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ABSTRACT 

Non-linear phenomena i n  a c l a s s i c a l  plasma a r e  t r e a t e d  i n  t h i s  paper.  

The plasma i s  regarded as a c o l l e c t i o n  of p a r t i c l e s  ( e l ec t rons  and ions )  

and quas i -pa r t i c l e s  (plasmons, phonons, photons,  e t c  . ) . T'ne i n t e r a c t j  on 

between p a r t i c l e s  and quas i -pa r t i c l e s  i s  descr ibed by an i n t e r a c t i o n  

Hamiltonian which i s  w r i t t e n  i n  terms of e r e a t t o n  and ann ih i l a t ion  opera- 

t o r s .  The t r a n s i t i o n  p r o b a b i l i t y  f o r  any process  may be ca l cu la t ed  from 

t h e  usual formulas of quantum mechanical pe r tu rba t ion  theory .  These 

quantum mechanical methods provide a s t ra ight forward  method for der iv ing  

quas i - l inear  equat ions and t h e  co r rec t ions  t o  them due t u  wave-wave i n t e r -  

ac t ions  and wave-particle s c a t t e r i n g .  The de r iva t ion  of conservat ion 

l a w s  and H-theorems is  p a r t i c u l a r l y  simple. 

Kine t ic  equat ions for a plasI1ia a r e  derived. which i n  var ious  limits 

reduce t o  t h e  Wyld-Pines , Ualescu-Lenard, Boltzmann and quasi-I-inear 

equat ions.  

A v a r i e t y  of non-linear i n t e r a c t i o n s  of plasma waves i s  discussed.  
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CHAPTER 1. INTRODUCTION 

It i s  n a t u r a l  and sometimes necessary t o  use quantum mechariics to  

d i scuss  the  phenomena of s o l i d  s ta te  plasma physics .  However, t he  sub- 

j e c t  matter o f  t h i s  work i s  t h a t  o f  gaseous plasmas where quantum 

e f f e c t s  are neg l ig ib l e  and c l a s s i c a l  physics  i s  qu i t e  adequate. 

In such circumstances it may seem eccen t r i c  t o  employ quantum 

mechanics and then t o  d i sca rd  t h e  quantum cor rec t ions  by  tak ing  the  

c l a s s i c a l  l i m i t .  Indeed, t h i s  i s  t h e  more d i f f i c u l t  approach t o  the  

simple problems of' plasma physics,  b u t  when t h e  more d i f f i c u l t  

problems involving non-l inear  i n t e r a c t i o n s  %re considered a quantum 

mechanical viewpoint has c e r t a i n  advantages. It i s  use fu l  'to view 

the  waves i n  a plasma as  being composed of quas i -par t ic les ,  the quanta 

o f  the  waves. These quas i -pa r t i c l e s  interact;  with the p a r t i c l e s  of 

the  plasma and with each o ther .  These i n t e r a c t i o n s  are descr ibed i n  

terms of  an " i n t e r a c t i o n  Hamil-tonian, I '  a "ver tex function' '  o r  a "matrix 

element" f o r  the i n t e r a c t i o n .  This language i s  use fu l  even when a l l  

ca l cu la t ions  a r e  made c l a s s i c a l l y .  I n  some cases  the  quantum mechan- 

i c a l  ca l cu la t ions  are more s t ra ight forward  and l e s s  d i f f i c u l t  than the 

corresponding c l a s s i c a l  ca l cu la t ions .  

The sub jec t  mat te r  o f  t h i s  work has been discussed from a c l a s -  

s ical  viewpoint i n  the  reviews of Kadomtsev,l Vedenov 2 and Tsytovich. 5 

That j.s, we shall be coricerned .with non-l inear  e f f e c t s  i n  a plasm:?-. 

We s h a l l  suppose t h a t  the non-linear e f f e c t s  a r e  s m a l l ,  so t h a t  -the 

l i n e a r  theory i s  a good f i r s t  approximation. We s h a l l  no t  d i scuss  

s t rong  turbulence although progress  has r e c e n t l y  been rriade i n  t h i s  

f i e l d .  4 

1 



2 

There i s  a l a r g e  body of l i t e r a t u r e  i.n which Green's funct ion techniques 

of quantum s t a t i s t i c a l .  mechanics are applied t o  plasma physics.  5,6,7,8 

These techniques seem t o  be appl icable  only t o  plasmas i n  thermal 

equilibrium. For t h a t  reason they a r e  not  very usefu l  i n  the  study 

of gaseous plasmas where t h e  plasmas of  most i n t e r e s t  depart  appreci-  

ab ly  from thermal equilibrium. 

The work i n  t h i s  paper i-s more cl.ose1.y r e l a t e d  t o  t h a t  of Pines  

9 and Schr i e f f e r  who gave a quantum mechanical de r iva t ion  of t he  quasi-  

l i n e a r  equati-ons which were o r i g i n a l l y  der ived c l a s s i c a l l y  by Drummond 

I' Pines and arid Pines and by Vedenov, Velikhov and Sagdeev. 10 

Schr i e f f e r  found i n t e r a c t i o n  Hamiltonians for p a r t i c l e s  and plasmons 

( t h e  quanta of plasma o s c i l l a t i o n s )  and p a r t i c l e s  and phonons ( t h e  

quanta of ion sound waves). They used these  "logether with the  Fermi 

Colden Rule t o  wr i t e  equations for the r a i e  of change of the  p a r t i c l e  

and quasi - p a r t i c l e  d i s t r i b u t i o n  funct ions.  I n  t he  c l a s s i c a l  l i m i t  

these equations reduced t o  the  c l a s s i c a l  quas i - l inear  equations.  It 

i s  c l e a r  from t h e  de r iva t ion  of  these  equations t h a t  Landau damping or 

growth can be descr ibed as t he  competit ion between absorpt ion and 

sti-mulsted emi s s ion  of quasi - p a r t i c l e s  by p a r t i c l e s .  Another usefu l  

f ea tu re  o f  t h i s  de r iva t ion  

which are o f t e n  overlooked 

na tu ra l ly .  

Wyld and Pines'' used 

i s  t h a t  terms due t o  spontaneous Ftmiis si.on, 

i n  c l a s s i c a l  der iva t ions ,  appear q u i t e  

t he  Fermi Golden Rule t o  write equations 

f o r  the r a t e  of change of  the p a r t i c l e  d i s t r i b u t i o n  funct ions due t o  

c o l l i s i o n s .  They assumed t h a t  t h e  matr ix  element for a coulomb c o l l i -  

sion, 4fle 2, must be modified by the  f a c t o r  E (q,w) where E i s  the  

d i e l e c t r i c  func t ion  of t he  plasma, %nq i s  the  momentum t r a n s f e r  and hul 

2 .  -1 3 

-3 
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i s  the  energy t r ans fe r  i n  the c o l l i s i o n .  When the  c l a s s i c a l  l i m i t  i s  

taken, t he  equat ion of  Wyld and Pines  reduces to  the  Salescul'-Lenard 

equat ion or t he  Boltzmann equat ion depending on just how t h e  limitin:; 

process  w a s  c a r r i e d  out .  The Ealescu-Lenard equat ion had previous ly  

been der ived  by more ted ious  arguments than the  one j u s t  descr ibed.  

14 

These papers by Pines  and Schr i e f f e r  and by Wyld and Pines  were 

important because they showed the  ease with which equat ions descr ib ing  

c l a s s i c a l  plasmas could be der ived by the  pe r tu rba t ion  theory formulas 

o f  quantum mechanics. Also,  they gave i n s i g h t  i n t o  the  physics  behind 

the  equat ions.  

A quantum mechanical theory of  non-l inear  phenomena i n  a very 

s t rong  magnetic field w a s  given by Walkers and Ilarris. The f i e l d  

w a s  assumed t o  be so s t rong  t h a t  t h e  e l e c t r o n  motion was e s s e n i i z l l y  

one-dimensional. The e l ec t rons  were descr ioed by the  f l u i d  equaiicris 

f o r  a co ld  plasma. A Hamiltonian was found which gave the  f l u i d  equa- 

t i o n s  as t he  Haniiltonian equations o f  motion. The Hamiltonian was 

w r i t t e n  i n  terms of' c r e a t i o n  and a n n i h i l a t i o n  opera tors  for plasmons. 

15,16 

The non-l inear  terms i n  the fluid eyiiations gave r i s e  t o  terms i n  the  

Kamiltonian descr  i.'oing t h r e e  plasmon in te rac t ions ;  t h a t  is t e r m s  con- 

'daining products  of t h ree  c rea t ion  o r  a n n i h i l a t i o n  opera tors .  An ion- 

plasmon i n t e r a c t i o n  Hamiltonian w a s  a lso der ived.  Using the E'crmi 

Golden Rule, equat ions were der ived f o r  the r a t e  of change o f  t he  ion  

and plasmon d i s t r i b u t i o n  funct ions.  The three-plasmon i n t e r a c t i o n  of 

Waiters an4 Harris had previous ly  been der ived c l a s s i c a l l y  by  Aarnodt 

and Drlmond. 

Quarltwn mechanical ca l cu la t ions  of  t he  i n t e r a c t i o n  of' t h ree  

q u a s i - p w t i c l e s  have been made f o r  t h e  case of id plasma with no magnetic 
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f i e l d  by Krishan'' and by Krishan and Selim. 

a n d  four  plasmon i n t e r a c t i o n s  i n  an unmagnetized plasma have been made 

by Zakharov. 

Calculat ions of  t h ree  

20 

I n  a r ecen t  paper Rossz1 bas considered wave-part ic le  and wave- 

wave i n t e r a c t i o n s  from a quantum mechanical viewpoint. H i s  s t a r t i n g  

po in t  i s  the  sh ie lded  coulomb matr ix  element discussed above. By 

excuni.nati.on of  t h i s  i n  the  neighborhood o-f f requencies  which s a t i s f y  

E ( q , w )  = 0 he i s  ab le  t o  i n t e r p r e t  t h e  matr ix  element i n  t e r m  of a 

quasi  - p a r t i c l e  propagator and a p a r t i c l e -  qixas i - p a r t i c l e  ver tex .  

obtained the  par-ticle-quasi-particle vertex,  he adopted the  po in t  of 

view t h a t  the i n t e r a c t i o n  of plasma waves i s  mediated by the  p a r t i c l e s  

and ca lcu la ted  the  matr ix  element,s f o r  t h ree  wave i n t e r a c t i o n s  and 

wave-paarticle s c a t t e r i n g .  He l i m i t e d  the  ca l cu la t ions  t o  the  quasi-  

one dimensional problem of a plasma i n  a very s-Lrong magnetic f i e l d .  

H e  a l s o  used the  formalism of  temperature dependent Green's funct ions 

which seem to be appl icable  t o  plasmas i n  thermal equilibi-i.wn only.  

However, when he reached the po in t  i n  the  ca l cu la t ions  a t  which r e s u l t s  

were expressed i n  terms o f  p a r t i c l e  d i s t r i b u t i o n  func'iions, these  dis-  

t r ibut i -on funct ions were allowed t o  be a r b i t r a r y  and the  equations 

were assumed t o  be s t i l l  va l id .  The po in t  of view of Ross i s  very 

c lose  t o  t h a t  of t he  writer and our results are i n  agreement. 

--f 

Having 

22 At ten t ion  should a l s o  be d i r ec t ed  t o  the  paper of  Ga i l i t i s  e t  a l .  

Although the  cal-culations a r e  c l a s s i c a l ,  the  language i s  quantum mechan- 

ical..  The paper deals wi th  the  i n t e r a c t i o n  of  plasmons, phonons and 

photons i n  an i s o t r o p i c  plasma. 

The p lan  o f  t h i s  work i s  the  following: I n  the  second chapter 

we introduce the d i e l e c t r i c  tensor  of t he  plasma. The d ie l .ec t r ic  
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tensor,  which i s  f ami l i a r  t o  c l a s s i c a l  plasma phys ic i s t s ,  is  derived 

quantum mechanically i n  such a way as t o  emphasize the  s i m i l a r i t y  i n  

t h e  c l a s s i c a l  and quantum mechanical der iva t ions .  T'ne second quanti za- 

t i o n  formalism i s  introduced i n  t h i s  chapter .  A knowledge of the 

second quant iza t ion  formalism which i s  sui ' f ic ient  f o r  understanding 

t h i s  work may be obtained from Davidov. 23 

theory of propagation of waves i n  a plasma, the damping and g o w t h  

of  these  waves and the  concepts oi' p o s i t i v e  and negat ive wave energ ies .  

We a l s o  d iscuss  the l i n e a r  

I n  Chapter 3 w e  quant ize  t h e  electromagnetic f ' i e ld  i n  t he  plasma 

24 as has prev ious ly  been done by Alekseev and N i k i t i n  

Rono and Dodo. '' Our formulation i s  somewhat b e t t e r  sui-ted t o  the  

purposes of' t h i s  work. We a l s o  der ive  the p a r t i c l e - q u a s i - p a r t i c l e  

i n  teract ior i  l imi l ton ian .  The p i c t u r e  of t he  plasma which w e  have a t  

the end of' t h i s  chapter  i s  t h a t  t he  plasma c o n s i s t s  of  a c o l l e c t i o n  of  

p a r t i c l e s  and qi ias i -par t ic les  which i n t e r a c t  only weakly. This  i s  t h e  

p i c t u r e  developed i i i  the  e a r l y  papers o f  Pohm and Pines.' We should 

po in t  ou t  %hat the p i c t u r e  i s  riot completely cons i s t en t  s ince  motion 

of t he  p a r t i c l e s  i s  involved i n  tile quas i -pa r t i c l e  exc ixa t ions  as w e l l .  

T h i s  l a c k  of consis tency i s  not l i k e l y  t o  cause problems i n  i,he weakly 

non-linear systems considered here.  The p a r t i c l e s  can  ce divided i n t o  

the  two c l a s s e s 1  The "resonant p a r t i c l e s "  and t h e  "non-resonant p a r t i -  

cles." 

quas i -pa r t i c l e s  and are a s m a l l  minor i ty  i n  a weakly tu rbu len t  plasma. 

The non-resonant p a r t i c l e s  o s c i l l a t e  under t h e  inf luence of' t he  f i e l d s  

of the wave. T h c y  coi l t r ibute  t o  t h e  energy and momentum O S  t he  wave, 

'out a f t e r  the  wave has passed they returrl  t o  t h e i r  or iginal .  s t a t e .  

and by Kiha ra ,  

The resonant  p a r t i c l e s  are those which can e r n i t  and absorb 
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T'nese results are used in Chap-Ler 4 to derive the quasi.-li.near 

equations. This derivation is essentially the same as that of Pines 

and Schrieffer. We discuss the conservation theorems and the 11- 

t'neorem for these equations. The one-dimensional. quasi-linear equations 

are sufficiently simple that their consequences can be examined in 

some detail and we do this, generally following Druimond and Pines 

and Vedenov, Velikhov and Sagdeev. 'I. 

not adequate to explain the phenomenon of osciLl.a,tory damping observed 

by Malmberg and Wharton.26 

phenomenon. Quantitative theories have been published by O ' N e i l  and 

by AI. 'Tshul. ' and Karpmn. 

9 

10 

The quasi-linear equations are 

We give a qualitative explanation of this 

2 7  

28 

In Chap-ter 5 we look more critically a,t the in-Leraction of a 

particle w i t h  a plasma. The particle, of course, i-nteracts with the 

fluctuati-ng fields. These may be calculated by the dressed test 

particle method of Rostoker and Ichamaru. 

t h e  scatteri-ng by fluctuating fields, the two-parti-cle scattering via 

a screened coulomb potential and the emission and absorption of quasi- 

particles is clarified. The scattering of photons by a plasma is quite 

similar to the scattering of particles, so it is convenient to consi-der 

the two processes together. The enhanced scattering of electromagnetic 

waves by a plasma as the plasma approaches a state of instability 

explained i.n terms of stimulated emission of plasmons. 

The relation between 29 30 

31 is 

In Chapter 6 we revi.ew the previously mentioned Wyld-Pines equa- 
12 'cion. Building upon the insight gained in Chapters 4 and 5 we see 

what must be done to this equation to m.ake it applicable to weakly 

unstable plasmas. This leads us to what we believe <are equs,t;ions 

which preserve the essential features of the Wyld-Pines equation and 
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t h e  quas i - l inear  equat ions.  The dexivat ion i s  i n  t h e  same s p i r i t  as 

t h e  de r iva t ion  of t he  Wyld-Pines equat ion and elementary de r iva t ions  

of  the Boltzmann equation. Kine t ic  theory being the  s l i ppe ry  sub jec t  

t h a t  i t  is, we would not be so presumptuous as t o  c la im t h a t  OUT equa- 

t i o n s  a r e  logically unassa i lab le .  They do seem t o  be as plausi 'ole and 

probably more t ransparent  than  o the r  equat ions which have been pro- 

posed. Only the  f irst  order  i n t e r a c t i o n  oetween p a r t i c l e s  and i ' luctu- 

a t i n g  f i e l d s  i s  included in the  equat ions discussed i n  t h i s  chapter .  

Higher order  i n t e r a c t i o n s  a r e  discussed i n  the  next chapter .  

I n  Chapter 7 w e  r e t u r n  t o  the  po in t  of  view t h a t  t h e  fundamental 

i n t e r a c t i o n s  a r e  the  par t ic le -~u-as i -par t ic le  inLeract ions and proceed 

t o  b u i l d  from these the  three-wave and wave-part ic le  s c a t t e r i n g  i n t e r -  

ac t ions  Ly the formulas of second and t h i r d  order  pe r tu rba t ion  theory.  

N e  f ee l  that  i n  t h i s  chapter  t he  advantages of  t he  quantum mechanical 

approach are most apparent .  

I n  Chapter 8 we r e t u r n  t o  c l a s s i c a l  physics  arid consider t he  

i n t e r a c  t ior i  of '  a few monochromatic waves. T h e  Hamiltonian formulation 

derived i n  previous chapters  i s  of  considerable  u t i l i t y  here. W h a t  had 

appeased in previous chapters  as problems i n  quantum mechanical per -  

t u rba t ion  theory now appears as t h e  problem of non- l inear ly  coupled 

c l a s s i c a l  o s c i l l a t o r s .  

c l o s e l y  r e l a t e d  t o  the  problems of non-l inear  o p t i c s .  

T h i s  aspec t  of  non-l inear  plasma theory i s  
32 
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CHAPTER 2. T’€B DLELECTRIC TENSOR AiUD WAVE PROPACXTIOTu 

For many purposes in plasma physics it is convenient and suffi- 

ciently accuraie to consider the plasma as a dispersive medium charac- 

terized by a dielectric tensor E(q,u). 
tf -> in this chapter we shall give 

a quantum mechanical derivation of the dielectric tensor and discuss 

its use in the study of wave propagation. 

2 1. Conductivity and Dielectric Tensors 
~ - 

Our starting point is the Hamiltonian for a particle of species 

s in an electromagnetic field. 

(2.1) 

where E’ and 9 are the vec‘ior a,nd scalar potentia1.s of the field. We 

write 

+ 3  + 
1 A = A  + A  

0 

$ = do + d, ( 2 . 3 )  

-+ 
where A 

ma’gnetic fields. We may also include in e any gravitational or fic- 

iiiious fields which it is convenient to consider. The potentials A 

and 9 are the potentials for the zero order electric and 
0 0 

S 
3 

1 
I 

and p1 a r e  regarded as small perturbations. We shall divide ,? into 
S 

zero, first and second order parts. 

