





ORNL~TM-£6,33

Contract No. W-7405-eng-20

METALS AND CERAMICS DIVISION

THEORETICAL ANALYSES OF SELECTED £IECTROMAGNETIC
INDUCTION PROBLEMS

Joseph Wilson Luquire, III

A Dissertation
Presented to
the Graduate Council of
The University of Tennessee

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

SEPTEMBER 1969

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION LOCKHEED MARTIN ENERGY RESEARCH LIBRARIES

(TR

3 445k 0513749 ¢



ACKNOWLEDGMENTS

The author expresses his sincere appreciation to his major
professor, Dr, William E. Deeds, and the other members of his committee
for their help and encouragement during the course of this research.

He also expresses his thanks to Dr. Caius V. Dodd and William G. Spoeri
for their aid both during the course of this work and in preparing the
final manuscript and, most of all, to his wife for her patience and
understanding during his tenure in graduate school.

The author was privileged to perform this investigation at Oak
Ridge National National Laboratory where the research was sponsored by
the U. S. Atomic Energy Commission under contract with Union Carbide
Corporation. Finally, deepest thanks to Maxine Potts for typing the

final manuscript.

i1



ABSTRACT

The general theory for the vector potential produced by a sinu-
soidal current of finite cross section is developed and applied to
several different current and conductor geometries: a coil between a
number of conducting plates; a coil encircling two, concentric, spherical
shells; and a straight wire between a number of conducting plates.,
Linear, isotropic and homogeneous media are assumed throughout each
analysis. In each case the Green's function solution is first obtained,
and the principle of superposition then used to effect the desired
result. A number of physically observable phenomena, such as the imped-
ance, the power loss due to the presence of the conductors, the time-
averaged electromagnetic force on the conductors, et al., are subsequently
calculated from the vector potential., Each case is sufficiently general
to allow the solution of a considerable number of difficult electro-
magnetic induction problems, while each of the expressions obtaiﬁed for
the physically observable phenomena is in terms of an infinite integral
or sum which may be readily evaluated on a computer. In all cases for
which experimental measurements have been made, the agreement between
calculated and observed values is within the limits of experimental
error, Preliminary investigations of other cases tend to support the

validity of the corresponding theoretical expressions.
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CHAPTER 1
INTRODUCTION

1f a wire, carrying a time dependent current, is placed near an
electrical conductor, then electric currents are found to exist in the
conductor. These currents are commonly called eddy currents and are
said to be "induced" in the conductor by the current in the wire. The
production of these induced eddy currentd is due to a phenomenon called
electromagnetic induction and depends up¢n parameters such as the elec-
trical conductivity, magnetic permeability and dielectric constant of
the conductor. Each of these parameters, in turn, depends upon the
prior history of the conductor.

For example, the conductivity, pefmeability and dielectric con-
stant of a conductor depend upon, among other things, whether or not the
conductor has undergone heat treatment, cold working and/or irradiation.
Furthermore, if the conductor has been treated with heat, cold worked
and/or irradiated, then these parameters will depend upon the quanti-
tative aspects of each process. In fact, the conductivity, permeability,
and dielectric constant, and hence the production of induced eddy
currents, are sensitive to almost any physical change in the conductor.
Unfortunately, this sensitivity to almost any physical change makes the
application of electromagnetic induction to the determination of various
conductor properties quite difficult. An additional and more significant

difficulty, even in the absence of this sensitivity to physical changes,
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is the'mathématical complexity of any attempted theoretical analysis.
Nevertheless, the use of electromagnetic induction as a method of treat-
ing materials, though often somewhat less than quantitative, began more
than ninety years ago when D. E. Hughes (1) used a pair of identical
coils to sort various materials which were placed between them.

After the work of Hughes and others in the nineteenth century,
theoretical and experimental work in the fiel& of electéomagnetic test-
ing was practically nonexistent until the advent of World War II, at
which time the Germans undertook a systematic study of electromagnetic
testing. However, it was not until 1952 that electromagnetic testing
received ahy wide recognition. In that year, F. F8rster aﬁd his
associates (2, 3, 4) published the first of an important series of papers
in which they treated the cases of a coil above a conducting plane and an
infinitely long solenoid containing é conducting core. In tﬁeir treat-. .
ment of a coil above a conducting plane, the coil was assumed to be a
magnetic dipole for reasons of simplification. 1In 1956 Waidelich and
Renken (5) used the method of images to obtain the coil impedance, which
for high frequencies was in relatively good agreement with measured
values. Several years later, in 1959, Hochschild (6) extended the treat-
ment of an infinitely long solenoid containing a conducting core to
include the eddy current distribution in the metal. At the same time,

H. L. Libby (7) published a theoretical analysis of a coil above a con-
ducting plane. His treatment differed from earlier work in that the
coil was assumed to be a transformer with a network tied to the

secondary. This network representation gave results which were quite
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good when compared with experiment. Three years later, in a treatment
by Russell et al. (8), the effects of placing a ferrite cup over the
coil were considered by assuming the flux to be entirely coupled into
the conductor., Although their theory was semiempirical, the relatively
good agreement between calculated and measured values is worthy of note.

In the same year, 1962, P. R. Vein (9) presented a theory based
on a single loop of infinitesimal cross section while, a year later,
Atwood and Libby (10) were able to represent the diffusion of eddy cur-
rent pulses in a manner analogous to Libby's earlier work. At the same
time, C. V. Dodd and W. E. Deeds (11) presented a paper detailing
relaxation methods for calculating the vector potential of a coil of
finite cross section. In 1964, Cheng (12) was able to calculate the
coil inpedance change due to the presence of the conducting plane. His
treatment, like that of Vein's, was based on a single loop of infini-
tesimal cross section. M. L. Burrows (13), working from the same basis,
developed a theory for calculating the change in induced voltage due to
the presence of a flaw in the conducting plane. One year later, Dodd
(14) extended the relaxation theory that he and Deeds had published
earlier. In the early part of 1967, a report published by A. Philippe
(15) detailed, among other things, the calculation of the impedance of
a coil in the presence of a metal plate under pure alternating con-
ditions. M. Onoe <l6) , later in the same year, treated the cases of a
coil between two conducting plates, a coil encircling an infinitely long
rod and a coil inside an infinitely long tube. Although this treatment

was of major importance, it fell short of being realistic since the
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colls were assumed to be of infinitesimal thickness either in the axial
or radial direction depending upon the specific case. In addition C. V.
Dodd (17), a few months earlier, published a treatment of the first two
cases in which results were obtained for a coil of finite cross section.
In succeeding papers, Dodd and his co-workers (18, 19, 20, 21) extended
the theory to include many other cases and developed:computer programs
to carry out the necessary calculations. This dissertation extends
their theory still further and treats some cases that have not been
treated heretofore,

For the induction problems considered here, the vector potential
is chosen as the field vector that specifies the electromagnetic field
of interest. Although the vector potential is somewhat easier to use
than the B or H field vectors, this choice is noé entirely one of con-
venience. The fact that the scalar potential is completely negligible
makes the vector potential an adequate representative of the electro-
magnetic field. Solution of the differential equation for the vector
potential of a delta function current will be obtained for various con—v
ductor geometries, and the principle of superposition will then be
invoked to obtain solutions for currents of finite cross section. The
differential equation for the vector potential [Eq. (2.1), page 61.has
been derived from Maxwell's equations by Dodd (12). ‘Linear, isofropic
and homogeneous media and sinusoidal driving currents will be assumed
in all cases. A number of physically observable phenomena, such as the
impedance, the power loss due to the presence of the conductors, the
effects of defects in the conductors, et al, will then be obtained from

the vector potential.
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The general theory for the vector potential, its superposition
and the observable phenomena will be developed in thetnext chapter In
succeeding chapters, this theory will be applied to several different
current and conductor geometries: a coil between a number of conducting
plates; a coil encircling two, concentric;1épherical shells; and a
straight wire between a number of conducting plates. The MKS system of
units will be used in all cases. Note will be made where experimentally
verified solutions, obtained elsewhere (18, 19, 20, 21), are special

cases of the solutions obtained in this dissertation.



CHAPTER II

GENERAL THEORY

The Vector Potential

The more orthodox methods for soiving electromagnetic induction
problems involve the use of § or ﬁ field vectors, However, we shall
choose the vector potential, X, as the field vector that specifies the
electromagnetic field of interest. Once the vector potential for a.
given current distribution and conductor géometry is known, we may
readily calculate any physically observable phenomenon from it. If we
make use of the Coulomb gauge (V.A = 0), then for linear, isotropic,

homogeneous media the differential equation  for the vector potential is

2> 3 2%k
VA @ —pi 4+ w0 == + e —= (2.1)
0 ot atz

where IO is the source current density, M is the bermeability, o is the
conductivity and € is the permittivity.

Since we shall be concerned with problems involving rectangular,
cylindrical or spherical symmetry, it will be beneficial to express Eq.
(2.1) 1in each of the pertinent coordinaté systems. In rectangular

coordinates (x, ¥y, z), Eq. (2.1) becomes

3An 32An . )
+ pe (n = Xy, ¥, 2) , (2.2)

ot 2

n at

V2A = —ui + uo
n 0

while in cylindrical coordinates (r, 6, z), it becomes

24, 2 aZAr |
r 36 = THlg it Mot e —5 (2.3)
r ‘ ot .

A
T 2
VA -5 -3
r r
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A oA 3A 3 A
2 ) 2 T 6 ]
v A6 - + 5 5 —uio + uo ot + e 5 (2.4)
r r 6 at
2 BAZ 32Az
v Az - —uio + po —SE-+ He —5 .« (2.5)
z ot
On the other hand, in spherical coordinates (r, 6, ¢), Eq. (2.1) 1is
dA
v - 2—2A ———z'-'—g—e(sine Ag) ———2—-———8%=
r r r r sinb r sinb
o azAr
- Llio + uo .Tt_ + ue 2 (2.6)
T ot
va _ Ae + g_.AAr _ 2 cos0 JA¢ -
6 rzsinze r2 99 rzsinze 9
24, 32
- pi, + wo —— + ue (2.7)
0e ot 8t2
VZA _ A¢ + 2 aAr + 2 cosf aAe -
¢ rzsinze rzsine d rzsinza 0%
o, 82A¢
-uiO + uo ¢ + pe 5 (2.8)
¢ ot

where, of course, the Laplace operators must be expressed in the appro-
priate coordinates.

For the most part, Eqs. (2.2)-(2.8), particularly the latter ones,
are quite complex; and thus any simplification would be welcome. There-
fore, we shall assume the time dependence of the current density to be

sinusoidal, which is not overly restrictive since any time-dependent



8
current may be expanded as a Fourier series in time. With this
assumption, the vector potential will also vary sinusoidally with.time.
If we write IO - Iéejwt and & = K'ejwt, then upon sgbstitution in Eq.

(2.2) we obtain

v2ared®t o _pir 39 4 guuoared®t o g2 earedvt | (2.9)
n 0r n . n

which we divide by ejwt and drop the primes to get

2

. 2
v An -ui . + jwucAn w ueAn. ‘ (2.10)

0

Comparable results are obtained for the cylindrical and spherical
coordinate cases simply by replacing 3/dt with jw in Eqs. (2.3)-(2.8).
We shall make the further simplifying assumption that the current
density is that of an infinitely thin wire carrying a current, I, which
shall be referred to as a delta function current. In this case, the
total vector potential produced at a point P by the superposition of n

geometrically similar delta function currents may be written as

n
@) = ) Ki(P). (2.11)
i=1

If we let the delta function current, I, approach a continuous current
distribution of density 10, then the vector potential due to this cur-
rent will also approach a continuous distribution., -Denoting_the density
of this vector potential distribution by AO' we can write the integral

form of Eq. (2.11):

A@) = |] Ky (P) d(area), (2.12)
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where the integration is taken over the area through which the current
passes.

Since AO(P) is proportional to io, it will prove useful for cases
in which the delta function currents all have the same magnitude and
phase to express Eq. (2.12) in terms of the current density. To this
end, we multiply the integrand by io/iO and assume a uniform current
density obtaining
£y (P)

1y

K(P) = iO ff d(area), (2.13)

which for a straight wire of finite cross section may be written as

N ¢!
L) = L [ 2 d(area), (2.14)

(cross section) io

where 1 is now the current in the wire and is related to io by the

approximation

I
0 (cross section)

i
On the other hand, for a coil such as shown in Fig. 1, having n turns each

carrying a current 1

nl

1= (coil area) ’ (2.16)
so that
(@)
= nl 0
A - (coil area) ** i d(area). (2.17)

Once the vector potential has been calculated for a particular
delta function current and conductor configuration, the vector potential

produced by a finite size current may be obtained simply by allowing the
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delta function current to approach the current density 10 and making use
of Eq. (2.14) or Eq. (2.17).

The Induced Voltage

The voltage induced in a length of wire ds 1is given by

dv = -E.ds , (2.18)
where E is the electric field intensity. We may write Eq. (2.18) as

%% = -E cos Y , (2.19)
where v is the angle between E and ds. Now since
E= a§ = -juk , (2.20)
Eq. (2.19) becomes
& - jua cos v, (2.21)

Thus, for a straight wire parallel to K, the voltage induced per unit
length is

v _ .
e JuwA., (2.22)

Now for an axially symmetric coil with a single loop of radius r,
Eq. (2.22) integrates to

V = jw2nrA , (2.23)

from which we deduce that the total voltage induced in a coil of n' turns
is
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L

n
Vo= j2ny ) r.A
1=1

4" (2.24)

If we assume the coil to have N' turns per unit cross sectional area,

then we may approximate Eq. (2.24) by

Ve i2mw [[ N'rA d(area)’ , (2.25)

where the integral 1s taken over the cross section of the coil. For

coils which have a constant N', Eq. (2.25) may be written as

- (cﬁingia)' /] xa d(area)' , (2.26)

where n' is the number of turns on the coil. Inserting the vector

potential from Eq. (2.17) in Eq. (2.26) yields

v §2mwnn'I ffff r

- (coil area)(coil area)’ d(area) d(area)' (2.27)

Ay (P)
1
for the voltage induced in a coil (with primed parameters) by a current,

I, flowing in a coaxial coil. For the special case of the self induced

voltage, Eq. (2.27) reduces to

2 A, (P)
V= __12292_2__2 IR 0 d(area) d(area)' , (2.28)

(coil area) i0
where the areas of integration are identical.
Similar expressions may be derived for the case of a straight
wire. From Eq. (2.22) we déduce that the total voltage induced per unit

length in n' closely packed, parallel wires is

nl
=Jo ) A
1=1

dv

15 (2.29)

i .
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If we assume that there are N' wires per unit cross sectional area, then

we may approximate Eq. (2.29) by

%—z-‘vjw ff N' A d(area) , (2.30)

where the integral is taken over the area through which the wires pass.
For the case of a constant N', we may write

dav jun’

I = Tarea)’ [ A d(area) , (2.31)

where n' is the number of wires and (area)' is the area through which
the wires pass. Inserting the vector potential from Eq. (2.14) in Eq.

(2.31) gives

' A, (P)
dv - jwn 1 0 [l
ds (area)'(cross section) Ifff io d(area) d(area) (2.32)

for the voltage induced per unit length in n' parallel wires by a cur-
rent, I, flowing in a single wire. For the special case of the voltage
induced in one wire by the current in another, Eq. (2.32) becomes

&, s 2
ds (cross section)'(cross section) 10

d(area) d(area)',

(2.33)
where the areas of integration are the cross sections of the two wires.
The self induced voltage pef unit length is obtained from Eq. (2.33) by

integrating over the cross section of the wire twice.
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The Mutual Inductance

The voltage induced in a circuit (with primed parameters) by the

current, I, flowing in another circuit is given by
dl
V=M IT = JuMI, (2.34)
from which the mutual inductance, M, is

Substitution of Eq. (2.27) in Eq. (2.35) gives
Ay(®)

1o

M= Teoll areig?ZOil atea)’ ffff r d(area) d(area)' (2.36)

for the mutual induction of two coaxial coils.
For straight wires, Eq. (2.34) yields to the more appropriate

form,

dav dM
E; = ij E N (2.37)

from which we see that the mutual inductance per unit length for two

straight wires is

dM 1 av
ds jwl ds ° (2.38)
Substitution of Eq. (2.33) in Eq. (2.38) gives

L 1 ey 1111 208
ds (cross section)’'(cross section) 7 10

d(area) d(area)'

(2.39)

for the mutual inductance per unit length of two straight wires.
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The Self Inductance

Rather than start with the defining equation for self inductance
and proceed to develop an expression for the self inductance of a coil,
we recall that the self inductance is just a special case of the mutual
inductance. In Eq. (2.36) we let the two coils be identically the same
and drop the érimes to get

Ay (P)

a2y

1 d(area) d(area)' , (2.40)
(coil area) 0

where the areas of integration are the same.
Similarly, for a straight wire, the self inductance per unit

length is

Ay(P)

. L s I11]

1 d(area d(area)' , (2.41)
(cross section) 0

where the areas of integration are again the same.

