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ABSTRACT

The general theory for the vector potential produced by a sinu

soidal current of finite cross section is developed and applied to

several different current and conductor geometries: a coil between a

number of conducting plates; a coil encircling two, concentric, spherical

shells; and a straight wire between a number of conducting plates.

Linear, isotropic and homogeneous media are assumed throughout each

analysis. In each case the Green's function solution is first obtained,

and the principle of superposition then used to effect the desired

result. A number of physically observable phenomena, such as the imped

ance, the power loss due to the presence of the conductors, the time-

averaged electromagnetic force on the conductors, et al., are subsequently

calculated from the vector potential. Each case is sufficiently general

to allow the solution of a considerable number of difficult electro

magnetic induction problems, while each of the expressions obtained for

the physically observable phenomena is in terms of an infinite integral

or sum which may be readily evaluated on a computer. In all cases for

which experimental measurements have been made, the agreement between

calculated and observed values is within the limits of experimental

error. Preliminary investigations of other cases tend to support the

validity of the corresponding theoretical expressions.
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CHAPTER I

INTRODUCTION

If a wire, carrying a time dependent current, is placed near an

electrical conductor, then electric currents are found to exist in the

conductor. These currents are commonly called eddy currents and are

said to be "induced" in the conductor by the current in the wire. The

production of these induced eddy current^ is due to a phenomenon called

electromagnetic induction and depends upcim parameters such as the elec

trical conductivity, magnetic permeability and dielectric constant of

the conductor. Each of these parameters, in turn, depends upon the

prior history of the conductor.

For example, the conductivity, permeability and dielectric con

stant of a conductor depend upon, among other things, whether or not the

conductor has undergone heat treatment, cold working and/or irradiation.

Furthermore, if the conductor has been treated with heat, cold worked

and/or irradiated, then these parameters will depend upon the quanti

tative aspects of each process. In fact, the conductivity, permeability,

and dielectric constant, and hence the production of induced eddy

currents, are sensitive to almost any physical change in the conductor.

Unfortunately, this sensitivity to almost any physical change makes the

application of electromagnetic induction to the determination of various

conductor properties quite difficult. An additional and more significant

difficulty, even in the absence of this sensitivity to physical changes,
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is the'mathematical complexity of any attempted theoretical analysis.

Nevertheless, the use of electromagnetic induction as a method of treat

ing materials, though often somewhat less than quantitative, began more

than ninety years ago when D. E. Hughes (1) used a pair of identical

coils to sort various materials which were placed between them.

After the work of Hughes and others in the nineteenth century,

theoretical and experimental work in the field of electromagnetic test

ing was practically nonexistent until the advent of World War II, at

which time the Germans undertook a systematic study of electromagnetic

testing. However, it was not until 1952 that electromagnetic testing

received aby wide recognition. In that year, F. FBrster and his

associates (2, 3, 4) published the first of an important series of papers

in which they treated the cases of a coil above a conducting plane and an

infinitely long solenoid containing a conducting core. In their treat

ment of a coil above a conducting plane, the coil was assumed to be a

magnetic dipole for reasons of simplification. In 1956 Waidelich and

Renken (5) used the method of images to obtain the coil impedance, which

for high,frequencies was in relatively good agreement with measured

values. Several years later, In 1959, Hochschild (6) extended the treat

ment of an infinitely long solenoid containing a conducting core to

include the eddy current distribution in the metal. At the same time,

H. L. Libby (7) published a theoretical analysis of a coil above a con

ducting plane. His treatment differed from earlier work in that the

coil was assumed to be a transformer with a network tied to the

secondary. This network representation gave results which were quite
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good when compared with experiment. Three years later, in a treatment

by Russell et al. (8), the effects of placing a ferrite cup over the

coil were considered by assuming the flux to be entirely coupled into

the conductor. Although their theory was semiempirical, the relatively

good agreement between calculated and measured values is worthy of note.