( 2 . 4 )  

(2.5) 

Since es2 is quadratic in the small perturbation rri’ 

l e c t e d  in the following. 

it will be neg- 1. ’ 
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We s h a l l  u sua l ly  work i n  t h e  coulomb gauge, 

v -  z= 0 
--> -3 We expand A ( x , t )  and $(?,t) i n  a Fourier  s 1 

so 

r ies  i n  

(2.8) 

box of 

volume V and assume the  usual pe r iod ic  boundary condi t ions.  Thus 

and 

1 
with s i m i l a r  equat ions for $(%', t) and @(<, t). 

Mow, l e t  X (9 be a so lu t ion  of sa 

(2.10) 

(2.11) 

The subsc r ip t  a denotes the  quantum numbers assoc ia ted  with 'the energy 

eigenvalue E and. e igenfunct ion X We now go over t o  the  second 

quant iza t ion  Let 

sa sa' 

(2.12) 

+ and i n t e r p r e t  C 

p a r t i c l e s  of spec ies  s i n  the  s t a t e  a. 

and Csa as a n n i h i l a t i o n  and c r e a t i o n  opera tors  f o r  
S% 

The Hamiltonian for p a r t i c l e s  

of spec ies  s i s  

H = { d3x Y + Hs Y s  = €Iso + Hsl + HsZ 

where 

s S 
(2 .13)  

C (2.14) 
+ - 

" s o  - 5 Esa 'sa sa 

(2.15) 

- 9 3  
where v = ( p  - eA /c)/m 

gS2 and i s  neglected.  

i s  the  v e l o c i t y  operator .  HsZ comes from 
0 S 

We assume t h a t  t h e  opera tors  C and C' obey the  Fermion conmuta- sa sa 

t i o n  r e l a t i o n s  
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(2-16) 

(2.17) 

Of course, the  ions  may be Bosons rather than  

- 4- psa, C s l a j +  --- ~ 3 s '  d a a l  

where [A,B]+ = AB - EA. 
Fermions. However, when we take  the  c l a s s i c a l  l i m i t ,  as we always 

w i l l ,  i t  w i l l  not make any d i f fe rence ,  so f o r  conveni-ence we s h a l l  

always t r e a t  both e l ec t rons  and ions as Fermi-ons. 

The chanae with Lime of any operator  i s  giver? by the  Heisenberg 

equations of motion. 

- a P  = [H,p] = - (HP - PH) p h - E  (2.18) 

+ . Using Eqs .  
s b '  'sb I n  pax t i cu la r  l e t  us consider the  opera tor  C 

(2.13), (2 .14)  and ('2.15) for H and the  commutation r e l a t i o n s  Eqs. 

(2 .16 )  and (2.17) w e  f ind  

Now, we s h a l l  de''' I m e  

F s ( b ' , b , t )  = F c i a  P < a l C +  s b '  'sb I > (2.20) 

where P 

Note t h a t  F ( b ' , b ,  t) i s  both a quantum mechanical and an ensemble 

average 01 t he  operator  C 

Fs(b ' , I ) ,  t) i s  c l o s e l y  r e l a t e d  to the  c l a s s i c a l  d i s t r i b u t i o n  funct ion 

f '  ( X , v ,  t) . By averaging Eq. ( 2 . 1 9 )  w e  ob ta in  t h e  equation obeyed by 

i s  the  p r o b a b i l i t y  t h a t  the  system i s  i n  the  s t a t e  I a >. . a 

S 

+ 
sb' 'sb' A s  w i l l  be made c l e a r  l a t e r  

+ 4  

S 
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-3-3 
-3 iq.x - E', ( b ' , a , t )  [- - X1 * < b t  v e  l a  > 

(2.21) 

'This i s  the  quantum mechanical analog of  t he  Vlasov equation. 

We now l i n e a r i z e  Eq .  (2 .21)  by wr i t i ng  

F ( b , b ' , t )  = F ( b )  dbb' + F ( b ' b , t )  (2.22) 
S so sl 

3 
and t r e a t i n g  F' A1 and @ as small per turba t ions .  Note t h a t  sirice 

c+ 
Sl' 1 

i s  the number opera tor  for p a r t i c l e s  osspecies  s a n d  s t a t e  b, 

( b )  can be i n t e r p r e t e d  as the  ensemble average number of' p a r t i c l e s  

sb 'sb 

p'S* 

or" spec ies  s i n  state b. The l i n e a r i z e d  quantuni Vlasov equat ion i s  

(2.23) 

Next, w e  s h a l l  assume that t he  time dependence of P ;?' and $l 
sl' 1 

i s  given by 

(2.24) 

where t h e  p o s i t i v e  i n f i n i t e s i m a l  -q has been introduced to  make the 

per turba t ions  vanish at t = - a. A s  w i l l  be seen i t  l eads  t o  the  

Landau p r e s c r i p t i o n  f o r  avoiding s i n g u l a r i t i e s  i n  i n t e g r a l s .  

(2 .23)  can now be solveci wi th  the result 

Eq. 
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(2.25) 

This  w i l l  be u s e d  t o  c a l c u l a t e  the  curren'i i n  t h e  plasma. A 

c u r r e n t  d e n s i t y  operator i s  de€ined by 

e ,  * 
--+ 

s D % I  2V s b '  'sb 'sb' 2 (2.25) 
t- where we have used v t o  denote a v e l o c i t y  operator which operates on 

t h e  func t ion  'LO i t s  l e f t .  -f -3 The Fourier t ransform of J ( x , t )  i s  

(2.27) 

and  i t s  average i s  

(2.28) 

where <. . . .> denotes t h e  quantum mechanical and ensemble average of 

Eq. (2 .20) .  

be denoted by CJ (q? )>. It i s  obtained by r ep lac ing  F i i i  Eq. (1.28) 

by !Isl as qiven by Eq. (2 .25 ) .  

i n  ternis of t h e  e l e c t r i c  f i e l d  3 

The par t  of GT> p ropor t iona l  t o  t h e  per turb ing  f i e l d s  w i l l  
+ - +  
1 S 

It, i s  convenient to express i: and $, 

1 by us ing  

from which  

(2.29) 

(2.30) 

(2.31) 
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We may- now write 

(2.32) 

'This is quite general. We have made no assumptions about the homo- 

geneity or isotropy of the plasma. A l l  of the difficulties are con- 

cealed in the matrix elements. 

tions which permit us to reduce Eq. (2.33) to a more userul form. 

We sha l l  now make simplifying assump- 

4 
First, we shall assume tha t  A and are zero.  Then 

9 0 0 
1 2  hL 2 p = - -  - 

&so - 2mS 
(2.34)  

(2.35) 

IJsing these results i n  Eq. ( 2 . 3 3 )  gives 

where 
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hw I IL - 
2rn 

(2.42) 

Now, we s h a l l  rep lace  Fso(@ by t h e  corresponding v e l o c i t y  dj-s t r ibu-  

t i o n  fso($ where v := Xk/m . 
system become i n f i n i t e  and use 

4 - - P  Also we s h a l l  l e t  t he  volume of t he  
S 

(2 .43)  

The conduct iv i ty  tensor  now takes the form 

(2.44) 

The d i e l e c t r i c  tensor  i s  related t o  the  conduct ivi ty  tensor  by 

5, 
(2.45) 

+ 4 x i  F(&d) = 1 1- (JJ 0 (%4 
The d i e l e c t r i c  constant  ( o r  more properly,  d i e l e c t r i c  funct ion)  

i s  defined as 
3 

(2.46) 3 1 3 e 4  
4 Y , 4  = - C l  E q 

qz 
Us ing  Eqs. (2.44) and (2.45) we ob ta in  

(2.47) 



which may also be put into the form 

The classical dielectric function is obtained by taking the 5 --+ 0 

limit" It is 

(2.49) 

'The matrix elements in Eq. (2.33) ca,n also be evaluated for the 

case of a plasma in i2 uniform magnetic field. 

potential to be 

We take the vector  

This gives a uniform magnetic field in the z-direction. Then 

= X k k = < "n,kX,k > 
Y 'sb sri x z 

(2.50) 

(2.51) 

where L3 = V is the volume of the,box in which the system is quantized. 

Gn(y - y ) is a harmonic oscillator wave function with quantum number 
n centered about 

0 

Tl k-- x - 
m Yo - 

s cs  
( 2 . 5 3 )  

where Wcs = e 

the velocity operator are 

B/m c is the cyclotron frequency. The components of 
S s 
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v = -  1 ( p x - - A )  e = b . ~  (Y-Y,) (2.54) 
X m c o  cs 

S 

1 
Y m Y  

1 
Z m 

P - v =  
S 

PZ 
v = -  

S 

The energy eigenvalues are 

(2.55) 

(2.56) 

(2.57) 

The necessary matrix elements have been evaluated by Walters. l5 I n  

t h i s  paper we s h a l l  on ly  need t h e  matrix elements i n  t h e  c lass ica l  

l i m i t  ( i . e .  i n  t h e  l i m i t  of l a r g e  quantum numbers and h -+ 0. These 

.+ 3 

< n, k kZ I e l q a x  v X 1 n ' ,  kx f ,  k Z f >  x' 

(2.58) 

(2.59) 

(2.60) 

(2 .61)  
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I n  the above equat ions J i s  the  Bessel f 'unction of order  n. I ts  n 

argument is q v / w  where t h e  v i s  r e l a t e d  t o  the  quantum number n by 
1 c s  I 

- 1 2 (2.62) 
2 ='liw C S  S 

I n  t h e  c l a s s i c a l  l i m i t  n and n '  become i n f i n i t e  but  t h e i r  d i f fe rence  

( 2 . 6 3 )  

The matrix elements given here  may be used i n  Eq. (2.33)  t o  ob ta in  the 

conduct iv i ty  tensor .  We s h a l l  omit t he  r a t h e r  tedious d e t a i l s .  If 

the  plasma i s  uniform in space, then f (n,k ,k ) must be independent 

of kx, and i t  may be shown t h a t  Eg. (2 .41)  holds. I n  the  classic81 

so x 2 

l i m i t  the  conduct iv i ty  tensor  i s  given by 33 
-3 -5+ i e L  

S 
0 (y,w) = - c - 

s m w  c ~ - k Z v z - n ~  +iq cs  

e - +  

S 

where 

3 + =  
S 

and 

i v l u -  n 
A ,  "n'n 

JZ 
A s  n 
n v IJ - 

i vL W LJ J' n n  

2 
v w "m z 

(2.64) 

(2.65) 

(2.66) 91. 

es A s  = w 

i s  the  argument of J ,J ' denotes the  de r iva t ive  of J with r e spec t  

t o  i t s  argument and 

n n n  

(2.67) 

(2.68) 



The d i e l e c t r i c  func t ion  

(2 * 69) 

In t h e  c l a s s i c a l  l i m i t  t h i s  becomes 
9 

( 2 . 7 0 )  
23 fso G o  ] 

+ 9 z 3 v z  a vi 
-- 2.2 The Relat ion Between the Quantum Mechanical D i s t r ibu t ion  Function 

and t h e  Density Matrix 

Let  us consider a plasma without zero order  e l e c t r i c  o r  magnetic 

v- 

f i e l d s .  Then t h e  free p a r t i c l e  e igenfunct ions are given by Eq. (2.35). 

The expa,nsion Eq. (2 .12 )  can be w r i t t e n  as 
4 4  

(2.71) 

The expectat ion value of the  number dens i ty  of  p a r t i c l e s  of spec ies  s 

can be wri-t ten as 

(2.72) 

where <. . . .> denotes the  quantum mechanical. and ensemble average 

o f  Eq. (2 .20) .  This suggests t h a t  we def ine  8 d i s t r i b u t i o n  func t ion  

(2.73) 

f o r  then 



(2 .  '74) 

Furthermore, the momentum d i s t r i b u t i o n  fwic t ion  i s  given by 

(2 .75 )  

Eqs .  (1.74) and (1 .75 )  a r e  r e l a t i o n s  which any d i s t r i b u t i o n  funct ion 

i s  expected t o  satisfy. 

Returning t o  Eq. (2.73),  we w r i t e  it as  
.-+ -4 1q.x 

> e 4 -> 
",(x,p,t) = <c+-t L c j -4 

SP -+ sp+q V 
q 

(2.76) 

Now using 

We can w r i t e  

(2.77) 

( 2 . 7 8 )  

The funct ion 

ys(Z~,ZyL) = < F+(2fyt)  S Ws(2,t) > (2.79) 

i s  t h e  dens i ty  matrix. Our d i s t r i b u t i o n  furiction Fs(x,p,t) 4 i s  a 

Fourier  transform of the  dens i ty  matrix. 

by Von I ~ o o s . ~ ~  

It has previous ly  been used 

It i s  similar but not, i d e n t i c a l  t o  the  we l l  known 

d i s t r i b u t i o n  func t ion  o f  Wigner. 35 

The Fourier  transform of' Fs(x,p,t)  +-+ i s  found from Eq. (2.73) t o  be 
1 +  Fs('i$,&t) = - <c -3 (t) c - 4 - 3  (t) > v SP SP+ q 

(2.ao) 

Ve have previously defined 

+ 
F' S ( b ' , b , t )  = <Cs,,(t) Csb(t)=' 

A s  the d i s t r i b u t i o n  f'unction i n  quantum number space. 

( 2 . 8 1 )  

It i s  a 
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genera l iza t ion  of  t h e  b e t t e r  known d i s t r i b u t i o n  funct ions.  

2 . 3  Wwe Propagation 
- s L  

We s h a l l  now use the  conduct iv i ty  and  d i e l e c t r i c  tensors  deri-ved 

i n  t h e  l as t  sec t ion  io discuss  wave propagation i i i  plasmas. The 

e l e c t r i c  and magnetic f i e l d s  are given i n  terms of t he  p o t e n t i a l s  by 
3 -+ 
Bl = v X (2.82) 

(2.83) 

A s  before  the  subsc r ip t  1 denotes a f i r s t  order  per t i i rbat ion.  I n  the  

usua l  way it i s  found from Maxwell's equations t h a t  t h e  p o t e n t i a l s  obey 

the  equations 

(2.84) 

(2.85) 

Now we look f o r  so lu t ions  i n  -the form of a plane wave. Thus 
-+ ---f 

(2.86) --f i ( q . x  - U t )  A1' P1> J1' /o 1 - . - re  

and use t h e  results o f  t h e  las t  sec t ion  t o  wr i t e  

Also, the  equation of continui-ty 

(2.87) 

(2 .88 )  

can be used t o  e l imina te  P. When Eq. (2.45) i s  used i t  i s  found t h a t  

Eqs. (2.84) and (2.85) can be w r i t t e n  as 

(2.90) 

We sha l l  find i t  convenient t o  work i n  the  Coulomb gauge which w e  d.e- 

f i n e  by 
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c-) 3 2 - E (<, 2 )  Al = 0 (2.91) 

(This is the gauge condttion which replaces Eq. (2.8) in a dispersive 

medium.) Then, Eq. (2.90) reduces to 

3 
;.?(;,Q) q f l 1 = 0  (2 .92)  

In general it is not possible to separate the waves in a plasma 

into longitudinal and transverse waves; there is a coupling between 

them. However, for any isotropic plasma this separation is possible, 

for then the only vector available for the construction of the tensor 

E (q , (L)  is y, hence E must have the form 
e 4  3 t) 

93 4 4  

(2.93) 

where c and E are called the longitudinal and transverse dielectzic 

functions. 

last section by Eq. (2.46) and called simply the dielectric function. 

With this form for FEqs .  ( 2 . 9 2 ) ,  (2.89) and (2.91) become 

L T 

Note that cL (;,G) is just the function defined in the 

2 (2.94) 

(2.95) 

3 (2.96) 

Eq. (2.94) is satisfied by either fl1 = 0 or E = 0. In either L 

case the right hand side of Eq. (2.95) vanishes, so the equations for 

fll and A' are wicoupled. 

E L ($,,) = 0 

is the dispersion relation for longitudinal waves. 

it will have one or more solutions lJ<& . 
of longitudinal waves in the plasma. 

The equation I 
(2 .97 )  

i 
For a given q 

These are the frequencies 

In general such frequencies are 

indicating exponential damping or growth of the corresponding wave. 
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If E # 0 then  $ = 0. Eq. (2.96) becomes 

1 

1 1 
3 ---f q * A  = o  
i-ndicating t h a t  these waves a r e  t ransverse.  Eq. (2.95) gives  

The r e l a t i o n  

(2.98) 

(2.99) 

(2.100) 

i s  the  d ispers ion  r e l a t i o n  f o r  t ransverse  waves. It has so lu t ions  

For a given q the re  will be two iadependeiit po la r i za t ion  3 . 
d t rec t ions  ( i n  the  plane perpendicular t o  j3, which have the  same 

frequency. 

It i s  common p rac t i ce  i n  p l a s m  physics t o  assume tha'c a,n approxi- 

mate decoupling of longi tudina l  and t ransverse  waves can 'oe made even 

when the  plasma i s  not i so t rop ic .  i s  taken 

t o  be zero and the  d ispers ion  r e l a t i o n  i s  obtained from Eq. (2.92).  

For t ransverse  waves $ '71 1. 

For long i tud ina l  waves x' a 

i s  taken t o  be zero and A' i s  taken t o  s a t i s f y  

(2.101) 

(If' t h i s  equation i s  s a t i s f i e d  then so  i s  Eq. (2 .91 ) ) .  The dispersiion 

r e l a t i o n  fo r  t ransverse  r.ra'ves ?s obtained from the  condi-tion t h a t  Eq. 

(2.101) have a l ion- t r iv ia l  solut ion;  namely 
0 

2 - 3 3  0" 3 DET [- q + q q + 7 E (-$,&.)fl = 0 
C 

(2.102) 

IL .may be shown tha t  t h i s  approximate decoupling of l ong i tud ina l  and 

t ransverse  waves i s  a good approximation when t'ne plasma pressure  i s  

much l e s s  than the magnetic: field pressure.  I n  what follows we sha.11. 

always assume t h a t  t h e  separa t ion  i n t o  longj- tudinal  and t ranverse 



waves is possible, either because the plasma is isotropic or because 

the approximate separation is a good one. 

can be avoided but at the cost of some additional mathematical com- 

plexity. 

In principle this assumption 

Now, let us return to the dispersion relation for longitudinal 

waves 

(2.103) 

The way E was defined in the last section it m y  be complex even when 

q and 
-3 

are real, so for real < and # we shall write ( z , ~ )  = c ( q , ~ )  3 + i E (<,GI (2.104) 
cL Ll L2 
For complex w 
continuation of 

the solution of Eq. (2.103) as 

(<,C) is to be interpreted as the analytic 

(<,LJ) from the real& axis. PJow, let us write 
"L 

+ + iJ+ (2.105) i2;~ = n. qJ" g" 

and assume that 

and 

( 2  * 106) 

(2.107) 

Expanding E 

terms gives 

- 0 in a Taylor series and neglecting products of small L -  

Equating separately the real and imaginary parts to zero gives 

(2.109) 
L 1 

(2.110) 
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The r ea1  part  of  t h e  frequency i s  de-termined from Eq. (2.109), and 

then t h e  imaginary p a r t  i s  given by Eq. (2*1-10). 

