand in a Taylor series, as

PL(r's) =FT7 AVr's) +^ATM(7's) +TaL" Aa(r's) +- ' (37)

where AT.(r,s) is the local fluctuation in the temperature of the fuel (j = f) or

moderator (j = m), Ao?(r,s) is the local fluctuation in the void fraction of gas,

and the "etc." are assumed to be a deterministic input reactivity that can be

grouped as p (s).
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Equations(36) and (37) make up the neutronic model. The solution of these

equations and Eq. (15), the hydraulic model, leads to the desired transfer function,

e.g., the neutron-flux—to-pressure transfer function.

2.3 Verification of the Analytical Model

As noted in Sect. 2.2, several assumptions were made in the development of

the model; therefore, we believed that confidence could best be established in the

analytical predictions by direct comparisons with experimental data. In this section

comparisons are presented of analytical results with available experimental data.

The experimental frequency-response function obtained at zero power by

Kerlin and Ball is presented in Fig. 2. Since their data extends to about 0.2 cps,

other data obtained by noise analysis by Fry et al.1] is included in Fig. 2a. The

data obtained from noise analysis extends from 0. 14 to 15 cps, but no phase infor

mation is readily available from the noise data, since an autopower spectral density

(APSD) analysis was formed. Along with the experimental data, the results obtained

from the neutronic model are also presented. We conclude from Fig. 2 that the

analytical model describing the system is satisfactory at zero power. The "hump" in

the calculated frequency response function at about 0.04 cps is attributed to the

assumption of plug flow for the fuel salt around the loop; i.e., there must be mixing

of the delayed precursors,which the model ignores. To check the analytical model

further, the calculated effective delayed neutron fraction 0 „, which is used in

conjunction with the in-hour equation for rod calibration, is compared with the

measured 0 „• Experimentally, the decrease in reactivity due to circulating fuel

relative to static fuel was 0.212 ±0.004$ 6k/k.9 An assumed static B rr of 0.00666
ett

T. W. Kerlin and S. J. Ball, Experimental Dynamic Analysis of the Molten-

Salt Reactor Experiment, ORNL-TM-1647 (Oct. 1966).

D. N. Fry, et al., "Neutron-Fluctuation Measurements at Oak Ridge

National Laboratory," pp. 463-74, in Neutron Noise, Waves, and Pulse Propagation,

Proc. 9th AEC Symp. Ser., Gainesville, Fla., February 1966, CONF-660206

(May 1967).
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would lead to a circulating (3 rr of 0.00454. The circulating |3 rr calculated from
ett ett

the model was 0.00443. Prince had calculated a circulating |3 rr of 0.00444.
eft

The experimental data for the neutron-fluxH-o-reactivity frequency-response

function for the reactor operating at 5 Mw are presented in Fig. 3 along with the

calculated power—to-reactivity frequency-response function for the same conditions.

In Fig. 3a there is a difference between the calculated and the observed

modulus of the power-to-reactivity frequency-response function below 0.008 cps

because the model ignored the heat exchanger; i.e., fluctuations in the fuel-salt

outlet temperature were transported around the loop and back to the inlet of the core

where they affected reactivity directly. As in Fig. 2, the discrepancy in the

0.04 cps region is attributed to the plug flow model.

The difference between the experimental and calculated phase information in

Fig. 3b at the lower frequencies is attributed to the heat exchanger assumption. We

do not understand the difference at the higher frequencies.

We conclude from Fig. 3 that the analytical prediction of the power-to-

reactivity frequency-response function is acceptable for frequencies above 0.008 cps

at a power level of 5 Mw.

The calculated modulus of the reactivity-to-pressure frequency-response func

tion and the available experimental data are presented in Fig. 4. The calculated

magnitude of the modulus of the frequency-response function is proportional to the

void fraction for each model.

It was stated in Sect. 2.2 that the pump bowl was not explicitly accounted for

in the model, but an attempt was made to account for its effect on the system by the

use of boundary conditions between regions 1 and 6 (see Fig. 1). The difference in

the calculated modulus of the frequency-response function between curves labeled

Model A and Model B in Fig. 4 is attributed to the assumed boundary conditions

between regions 1 and 6. There must be two boundary conditions. The first boundary

12MSRP Semiann. Progr. Rept. Aug. 31, 1965, ORNL-3872, pp. 22-24.
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condition was that the pressure fluctuations at the exit of region 6 are the same as

the inlet pressure fluctuations to region 1. This condition seems physically reason

able; therefore, it was used for both Model A and Model B. For the second boundary

condition, we assumed for Model A that the void-fraction fluctuation at the exit of

region 6 was equal to the void-fraction fluctuation at the inlet of region 1. For

Model B, the second boundary condition was that the fluctuation in the total mass

velocity to region 1 was zero.

_ ORNL DWG. 6';-$7^

10 ' 1 1 rr-] i i m r

J,
J A

s I01

3GO

- S
' d EXPERIMENTAL

l I I I 1 I I LXJ I I L_LJ I L

/* • CALCULATED MODEL A

<

? x CALCULATED MODEL B

10
0.001 0.01 0.1 1.0 10.0

FREQUENCY (cps)

Fig. 4. Modulus of the Reactivity-to-Pressure Frequency-Response Function
for the MSRE.