In the same year, 1962, P. R. Vein (9) presented a theory based

on a single loop of infinitesimal cross section while, a year later,

Atwood and Libby (10) were able to represent the diffusion of eddy cur

rent pulses in a manner analogous to Libby's earlier work. At the same

time, C. V. Dodd and W. E. Deeds (11) presented a paper detailing

relaxation methods for calculating the vector potential of a coil of

finite cross section. In 1964, Cheng (12) was able to calculate the

coil inpedance change due to the presence of the conducting plane. His

treatment, like that of Vein's, was based on a single loop of infini

tesimal cross section. M. L. Burrows (13), working from the same basis,

developed a theory for calculating the change in induced voltage due to

the presence of a flaw in the conducting plane. One year later, Dodd

(14) extended the relaxation theory that he and Deeds had published

earlier. In the early part of 1967, a report published by A. Philippe

(15) detailed, among other things, the calculation of the impedance of

a coil in the presence of a metal plate under pure alternating con

ditions. M. Onoe (16) , later in the same year, treated the cases of a

coil between two conducting plates, a coil encircling an infinitely long

rod and a coil inside an infinitely long tube. Although this treatment

was of major importance, it fell short of being realistic since the
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colls were assumed to be of infinitesimal thickness either in the axial

or radial direction depending upon the specific case. In addition C. V.

Dodd (17), a few months earlier, published a treatment of the first two

cases in which results were obtained for a coil of finite cross section.

In succeeding papers, Dodd and his co-workers (18, 19, 20, 21) extended

the theory to include many other cases and developed computer programs

to carry out the necessary calculations. This dissertation extends

their theory still further and treats some cases that have not been

treated heretofore.

For the induction problems considered here, the vector potential

is chosen as the field vector that specifies the electromagnetic field

of interest. Although the vector potential is somewhat easier to use

than the B or H field vectors, this choice is not entirely one of con

venience. The fact that the scalar potential is completely negligible

makes the vector potential an adequate representative of the electro

magnetic field. Solution of the differential equation for the vector

potential of a delta function current will be obtained for various con

ductor geometries, and the principle of superposition will then be

invoked to obtain solutions for currents of finite cross section. The

differential equation for the vector potential [Eq. (2.1), page 6] has

been derived from Maxwell's equations by Dodd (12). Linear, isotropic

and homogeneous media and sinusoidal driving currents will be assumed

in all cases. A number of physically observable phenomena, such as the

impedance, the power loss due to the presence of the conductors, the

effects of defects in the conductors, et al. will then be obtained from

the vector potential.
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The general theory for the vector potential, its superposition

and the observable phenomena will be developed in the next chapter In

succeeding chapters, this theory will be applied to several different

current and conductor geometries: a coil between a number of conducting

plates; a coil encircling two, concentric, spherical shells; and a

straight wire between a number of conducting plates. The MKS system of

units will be used in all cases. Note will be made where experimentally

verified solutions, obtained elsewhere (18, 19, 20, 21), are special

cases of the solutions obtained in this dissertation.



CHAPTER II

GENERAL THEORY

The Vector Potential

The more orthodox methods for solving electromagnetic induction

problems involve the use of B or H field vectors. However, we shall

choose the vector potential, A, as the field vector that specifies the

electromagnetic field of interest. Once the vector potential for a.

given current distribution and conductor geometry is known, we may

readily calculate any physically observable phenomenon from it. If we

make use of the Coulomb gauge (V-A - 0), then for linear, isotropic,

homogeneous media the differential equation for the vector potential is

"*" 2-*"'V2I- -UJ +ua|A+Mei_| , (2§1)
3t

-*•

where iQ is the source current density, jj is the permeability, a "is the

conductivity and e is the permittivity.

Since we shall be concerned with problems involving rectangular,

cylindrical or spherical symmetry, it will be beneficial to express Eq.