The phys ica l  s ign i f icance  of Eq.  (2.110) can be made c l e a r  by 

not ing t h a t  
+ J = C L 3  

so 

and 

where Eq. (2 .45)  has been used. Eq. (2.110) can be w r i t t e n  

(2.111) 

(2.113) 

The numerator P i s  just the energy d i s s ipa t ed  by the  e l e c t r i c  f i e l d  of  

t'ne wave i n  dr iv ing  t h e  cu r ren t  3. In  iiie denominator 

qw 

1 
8s 

( 2  115) 

has the following in t e rp re t a t ion .  The energy i n  the e l e c t r i c  f i e l d  

i s  ( d l 2 / 8 n .  This must be modified by a f a c t o r  which c o r r e c t s  f o r  t he  

k i n e t i c  energy of  the  o s c i l l a t i n g  p a r t i c l e s  i n  order  t o  g e t  the t o t a l  

energy of the  wave. The co r rec t ion  f a c t o r  may be shown t o  be the  

second f a c t o r  i n  Ey, (2 .115) .  (Reference 55, Chapter 1.) 

If the  energy of t he  wave, W, i s  p o s i t i v e  then a wave will be 

damped i f  P i s  p o s i t i v e  ind ica t ing  t h a t  the  energy of t he  wave i s  

d i s s ipa t ed  i n  dr iv ing  t h e  cur ren t .  On the  o ther  hand P may be 

negative ind ica t ing  a flow of energy from t h e  plasma p a r t i c l e s  t o  
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the  wave. I n  t h i s  case a p o s i t i v e  energy wave w i l l  grow. 

It i s  poss ib l e  f o r  E t o  be such t h a t  the energy of  the  wave 
1 

i s  negative.  

for then the  plasma p a r t i c l e s  absorb energy from the  wave making W 

even more negative and consequently increas ing  the  amplitude of the 

wave. A s  an example of a d i s -  

t r i b u t i o n  func t ion  which l eads  t o  negative energy waves consider the  

two-stream d i s t r i b u t i o n  func t ion  

fo (3 = nl d (3 + n2 J (7’ - i j3 

Using t h i s  Eq. (2.49) g ives  

I f  t h i s  i s  the  case a wave w i l l  grow i f  P i s  pos i t i ve ,  

If P i s  negative the  wave i s  damped. 

(2.116) 

(2.117) 

(We have assumed a s ing le  species ,  i n t eg ra t ed  by p a r t s  and l e t  Qn, 2 
= 

L’l. 

‘lnnle 2 /m and up, 2 = 4mZe  2 /m.) I n  Fig.  2 . 1  we have sketched c (;,a) 

Fig. 2.1 D i e l e c t r i c  func t ion  for t he  two-stream d i s t r i b u t i o n  
funct ion.  
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The equa,tion E : 0 i.s a fou r th  degree equation for 0. It has 

four roots .  If E i s  as  drawn i n  Fig. 2 . 1  a l l  four roo t s  a r e  r e a l .  

Three of t he  frequencies 0 1, &?, and ld4 have 3 6) E , / J ~  posi.tive 

and so correspond t o  pos i t i ve  energy 'waves. 

sponds t o  a negative energy wave. All of these waves a r e  s t a b l e  ,and 

undamped. 

The other  roo t  (J corre-  
3 

--f 
If now q * 7 i s  decreased the  two roo t s  o2 and 0 w i l l  

3 

approach each other ,  become equal. and then 

plane.  Since a l l  of the  q u a n t i t i e s  i n  Eq. 

W3 a r e  complex conjugates of each other .  

move o f f  i n t o  the complex 

( 2 . 1 1 7 )  a r e  r e a l ,  GZ and 

One of the  roo t s  corre- 

sponds t o  an exponent ia l ly  growing wave. This i n s t a b i l i t y ,  c a l l e d  

the  two-stream i n s t a b i l i t y ,  may be thought of as due t o  the  coupling 

of a p o s i t i v e  and a negative energy wave. I f  energy i s  t r ans fe r r ed  

from the  negative energy wave t o  the  pos i t i ve  energy wave then  the  

amplitude of both waves w i l l  grow. 

It should be noted t'bt Eys. (2 .109)  and (2,110) a r e  not  va1ri.d 

for t he  two-stream ins t ab i - l i t y .  I n  t h i s  example was i d e n t i c a l l y  

zero, and complex r a t h e r  than r e a l  so lu t ions  of  Eq .  (2.109) were 

found. 

E2 

The same s o r t  of ana,lysis tha.t Led t o  Eqs. (2.109) and (2.1.10) 

can be ,applied t o  the  d ispers ion  r e l a t i o n  for t ransverse  waves, Eq. 

( 2  . l o o ) .  Tie r e s u l t  i s  
n 2  

(2 .118)  

and 

(2.119) 

n- Yz J 



This can be w r i t t e n  as 

(2.120) 

I n  t h i s  case the  f a c t o r  necessary t o  ob ta in  the  t o t a l  energy from the  

2 e l e c t r i c  f i e l d  energy i s  a-1 .c3k! 
fxom 

eT1 / a . It may be obtained 

33 

when 

L:?. 2 - 3 -  

c k x B = -  

i s  used. 

(2.121) 

( 2 * 1 2 2 )  
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CKAPTEK 3.  QUANTIZAT’TON OF THE ELECTKObIIZSNETIC Y I E L D  

IN A DISPERSIVE: IVEJIFJM 

I n  t h i s  chapter we s h a l l  begin by considering t h e  plasma as a 

+> + dispers ive  mediixn charac te r ized  by a d i e l e c t r i c  tensor  E (q, 13) 

which i s  the r e a l  p a r t  of t he  d i e l e c t r i c  tensor  introduced i n  the  

l a s t  chapter .  Waves with r e a l  frequencies can propagate i n  t l i s  

medium. The electromagnetic f i e l d  in the  plasma w i l l  be expanded 

i n  these waves, a Hamiltonian f o r  the  system w i . 1 1  be found and the 

system quantized by t h e  usual  p re sc r ip t ion .  This leads  l i s  t o  a de- 

s c r i p t i o n  of plasma exc i t a t ions  i n  terms of quas i -pz r t i c l e s  (plasmoils, 

phonons, photons, e t c . )  . 
has been t r e a t e d  previously by Kihara, Aono and Dodoz5 by Alekseev 

and N i k i t i n  and o thers  ( s e e  Reference 24 f o r  o ther  re ferences) .  

This quant izat ion of the f i e l d  i n  a plasma 

24 

We then der ive a pa r t i c l e -quas i -pa r t i c l e  i n t e r a c t i o n  Hamiltonian. 

The i n t e r a c t i o n  of quas i -pa r t i c l e s  with p a r t i c l e s  l eads  t o  a growth 

o r  decay of the  number of quas i -par t ic les  (o r  equivalent ly ,  the  i n -  

t e n s i t i e s  of t he  f i e l d s  of the  waves) which i n  more conventional 

trecttmnents i s  determined from the imaginary p a r t  of ?* 
3.1 Quantization of the  Electromagnetic Yield 

-_I 

We now expand t%le p o t e n t i a l s  fl (z’,t) and A’ (T’,t) i n  Fourier  s e r i e s  

i n  a l a rge  box of volunie V.  (These p o t e n t i a l s  a r e  @ and rir’ of the 

l a s t  chapter but t he  subscr ip t  has been dropped.) 

per iodic  boundary condi t ions a r e  assumed. 

1 1 

The usual  
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-3 
k, 

(3.1) 

( 3 . 2 )  

I n  the  above %o and A+ 

t h e  f a c t o r s  i n  square bracke ts  w i l l  be made c l e a r  present ly .  

Eq. (3.1) the  fi z 2 , ' s  a r e  the  frequencies  of' l ong i tud ina l  waves 

found by solving Eq. (2 .109) .  I n  Eq. ( 3 . 2 )  t he  /t 2 &'s a r e  the  

frequencies  o f  t ransverse  waves found by solving Eq. ( Z . i l . 8 ) .  The 

a r e  Fourier  c o e f f i c i e n t s .  'The reason f o r  
k/ 

I n  

po la r i za t ion  vec tors  $2 a r e  so lu t ions  of 

-k 2 -  l + k k +  3 3  fi2k;- 7 ( 2 > > L  )I. :z#= 0 
2 1 k.s' 

C 
L- 
?'hey a r e  normalized t o  uni ty .  We def ine  

( 3 . 3 )  

(5 .4)  

It i s  t h i s  t ransverse  d i e l e c t r i c  func t ion  which must be used i n  Eq. 

(2 .118)  when solving f o r  f i - t  k &' 

We now c a l c u l a t e  the time averaged energy i n  the  e lec t ronagnet ic  

-3 f i e l d .  For A = 0 the re  i s  no magnetic f i e l d  and 

(3.5) 

i s  t h e  energy i n  t h e  e l e c t r i c  f i e l d  o f  l ong i tud ina l  waves. The 

angular bracke ts  i nd ica t e  a tlme average over a per iod  which i s  long 

i n  comparison with the  per iods  of' o s c i l l a t i o n .  Using Eq. (3.1) i n  
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Eq. (3.5) and car ry ing  out  the  in t eg ra t ion  and time averaging gi.ves 

( 3 . 6 )  

A s  was discussed i n  the  las t  chapter,  it i s  necessary io c o r r e c t  t he  

e l e c t r i c  f i e l d  energy of each of the  waves by the  f a c t o r  

JG-' i n  order t o  g e t  the  t o t a l  energy. 

3 
Making t h i s  cor rec t ion  gives  

f o r  'ihe total .  energy i n  long i tud ina l  waves. Here 

( 3 . 7 )  

( 3 . 8 )  

Ts the  s ign  of the  cor rec t ion  f ac to r .  It i s  pos i t i ve  f o r  pos i t i ve  

energy waves and negative fo r  neg.ztive energy waves. Note t h a t  i n  

t h i s  developmerit _/L- 

square bracket i n  Eq. (3.1) w a s  chosen so t h a t  H 

simple form of dq. ( 3 . 7 ) .  

i s  a pos i t i ve  frequency. 'lhc f a c t o r  i n  t he  
k &  

would have the  L 

Next, we ca l cu la t e  the energy i.n t he  t ransverse  f i e l d s .  Le t t i ng  

@ = 0, we wr i te  

Subs t i t u t ing  Ey. ( 3 , Z )  i n t o  Eq. (3 .9)  gLves -*-. 

(3.10) 
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Applying the  co r rec t ion  f a c t o r  f o r  transverse waves g ives  

(5.11) 

for the t o t a l  energy in t ransverse  waves. Again > i s  the  si.gn L’E d 

of the energy of the wave. 

So far i n  the d iscuss ion  of t h i s  chapter B-t and ,41 have 
kcf k d 

f + 
k 6 kv 

been considered t o  be complex numbers aod F h  

taken t o  be t h e i r  complex conjugates.  The t r a n s i t i o n  from c l a s s i c a l  

an? A+- have been 

t o  quantum mechanics i s  made by r e i n t e r p r e t i n g  E-+ 

des t ruc t ion  opera tors  for l ong i tud ina l  and t ransverse  quas i -pa r t i c l e s  

o f  momentum A k, type and energy S+-?J zi ; 

a r e  the  corresponding cres t ior i  opera tors .  

and A+ ~ as k 07’ kd 

f and A> d 3 

%GJ k J  ku 

These operators  a r e  

assumed t o  obey the  commutation r e l a t i o n s  for Bosons 

(3.12) 

(3.13) 

4- where [A,3] = AB - EA. The opera tors  A-, and A+ obey sixiilar k.& k L4 
+ 
k, %- r e l a t i o n s .  The operator  B”,- i s  the  number operator  f o r  

l ong i tud ina l  quas i -pa r t i c l e s  of momentum B Tf and type 6 . It i s  a 

w e l l  known consequencez5 of- the Boson commutation r e l a t i o n s  t h a t  i t s  

and II a r e  the  HrJ T eigenvalues a r e  N& (3 = 0, L, 2,  3,  . . . crz . 
Hamiltonians fo r  l ong i  t u d i r i a l  and t ransverse  quas i -pa r t i c l e s ,  The 

s t a t e  of t h e  system i s  spec i f i ed  when the  number of quas i -pa r t i c l e s  

of each ty-pe i s  given. That is, the  s t a t e  vec tors  a r e  of the form 

I .  . . . +(a . . . N,, (21) . . . > 

T’ These are eigenvectors  of 3 and 13 

(3.14) 
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We s h a l l  need t o  know the  e f f e c t  of operator ing on these s t a t e  

vec tors  w i t h  yd and Et, . Again, it follows from tiie commuta- 

2 5 t i o n  r e l a t i o n s  t h a t  

-t 
k d  

(s. 15) 

. . . >  (3.16) 

The o p e r a h r s  A+ and A-> have sl-milar e f f e c t s .  + 
k C  k =T‘ 

This completes the  quantum mechanical theory of plasma quasi-  

p a r t i c l e s  * 

3.2 The Par t i c l e -Quas i -Pa r t i c l e  i n t e r a c t i o n  - -  
Tn Eq. ( 2 . 1 2 )  we expanded (?’, ‘L) i n  a s e t  of e igenfunci ions 

and Csa as 

des t ruc t ion  and c r e a t i o n  opera tors  f o r  p a r t i c l e s  of  species  s i n  tiie 

S 

+ x (8 and i n t e r p r e t e d  the  expansion c o e f f i c i e n t s  C 
Sa sa 

s t a t e  a. 

Eq. (2-1.4). 

The zero th  order  Hamiltonian f o r  t he  p a r t i c l e s  was given by 

The s ia ie  vec tors  of the  p a r t i c l e  system have the  form 

I . . . . ~ ~ ( a )  . . . > (3.17) 

where N (a) i s  the fludoer of p a r t i c l e s  of spec ies  s i n  t he  s t a t e  a. 

Since t h e  p a r t i c l e s  are all assumed t o  be Fermions the  only poss ib le  

values  of N (a) a r e  zero and one. The N (a) are eigenvalues of the 

number operator  C C . It follows from the  cornmiitation r e l a t i o n s  

S 

S S 

4- 

sa sa 
2 3  t h a t  

sa 

C+ sa 

(3.18) 

. . . . N s ( a ) ,  . . . > = + I /  - 1. 1 .  . . 1 - N S ( a ) ,  . . > 

(3.19) 
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+ 
For our purposes the - signs in the above equations can be ignored. 

The state vectors of the system of non-interacting particles 

and quasi-particles is of the form 

I. . . . nrs(a) . . . N H ( ~  . . . . > 

(The index c 7  ranges over all types of quasi-particles including 

both longitudinal and transverse.) 

( 3 . 2 0 )  

From Eq. (2.6) we see that the term e $ is responsible for the 

interaction of particles of' species s with longitudinal fields. We 

shall use this in the second quantization forrralism to write the 

interaction Hamiltonian between particles and longitudinal quasi- 

particles as 

S 

Using Eqs.  (2.12) and (3.1) we can carry out the integrations and 

obtain 

(3 .22 )  

where 

+ (k,a,a') =: 
SZ 3" M 

( 3 . 2 3 )  

The interaction Hamiltonian between particles of species s aiid 
(1) , ,  

transverse quasi-particles will be divided into two parts 1-1 ST 
( 2  1 

arid I€ where ST 
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(3.24) 

and. 

(3.25) 

In the above interaction Hamiltonians the vertex parts a re  given by 

and 

(5.27) 
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The necessary m t r i x  elements f o r  t he  eva lua t ion  of Eqs.  ( 3 . 2 3 ) ,  

(3 .26 )  and (3 .27 )  are given i n  Eqs. (2,561) and (2.39) when t h e  

p a r t i c l e s  are f r e e  and i n  Eqs. ( 2 . 5 8 ) ,  (2.59), (2.60) aiid (2.61) when 

the  p a r t i c l e s  a r e  i n  a uniform magnetic f i e l d .  

It i s  convenient t o  represent  each term i n  an i n t e r a c t i o n  

Hamiltonian by a Feynmann diagram. For ins tance  the  term containirig 

C i a  C s a ,  vOz i n  Eq. (3.22) descr ibes  the process  i n  which a p a r t i c l e  

of' spec ies  s i n  the s t a t e  a'  i s  destroyed, one i s  c rea t ed  i n  t h e  state 

a, and a quas i -pa r t i c l e  o f  type e a n d  momentum p1 2 i s  destroyed. The 

term containing 

are represented 

1 
S / 

t- + descr ibes  the inverse  process.  These %a csa' %,& 
by t h e  diagrams i n  Fig.  3.1. 

/ 
a \ S 

Fig.  3.1 Feynmanri diagrams f o r  the processes  descr ibed by 
(1) 
sT' I1 2nd H SL 

The i n t e r a c t i o n  Iiarniltorii sfl 6'' sT conta ins  t h e  same type of terms but  

wi th  t r ansve r se  quds i -par t ic les  rep lac ing  long i tud ina l  ones. 'ihe 

i n t e r a c t i o n  Hamiltonian I1 conta ins  terms descr ib ing  processes  i n  

which t w o  t r ansve r se  quas i -pz r t i c l c s  a r e  destroyed, t w o  are c rea t ed  

o r  one i s  c rea t ed  arid one i s  destroyed. 

( 2 )  
sT 
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Now t h a t  'ihe i n t e r a c t i o n  Hamiltonians are known t h e  t r a n s i t i o n  

p r o b a b i l i t y  between i n i t i a l  s t a t e  I i > and f i n a l  s t a t e  I f > may be 

ca l cu la t ed  from the  w e l l  known formula ( t h e  "Fermi Golden Rule"). 

' T r a n s i t  ion  probahi l i t y  per  u n i t  time 

2r( 2 . .  
- - I_- I MI d ' ( E i  - E ) w _f 

( 3 . 2 8 )  

where Ei and E 

element for  the t r a n s i t i o n .  It i s  given by 

a r e  the  i n i t i a l  and final energies  and M i s  the  matrix 
f' 

< f I H' I I > < I 1 H' I IJ > < TL I 1-11 I i > + . . .  
(Ei - E + Lq) (E. - EII + ill) I I1 I 1- 

(3.29) 

Here, rl i s  a p o s i t i v e  in f in i t e s ima l ,  H '  i s  t h e  i n t e r a c t i o n  Hamil'ioiiian 

and t h e  surnrmtions a r e  over intermediate  s t a t e s .  

We now have all. of the  necessary machinery t o  d iscuss  quasi-  

l i n e a r  theory and wave wave coupling. 
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CHAPTEX 4. QUASI-LINEAR THEORY 

As we shall use the term, quasi-linear theory deals with first 

order processes; that is, those transitions for which the matrix ele- 

ment is approximated by the first term in Eq. (3.29). 

4.1 Quasi-Linear Theory of Longitudinal Waves with Bo = 0 

We shall consider a plasma with no external magnetic field. 