The experimental data in Fig. 4 was obtained by suddenly releasing the pres

sure of helium cover gas in the primary pump from 9 to 5 psi and analyzing the result

ing control rod motion required for constant power. The amount of void present at

the time of the experiment was estimated to be from 2 to 3$ by volume. From a

comparison of Model A predictions with the experimental data, we concluded that

there was a 2.5^ void fraction, whereas from a similar comparison of Model B

predictions, we concluded 1.6$ void fraction.

It appears that the analytical predictions are nominally correct, but we do

not have enough experimental evidence to definitely select either model (from the
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shape of the predicted frequency-response function it appears that Model A is more

nearly correct). Hence, the analytical results from each model were used in the

reduction of the experimental data.

3. EXPERIMENTAL METHOD

As discussed previously, it had been anticipated that the signal-to-noise ratio

for this test would be poor; therefore, a test signal was desired which had its maxi

mum power concentrated in a small increment of frequencies (in a narrow band)

about the frequency being analyzed. For this purpose the ideal test signal would

have been a pressure "sine wave." The problem was that we could not, without

excessive difficulty, generate a pressure sine wave because of the limitations of the

system; i.e., the required manipulation of the valves would have been very difficult.

Due to practical considerations, a train of sawtooth pulses, with a period of

40 sec for each pulse, was chosen as the test signal. The scheme employed for the

generation of this signal is explained as follows (see Fig. 5). After valves HV-522B,

HCV-544, and HVC-545 were closed and FCV-516 was fully opened, the pressure in

the pump bowl increased about 0.3 psi over a period of about 40 sec. At this point,

equalizing valve HCV-544 was opened momentarily to bleed off helium, with a pres

sure decrease of approximately 0.3 psi. The mean pressure perturbation was held to

approximately zero throughout the duration of the test. The time required to release

the pressure was insignificant relative to the time required for the pressure to rise.

Equalizing valve HCV-544 was controlled by use of the circuit13 shown in

Fig. 6, which is a one-shot multivibrator that caused the valve to open when the

pressure exceeded a preset value and controlled the amount of time the valve

remained open. The period of the sawtooth waves was reproducible to within ±2$

throughout the test.

This circuit was suggested by S. J. Ball, ORNL Instrumentation and Controls

Division.
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Fig. 5. The Portion of the MSRE System Used in the Generation of the
Pressure Sawtooth Test Signal.

4. DATA ACQUISITION AND REDUCTION

4.1 Data Acquisition and Its Relationship to the Physically Significant Quantities

The continuous signals obtained from a neutron-sensitive ionization chamber

and a pressure transmitter (located —15 ft from the pump bowl in a helium-supply

line) were amplified and recorded on magnetic tape (Fig. 7) for a period of ~1 hr.

The schemes used for the reduction of the data will be discussed below, but first

it will be instructive to relate the electrical signals Vi and V2, which were recorded

on magnetic tape, to the actual fluctuations in the system flux and pressure.

The instantaneous current I (t) from the neutron-sensitive ionization chamber

can be written as

•,W=rDC,l+lAClW' (38)
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where I .(t) represents deviation about the mean current, I ,. The subaudio

amplifier rejects the mean, or DC, voltage; therefore the output of the amplifier

V, with gain G, is

V1(t) =R1G1lA^1(t), (39)

where R is the input resistor. The fluctuating current I _ .(t) from the neutron-

sensitive ionization chamber is related to neutron flux fluctuations by14

Wt) =FDC,i5N(t)/V (40)

where 6N(t) is the instantaneous deviation of the flux about the mean, and N_ is

the mean flux level. Now Eq. (39) can be written as

V,(t) =(R1G1fDC^ ^ 6N(t)/N0 , (41)

where all the terms in the bracket can be determined experimentally.

The output of the pressure sensor is a voltage that is proportional to the

pressure, i.e.,

Vp(t) =aP(t) =o[P0 +5P(r)] , (42)

where ais a proportionality constant and 6P(t) represents the deviations of the

pressure about the mean pressure P„. As before, the output voltage VJt) is

related to the input current L(t) by

V2(t) =R3G2lACf2(t) ' (43)

TD. P. Roux, D. N. Fry, and J. C. Robinson, Application of Gamma-Ray

Detection for Reactor Diagnosis, ORNL-TM-2144 (March 1968).
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Vp(t)
'AC,2(t) ="rT+X

therefore, V^(t) can be written

VQ(t) = a i'2W VR2 +R2 ~2

(44)

6P(t) (45)

Equations (41) and (45) relate the physical quantities of interest 6N(t)/NQ
and 6P(t) to the observed quantities V,(t) and V (t).

^
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Fig. 7. Representation of the System Used for the Accumulation and Storage
of the Experimental Data.
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4.2 Data Reduction

The signals V.(t) and V„(t) were analyzed by use of five different techniques.

We will not describe the details of these various schemes; however, a brief dis

cussion of each technique follows.

4.2. 1Analog Analysis

Data were recorded on analog tape (Fig. 8) at a tape speed of 3.75 in./sec.

For analysis of the data using the 10-channel analog power spectral density analyzer,

the tape was played back at a speed of 30.0 in./sec (a tape speedup factor of 8).

This increased speed was necessary so that the fundamental frequency of the pressure

sawtooth wave, 0.025 cps, would appear to be at a frequency of 2.0 cps, which

corresponded to a center frequency of one of the available pretuned filters. The

effective frequency range covered by the 10-channel analyzer was from 0.017 to

6.3 cps with a bandwidth of 0.0125 cps. Only one of the 10 channels was useful

for data reduction, because the center frequency of 9 of the 10 filters did not

correspond with a harmonic of the test signal, (in the Appendix, Sect. 8. 1, it is

shown that the center frequency of the filter must closely coincide with a harmonic

of the test signal for a meaningful interpretation of a periodic test signal.) The

primary reason for the use of the analog analyzer was that we wanted to obtain an

absolute value of the pressure power spectral density (PPSD) which could be com

pared with theoretical predictions as well as with the absolute neutron power spectral

density (NPSD).