(2.1) in each of the pertinent coordinate systems. In rectangular

coordinates (x, y, z) , Eq. (2.1) becomes

2 9A 92A
V An = "Mi0 + M° 17 + U£ 2 (n = x> ?» z) » <2'2>

n 2t

while in cylindrical coordinates (r, 0, z), it becomes

2 Ar 2 3AQ dA ^A
VAr " ~1 ~~2 ~W =-yi0 •+M0 if +ye 1 <2'3>

r r r at:



AQ , 3A 3A. 32A
r r 6 °t

3A 32A
V2A - -pi. +u0.-5~+ue f . (2.5)

Z U ot _ Z
Z ot

On the other hand, in spherical coordinates (r, 8, <j>), Eq. (2.1) is

dA

v2A -Vr -~T— ^(sin9 V "~2—T "if =r r r sine r sxnO

3A 32A

- ylo +ljaif+VJET^ (2,6)r at

2 A6 ,2 <)Ar 2cosQ j% _
Ho " 2,2/ 2 30 2.2,, 3cf,

0 r sin 6 r r sin 6

3A 32A
-Mi. + ya -r- + ye 1 (2.7)

°6 3t 3t2

<* A* , 2 3Ar ,2cose 3Ae
T\ - 2 . 2a + 2 .Q 9<f> 2.2 34)

v r sin 8 r sin8 r sin d

3AA 32A,
-yin + ya -^-+ ye 1 , (2.8)
% 9t 3t2

where, of course, the Laplace operators must be expressed in the appro

priate coordinates.

For the most part, Eqs. (2.2)-(2.8), particularly the latter ones,

are quite complex; and thus any simplification would be welcome. There

fore, we shall assume the time dependence of the current density to be

sinusoidal, which is not overly restrictive since any time-dependent
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current may be expanded as a Fourier series in time. With this

assumption, the vector potential will also vary sinusoidally with time.

If we write IQ -itf and 1 =X'e"''^, then upon substitution in Eq.

(2.2) we obtain

„2k , jut ., jwt . . ., jut 2 ., jut ,0 oS
V A'eJ - -yi' eJ + jwyoA'eJ - u> yeA'eJ , (2.9)

n U n . n
r

which we divide by e and drop the primes to get

V2A - -ul. + jupoA - oi2yeA . (2.10)
n 0 J n n

Comparable results are obtained for the cylindrical and spherical

coordinate cases simply by replacing 3/3t with jui in Eqs. (2.3)-(2.8).

We shall make the further simplifying assumption that the current

density is that of an infinitely thin wire carrying a current, I, which

shall be referred to as a delta function current. In this case, the

total vector potential produced at a point P by the superposition of n

geometrically similar delta function currents may be written as

n

A(P) = I I Of). (2.11)
i-1

If we let the delta function current, I, approach a continuous current

distribution of density i0, then the vector potential due to this cur

rent will also approach a continuous distribution. Denoting the density

of this vector potential distribution by A„, we can write the integral

form of Eq. (2.11):

A(P) = // AQ(P) d(area), (2.12)
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where the integration is taken over the area through which the current

passes.

Since A (P) is proportional to iQ, it will prove useful for cases

in which the delta function currents all have the same magnitude and

phase to express Eq. (2.12) in terms of the current density. To this

end, we multiply the integrand by iQ/i0 and assume a uniform current

density obtaining

A(P) =iQ H -j— d(area), (2.13)

which for a straight wire of finite cross section may be written as

X>) . J . ,// -J d(area), (2.14)
(cross section) iQ

where I is now the current in the wire and is related to iQ by the

approximation

. I
0 (cross section)

On the other hand, for a coil such as shown in Fig. 1, having n turns each

carrying a current I

i « E* , (2.16)
0 (coil area)

so that

1(P) = *>! ^^ jj -J d(area). (2.17)
v ' (coil area) J" i

Once the vector potential has been calculated for a particular

delta function current and conductor configuration, the vector potential

produced by a finite size current may be obtained simply by allowing the
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Figure 1. A rectangular cross section coil.
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delta function current to approach the current density iQ and making use

of Eq. (2.14) or Eq. (2.17).