I_ -- 
The 

dielectric function is given by Eq. (2.48) or in the classical limit 

by Eq. (2.49). 

by using the Plemelj formula 

It may be divided into its real and imaginary parts 

x + i q  q - + o i - '  px  - isr o"(x> (4.1) 
1 

where the P i.ndicstes that a principal valile is to be taken in subsequent 

integrations. Using this in Eq. (2.48) we find 

(4.2) 

In the classical limit F. arid E itre given by 1 2 

(4.5) 

and 

The frequencies of longitudinal waves are to be found by so lv ing  

el($,&)) = 0, For a plasma consisting of electrons and ions there are 
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two sol.uti.ons of t h i s  equation; one of  these  i s  the  high frequency 

plasma o s c i l l a t i o n  and the  o ther  i s  the  low frequency ioii sound 

wave. To ob ta in  the  f i r s t  of  these  we assume t h a t  the phase 

v e l o c i t y  of  the wave .i.s much grea te r  than thermal v e l o c i t i e s  and 

expand (0 - q ...p 3-l i n  Eq. (4.5) 'to ob ta in  

< ( Z .  #> + . . . 1 (4 .7 )  

where we have neglected the  ions and in'Legra.terl by p a r t s ,  Se'itlng 

E = 0 and so lv ing  f o r  t he  frequency gives  approximately 1 

(4.8) 

'Yhe sngix1.a.r brackets  denote averages wit,'li r e spec t  i o  'ihe e l ec t ron  dis- 

Lribut ion I"u.ncti.on. We s h a l l  use the  symbol t o  denote plasma 

o s c i l l a t i o n s  (plasmons) . 
It i.s w e l l  known t h a t  ion soimd waves a r e  s t rong ly  damped unless 

t h e  ion  tempera-Lure i s  much l e s s  than the e lec t ron  temperature. We 

sha l l  assume tha t  t h i s  i s  t'ne case. To ob ta in  the  frequency of  i o n  

sound waves we s h a l l  assume t h a t  tine phase v e l o c i t y  of t'ne wzve is 

much l e s s  than the  e l e c t r o n  thermal. v e l o c i t y  bu t  niuch g r e a t e r  than 

the ion  thermal ve loc i ty .  With these  approximations Rq. (4.5) be- 

comes n 

(4.9) 

where L = ( T  / 4 7 ~ n e ~ ) ~ / '  i s  the  e l e c t r o n  Debye length.  

(4.9) f o r  tlie frequency gives  

Solving Eq. e e 
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We shall use t h e  symbol d t o  denote ion  sourid waves (phonons). 

We f i n d  

and 

Using these  toge ther  with Eq. ( 2 . 3 8 )  i n  Eq. (3.23) g ives  

and 

(4. lo) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

K L  
e 

fo r  t h e  vertex func t ions  f o r  t he  par t ic le-plasmon and p a r t i c l e -  

phonon i n t e r a c t  ions.  

5 ailti a i  by t h e  f r e e  p a r t i c l e  wave vectors  p and G1.  
func t ions  agree w i t h  those found by Pines  and S c h r i e f f e r  

1<osszL usini.; qu i t e  di-f'ferent methods. 

We have replaced t he  particle quantum nwn'oer s 

These ve r t ex  4 

n and by 

7'0 s h p l i f y  t h e  d iscuss ion  w h i c h  follows we shall consider  only 

e l ec t rons  and plasmons arid neglec t  t he  ions  and phonons. Eq. (4.13) 

may be used t o  w r i t e  t h e  electroil-plasmon i n t e r a c t i o n  IImil tonian as 

(1.15) 
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where we have used t h e  Kronecker-Delta i n  Eq. (4.13) t o  e l imina te  

one summation and have dropped some superfluous subscr ip ts .  Note 

t h a t  momentum i s  conserved a t  each ver tex .  

 NOT^, we sha l l  wr i t e  equations f o r  the r a t e  of ciiange o f  N (57, 
(3, t he  number of 

e 

the number of e l ec t rons  of momentum 3 aud N 

-? 
plasmons of  momentum4n k. Schematically we may wr i t e  

4 
P \ 

e k > l  (4.16) 

What we mean by this i s  t h a t  w e  add a l l  of t h e  processes  i n  which a 

plasmon of momeaturn R k i s  emit ted and sub t r ac t  a l l  of those i n  which 

one i s  absorbed. T h i s  difference gives  ihe  increase  i n  N (k? . The 

-? 

schematic equation can be converted i n t o  a mathematical equat ion by 

rep lac ing  each di-agram by t h e  t r a n s i t i o n  p r o b a b i l i t y  per  u n i t  time 

fo r  the process.  Using Eq. (3.28) and the  f irst  term i n  Eq. (3.29) 

gives  

Note t h a t  t h e  square of t he  matrix element has two f ac to r s .  One of 

L 1  mese  i.s j u s t  t he  square of t he  ve r t ex  p a r t  i n  Eq. (4.15). The o the r  

comes from the  square of t he  matr ix  element of tile c r e a t i o n  and 

des t ruc t ion  operators .  For instance,  consider  t he  term C; + d C-t B+ p k  

i n  Eq. (4.15) and t h e  corresponding diagram i n  Eq. (4 .16) .  From Eq. 

i- 
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(3.18) we see t h a t  the  des t ruc t ion  of an electron of momentum Ti i' 
gives a f a c t o r  lie(a. E'rom Eq. (3.19) we see t h a t  c r ea t ion  of an 

e l ec t ron  of momentun x (y' + 3 gives a f a c t o r  1 - 1qe(3 i- if>. 
Eq. (3.15) we see  t h a t  des t ruc t ion  of' a plasmon of  m o m e n t i m  B E' 

gives a f ac to r  N A  (if,. The product of these  f a c t o r s  gives  the 

last  term i n  Eq. (4 .17 ) .  

From 

I n  a similar way we can write a schematic equation f o r  t he  

r a t e  of change of N P ( i 3 .  / p + 2 

(4.1%) 

The corresponding mathematical equation i s  

(4.19) 

Some consequences of Eqs .  (4.1'7) and (4.19) may be seen immedi- 

at, e ly . 



(4.20) 

(4.21) 

‘I‘hese equations show t h a t  p a r t i c l e s  (but not quas i -par t ic les )  , 
momentum and energJ are conserved, This i s  not  too swpr is j -ng  

s ince  they are conserved a t  each vertex.  

We can def ine  the  entropy of t h e  electron-plasmon system ds 

where 

and 

where K ishBoltzmann‘s constant .  Se i s  the  entropy of a system of 

Fermions and S A  is the entropy of a system of Bosons. 36 By taking 

the  Lime der iva t ive  o f  S and using Eqs. (4 .17)  and (4.19) i t  i s  not 

d i f f i c u l t  t o  show that 

ds 
d t  

_.I_ 5 0  

Furthermore, the  equa l i ty  holds when 

(4.26) 

(4.27) 

and 



(4.28) 

s ince  a br ie f  c a l c u l a t i o n  shows t h a t  these are equi l ibr ium solutions 

of Eqs. (4.17) and (4.19). 

approaches t h e  Fermi-Dirac d i s t r i b u t i o n  and N 

Plmck d i s t r i b u t i o n  as time increases .  What i s  missing from t h e  

This seems to i nd ica t e  t h a t  N (3 e 

(3 approaches the  

proof i s  a proof t h a t  S has only one maximum. 

We now pass to t h e  c l a s s i c a l  l i m i t  by t h e  p re sc r ip t ion  

-540 (4.29a) 

(4.29b) 

(4.29c) 

(4.29d) 

(4.2%) 

(4.29f) 

( 4.2 9g) 

Eq. ( 4 . 2 9 ~ )  means t h a t  t h e  e l e c t r o n  gas i s  far from degeneracy. 

P A  (2) i s  the  

meaningful quant i ty .  We l e t  t h e  volume of the  box i n  which t h e  system 

energy spectrum of plasma o s c i l l a t i o n s - - s  c l a s s i c a l l y  

i s  quanbized become inf i r i iLe so t h a t  sums go over i n t o  in t eg ra l s ,  herice 

Eys. (4.29f) and ( 4 . 2 9 g ) .  In this l i m i t  Eqs .  (4 .17 )  and (4.19) become 

(4.30) 

where 



(4.33) 

(4.35) 

These are t h e  c l a s s i c a l  quas i - l inear  equations.  

'The f i r s t  term on t h e  r i g h t  hand s i d e  of Ey. (4.30) comes from 

t h e  sihnul;tted emission terms i n  Bq. (4.17). The second -term comes 

from Lhe spontaneous emission terms. 

G q .  (4.32) agrees  with the j-maginary par-t of the frequency given 

by Eq. (2.110) when Eqs. (4.6) and (4.11) are used. In t he  zero th  

order  approximation where tile par t ic le-plasmon i n t e r a c t i o n  i s  neglected 

t h e  imaginary part of ~(jtf)W) i s  neglected and t h e  plasmoiis h v e  

i n f i n i t e  l i f e t i m e s .  The imaginary par t  of e is a consequence o f  the  

processes of absorpt ion and emission of plasmons by p a r t i c l e s .  

I n  t h e  present. de r iva t ion  it  is c l e a r  that. Eq. (4.17) f o r  the 

r a t e  of change of N A (x)  must be accompanied by Eq. (4.19) f o r  the  

r a t e  of change of Ne(a. 
s i o n  appear qu i t e  n a t u r a l l y  i n  this der iva t ion  although they  are o f t en  

Also,  t he  terms due t o  spontaneous ernis- 

omitted i n  c l a s s i c a l  der iva t ions .  

It i s  easy t o  show t h a t  time-independent so lu t ions  of  E q s .  (4.30) 

and (4.31) a r e  

? A  (3 = 'I' (Rayleigh-Jeans) (4 .36)  

(4.31) 
2 -mv /ZT fe(9 : c e ( Maxwe 11 - Bo1 t zxnann) 
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However, it is not  possible to show that these solutioris &re 

approached asymptotically. Indeed, it is possible to show that 

there are i n i t i a l  P (8 and fe(3 which can never evolve into 
Eqs.  (4.36) and (4.37).  An example will be given presently. 

A 

Before discussing Eys. (4.30) and (4.31) further it is con- 

venient to write them in dimensionless units. To do so we define 

F (3 f (v )  = - n 
d3 

I n  dimensionless form Eqs. (4.30) and (4.31) are 

irliere 

1 

n L 3 
& =  

e 

(4.. 3 8 )  

(4.39) 

(4.40) 

(9.91) 

is the so-called plasrria parameter. I n  deriving these we have made 

t he  approxhationn c e  a,,. These equations take a p w t i c u l u l y  

sirril,le form in one dimension, namely 
i+k 

(4.12) 
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where the  prime denotes a de r iva t ive  with respec t  t o  t he  argument. 

f u r t h e r  s impl i f i ca t ion  can be made by making the  chanze of va r i ab le  

q = 1/u and wi-iting (u) i n s t ead  of (I/u) ~ Thzri 

A 

... a0 (u,U a F(u,T') 9 E'( u , T )  
a r  -1t5 A[*[ 11 a' au  2 

+ F ( U , T ) l  (4.45) 

We have now e x p l i c i t l y  included T as an argument of CP ( u , ~ )  a n d  

F( u , r ) .  Ln dimensionless u .n i t s  the Rayleigh-.Jeans and Maxwell- 

Boltzrriann so lu t ions  a r e  

@'= 1 
2 

-1/2 u F = C e  

(4.46) 

(4.47) 

which c1earl.y s a t i s f y  Eqs.  (4.44) and (4.45). 

An  i n t e g r a l  of Eqs. (4.44) and (4.45) can be obtained by combin- 

ing  them t o  give 

from which 

(4.48) 

where g(u) i s  constant  i n  time. 

given by Eqs. (4.46) and (4.47) then 

Now, if a t  any time 

n 

(4.49) 

(4.50) 
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Rut c l e a r l y  one can choose the in i t ia l .  condi t ions for E' arid 6 so 

t h a t  g(u)  i s  some other  function; with such a choice of i n i t i a l  

condi t ions the  equi l ibr ium solutions,  Eqs. (4.46) and (4.47) are 

never approached.+ 

A s  we have previously remarked, i n  c l a s s i c a l  der iva t ions  the  

terms due t o  spontaneous emission are often omitted. These a r e  the 

terms S A and A' fe  i n  Eqs.  (4.30) and (4.31) and the  corresponding 

terms i n  Eqs .  (4.44) and (4.45). We shall now examine t he  qu.asi- 

linear equat ions w i t h  the  sponta,neous emission terms neglected.  

We write 

(4.51) 

(4.52) 

Again, it i s  fourid t h a t  g(u) i s  a cons tan t  of the  motion. It may be 

used to wri t e  

a 
3 

& P ( u , T )  - F ( u , o j  := - - - 
ZIT a u  

f'r om which 

@(Il,Z) - 6 ( u , o )  = - 2fi  U y d u  [ P ( U , T )  - F(U,O) ]  (4" 54) & 
Mow, t o  be s p e c i f i c  let us assume that  the i n i t i a l  d - i s t r ibu t ion  has 

the  form of a M m e l l i a n  with a bmp on the  t a i l  3 s  shown i n  Fig.  4.1. 

"1 am indebted t o  Owen C. Eldridge f o r  t h i s  observat ion.  



--- 
U 

I 
I I 

I 
I 

I I 
I I 

I 

Fig. 4 .1  I n i t i a l  and f i n a l  F ( u , z )  and o"(u,+f) f o r  an un- 
s t a b l e  p l a s m .  

We s h a l l  assume t h a t  a t  'is" = 0 CF) (u,o) i s  very small_. 

has a negative slope,  ~ ( u ~ o )  w i l l  be negative and @ (u,$') will decay. 

Where F(u.,o) has a p o s i t i v e  slope, ](u,o) w i l l  be pos i t i ve  and there  

w i l l  be i n i t i a l l y  a n  exponent ia l  growth of @ (u, 6 ) .  

Where F(u,o)  

P-J 
This  w i l l  
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cause D(u,Z') t o  grow r a p i d l y  f o r  those values  of u f o r  which 

] ( u , z )  i s  pos i t i ve .  This wi .11  l e a d  t o  a r a p i d  change of' E ' ( u , r )  

f o r  those values  of  u. 

From Eq. (4.51) we see t h a t  when the  s teady s t a t e  i s  achieved, 

i) F / a  u 7(u,m) = 0 except when (u ,m)  = 0. 

0. It follows that;  st L = <p, F ( u , e )  w i l l  cons i s t  of constant  

A l s o  ] = 0 implies 
rJ 

sec t ions  arid sec t ions  with negat ive slope f o r  u > 0 and p o s i t i v e  

slope for u < 0. 

a u = 0 and it will variish elsewhere. 

(7(u ,w)  must be as shown i n  Fig. 4.1. 

@ ( u . , a )  will be non-vanishing where @ F( u , e )  / 
The firla1 form of F(u, e) arid 

The pos i t i on  of the  horizontal l i n e  i n  Fig.  4 . 1  can be determined 

as follows. Since the number of p a r t i c l e s  i s  conserved, the a r e a  

under the  ho r i zon ta l  l i n e  must be t he  same as the  a r e a  under the  

o r i g i n a l  curve; t h a t  i s  

(4.55) 

I f  one imzgines lowering a ho r i zon ta l  l i n e  u n t i l  the two areas  are 

equal, i t  i s  c l e a r  that u arid % w i l l  be lrietermined i n  t h i s  niaruler. 1 

One can then ca lcu la t e  (? (U,QO) froin Eq. (4.54:) obtainii ig 

(4.56) 

One cannot say as m ~ c h  about t he  asymptotic so lu t ion  when the 

spontaneous emission t e r m s  a r c  re ta ined ,  b u ~  one can s t i l l  say some- 

Yning. ~ q .  (4.54) i s  s t i l l  valid but  ~ ' ( u , o c )  cannot be determined 



so eas i ly .  I f  Eqs. (4.44) and (4.45) have s t a t iona ry  so lu t ions  a t  

T-,p, then 

(4.57) 

Nows @ ( u , ~ )  must be pos i t i ve  ( s ince  it is an energy dens i ty)  and 

f i n i t e  ( s ince  energy i s  conserved), so i t  follows t h a t  F(u, e) must 

be a monotonically decreasing funct ion.  T'ne geiieral p i c t u r e  one 

forms of  the  development of a n  i n s t a b i l . i t y  due to a bump-on-the-tail 

type of d i s t r i b u t i o n  i s  t h a t  F ( u , z )  and .-J (u,  L ) r ap id ly  change 

approximately i n t o  the  forms shown i n  Fig. 4.1 under the  inf luence 

of the  s t imulated emission teyms. ' hen  'r,hcse forms a r e  approached, 

ihe spontaneous emission terms become important and F( u , q )  evolves 

i n t o  a form which decreases monotonically with increzsing Iu I. 
i s  accompanied by a spreadjng of @ ( u , z ) .  

'This 

We shall next use the  quas i - l inear  equations t o  discinss the  

absorpt ion of t he  energy of a wave packet 'oy a s t a b l e  plasma. 

We r e f e r  t o  Fig. 4.2. We si.qqlose t'nat i n i t i a l l y  the re  i s  a wave 

packet with 6 (u,o) non-vanishing i n  the range u < u < uz. I n  

t h i s  range 

decay. 

f l a t t e n  out thus reducing ,/(u). 

1 

a F/ 8 u < 0, so y(u)  i s  nega'tive and 

The d i f fus ion  caused by e) (u,%) w i l l  cause F ( u , T )  t o  

I f  the  amp1itu.d.e of t he  packet i s  

sufficient1.y large and i f  spontaneous emission terms a r e  neglected, 

then F(u, L ) m y  develop a p l a t eau  and. ](u) would become zero in PJ 

the  plateau.  If t he  amplitude of t h e  packet was i n s u f f i c i e n t l y  

l a rge ,  the  wave packet would disappear before the  p l a t eau  developed. 

!?he spontaneous emission terms should keep t he  plateau from ever 
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completely developing. 

U 

Fig. 4.2 Absorption of the energy of a wave packet by a 
s t a b l e  plasma.. 

If a monocl-iromatic wave is launched i n  the  plasma, t-hen t h e  

quas i - l inear  equat ions would not, be appl icable .  They are based on 

t h e  Fermi Golden R u l e ;  the (-functi.on i n  Ey. ( 3 . 2 8 )  implies t h a t  

one has a continuous spectrum t o  i n t e g r a t e  over. Idhat happens to a 

monochromatic wave i s  very i n t e r e s t i n g .  Its main features can be 

understood by a simple phys ica l  argument. Suppose t h a t  by some 
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magical process a wave with phase v e l o c i t y  v i s  j.rq)osed on tfie 

plasma a t  the t h e  t = 0 without sl_tei-ri.ng the  el-ectmn dis t r ibut icm 

f (v ) .  (We a r e  considering a one-dimensional plasma,) This  i s  shown 

j.n F ig -  4.3. 

P 

----- 

X 

I v 
P 

Fig. 4.3 Oscillatory damping of a monachrornatic wzve. 

Consider the motion of t h e  p a r t i c l e s  in a frame of re ference  moving 

wi th  t h e  phase ve loc i ty  of the  wave. Some of t h e  par t ic l -es  will be 

trapped i n  the troughs of tile waves; o the r s  w i Y n  g r e a t e r  energy w t l l  

not be trapped. Af t e r  a time A t  equal t o  a h a l f  period of  o s c i l l a -  

t i o n  of t he  p a r t i c l e s  i n  t he  bottom of t h e  troughs, tne p a r t i c l e s  

which were moving t o  the  l e f t  w i l l  be moving t o  the righi; and those 
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t h a t  were moving t o  the  r i g h t  w i l l  be moving t o  the  l e f t  so the  d i s -  

t r i b u t i o n  funct ion must look l i k e  the  c w v e  l abe led  f ( v , & t ) .  Since 

the  k i n e t i c  energy of  the  p a r t i c l e s  whose d i s t r i u u t i o n  f inc t ior i  is 

f (v ,  A t) i s  g - e a t e r  than it was when the  d i s t r i b u t i o n  f inc t ion  w a s  

f ( v , o ) ,  the  energy of the  wave has decreased. The wave has been 

damped duriiig this time i n t e r v a l .  I n  the  next i n t e r v a l  A t  t'ne 

v e l o c i t i e s  of' trapped p a r t i c l e s  w i l l  again reverse ,  f (v ,2  A t) i s  

approximately the  same as f (v ,o) ,  the  k i n e t i c  energy has decreased 

and so the  amplitude of the  wasre has grown. Now, a l l  of t he  trapped 

p a r t i c l e s  do not  o s c i l l a t e  with t h e  same per iod so as t h e  goes 011 

f( v, t) develops more wiggles and eventua l ly  f laLtens  out when tke 

trapped p a r t i c l e s  have become randomized. Whi.le t h i s  i s  going on 

the  amplitude of t he  waves a l t e r n a t e l y  decays and grows, finally 

sett l iny;:  down t o  some snaller mpli t t tde  e This o s c i l l a t o r y  Landau 

damping w a s  p red ic t ed  t h e o r e t i c a l l y  by O ' N e i l  and by A 1  'Tschul 

and Karpman" and has been observed experimentzlly by Malmberg and 

Whar txn. 26 

Armstrong. 