4.2.2 BR-340 FFT Analysis

A Bunker-Ramo, model 340 digital computer at the MSRE and a program

which had been developed previously for NPSD calculations of noise signals obtained

from a neutron-sensitive ionization chamber were used for FFT analysis. The basic

procedures involved in this calculation were to (a) Fourier transform the time signal

15C. W. Ricker, S. H. Hanauer, and E. R. Mann, "Measurement of Reactor

Fluctuation Spectra and Subcritical Reactivity," Nucl. Sci. and Engr. 33 (1), 56

(July 1968).
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and (b) construct the NPSD from the transformed signal.,6 This is a very fast tech

nique, made so because the Fourier transform is obtained by an algorithm proposed

by Tukey, 17 which has become identified as the FFT (fast Fourier transform) technique.

Samples taken from the tape-recorded analog signals from the experiment

had to be digitized before digital analysis was possible. The convenient sampling

rate was 60 samples/sec, but, since this was much higher than necessary, the tape

was played back at 60 in./sec which gave an effective sampling rate of 3.75

samples/sec. Then the power spectral densities of the pressure (PPSD) and neutron

signals (NPSD) were obtained for the frequency range of 0.00366 to 0.937 cps with a

bandwidth of 0.00366 cps.

,6R. C. Kryter, "Application of the Fast Fourier Transform Algorithm to

On-Line Reactor Malfunction Detection, " paper presented at the IEEE 15th Nuclear

Science Symposium, Montreal, Canada (Oct. 1968).

17J. W. Coolen and J. W. Tukey, "An Algorithm for the Machine Cal

culation of Complex Fourier Series," Math. Comput. ]9, 297-301 (April 1965).
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4.2.3 Digital CPSD Analysis

The tape was played back at a speedup factor of 4 and the analog signals

were digitized using an analog-to-digital converter which gave an effective

sampling rate of 5 samples/sec. These digitized data were analyzed using a digital

computer simulation of an analog filtering technique to obtain the cross-power

spectral density (CPSD) function.18 The calculated results of interest were (a) the

ratios of the CPSD of flux to pressure to the PSD of the pressure at various fre

quencies, and (b) the coherence function. The frequencies selected for analysis

were the harmonics determined by the period of the input pressure wave.

4.2.4 FOURCO Analysis

The ratio of the CPSD of the flux to pressure to the PSD of the pressure is,

in theory, the frequency response function of the flux to pressure. The classical

definition of the frequency-response function is that it is the ratio of the Fourier

transform of the output to the Fourier transform of the input. Therefore, the code

FOURCO, '9 which calculates the ratio of the Fourier transforms, was used to reduce

the data.

4.2.5 CABS Analysis

Another way to obtain the system frequency response function is to

(a) calculate the cross-correlation function of the output to the input and the auto

correlation function of the input, and (b) calculate the Fourier transform of the

,8S. J. Ball, Instrumentation and Controls Dlv. Ann. Progr. Rept. Sept. 1,

1965, ORNL-3875, pp. 126-7.

19S. J. Ball, A Digital Filtering Technique for Efficient Fourier Transform

Calculations, ORNL-TM-1778 (July 1967).
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auto-correlation function. The ratio of the transformed functions (cross-to auto-

correlated) is the frequency response function. This analysis scheme was carried

out using CABS.20

5. RESULTS

5.1 Introduction

The flux and pressure signals were recorded on magnetic tape simultan

eously for a period of approximately 1 hr for the conditions of (a) no perturbations

to the system (for noise background calibration purposes) and (b) pressure perturba

tions introduced as a train of continuous sawtooth pulses with a 40-sec period and

a magnitude of 0.3 psi for each pulse. The results obtained from these tests are

discussed in the following sections for each analysis scheme.

5.2 Results From Analog Analysis

The auto-power spectral density of the neutron flux [NPSD(f)] is related

to the auto-power spectral density of the pressure [PPSD(f)] b/

NPSD(f)= |G(f)|2 PPSD(f) , (46)

where |G(f)j2 is the square modulus of the frequency-response function of the neutron

flux to the pump bowl pressure. The implicit assumption for the validity of Eq. (46)

is that the NPSD is due to pressure perturbations only, i.e., that the observed

NPSD(f) has been corrected for background noise. Furthermore, the NPSD(f)

20T. W. Kerlin and J. L. Lucius, CABS-A Fortran Computer Program for

Calculating Correlation Functions, Power Spectra, and the Frequency from

Experimental Data, ORNL-TM-1663 (Sept. 1966).

21J. C. Robinson, Analysis of Neutron Fluctuation Spectra in the Oak

Ridge Research Reactor and the High Flux Isotope Reactor, ORNL-4149 (Oct. 1967).
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and PPSD(f) must be absolute quantities (or at least proportional to the absolute

quantities with the same proportionality constant). Then Eq. (46) can be written as

|G(f)| =[NPSD(f)/pPSD(f)]' l . (47)

In Sect. 4.2 we stated that only 1 of the available 10 filters had a center

frequency that corresponded to a harmonic frequency of the input signal and that

particular filter was centered at an effective frequency of 0.025 cps, which is the

fundamental frequency of the 40-sec-period pressure wave. Therefore, we were able

to evaluate | G(f) | from Eq. (47) only at a frequency of 0.025 cps.