The Induced Voltage

The voltage induced in a length of wire ds is given by

dV - -E-ds , (2.18)

where E is the electric field intensity. We may write Eq. (2.18) as

4^- -Ecos y , <2'19>
ds

where Y is the angle between E and ds. Now since

I=_|| =_jaJA , (2.20)

Eq. (2.19) becomes

4— = ju)A cos Y• (2.21)
ds

Thus, for a straight wire parallel to A, the voltage induced per unit

length is

d^=jUJA. (2.22)
ds J

Now for an axially symmetric coil with a single loop of radius r,

Eq. (2.22) integrates to

V = ju2nrA , (2.23)

from which we deduce that the total voltage induced in a coil of n' turns

is
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n

V = j27ra) I r A . (2.24)
1=1 x x

If we assume the coil to have N' turns per unit cross sectional area,

then we may approximate Eq. (2.24) by

V~ j2iru> // N'rA d(area)' , (2.25)

where the integral is taken over the cross section of the coil. For

coils which have a constant N', Eq. (2.25) may be written as

j27TO)n' re
V = (coil area)' » rA d(area)' , (2.26)

where n' is the number of turns on the coil. Inserting the vector

potential from Eq. (2.17) in Eq. (2.26) yields

AQ(P)

[0~

for the voltage induced in a coil (with primed parameters) by a current,

I, flowing in a coaxial coil. For the special case of the self induced

voltage, Eq. (2.27) reduces to

j27ru)nn'I ,,,, Ao(P)
(coil area) (coil area)' "" r "I d(area) d(area)' (2.27)

j27ro)n2I ,{,, AQ^ .V. _j jjjj r d(area) d(area)* , (2.28)
(coil area) o

where the areas of integration are identical.

Similar expressions may be derived for the case of a straight

wire. From Eq. (2.22) we deduce that the total voltage induced per unit

length in n' closely packed, parallel wires is

dV A V Ads" Ja) ±£1 Ai • (2.29)
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If we assume that there are N' wires per unit cross sectional area, then

we may approximate Eq. (2.29) by

~* Ju // N' A d(area) , (2.30)
ds

where the integral is taken over the area through which the wires pass.

For the case of a constant N', we may write

^-r1^// Ad(area) , (2.31)
ds (area) ''

where n' is the number of wires and (area)' is the area through which

the wires pass. Inserting the vector potential from Eq. (2.14) in Eq.

(2.31) gives

A (P)
dV Jan'I JJ//JL_ d(area) d(area)' (2.32)
ds (area)'(cross section) ,,,i iQ

for the voltage induced per unit length in n' parallel wires by a cur

rent, I, flowing in a single wire. For the special case of the voltage

induced in one wire by the current in another, Eq. (2.32) becomes

A (P)

iY. .- t-^tt rr-T //// Jf— d<area> d(area)'»ds (cross section)'(cross section) JJJJ iQ

(2.33)

where the areas of integration are the cross sections of the two wires.

The self induced voltage per unit length is obtained from Eq. (2.33) by

integrating over the cross section of the wire twice.



14

The Mutual Inductance

The voltage induced in a circuit (with primed parameters) by the

current, I, flowing in another circuit is given by

v"Mf£ •JwMI » (2-34)

from which the mutual inductance, M, is

M*j^l • (2.35)

Substitution of Eq. (2.27) in Eq. (2.35) gives

27rnn, • AQ(P)
M"(coil area) (coil area)' M/ *Ijj- d(area) d(area)' (2.36)

for the mutual induction of two coaxial coils.