27 

it has a l so  been observed in numerical experiments by 

3 7 

4.2 Quasi-Linear Theory of Longitudint;l. Waves i n  a Plasma in a 
I --- - -  - 

Uniform Magnetic F i e l d  

Much of the arguments which l e d  t o  Eqs. (4.17) and (4.19) can be 

ti&,en over intac-6. 

placed by the  quantum numbers 11, p , p ( see  Eq. (2.52)) - Ylhe matrix 

element which i s  necessary f o r  Ey. ( 3 . 2 3 )  has been given i n  Ey. 

The wave vec tor  3 f o r  the  p a r t i c l e s  must b e  r e -  

x z  

(2.58). 

Writirig out -Lhe equa-Lion correspondirig t o  Lhe schermtic Eq. 

(4.16) we f i n d  
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We hawe w r i t t e n  Eq. (1.58) without reduct ion j.n order  t o  rrtake clear 

the  o r i g i n  of  all the  terms. The t rdns i t i ons  which a r e  considered 

a r e  those in which p a r t i c l e s  of specjes s and quantum numbers n + I 

+ k emit a quasi-par’cicle of t n Je  CY wilih wave vec tor  

k and the inverse of t h i s  t r a n s i t i o n .  We have not r e s t r i c t e d  o w -  

px 3 kx? P, z 
+ 

selves t o  a s ing le  spec ies  of p a r t i c l e  or’ quas i -par t ic le .  

I n  taking t h e  c l a s s i c a l  l i m i ’ c  

(4.59) 

Here y 

p a r t i c l e .  It i s  related t o  t he  x-cornponeat of the  p a r t i c l e s  

momentum by Eq. ( 2 . 5 3 ) .  I n  the c l a s s i c a l  l i m i t  Eq. (4.58) becomes 

i s  the y-coordinate of the  guiding center  o f  the  gyrat ing 
C S  

(4.60) 



where 

z 
s 

(4.61) 

;I: S 

fd% J; (S-) cr LArk -Rw c s  - l.rz v,) (4.62) 

Equ.ations similar t o  Eys. (4.18) and (4.19) may be w r i t t e n  for 

t he  ra te  of change of N (n,p 

lzialters et aLl5 for the details and give the results in the classi- 

cal limit 

) . We shall refer the reader to 
S X ' P Z  

(4.63) 
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Eq. (4.61) agrees wi .Lh the zrowth r a t e  ca l cu la t ed  f r o m  Eq. 

(2 . l .SO)  . It should be noted t,hat t'ne dependence of fs on y, gives 

t h e  possibilri.ty of wave growth due t o  s p a t i a l  g rad ien ts  o f  guiding 

cen-Lers. Tnis i s  t h e  d r i f t  cyclotron i n s t a b i l i t y  of  Mih-.b.ailovski 

arid ' T i r n o f e e ~ . ~ ~  

panied by a diffusion of p a r t i c l e s  i n  the y-d i rec t ion .  

It may be seen from Eq. (4.53) t h a t  thri.s is accom- 
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CHAPTER 5. SCATTERWG OF PARTICLES ANI) PHOTONS BY PLASMS 

The scattering of particles and the scattering of light may be 

treated in much the same way. It is convenient to begin with the 

scattering of particles. 

5.1 
39 The Scattering - of Particles 

We consider a test particle of charge e and mass m interacting 

- -  
r r 

with  a plasm. The interaction Hamiltonian may be written as 

(5.1) 

-+ 
where %'is the position of the test particle, x is the position of 

the it'' particle of species s in the plasma and $(a is the electro- 
si 

static potential at t'ne position of the test particle. Cjnly coulomb 

interactions are taken into account. As in Chapter 2 we expand the 

potential in a Fourier series in a box of volume V. Thus, 

--7 

Y 

By. (5.1) may be written 

(5.2) 

(5.3) 

(5.4) 

We wish to calculate W,(a -3 a'), the transition probability per 

unit  time that a test particle of species r initially in the state I a > 

makes a transition to the state l a '  >. We will denote initial and 



f i n a l  s t a t e s  of the  plasma by I & > and 1 r?& ' >. 

Wr(a -j a ' )  by s i m i n g  

We cal.culate 

over final s t a t e s  of t he  plasma and averaging over i n i t i a l .  s ta tes .  

I n  the  above E and Ed denote energies of t he  i e s t  p a r t i c l e  and the a 

plasma respecti.ve1.y. We w i l l  let POc be the  probability t h a t  

in i t ia l  s t a t e  of t he  plasma i s  I 
h U = E  - E  

Then 

>. We define k> by  

a a '  

We now use 

and Eq. (5.3) t o  wri-te 

the 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

+ 
where $*( q' ,  t) i s  the  time dependent operator  wi-Lh matrix elements 
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and the angular bracke ts  i n  the  l a s t  f a c t o r  a r e  def ined by 

< A >  = P d < d \ A \ & >  

(The same average w a s  used i n  Eq. (2 .20 )  .) 
d, 

(5.9) 

We now spec ia l i ze  t o  the case tjnat I iz > and I a' > are plane wave 

states of a free p a r t i c l e ;  t h a t  i s  

(5.m) 

(5.11) 

and Eq.  (5.8) becomes 

-3 < p ( d *  - z, t) $(i;" - k, 0) > (5.12) i D  t e 
i --P 

W (k --> k') --I r 

Now we w i l l  l e t  

(s. 13) 
(5.14) 

to obta in  

2 +oo 

< a<;, t>  @ G o )  ;> (5.15) 
iw t Id (?+=+?)  =-$Lwdte e 

for the t r a n s i t i o n  p r o b a b i l i t y  for u n i t  t i m e  t h a t  the  ind ica ted  

t rans i t , ion  w i l l  occur with t r a n s f e r  of momentum3 4 and t r a n s f e r  of 

r m r 

energy Ti 0 .  
-2 3 

fi(y, t) = -i $(-;, t) (5.16) 

We nay use 

To wri t e  this i n  t h e  form 
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where 

(5.19) 

J -- 
i s  .the s p e c t r a l  d e n s i t y  o f  t h e  e l e c t r i c  f i e l d  f luc tua t ions ,  Note that 

(5.20) -- 
so 

m y  be i n t e r p r e t e d  as the  energy pe r  unit volume i n  elec'cric f i e l d  

f luc tua t ions .  

I n  a plasma. i n  which t h e  f i e l d  fluctuatrions a r e  i n  equi l ibr ium 

3 with t h e  p a r t i c l e s ,  P,(q,W) may be calci l la ted by t h e  dressed t e s t  

pa . r t ic le  model. 29'30 which we s h a l l  now b r i e f l y  descr ibe.  

J -* 
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By Poisson's equation 

-+ 
where 11 (qyCj) is the Fourier transform of the particle density. 

Then 

S 

n 

(5.22) 

( 5 . 2 3 )  

(5.24) 

< 11 r ($,w> n,*(;,ul) 

Now, the essence of the dressed test particle model is that the 

particles may be regarded as uncorrelated, but that the contribution 

of each particle to the potential must be modified by the shielding 

factor E (q,W>. That, is 
-1 

< n,cg',b) r l s - * ( < , ~  '1 >o (5.25) 

where "che subscr ip t  on < e . . >o indicates that the average is to be 

calculated for uncorrelated ( f ree)  particles. This is easily cal- 

culated using the second quantization formalism introduced in Chapter 

(5.266) 

E m  free particles the same t i m e  dependence of C +(t) is given. By 
SP 
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i 4 i  2 
P t  - -  

c ( t)  = c (0) e 2% 
SP SP 

(5 .2 '7)  

so 

where 

(5.29) 

Taking the Four ie r  transform of  Eq. (5 .28)  gives 

P 

Then 

---3 .+ 
P P ' 

The l a s t  f a c t o r  in Eq. (5.31) is just 

(5.3s) 

( 5 . 3 2 )  

where .:&)(a i s  the  nwnber of p a r t i c l e s  of spec ies  s with momentum 
+ H p when t h e  s t a t e  of t h e  plasma, i s  r& >. 

may s e t  [I1 - N(&)(; -c- a] h.' S and w r i t e  

For a classical. plasma, we 

S 

(5.33) 

Eq. (5.31) now becomes 



(5.34) 

In the last s tep  we have applied the prescription of Eq. (4.29). 

%q. (5.25) becomes 

(5.35) 

Comparison with Ey. (5.22) gives the  result 

(5.36) 

Putting this result into Eq. (5.18) we find that the result can 

be put into the form 

( 5 3 )  

Jn this form the transition probability has an obvious interpretation. 

Ifr(? -t 'Ii qrn ->a is obtained oy adding the transition probabilities 

calculated by first  order per turba t ion  theory for the collisions of the 

test partFcle w i t h  the  particles of the Plasma. Such collisions m y  be 

r 
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represented by the diagram of Fig. 5.1. 

Fig. 5 .1  P a r t i c l e  c o l l i s i o n .  

I n  each c o l l i s i o n  the matrix element, f o r  the  t r a n s i t i o n  i s  the  

shielded coulomb m a t r i x  element 

ane e 
T S  

v s2 €(;,a) (5.38) 

+ 
where 3 q i s  the  momentum t r a n s f e r  and T i i s  the  energy i r ans fe r .  

We s h a l l  next examine P E ( < , u )  i n  somewhat g rea t e r  d e t a i l .  

It i s  usefu l  t o  mult iply by the  cor rec t ion  f a c t o r  

i n t e r p r e t  

8 &3 E / a &  and I 

(5.39) 

as the  s p e c t r a l  dens i ty  of t o t a l  energy including both e l e c t r i c  f i e l d  

energy and k i n e t i c  energy. 

quencies of e l e c t r o s t a t i c  o s c i l l a t i o n s  s ince  E (  q,U) "̂ 0. 

use ~ q .  (4.4) f o r  cZ(q,W) t o  wr i t e  

P(;,u) w i l l  have peaks near the  f r e -  
-+ 

~e s h a l l  
3 

where 



(S.41) 

I n  the  E -+ 0 l i m i t  ( t h a t  i s ,  t he  l i m i t  of smll damping) we have 2 

(5.42) 

where the  f i d ' s  a r e  the  solutions of E ~ ( < ~ & )  = 0. 

inat ior i  of t he  symmetry of c l ( q y o )  as given by Eq. (4.9) it may be 

Now, from an exam- 

so lu t ion .  

and suppose tha t  there  i s  only one weakly damped mode. 

Ey. (5.42) i n  Eq. (5.40) gives  

For s i m p l i c i t y  l e t  us consider a s ing le  species  p l a s m  

Then using 

if ( W  - A+) s %A-t ~ ( - 2 ~  A + j  
g q  q il 

( 5.43) 

I- where S-+ = - 1 i s  the  s ign  of' t he  elzergy of t he  wave defined i n  

Ey. ( 3 . 8 ) .  

cl 

The s ign i f i cance  of' t he  f a c t o r s  R(;, L - t )  and R ( 2 ,  -A +) Le- 
9 -il 

comes apparent i f  one takes  f s ( 3  t o  be t h e  Maxwell-Boltzmann dis t r i -  

but ion funct ion.  Then Eq. (5.41) gives  

(5.44) 



where N(d i.s the  Planck d i s t r ibu t ion ,  Eq. (4.28), Simi lar ly  

R(& -4 -+) = N(-3 (5.45) 
-q 

and Eq. (5.43) becomes 

(5.46) 

4 3  When Eq. (5.46) i s  used :in t he  expression f o r  W ( v  f L q / m  + v”> r S 

one f inds  one term proporti.oi2a.l t o  N ( 3  -4- 1 which may be in t e rp re t ed  

as the  s t imulated p lus  spontaneous emission o f  a quas i -pa r t i c l e  of 

momentum 3 q and energy %dL+, The t e s t  par t j -c le  may a l s o  lose  

momen’t;uiih q by absorbing 8 quas i -par t ic le  of momentum - Ti < i n  

which case the change i n  i t s  energy is %&I = -%A. 3. This absorp- 

t i o n  process cont r ibu tes  the  term propor t iona l  t o  N( -q> . 

3 

- -3  

-Y 

When the  s t a t e  of the  plasma depar t s  from tlnermal equilibrium, 

the  quas i -pa r t i c l e  number N(3 depar t s  from i t s  equilibrriwn value. 

I n  p a r t i c u l a r  i f  t he  plasma. approacb.es an unstable  s t a t e  N ( 3  may 

become very l a r g e  since the  denominator i n  Eq. (5.41) approaches zero. 

Returning t o  Eq. (5.8) we s h a l l  remark. t h a t  a siznilar ana lys i s  

can be made when I a > and I a ’  > a r e  Line s t a t e s  of a pa - r t i c l e  i n  a 

uniform magnetic f i e l d .  We s h a l l  j u s t  quote the resiilt.  It i s  

w (n f kx + q k f q, 4 n9 kx, k,) r x’ z 
3 

(5.47) 

The s u m a t i o n  over i n  t h i s  equation i s  a consequence of  the  non- 

conservation of t he  y-component of momentum because of the magnetic 

f i e l d .  

qY 



The Sca t t e r ing  of Photons 31,39 

The i n i t i a l  and f i n a l  s t a t e s  of' the  system a r e  taken t o  be 

- 5.2 - -  

l i > = l Z + $ , c >  (5.48) 

l * - . = p ; r t  > lccf 3 (5.49) 

Here, iii: d > denotes the  s t a t e  of' the  r a d i a t i o n  f i e l d  when the re  i s  

one photon of momentum 'Ii 5' and p o l a r i z a t i o n  d i r e c t i o n  CT present ,  

I d, > i s  the  s t a t e  o f  t he  plasma before the  s c a t t e r i n g  and Id. ' > 

i s  the s t a t e  a f t e r  the s c a t t e r i n g .  The term i n  t h e  Hamiltonian 

respons ib le  f o r  the  s c a t t e r i n g  i s  the  A term; namely 2 

0 

(5.50) 

-+ --, 
where A(x) i s  given by Eq.. ( 3 .2 ) .  

AS i n  the  last  sec t ion ,  we c a l c u l a t e  ~ ( 2  + ;, e ---f ZJ (r 1 )  by 

s m i n g  

(5. Sl) 

over f i n a l  s t a t e s  and averaging over i n i t i a l  s t a t e s .  'The tcrm i n  

P- containing A+ A-1 a r e  respons ib le  f o r  the t r a n s i t i o n .  

I n  a der iva t ion  which p a r a l l e l s  t h a t  of' the  l as t  sec t ion  we obta in  

-I- ,> L S  

k,w k -t- <, cy 

J - -  
where we have introdiuced the abbrevia t ion  

(5.52) 

( 5 . 5 3 )  



I n  Eq. (5.52) 

68 

(5.54) 

i 

i s  the Fourier transform of the  dens i ty  operator f o r  species  s 

&(2- I Ix ' . )  -> 
n ( x , o )  = 

S s1 
i 

(5.55) 

The time dependent operators are introduced as  hey were in Eq. 

(5.8).  

For a s ing le  species  plasma one can use Poisson's equation t o  

(5.56) 

so 

(5.57) 

Using Eq. (5.36) one obta ins  

(5.58) 

This may be subs t i t u t ed  i n t o  Eq. (5 .52 )  t o  ob ta in  
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(5.59) 

Just as in the last section the peaks in W which occur at fre- 
-+ 

quencies for which c ( q , O )  CZL 0 may be interpreted in terms of 

emission and absorption of quasi-particles. As the plasma approaches 

m unstable state the number of quasi-particles increases and the peaks 

in FS grow because of the increased stimulated emission and absorp- 

tion. 31 

For an electron-ion plasma the expression for W is somewhat; more 

complicated than Eq. (5.59). 

not be given further consideration here. 

It has been discussed elsewhere and will 

31 
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CHAPTER 6. NON-DIVERGEIVT KINETIC EQUA'I'lONS 

A v a r i e t y  of equations have been proposed f o r  descr ibing thc  

evolut ion i n  time of f(3 the  p a r t i c l e  v e l o c i t y  d i s t r i b u i i o n  funct ion 

i n  a plasma. None of them a r e  completely s a t i s f a c t o r y .  The ear l . i es t  

o f  these w a s  the  Boltzmann equation. '"" It i s  unsa t i s f ac to ry  because 

it neglec ts  col-1ecti.ve e f f e c t s ,  and a lso i t  diverges f o r  small. momentum 

t r a n s f e r s  i n  p a r t i c l e  c o l l i s i o n s .  On the  o ther  hand, the  Balescu- 

does include c o l l e c t i v e  e f f e c t s  but  i s  divergent  Lznard equation 

f o r  l a r g e  niomentum t r a n s f e r s .  Wyld and Pines have der ived an equa- 

t i o n  which i s  not divergent  for e i t h e r  mall. or  l a rge  momentum 

t r a n s f e r s  and reduces t o  the  Boltzmann equation i n  one l i m i t  and the  

15,14 

12 

Balescu-Lenard equation i n  another l i m i t .  We review t h i s  de r iva t ion  

i n  sec t ion  6.1. l f  the  plasma i s  unstable  the  Wyld.-Pines and Balescu- 

Lenard equations a r e  divergent .  The quas i - l inear  equations discussed 

ia Chapter 3 descr ibe Lhe evolut ion of an imstable plasma but  ignore 

p a r t i c l e  c o l l i s i o n s .  

I n  recent  yea.rs a number of equations have been proposed t o  

We w i l l  add one 42 -47 dea l  with both s t a b l e  and unstable  plasmas. 

more s e t  of equations t o  the l i s t .  The equations we der ive  i.n sec t ion  

6 .2  have the  a t t r a c t i v e  f e a t u r e s  t h a t  they conserve p a r t i c l e s ,  energy 

and momentum, s a t i s f y  an H-theorem and reduce t o  Wyld-Pines, Bal-escu- 

L,enard, Boltzmann and quas i - l inear  equaiions i n  var ious l i m i t s .  