From Eq. (102) of Sect. 8 we note that, if the noise is insignificant in

the pressure signal (which was the case for this experiment in the vicinity of

0.025 cps), the observed PPSD(f ), which is 0(T,f ) of Eq. (102), should be given

by

PPSD (fQ) =\ (a2Q +b2Q ). (48)

After expansion of the sawtooth wave in a Fourier series and evaluation of the right

side of Eq. (48), the calculated PPSD(f ) was 0.0045. The value of PPSD(fQ)
obtained from the calibrated analog spectral density analyzer was 0.0050. A 10$

deviation in the PPSD is well within experimental uncertainties.

Although the noise was insignificant for the pressure signal, this was not

the case for the neutron signal, as can be seen in Fig. 9 by comparing curve A

(NPSD obtained from the neutron flux signal recorded during the pressure test)

with curve B (NPSD obtained from the neutron flux signal recorded immediately

following the pressure test). The ordinate in Fig. 9 is the output of the analyzer,

corrected for system gains and the square of the mean neutron ionization chamber

current and normalized to the filter area A , i.e., the ordinate is 0(T,fJ/Ap of
Eq. (95). Therefore, the desired NPSD(f ) is obtained from

( rO(T,f) -0(T,f) j
NPSD(f0)= -V1 -[-A-9"] AF ^

' L F A F B '
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at f = 0.025 cps, where subscripts A and B refer to the similarly identified curves
o

in Fig. 9. By use of Eq. (49), the value of NPSD (0.025) is calculated to be

1.652 x 10~8. From Eq. (47), the modulus of the frequency-response function of

the fractional change in neutron flux to the change in pressure (units of psi) is

lG(0-025) I=[85?0xl(£ j'7' ^•M128^1"' '
This value for the modulus is compared in Sect. 5.5 with results obtained from other

techniques. Furthermore, the procedure used to infer the void fraction from |G j

is also presented in Sect. 5.5.

5.3 Results from FFT Analysis

We concluded from the analog spectral density analysis (see Fig. 9) that

the neutron flux signal did contain information at a frequency of 0.025 cps which

was related to the pressure driving function. However, we could not determine

if information was present in the neutron flux signals at other harmonics of the

fundamental of the pressure signal. This was because no filters were available with

the proper center frequency. In principle, there is an infinite number of harmonics

present in the input sawtooth, but it is known that the power associated with the nth

harmonic P is related to the power associated with the fundamental Pn by
n u

?r- =^ , (50)
U n

where n = 1, 2, 3, .... Therefore, we expected that there would be, at most, a

few harmonics from which we could extract useful information. To determine the

number of harmonics that we could analyze with confidence, the NPSD(f) and

PPSD(f) were obtained using the BR-340. From these results (Fig. 10) we concluded

that we could analyze the fundamental and its first three harmonics. No attempt
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Fig. 10. The Neutron-Flux Auto-Spectral Density (NPSD) and the Pressure
Auto-Spectral Density (PPSD) from the BR-340 FFT Analysis.

was made to obtain the modulus | G(f) | of Eq. (47), from Fig. 10, since these results

were not presented in absolute units; i.e., this spectral density analyzer has not

been calibrated.

5.4 Results from Digital Cross-Correlation Analysis

Three different digital techniques were applied to obtain the modulus

of the neutron-flux—to-pressure-frequency response function directly: (1) the

cross-power spectrum, (2) the Fourier transform of the input and output signals,

and (3) the Fourier transform of the cross- and auto-correlation functions. Each

of these techniques will be discussed briefly and the results tabulated. In each case,

the voltage signals V^t) and VJt) (Fig. 7) were related to the fractional change in
neutron flux 6N(t)/NQ and the change in pressure 6P(t) as dictated by Eqs. (41)
and (45).
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5.4.1 CPSD Analysis

With this technique the objective was to calculate the CPSD of the

output to the input signals, the PPSD of the input signal, and the NPSD of the out

put signal. Then G(f) was obtained from

() _ CPSD(f) (51)
G(f) ~ PPSD(f) ' [5)

and the coherence function y (f) was obtained from

2m. |CPSD(f)l2 (52)
Y(f) - NPSD(f)PPSD(f) [5Z)

The coherence function, which has numerical values between zero and unity, is

used as a quantitive indication of the signal-to-noise ratio; i.e., its value

approaches unity for a high signal-to-noise ratio.

Since the scheme used for this analysis was a digital simulation of analog

techniques (see Sect. 4.2), we will refer to this scheme as the D-analog CPSD

analysis. The results are tabulated in Table 1.

We had concluded in Sect. 5.3 that we could accept results up through

the third harmonic, but since examination of the coherence in Table 1 indicates

that the fourth harmonic is equally acceptable, we included this harmonic in our

analysis of the void fraction (see Sect. 5.5).

5.4.2 Fourier Transform Analysis

With this technique the procedure was to obtain the ratio of the Fourier

if the output signal

6 P(t) signal. Then we stated

transform of the output signal 6 N(t)/N to the Fourier transform of the input

22J. S. BendatandA. G. Piersol, Measurement and Analysis of Random

Data, Wiley, New York, 1966.
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GW-3F{-^}/3F{6Kt>}, (53)

where the operator indicates the Fourier transform.