For straight wires, Eq. (2.34) yields to the more appropriate

form,

S-^f- <»»

from which we see that the mutual inductance per unit length for two

straight wires is

dM _ J^_ dV
ds " Jul ds * (2.38)

Substitution of Eq. (2.33) in Eq. (2.38) gives

dM 1 , ,,,, Ac/P^
ds = (cross section)' (cross section) "" "T~~ d<area> d(area)'

(2.39)

for the mutual inductance per unit length of two straight wires.
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The Self Inductance

Rather than start with the defining equation for self inductance

and proceed to develop an expression for the self inductance of a coil,

we recall that the self inductance is just a special case of the mutual

inductance. In Eq. (2.36) we let the two coils be identically the same

and drop the primes to get

2 A (P)
2im //// r-j d(area) d(area)' , (2.40)

u 2
(coil area) 0

where the areas of integration are the same.

Similarly, for a straight wire, the self inductance per unit

length is

dL 1 ^////-j d(area d(area)' , (2.41)
(cross section) 0

where the areas of integration are again the same.

The Impedance

From the nondestructive testing point of view, the impedance of

a coil is one of its most important characteristics. This impedance is

a generalization of Ohm's law:

Z=\ . (2.42)

Substituting Eq. (2.26) in Eq. (2.42) yields

z. j2TTom ff A d(area) (2.43)
L (coil area)I i4
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for the impedance of a coil. From a practical standpoint, the impedance

of a coil in the presence of a conductor proves more useful if it is

normalized by dividing by the magnitude of the impedance of the same

coil in air. Thus we define the normalized impedance of a coil by the

relation

z .Conductor ^ (244)
'Zairl

in which we substitute Eq. (2.43) to obtain

j // rA d(area)
7 _ conductor ' ,n ,r.
zn ~TTt ;— (2°45)I // rAa±r d(area)|

for the normalized impedance of a coil in the presence of a conductor.

On the other hand, we can write Ohm's law as

dz 1 dv ,« ,,,
dT-Tds- <2'46>

for the case of a straight wire. Substituting Eq„ (2.31) in Eq. (2.46)

gives

T~ = / ^ "nt II A d(area) , (2.47)ds (area)I '4 ' k^^ij

which is just the impedance per unit length. The normalized impedance

per unit length of a straight wire in the presence of a conductor is

defined in a manner analogous to Eq. (2.44):

dZN _JU Conductor d(area>
I// Aa.r d(area)|
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The Dissipated Power

We turn now to the calculation of the power loss due to the eddy

currents that are induced in the conductor. For fields that vary sinu

soidally with time, the time-averaged power loss per unit volume in the

k conductor can be written as

where the bar denotes an average over time. However, assuming as we

have that Ohm's law,

\ - «A • (2-50)

is true, the time-averaged power loss per unit volume may be written as

K 1 •* •**
o, E, .E,

dv 2 k k k

- £ \ \i • <2-51)

From Eq. (2.20), we have

\ " "jajAk ' (2.52)

so that

^ =£v2i\i2- (2-53)
With Eq. (2.53), the total time-averaged power loss in conductor k is

pk =lv2//i i\i2dv. (2-54)
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where the integral is to be taken over the k conductor. The total

power loss due to all the conductors present is just

P - I P\ , (2.55)
k K

since the power loss is additive.

For straight wires, a more useful quantity is the total time-

averaged power dissipated per unit length by the eddy currents in a con

ductor:

ds 2 wk'
-\ ak">2 // IaJ2 d(area) , (2.56)

where the area of integration is that through which the eddy currents

pass* Of course, the total power loss per unit length due to all the

conductors present is just

£-*-£• <2-">k

where the sum is over all conductors.

The Electromagnetic Forces

Another quantity of extreme importance, particularly in the

process of magnaforming, is the net force on a conductor. If we consider

the permeability of each conductor to be spacially constant and neglect

the radiation pressure, then the time-averaged force per unit volume

exerted on the k conductor is

d*\

~d7"2J-x'B • (2-58)
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for fields that vary sinusoidally with time. However, remembering that

J aV^ (2.59)

and making use of Eq. (2.50), we can write Eq. (2.58) as

->•

^-io, £ x(V xI)* . (2.60)
dv 2 k k V

Substitution of Eq. (2.52) in Eq. (2.60) yields

->

^.-1^.(7.$. (2.61)

so that the total time-averaged force on conductor k is

^--l^kM \ *<V x0 dv • (2'62)

where the integral is to be taken over the k conductor. The net force

on all the conductors will, of course, be given by the vector sum of all

the forces:

F" = T 1 . (2.63)
k k

However, a much easier method of calculating the net force on all the

conductors is to calculate the net force on the current carrying con

ductor and then invoke Newton's third law.