6 . 1  The Wyld-Pine s Equation - -  
Consider the  r a t e  of change of  N (a, the  number of p a r t i c l e s  of 

S 

--f 
species  s and momentum% p, due t o  c o l l i s i o n s  with the  o ther  p a r t i c l e s  

o f  ihe plasma. Schematically we may wr i t e  
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S 

Y 
r 

(6.1) 

A s  we d i d  i n  Chapter 3, we rep lace  each diagram by t h e  corresponding 

t r a n s i t i o n  p r o b a b i l i t y  per  u n i t  time which i s  ca l cu la t ed  from f i r s t  

order  pe r tu rba t ion  theory. 

sh ie lded  coulomb matrix element given i n  Eq. (5.38). We obta in  

The matrix element i s  taken t o  be the  

where 0 i n  the  argument of c ( z , O )  i s  understood t o  be given by 

( 6 . 3 )  

Using Eqs. (4.29b), (4.29c), (4.29f) and (4.29g) we ob ta in  



(6.4) 

'This i s  the  Wyld-Pines equation. Tine c l a s s i c a l  l i m i t  of  t h i s  equa- 

t i o n  may be taken i n  two d i f f e r e n t  ways. 

the momentum t r a n s f e r r e d  i n  the  c o l l i s i o n .  This w i l l  be kept 

f i n i t e  when the  c l a s s i c a l  l i m i t  i s  being taken. I n  the  c l a s s i c a l  

l i m i t  

-> 3 F i r s t ,  we l e t  3 q = p be 

(6.5) 

and one obtains  

This i s  j u s t  the  B o l t z m n n  equatjon. 

If one l e t s  fi approach zero i n  Eq. (6.4), expands the  

E (  q, 0) and the  d i s t r i b u t i o n  funct ions,  tlnen Wyld and Pines have shown 

t h a t  one obtains 

Cf -function, 

(6.7) 

which i s  the  Balescu-Lenard equation, 



7 3  

-4 Secause of the p in Eq. (6.6) the Boltz,mnn equation diverges 

for small momentum transfers. This is because by Eq. (6.5) the di- 

electric function has been set, equal to unity, so the screening 

effect which is important at large impact parameters has been 

neglected . 
Eq. (6.7) is divergent for large momentum transfers. This 

should not surprise us; when we let 73 approach zero, the momentum 

transfer % < approached zero so collisions with large momentum 
transfers are not properly treated. 

Both E q s .  (6.4) and (6.7) are divergent for an unstable plasma 

for then IF(~,W)I~ w i l l  vanish for the 

marginally stable wave. 

corresponding to a 

It i s  this divergence which we now want to 

investigate further and find a c u r e  for. 

The Ualescu-Lenard e q u t i o n  may be written in the form 

where 

(6.9) 

(6.11) 
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as may e a s i l y  be v e r i f i e d .  I n  obtaining Eq. (6.10) we have used 

Eq. (4.6) f o r  E~(;,&) 

Eq. ( 5 . 3 6 ) .  We have w r i t t e n  the  Balescu-Lena.rd equation ~ C I  t h i s  

form i.n order. t o  po in t  out  the  s i m i l a r i t i e s  with Liie quas i - l inear  

equa-Lions, Eqs. (4.311, (4.34) and (4.35). 

Eq. (6.1.1) i s  j u s t  t he  c l a s s i c a l  l i . m i t  of 

In t he  quas i - l inear  expressions fo r  F[a and A'((;s, there  i s  no 

in t eg ra t ion  over 6a) e 

t r e a t s  the  l i f e t i m e  of  the  quas i -pa r t i c l e s  as i n f i n i t e .  I n  "cne 

Bale scu-lenard e quat ion  the q m s  i -par t  i c  l e  s are v i r t u a l  par'cic1.e s 

which axe interchanged i n  a c o l l i s i o n  as j.s shown i n  Pig. 5.1. 

This i s  e s s e n t i a l l y  because quas i - l inear  theory 

I n  the Balescu-Lenard eqiiati-on the  functi .cn P (<,6..2) i s  E 

given i t s  equi l ibr ium value.  I n  the quas i - l inear  equations the  

corresponding funct ion P ( 3  mast s a t i s f y  the  d i f f e r e n ' t i a l  equation, 

Eq. (4 .30) .  

Lenard equation; PE(q,6)) i s  assumed t o  he :Ci.xed a t  the  value given 

by Eq. (6.11) which j.s i n f i n i t e  f o r  an unstable  plasma. 

P(;,&$) should evolve i.n time as P(q)  does i n  the  quas i - l inear  

theory.  

Thi-s i s  the  0rigi.n of  t he  divergence of the  Balescu- 
.-+ 

Really, 
--h 

There i s  also a f a c t o r  of t w o  d i f fe rence  between the  quasi-  

This i.s because P( q) includes 

The 

+ 
li.near 

the  k i n e t i c  energy of the par t ic l -es  while PE(<,O)  does not, 

f a c t o r  of two came from Eq. (4 .11) .  

and. the  Halescu-Lenard fj'. 

It s e e m  c l e a r  t h a t  t o  f i n d  equations which preserve the best 

f ea tu res  of the  Ralescu-Lenard equation and the  quas i - l inear  equa- 

t i ons ,  one should f i n d  an equa.l;ion which descr ibes  the  evolut ion 

of P,(<,W). This  we s h a l l  proceed t o  do. 
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46 - 6.2 Mon-Divergent Kinet ic  Theorx 

we s h a l l  wr i t e  ~ q .  (5.18) as 

where P(<,O) i s  given by Eq. (5.39). 

work w i t h  P( q,W) r a t h e r  tnan  PE( z,&J). 
for the  inverse t r a n s i t i o n  is given by 

It w i l l  be more convenient t o  

The t r a n s i t i o n  p r o b a b i l i t y  

This  i s  found by c h g i r g  the  s ign  of' the  monentwn and energy t r a n s f e r s  

and then s h i f t i n g  the  v e l o c i t y  by 'h Qm,. T'ne r e l a t i o n  

(6.14) 

niay be seen frorn inspec t ion  of Eq. (4.3);  it i s  used i n  r e s t o r i n g  the 

l as t  f a c t o r  i n  Eq. (6.13) t o  the f o r m  it has i n  Xq. (6.1%). It will 

be shown l a t e r  t h a t  tne d i f f e rence  between Eqs.  (6 .12 )  and (6.1:3) i s  

r e l a t e d  t o  spontaneous t r a n s i t i o n  p r o b a b i l i t i e s .  

We can now isrj-te an  equation for  the  r a t e  of change of fs(;;). 

Ry ,an Gbvious l i n e  of ressoni.ng it i s  



where Eys.  (13.12) and (6.13) have been used. Eq. (4.29f) has been 

used t o  convert a sun t o  an i n t e g r a l .  It i.s convenienl; 'GO introduce 

the  i n t e g r a l  over ka and the  &-funct ion  i n  order t o  give Ti cd i-Ls 

value of the p a r t i c l e s  energy lo s s .  

We shall. assume t h a t  each time a p a r t i c l e  makes a t r a n s i t i o n  

the  energy ii l o s e s  (or gains)  goes i n t o  ( o r  comes out  of )  the 

energy of  f luc tua t ions .  It follows t h a t  the  r a t e  of change of 

!t'(<,f,) i s  given by 

(6.16) 

where Eq. (4.29g) has been used. 

Tize phys ica l  content of  Eqs.  (6.1s) may be made  more apparent by 

.writing them schematically 
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(6.17) 

S 

(6.1% 

In this form they resemble the schematic equations of quasi-linear 

theory, Eqs. (4.18) and (4.16). We showed in Chapter 5 t ha t  

W (v + 3 q/ms -+ 3 contained terms which could be interpreted as due 
to emission of a quasi-particle of momentum5 q and absorption of a 

quasi-particle of momentum - h q, so both terms appear in Eq. (6.17). 

-3 d 

s 
--f 

-3 

We shall now examine some consequences OS Eqs. (6.15) and (6.16). 

We define the particle density by 

n S =[d3v f s (3 , 
the  total momentum by 

(6.19) 

aiid total energy by 



A straightforward ca l cu la t ion  y i e lds  the  g r a t i f y i n g  i-csult t,hat 

(6.22) 

Next, we s h a l l  prove an H-theorem. The entropy of the  p a r t i c l e s  

of species  s i s  def ined by 

S S = -K f d 3 v  f S (3 log f S ( 3  ( 6 . 2 3 )  

1 
(This  i s  the  classical def in i t i on .  We have al-ready ornit-ted terms 

l i k e  1 - fs(?? i n  E q s ,  (6.15) and (6.16) which should appear i.n a 

Fermion gas, so Eq. (6.23) is the  appropria'ie d e f i n i t i o n  r z t h e r  t'nan 

Eq. (4.24).) T'e entropy of t he  f i e l d  f luc tua t ions  i s  def ined t o  be 

(6.24) 

where 

N G J W  = 1 p(  z, a> (6.25) 

This i s  a d e f i n i t i o n  which we have not found i n  the l i t e r a t u r e .  

It i s  motivated by the  analogy with Eq. (6.23).  Also, i t  permits us 

t o  prove an H-theorem. Also, in the  limit, of weak damping or growth 

it Tcduces t o  Eq. (4.25) f o r  the entropy of  a gas of Bosons. Naw 
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( 6 . 2 6 )  

where Eq.  (6.15) has been used. This  equat ion m y  be w r i t t e n  i n  a 

cl i f ferent  form by making the change of va r i ab le s  y, 0 ,  XJ 3 

-;, -0, 7 + 3 - q m s .  
g ives  n 

--f -> 

Adding the  two equations and d iv id ing  by t w o  

(6.27) 

k similar ca lcu la t ion  using Eq. (6 .16)  gives 2 
F A )  

S 
&(a - 3 * 3 - 2m 

s" 2 , L K  dt dS 2 :Etv f d 3 v  f (2;.3 { d b  

s 

og I P G , W  I - 1% p(-;,-LJ)l] ( 6 . 2 3 )  

Summing Ey. (6 .27 )  over s and adding t o  Eq. ( 6 . 2 3 )  gives t h e  rate of 

change of  the t o t a l  entropy 
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Tine product of the  I.ast, two f a c t o r s  i s  of the  form 

which i s  always p o s i t i v e  if x and y a r e  posit-i.ve. It can be negative 

i.f P(<,&) i s  negative,  bu t  t h i s  can only happen i f  

i s  negative. Since -the same fac to r  occurs i n  the integrand of  Eq. 

(6.29), the  iniegrand w i l l  i n  any case be posit i-ve and we can con- 

clude that 

as 
2 0  d t  ( 6 . 3 0 )  

It i s  e a s i l y  seen t h a t  equal i . ty  holds when fs($ i s  the Maxwell- 
+ 

Boltzitlam d i s t r i b u t i o n  and F( q, a) i s  the  equi l ibr ium s p e c t r a l  dens i ty  

gi-ven by Eqs.  (5.39) and (5.36). 

Eqs. (6.15) and (6.16) the  right-hand s ides  vanish showing t h a t  they 

When these  a r e  subs t i t u t ed  i n t o  

a r e  s t a t i o n a r y  d l s t r i b u t i o n s .  It i s  tempting t o  conclude from t h i s  

t h a t  the system evolves toward thermal equilibrium. What i s  mi ssing 

from the  proof i s  a proof t h a t  S has a single maxisnim, 

Another consequence of Eqs. (6 .15)  and (6.25) i s  t h a t  

If the  system approaches thermal equi l ibr ium i t  follows t h a t  

(6.31) 

( 6 . 3 2 )  

where the  subscr ip t  o ind ica t e s  t h a t  P and = -t i c  a r e  t o  be 

ca l cu la t ed  using the  Maxwell-Bol.tzmann d i s t r i b u t i o n s  which t h e  plasma 

0 20 

approaches asymptot ical ly .  These d i s t r i b u t i o n  Functions a r e  



characterized by number densities, n 

velocity ?. 
and G which we have already been shown to be constants of the 

and a temperature T and mean 

The temperature and mean velocity are determined by W 

S 

3 

notion. Therefore, it is possible in principle to determine the 

asymptotic state of the plasma f r o m  its state at any time. 
-+ 

Eq. (6.32) may be used to eliminate P(-q,-U) from Z q s .  (6.15) 

and (6.16) which then become 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

Eqs .  (6.33) and (6.31) are Yne kinetic equations which we have 

been work-ing toward. We will now inquire into their plausibility. 

First, note that when Bq. (4.4) is used for. eq we see that ](<,(J) is 



82 

given by 

( 6 . 3 7 )  

which i s  just the  l i n e a r  growth r a t e  expected from t h e  arguments of  

s ec t ion  2 - 5 .  

A s t a t i o n a r y  sol-ution of Kqm (6.34)  i s  

(6.38) 

3 This agrees  w i t h  the  equi l ibr ium P( q,u) given by Eqs.  (5.39) and 

(5.36) if the d i f f e rence  between E(<,O) and. to($,&)) i s  negl ig ib le .  

It may be argued t h a t  it i s  only when t h i s  d i f f e rence  i s  negligi.bbe 

t h a t  one i s  j u s t i f i e d  i n  neglec t ing  t h e  time de r iva t ive  o f  P(q,&) 
-+ 

+ 
i n  Eq. (6 .34) .  if t h i s  equilibr-iuxn P ( q , u )  i s  s u b s t i t u t e d  i n t o  Eq. 

(6.35) one ob"iains tine Wyld-Pines equation. A s  we have a l r eady  r e -  

marked, t he  Wyld-Pines equat ion reduces 'LO t he  Boltzmann and Balescu- 

Lenard equations i n  the  2ppropriate  1imi.t~. 

T o  see how t h e  quas i - l inear  equat ions ei'nerge from Eqs, (6.33) 

and (6.34) we s h a l l  assume t h a t  t he  waves a r e  so weakly damped o r  so 

--f weakly growing t h a t  the  form of P(g,63)) i s  given by Eq. (5.43); 

namely 

(6.59) 
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where we have used 

Ti A+ N ( 3  
4 

(6.40) 

For the moment we s h a l l  neglec t  t he  spontaneous emission 'terms. 

They w i l l  be discussed l a t e r .  When Eq. (6.39) i s  s u b s t i t u t e d  i n t o  

Eq.  (6.34) one obta ins  

(5.41) 

-3 
and a sirriilar equation for P(-q) .  Here 

( 6 .42 ) I a- 

wc, (2, w> 

-2.- q z , w  _fL ~ 

U(i> = - [ 
a d  

i n  agreement, with the quas i - l inear  r e s u l t .  

3 S-+ h-3 i n  Eq. (6.39) s ince  it wmishes i n  the  c l a s s i c a l  Ismit. 

When Eq. (6.39) i s  s u b s t i t u t e d  i n t o  Eq. ( 6 . 3 3 ) ,  the  i n t e g r a t i o n  over 

0 carried out  and the  change of v a r i a b l e  q --> - y made i n  the  terms 

containing P( -y) one obta ins  

We have neglected the  term 

9 4  

-+ --f 

-> 

Expallding f S ( v  -+ 2 'I 1 -> q / m s )  arid the Cf - funct ions ,and tak ing  the  % -3 0 

l i m i t  g ives  

where 

(6.44) 
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i n  agreement wi,Lh quas i - l inear  theory. 

used i) 6.J E / 
(Note khat i n  G q .  (4.35) we 

k, = 2 which i s  appropri.at;e f o r  plasmons.) 1.9 
We s h a l l  now discuss  the  spontaneous emission terms. A p a r t i c l e  

+ -? 
can change i t s  vel.ocity from + h d i n  

p a r t i c l e  of momentum% q or  by absorbing a quas i -par t ic le  of momentum 

-Ti q. Similar ly ,  a p a r t i c l e  can change i t s  momentum from v t o  

v -t. h q/m 

a wave of momentum -5 g. 

t o  v by emit t ing a quasi-  
S 

--3 

4 + 

--f -? 
by absorbing a, quasi.-particle of momentum Ti 2 or  by emi t t ing  

S 

+ 
Since the  t r a n s i t i o n  p r o b a b i l i t i e s  for 

st imulated emission and absorpt ion a r e  equal, i t  foll.ows that 

i s  equal t o  the  d i f fe rence  be tween the  t r a n s i t i o n  p r o b a b i l i t i e s  per 

unit. time for spontaneous emission of a wave of momentumli q and 

spontaneous emission of  a wave o f  momentum -h q. By gqs. (6.12)  

and (6.32) this i s  

--f 

- >  

3 

We may use ~ q .  (5.43) t o  wr i te  iliis as 

(6.46) 
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Except for the factor 

(6.47) 

(6.48) 

Eq. (6.47) is just what we would calculate for the difference in the 

spontaneous emission probabilities if we use the Fermi Golden Iiule and 

Eq. (3.23) for the vertex part. It should be noted that the fre- 

quencies are to be calculated from E~~(<,&J) = 0 rather than 

This difference in the characteristic frequencies is 
q 

(2,U) = 0. 

probably not significant in those problems for which quasi-linear 

tizeory is applicable. 

(6.48) probably does not  differ significantly from unity. 

these discrepancies the spontaneous emission terms give t h e  expected 

contributions to Eq. (6.41) and (5.44). 

Also, in those problems the factor i l z  Eq. 

Neglecting 
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CHAPTER 7 .  HIGHER ORDER PROCESSES 

The wave-particle i n t e r a c t i o n  ver tex  flmctioils which w e  found i n  

Eqs .  ( 3 . 2 3 ) ,  (3 .26)  and ( 3 . 2 7 )  can be used t o  cons t ruc t  the  -vertex 

funct ions fo r  higher order  processes by using {;he hi.gher order terms 

i n  Eq.  ( 3 . 2 9 ) .  A s  the  f i r s t  i l l u s t r a t i o n  of thi.s, we s h a l l  ca l cu la t e  

the  ver tex  func t ion  f o r  the  i n t e r a c t i o n  of th ree  waves i n  an unmag- 

net ized  plasma. 

‘ 7 . 1  Three-Wave I n t e r a c t i o n  - 
We s h a l l  consider the  case 3.n which a wave of type 1 with momentum 

and energy T .-..A combines with a wave of type 2 and % 1 1 

t o  give a wa,ve of  type 3 wi.th % ( and% L5. 
Ti < 
3.92 
we can wr i te  

and 

Schematically 
2 3 

1 

2 



+ 
3 + 
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What we mean by t h i s  i s  t h a t  we s h a l l  use tiie t h i r d  order term i n  

Eq. (3 .29 )  

(7.2) 

t o  ca l cu la t e  K, the  ver tex  funct ion fo r  tiie ihree wxve i n t e rac t ion .  