The Impedance

From the nondestructive testing point of view, the impedance of
a coil is one of its most important characteristics. This impedance is

a generalization of Ohm's law:

\Y
Z = T (2.42)
Substituting Eq. (2.26) in Eq. (2.42) yields
y J2mun ([ rA d(area) (2.43)

= (coil area)Il “‘
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for the impedance of a -coil., From a practical standpoint, the impedance
of a coil in‘the’presence of a conductor proves more useful if it is
normalized by dividing by the magnitude of the impedance of the same
coil in air. Thus we define the normalized impedance of & coil by the
relation

. Z
z, = conductor , (2.44)
lZair|

in which we substitute Eq. (2.43) to obtain
d(area)

- J If rAconductor (2.45)
| ff rAair d(area) |

ZN
for the normalized impedance of a coil in the presence of a conductor.
On the other hand, we can write Ohm's law as

dz

1ldv
ds “T3as (2.46)

for the case of a straight wire. Substituting Eq. (2.31) in Eq. (2.46)

gives

dz _ __jwun (1 A d(area) , - (2.47)

ds (area)I -*
which is just the impedance per unit length. The normalized impedarce
per unit length of a straight wire in tﬂe'presehce of a conductor is
defined in a manner analogous to Eq. (2.44):

. s
dZN J JI Aconductor d(area)

= . (2.48)
ds | ff Aaiq d(area)l
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The Dissipated Power

We turn now to the calculation of the power loss due to the eddy

currents that are induced in the conductor.
soidally with time, the time-averaged power

th '
k" conductor can be written as

where the bar denotes an average over time.,

have that Ohm's law,

e = %y o

For fields that vary sinu-

loss per unit volume in the

(2.49)

However, assuming as we

(2.50)

is true, the time-averaged power loss per unit volume may be written as

k _ —]; > 2%
v -7 % BBy
1° ) 2 .
=50 ]Ekl‘ . (2.51)
From Eq. (2.20), we have
Ek = _ijk 1] (2.52)
so that
&
k 1 2 2
i A L R (2.53)

With Eq. (2.53), the total time-averaged power loss in conductor k is

5 -1
P =7 9w

2 frt o1, 12
[f7 141" av, (2.54)
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where the integral is to be taken over the kth conductor, The total

power loss due to all the conductors present is just

s (2.55)

ot
]
xo
HJt
ot

since the power loss is additive.

For straight wires, a ﬁore useful quantity is the total time-
averaged power dissipated per unit length by the eddy currents in a con-
ductor:

de
ds

= %.gkmz jf ]Akl2 d(area) , (2.56)

where the area of integration is that through which the eddy currents
pass. Of course, the total power loss per unit length due to all the

conductors present is just

(2.57)

Z
K

Cal Fa
mlx

where the sum is over all conductotrs.

The Electromagnetic Forces

Another quantity of extreme importance, particularly in the
process of magnaforming, is the net force on a conductor. If we consider
the permeability of each conductor to be spacially constant and neglect
the radiation pressure, then the time-averaged force per unit volume

h .
exerted on the kt conductor is

daF
Kk

dv =

N
oy
X

(2.58)
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for fields that vary sinusoidally with time. However, remembering that

}3k = ¥ X A.k (2.59)

and making use of Eq. (2.50), we can write Eq. (2.58) as
dF
k 1 > e *
Sego B oo (VAT (2.60)

Substitution of Eq. (2.52) in Eq. (2.60) yields

i R AR Wi (2.61)

so that the total time-averaged force on conductor k is

>

A R £ av (2.62)

where the integral is to be taken over the kth conductor. The net force
on all the conductors will, of course, be given by the vector sum of all

the forces: -

F=]F. (2.63)
Kk k

However, a much easier method of calculating the net force on all the
conductors is to calculate the net force on the current carrying con-
ductor and then invoke Newton's third law.

Again for straight wires, a more useful quantity is the total

time-averaged force per unit length on a conductor:

E K;) d(area) , (2.64)
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where the area of integration is that through which the eddy currents
pass. An expression similar to Eq. (2.63) also holds for the net force
per unit length. For the sake of clarity, it is worth noting that both
Eq. (2.62) and Eq. (2.64), in the general case, involve complex quanti-
ties so that when comparison with experiment is being effected only the

real part of the force is of interest.

Defects in Conductors

The detection of a defect and the subsequent measurement of its
size are of extreme interest in the field of nopdestructive testing.
M. L. Burrows (13) has promulgated a theory of eddy current flaw
detection in which a small defect is approximated by the sum of a '"cur-
rent defect'" and a "magnetic defect.'" Abrupt changes in the electrical
conductivity and the magnetic permeability, respectively, give rise to
these two types of conductor defects. The conditions imposed upon the
size of the defect are that its dimensions be small when compared with
the distance of the defect to the nearest conductor boundary and that it
be sufficiently small for the incident field to be considered uniform
over the defect,

. When eddy currents are used to perform tests on conductors, one
effect of a defect is to scatter the incident field. The first defect
size restriction has the advantages that the defect will appear as a
point source of the scattered field and only the dipole terms of the
scattered fields will be significant. - With this in mind, Burrows arrives
at his Eq. (5.12) in which we substitute Eq. (2.52) and Eq. (2.59) to

obtain
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K 5 K V x K - V x K
2 2 -> 1 jw 2 z 1

—I QL ——-—I - u ———-—-—I . B . ————I
2 1

2d (2.65)

for the voltage, due to the defect, induced in coil 2 by a current, I,
flowing in coil 1. In this equation, Xk is the vector poteptial at the
defect produced by a current, Ik’ flowing in coil k; & and E are the cur-
rent and magnetic scattering matrices, respectively; and v is the volume
of the defect.

Let us first consider current defects. In this case, the second

term on the right hand side of Eq. (2.65) vanishes, and we write the

remainder as

v . ~ )
Ho3ou A 21, (2.66)
1 T2 1

-

where the quantity va. depends only on the size, shape and orientation,
with respect to the incident field, of the defect. The remainder of the
right hand side of Eq. (2.66) depends only on the problem parameters,
such as coil size and shape, frequency and conductivity, and will be
referred to as the defect sensitivity factor.

If we specialize to the case of axially symmetric coils, Eq.

(2.66) becomes

Vad 2 [%21[A1

, 3
— = | vao ] S0 w {=—l=— (2.67)
Il kk 2 12 I1

where k = 2 in cylindrical coordinates and k = 3 in spherical coordinates.

Since the quantity akk depends only on the shape and orientation of the
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defect, it will be referred to as the current shape and orientation

factor. If we assume a spheroi&al defect, as shown in Fig. 2, we have

@, =aq cosz¢ + a sin2¢ (2.68)

kk 2 T

where ¢ is the angle between the 6 direction and the symmetry axis of

the spheroid. The quantities o. and o, are defined by the relations

L T
(13)
2 2 o6 [en -1
O‘L =3 [l—dd/d](l—[l-dd/d][£ -1] [—2' 1n =y 1) (2.69)
for b/a <1
2 2 -1 -1
a = 3‘[l-°d/°](l—[l*0d/0][€ +11[1-€ tan ~(1/£)]) (2.70)
for b/a > 1
b ap = 5 [1-0,/0](2-[1-0,/0)ele- 5 (¢*-D1n | £3 | D7 (2.71)
for b/a < 1
ap = 3 [1-0,/0] (2+[10, o) [e%~c (1+¢?) tan" (/)17 (2.72)
for b/a > 1
where

9 -1/2
| = asymmetry parameter,

= |1-(b/a)

RA
{

a = gymmetry semiaxis,
b = semiaxis perpendicular to symmetry axis,
o = electrical conductivity of metal,

o, = electrical conductivity of defect.
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Frequently, the electrical contact between the defect and the
surrounding medium is less than perfect which results in an effective
defect conductivity of zero. Figure 2 shows the behavior of the current
shape and ;;ientation factor for non-conducting spheroids of various
orientations as a function of the ratio b/a. If we let a approach zero,
the spheroid becomes a flat disk of radius b; and its volume (Aﬂbza/3)
approaches zero in such a way that the product Ve approaches the value
b3

cosz¢ R (2.73)

vakk =

since o, approaches zero and &, approaches infinity.

T L

For defects of other shapes, there exist equations similar to
Eq. (2.68) and the subsequent ones; thus we can calculate the effect of
a defect in a conductor. It is also worth noting that, when the two

coils are the same, Eq. (2.67) is just the impedance change due to the

defect, which is relatively easy to measure.



CHAPTER III

COIL BETWEEN CONDUCTING PLATES

The Vector Potential of a Delta Function Current

A circular, delta function current having several parallel, con-
ducting plates both above and below it is shown in Fig. 3. Due to the
inherent axial symmetry, we choose to use cylindrical coordinates in
solving the problem. Since the current flows only in the 6 direction,
the T and z components of the vector potential vanish. Perusal of Egs.
(2.3)-(2.5) shows us that the vector potential must thus be a solution
of Eq. (2.4). Replacing 9/9t with jw and writing the Laplace operator
in eylindrical coordinates, this equation becomes

2 2
1 oA 0"A A X 2
+~; - + - rz - jwp,0 A + w'y

>

9
: 5 ; 1% iEiA + uIG(r—rO)G(z—zo) = 0,
r z

3¢

(3.1)
where A is the 6 component of the vector potential and where the last
term on the left side vanishes expect at r = rO, z = z4.

Equation (3.1) is amenable to solution by the method of separation
of variables which yilelds the general solution
oo o,z o,z

A(r,z) = f [a(a)e T b(a)e + ][Jl(ar) + c(a) Yl(ar)] da ,
0

(3.2)

[ . o : ° ) .
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and Jl(ar) and Yl(ar) are the first order Bessel functions of the first
and second kind, respectively. We shall require the vector potential to
remain finite at r = 0, r = = and z = *= go that c(a) = 0 in all regions
while a(a) = 0 in region VIII and b(a) = 0 in region I. Thus the

solutions for the various regions are

A(l)(r,z) = f al(a)e 0 Jl(ar) do , (3.4)
0
© -0 _Z _z
AP (r,2) = [ la,@e > +by(e 7 3 Ger) du (3.5)
0
. © -0, 2 Q,Z
AP (r,2) = [ la (e * +b(0e ]I er) do, (3.6)
0
A -0 2z (s 4
A(A)(r,z) = f [a4(a)e 0 + ba(a)e 0 ] Jl(ur) de , (3.7)
0
co -0 . Z A Z
2 (r,2) = [ lag@e O +bgde 01 I (er) da (3.8)
0
© -0 Z o,z
A® () = ] [ag (@)e 1y by (2)e o 3, (ar) da (3.9)
0
’ «© -0, _Z o,2Z
2D (x,2) = [ [a (e 2"+ b (e)e 37 3 ) do, (3.10)
0
w &,z
a® 2 = [hwe? 5 o) @, (3.11)
0

where the superscripts refer to specific regions and

271/2
a,. = [az - EL-] . (3.12)

0 2
c

since regions I, IV and V are taken to be air.
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Now the boundary conditions are

A(l)(r’t3) - A(Z)(r'ta) ’

2all

0z

)}
z=t3 u5

1 a2

»
dz }z-t3

A(Z)r.tz) ™ A(3)(r,t2) ,

1

Mg

24 (2
oz

]z-tz

1 oA

u4 9z

] ,
z=t2

A(3)(r’tl) = A(A)(r’tl) ’

1

A

24 (3
9z

L,

1

BA(A)
oz ’
Z=t1

A(A)(r)zo) = A(S)(rszo) ’

a4 (4)

9z

L.

0

- aA(s)
oz

0

AP (,0) = a® (r,0) ,

BA(

5)]
T
z=0 1

1 24

9z ] ’
z=0

] - uIG(r—ro) ,
Zz=Z

3.

13)

.14)

.15)

.16)

.17)

.18)

.19)

.20)

.21)

.22)

.23)

' 24)
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A (,c) = a®r,c (3.25)
1 o7 = é_.aA(s) (3.26)
u2 9z . u3 dz
z=-c, z=-c,

_ Substitution of Egs. (3.4)-(3.11) in Eqs. (3.13)-(3.26) yields

® -a t @ -a t ot
[ a (e 03 3, (er)de = [ [a,y (e 53, by(x)e 373, 3, (ar) da, (3.27)
0 0
o -0t =] -0_t .t
_ laa (a)e © 37 (oryde = - [ B [a (e ° > - b,(a)e > ) (or) do ,
0 7 0%1 1 0 572 2 1
(3.28
© -a_t ot
[ Tay)e > %+ bye > %1 3 (er)de =
0
«© -0t a, t
[ lag@e * 72+ b e * 21 o) da (3.29)
0
«© -0 _t a_t
- [glaye > % - by@e > 213 (ar)du =
0
«© -0, t a,t
- [Bla e “ 2 - b (a)e * A (ar) da , (3.30)
0 473 3 1
© -0t a,t
[ agde * 1+ b @e * 1y () do =
0
e -a .t ot
[la e O+ b e * My ) da (3.31)
0
© -0, t a,t
- Tglagee - byee t NI ) d -
0 3 3 1
© -0 .t oLt
6 fao[a4(u)e 01 _ ba(&)e 0 l]Jl(ar)-da s (3.32)
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Aad (* P 4 a.Z
Of [aa(a)e 00, ba(a)e 0 0]Jl(ar) da =
d -0, Z o.2z
/ [as(u)e 070 bs(a)e 0 0]Jl(ar) da , ’ (.
0
@ -0.2 a.Z
8 faolaa(a)e 00 _ ba(a)e 0 OJJl(ar) doa =
[~ -0 .2 [+ %
_oj solag@e 0 - by@re 00, (ar) da - u1s(rry) (3.
of [ag(a) + b, (@)]J, (ar) da -of [ag(@) + b, (@)]J) (ar) do , (3.
—of Golas@) = by, @r) = -Of Bylag(a) - be()]J;(ar) da , (3.
Ao a,C -a,C
of [ag@e 1 + b e 1110 (ar) do =
. @ Qa.C -Q,C
[ la,@e >+ b (a)e 21 (r) o, 3
0
=) a.C -a,C
—OI Bilagee T 1~ b (e * 113 (ar) da =
«© a,.c -a,C
- J Byla e lob e 2 ) da @3.
® a,c -a,c L -a,c
Oj ;e 2 2 + b (ade 221 (ar) da = [ by(@e 21 (ar) du , (3.
0
hd a,t - ,.C © -a,C
_of 82[37(u)e 22 _ b7(u)e 2 2]Jl(ar) - -Of -83 b8(a)e 3 2J1(ar) da

@3

33)

34)

35)

36)

.37)

38)

39)

.40)
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where Bi - ai/ui. Multiplying Egs. (3.27)-(3.40) by Jl(a'r)r dr, inter-
grating from 0 to ® and using the Fourler-Bessel integral
£(@') = [ £@) [ J (a'r) I (ar) or drda (3.41)
0 0

gives, after dropping the primes,

-0 _t =0t 0t

a (e 03 aa (e >3 +b, e >, (3.42)
1l 2 2
-Q t -0_t G_t
073 : 573 573
aoal(a)e = Bsaz(a)e - Bsbz(a)e R (3.43)
-0 _t o_t -a, t o, t
az(a)e 572 + bz(q)e 53 a3(a)e 472 + b3(a)e 42 , (3.44)
-0 _t o_t -0, t o, t
572 572 4°2 4°2
Bsaz(a)e - B3b2(ﬁ)e 84a3(a)e - 84b3(a)e , (3.45)
-0t o, t -0 _t a_t
aoye 4lip et taa@e Oteb et (3.46)
3 3 4 4
-0t ot -0t ot
41 471 071 0-1
8433(a)e - Bab3(a)e = a034(°‘)e = O'Ob[*(a)e ’ (3'47)
-0 gz oz -0z 0.2
o o)e 004 p @e 0 =a@e CC+b (we’?, (3.48)
4 4 5 5
o -0z o o .z o -z o onZ
0 0”0 .
jg aA(a)e 00 - bA(G)e = —g-as(a)e 00 _ —g bs(a)e 00
+ uIrOJl(uro) . (3.49)
as(a) + bs(a) = 86(&) + b6(a) ’ (3.50)

Gfsw)—a§5@)=3f6®)-ﬁﬁ6@). (3.51)
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o, C -0, C a.C -Q.C
ag(ae 1 1+ bola)e 1a 2 (a)e 271, b,( de 27 (3.52)
a,C -a,C -0 .C ~Qa,.C
2¢1 2%1 ,
Blag(Me 11 Bibg(a)e 1. Bya,(a)e = Bybylade T 7, (3:33)
a.Cc -0,.C - . C
aj(a)e 22 4 bo(a)e 2% m bg(a)e 372 (3.54)
a.c a.c -Q.,.C
23 . 2%2 3%
8237(a)e - 32b7(a)e - -33b8(a)e . (3.55)

Equations (3.42)-(3.55) constitute a set of fourteen linear,
inhomoggneous eequations in fourteen unknowns. The methods of solving
equations of this type are well known and thus will not be given here.
It is sufficient to st;te that the solutions to Eqs. (3.42)-(3.55) are

-2 (s P-4

ulr ) S,e 00 + S.e 070 -a_(t,-t.,)
4 " 20 JyGerg) o~ - Q5. - QOS Po[(34+85)e P
0 00 11
o (t,-t,) -o. (t,~t,)
) 573 "2 5Y72 "2
(84—85)e ] + Pl[ (64—85)e -
t
ag(t.-t ) %3
5Y°3 "2 e
(B4+65)e ] 46485 ’ (3.56)
-0,z oz
ulr a Sle 00 + SOe 00 [.
a, = —— J (ar,) — — (B,+8:) P, +
2 2 1 0 ao QOS0 lel 4 75 0]
a.t
572
(B,-B_)P ] e