Again for straight wires, a more useful quantity is the total

time-averaged force per unit length on a conductor:

ft- I,
ds 2

juia II A** (V * A^) d(area) , (2.64)
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where the area of integration is that through which the eddy currents

pass. An expression similar to Eq. (2.63) also holds for the net force

per unit length. For the sake of clarity, it is worth noting that both

Eq. (2.62) and Eq. (2.64), in the general case, involve complex quanti

ties so that when comparison with experiment is being effected only the

real part of the force is of interest.

Defects in Conductors

The detection of a defect and the subsequent measurement of its

size are of extreme interest in the field of nondestructive testing.

M. L. Burrows (13) has promulgated a theory of eddy current flaw

detection in which a small defect is approximated by the sum of a "cur

rent defect" and a "magnetic defect." Abrupt changes in the electrical

conductivity and the magnetic permeability, respectively, give rise to

these two types of conductor defects. The conditions imposed upon the

size of the defect are that its dimensions be small when compared with

the distance of the defect to the nearest conductor boundary and that it

be sufficiently small for the incident field to be considered uniform

over the defect.

When eddy currents are used to perform tests on conductors, one

effect of a defect is to scatter the incident field. The first defect

size restriction has the advantages that the defect will appear as a

point source of the scattered field and only the dipole terms of the

scattered fields will be significant. With this in mind, Burrows arrives

at his Eq. (5.12) in which we substitute Eq. (2,52) and Eq. (2.59) to

obtain
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2d hh a uj • a'
y

'v x L
(2.65)

for the voltage, due to the defect, induced in coil 2 by a current, I,

flowing in coil 1. In this equation, A is the vector potential at the
-* -+

defect produced by a current, Ifc, flowing in coil k; aand Bare the cur

rent and magnetic scattering matrices, respectively; and v is the volume

of the defect.

Let us first consider current defects. In this case, the second

term on the right hand side of Eq. (2.65) vanishes, and we write the

remainder as

vo. (2.66)

where the quantity va depends only on the size, shape and orientation,

with respect to the incident field, of the defect. The remainder of the

right hand side of Eq. (2.66) depends only on the problem parameters,

such as coil size and shape, frequency and conductivity, and will be

referred to as the defect sensitivity factor.

If we specialize to the case of axially symmetric coils, Eq.

(2,66) becomes

V

if =[V\J (2,67)

where k = 2 in cylindrical coordinates and k = 3 in spherical coordinates,

Since the quantity tx depends only on the shape and orientation of the
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defect, it will be referred to as the current shape and orientation

factor. If we assume a spheroidal defect, as shown in Fig. 2, we have

2 2

\k " a2 COS * + aT Sin 4 (2.68)

where 4> is the angle between the 8 direction and the symmetry axis of

the spheroid. The quantities a and a are defined by the relations

(13)

where

aL =f [l-ad/a](1-t1-ad/a]u2"l3[2 ln 5-1
- 1])

-1
(2,69)

for b/a < 1

aL =| [l-ad/a](l-[lTad/a][S2+l][l-e tan_1(l/0 D"1 (2.70)

aT =I ^-ad^a^2-[l-ad/a]iU- \ (52-l)ln 'm1

for b/a > 1

])_1 (2.71)

for b/a < 1

aT =j [l-ad/a](2+[l-ad/a]U2-ai+£2) tan_1(l/0]) ± (2.72)

for b/a > 1

5 -

a •

b =

a =

2 -1/2
|l-(b/a) j = asymmetry parameter,

symmetry semiaxis,

semiaxis perpendicular to symmetry axis,

electrical conductivity of metal,

electrical conductivity of defect.
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Frequently, the electrical contact between the defect and the