The waves i n t e r a c t  with one another through the  wave-particle i n t e r -  

ac t ions  R S  i l l u s t r a t e d  by the  diagrams. 'The sum over intermediate  

s t a t e s  i n  R q .  ( 7 . 2 )  i s  a sum over a l l  of t he  p a r t i c l e s  which can take 

p a r t  i n  the  process;  hence the  sims over s and k in Eq. (7.1). The 
--f 

sum over interrfiediate s t a t e s  a l s o  i-ncbudes a sum over the  s i x  ti.me 

orders  shown i n  Eq. ( 7 . 1 ) .  

wi th  momentum1 k leaves  with the  same mornentim so the re  i s  no change 

The p a r t i c l e  which en te r s  the  process 
--f 

i n  the  p a r t i c l e  d i s t r i b u t i o n  funct ions.  The only change is t h a t  waves 

1 and 2 disappear and wave 3 appears. A t  each ver tex  momentum (but  

not energy) i s  conserved. We have shown t h i s  e x p l i c i t l y  i n  the  f i r s t  

diagram of Eq. ( 7 . 1 )  I 

momentum so 

There i s  o v e r a l l  conservat ion of  energy and 

( 7 . 3 )  

-A+n,=n3 (7.4) 
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A straightforward c a l c u l a t i o n  gives 

/ 

(7.5) 

I n  t h i s  equat ion Piy PIz arid M 

functions taken from Eqs. (3.23) and (3.26) .  Their arguments are the 

wave vectors of the p a r t i c l e s  and quas i -pa r t i c l e s  involved in t h e  

process. 

inators. Eq.  ( 4 - 2 9 g )  has been used t o  replace t he  sum over k by an 

are  the appropr ia te  wave-part ic le  ve r t ex  
3 

3 
We have used 3 g' = m v arid b v e  simplified -the energy denom- 

S 

-+ 

.--f 

i n t e g r a l  over v. 
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Before consider ing some s p e c i a l  cases  of Eq. 7 . 5  we s h a l l  r e -  

mark t h a t  diagrams such as the  f i r s t ,  one i n  Eq. ( 7 . 1 )  a r e  sometimes 

drawn as 

I n  thi.s dj-agram the  incorni,ng p a r t t c l e  l i n e s  a r e  not CiraTwn bu t  a l i n e  

i s  drawn from Lhe las t  ver tex  t o  the  f i r s t  ind ica t ing  t h a t  t he  p a r t i c l e  

of momentum 5 '2 which was removed from t h i s  s t a t e  a t  the  f i r s t  ver tex  

has now been restored. This may be thought of as the  c rea t ion  a t  the 

f i r s t  ver tex  of a p a r t i c l e  and a "hole" ( t h a t  i s ,  a hole i n  the  

or is : inal  p a r t i c l e  d i s t r i b u t i o n ) .  A t  t'ne f i n a l  ve r t ex  a p a r t i c l e  and 

a hole recombine. 

a. Three-plasmon in t e rac t ion .  If a l l  th ree  of the  waves a r e  

plasma o s c i l l a t i o n s  with frequencies  given by 

(7.6) 

then it  i s  not  possible t o  s a t i s f y  Eqs. ( 7 . 3 )  and ( 7 . 4 ) .  Therefore 

we need not concern ourselves with t h i s  case. 

b. Plasmon-plasmon-phonon interact i -on.  We s h a l l  suppose t h a t  

quas i -pa r t i c l e s  1 and 3 a r e  plasmons and .that 2 i s  a phonon with f r e -  

quency given by Eq. (4 .10) .  Tlen, Eqs. ( 7 . 3 )  and ( 7 . 4 )  can be 



s a t i s f i e d .  

a r e  given i n  Eqs. (4.13) and (4.14).  

p a r t i c l e  wave vec tor  only, so they  can be taken outs ide  of the  

ve loc i ty  space i n t e g r a l  i n  Eq. ( 7 . 5 ) .  

l i m i t s  so  we s h a l l  keep on ly  t he  lowest order Lerms i n  h. 

t ed ious  a lgebra  we f i n d  

The plasmon-particle and phonon-particle ve r t ex  f 'unctions 

They a r e  flrnctions of' t he  q?uasL- 

We a r e  i n t e r e s t e d  i n  c l a s s i c a l  

Af t e r  some 

(7.7) 

With f u r t h e r  approximations t h i s  can be put  i n t o  an i n t e r e s t i n g  and 

use fu l  form. 

phonon frequency, we neglec t  a l l  but  the  l a s t  term i n  Eq. ( 7 . 7 ) .  

we make the  approximation 

Since t h e  plasmon frequencies  a r e  much g rea t e r  than  the  

Also, 

I n  the  integral 

We assume t h a t  the  phase v e l o c i t y  of the phonon i s  much g rea t e r  tl-1x1 

the thermal velocity of the  ions and obta in  
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for. the ion term. We assimie that the phase velocity of the phonon 

is much less t'nan the thermal velocity 02 the electrons and obtain 

for the electron contribution, FiiiaLly, we assume 

Wtth these approximations Eq. (7.7) can be reduced to the form 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

This is essentially the resu l t  obtained by Vedenov and Rudakov by 

another method. '' It has a lso  been obta-ined by a more elementary 

method by Harris. 50 

c .  Plasmon-plasmon-photon interaction. We shall. suppose that 

quasi-particles I and 2 are plasmons and ihat 3 is a photon. Thc 

plasmon-particle vertex function is again given by Eq. (4,13). The 

photon-particle vertex function is given by Eq. (3.26) a 

Eq. (3.26) we use 

In evaluating 

and 

(7.14) 

( '7.15) 

where we have used the cold plasma, dielectric function. We obtain 
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( 7.16) 

where 

Eq. (7.5) takes a simple form if' the plasma is cold; t ha t  is 

2 is the particle momentum and Ih. 4 q3 is the photon momentum. 

(7.17) 

3 -4 3 
Then, k = m ;r/h will be zitro, and because of the factor 2 

Eq. (7.16) the o n l y  terms in Eq. (7.5) ihat are non-zero are the terms 

c on t aini ng %(g+ ql, q3) and M5(k'+ qz, q5). We ob ta in  

- k in 
3 S 

3 -3 - 3 - 9  

(7.13) 

3 + -3 
Using u3 - q3 = u3 

terms in71 gives 

(zl f ) -I 0 and keeping only the lowest order 2 

(7.19) 

GJe have approximated Al and f i  

tribution. 

by 0 and neglected the ion con- 2 Pe 



7.2 Wave-Particle Sca t t e r ing  
_I__I 

We now consider the  process i n  which a wave i s  sca t t e red  by a 

p a r t i c l e .  

may be w r i t t e n  schematically as 

This may be cal-cidated as a second order  process which 

+ s  

2 1 

2 1 

(7.20) 

it is not  necessary t h a t  the  quasi-partic1.e labe led  2 be of the same 

type a s  the  quas i -pa r t i c l e  labe led  1. 

converted t o  3. phonon i n  -the s c a t t e r i n g  process. 

For i l lstance,  a plasmon may be 

Overall  conservation 

o f  momentum and energy i s  assiuned so 

+ + - > +  
(7.21) - P1 + q1 - P2 4- (+ 

and 

(7 .22 )  

Applying second order  per turba t ion  theory gi.ves the  matrix element 

for the process o f  Eq. ( 7 . 2 0 )  as 

M -  < f l I I ' l 1  > < I l H ' l i  > 
E .  - E 4- ill I 3. I 



To be s p e c i f i c  we s h a l l  r e s t r i c t  ourselves  t o  plasmons and phonons; 

then ~?JL,- and 85 are given by Eq. (3 .23 )  

(7.24) 

(7.25) 

It i s  not s u f f i c i e n t  to s top  with Eq. (7.25). 

i s  a t h i r d  order  matrix element which makes a cont r ibu t ion  of the same 

order.  This i s  t h e  process shown schematical ly  i n  Eq. (7.26). 

A s  we shall see the re  

S 
-9 

p1 pZ 



+ f i v e  o ther  t h e  order ings 

I n  t h i s  process a p a r t i c l e  of momentum% k absorbs and emits the  quasi-  

(7.26) 

.-+ 

p a r t i c l e s  and c o l l i d e s  with another p a r t i c l e .  The o ther  p a r t i c l e  has 

i t s  momentum changed frorfl-h p t o  3 pz while ihe o r i g i n a l  p a r t i c l e  

has i t s  inomentim re s to red  t o T  k. There a r e  s ix  time order ings as 

3 f 

I 
+ 

t he re  were f o r  Eq. ( 7 . 1 ) .  The vertex funct ions f o r  t he  quas i -par t ic le  

emission and absorpt ion a r e  again given by Eq.  (7.24) I The ve r t ex  

funct ion f o r  the  p a r t i c l e - p a r t i c l e  s c a t t e r i n g  may be taken t o  be the  

screened Coulonib ver t ex  

( 7.2 7 )  

The niatrjx element for t h i s  t h i r d  order  process may be wr i t t en  a s  

S 

( '1 .28)  
1 

(E - E +- i q ) ( E i  - ELI i- i v )  i I I I1 

where the last  sum i s  over the s ix  time order ings.  We s h a l l  spare the  

reader  t he  ted ious  d e t a i l s  of co l l ec t ing  Llie terms and expressing the  

r e s u l t s  i n  a convenient Porm. When only the  lowest order  terms i n  5 
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are kept we find 

where 

(7.29) 

(7.30) 

(7.31) 

If both quasi-particles are plasmoris and we make the approxima- 

tions 

A 1 -.A 2 eape 

and 

M =  

( 7 . 3 2 )  

(7 .33 )  

neglect the motion of‘ the ions, then Eq. (7.29) reduces to 

‘I; ape 
Zm v 

neglect the motion of‘ the ions, then Eq. (7.29) reduces to 

(7.34) 

When the same approximations are made in Eq. (7.25) and the results are 

added to Eq. ( 7 . 3 4 ) ,  the last t e r m  cancels and one obtains 



(7.35) 

Prom Eqs. ( 7 . 2 1 )  and ( 7 . 2 2 )  

( ‘ 7 .  S 6 )  

I n  the  c l a s s i c a l  l i m i t  t h i s  i s  t o  be used i n  Lhe argument of 

7 . 3  Extension _I_ of the  - Quasi-Linear Equations 

We s h a l l  now dj-scuss the  cor rec t ions  which must be made t o  the  

quas i - l inear  equat-ions because of these higher order  processes,  

a. _I The urunagnetized plasma. We have a l ready  remarked t h a t  i f  
...> 
B = 0 the re  a r e  no three-plasmon in t e rac t ions  which conserve momentum 

and energy. For the  moment we r e s t r i c t  ourselves  to  a s ing le  species  

plasma so in t e rac t ions  involving phonons a r e  ignored. We s h a J l  con- 

s i d e r  the correc t ions  t o  the  quasi-li-near equations given i n  Eqs. 

( 4 . 1 7 )  a,nd (4.19) .  The non-linear processes of i -n te res t  here a r e  

the  wave-particle s c a t t e r i n g  processes of the l a s t  sec t ion .  These 

a r e  o f t en  r e f e r r e d  t o  as non-linear Landau damping terms. We musL 

0 

add t o  the  r i g h t  hand s ide  of Eq. (4”16) 
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(7 .57 )  

where M i s  the  m a t r i x  element discussed i n  sec t ion  7.2 and we have 

dropped some superfluous subsc r ip t s .  A similar equat ion for N (p)  is e 

(7.38) 

where we have emphasized t h a t  t he  arguments of the  6 - funct ions and 

the  quan t i ty  i n  c u r l y  bracke ts  a r e  the saae i n  Eqs. (7 .37)  and (7.38).  

It should be noted t h a t  i n  the  c l a s s i c a l  un i t  t he  argument of' 

the  f - f u n c t i o n  b, "comes 

(7.39) 

The p a r t i c l e s  which give the  damping a r e  those moving wi th  the  v e l o c i t y  

of a wave whose frequency i s  the  d i f f e rence  frequency and whose wave 

vec tor  i s  the  d i f f e rence  wave nwuber. This -my provide an e f f e c t i v e  

damping mechanism for waves which are l i n e a r l y  weakly damped. 

It i s  e a s i l y  seen t h a t  the  r i g h t  hand s i d e s  of  Eqs. (7 .37 )  and 

are t he  equi l ibr ium d i s t r i b u t i o n s  of (7 .38 )  vanish when N 

Eqs. (4 .27)  and (4 .28) .  

t h e  entropy def ined by Eq. (4.23) increases  monotonically. The proof 

i s  qu i t e  similar t o  t h a t  which precedes Eq. (6 .30) .  

and M a e 

Furthermore, i t  i s  not  d i f f i c u l t  to show t'nat 

Non-linear Landau has been discussed by Kadomtsev. 1 
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Al-though t h ree  plasmon i n t e r a c t i o n s  camioi; conserve energy and 

momentum, four  plasmon processes can, For plasmon-plasmon s c a t t e r i n g  

w e  have 

whe1.e 1 and 2 r e f e r  to the  plasmons before scat ter-ng and 3 an' 

(7.40) 

(7.41) 

4 

r e f e r  t o  tile plasmons a f t e r  s c a t t e r i n g ,  Using Eq. ( 7 . 6  ) f o r  the  

frequencies  gives  

2 2 2 2 
k + % = k 3 + k q  1 

(7.42) 

The sea- t te r ing  i s  just l i k e  t h a t  for p a r t i c l e s  of equal. mass with 

Eq .  ( 7 . 4 3 )  p laying -bile r o l e  of t he  energy conse.rvation equ-al;ion 
2 2 2 2 

= V 3 + v  4 v1 -1- v2 (7 .43)  

This four-wave i n t e r a c t i o n  gives  a co r rec t ion  t o  the  righ-l; hand side 

of  Eq. ( 4 . 1 7 ) ;  namely 
3 

(7.44) 

where M i s  the matrix element f o r  the four-wave in t e rac t ion .  Once 

again ri.t may be shown that the equi l ibr ium d i s t r i b u t i o n  (Eq. 4 - 2 8 ) ,  
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causes the  r i g h t  hand s ide  t o  vanish and t h a t  t he  entropy def ined by 

Eq. (4.25) increases  monotonically. 

Zakharov" has ca lcu la ted  the  matrix element f o r  t he  four plasmon 

i n t e r a c t i o n  from the  f l u i d  equations for  a co ld  plasma and derived the  

c l a s s i c a l  l i m i t  of Eq. (7 .44) .  He found t h a t  t he  Rayleigh-Jeans dis-  

t r i b u t i o n  i s  an equi l ibr ium solut ion.  Rather cur ious ly  he found 

another equi l ibr ium so lu t ion  with 

(7.45) 

This i s  analogous t o  the Kolmogorov spectrum of hydrodynamic turbulence.  

b. The magnetized plasma. The i n t e r a c t i o n  of three-plasmons i n  
II 

15,16 a cold plasma i n  a s t rong magnetic f i e l d  has been t r e a t e d  by Walters 

using t h e  f l u i d  equations, by Amodt and Drummond17 using the  Vlasov 

equations and by Rossz1 using methods equivalent  t o  those of' s ec t ion  

' 7 . 1 .  In a st rong magnetic f i e l d  the  motion of the e lec t rons  i s  essen- 

t i a l l y  one dimensional. If t h e  e l ec t rons  a r e  cold t h e  d i e l e c t r i c  

function is 

(7.46) 

where the z -d i rec t ion  i s  the d i r e c t i o n  of t h e  magnetic f i e l d .  The 

frequency of a plasma o s c i l l a t i o n  i s  given by 

Also 

(7.4'7) 

(7.48) 



1.02 

Eq. ( 7 . 7 )  i s  e a s i l y  adapted t o  t h i s  case.  S h c e  the  motion 

o f  the  e l ec t rons  i s  one dimensional, t he  in t eg ra t ion  over ve loc i ty  

space i s  replaced by an in t eg ra t ion  over v . 'Tine vec tors  q 

and q, a r e  t o  be replaced by t h e i r  z-components except i n  
2 2  2 and % where inspec t ion  of  Eq. ( 3 . 2 3 )  shows t'nat q17 q, and qs 

should appear. Eq. ( 7 . 7 )  becomes 

e + +  
z 1' 92 

3 

5 %  3 

1 2 2 2 
'2z q3zq lz  q1z  932 92z + ('7.49) 

We have neglected the  ions  and have used Eq. (7.48) i n  Eq. ( 3 . 2 3 ) .  

If the  e l ec t rons  a r e  co ld  so  t h a t  Line e lec t ron  d i s t r i b u t i o n  fumti.on 

i s  given by Eq.  (7.17), then Eq. (7 .49)  gives 

M = ( " ( f T )  l_ll nV 1 
3/2 

2 
e m 

(7.50) 

Eq. (7.49) agrees  wi th  the  result of Ross,Z1 and Eq. (7 .50)  agrees 

with Llie r e s u l t  of Walters. 15,16 

This three-wave i n t e r a c t i o n  should add a term t o  the r i g h t  hand 

s ide  of Eq.  (4.58). The term 7.s 
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+ 

The matr ix  elements a r e  given by Eqs. (7.49) o r  (7.50). 

Once again it may be shown t h a t  t h e  equi l ibr ium d i s t r i b u t i o n ,  Eq. 

(4.28), causes the  three-wave i n t e r a c t i o n  t o  vanish, and also tha t  the  

entropy def ined by Eq. (4.25) increases  monotonically. 

There should a l s o  be wave-particle s c a t t e r i n g  cont r ibu t ions  s i m i l a r  

t o  Eqs .  (7 .37 )  and ( 7 . 3 8 ) .  RossZ1 has ca lcu la ted  the ve r t ex  func t ions  

f o r  these  by methods equivalent  t o  those of sec t ion  7.1. The 

c l a s s i c a l  ca l cu la t ion  using the  Vlasov equations was given byA4aniodt and 

Ilrummond. 17 



7.4 A Wave-Vector Space Instability- __-  
We shall. now discuss plasmon-plasmon-phonon interaction for 

which we derived the vertex fuaction in section 7.1 a. We will denote 

plasmons by the symbol a and a, wavy line ( A  ------SI and phonons by 

i he  symbol We shall- neglect all 

inicrac Lions l)ut this three-wave interaction. We now write kinetic 

equations for N A  (i;;? 

and a broken line ( g-- - - *). 

\ 

(7.52) 

This  is almost the same as Eqs. (4.15) and (4.17). Here the plasmons 

play the role o f  the electrons and the phonons play t he  role pre -  

viously played by the plasnmns. Tne matrix element, of course, is 

different; here M is given by Ey. (7.7) or Zq. (7.13). An equation 

quite simi1a.r t,o Eq. (4.19) can be written for N 

so si..milar we s h a l l  not write it down. The similarity can be made 

(a. Because it is A 

more striking if we assume the approxi.rmtri.ons which led Lo Eq. (7.13). 

We write 

(7.53) 

+ 
where v+ is the group velocity of a plasmon k 



N + s> - Na (k) e 9 ’ 3 N h  (3 (7.54) 
6@ 

We introduce spectral densities P 

Pv (3 = 

(3 = Ti A N A (3 and 
\1 N $J (3 and use Eq. (4.29f) to obtain 
Y 

(7.55) 

where 

(7.56) 

(7.57) 

which are to be compared w i t h  Eqs. (4.30), (4.52) and (4.33). 

If the plasmon distribution function is such that more plasmons 

(3 w i l l  be positpive and the energy in the emit than absorb then y 
phonons w i l l  g r o w  at the expense of‘ the energy in the plasmons. 

v 
We 

m y  call 

veloc i t y 

Eq* 

rived by 

this a wave-vector-space instability in analogy with 

space instabilities. 

(7.56) without the spontaneous emission term w a s  first de- 

Vedenov ctnd Rudakov. &’ Vedenov and Rudakov have also in- 

vestigated the non-linear interaction between plasmons which occw 

through the exchange of a virtual phonon; that  is, the process de- 

scribed by diagram like 



1.0 6 

They ind the interaction gives rise to an attractive force between 

plasmons causing plasma oscilhtions to tend to "bunch. I '  

also been discussed by Chang and Drwnmond'l and by Harris. 

This has 

50 

7 . 5  Negative Energy Waves and Explosive Ins~ta.bilities -__ _1 

Until now the discussion Tn this chapter has been restricted to 

positive energy waves. We remarked in section 2.3 thab some of the 

instabilities predicted by L'ne linear equations could be viewed as 

the coupling of a negative energy wave to a positive energy- wave as 

illustrated by the diagram in Fig. ?/.la. There are also non-linear 

interactions involving negative energy waves which give rise to in- 

stabilities. These are illustrated by the diagrams of Figs. 7.1b 

and 7.k. 



Fig. 7 . 1  Megative energy wave i n t e r a c t i o n s  which give r i s e  
to i n s t a b i l i t i e s .  