475
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-0,z 0Nz
uIro a Sle 0"0 + Soe 0”0 [
b. m = ——J (ar,) — — (B,-B.) P, +
2 2 "1'70 % QOSO lel 4 "5 0
e‘“stz
(84+85) Pl 7&5;;;— ’ (3.58)
-0 Z 0.2
ulr S.e 0~o + S,.e 0"0 -a.t. -
ay = =g 9 0rg) 5 —gT QOS (gH8) Qe
o %% " U |
oyt e“atl
-0 .7 -0,.2
ulr ' a Sle 0"0 + Soe 0°0 -aotl
by = - —7 I, ¢~ s - Q.5 (@=B4)Q0° -
0 070 11
aotl e-a4tl
(ao+84)Qle | 234 , (3.60)
-0 .2 +a,.z
uIro a Sle 0"0 +.Soe 00
a, = ——J (ar.) — -~ Q. » (3.61)
4 2 T1Y°0 o, QOS0 lel 0 .
-0 Z +o .2z
uIro a Sle 0~o + Soe 0”0
b, = ———J (ar,) — — Q, » (3.62)
4 2 1l 0 uo QOS0 lel 1
-0 N2 +o_ 2z
uIro o Qoe 0o + Qle 00
a, = J, (ar,) — - S, (3.63)
5 2 1'"°07 o QOSO lel 1
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-0 2 =02
0
WIr o QOe 070 + Qle 0
—_—J. (0r, ) — ~ S, , (3.64)
2 1l 0 Go QOS0 lel 0
-Q 2z a z
WIr a Qoe 0o + Qle 070 y @ y
J. (or,) — - [(a+BS- ss]
2 1070’ g S, - 45, 1 1 28,
(3.65)
-0 z Q. .z
HIp aQoe00+Q1e00|: 1
- ——J, (%) — — (a,~B.)S, - (o +B.)S.| =%
2 1 07 o QOS0 lel 0 "1/"1 0 "1°70 281 ’
(3.66)
- _z oz
MIr 0 Qe O+ qe *° . 2%
— J, (%) — — [(B+B )R +(B )R] s
2 1 0 GO QOSO QlSl 172770 43 B
(3.67)
- _z 0.z .
e a Qe 070, Qe 0o [ ]e+°‘2°1
- —— J, (or.) — — (B B)R - (B,+8,) R
2 "1Y°0 GO QOSO Ql 1 2 172771 48182
(3.68)
-0z Gz
HWIr, , ’a Qoe 00 + Qle 070 [(B 6) a2(c2—c1)
— J. (%r,) — — R +8.)e -
2 1 0 Qo QOSO lel 0 172
-2 _(c,-c.) ¢, (c,-c
272 71 272 "1
(Bl-Bz)e ]+ R1 [(Bl—Bz)e
a.,.c
-, (c,-c,) 372
} 2'%27C1 ) e
(Bl Bz)e ] TN (3.69)
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where
2at 20 (to-t,)

Q = e Ol[“‘o‘%’ [ (ag-Bs) (B, B)(agt8s) (B,-Bde > 2]

2a.(t.~t,) 20,(t.,-t.)
b (aghs,) [(ag-Bg) (B,-Bg)-(agtBy) (8, 48)e ° > Z e © 2 T,
(3.70)

2a5(t3—t2)

Q = (o5t8,) [(ag-B5) (B, *+B5)-(agtBs) (B,-B)e ]

2a5(t3—t2) 2a4(t2—t1)

+ (a0—84) [(aO-BS)(84-85)—(a0+85)(64+85)e le
(3.71)
v ' 2a2(c2—c1)
s0 = (aO—Bl) [(Bl+82)(82—83)+(81-82)(82+63)e ]
' 2a2(c2—cl) 2alcl ,
+ (ao+61) [(31-32)(62-83)+(61+82)(62+83)e le , (3.72)
2a2(c2—cl)
S) = (agt8;) [(By+8,) (B,=B)+(B)=B)) (By+6;)e ]
2a,.(c,-c,) 2a.cC
. 272 71 171 .
+ (ao—Bl) [(31—32)(32-83)+(Bl+82)(82+83)e Je , (3.73)
—a,t a t, -a,(t,-t.)
P, = [lagtB)Qe 0 b - (g8 Qe O le T (3.74)
—aotl aotl a4(t2—tl)
P = [(a0-84)Q0e - (ay*8,)Q e Je , (3.75)
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*1%
RO - [(ao+sl)sl - (ao—sl)SO]e ’ (3.76)

1%
Ry = [(ag=By)S) - (ag+B,)Syle ‘ (3.78)

The Vector Potential of a Finite Current

The solutions given by Eqs. (3.4)-(3.11) with the constants givén
by Eqs. (3.56)-(3.69) give the vector potential in the various regions
for a delta function current. The problem of a finite size coil carry-
ing a current I may now be solved by use of Eq. (2.17). It is very
important to note, however, that Eq. (2.17) does not present the complete
picture, for in the finite size coil case there exists a region which
was absent in the delta function current case. In Fig. 4 this regilon is
denoted by IV-V and requires special attention.

At a point, (r,z), in this region, the vector potential fbr a

rectangular cross section coil is given by

: r z , (4) 2 (5)
8820 - 1| AR e v P A dzg|drgs
20U r e, o 2 0

(3.79)
i.e., for the part of the coil below the point in question the contri-
bution to the vector potential is A(a)(r,z) while for the part above the
point, the contribution is A(s)(r,z). The explicit dependence of

A(4)(r,z) and A(S)

(r,z) on r, and z is exhibited by Eqs. (3.61)-(3.64).
Substitution of Eqs. (3.7) and (3.8) with Egs. (3.61)-(3.69) in Eq.

(3.79) yields
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-0 A2 AaZ
0%0 0%0
A(4.5) . r2 Z ©o pioro G(Sle + Soe
() = [* ] [ —= 3 Gr) —3 Q5. - Q.8.)
r, 21 0 0'7070 171

g2z @02 °°ui

[Qge * +que ° 10, (ar)dadzg + ff 0%

J (aro)

a(Qoe + Qle 5 -
GO(QOSO - Q

Jl(ar)dadzo dro , (3.80)

where

i = nl
0 (r2~rl)(22_21)

(3.81)

In Eq. (3.80) we reverse the order of integration and perform the r

0
integration to obtain
i ) aJ, (ar) -0 .2 o2
R s 1 0 0
(rz)-——f J(ry,t,) - [Q,e + Qe ]
1 0(Qos0 lel) 0 1
z —252q %524 —ag2 @2
£ [Sle + S0 ]dz + [Sle + Soe ]
1l
£ -0 2 a2
‘(2 Qe 00+Q1e00]dzo)da , (3.82)
z

where
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b g
- 2
J(rl,rz) -r / x, Jl(aro) drg . (3.83)
1

The integration over Z, is readily performed giving
uio aJl(aro)

— [ 3G 2(QySy = 4 Sy)
0 6(QySy - Q;5)

A(A’S)(r,z) -

o L -0 L -0,z o,z
+ [Qle 02 _ Qoe 2][Sle 0 + Soe ]

P -0 Z oz
- [Soe 0°1 _ S,e 0 1][Qoe 0" 4 Qle 0 ]) da . (3.84)

If we let

arz 2
Jo(ry,7,) -arj x J)(x) dx = a%I(ry,ry) (3.85)
1

then Eq. (3.84) becomes

Wy =2
W of'"”‘i Jo(rysry) 3 (07)
%0

A(A’s)(r,z) =

o L -a,.L -0
0°2 _ Qoe 0 2)(Sle + S.e )

Sy = 45,

(Qle

2 +

- da . (3.86)




40
Substitution of Eqs. (3.56)-(3.69) in Egs. (3.4)-(3.11) and the results

in Eq. (2.17) yield

PN o.R -0 R -0, R
o uio fw ) | | So(e 072 - e 0 l)-Sl(e 072 - e 0 1)
A (ry2) = — | = J (x,,r.)J, (or —~
' 2 0 aaé 0712771 QOSO lel
-a_(t,~t,) a.(t,-t,)
53 "2 5Y3 "2
PO[(B4+BS)e - (84—85)e ]
~a_(t,-t,) a_(t. -t.)
57327 573 72
+ Pl[(BA—BS)e - (84+Bs)e ]
e-ao(z—t3)
———da , (3.87)
48485
A o R -, -0 &
@ uio jw ) So(e 072 _ e 0 l)hSl(e 0 2_e 0 1)
A (ry2) = —— | —5 J.(xr,,r,)J, (or) -
2 aag 01" 2/%1 4(QosO Q1$1)3435
-as(z—tz)
[(B4+85)P0 + (84—85)P1]e - [(84—85)P0 + (84+85)P1]
+a, (z-t,)
e ° 2 4a, (3.88)
oL 0. R -0 L -0 N R
1w 'S (e 072 - e 0 l)-S (e 0 2__e 0 1)
A(3) (r.Z) = —2—Q f -—15 JO(rl’rZ)Jl(ar) 0 2(Q S - 1S )B
0 aal 0% ~ 5,08,
-aotl %0ty —a4(z-t1)

[ao+64)Q0e - (ao—BA)Qle le
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-t a.t. a,(z=t,)
- agBe O - (gt ee 0 et T da, (3.89)
oAl oL L PR A -a.%
0"l
(4) uio ® 1 So(e 0 2 - e 0 l)'sl(e 0 l"e )
A (2 = g [ =5 3p(ryarp)dy (an) Q,S, - ;S
0 oy 0“0 1°1
-0, 2 o,z
[Qoe 0 + Qle 0 ] da , (3.90)
oAh 0.l -0 .8 -0 .8
072 171 072 071
5z 2 Hig fm Loy }3. (ax) Qe . " - e ™ )-Qyle —€ )
A (r,z2) = — | — J. (r,,r,)J, (ar -
2070l 01 271 QS0 = Q5
-0 Z o .z
[Sle 0 + Soe 0 ] da , (3.91)
ol Nl -0 L -0 L
Ql(e 072 _ o 0 l)_QO(e 0 2—e 0 1>

ui, <
A®(z,2) = ‘Egbf ;li-Jo(rl,rz)Jl(ar)

ol 2(QySy - Q;5,)8;

Z aiz
- [(ao—Bl)Sl—(ao+Bl)So]e da ,

=Q

[(ag+8,)5; = (ag=B)Sle

(3.92)

oL oL -0 L -0, L
(7)( ) Uio fm . ( . th 072_ e 0 l)—Qo(e 0 2_e 0 l)
A r,z) = —— | —5 J (r,,r,)J, (or
2, aaé o' 1 2/%1 4(Qos0 - lel)Ble
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st -az(z+cl)
[(81+82)R0 + (Bl-Bz)Rlle -
az(z+cl)
[(81-82)R0 + (Bl+82)R1]e da , (3.93)
e 0 (e“ozz ) e“ozl)-_Q (e-a022_e_a0£1)
(8) 01 0
AV (r,2) = = [ J_(r,,r.)J. (ar)
2 0 aag 0r1m27 QOSO - Q1 s1
a,(e.~c.) -a,(c.-c.)
RoL(B+8,0e 2 2 Vo g ge 22 1
a,(c,=-c,) -Q (é -c.)
+RIGB e 2 2 T (gasye 221
ea3(z+c2)
——45-1-82_ da (3.94)

for the vector potential in the various regions due to a current density,
iO’ flowing in a coil of cross sectional area (r2-r1)(£2—£l). With
Eqs. (3.86)-(3.94) any number of physically observable phenomena may be
calculated. Before attempting these calculations, however, we shall
~considef some limiting cases.

First let us suppose that the relative permeability of each
region isiunity and at the same time the conductivity in each region
vanishes. In this case, if we assume € = EO for all i, then Ql =S =0

1

and

20t
Qo = -8a3e 03 , (3.95)



S. = 8a’e , (3.96)
so that

A(l)(r,z) - A(z)(r,z) - A(B)(r,z) = A(A)(r,z) =

i, =
‘EQ'I ‘lf Jo(rl.rz)Jl(ar)[e 0"z _ 0 l]e 0" da ,  (3.97)
0 ao
0
pi, = +a.(z=%,) =-a,(z-2.)
A(A’s)(r.z) = —Egbj _lf Jo(rl,rz)Jl(ar) 2 -[e 0 2 +e 0 1 1] do
aeg
(3.98)
A(S)(r,z) = A(6)(r,z) = A(7)(r,z) = A(B)(r,z) =
i, = -a R, =0.i, Q.Z
—29 / —%Jo(rl.rz)Jl(ar)[e 0le 9210 aa, (3.9
0 ac

which agrees with the answer obtained by Dodd (17).
Another case of interest 1s that for which u3 = Hy = Uy = 1l

and 03 - 04 o 05 = 0; i,e., the case of a coil above a two-layered con-

ductor. In this case, Ql = 0 and

20t
QO = "'8(1(3)6 0 3 » (3-100)

2a2(c2-61)
S, = (ag-8) [(B+8,) (B,ma0)+(81-8,) (B e ]+
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2a,(c,~c,) 2a.c, 2a.¢C
2772 71 171 171
(GO+Bl)[(81—82)(Bz-ao)+(81+82)(82+00)e le e ’
(3.101)
2a2(c2-cl)
5, = (a0+81)[(Bl+82)(482-a0)+(81—82)(82+a0)e ] + (ao-sl)
2a,(c,-c,) 2a,c
[(8)-8,) (By=a)+(848,) (B hade - - T 11, (3.102)
so that
AW ey e a@ () = AP (,2) =A@ (1, 2) =
ui ®© a L oL -0, ~0. L. S
—Eg-f —lE Jo(rl,rz)Jl(ar)[; 072_ e 0 l)—(e 02 - e 0 l)gi]
0 aao 0
0,2
e da , (3.103)
ui, o a,(z-2,) ~-an(z=-2,)
A(A’S)(r,z) = —59 f —lf Jo(rl,rz)Jl(ar) (2 - [e 0 2 + e 0 1
0 oo
0
-0 2 -a,. 2. S -0 Z
e Y-l OhLe 0 )da, (3.104)
0
' ' ui ® -0 2 -a L
A (r,2) = —2—°Of 5 34,13, (ar) [(e 01 _ . 972
aa
0.z S -0,z
(e 9 +S—l e 0 )] do , (3.105)
0
-0 . ~0 £
i 0“1 02
(6) Po 1 e - e
A (r,z) = 3 of - 0 Jo(rl,rz)Jl(ar) 281

%
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S1 a,2 ) S1 -0,2
[(a0+Bl)—(a0—Bl)S_.Je - [(0’0-81)—(0'0+Bl)'s—"]e dU. 1] (3°106)
0 0
-a . & -0, &
i o 01 072
<)) S0 1 e - e
A (ry2) = 5 [ =T Jg(ry,m) T, (1) =g
0 aao 17270
-a, (z+c,)
2 1
[(Bl+Bz)R0 + (Bl—Bz)Rl]e
az(z+cl)
- [(Bl—Bz)R0 + (Bl+62)Rl]e da ,(3.107)
(8) ui0 Im 1 e—mogl - e—mog2
A (r,2) = —— | = J (r,,r,)J, (ar)
’ 2 0 aaé o0Y1* 2771 4318280
az(cz—cl)

[(B1+8))Ry + (B1=B,)R, e

oy (eymed) aglztey) 4

- - »
[(B)-B,)Ry + (By+B,)R, Je e
(3.108)
where we have assumed Ei = EO for all i and where
“1%1
= — - H
Ry = [(ag*B))S; ~ (ay=B )Sle (3.109)
1%
R1 = [(ao—Bl)Sl - (aO+Bl)SO]e . (3.110)

Yet another interesting case is that for which Hy = Mg = 1 and

04 = g = 0 which is just the case of a coil above a three-conductor

plane. For this case Q1 = 0 and
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20t
q, = -BGge 073 (3.111)
2a2(c2—c1)
S = (ag-B)[(B+8,) (B,=B.)+(B,-8,) (B, +8,)e ]+ (aghsy)
2a,(c.-c,) 2a.c
[(8)-8,) (B,-B)+(B +8,) (BB 0e 2 2 1 11 | (3.112)
2a2(c2-c1)
Sp = (ag+B ) L(B +8,) (By=B,)+(B)-B,) (B,+8,)e 1+ (ag=8)

20, (c.,-c,) 20.c
272 71 171
[(Bl-Bz)(82—83)+(Bl+82)(82+83)e Je . (3.113)

Thus for a coll above a three-conductor plane, the vector potential is
given by Eqs. (3.103)-(3.108) with S0 and Sl now given by Eqs. (3.112)
and (3.113).

There are still other interesting cases, but we shall turn now to

the calculation of some physically observable phenomena.

The Voltage Induced by a Finite Current

Now let us suppose that another coil of length lé - li (li 2 ll
and 25 < 22).with*inner and outer radii ri and ré 1s placed inside the

coil at hand. One can then ask what is the voltage induced in this
second coil, The answer is of course easily obtained by use of Eq.
(2.26) and Eq. (3.86). Substituting the latter in the former and per-

forming the r and z integrations yield
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0

{mwunn'l 1 ) 1_o!
Vo= oy , [ == 3. (x,,r, )3 (x!,r2) | 2(&)-2])
(rz-ri)(Qé—li)(rz—rl)(lz-ll) 0 d3a§ 0127012 271
o2 -a, % -a %! —-a, 2! a2t a !
(Qle 072 - Qoe 0 2)[Sl(e 072 - e 0 l) _ So(e 072 _ e 0 l)]
%5 (QSy = 45y
oA R -0 % - %! -a..8! o8] o]
(Soe 01 _ Sle 0 l)[QO(e 072 - e 0 1) _ Ql(e 072 _ e 0 l)]
+ da ,
4(QSy = Q8;)
(3.114)

where we have used Eq. (3.81) for iO. Obviously, Eq. (3.114) is valid
only when the second coil is in region IV-V.