Inasmuch as the code used for the data analysis scheme is called

"FOURCO", we refer to this analysis scheme as the FOURCO analysis. The results

are tabulated in Table 2.

5.4.3 Cross-Correlation Techniques

The

defined by

The cross correlation function iL „(t) between two continuous signals can be

+ T/2
Lim 1

♦l,2 = T^»T S](t)S2(t +T)dt, (54)
-T/2

where Sit) and SJt) represent the continuous functions. If Sit) and SJt) are the

same, i|i is identified as the auto-correlation function. A program (CABS20) was

available which computed the cross-correlation function, the auto-correlation func

tion of each signal, and their Fourier transforms. Since the desired information for

this study was the frequency-response function, we were interested in the Fourier

transforms of the cross-correlation and auto-correlation functions, because G(f) is

given by

GW=3F{*1 2(t)}/2{*1 1(t)}' (55)

where subscript 1 refers to the pressure signal and subscript 2 refers to the neutron

flux signal. We obtained the coherence function from

&{ ♦, 2W} 12
Y(f)=Ti7 r • (56)
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As stated previously, the code used for the data reduction is identified as

CABS; hence, this analysis is identified as the CABS analysis.

From the results of this analysis (Table 3), we note that the coherence begins

to increase for the fourth and fifth harmonic, but this is physically unreal since the

signal-to-noise ratio decreases with increasing harmonic number (see Fig. 10).

Therefore, we accept the results obtained from the fundamental and the first two

harmonics by the CABS analysis.

5.5 The Void Fraction from Experimental and Analytical Results

The modulus of the fractional change in the neutron-flux—to-pressure

frequency-response function as obtained from the experiment was discussed in

Sect. 5.4. The objective of this experiment was to determine the amount of cir

culating void (the void fraction, VF) in the fuel salt. At present, there are no

experimental data available that relate the modulus of the frequency-response

function | G(f) | to the amount of void present; therefore, we calculated a | G(f) |

to the amount of void present; therefore, we calculated a | G(f) | using the model

discussed in Sect. 2 (the calculated | G(f) | is a function of the assumed void

fraction in the model). Analytically, we determine that (a) in the frequency range

of interest there was no frequency dependence of |G(f)| on VF, and (b) the magni

tude of |G(f)| was directly proportional to VF. Therefore, the actual void fraction

VF was obtained from
act

VF fact

G(f)|
'exp

1 'calc

VF ., (57)
ref

where the subscripts exp and calc refer to the |G(f)|'s obtained experimentally and

analytically respectively, and VF f is the value of the void fraction used in the
analytical model for generation of IG(f) , .

' ca Ic



Table 1. Results from D-Analog CPSD Analysis

Frequency [GlfT] Coherence
(cps)

0.025 0.00121 0.944

0.050 0.00088 0.522

0.075 0.00128 0.484

0.100 0.00085 0.340

0.125 0.00112 0.340

0.150 0.00013 0.002

Table 2. Results from FOURCO Analysis

Frequency |G(f)
(cps)

0.025 0.00126

0.050 0.00080

0.075 0.00220

0.100 0.00104

Table 3. Results from CABS Analysis

Frequency | G(f) | Coherence
(cps)

0.025 0.00117 0.61

0.050 0.00103 0.31

0.075 0.00130 0.27

0.100 0.00105 0.10

0.125 0.00102 0.12

0.150 0.00099 0.13



39

Two different assumptions were used in the calculation of the pressure-to-

reactivity transfer function, referred to as Models A and B in Sect. 2.3. The values

of IG(f) I , from each model are presented in Table 4 for a VF r of 0.064$.
1 'calc r ref

The objective now is to infer the actual void fraction from Eq. (57). This was

done by using the data in Sect. 5.4 and Table 4. The results obtained from each

analysis scheme (Table 5) show that the fundamental is consistent for all data reduc

tion schemes. Furthermore, the scatter, which increases with increasing frequency,

is attributed to two factors: (1) that the power in each harmonic of the experimental

test signal was proportional to the inverse harmonic number squared [see Eq. (50)];

and (2) that the total loop time of the fuel salt was about 25 sec, which corresponds

to a frequency of 0.05 cps. The analytical model used to determine | G(f) | , of

Eq. (57) was based on one-dimensional flow. This caused some humps in the calcu

lated frequency-response function at frequencies of 0.05 cps and above (Fig. 4).

Examination of IG(f) I (Sect. 5.4 and Fig. 11) indicates that G(f) varies smoothly
' 'exp

in this frequency range; hence one is led to suspect that mixing occurs which the

model does not account for.

Based on the results obtained at the fundamental (0.025 cps) a mean void

fraction of 0.045$ was obtained for Model A and 0.023^ for Model B. It is interest

ing to note that calculation of a weighted average void fraction ofall the data pre

sented in Table 5 gave the same results. This weighted average was obtained by

assigning a weighting factor, a confidence factor, to each harmonic equal to the

fraction of the total input signal power associated with that harmonic, i.e., an

inverse square of the harmonic number.