I n  each of  t h e  diagrams of' Fig. 7 . 1  one of the waves i s  assumed 

t o  have negative energy. I n  Fig. 7.1.a w e  shal l  suppose t h a t  it i s  

wave 3 which has negative energy. Then conservation of energy and 

momentum requi re  

Similar ly ,  for Fig. 7.1~ 

(7.58) 

(7.59) 

(7.60) 
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(7.61) 

where we have assumed that wave 2 has negative energy, 

Kinet ic  equations similar t o  E q s .  (7 .51 )  and ( '7 .37)  can be 

w r i t t e n  down f o r  t he  processes of Fig. 7. lb  and 7 . 1 ~ .  This has been 

done by Dikasov, Kudakov and R y u t ~ v , ~ ~  by Aamodt and ~ 1 o a , n ~ ~ ~ ~ ~  and 

by Coppi, Kosenbluth and Sudan. Thesc in t e rac t ions  give r i s e  t o  

explosive i n s t a b i l i t i e s .  

amplitude grows t o  an i n f i n i t e  amplitude i n  a f i n i t e  time. We s h a l l  

55 

They a r e  c a l l e d  t h a t  because the  wave 

d iscuss  them fu r the r  i n  the next chapter.  

7 . 6  Radiati-on from Plasma Osc i l l a t ions  

In  sec t ion  7 . 1  c we derived the ver tex  func t ion  f o r  the  process 

i n  which L-wo plasmons a r e  destroyed and a photon i s  c res ted .  The 

conservation of momentum and energy f o r  t h i s  process requi re  

L 1 +n2 = n3 

(7.62) 

( 7.63) 

Approximating fi, and A, by 0 and _pb, by ( up, 2 t q3 2 c 2 ) 1 1 2  
pe 

gives  

( '7.64) 

T'ne frequency of the  emitted photons i s  twice the  plasma frequency. 

Solving Eq. (7.64) fo r  q3 gives 

(7.65) 

f o r  the  wave number of t he  emit ted photon. 

u n i t  time due t o  t h i s  process i s  

The energy ernitted per  



where M is  given by Eq. (7 .19) .  

po la r i za t ions  and i n t e g r a t e d  over t he  wave vec to r s  of t h e  emit ted 

photons and have in t eg ra t ed  over wave vec to r s  of one of  t he  plasmons. 

The wave vec tor  of the  o the r  plasmon i s  f ixed  by Eq. ( 7 . 6 2 ) .  

To g e t  t h i s  we  have summed over t h e  

We 

can wr i t e  

(7.67) 

and 

= 4 dq3 d a  (7.68)  

where d #  i s  the  element; of s o l i d  angle  i n t o  which the  photon i s  

emitted.  The sum over p o l a r i z a t i o n  can be c a r r i e d  out with the  r e s u l t  

where 8 i s  the angle  between < and 2 1 30 
photon. Carrying ou t  the  SUM over 't: and the  i n t e g r a t i o n  over dq i n  

Ey. (7.66) and then d iv id ing  by d W  gives  the  energy emit ted per u n i t  

the  wave vec tor  o f  the emit ted 

3 3 

time pe r  u n i t  s o l i d  angle. The result i s  
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--f 

'1 ' 3 0  

(7.70) 

We have expressed the result in t e r m s  of classical quantities. 

Classical calculations of this process have been published by 

Sturrock, 56 Aamodt and Drummond, Boyd, Bi.rmingham, Dawson a i d  

Otermn,5c3 and 'ilidnian and Dupree. 6o 

57 58 

Tidman" has discussed the 

relevance of t h i s  process to burst of radio emission from the su.n 

which seem t o  occus at twice the plasm frequency. 
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C W T E R  8. INTEXACTION OF MONOCHROMATIC WAVES 

I n  previous chapters  w e  have been concerned with a continuous 

spectrum of waves. If t he re  are only a few monochromatic waves i n  the  

plasma, then use of t h e  Fermi Golden R d e  t o  ca l cu la t e  t r a n s i t i o n  

p r o b a b i l i t i e s  i s  no longer  j u s t i f i e d  and o ther  techniques must be 

used. 

If the re  a r e  a large number of quas i -pa r t i c l e s  i n  the  same s t a t e  

then one i s  j u s t i f i e d  as t r e a t i n g  the wave as  a c l a s s i c a l  wave. The 

+ 4- and A+ 
k d  

c rea t ion  and des t ruc t ion  operators ,  Tc., @++ , A+ 
k d ’  

introduced i n  Chapter 3 may be t r e a t e d  as c l a s s i c a l  wave amplitudes 

and t h e i r  complex conjugates (which they were before  we quantized 

t h e  system). For s impl i c i ty  w e  sha l l  r e s t r i c t  our discussion t o  the  

i n t e r a c t i o n  of tllree waves. We s h a l l  keep i n  t h e  Hamiltonian only 

terms involving these  t h r e e  waves and s h a l l  d i sca rd  a l l  of the  r e s t .  

Then the Hamiltonian can be wr i t t en  as 

c+ C e+ + ‘h. qJ el c; c3 + % %  1 2  3 

4- 3- 

3 
Here C 

are t h e i r  complex conjugates.  The frequencies  of t h e  th ree  waves 

a r e  fix, n, and fi The s igns  of 

the  energies  of t he  three  waves a r e  denoted by S S and Ss. I n  H’ 

Cz and C are the amplitudes of the waves and C C2 and C 1’ 3 1’ 

i n  the absence of in t e rac t ion .  
3 

1’ 2 
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have been included a l l  of t he  three-wave in t e rac t ions .  The ver tex  

funct ions 9, %, % and M and t h e i r  complex conjirgates bq e tc .  have 

supposed1.y been ca l cu la t ed  by the  met,hods of Chapter 7 .  We have 

4 

w r i t t e n  H '  so t h a t  it i s  r e a l .  

The equations of motion f o r  the  C.'s a r e  obtained from the  
3. 

Heisenberg equations of motj-on 

using the  Boson cormnutation r e l a t i o m ,  Eqs. (3.12) and (3.13) .  Af t e r  

t he  equations of motion a r e  obtained they a r e  in t e rp re t ed  as ordinary 

d i f f e r e n t i a l  equations fo r  t he  wave amplitudes r a t h e r  tinab? operator 

equations.  We f i n d  

i: = - i  S ,A c - i y  C + C +  - i %  c:c3 I 1 1  2 3  

- t +  C = - i s  fi c - ~ M ~ c ~ c ~ - ~ M  C + C  2 2 2 2  2 '1 3 

.. -- - i s A3 C~ - i M C+ C+ - i M:- c 
63 3 1 1 2  2 1 2  c 

- i ~  C ' C  - ~ P c , c ~  4 
3 1 2  

where the  dot  denotes a de r iva t ive  wi-t'n respec t  t o  time. Some s p e e i a l  

cases  w i l l  now be considered. 

8 .1  Resonant I n t e r a c t i o n  of Pos i t i ve  Energy Waves - 
We s h a l l  assume t h a t  S1 = S 1: S 

2 3 

energy waves. It i s  convenient t o  Let 

:= +1, so a l l  three  a r e  p o s i t i v e  

c ( t )  = al(t)  e -iA-,t 
1 
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-ifi,t 
C , ( t )  = a , ( t )  e 

-i JL 3t c p  = a3(t) e 

Eq. (8.5) becomes 

6 = -i M,- a; a; e 

- i ~5 a; a3 e 

- i 1% a, a3 e 

- i M  a 

i p l  +n2 - n,)t 
1 

i(A1 +A, - A3)t 

i(A1 - R . 2  c n,)t 
i(R1 - - A3)t 

t- 

4 z a g e  

(8 .9 )  

(8.10) 

(8.11) 

There a r e  similar equations for  G, and & Now we s h a l l  suppose t h a t  2 3" 

fil + n, = R, 
so t h a t  t he  diagrams of Fig. 8.1 a r e  the  dominant processes.  

2 

(8.12) 

Fig .  8.1 

All of the terms i n  Eq. (8.11) except one w i l l  contain a s  f a c t o r s  

r ap id ly  o s c i l l a t i n g  exponentials.  If al, a and a vary slower 

then these  terms w i l l  approximately average t o  zero and w e  will be 

j u s t i f i e d  i n  keeping only the  term containing % az it3. 

t h a t  t h i s  i s  t he  case ,  w e  wr i t e  

2 3 

c Assuming 



-1- & - - i  Mz “2 (8.13) 2- 

Similar ly ,  when the  same approximation i s  mde i n  the equations Cor 

5 and Q we obta in  
2 3 

2 

3 

f 
= -  i I!$ a1 a3 (8 “ 1.4) 

5 = -  % al “2 (8.15) 

Now, we see from Fig. 8.1 t h a t  whenever a cpas i -pa r t i c l e  of type 2 i s  

destroyed, one of type 3 i s  created.  T h i s  l eads  us t o  expect t h a t  

1- + a2 a2 f a3 a3 = constant  (8 I 1.6) 

Indeed, using Eqs. (8.14) and (8.15) we e a s i l y  f i n d  t h a t  

+ 
(8.17) 

d 
dt 3 3  
- (a; a2 t a* a ) = o 

Simi lar ly ,  conserva,tion of  energy would imply t h a t  

A, al al + A2 ai a2 + R a’ a = constant  
4- 

(8.18) 
3 3 3  

Again, the  equations of motion may be used t o  show tha t  t h i s  i s  indeed 

Next we wr i t e  

where b i ( t )  and $.(t) a r e  r e a l  funct ions.  Eq. (8.1.:3) gi-ves 
3- 

&ere we have l e t  

The r e a l  

b .  1 = 1 %  
and imaginary p a r t s  of Eq. (8 .20 )  y i e l d  

e 

b b s i n  @ 
2 3  

COS 6 b2 bg 

b1 

(8.20) 

(8.21) 

(3 .22)  

(8 .23 )  



where 

In a s i m i l a r  manner w e  ob ta in  

The th ree  equations l i k e  Eq. (8.23) can be combined t o  give 

(8.24) 

(8.25) 

(8.26) 

(8 .27)  

The constants  of t h e  motion, Eqs. (8.16) and (8.17), may be used t o  

show t h a t  
2 2 2 2 

2 2 2 2 
- b10 

+ b30 - bl 

b2 = bl + bZ0 

b = b  
3 10 

(8.28) 

(8.29) 

and b are the  values of b b and b a t  t = 0. These where blO, bZO 

r e l a t i o n s  may be used t o  e l imina te  b and b Dividing Eq. (8.27) by 

Eq. (8 .22)  gives 

30 1' 2 3 

2 3' 

(8 .30 )  

from which 

sin 3 
(8.31) 

cos ;p dbl 

Using Eqs.  (8.28) and (8.29),  both s ides  of t h i s  equation can be i n t e -  

gra ted  t o  obta in  

b b b cos = constant  =r 1 2 3  ( 8 . 5 2 )  

Ins tead  of giving the  general  so lu t ion  we shall consider a simple 

spec ia l  case.  Suppose t h a t  a t  t = 0,  b = 0. Then r = 0. A t  later 1 
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times when b b and b are all non-zero, Eq. (8.32) can be satisfied 

only by cos $ = 0. 

I' 2 3 
+ t 

Then sin = - 1 and Eq. (8.22) becomes 

Then 

(8 .35)  

62 The resul'i can be expressed in terms of the Jacobj. eliptic function 

The other quantities of interest bZ and b are obtained from Eq. 
3 

(8.28) and (8.29) with b = 0. The intenslty of wave number 1 is 
2 2 
b (t); it oscillates between its initial value of zero and b. 1.. 30 

10 

The 

2 f- b:o. The 
20 

intcrisity of wave number 2 oscillates betvJeen bz 
20 
2 

intensity of wave number 3 oscillates between b 
30 

and b 

and zero. 

63 64 and by Sugihara. 'The general solution has been given by Danilkin 

The interaction of transverse electromagneti i: waves wi tli longitudinal 

plasma oscillations and ion sound waves has been discussed by 

Montgomery, 65 Danilkin, 63 Sugihara6* and Dolinsky and Goldman. 

8.2 Parametric Excitation of Waves 

66 

67-69 - -- 
Some simplification of the equations of the last section is obtained 

if it is assumed that the amplitude of one of t'ne waves is held fixed 

by some means. Let us suppose that 
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We s h a l l  assume t h a t  Eq. (8.12) i s  almost bu t  no t  qu i t e  s a t i s f i e d  and 

wr i t e  

(8 .37)  

where A i s  a small quant i ty .  

placed by 

Then, Eqs. (8.14) and (8.15) a r e  re- 

f ib  t e ”2 = - 1”sz “1 “3 
(8.38) 

- i A  t 53 = - i $ a 1 a 2  e 

a 1 = /all e 

&Z = - i 1 %  a l l ”  3 e 

(8.39) 

There i s  no equat ion f o r  a s ince  it i s  assumed t o  be given. We let 1 
-id (8.40) 

(8.41) 
i ( A t  + A -  f) 

(8.42) 5 = - i 1% a l i a  e - i (At  + &  -6) 
3 2 

These a r e  coupled l i n e a r  equat ions with va r i ab le  coe f f i c i en t s .  A so lu-  

t i o n  i s  e a s i l y  obtained. If w e  assume t h a t  

i9t a (t) = b e 
3 3 7 

(8.43) 

then  inspec t ion  of Eq. (8.41) shows t h a t  % must have the  f o r m  

(8.44) 

S u b s t i t u t i n g  Eqs. (8.43) and (8.44) i n t o  Eys. (8.41) and (8.42) gives 

the  l i n e a r  a lgebra ic  equat ions 

M + A )  bZ + 1 %  a11b3 = 0 

1 %  all bl + q b g  = 0 

S e t t i n g  the  determinant o f  t h e  c o e f f i c i e n t s  equal  t o  zero and solving 

the  quadra t ic  equat ion f o r  13 gives the  two r o o t s  

(8.45) 

(8.46) 

(a.47) 
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r i  lliese f requencies  a r e  always r e a l .  

The general  so lu t ion  for  a2( t )  w i l l  have the  form 

i(?+ +a>t i ( V -  + A  >t 
a2(L) = A + e + A i  e (8.48) 

where A+ and A- a r e  constants  which must be determined by the  i n i t i a l  

corldiiions. A s  an example l e t  us suppose t h a t  at t = 0 

a2(o )  = 0 (8.50) 

a 3 ( 0 )  = a 30 (8.51) 

A simple ca l cu la t ion  gives 

From Eq. (8.16) we f i n d  

( 8 3 )  

Note t h a t  i n  the  case of exact  resonance, A = 0, these equations 

reduce t o  

(8.54) 

A qu i t e  d i f f e r e n t  result i s  obtained i f  it i s  supposed t h a t  wave 

nuxnher 3 has a f ixed  i n t e n s i t y  and l e t  

a- = \ a 3 \  e -i 4, 

Then Lhe equations become 

(8.56) 
5 

(8.5'7) 

(8.58) 

I f  w e  assume t h a t  
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(8.59) 

then inspec t ion  of Eq. (8.57) shows t h a t  a must have the  form 1 

(8.60) 

S u b s t i t u t i n g  Eqs. (8.59) and (8.60) i n t o  Eqs. (8 .57)  and (8.58) gives  

(8.61) 

(8.62) 

S e t t i n g  the  determinant of t h e  c o e f f i c i e n t s  equal  t o  zero and so lv ing  

the  quadrat ic  equation for gives t h e  two roots 

(8.63) 

If we assume the i n i t i a l  condi t ions 

a1(0) = 0 

20 ' a,(.) = a 

then we f i n d  

(8.64) 

(8.65) 

(8.66) 

(8.67) 

If I b$ a31Z > (A/Z) 2 then the  frequencies  given by Eq. (8.63) 

a r e  complex. 

b o l i c  s ine  and both I all2 and la2 Iz grow exponent ia l ly .  Energy i s  

continuously fed  from wave number 3 t o  waves 1 and 2. 

The s ine  func t ion  i n  Eq. (8.66) i s  replaced by a hy-per- 

8.3 Explosive I n s t a b i l i t i e s  52 -55 - 
Fina l ly ,  we consider  the case t h a t  one of the  waves, say wave 

number 3 ,  has a negat ive energy. The terms i n  Eq. (8.3) which we wish 
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t 
to consider are those containing C C+ C+ and C C C ‘I’he corre- 

sponding diagrams are shown in Fig. 8.2. 

1. 2 3 1 2 3’ 

3 

Fig. 8.2 

Conservation of energy requires 

We assume S = S, = +l and S~ = -1 so this is just 
1 2  3 

Let C,(t) and C,(t) be given by Eqs. (8.8) and (8.9) and let 

(8.70) 

(8.68) 

(8.69) 

As before we neglect terms in the equations of motion which have 

rapidly oscillating factors. 

Q. 1 = - i  ?l ”2 &3 (8.71) 

5, 2 = - i h j a l a 3  (8.72) 

- f f  
a 3 = - i M  1 a 1 “2 (8.73) 

Now the equations of motion become 

+ - I -  

+ +  

Inspection of Fig. 8.2 suggests that 

d +  - - d - - d +  ._ 
dt “1 - dt a; “2 - dt “3 

(8.74) 

and this is easily shown to be the case. 



121 

The ana lys i s  of t h e  equat ion of motion is very similar t o  t h a t  o f  

s ec t ion  8.1. We use Eq. (8.19) and f i n d  

b b  
4- ) cos 5 bl b3 

b2 b?J 

(8.75) 

(8.76) 

where 

(8.77) 

Note t h a t  Eqs. (8.76) and (8 .77)  d i f f e r  from Eqs.  (8 .27 )  and (8.24) by 

the  s ign  of one term. From Eq. (8.74) 

2 2 2 2 
10 - b z O  (8.78) = cons tan t  = b 

2 2  2 2 = cons tan t  I b 

bl - b 

bl - b 

2 

10 - %0 (8.79) 3 

When Eq. (8.76) i s  divided by Eq. (8 .75 )  one obta ins  

s i n  $ 
cos 9 

d = dbl (*+ - 

db 
= (.;;-+- dbl db2 

b2 
(8.80) 

so 

bl b2 bg cos Q = P = constant  (8.81) 

as before.  L e t  us suppose t h a t  b = 0 a t  t = 0; then r = 0 and 
1 

cos ,$ = 0 a t  future times. Eq. (8.75) g ives  

from which 

(8.132) 

(8.83) 
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Note t h a t  b grows t o  an i n f i n i t e  amplitude i n  a f i n i t e  time s ince  1 
/- 

(8.84) 

The i n t e g r a l  i n  Ey. (8.83) becomes elementary if b := b- Then 20 SO' 

-1 bl 

b2 0 b20 
t a n  - 1 - 1 

+ b  

db 

2 -  
b20 1 

so 

b ( t)  = b tan b 1 20 

The amplitude becomes i n f i n i t e  when 

(8.85) 

(8.86) 

( 8 . 8 7 )  

Such i n s t a b i l i t i e s  which grow t o  an i n f i n i t e  amplitude i n  f i n i t e  

times a r e  c a l l e d  explosive.  They a r e  probably s tab i - l ized  by the  i n -  

s t a b i l i t y  changing the  d i s t r i b u t i o n  funct ion so t h a t  t he  frequencies 

change so t h a t  Eq. (8.69) i s  not s a t i s f i e d  o r  by- changing the  sign of 

the  energy. Very l i t t l e  i s  known quan t i t a t ive ly  about the  s tabi . l iza-  

t i o n  of these i n s t a b i l i t i e s .  
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