If instead we place the second coil in region I, then A in Eq.
(2.26) is identically equal to A(l)(r,z) given by Eq. (3.87), while if
the coil is placed so that part of it lies in region IV-V and the remain-

der in region IV, Eq. (2.26) becomes

] r'
j2mwn 12 r

= Ty T_o
S

L 2!
v (2 a3 (2, 2yaz + [2 4 (r,2)dz | ar . (3.115)

1 )

on the other hand, if we let Hy = 1 and 0q = 0 and place the coil in
region VIII, then with Q0 and Q1 given by Egs. (3.70) and (3.71),

respectively, the induced voltage is

Jmwunn’ I 1 —
V= T_o? T - - f Jn (1) (x],1,)
(rz—rl)(l2 9.1)(1:2 rl)(l2 21) 0 a3a§ 0M1°727v0M 12
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o oL -a R -a,.%
Ql(e "2 _ e 0 l) - Qo(e 0"2 e 0 l) a.c -a,.R! -a.R!

Jof2 JThof | ot
4, (QyS, - Q;5,)8,8,

)

a, (e, -c.) -a, (c,-c.) a,(c,—-c.)
RoL(B+8de 2 2 1 — g gye 22 T ar(8-8e 2 2L

-a,(c,~C.)
+(g+8e 2 2 P da, (3.116)

where RO and Rl are given by Eqs., (3.109) and (3.110) with 83 = an. if

we let the two upper conductors recede to infinity, Eq. (3.116) becomes

{mopna'l 1 .
V= o - / Jo(ry,r, ), (2! ,x))
(r3-171) (g=27) (r,m1) (h=E7) asag 0'"1°t 2’ 0 10 2

-a,. L -a. %
0”1 072 a,c -, L) - L)
e - e 072 071 072
(e - e ) | [(B,;+8,) R, + (B,-B,)R,]
4a0818280 1 "2 0 17271
a,(c,-c,) -a,(c,-c,)
272 71 272 "1
e - [(8,-8,) Ry + (B,+8,) R,]e de , (3.117)

whereas before R0 and Rl are givgn by Eqs. (3.109) and (3.110) while S0
and Sl are given by Eqs. (3.101) and (3.102).

Let us assume for the moment that we are interested in the voltagé
induced in one coil by the current in another coil when the coils are

separated by an arbitrary number of plane conductors. First, for one

conductor Eq. (3.117) reduces, after considerable algebra, to
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2jmwunn'l 1 | v
Ve ~ = N YT f J.(r,,£,)J.(x],1,)
(r2 rl)(n2 21)(r2 rl)(:z2 zl) 0 a3a2 0V1°72/70 12
(a.+a.)c
071'"1
N ) -a,. % -a.%! -a. %! 2B.e
e 01oe O e 07 1 do , (3.118)
0
where
2a1c1 :
Sy ™ (ao-Bl)(Bl—ao)+(ao+el)(el+a0)e , (3.119)

while for ‘two conductors Eq. (3.117) can be written as

v

2jmwunn'I ? 1 .
= = T o J.(r,,r,)J. (rl,x})
(rz-rl)(l2 2.1)(r2 rl)(l2 21) 0 a3a0 01277012
(o +a,)e, (a,~a,)c
‘ - - ' _ Y 0 2°°2 Y1 72°71
—aghy  oghy =agly —agh, 4B Bje e
(e - e ) (e -e - ) 3 da,
0
where ' . (3.120)
2a2(c2-c1)
SO = (ao-Bl)[(81+82)(Bz—a0)+(81-82)(82+u0)e ]
2a2(c2—c1) 2a1c1
+ (ao+Bl)[(81—82)(82-a0)+(31+82)(62+u0)e le (3.121)

Examination of Egs. (3.118)-(3.131) shows us that, in general, the
expression for the voltage induced in one coil by the current in another

is
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giﬁwuﬁn'l | v Ly
Ve - — [y T_o ! f J.(r,,r, )T (2!,x])
(r2 rl)(ﬂ.2 2.1)(1'2 rl)(l2 21) 0 a3a§ 0°"1%72770 12

\ Lok, @gtegdey kﬁl
%ot oty %p*1 %%y 27Be 1=1 By
e - e ) )
S
0

(@y-ay,90¢y
(e - e )(

(3.122)

where k 1s the number of conductors separating the two coils and where

Sék) is obtained by replacing (Bk-l —ao), in the expression for sék—l)’

with

20, (¢, -¢, )
(B _1+B) (B0 )+(B,_ =B (B tade © & K71 (3.123)

and by replacing (Bk—l + ao) with

zak (Ck-ck)
(B_17Bi) (B =) +(B, _1+8,) (B, +a )e . (3.124)

For example, if we define
(et e, k-1 (a, -o )e
oK e 0 kk I 8 i 7i+1771

" 1=1 "1°
MG 5 (K) , (3.125)
0

|

then for the case in which the coils are separated by three conductors,

we have
(agtagdey (ay-ay)e; (ay-aqie,
88 3283e e e

1
(k) ?
5o

£,(0) = (3.136)

where, according to the above formula for obtaining Sék),
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5(3) 2a3(c3—c2)
0 :

= (a,-8)) (Bl+82)[(32+83)(83—a0)+(62—63)(B3+a6)e ] +

20 (c3—c2) 2a2(c2-c1)
(81—82)[(82-33)(83-a0)+(82+63)(83+ao)e le

2a3(c3—c2)
+ (a0+81) (31—32)[(62+83)(83—a0)+(82—83)(83+a0)e ]

2a3(c3-c2) 2a2(c2—c1) e2alcl

+ (Bl+82)[(82-83)(83—a0)+(82+83)(B3+a0)e le
(3.127)
It is easlly seen that fs(a) reduces to fz(a).when Hq= 1, 0y = 0,

€ on the other hand, if LY o, = 02 and € = Eg» then f3(a)

-

= g
3 0’
reduces to

e

! =
fz(a) 4823

(agtagdey (@y-ag)c, [
3 e

(ao—Bz) [ (82+83) (§3—a0)

, 2a3(c3—c2)
+ (B.,-B,) (B,4a)e 1+ (@ +8.)[(8,-B,) (Ba-ay)
27°37 %370 0*2/ L1827F37 3™

2a,(c,—c,) 2a -1
373 72 e 2 2] , (3.128)

+ (B,+8,) (Bytap)e ]
which is equal, as it should be, to fz(a) with all subscripts greater
than zero increased by unity. Similar results are obtained when
My = Uy Ty = 03, and €) =55

Further, let us suppose that there are an arbitrary number of
electromagnetically identical plates separating the two coils. In this

case, Eq. (3.125) becomes
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(a +a, e
ZBke 0" k""k

fé(a) - zukck ’ (3.129)

(ao-Bk) (Bk-ao)+(a0+8k) (Bk+a0)e

i.e., the voltage induced in the lower coil by the current in the upper

one is
2jmwunn'l ® 1 )
Ve = - s | Jo(r,,r)d (r!,r})
(r2 rl)(l2 2.1)(r2 rl)(£2 21) 0 a3a§ 0*"1*"2°°0"'1*"2
-a,. 2 ~a 2 - 2! -a. 2!
@ 01 _ oty ot o
28 e(aowk)ck
k Ta. c da (3.130)
k'k

(ay-8, ) (B -0 )+{a g8, ) (B, +ap)e

which is in agreement with Eqs. (3.118) and (3.119)., Many more arguments
supporting the validity of Eq. (3.122) can be developed, but brevity
requires their omission,

In each of the cases given by Eqs. (3.114)-(3.130), the mutual .
inductance of the two coils is easily calculated by the use of Eq. (2.35)
from which we see that division of these equations by jwl i1s all that is

necessary.

The Impedance of a Finite Cross Section Coil

A quantity of extreme interest for any coil is its impedance. To

effect the calculation of coil impedance, we must first determine the



53
self induced voltage. To this end, we substitute Eq. (3.86) in Eq.
(2.28) or, eqﬁivalently, let the dimensions of the two coils in Eq.
(3.114) become the same., Choosing the latter alternative and rearranging

terms yield

24m0pn’l f“

V =
2 2
(rz—rl) (2'2—2'1) 0 a

1 .2
75 Jo(Fppry) | (phy)
%0

o 2 -a, & -0, % oL
02 072 01 01
- Qoe )(Sle - Soe )—(QOSO_ lel)
% (QpSp = Q5)

(Qle

+

20 % 20 4 -20. % -20.,. %
. 02 01 02 01
leo(e + e ) + QOSl(e + e )

20,(QySy — @ 5)

da , (3.131)

which we substitute in Eq. (2.42) to obtain

2jnwun2

102 ,
zZ = 5/ 3,2 JoEpry) | (Ry=) +

2
(rz—rl) (Zz—kl) 0 « 0

o, L IR -0, % oL
02 02 01 01, ., '
Qe  ~-Qe  (5e = Sge © )-(QySym ¢ S)

% (Qp3y - lel?

+

20, & 208 -20. % -0 &
leo(e 02 e 0 l) + Qosl(e 02 +e 0 l)

200(QySy — Q;5;)

da (3.132)

for the coil impedance. For the case in which Egs. (3.111)-(3.113) hold,

i.e., a coil above a three conductor plane, we have



54

2 = . : ~a,(2,=2.)
Z= O L ey |Gmey+de 02 Vg4
) a2 0 a32 012 27 T oy
27T =y 0
S ~2a_8 —2a.8 —a (2.40.)
- L e 024 O01_g 0727014, (3.133)
%50

which reduces to the answer obtained by Dodd and Deeds (18) for

=1, 0, =0,,

3 2

Now let us suppose that we are interested in the impedance of a

M3

coil above an arbitrary number of plane conductors, the lower one of

which extends to infinity as shown in Fig. 5. First, we define BO = g
and C0 = 0, then the impedance is given by Eq. (3.133) with
S B B
1 0
e (3.134)
0 0 "1
for one conductor with
2al(cl—c0)
5y (Bgt8) (B-B)+(8-8)) (8,48, )e 3,135
S 20, (c,-cL) *
0 1*"1 70

for two conductors. For three conductors, Eq. (3.133) is still valid if

we take
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_:o
27 ..
DR

s i
‘ 70 // _

|
|
|
I
[
|
|

//////

Figure 5. A rectangular cross section coil above an arbitrary number
of conducting plates.
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Sl ' zuz(cz—cl)
5 [‘Bo+31>[<31+32><32‘53>+<31-32>(32+33>e ] +
2a, (c.-c,) 2a,(c,-c )]
2772 "1 11 70
(30-31)[(31-52)(82—83)+(31+82)(32+33)e le
2a2(c2—c1)
* [ (30-31)[(Bi+32)(32—33)+(Bl~82)(82+83)e ] +

2a,(c,-c,) 2a,.(c,-cp)
2'72 71 1'"1 70
(BO+81)[(81—82)(82-83)+(Bl+82)(82+83)e le ]-

(3.136)

From Eqs. (3.134)-(3.136), we see that for a coil above k con-

ducting plates the impedance is given by

2 - [ -Q (2 -2 )
z - 2o 312 Toteyary) | (hp=ty) + ol 02t
(r,-r,) (2. -2,)° 0 a”a %0
271 271 0 L
(k) 7
S -0 & -0 L
2l e 92 0420, (3.137)
2a (k)
0S
0 i
(k) ,o (k) .
where Sl /SO is obtained by replacing (Bk_2 - Bk—l)’ in the
expression for Sl(k_l)/so(k_l), with
2a (¢, ,-c )
k-1""k~-1 "k-2
(B *By_1) (B 1B+ (B 5B, 1) (B, 148, )e . (3.138)
and by replacing (Bk_2 + Bk—l) with
2a (e, ,=-¢, .)
k-1""k-1 "k-2

If we denote the thickness, S T Cro1e of the kth conductor by tk’ then

these expressions may be written as
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20181

and

' 20151
(Byp=By_q) BB+ (B o8y 1) (By 1By Je . (3.141)

For example, if we choose to treat the case of a coil above four,
parallel, conducting plates, then according to the above formula we may

write

(4)

. ‘ | 2a3(c -c,)
oy - (BO+81) [(61+63) [(62+62)(63—64)+(52—63)(B3+64)e

372

1+
0

le

20, (c,-c,) 2a,(c,-c,)
3*73 "2 272 71
(51—82) KBZ—BB)(53—64)+(62+B3)(83+84)e ]+

2a0(c3—c2)

(8,-6)) [(81-32)[(62+63)(83—64)+(82—63)(83+84)e ]+

203(c3—c2)

2a2(c2—c11
le

(Bl+82)[(52—63)(63—64)+(82+B3)(83+84)e

Zal(cl—co) . , v '
e + (80-51) [(81+62) [(82+B3)(B3—64)+(32-63)

2a3(c3—cz)
(B3+64)e J f’(Bl—Bz) [(82—63)(83—64)+(82+B3)(83+64)

20 (c'—c ) 2a,(c,~C,)
e 23 e 22 ]-+ (85+6)) [(61'32> [(8,+8,) (8,-8,) +

2a3(c3—c2)
(52—63)(83+84)e | 1+ (Bl+62) [(62—83)(83—64)+(82+B3)

2a3(c3—c2)_ 2a2(c2-c1)] 2cx1(cl—c2
e ]l e e

(B3+84) (3.142)
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(4) (4)
1 /8

Upon close scrutiny of Eq. (3.142), it is seen that S reduces

(3),. 3)
1 /S,

to S when Hy = Uq, 0, = o, and €, = €3 On the other hand, 1f

3 3
] i} } 4) ) (4)
My = Mg, 0 =0, and € = €y then Sl /S0 reduces to

Si(3) 20,(c,mc,)
~ [(80+82)[(82+83)(83-84)+(82-B3)(B3+84)e 1+ (8,-8,)
0

20 (c,-c,) 2a,(c,—c.)
373 "2 272 70
[(8,-8,) (B;-8,)+(B,+8,) (B,+8,)e Je ]

. 2G3(c3—c2)
g [(BO—BZ)[(82+B3)(83—84)+(82—B3)(83+84)e 1 + (By+8,)

2a,(c,-c,) 20,(c,-cq)
[(8,-B,) (8,-B,)+(8,+8,) (B+8)e > ° 2 e 2 ° 0] , (3.143)

(3) (3)
1 /5

which 1s equal, as it should be, to S with all subscripts

greater than zero increased by unity. Similar results are obtained when

=g, and €, = €,.