The problem now is to determine which model more nearly represents the

actual physical system. Since we do not have enough experimental evidence to

do this with greater precision, we can only state that the void fraction is between

0.023 and 0.045$.
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Table 4. Calculated Values of IG(f) I for a VF = 0.064$
' ref

Frequency
(cps)

0.025

0.050

0.075

0.100

0.125

0.150

Model A

0.00176

0.00163

0.00146

0.000596

0.000496

0.000710

G(fT

Table 5. Calculated Values of the Actual Void Fracti on

Model B

0.00343

0.00530

0.00185

0.00406

0.00503

0.00279

V (i) for each Anal
act

ysis Scheme and Models A and B

Frequency Analog D-Anal
ABA

og CPSD
B

FOURCO

A B

CABS
(cps) A B

0.025 0.045 0.024 0.044 0.023 0.046 0.024 0.042 0.022

0.050 0.035 0.011 0.031 0.010 0.040 0.012

0.075 0.056 0.044 0.096 0.076 0.057 0.045

0.100 0.091 0.013 0.111 0.016 - —

0.125 0.144 0.014 - - - -
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Fig. 11. The Experimentally Determined Modulus of the Neutron-Flux—to—
Pressure Frequency-Response Function from the Various Analysis Schemes.

6. CONCLUSIONS

The primary objective of this experiment was to determine the amount of

helium void entrained in the MSRE fuel salt for the condition of the reactor operating

at power. This was accomplished by forcing the modulus of the power-to-pressure

frequency-response function obtained experimentally and analytically to be the same.

Therefore, considerable study was made to verify the analytical results. We conclude

that the analytical prediction of the power-to-reactivity frequency-response function

was adequate, but the analytical prediction of the reactivity-to-pressure frequency-

response function was only nominally correct.
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The response of neutron flux to small induced pressure perturbations was

significantly larger than the nominal background response; therefore, a meaningful

frequency-response function of the neutron flux to pressure signals can be experimen

tally obtained.

At the fundamental frequency of the input pressure wave, the signal-to-noise

ratio of the neutron flux signal was approximately 10; this ratio decreased with

increasing harmonic number. At larger signal-to-noise ratios, the modulus of the

frequency-response function can be obtained by either APSD, CPSD, cross-correla

tion, or direct Fourier transform techniques. As the signal-to-noise ratio decreases,

the APSD technique becomes unsatisfactory. The direct Fourier transform technique

becomes less desirable than the CPSD or cross-correlation techniques as the signal-

to-noise ratio decreases.

The void fraction, at the time of the experiment, was determined to be

between 0.023 and 0.045$. This large spread is attributed to assumptions made in

the modeling of the fuel pump bowl.

7. RECOMMENDATIONS FOR FUTURE INVESTIGATIONS

Since the major cause of the uncertainty in the void fraction reported herein

is the model, we recommend that an experiment, analogous to that which we per

formed, be performed at zero power. The on-line reactivity balance could be used

to determine the void fraction, which in turn would yield a reference point to

permit the selection of either Model A or B, or to indicate that additional work is

required to devise a model.

We further recommend that the experiment described in this report be repeated

for different void conditions during operation of the MSRE fueled with 233U. The

results could be combined with the results obtained from noise analysis.'

Finally, we recommend that the CPSD analysis technique be pursued for

extraction of information from neutron fluctuations and background pressure fluctua

tions that usually occur in an unperturbed reactor.
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8. APPENDIX

8. 1 Interpretation of the APSD of Deterministic Signals

in the Presence of Noise

The direct method,9 filtering and time averaging, for APSD analysis will be

considered for the purpose of aiding in the interpretation of noisy periodic signals

with poor signal-to-noise ratios. Consider the output signal from two detectors S](t)

and S2(t) which are filtered, multiplied together, and time averaged, and start with

the data analysis scheme shown in Fig. 8. In particular, start at the output O(t),

and move backwards to the inputs S](t) and S2(t). With the multiplier and time

averager considered, O(t) can be written as

O(t) = l,(t)l2(t), (58)

where the bar represents a time average. Assume that the time averaging is carried

out using a unity weighting function and write

0(t) = i(y) l2(y)dy (59)

0

Now the problem is to relate l](y) and l2(y) in Eq. (59) to S](t) and S2(t). Assume

that the filters are linear and write

y

ll(y)=J F,(y-x) S,(x)dx, (60a)
0

and

h(y) = h(y - x) S2(x)dx
0

(60b)
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Further, assume that F] and F2 are very narrow-band filters so that I] and l2 wj|| be

a narrow-band-limited signal; i.e., the Fourier transform of these signals will be

nonzero only for a narrow band of frequencies about the filter center frequency,

even though S](t) and S2(t) may have been unlimited in the frequency domain.

Before substituting Eq. (60) into Eq. (59), it will be advantageous to examine

Parseval's theorem in the form23

+00 -fco

I G,(f)G,(f)df =J g,(t)g2(-t)dt, (61)
-oo -co

where G.(f) is the Fourier transform of g.(t). Consider g.(t) to be nonzero only in the

interval 0 <t < T; then Eq. (49) can be reduced to (see Ref. 23)
T-T +co

f gi(t)g2(t +T)dt =[ G? (f)G2(f) exp [-2rrf t j~; df , (62)
0

where the asterisk denotes conjugate complex. For t = 0, zero lag time, Eq. (62)

reduces to

J +oo

j gi(t)g2(t)dt =jG?(f)G2(f)df , (63)
0

where the integrand on the left is analogous to the integrand of Eq. (59).

Let l.(f) be the Fourier transform of l.(t). then
i i '

(f)l2(0df. (64)

T +oo

0(t) =
1

T I'
0

,(y) l2(y) dy = 1

T
—CO

23S.O. Rice, "Mathematical Analysis of Random Noise," pp. 133-294 in
Selected Papers on Noise and Stochastic Processes, ed. by Nelson Wax, Dover

Publications, New York, 1954.
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From Eq. (60),

l,(f) = F,(f) S,(f), (65a)

and

l2(f) = F2(f)S2(f) ; (65b)

therefore, O(t) can be written as

0(T)=-1 * Ft (f) F2(f) Sf(f) S2(f) df . (66)
i ».