surrounding medium is less than perfect which results in an effective

defect conductivity of zero. Figure 2 shows the behavior of the current

shape and orientation factor for non-conducting spheroids of various

orientations as a function of the ratio b/a. If we let a approach zero,

2
the spheroid becomes a flat disk of radius b; and its volume (4irb a/3)

approaches zero in such a way that the product va, , approaches the value

3

Vakk =—9~ C0S ** (2.73)

since a approaches zero and a approaches infinity.
T Jj

For defects of other shapes, there exist equations similar to

Eq. (2.68) and the subsequent ones; thus we can calculate the effect of

a defect in a conductor. It is also worth noting that, when the two

coils are the same, Eq. (2.67) is just the impedance change due to the

defect, which is relatively easy to measure.



CHAPTER III

COIL BETWEEN CONDUCTING PLATES

The Vector Potential of a Delta Function Current

A circular, delta function current having several parallel, con

ducting plates both above and below it is shown in Fig. 3. Due to the

inherent axial symmetry, we choose to use cylindrical coordinates in

solving the problem. Since the current flows only in the 6 direction,

the" r and z components of the vector potential vanish. Perusal of Eqs.

(2.3)-(2.5) shows us that the vector potential must thus be a solution

of Eq. (2.4). Replacing 3/3t with jto and writing the Laplace operator

in cylindrical coordinates, this equation becomes

1A +1|A +1A_A_ A+ 2e A+ yi6(r-r )5(z-z ) = 0,
_2r3r~22Jii ii u u
dr °z r

(3.1)

where A is the 6 component of the vector potential and where the last

term on the left side vanishes expect at r = rQ, z = Zq.

Equation (3.1) is amenable to solution by the method of separation

of variables which yields the general solution

°° -a. z a. z

A(r,z) =/ [a(a)e 1 +b(a)e 1 ][J1(ar) + c(a) Y^ar)] da ,
0

(3.2)

where

ai
2 2

a -coy.e.+jojy.a.
11 1 1

25

1/2
(3.3)
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Figure 3. A delta function current between conducting plates.
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and J1 (ar) and Y (ar) are the first order Bessel functions of the first

and second kind, respectively. We shall require the vector potential to

remain finite at r - 0, r - » and z - ±» so that c(a) = 0 in all regions

while a(a) - 0 in region VIII and b(a) =0 in region I. Thus the

solutions for the various regions are

00 —a z

A(1)(r,z) =/a (a)e ° J (ar) da ,
0 X

/o\ °° "asz aSZ
A(2}(r,z) = / [a„(a)e D + b_(a)e D]J (or) da ,

0 l

-a.z
4

a, z
4AU;(r,z) =/ [a (a)e * + b3(a)e H] J^ar) da ,

A(A)(r,z) -/ [a (a)e U +b^(a)e u]J1(ar) da ,
0

"V V

f*\ °° "anz anzA(5)(r,z) =/ [a5(a)e U +b5(a)e U]J^ar) da ,

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

°° -a, z a, z

A(6)(r,z) =I [a6(a)e X+b^e 1]J^ar) da , (3.9)

oo -a z a z

A(7)(r,z) = I [a (a)e l + b (a)e J ]J.,(ar) da ,
0

A(8)(r,z) =/bg(a)e J J^ar) da ,
a3z

where the superscripts refer to specific regions and

2 u
a --^

c J

1/2

since regions I, IV and V are taken to be air.

(3.10)

(3.11)

(3.12)
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Now the boundary conditions are

(1)(r,tj - A(2)(r,tJ ,

(1)
3A

(2)
1 3A

3z
z=t.

M5 3z
z-t.