2 3 2

Further, let us suppose that below the coll there are k conduct-

ing plates, all of which have the same electromagnetic parameters, Ups Oy

€t and that below these there are k' others, which haveu = ui, g =g

k
and ¢ = ¢'!. In this case, S (k)/s (k) becomes
k 1 0
2a, (c, -c
s;®) (g5 ) (B -8, )+(B -8 ) (B 48, e © ¢ °
- R (3.144)
S'(k) Zak(ck—co)

which is, as it should be, in agreement with Eq. (3.135). In the event

that Ho = Hprs O = Opas € = €41y then Eq. (3.144) reduces to

Sl(k) BoBx
= (3.145)
S " BgtE,

0
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as it should. Many more arguments supporting the validity of the above

l(k)/So(k) can be developed; but in the interest

formula for obtaining S
of brevity, we shall omit them.
Since it is conventional to normalize the impedance of a coil in

the presence of conductors by dividing by the magnitude of the impedance

of the same coil in air, we write here the impedance of the coil in air:

o, .
- 24Twun 1 .2 _ 1
fatr T 20 292 0 o2 Jo(rl'rz)[(zz SRS
27T (7 2
-a, (L,-2.)
e 02 1 - 1]] do . (3.146)

The Power Dissipated by the Eddy Currents

We turn now to the calculation of the power loss due to the eddy
currents that are induced in the conductors. Since the results are even
more complicated than those seen thus far, we shall compute the power
loss for only one conductor. Substitution of Eq. (3.92) in Eq. (2.54)

gives

Fo 1
[o‘ 2 3 Jo(rprp)dy O8)
0

1 -
0 1
o, % o £ -a L -a &
LA P 0*2_ 01)([( ) L
— o tB8.)S. - (a,-B1)S ]e
2(QOSO lel)el 0 "1’"1 0 "1°°0
ok kg g
- - - . 1 1
[(u0 Bl)Sl (uO+Bl)SO]e ) da][of R Jo(rl,rz)Jl(a r)
. a'a
0
a'l all -a'l -a'lf
Qe 02 0 g U2 0, oty

RIOSEEE ([(“6+3i)si'(“6"3i)56]e -
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: alz '
[(aé—Bi)Sé—(a6+Bi)86]e 1 )da'] dz dr : (3.147)

where the primes indicate that a = a' in the expressions for the con-
stants. Reversing the order of integration, using the Fourier-Bessel

integral and then integrating over o' yield

-0 .4 -0, L
l)-Qo(e 0 2_ e 0 l)

2(QySy - Q;5,)8,

_ ®. L onk

w2u212 - 0 |qQ. (e 072_ e 0
- 1 0 1 J2(r ) 1

6 4 0 a3a2 0'"1°"2 -c

' 0 1

mo

il

2
dz do ,(3.148)

0,2 a2z
[(ao+Bl)Sl-(ao-Bo)So]e -[(ao—Bl)Sl-(ao+Bl)So]e

while the z integration gives

2 and

o - -
) wclwzuznzlz fm L, (e 0°2_ %o 1)_Qo(e 0"2__ %01
P, = J(r,,r,)
6 2., . 2 34 0'T10%) 2(Q.S. - Q.S.)B.
4(r2-rl) (12 11) 0 a L 070 171771
| 2e2xlcl_ . Zl_e—lecl
(agt81)8,- (258105, 2% + | (g8 ) 8y~ (agHB S, 2
ijlcl
| [(a +8.)8,-(a=B.)S, 1[ (e -B.)S. -(a.+B,)S ]* le ~° -
3 12800917 (0g7F )50 L (2g=B1 )5, = (a8, )8, 2y,
~2jy‘lcl
i [(a,=B1)S, = (@, +8.)S,1[(a +8,)S ~(a~B,)S.]" & =1 [4a ,(3.149)
I LGg=Fy )5 =ag*e )50 L agt6, 28, ~(ay-B I8, 2y, @ i

where X, and y, are the real and imaginary parts of &1 respectively, and

where we have used Eq. (3.81) for 10. Needless to say, Eq. (3.149) 1s of

little practical value; however, the computer integration of this
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equation is quite easily accomplished in the special case of a coil
above a semi-infinite plane. Hence, it is of benefit to see in what
way Eq. (3.149) simplifies for that case.
This simplification is easily obtained if, in.the expressions for
QO’ Ql' S0 and Sl’ we set Bi - ao(i = 2,3,4,5) and then let c approach

infinity., Performing the first of these operations gives Ql- 0 and

20t
3 073
Q -8age (3.150)
Zalcl
Sl (a0+Bl)(Bl—ao)+(ao—Bl)(Bl+ﬂo)e
5 - TR (3.151)
0 171

(ao-Bl) (Bl-ao)+(a0+61) (Blwo)e

Substitution of Eqs. (3.150) and (3.151) in Eq. (3.149) and letting ¢y

approach infinity yield

ro-u2utn2s? . magly  Gghy 2
f’ = 1 f 1 Jz(r* r ) (e — )
6 " neeor22n2.0%0 a3t O S Bx,
Ty7ry/ Vo™ & %
2
(@ -8, )2 (a +8)>
0_1 0 1”7 ) 4o (3.152)
(e, +8,) B,

for the time-averaged power loss. The more realistic case of a metal of
finite thickness is readily obtained by substitution of Egs. (3.150) and

(3.151) in Eq. (3.149):

o w2u2n212 - —aolz —aoll 2

5 - 1 f 1 J2(r ) (e e
6 4(r.-t )2(2 ) )20 3a4 o*1'"2
2 71 271 0
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2x.c.,
2x.¢ 171
2 2 171, e -1
[|Bl-a0| + |a0+61| e ] ———;I————--
* -2jy1cl * ezalcl_ elecl
3 [(B-a) (B +ag) e +(B+a ) (8- ) ] ¥ do,
(3.153)

0 given by the denominator of Eq. (3.151). It

is easily seen that Eq. (3;153) reduces to Eq. (3.152) as ¢, approaches

where § is a modified S
om

infinity.

The Electromagnetic Forces on the Conductors

We shall now make use of Eq. (2.62) and calculate the net electro-
magnetic force on the conductor in region VI. Taking the curl of

A(6)(r,z) and integrating over 9 yield
F, = ~3muo, [] 2,2 19,21 £ draz (3.154)

which, due to the axial symmetry, 1s in the z-direction. Substitution
of Eq. (3.92) in Eq. (3.154) and integration over r give

o L ' oL -~ L -0 %
0”1
Q (e 02.e )-Qq (e 02 O

2) 2(QOS0 - QlSl)Bl

o 0 u 2

F6 = —jnwcl f f
-c;

0
-a.z 4 a,z

[(ag*B,)S,~(ag=B))Sple - =[(ag=8,)S = (as+8,)Sole *

-0, 2Z To.2Z YV *
1

. 1
-al[(a0+Bl)Sl—(ao+Bl)So]e - al[(ao—Bl)Sl-(a0+Bl)30]e do ,

(3.155)
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)]

from which
o L onL -0 n & -0
fwo u2n212 - Q. e 0 2_e 0 1)—Q (e 0 2—e 071
F o= - 1 f 1 J2(r ) 1 0
6 2 2 34°0%12 2(Q~S~ - Q,S,)R
4(r2—r1) (22—21) 0 o o, 0°0 1"1°"1
2x.c¢c

*| + s |2 e 111 + *l S ; 2
-ay | (agtBy)8;=(ay=8,)S5, 2% ay | (ag=81)8)= (8,8 |

-2%.¢C
e ' *(a +8.)S s.] +8.)s.1"
2%, -Jay [(agt8y)s,=(ay=6y) 0][(“0‘61)51'(“0 B,)5p)
2jy.c
Jf . e .
Ty, [(ag=8))8 = (a¥By) S [ (#8108, = (=6 ) S, )
1 -23y;¢
-
7, do , (3.156)

where we have again used Eq. (3.81) for io. For the case of a single

conductor of thickness cys Eq. (3.156) reduces to

T, u2n2I? @ oty %% 2
F, = -] 1 [ 2 Jz(r T,) (e —€ ) *
6 b(ca-r )2 (11 )20 @32 O 1°°2 s |2 %1
21 2.1 0 “om
2 lecl 2 elecl_ 1 * -zjylcl
Uagrey | e 7 =lBymagl "= = 31(8-ag) (Byug) e -
. e20t‘1cl_e2xlcl
(Bl+a0)(sl-ao) ) do , (3.157)

71
where S is the same as in Eq. (3.153). Letting ¢ approach infinity

yields the semi-infinite plane case:
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w0, uen21? ® 2,2 “agty gty 2
1 1 .2 (e -e )
6T e 2y o 3,2 o) [(agn +x,) 24y, 2]
rymry) =iy % x) Llaghy+xy) 4y,
(xl-jyl) da , (3.158)

where;h_is the relative permeability of the conductor and where
ay S Xy + jyl. A brief perusal of the preceding expressions for the
force shows us that the time-averaged force is a complex quantity so
that when comparison with experiment is being effected only the real
part of the force:1s of interest.,

Expressions for the force, similar to those given above, may be
derived for the other conductors; however, their immense complexity and
little practical value preclude their being given here, Instead, we

shall proceed to the subject of defects in the conductor.

Defects 12 the Conductors

From Eq. (2.67), the change in the coil impedance due to the

presence of a current defect in a conductor is

. ' 2
Az-éva cwz(-:IA—k—) »

7 Vo,,0 (3.159)

where the subscript k denotes the region in which the defect is located.
If we assume the conductor in region III to possess a defect located at

a point (r,z), then substitution of Eq. (3.89) in Eq. (3.159) ylelds

3va2201w2u2;2 °
AZ = : [ = 3. (x,,r.)J. (ar)
8(r,-r )2(2 -2 )2 0] aa2 071727
271 271 0




65

oL oL -a .2 -0 &

So(e 0 2—e 0 l)—Sl(e 0 2-e 0 1) ;aotl | aotl
2(Q030 - QlSl)BA [(a0+64)Qoe - (QO—BA)Qle ]
a, (z-t,) -a.t a~t, a,(z-t,) 2
U L) -agree D tle t Y aa| L (3.160)

where we have again used Eq. (3.81) for i For the specilal case

0'
o) =0, =04 =0g= 0 and Hy = Hy = Mgy = B¢ = l; i.e., a single con-
ductor of thickness t2— ts Eq. (3.160) reduces to
L 222 . -
| .3va2201w i n 2 (a0+a4)t1 aolz aoll
AZ = J (r »To )J (ar)e (e -e )
8(r,-r )2(2 -2 )2 0 ac 2 0
21 271 0
o,z -0,2 2a,t
(cnt-B)e4-(c>L+f3)<34e42 2
0.74 0 4 _
o do. , (3.161)
0 a, (t,~t,)
(a,~8 )2—(a +8 ) 4 271
0 "4 0 74
since Sl = 0 and
20 ¢
37072
S0 8a0e (3.162)
(t )‘20L(t-t)
= . 4 703 2
Ql = 2a0(a0—64)(a0+34)[l e ]e (3.163)
a,(t t:)  2a.(t +t)
= - 2 1 oltst
Q0 ZaO[(ao 64) (a0+64) e e . (3.164)

Again similar ekxpressions may be derived for current defects

located in any of the other conductors.
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In this and .the preceding sections, a number of special cases
have been given for each quantity of interest. Obviocusly, a myriad of
other special cases still remain; however, these remalning special cases
are easily obtained by using the methods presented in each section.
Hence, we shall proceed to another general case, namely, a coil encircling

concentric spherical conductors,



CHAPTER 1V

COIL ENCIRCLING TWO CONCENTRIC SPHERICAL SHELLS

The Vector Potential of a Delta Function Current

A delta function current encircling two concentric, conducting
spherical shells is shown in Fig. 6. Due to the inherent spherical
symmetry, we choose to use spherical coordinates in solving the problem.
Since the current flows only in the ¢ direction, the r and 6 components
of the vector potential vanish. Examination of Egs. (2.6)-(2.8) shows
us that the vector potential must thus be a solution of Eq. (2.8).
Replacing 9/3t with jw and writing the Laplace operator in spherical

coordinates, this equation becomes

1 5 ([ 2 9A 1 3 9A A . 2
"E'E?’(r 5?) + 36 (Si“e %) 2 - Jungogh + wiuge A+
r r“sinb r sind
b L s(r-r )8(6-6) =0 , 4.1)
r0 0 0

where A is the ¢ component of the vector potential and where the last

ro, 0 = 60.

term on the left vanishes except at r =
Equation (4.1l) is amenable to solution by the method of separation
of variables which yields the general solution

A(r, 0 =
%

e~ 8

l[aziz(air) + bk (a,r)] [Pi(cose) + czQi(cose)] , (4.2)

where Pi(cose) and Qi(cose) are the associated Legendre functions of

the first and second kind, respectively.

67
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Figure 6. A delta function current encircling two, concentric, spherical
shells.
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2 1/2
ay = {jwuioi -w uiei} , (4.3)

and il(air) and kl(air) are the modified spherical Bessel functions of

the first and third kind, respectively:

1 (z) =1/—1 1 ,(2) (4.4)
n 2z nlé

=
K (&) =[5 3 é(z) : (4.5)

We shall require the vector potential to remain finite at r = 0, r = =
and 6 = 0, 6 = 7 so that d2 = 0 in all regions while a, = 0 in region IV

and b2 = 0 in region I. Thus the solution for the various reglons are

a® (z,0) = Zzl aM1 (@ r)Py(cost) (4.6)
A@ 8y = 2Zl[af)iz(azr) +‘b§2)ki(a2r)]Pi(cose) , 4.7)
2@ z,0) = zgl[a§3)iz(a0r) + b§3)k2(a0r)]Pt(c;se) , (4.8)
A@ 6y = zzl b{Dk, (agr)P}(cose) , (4.9)

where the superscripts refer to the specific region and

4 = j{wzuiei}llz ) (4.10)

since regions III and IV are taken to be air.
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If we assume. u, = W, for all i, the boundary conditions are

AW a,6) = 4P (a0 | (4.11)
1) (2)
1l oA 1 oA
TT] - TT] » (4.12)
1 r=g 2 T=g
AP w0 = a® w0 (4.13)
~a (2) 3)
1 A 2A
Eé~ or ]r=bi or ]rﬂb ’ (418
2P0 = aW e 0, (4.15)
(3) (4)
LY ] = %A ] —ui-§(e-0) . (4.16)
or or r 0
r=r0 . r=r0 0

Substitution of Eqs. (4.6)-(4.9) in Eqs. (4.11)-(4.16) yields

T, 1 T @) (2) 1
2£1 a;""1i,(o,8)P (cosb) = ggl[az 1y(0ga) + b)" "k, (a,8) P (co88) ,
(4.17)
Y@ 1 _ v @,
8 a, ’i'(a. a)P (cos8) = B Z [a,""1!(a,.a) +
122‘-12 271 £ 2~2=12 2372
béz)ki(aza)]Pi(cose) : (4.18)
) [aéz)il(azb) + béz)kg(azb)]Pi(cose) -
2=]1
: [aés)il(aob) + béB)kg(aob)]Pi(cose) . (4.19)
=1
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32 Z[a(z)i (or. b) + b(z)k (azb)]P (cosf) =
fm]

0 22 [a{D1}(ap) + b @it (ap) 1P} (cose) ,  (4.20)

Z [a(3)i (ag7o) + b(3)k (g )]Pl(cos 6) =
Lal 2

§ béA)kz(aorO)Pi(cose) s (4.21)

g=1

221[ (3)1 CP ry) * b(s)k (aoro)]Pi(cose) =

@ gl I, o
ilbz kz(aoro)Pz(cose) - R s (6 60) R (4.22)

L
where Bi = ai/uin Multiplying Eqs. (4.17)-(4.22) by Pi(cose) sind d6,
integrating from O to T and using the orthogonality relations for the

associated Legendre functions,

kil

1 1 R 22(8 + 1
é Pl (cos8)P], (cos6) sind 46 = —iéfi—f—l Syp0 o (4.23)
gives, after dropping the primes,
(1) - .(2) (2)
a, 1£(ala) =a, iz(aza) + bz kz(aza) R (4.24)
(1) - (2) (2) '
Bl N i! (ala) 32 i! (aza) + 32 k (aza) , (4.25)

Py (ap) + b Pk, (a,b) = a1 agp) + 5Pk (o) s (4.26)



72

() @), , ) 3)
82 y i! (a b) + B b kl(azb) ao . il(aob) + aobl kl(aob) , (4.27)
O (3) (%)
i (ao 0) + b k (a ) bl kl(aoro) (4.28)
(3 (3,4 = &), 22 + 1
3y 3y (agTg) * BT ke (Ggrg) = by k) (agT0) - Srr T T
uIsineo 1
~ Pz(coaeo) . (4.29)
0°0
Equations (4.24)-(4.29) constitute a set of six linear,
inhomogeneous equations in six unknowns, and their solutions are
uIr sine
(l) (22 + 1)q 1
a;” ' = 2 55 B+ DD szz(aoro)Pz(coseo) R (4.30)
4a“b (12 L
UIr_.sing
(2) 0 Q _24+1 '
a, /= - T k,(a r )[B.1}(a.a)k,(a.a) -
2b2 (¥ + 1)D, "2 0707 1721 A2
1
iz(ala)ki(aza)]Pz(coseo) . (4.31)
: HIr sine
2 0 28 + 1
i = 2 @+ Db, e Cr) [B1g(epa)ii(ey2) -
Byiy(2)2)1)(5,2) 1Py (cosg ) (4.32)
HIr sine
(3) 0 28 +1
b(3) i uIrosineO 20 + 1 kl(aoro) kl(azb) 61 '
) TE+ D kG0 | 2 11, (0p2)1) (08) -

L
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' 12(“2b) '
Byi,(@;2)1)(aya)] - -;FE;—-— [Blil(ala)kl(aza) - BZig(ala)
2
2a0 1
ki(aza)] - iz(aob) Pl(coseo) R (4.34)
Ir.sind k (a,b)
(4) _ Mo 22 +1 , g %2 o
by 2 s+ 1) <e(epto) Tt oo (11, (apadd) (ay2)
272070
_Bzil(ala)ié(aza)] - [Blii(ala)kl(aza) -

D k
b'D, 2(aob)

2a i (o b) i (a r
) 0 270 2070 1
8.i (a,a)k!'(a,b)] - [ - 1] P (cosB,) ,

(4.35)

where

DR = [aokl(uzb)ki(aob) —BZkz(aob)ki(GZb)][Bliébza)ié(ala) - Bzip(“la)

ii‘aza)] = lagig (6,D)k) (agb) - Byij (a,b)k (agb)]
[Blii(ala)kl(aza) - Bzil(ala)ké(uza)] . (4.36)

The Vector Potential of a Finite Current

The solutionsgiven by Eqs. (4.6)-(4.9) with the constants given
by Eqs. (4.30)-(4.35) give the vector potential in the various regions
for a delta function current. The problem of a finite size coil carry-
ing a current I may now be solved by use of Eq. (2.17). In the interest

of simplicity we shall assume the coil to be an annulus bounded by
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conical and spherical surfaces as shown in Fig, 7., It is very important
to note that Eq. (2.17) does not present the complete picture, for in
the finite size coil case there exists a region which was absent in the

delta function current case, i.e., the spherical shell containing the

coil.
At a point, (r,6), in this region, the vector potential is given
by
o, rr ,(4)
a8 oy o« 20l Pl A58 e+
0. -6 xr2r?) 8. Lr, o 0o
2 17271 1 1
r
2 ,(3)
I £L_?EQ£dil rodro] @, , (4.37)
r 0]

i.e., for the part of the coil inside the point in question, the con-
tribution to the vector potential is A(4)(r,6) while for the part outside
the point, the contribution is A(3)(r,6). The explicit dependence of

A(3)(r,9) and A(4)(r.9) on r, and 90 is exhibited by Eqs. (4.33)-(4.35).