— CO

Since Fj(f) and F2(f) are narrow-band filters, S|(f) and S2(f) can be taken outside the

integrand of Eq. (66) if they are smoothly varying functions over the filter widths,

e.g., if Sj(f) and S2(f) are near-white noise signals. It will now be shown that

S)(f) and S2(f) are not smoothly varying if S](t) and S2(t) contain a periodic signal.

Let

S.(t) = S.M(t)+S. (t), (67)
i i N i p

where i = 1 or 2, subscript N refers to a nonperiodic component (assumed to be a

smoothly varying function in the frequency domain), and subscript p refers to a

periodic signal of period T«. Then S. (t) can be expanded in a Fourier series as

CO

S. (t) = —= + ) [a . cos -=— t + b .sin —=- t I ,
ip 2 LUi T ni T /

n=l

where a and b are the Fourier coefficients, i.e.,
n n

9 T° 9
a . =4- \ S. (t) cos ±22- t dt , (69a)n, Tq Jq ,p TQ

(68)
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and

>. -4- [°S- (Osin4^-tdtni TA .1 ip T
0 0 o

Substitute Eq. (55) into Eq. (66) to obtain

+ OD

1 " _*

0(T)=- J^^^'M^N^Nff'^IN^V"

+s;p(f)s2N(f) +s;p(f)s2p(f)}df.

An alternative, but useful, form of Eq. (70) is

"f" OO )fc

p * SlN(f)S2N(f)O(T) = F* (f) F0 (f) 1N 2N df

+ co F;(f)F2(f)s.N'»vf>df+p;(f)F2(f) '̂;>w^f

Fj(f)F2(f)d| f 'P TZ? dg

F;(-f)F2(-f)d J 1P T^P dg ,+

-f

where the last two integrals are to be regarded as Stieltjes1 integrals.

To simplify Eq. (71) further, consider the cross-correlation function, defined
.22,23

as

*12(g) =Limit -y- j g] (t) g (t +t) dt ,
T— _T/2

+ T/2

_L r

(69b)

(70)

(71)

(72)
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where the limit is assumed to exist. Then the cross power spectral density Pi2(f) and

the correlation function are related by

+ c

P]2(f) =J *12(t) exp[-2rrjfT] dr, (73a)

and

+ <

*12(t) =J Vf)exp[2rr'fT] df (73b)

herew

P (f)
Limit g?(0g2(t)

(74)

Returning to Eq. (71) assume that the observation, or averaging, time T is of

sufficient length so that O(T) has reached its limiting value. Then, Eq. (71) can be

written as

om-j"f;(flF(OP1N2Nmdf
+00 + 00

+ 'F*(f)F2(f,PlN,2p<f)df+JF1(f)i:2(f>Plp,2N(f)df

+ F* (f) F2(f) d
0

JW9)dg +IF*(-f)F(-f)d LW^
o o "f

(75)

In general, the noise and periodic components of the signal will be uncorrelated;

therefore, from Eq. (73), the second and third terms in Eq. (75) will be zero (the

first term would be zero in some cases, but it is retained for generality) and Eq. (75)

becomes
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0(T)=J F*(f)F2(f)P1N2N(f)df
00 '
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0

+ F* (f) F2 (f) d
Wp

P, , (g)dg + f: (-0 F_ (-0 d P. . (g)dg .(76)
1P,2P

We define

p (f ) =1N,2NV0' +«>

+ c

Fl(f)F2(f)PlN^N(f)df

F*(f)F2(f)df

where f is the center frequency of the filters Fj and F2, and write

+ 00

O(T)=WN(f0>K(f)F2<f,df
"^ — CO

oo I f
+ f F* (f) F_(f) d fPln9n(g)dgJ 1 2 JJ lp,2p

0 10

+fF)*(-f)F2(-f)d jV,2p(9)d9
0 "r

To reduce Eq. (78) further, the following terms are examined:

f,0

P (q) da .
lp,2pW 9

o, -f

(77)

(78)

Equation (72) is used to obtain the correlation function for periodic signals and then

Eq. (73a) is applied for P. 9 (g) dg . Write Eq. (68) explicitly for Si (t) and
'P/ P P

S, (t + t), i.e.,
^P
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y>
Joi

n=l
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2Trn ,
a , cos —=— t + b , sinnI Tq nI

2rrn

J02
co _

COS^(t +T)+b 2rrn
1 (» + T) = t 1 o

nz n2
sin

'0

(79a)

(t + T) (79b)

Multiply the series in Eqs. (79a) and (79b) together and integrate over t to obtain

o

2rrn+ Y -rr (a ,a +b .b^jcos-^
L 2 V nl n2 nl \Q.J T,

n=l

+I TCanlbn2-an2bnl)Sin4rT +e'
n=l

(80)

where e is an error term that approaches zero as T -> °= . The error term is also

dependent on the ratio of the integration time Tto the period of the periodic signal TQ;
e.g. the error term will be a minimum when T/T~ is an integer for finite T. By

taking the limit of Eq. (80) as T-> °°, the correlation function iji(t) is obtained for

periodic signal of period T , i.e.,
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, / ^ _ 01 02 ^y W x 2rm
+1« IrS"1' A + ) 9 ( ° 1° O+ b 1b O) COS —tlp,2p 4 Z_ 2 V nl n2 nl n2/ T-

r*=l 0

1 2-rrn

+I 2(anlbn2-an2bnl)Sin^T T
r*=l °

where the error term e of Eq. (80) goes to zero in the limit.