0]
Substitution of Eqs. (4.8) and (4.9) with Egqs, (4.33)-(4.35) in Eq.

(4.37) yields

1 % 1

P, (cos ) ef s1n6 P\ (cos8)dB
1

-]
2unl I\ 22 + 1

L a
(52—91)(r§—ri) =l 20(2 + 1)

A(3’4) (r: B) =

2a r

2 2 0 2
[sy [Trgkg(agrgdarg + —= [ i (agr,)drglk, (aqr)
r r
1 1
20 r
0. 2 2
+— 12(a0r) £ rOkZ(GOrO) dr0 R (4.38)

where
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Figure 7. A coil of finite cross section near two, concentric, spherical
shells.
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kp(2b) ‘ ‘ tlogh)
] - - ——
Sy = ——3;—-— [81,(a,a)1)(a) = By1 (xa)if(aya)] 3
bD, b“D
. : 2
[811; (ay2)k, () = 8y1, (aga)]k) (apa)] = —= 1, (agh) | + k; agh).
If we define
%of2
2
1,(r),r,) = [ x"1,ax, (4.40)
001‘1
aor? )
ko (r),1)) 2 ] " x k, (x)dx , (4.41)
%01
1 % 1
P, (8;,8,) z | sin6 P, (cosé )de, , (4.42)

®

then Eq. (4.38) may be written as

_ 2unl T o20+1 1 1 1
(r,0) 7 2. L. 20(L ¥ D) £p(01s8y) Pylcosd) =3
(62—61)(r2—rl) =1 ag

A(3:4)

20,
5.k, (r,7)k (o) + —;9 [i, (), 00k, (agr) + kz(rl,rz)il(aor)]) i

(4.43)
Substitution of Eqs. (4.30)-(4.35) in Eqs. (4.6)-(4.9) and the

results in Eq. (2.17) yields
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(1) ) 2unl 2 +1 1 1
A = (ehrD) gi1 22 ¥ DDy Py (61,0,) Py (cos)
2771’
n82
-——2- m kz(rl,rz)iz(alr) ’ (4.44)
2a’b a0
270
(2) _ 2unl T 22+ 1 1 1
e = Dy oby O F DD, Py (61289) Py (cosh)
271/
kz(rl.rz) : v '
——— | ~181 (012)k, (@)a) = B,i, (aya)k) (ay3)]
a~b
0
iz(azr) + [Blii(ala)iz(uza) - Bziz(ula)ié(uza)]kz(uzr) ,
(4.45)
(3) _ 2unl T 28 +1 1 1
A (r,0) = Y 2_r2)221 2 F D) Pz(el,ez) Pl(cose)
27V VT
k,(r,,r,) 2u
LM12T2 0. , o _
3 [ - 12(a0r) + Sikz(uor)] s (4.,46)
o
0
(4) _ 2unl T o2a+1 1 .l
A (r,8) = - )(rz-rz) Ly O Pl(el,bz) Pg(cose)
271
1 2o
;3 [Szkz(rl,rz) + — 12(rl,r2)]k2(u0r) . (4.47)
0

for the vector potential in the various regions due to a current 1 flow-

ing in a coil of cross sectional area (62—81)(r§—ri)/2. With Egqs. (4.43)-
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(4.47) any number of physically observable phenomena may be calculated.

Before attempting these calculations, however, we shall consider some

" limiting cases.

First let us suppose that the relative permeability of each region
1s unity and at the same time the conductivity of each region vanishes.

In this case, if we assume €, = EO for all i, Sz = 0 and

i
2 ( )
D, = ——o , 4,48
. 4Gga2b2
so that
(1) (2) 3) 2unl e 23+ 1
A (r’e) = A (r96) = A rle) = ———— P (6 s 0 )
o) 2Dy g1 20 ¥ D a2
1 k (r ,r2)
Pl(cose) ———;;E——— i (aor) (4.49)
0
(3,4) 2.nl S 29+ 1
AT (r,8) = ) pt (e »6,) pt (cose)
(8,-6,) (r-r2) 251 402+ 1) "o 172 mg
[il(rl,r)ki(aor) + ki(r,r )il(aor)] , (4.50)
(4) 2unl o 28+ 1
AY(r,8) = v pt (e 360 pt (cose)
(92—91) (r ) le e(e + 1) 1772
i (rl.r )
——-T— kl(aol‘) . (4.51)
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Another case of interest is that for which ul = 1 and ol = 0,

i.e., the case of a coil outside a spherical shell of thickness (b-a).

In this case

+ [aokz(azb)kh(aob) - szz(aob)kk(azb)][aoiz(aza)ii(aoa) -

Bzil(aoa)ii(aza)] - [Goiz(azb)ki(aob) - Bzii(azb)kz(aob)]

[Goii(aoa)kz(aza) - Bziz(aoa)ki(aza)] (4.52)
and
ky (@,b) 1, (a,b)
m | ——— ' , - ; ' — ———
Sy b2 [aoilﬂlza)iz(doa) Bzil(aoa)il(aza)] 3
D, b D2
Zuo
[Goii(doa)kl(dza) —Bzilﬁloa)ké(aza)] - —;—-iz(aob) + kl(aob),(4.53)
so that
1 2.nl b +
(62—61)(r ) z =1
.nBz
Sz L e (34
“Fo
© ] k (r.,r,)
2) _ 2unl 23 + 1 1 1 1’72

( -0 )(r2 =1 L aob
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—[aoii(aoa)kz(aza) - Bzil(aoa)ki(aza)]iz(azr) + [aoii(aoa)

il(aza) - Bziz(aoa)ii(aza)]kl(azr) , (4.55)
(3) 2unl v o202 4+1 1 1
AV (r,8) = ¥ TXOR) Pl(el,ez) P, (cosb)

2_2, -
(ez—el)(rz—rl) 2=1

kl(rl,rz) 2a0

3 [ = il(aor) + Slkl(aor)] , (4.56)
a
0
(3,4) ! 2unl 20+1 1 1 1
AT (x,0) 7 32 352 + 1) Py (81285) Py(coss) =

(6,-6,) (ry-r3) %

20
S,k, (r1,1,)k, (agr) + -;9 [4, Gy, D)k, (agr) + K, (r,r) 1, (a0

{(4.57)
A(4)(r,e) - 2unl ) gz + 1 Pl(e 6.) Pl(cose) 1
(6.8 )(rz_rz) i1 26( + 1) "2V 1727 Yy 3
2 1Y 2 "1 %q
2a0
[Szkz(rl,rz) +-—;— iz(rl,rz)]kl(aor) s (4.58)

where we have assumed €y = eo for all i.

Yet another interesting case is that of a coil outside a con-
ducting sphere, which we obtain by allowing a to approach zero in Eqgs.

(4.52)-(4.58):
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2unl - 22 + 1
2 2 ot 22(2 + 1)
(62—61)(r2-r1) f=]

A(z)(r,e) = Pi(el,ez) Pi(cose)

k (r,,r,)
21V 2y er) (4.59)
320, %2
0 2
((3) 2unl
A3 0y = 20 +1 .1 1
' (62—61)(r§—ri) 5L+ 1) Pi(8q00p) Fylcosd)

k (r,,r,) 20
212 0 . '
3 [ 12(a0r) + Szkl(aor)] , (4.60)
a
0
(3,4) . 2unl o2+l 1 1
AN (r,9) %G T D) Pz(el,ez) Pl(cose) 3

2 2. L
(6,-8,) (xy-r]) &=1 o

20
51k, (£,,1,)k, (057) # =2 T4, (r ), 0k (agn) + k) (r,r )1, a1

(4.61)
A® 0y = 2unl o2l plg ey Pl(cose) L
(6.-6 )(rZ_rZ) w1 25(2 + 1) 71720 Tk 3
2 71271 %0
2&0
[Sikz(rl,rz) + = il(rl,rz)]kz(aor) . (4.62)
where
1 2
'=_—n | _— .— K .
Sl [bZD' 1R(a2b) - 12(a0b)] : kl(aob) (4.63)
L

and
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Di = i (a b)k (a b) - BZii(a2b>kz(a0b> . (4.64)

and 0, =0

As expected, the same results are obtained if we let By = 1 2

in Eqs. (4.52)-(4.58).
At this point, we shall conclude our discussion of the vector
potential and turn to the calculation of some physically observable

phenomena.

The Voltage Induced by a Finite Current

Now let us suppose that another annular coil also bounded by
conical and spherical surfaces is placed inside the coil at hand. One
can then ask what is the voltage induced in this second coil., The answer
of course is easily obtained by use of Eq. (2.26) and Eq. (4.43). Sub-

stituting the latter in the former and performing the r and 6 integrations

yield
wunn'l T 22+
V= %8nw;nn 3 2% (% +11) Pl( 81289) 7, 2 (810 8) 13
(eé—ei)(ré —ri )(62—61)(r ~-r ) 2 1 oy
Sz 2a0
3 k (r )k (r Ty 'y + —= gz(rl,rz) , (4.65)
%0

where the primes refer to the second coil and where

r'

2 2

vy = f ' .

gz(rl,rz) R T [iz(rl,r)kz(aor) + kz(r,rz)iz(aor)]dr . (4.66)
Obviously, Eq. (4.65) is valid only when the second coil is in region

III-1IV.



If instead we place the second coil in region IV,
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then A in Eq.

(2.26) 1s identically equal to A(A)(r,e) given by Eq. (4.47), while if

the coil is placed so that part of it lies in region III-IV and the

remainder in region III, Eq. (2.26) becomes

L
J4mum’ ®2

V=
L] 12_ |2 '
(62 el)(r2 ) 6,

2 A(3)(r.e) dr +

1
r
2
sinb [j r
r'

1

r2 A(3’4)(r.e) dr] dg .

(4.67)

On the other hand, if we let B = 1 and o, = 0 and place the coil in

1

region I, then with Dy and S'Q given by Eqs. (4.52) and (4.53), respec-

tively, the induced voltage

V= j8nwunn'l

is

22 + 1 1

8

1 ] '2
©y=01) (ry

-0
[S k (rl,r ) + — - iﬁ(r

In each of the cases given by Egs.

' 2 _ 2_ 2 2
r )(62 el)(r2 rl) =1

2a
)]k (rl.r ) .

S+ 1) Tet®1082) Pz(

[}
O OV

(4.68)

(4.65)-(4.68), the mutual

inductance of the two coaxial coils is easily obtained by the use of Eq.

(2.35) from which we see that division of these equations by jwI is all

that is necessary.
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The Impedance of a.Finite Cross Section Coil

To effect the calculation of coil impedance (an extremely impor-
tant quantity), we must first determine the self induced voltage. To
this end, we substitute Eq. (4.43) in Eq. (2.28) of; equivalently, let
the dimension of the two coils in Eq. (4.65) become the same. Choosing

the latter alternative yields

2 o
- j8mwun”l 2 + 1 1 2 1
T o ) iR n g G B D Fepe]” 5
2771 YFah 0
S 20
2 2 0
;5 [kl(rl,rz)] +-—;— gl(rl,rz) , (4.69)
0

which we substitute in Eq. (2.42) to obtain

22 + 1

2
j8mwun 1 2
L 2@+ D [Py (6,,8,)]

2,2 2.2
(0,-6) " (r5-r1)* 2

Z =

i~ 8

) 2 2%
;3-[kl(rl,r2)] +— gz(rl,rz) (4.70)
0
for the coil impedance. For the case of a coil outside a spherical
 shell, the impedance is given by Eq. (4.70) with Dl and Sz given by Egs.
(4.52) and (4.53), respectively. On the other hand, for a coil outside
a sphere Eq. (4.70) yields the correct result if we replace Sz with Si,
which is given by Eq. (4.63).
Since it is conventional to normalize the impedance of a coil in

the presence of conductors by dividing by the magnitude of the impedance
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of the same coil in air, we write here the impedance of the coil in air:

2 © g, (r ,r,)
- j8rwun 28 + 1 1 0 Boifysto
Zair (e -8 )2(r2—r2)2 Q,E]_ 2(9’ + 1) [Pﬂ.(el’eZ)] 'n'az—‘ . (4.71)
2 1 271 0

The Power Dissipated by the Eddy Currents

We turn now to the calculation of the power loss due to the eddy
currents which are induced in the conductors. Let us assume that we are
interested in the power loss in region I. Substitution of Eq. (4.44) in

Eq. (2.54) gives

4nw2u20 nZI2

anmn o o
- 1 :
.= rry V[22+1 24" + 1 1
1 2 2_ 2.2 “ - f'_ 7 7 * P (6,,0 )
(6,-8) (5" O 0 2=1 =1 {2¢(k + D)D, 227 (4" + D%, 2172
2 B 2
1 1 1 - LU
pg,(el,ez) P, (cos) Py, (cos6) ———7 |53 kg(rl.rz)
4a'b la,a
270
K *5 i 6.0)%] rsinode d 4
2,(rl,rz) 12(alr)1l(ulr) r“sin6de dr . (4.72)

Carrying out the 6 integration and making use of Eq. (4.23) yield, upon

summing over &',

22 22 .
4ro”utoyn 1 5 20 + 1

2 2 2.2 %
(8,-0,)7(ry-r)" &=l 22(% + 1) |p]

_ 1 2
P, = 5 [P (87,85)]

2
o
4a4b4

By

2 a 9
2.2 ky(ry,ry) ;
2%0

R [xi(r) + yi(r)] dr ,  (4.73)
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where xl(r) and yl(r) are the real and imaginary parts of iz(alr),
respectively. Similarly, the power dissipated by the eddy currents in

region II is

22 2.2
4rwuTo, 0"l 2% + 1

(92'61)2 rg—ri)z =1 20(2 + 1)|D

2

ol
[ |

1
7 [23001,0)]
L

| 1 2b2_ . 2
Bbz'kl(rl,rz) [ x IQQiQ(aZr) + Rk, (a,1)| dr, (4.74)
lao a
where
Q, = -[Blié(ala)kl(aza) - Bziz(Qla)ki(“za)] (4.75)
R2 = Blié(ala)il(aza) - Bziz(ala)ié(aza) . (4.76)

In the event that o, = 0, then D2 in Eq. (4.74) is given by Eq. (4.52)

and % and Bl must be replaced with o in the above expressions for Q2

and Rz.

The Electromagnetic Forces on the Conductors

Due to the inherent axial symmetry of this problem, the net
electromagnetic force exerted on the conductors will be in the z-direction.
Therefore, in Eq. (2.62) we express the curl of the vector potential in

cylindrical coordinates and obtain

Fo = -5 duo, (1AM a0 L n® e, ar (4.77)

k
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since A¢ in spherical coordinates is identically equal to A6 in cylin-
drical coordinates. If we make use of the familiar formula of partial

differentiation,

9%
9 z j 9
— = -— (4.78)
Jx 3%, ox,
i 3 "1 3]
then we may write
] 9 9
FrY = ¢cosb 37 Si: 35 (4.79)

Substitution of Eq. (4.79) in Eq. (4.77) and integrating over ¢ yield
‘ *
Fi = nwoy [Jf A (z,0) %; (4% (r,6)1" rsino cose do dr

1A% e G ™ 0t sin26 do dr] . (4.80)

If we wish to know the time-averaged force exerted on the con-

ductor in region I, then k = 1 and the first integral in Eq. (4.80)

becomes
4u2n212 a m® o
6 -6 )2 (r2-r2)? o] oJr Kzl z'Z [2221 o el
- - = = F 3
(8,-8,)"(ry-r]) LE22CR+ 1Dy 9prigr + 1D, ,
2
1 1 1 1 nay | By |2
Pz(el,ez) PR,(el,ez) PQ, (cos8) P£| (cosb) ———4—4'—2—-5
4a'd azao

* *
kz(rl,rz)kz,(rl.rz) iz(aor)ii(alr) ]rzsin(acose de dr .

(4.81)

Use of the recurrence relation
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L1 L+1 1
Fe® T P @ are T P @ (4.82)

integration over © and summation over %' give

2 %

4u?n?12 T RE pLeo. 6.0k (o .v)
0.6 )2(:2:2)2 o271 saluip |a2a2| 2l 122k (FriT,
2771 h 21%2%
— L Bl 6,00k, (e e eyt *
® a1 V1Yl g4 (BT, rigfegmiy () dr
2(%+ l)Dl 0
+1
r—L Bl 6,00k, (riar)* T (ap)i' (@ r)*dr
* 2~1%71°27%~1"12"2 / 271 1 *
ZRDZ 0 -1
-1
(4.83)
On the other hand, the second integral in Eq. (4.80) is
4u’n?r? T [ 24 + 1 20141l
4 L K ’
(0,700 2 (2-c2)2 00 ge1 a= 1 L22CE F DDy 0 v L yp* A2
2 B 2
1 1 ) 1 7 2
Per(61585) Py (cos0) =5 Py (coso) 45|72 3| Ky (rpery)
4a’b |a o
270
Ko K 2
kz(rl,rz)vllxalr)lz,(alr) r sin"6d6 dr . (4.84)
In this case, use of the recurrence relation
- x2) Q_.pl(x) = £ﬁ;i;123.p1 (x) _.__&3__ PT (x) (4.85
dx g 28 +1 -1 T T R, +85)

integration over 6 and summation over 2' yield
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222 o 2 |8, |2
4un”I m 2 1
ETIPR TR N AT Py (01289)k, (r107))
27V ¥2™hy 270

L+ 2 1 x & *
2(% + 1)D2+1 0

2 -1 1 x 8
+ ———;——'Pl—l(el’GZ)km-l(alr) Ofr iz(alr)

NI dr] : (4.86)

Substitution of Eqs. (4.83) and (4.86) in Eq. (4.80) and use of

the recurrence relations

1),(2) = 1,(2) --&45—3 i,,1(2) (4.87)

mln.
N

and

() = 1,2 + 221, () (4.88)

to-1 z

Qalg.
[

give, upon simplification,

*
2 2.2 218, 2% a
- _ _Jrwson 1 u 2 ¢ 151
FL T T o222 2a%0 |a2ad| 251 D Py (810)k, (r)y75)
=0y (7T 2%0
1 1 * 1 .1
[(2 T oo Py 0000k (F15Tp) " + —5— By 1(8)495)
o+l &Dg_y

a
kl_l(rl,rz)*]of 2 (0) + yo ()] dr (4.89)
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for the net electromagnetic force on the conductor in region I, Of
course, the actual physical force is obtained by taking the real part of
this expression. |
A similar expression may be derived for the conductor in regiom
II; however, the degree of its complexity precludes its being given
here. Instead, we shall proceed to the subject of defects in the con-

ductors.,

Defects in the Conductors

From Eq. (2.67), the change in the impedance due to the presence

of a current defect in a conductor is
2
3 2%
AZ =3 VG33okw ( I ) , (4.90)

where the subscript k denotes the region in which the defect is located,
If we assume the conductor in region II to possess a defect located at

a point (r,0), then substitution of Eq. (4.45) in Eq. (4.90) yields

222
3va,, 0, w i n o k (r,,r,)
e — 2L ] EE%%7$'%75“ PL(618y) B (cose) Lz
2(0,-6,) " (x5-r )" g=1 ) b
2 °1 271 0
—[Blii(ala)kz(aza) - Bziz(ala)ki(aza)] +
2
P | . - o ]
[Bllz(ala)lz(dza) lez(ala)iz(“za)]kz(aza) (4.91)

for the change in the coil impedance. For the case in which o = 0 and

o= 1, i.e., a single spherical shell of thickness (b-a), Eq. (4.91)

reduces to
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222

3va, . 0.0 KU n o ' ' k (r.,r,)
332 20 + 1 1 1 2712
A7 = 20+ 1 plig gy Bl o(cost) ———
75 2.2 b T+ DD 41072’ 52
2(62-61) (r2 rl =1 aob

—[aoii(aoa)kl(aza) - Bziz(aoa)ki(aza)]iz(azr) +

[aoii(aoa)il(aza) —Bzil(aoa)ii(aza)]kl(azr) : (4.92)
with DL given by Eq. (4.52). Again similar expressions may be derived
for current defects located in region I.

In this and the preceding sections, a number of special cases
have been given for each quantity of interest. Those cases which have
not been treated are easily obtained by using the methods presented in
each section. Therefore, we shall proceed to another general case,
namely, an infinitely long straight wire between parallel, conducting

plates.



CHAPTER V
LONG WIRE BETWEEN CONDUCTING PLATES

The Vector Potential of a Delta Function Current

An infinitely long delta function current flowing in the z-
direction between parallel, conducting plates is shown in cross section
in Fig. 8. Due to the inherent rectangular symmetry, we choose to use
rectangular coordinates in solving the problem. Since the current flows
only in the z-direction, the x and y components of the vector potential
vanish, Examination of the first section of the second chapter shows us
that the vector potential must thus be a solution of Eq. (2.2) with
n = z. Replacing 3/0t with jw and writing the Laplace operator in

rectangular coordinates, this equation becomes
. 2
—2 + — - quioiA + uieiA + uIG(X*XO)ﬁ(y-—yo) =0, (5.1)

where A is the z component of the vector potential and where the last
term on the left vanishes except at x = Xgs ¥ = Yo*

Equation (5.1) may be solved by the method of separation of
variables which yields the general solution

-a.y

« . 0.y
A(x,y) = [ [a(a)e T+ bla)e t ][COSd(x—xO) + c(a)sina(x—xo)] da

0
(5.2)

where

92
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. 9 9 1/2
a, = {a“=w Wyey + jwuioi} (5.3)
and the subscripts refer to the region of interest. We shall require the
vector potential to remain finite at z = *= go that a(a) = 0 in region
VI and b(a) = 0 in region I, Furthermore, the fact that the vector
potential will be symmetric with respect to x - X, requires c(a) = 0 in

all regiona., Thus the solutions for the various regions are

A(l)(x,y) - ] al(a)e L cosa(z—xo)da , (5.4)
0
bt -G,y o,y

A(z)(x,y) = f[az(a)e 2 + bz(a)e 2 ]cosa(x—xo)da , (5.5)
0 .
© -Gy a.y

A(B)(x,y) = f[a3(a)e 0 + b3(a)e 0 ]cosa(x—xo)da , (5.6)
0 ,
° -y any

A(4)(X.y) = f[a4(a)e 04 b, (a)e 0 ]cosa(x—xo)da R (5.7)
0
* =a.y oy

A(S)(x,y) = f[as(a)e 4 bo(a)e > Jeosa (x-x)da , (5.8)
0

A(6)(x,y) =/ b6(a)e 6 cosa(x—xo)da . (5.9)

0
where the superscripts refer to the specific region and

1/2

o, = {az - wz/cz} , (5.10)

0

since regions III and IV are taken to be air.
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Now the boundary conditions are

AW ey = 4P ey

_1__3A(1)] =_1_3A(2)]
s % y=c, "2 i y=c,

A(Z)(xscl) = A(3)(xscl) ’

1 BA(Z)] ; &fi]
U, 3y = 9y -,
2 y=c, y=cq

A(3)(xay0) = A(A)(x,yo) ’

(3) (4)
3.1} -4 - uIs(x-x,)
3y oy H 0
y=y Y=Y,

A(A)(x)o) = A(S)(xﬁo) ’

‘BA(A)] =1_aA(5)]
y=

oy

Substitution of Egs. (5.4)-(5.9) in Egs. (5.11)-(5.21) yields

(5.

(5

(5.

(5.

(5.

(5.

(5

(5

11)

.12)

.13)

14)

15)

16)

18)

.19)

.20)

.21)
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® —aiC,
[ a,(a)e cosa (x-x,) da =
0 1 0

-a,C a,C

[ la,e > 2+ b (e 2?2 cosa (x-x,): da (5.22)
0

* 162
[ Bia (a)e cosa (x-x,) da =
0 11 : 0

-a,C a,C

Of BZ[aZ(a)e 272 _ bz(a)e 2 2] cosa(x—xo) da , (5.23)

a,C a,c

of [az(a)e_ 271 + bz(a)e 2 1] 60sa(x—x0) da =

=0 .C a.cC

f [a3(a)e 071 + b3(a)e 0 1] cosa(x—xo) da , (5.24)
0

o -a.c a,C

Of Bz[éz(a)e 271 _ bz(a)e 2 l] cosa(x*xo) do =
w -a.c a.C
f ao[a3(a)e "1 _ b3(a)e 0 l] cosa(x—xo) da , (5.25)
4]

@ ~-a,y gy
f [a,(a)e 0”0 + b, (a)e 0 0] cosa (x-x,.) da =
0 3 3 0
@ -y gy
f [a, (a)e 070 + b, (a)e 0 0] cosa (x-x,) do , (5.26)
0 4 4 0
® -Gy a.y
Of ao[a3(a)e 070 _ b3(a)e 0 0] cosa(x—xo) da =
P 0’0 *0%0
) ao[aA(a)e - bA(a)e ] cosu(x—xo) da + uIG(x—xo) , (5.27)

0
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0

f [a4(a) + b4(a)] cosa(x—xo) da =0f [as(a) + bS(a)] cosa(x—xo) da ,

(5.28)

Of ao[a4(a) - b4(a)] cosa(x—xo) da =0f BS[aS(a) - bS(a)] cosa(x—xo) do ,

a.c -a.C o -, ¢
570 + bS(a)e 3 0] cosa(x—xo) da = f b6(a)e 6

[ lac(a)e
0 3 0

© a.c -4.Cn ‘
—Of BS[aS(a)e 50 bS(a)e 3 0] cosa(x-xo) do =

! %%
f 86b (a)e cosa(x-x,) do ,
0 6 0

(5.29)

0 cosa(x—xo) do

(5.30)

(5.31)

where Bi = ai/ui. Multiplying Eqgs. (5.22)-(5.31) by cosa'(x—xo)

d(x-xo), integrating from -« to += and using the fact that

"o

=00

f') = l—f f (a) {f cosa'(x—xo) cosa(x—xo)d(x—xo)}

gives, after dropping the primes,

-a.C -0 ,C a,C
1% 22 2%2
al(a)e = az(a)e + bz(a)e ,
-0._.C -~ ,C a,C
1°2 2%2 2%2
Blal(a)e = Bz[az(a)e - bz(u)e 1,
-Gzcl a,C —'O.OCl a C:L

az(a)e + bz(a)e 21 a3(u)e + b3(u)e

da (5.32)

(5.33)

(5.34)

(5.35)
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=0,C

B,la,()e 2 - bz(a)eazcl] - ao[a3(a)e-aocl— b3(a)ea0c1] , (5.36
a3(a)e—a0y0+ b3(a)ea0y0 - aa(a)e_aoy0+ bA(a)eaoyo , (5.37)
a3(a)e-a0y0— b3(a)eaoyo - aa(a)e;aoyo— bA(a)eaoyo+ ;gi ., (5.38)
a,(®) + b, (a) = a (@) +bg(a) , (5.39)

agla, (@) = b, (@] = B.[a (@) - bo(@)] , (5.40)

a5(a) 04 bs(“)e-asco - be(“)e—&6co : (5.41)
eS[as(a)easco - bs(a)e—asco] - -B6b6(a)e-a6co . (5.42)

Equations (5.33)-(5.42) constitute a set of ten linear, inhomo-
geneous equations in ten unknowns. The methods of solving equations of
this type are well known and thus will not be given here. It is

sufficient to state that the solutions to Egqs. (5.33)-(5.42) are

(o~ )c
. il e 1 72772 eazcl (6.4 )e—a c a
1 2na0 Bl+62 270

y ey
0’0 0’0
Sle + Soe

s
Sy + QS

(5.43)



99

-0 .,C O.C

a,C
__ul 2°1 0°l, _ (a . 0°1
a, 4"“032 e [(32+a0)e Q (32 ao)e QOJ
el Tev 4 0Ny
5e 070 4 Spe 0°0
(5.44)
]
QlSO-+ QOSl
-0 ,C -0 . C a.C
__uI 2°1, . 0°1, _ 0°1
by " Tmags, ¢ LEde Y (8y%ag)e = Q]
-0y a.y
S.e 070 Sye 0°0
, (5.45)
leo +Qu5; ‘
~a,y any
Q,(S,e 0”0 + S.e 0 0)
a = ul 1'1 0 (5.46)
3 2ﬂa0 leO + QOS1
-0,y ANy
oI QO(Sle 0”0 + Soe 0 0)
b, = ~ s (5.47)
3 2ma g Q54 + QS
-a.y any
0 0’0
a, = = , (5.48)
4 2ﬂa0 QlSO + QOSl
-,y any
0 0
I SO(Qle Qye 0)
b , (5.49)
4 2ﬂa0 ‘QlSO + QOSl
-0y .y
. o e 0’0 _ Qe 0°0
a. = [(a +B)S, — (a,=B.)S.] R (5.50)
5 4ﬂu085 0 51 0 "5°70 QlS0 + QOS1
-0y .y
ul ) Qe 7o Qpe 0
b, = [ +B.)S, - (a,-Bc)S,] s (5.51)
5 4ﬂa085 0 "5°70 0 "5°71 QlSO + QOSl
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-a.y 0.y
. e—(as—a6)c0 Qie 0’0 _ Qoe 0’0
b, = [(¢ . +8.)S,. - (a.-B.)S.] s
6 2na0 85+B6 0 "5°70 0 "5°"1 QlSO + 9081
(5.52)
where
2a,(c,-c -2a,C
272 71 271
Q; = [(8;-8,) (B,-u0) + (B,+8,) (B4 )e e , (5.53)
2a(c2—c1
QO = [(81-82)(82+00) + (Bl+82)(82-a0)e 1, (5.54)
: 2a5c0
5o = (ao-Bs)(BS—B6) + (a0+85)(85+86)e , (5.55)
2a5c0

The Vector Potential of a Finite Current

The solutions given by Eqs. (5.4)-(5.9) with the constants given
by Eqs. (5.43)-(5.52) give the vector potential in the various regions
for a delta function current. The problem of a finite size wire carry-
ing a current I may now be solved by use of Eq. (2.14). It is very
important to note, however, that Eq. (2.14) does not present the complete
picture, for in the finite size wire case there exists a region which
was absent in the delta function current case, i.e., the layer of space,
parallel to the conductors, that coptains the wire. Following the format
established in the preceding chapters, this region shall be denoted by

ITII-IV and, as usual, will require special attention.
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At a point (x,y), in this regionm, the vector potential for a wire

of rectangular cross section is given by

w/2r y ,(3) L., (4)
(3,4) 1 AV (x,y) 2 AV (x,y) ]
A (x,y) = =7 ![—————d—dy+ 2 _2%0) gy | dx, »
RS T O T I i, 0 yf i o| “o
4
(5.57)

where w is the width of the wire and 22 - 21 its height. The explicit
dependence of A(3)(x,y) and A(a)(x,y) on X, and Yo is exhibited by Eq.
(5.46)-(5.49). Substitution of Egs. (5.6) and (5.7) with Eqs. (5.46)-

(5.49) in Eq. (5.57) yields

© /2
(3:4) _ ul L v el
A (X,}’) = an(lz_ll) of ao _w/'é COSQ(X xo)dxo
-a.y o,y
y S,e 0 0+ S.e 00 -a_y o,y
21 1 Q 0"1
=GNy 0Ny
iZ Qle 070_ Qoe 0"0 —aoy aoy
+ (s,e + S.e ~ )dy.|de , (5.58)
y Q50 * Q51 1 0 0

where the order of integration has been reversed. Performing the X and

Yo integrations and simplifying give

A(3’4)(x,y) = “E ) f 1 Sin(x%-cosax
2 17 0 ao
0
o L -a. 2 oy -0y
02 02 0 0
. (Q e + Qe )(Sye ~ * ;e )
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a. L -a . L o,y -0,y
(s Ot =50 TN T - g )
da . (5.59)

+
Q85 + QpS

To obtain the vector potential in the other regions due to a cur-
rent, I, flowing in a straight wire of cross sectional area w(22 - 21),

we substitute Eqs. (5.43)-(5.52) in Eqs. (5.4)-(5.10) and the results in

Eq. (2.14):
(1) uI 1 w
AV (x,y) = = ] sinos cosax
1Tw(2.2 21) 0 aa2 2
0
ad a. L -0, 2 ol
S (e 072 _ R 0 1) - 5. (e 072 _ e 0 l) —az(cz-cl)
0 1 e
U5 *+ %5y Bty
0% %% . "% (-ey)
[(B,+og)e Q - (Bymajyde Qle do ,
(5.60)
A(z)(x,Y) = ﬂw(lufl 3 ! ; sina% cosax
271" 0 2ua.B
072
A o~ -0 4 -a 4
s, (e 0"2 _ o1y _ s, (e 0"2 _ o',
QSp *+ QS
%5¢y anc —az(y-cl)
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-a,.c a.C a,(y-c;)
0°1 0-1 2 1
+ [(Bymag)e Q - (82+a0)e Qole do
(2) pI 71 W
A (x,y) = — f sina- cosax
1rw(9.2 21) 0 aaz 2
aolz aoll —aozz -aoll
S. (e -e ) - S, (e - e )
0 1
Q50 + Q5
=Q.y o~y
0 0
(Qle - Qoe ) da ,
A(A)(x,y) - - nw(zl—l ) / 12 sina% cosoax
271 0 oo
0
-~ L -a . oL oA
2 0 1
Q, (e 02 ¢ O Q, (e 02 _ 0
Q50 + Q5
-0y o~y
0 0
(Sle + Soe ) da ,
(5) uI T 1w
AN (x,y) = — J sinas cosax
’ ™ (Ly=41) o' 20028 2
0%2
-a. 4 -0 L oL a~d
2 071 072 0°1
g e “Z-e Thague®t-e®h
Q50 * 95,
_usy

[(ag*tB5)S; = (u,BS)Sy) e

(5.61)

(5.62)

(5.63)
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N Q y
5
- [(aO—BS)S1 - (a0+85)80] e da , (5.64)
: I W
(6) = - - / sinas cosax
A (x,y) nw(lz—ll) 0 aag 2 o
-a L -a .2 o2 L PNA
Qe 0% 0 4q 02 o0, 5%
Q5p + 45, By+g
9 (y+c0)
[(a0+85)So— (aO—BS)Sl] e da . (5.65)

With Eqs. (5.60)~(5.65) any number of physically observable phenomena may
be calculated. Before attempting these calculations, however, we shall
consider some limiting cases.