Integrate Eq. (73a) over frequencies f from 0 to f to obtain

.'w^Nw^-'
0

:tt

+00
, x 1 - cos 2 rr f t .

l|»12 \T) dT .

Substitute Eq. (81) into Eq. (82) and integrate to obtain

f

IP, -, (fOdf:J lp,2p
a01a02

PFl

an1an2+bnlbn2 .. f. 2rrn>
4 Un^ TQ J

+]l K£^^_^>]]t
n=i

(81)

(82)

(83)

24,K. S. Miller, Engineering Mathematics, Rinehart and Company, New York,

1956.
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here U (f —=—) is the unit step function which is zero for f < —=— and unity

2nrrn ° ° .for f >—=— . Also integrate Eq. (73a) over frequencies from 0 to -f, i.e.,

+ co

P. (f)df' =-y- ftB(T)
Jf ^P 2TT -Jco

sin2rr f t
dT

2rr

r , v [1 - cos 2rrfT] , /QA\iji12 (t) dT . (84)

A development analogous to that leading to Eq. (83) yields

.0 a01a02

We define

tyf>-T

» a ,a 0 + b ,b 0 n+ V nl n2 nl n2 •• /. Zrrn N
L 4 nV TJ

n=1 °

_.£ anlbn2'an2bnl ^ . j™_^ _jj , (85)
n=i

art1arto ro a .a 0 + b ,b 0
01 02 V nl n2 nl n2

4 +1
n=l

U f_ 2lLD_^ , (86a)
n L y

and

X ,'»4I ""'H" °n2b"2 K'f -nf» -'] - (86b)
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+ C0

O(T) =P1N|2N(f0)jF,(f)M0df

+J Ft (0 F2(f) d{XR(f) +]*{*)}
0

+J Ftt-OFzt-OdCX^O-iX^f)}
0

The input and output signals to the filters are real; therefore,

F,(-f)F2(-f) = F;(f)F2(f),

which is the condition of reality. By use of Eq. (88), Eq. 87 is reduced to

+00

°(T) =̂ N,2N (V 1 F*(f)F2<f>df

+ 2

0

Ff (f) F2(f)dXR(f) .

The term XD(f) is a step function which is discontinuous at frequencies f , where
K n

f =2rrn/T
n 0

(87)

(88)

(89)

(90)

for n = 0, 1,2, * ' ' . Assume that F] (f) F2(f) is a continuous function and let the

step changes in X_(f) at f = f be denoted by h (where h > 0), then Eq. (89) can

be written
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°<T>=Wfo>IF;(f)F!(f)df

+2V- F?(f ) F2(f )h , (91)
L n n n

n=0

here the last summation is the value of Stieltjes integral. From Eq. (74a), wewi

determine that 2h is given by
n

and

2h0 =̂ 21, C2a)

a , a n + b .b _
2h s n1 n2 nl "-?- , (92b)

n £•

for n = 1, 2, 3, * • • .

At this point, we introduce the nomenclature that the area of the filter Ap

is defined as

+00

ApH J F?(f)F2(f)df . (93)
—CO

Furthermore, we assume (a) that the signals Si(t) and S2(t) are the same and (b) that
if the center frequency of the filter f is near a periodic signal's harmonic frequency

f the filter's response at all other harmonics will be zero. Then the output signal
n'

O(T) for this filter setting of f [denote the output by 0(T,f )] will be given by

Wo^WnVVI^^t^-' (94)
and, in particular, for filters which have unity gain at their center frequencies,
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a2 + b2

O(T'f0> 'WW "2 " • (95)

Consider the evaluation of the area of the filter A- as defined by Eq. (93).

This area is usually determined by the analysis of a noiseless sine wave at several

frequencies (constant amplitude) about the filter center frequency, which permits the

evaluation of the integrand of Eq. (93). Then a straightforward integration permits

the evaluation of the integral

0

F,(f)F2(f)df . (96)

Now Eq. (88) permits evaluation of the area, i.e.,

Ap =2j F*(f)F2(f)df . (97)
0

Actually, the area A_ is not directly observable since we cannot generate signals

with negative frequencies; therefore, another area term AD is introduced which will

be referred to as the physically realizable area. This area will be defined by

CO

AR =J Ft (f)F2(f)df, (98)
0

which is a directly observable quantity. Equation (95) is written as

°H>-V2N<W5faln +b!;>- <9W

Although Eq. (99) is consistent with the definitions presented in Eqs. (73a)

and (73b), there is an alternative form which is generally used when working with

the auto-power spectral density. Since this alternative form was used by Ricker,15

we will proceed to develop it here. We define Yu(f) by22
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Y„(f) = 2P„(f)

for 0 < f < a5 and zero otherwise. From Eq. (73a),

-TOO

Y„(f) =2[ ^(t) exp(- 2rrj fT) dr ,

and, conversely,

Mi(t)= [ Y„(f) expertjfAlf
6

Use of Eqs. (101a) and (101b) instead of Eqs. (73a) and (73b) leads to

O(Lf0)=Y11(f0)AR +ltfn+^n)f

which is the desired result for this study.

(100)

(101a)

(101b)

(102)
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