First let us suppose that the relative permeability of each region
is unity and at the same time the conductivity of each region vanishes.
In this case, if we assume Ei = EO

reduce to

for all i, then Q0 and S1 also

vanish while Ql and SO

2a.¢c,-4a .C
Q) = 4ole 02 01 (5.66)

20.¢
5 = 4a§e 070 (5.67)

so that

AV 0y = 4@ (x,9) = AP (x,y)

%of2 %oty oY

- ul f_3 ki e ~ e da ,(5.68)

= — ] sino— cosax(e
TrW(QZ 21) 0 aag 2
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A(3’4)(x,Y) = ﬂw(zl-l ) / 12 sina% cosax
2 7170 aao
-a,(%,-y) -a . (y=%.)
2-le 27 4 07 Mylaa, (5.69)
Ay = AP @y = 40 @y
*® -a L -a,. 4 a.y
-ty | Tr ey eos e P e Phe ¥ da, 670

0 aao

for an infinitely long straight wire of rectangular cross section.

Another case of interest is that for which ul = uz = 1 and

g, = = 0, i.e., the case of a straight wire above a two-layered con-

17 9%

ductor. In this case QO vanishes, and Sl are given by Eqs. (5.55)

S0
and (5.56), respectively, and Ql reduces to the value given in Eq. (5.66);

thus
2 3
Ay = APy + 4P ) =
© a L oL
ul f . W 072 071
sino= cosox [ (e - e ) -
ww(lz—ﬁl) 0 aa2 2
0
S P P -0y
—l(e 02 _ 0 l)] e 0 do , (5.71)
S
0
(3,4) ___ul ! w
A (x,¥) L2y J 3 sinaz cosax
2717 0 aa
0
-a,(2,-y) o, (y-2.,) S -a 4 ~a L. -a.y
2 - [e 0" 2 + e 0 _ 1 1- gl [e 02 _ e 0 l[e 0 do ,
0

(5.72)
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o -a,.% -0 L
(4) - uk 1 w 0*2 %01
AV (x,y) = - EETORE I sinos cosax (e e )
0
a.y S -0 .Y
€® +5te 7)) da, (5.73)
0
g -0, % -0 %
A(S)(x,y) = - ul [ 1 sinas cosax (e 072 _ e 0 l)
™ (29721 ¢ 20028 2
0"5
S oeyY
1 5
[(a0+85) - (aO—BS) EE] e -
51, o5
[(aO-BS) - (ao+85) EEJ e da , (5.74)
© -a. % -a .8
(6) o __ul 1 w %%2  "%o™1
AT (x,y) ETOR OI 3 sinos cosax (e e )
0
-a.c
5°0 S a (y+e,)
e 1l 6 0
B+, [(a0+85) - (aO—BS) SO] e da , (5.75)

where we have again assumed ey = 50 for all 1.
There are still other interesting cases, but we shall turn now to

the calculation of some physically observable phenomena.

The Voltage Induced by a Finite Current

Now let us suppose that another wire of cross sectional area
w'(lé - li) is placed between the plates parallel to the first one. One
can then ask what is the voltage induced per unit length in the second
wire. The answer, of course, is easily obtained by use of Eq. (2.31)

with n' = 1. For convenience, we shall measure the center-to-center
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separation, d, of the two wires along the x-axis; thus if the second wife
lies entirely within region III-IV, then substitution of Eq. (5.59) in

Eq. (2.31) yields

2cosad w

dv juwul [ w' ' ot
— = T - sinor sinam— | 2(2!-2
ds W (12 ll)w(lz 21) 0 azug 2 2 271
a. L - R a 2! a R} -onh) -0 %!
072 072 072 071 072 0™1.,.
_ (Qoe + Qle )[So(e - e )—Sl(e - e )]
%4(Q Sy *+ QyS;)
o 2 -0 L a‘L' a ! | -0 ) -0 8!
2 1
(Soe 071_ Sle 0 1)[Qo(e 072 e 0 1) + Ql(e 072_ e 0 )
+ da
%(Q S * QS;)
(5.76)

for the voltage induced per unit length of wire. Obviously, Eq. (5.76)
holds only if the wire is in region III-IV.
If instead we place the second wire so that part of it lies in

region III-IV and the remainder in region III, Eq. (2.31) becomes

] d+w'/2 4 [
& = T [fz A (1, yay + 24 (x,y)dy] dx , (5.77)
s WA dw'/2 2 %,

while if we let g = 1 and G = 0 and place the wire in region VI the

voltage induced per unit length is
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av Juwul ‘ 7 2cosod w w'
= = - T ~ sinow sino—
ds ™ (22 R,l)w(l2 21) 0 a2a8 2 2
-o £ -0 L oL PN A
02 071 072 071 -0..C
Q, (e - e ) + Qe -e " 7)) 50

Q59 + QS %5tEs

oy (yteq)
[(ay*B5)S, - (aO—BS)SO]e do , (5.78)

where Ql and Q0 are given by Egqs. (5.53) and (5.54), respectively,

2a5c0
0= (aO—BS)(BS—ao) + (a0+85)(85+u0)e . (5.79)

%2
I

2a5cO

w
|

1= (a0+85)(85—a0) + (aO—BS)(BS+aO)e (5.80)

Letting the two upper conductors recede to infinity and at the same time
letting d approach zero will yield the special case of two parallel wires,

separated by a distance (22 + 21 - Qé - Qi)/Z, with a conductor of thick-

ness <o between them. In this case, Eq. (5.78) becomes

® P A -0 L

dv Jwpl 4 . W w' 072 071
— = - T — J sino~ sinom— (e - e )
ds ™ (22 Ql)w(lz 21) 0 azag 2 2

(a +a.)c

-aoli —aolé Bse 05770
(e - e ) 2 da . (5.81)
%5
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In each of the cases given by Eqs. (5.76)-(5.81), the mutual
inductance per unit length is easily obtained by using Eq. (2.38) from
which we see that division of these equations by jwI is all that is

necessary.

The Impedance of a Finite Cross Section Wire

Another quantity of interest for this case is the impedance per
unit length of a wire. To effect the calculation of this quantity, we
must first determine the self induced voltage per unit length. To
this end, we substitute Eq. (5.59) in Eq. (2.31), or, equivalently, let
the dimensions of the two wires in Eq. (5.75) become the same and take

d = 0. Choosing the latter alternative and rearranging terms give

dv 4iwpl 7 2
i = : Jwh > f 5 sin oy (22—21)
™w (22—21) 0 «a ag
%%s “%oty %ty “%oy
Qoe + Qle )(Soe - Sle )—(QlSO— QOSl)

4 (QrSg + QpSy)

20 & 20 % -2a,.% 20, %
072 071 072 071
) QOSO(e + e ) QlSl(e + e )

ZGO(QlSO + QOSl)

do , (5.82)

for the impedance per unit length. For the case in which Egs. (5.71)-
(5.75) hold, i.e., a straight wire above a two-layered conductor, we

have
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%S = 24jwu y | 212 31“2“% [(22’21) + %‘
W (22—21) 0 o o, 0
—a. (L.-2.) S -0 L -a. 8, 2
[e 072 717 _ 1] + 2alS (e 0°2 _ e 0 1) ] da , (5.84)
0°0

where SO and Sl are given by Eqs. (5.55) and (5.56), respectively.

Since it is conventional to normalize the impedance of a coil in
the presence of conductors by dividing by the magnitude §f the impedance
of the same coil in air, we shall do the same for a straight wire. Thus

we write here the impedance per unit length of the wire in air:

. @ -0 (2 -2 )
gZ.= 24Jw“ s | 212 sinza% [(22—21) + %—-[e 0z 1]] da
S qw (22—21) 0 o o, 0

(5.85)

The Power Dissipated by the Eddy Currents

We turn now to the calculation of the power loss per unit length
due to the eddy currents which are ;nduced in the conductors. Since the
results are even more complicated thanrthose seen thus far, we shall com-
pute the power loss per unit length for only one conductor. Substitution

of Eq. (5.64) in Eq. (2.56) gives

EEE -1 o 2 ? ? ul 1 sina> cosax
ds 2 °5° _ 7| L mw(e,ag) ) raals o2
%o 0°5
-a. 2 -a. L ) a.f
072 071 072 071
Q, (e ~ e ) + Qe -e " 7)

Q50 + QS
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_asy st
([(ay+Bs)S,) - (ay-B5)Syle - [(ay-B5)S; - (agtB5)5,] e ) do
ul ‘ J' -1 'V '
-~ 7 8ina's cosa'x

[nw(zz 21) 0 Zaaoﬁs 2

) -a'% all all.
Qi(e 072 _ e 0 l) + Qé(e 072 _ R 0 l) . o

RN (Flag¥Bs)S] = (ag=85)So)
~a.y oty

5 ' ' 1 ' 1 ' 3 '

e - [(aO—BS)SlA— (a0+§5)so]e ) do ] dz dy , (5.86)

where the primes indicate that o = a' in the expressions for the constants.
Reversing the order of integration, using the Fourier integral theorem and

then integrating over a' yields

2.2.2

dP5‘= osw b ? A-l sinzaE
ds 2 2. 2 4 2
21w (22—21) 0 a aq
-l -0 A & oL oL
0 Ql(e 072 - e 0 l) + Qo(e 072 - e 0 l) ( 'asy
- [ [(a+B)S, - (a,=Bc)S,le
<, 2(Q, S, + QyS)Bs 07°5?°1 T %07"s’%0
2
asy

while the vy integration gives
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~0 R 0 R .l ol
= 2.2.2 0™2 0*1 o2 _ %011
dP5 ) 0w H I f 1 Sinzaﬂ- Ql(e - i ) + Qo(iﬁ e
ds  or?-2)% 0 aZa? 2 2(Q)8, + Qg1 )85
2771 0
2 e2x5c0"l 2
(ag*Bs)S, = (a-BS)S, —-2—;;—+ (0g=B5)S; = (ag+Bs)S,
- e—2x5cO
+2jy.c
(+B)S]*l—e 50—:][(ot—f3)S—(0t+B)S]
%0"*s57°0 2y, 0 "57°1 07°57°0
. e"zjysco_ L
[(ag+Bs)S, = (a5=84)S] ————352;———- da , (5.88)

where Xe and e are the real and imaginary parts of a

For the special case of a single conductor of infinite thickness, Eq.

5 respectively.

(5.88) reduces to

= 222 -a.L -0 &
dbg  Ogwud 1 2w (e e )
ds

2 2
™ (22—21) 0 a'a

which is of somewhat greater practical value.
Expressions similar to Eq. (5.88) may be derived for the power
loss per unit length due to the eddy currents in the other conductors,

but we shall consider next the electromagnetic forces on the conductors,
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The Electromagnetic Forces gg_the Conductors

We shall now make use of Eq. (2.64) to calculate the electro-
magnetic force on the conductor in region V. Taking the curl of
A(S)(x,y) yields

dF

2 - e [1a® e 6P ey, (5.90)

which, due to the axial symmetry, is in the y-direction. Substitution

of Eq. (5.64) in Eq. (5.90) and integration over x give

P A P A A oL 2
2.2 : 072 071 072 071
dF5 - jwcsu I j 1 SinzaE' Ql(e - e ) + Qo(e - e )
ds 21rw2(22—9.1)2 0 o’y 2 20Q)5q * Q051085
0 —0gy oy
—£ [(a0+85)sl - (a0-85)50]e - [(ao—ss)sl - (ao+35)so]e
0
-a.y .
5
(— as[(a0+85)81 - (GO—BS)SO]e - as[(do—BS)Sl -
a5y *
(a0+85)80]e ) dy da , . (5.91)
from which
0 R -Q .4 AL 0%
. 2.2 072 071 072 071,,2
dF5 . juogu I ? 1 sinzaﬂ. Ql(e - e ) + Qo(e - e )|
ds 27rw2(2,2—2,1)2 0 azag 2 2(Q;8 + Q5 )5 |
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~2%_C

* 21-e >0
+ 0!.5 l(aO—BS)Sl - (OL0+85)SO -v——'z—x's——'— -
o +8.)S +8.)s.1" e23y5°o_ 1
das [lagHs)8) = (agBISolllegrBs) S, = (aghEs)Sp) " ——p—
—23yse,
. ® *1 -~ e
- Jog [(OLO—BS)Sl - (a0+BS)SO][(a0+BS)Sl - (aO—BS)SO] 2y5 da,
(5.92)
where as before X and Yo are the real and imaginary parts of G5,
respectively. For the case of a single conductor of thickness o Eq.
(5.92) reduces to
. 2.2 - -a .2 -a .2
dF5 . chsu I I 2 Sinzaﬂ.(e 072 _ e 0 1)2 u*
ds 2 2 22 2 2 5
21w (22—21) 0 a%ay ISOI
2x_c
2x.c 570
2 570 2, e -1 . *
[lagts|” e - 1850y ]—TS——-~ j [(Bgmug) (Bota)
: _zysco . e2a5c0 ) e2x5c0
e ~ (Bgtay) (Be-ap) ] s da , (5.93)

where SO is given by Eq. (5.79). Letting o approach infinity yields

the semi-infinite plane case:

A 2.2 2 -a L -o 2
I L T O R O RN
ds (2292 0 o’ T e 2 4y 2 *57IY5) dd s
27%1 0 ¥l g5y M

(5.94)
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where He is the relative permeability of the conductor. From this and
the two preceding expressions, we see that the time-averaged force per
unit length is a complex quantity so that for purposes of comparison
with experiment only the real part of these expressions need be con-
sldered.

Again similar expressions may be derived for the electromagnetic
forces on the other conductors, but we shall omit them for the sake of
brevity.

In this and the preceding sections, a number of speclal cases
have been given for each quantity of interest. Obviously, a great many
other special cases still remain; however, these remaining special cases

are easily obtained by using the methods presented in each section.

Hence, we shall omit further discussion.



CHAPTER VI

CONCLUSIONS

The general theory for the vector potential produced by a sinu-
soidal current of finite cross section has been developed and applied
to several different current and conductor geometries: a coill between
a number of conducting plates; a coil encircling two, concentric,
spherical shells; and a straight wire between a number of conducting
plates. Linear, isotropic and homogeneous media have been assumed
throughout each analysis. 1In each case the Green's function solution
was first obtained, and the principle of superposition then used to
effect the desired result. A number of physically observable phenomena,
such as the induced voltage, the power loss due to the presence of the
conductors, the time-averaged electromagnetic force on the conductors,
et al., were subsequently calculated from the vector potential.

Each case is sufficiently general to allow the solution of a
considerable number of difficult electromagnetic induction problems since
special cases not contained in this dissertation may be obtained simply
by using the methods persented herein, TFurthermore, each of the
expressions for the physically observable phenomena is in terms of an
infinite integral or sum which may be readily evaluated on a computer.
In addition, several special cases contained in this dissertation have

been experimentally verified (19). Among these are the impedance of a

116
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coil above a single, conducting plate of both finite and infinite thick-
nesses, the electromagnetic force due to a coil above a conducting plate
of infinite thickness, and the induced voltage for two colls separated
by a conducting plate. In all cases, the agreement between calculated
and observed values is within the limits of experimental error. Pre-
liminary investigations of other special cases tend to support the
validity of the corresponding theoretical expressions.

Several obvious extensions of the present work are worthy of
mention. The first and most obvious is the extension of the experi-
mental observations to include each of the cases presented here.
Secondly, the effects of uniform motion of the conductors on the
impedance, the mutual inductance, the electromagnetic force, et al,
deserve investigation. Since the methods used in this dissertation are
not restricted to coils or wires having cross sections of a particular
shape, another possible extension is to the case of a coill of rectangular
cross section encircling two, concentric, spherical shells. Similarly,
an analysis of a straight wire of circular cross section between
several conducting plates might prove fruitful. Yet another possible
extension is to current densities which vary over the cross section of
the coil or wire, in which case one does not factor the current density
from the integrands of the integrals involved. The effect of non-
sinusoidal currents, particularly pulses, might also be fruitfully
investigated. However, these and many other extensions will be left to

future work.
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APPENDIX

LIST OF SYMBOLS

Symbols used in this work are given in the first column, while
the quantities they represent are given in the second column, The
corresponding meter-kilogram-second (MKS) unit, if any, if given in the
third column, and the dimensions in terms of mass (M), lemngth (L), time

(T) and electric charge (Q) are given in the last column.

Symbol Name MKS Unit Dimensions
weber ML
A vector potential meter TQ
B magnetic induction ¥eber M
meter TQ
E electric intensity volt M
meter 2
QT
F force newton M
2
T
I applied current ampere -%
iO applied current density éEREE% —95
meter TL
J current density éEREE% _QE
meter TL
h| square root of negative one
2
L inductance henry ﬁLE
Q
MLZ
M mutual inductance henry —
Q
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Symbol Name MKS Unit Dimensions
1 1
N turns per unit area 2 =3
meter L
n number of turns
MLZ
P power . watt =3
T
t time second T
2
v voltage volt EEE
QT
v volume of defect meter L3
2
y/ impedance ohm ﬁéi
TQ
ZN normalized impedance
3z
a current scattering matrix
3
B magnetic scattering matrix
. 2.2
€ dielectric constant farad I
meter 3
ML
henry ML
u permeability meter )
Q
2
o conductivity —mho Io_
meter 3
ML
angular frequenc S - i
w g d y second T
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6—25.
26.
27.
28.
29.
30.
31.
32.
33.

34—43.

45,

87.

88.

89.

90.
91-100.
101.

102.
103.
104.
105.

106.
107.
108.
109-110.
111-112.
113.
114.

115.
116-130.
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