A(2)r,t2) -A(3)(r,t2) ,

(2)
1 3A

(3)'
1 3A

y5 3z
z-t.

yA 9z
Jz-t,

A(3)(r,tl) =A(A)(r,tl) ,

(3)
1 3A 3A

(4)'

y4 9z 9z

Jz=t, Jz™t1

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

A<4>(,-,zQ) =A(5)(t ,*'<0> • (3.19)

9A<4^ r- aA<5)l - uI6(r-V • (3.20)
3z 9z

Jz-z0 Jz=zQ

A(5)(r,0) =A(6)(r,0) , (3.21)

3A<5>] .1 3A<6>1
>

z=0

(3.22)
3z y. 3z

z=0 X

A(6)(r,-cL) =A(7)(r,-c1)

1 3A
(6) (7)

1 3A

Vx 3z
Jz=-c,

y2 3z
JZ's-C,

(3.23)

(3.24)
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A(7)(r,-c2) =A(8)(r,-c2) , (3.25)

1 9A<7)
y2 9z

1 9A
(8)

JZ"-C,

y3 9z
(3.26)

Jz=-c,

Substitution of Eqs. (3.4)-(3.11) in Eqs. (3.13)-(3.26) yields

-at °° '^^-x ashI ax(a)e ° 3J1(ar)da =J [a2(a)e J +b2(a)e 3 J] J^ar) da , (3.27)

-a„t

- jaa (a)e ° 3 Jn (ar)da = - / B[a (a)e
Q 0 1 1 0 ^ z

at a t3
* - b2(a)e ° J]Jx(ar) da ,

-at at

| [a2(a)e * l +b2(a)e 3 Z] J^a^da =
0

00 —Ct t Cc t

/ [a3(a)e 42+b3(a)e 42]J;L(ar) da ,
0

-at a t„

" lMa9(a)e ~ Ma)e ]J,(ar)da -
0 ^

-a t„ a t„

- /B4[a3(a)e * Z- b3(a)e * ^J^ar) da ,

/ [a3(a)e * + b3(a)e JJ^r) da -
0

""oh "oh,/ [a. (a)e U X+ b,(a)e U X]J. (ar) da ,

-at. at

/34[a (a)e - b3(a)e * ^(qr) da -

_aoh aoti- /a [a4(a)e - b^(a)e ]J1(ar)-da ,

(3.28

(3.29)

(3.30)

(3.31)

(3.32)
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/ [a4(a)e ° ° +b4(a)e ° °]J1(ar) da

J [a5(a)e uu+b5(a)e U°]J1(ar) da ,

-a„z. a«z.
f r / \ 0 0 ,_ , s 0 0- Ja0[a4(a)e L '-*-- b^(a)e ]J1(ar) da -

0"0 t /-A.Vo

(3.33)

-a«z

- / aQ[a5(a)e U - b5(a)e UU]JJL(ar) da - yI6(r-rQ) , (3.34)

/ [a5(a) +b5(a)]J1(ar) da - / (a6(a) +b6(a)]J1(ar) da , (3.35)

- / aQ[a5(a) - b5(a)]J1(ar) - - / 6^(0) - b6(a)]JJL(ar) da , (3.36)

o» a c "Cx c

/ [a6(a)e Xx+b6(a)e x 1]J1(ar) da

°2C1 . , , , "Vl,/ [a7(a)e x+b?(a)e ' i]J1(ar) da ,

00 tt C mmQt C

- J B1[a6(a)e XX- b6(a)e l 1]J1(ar) da

00 a c —a ca2Cl , ,_.,_ °2C1,

(3.37)

- / 82[a7(a)e z - b?(a)e l ^J^ar) da , (3.38)

°2C2 , t #_x.-a2c2,, ,._, .. r. , . "°3C3,/ [a (a)e + b7(a)e Z]J. (ar) do - / bft(a)e J J]J.(ar) da , (3.39)
0 ' ' A 0 8 x

hh- / B0[a_(a)e ' ' - b_(a)e * *]J (ar) - - / -B, bfi(a)e J h, (ar) da ,
0 ' -1 0

(3.40)

-°2C2, "a3C2,
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where B -a/u±. Multiplying Eqs. (3.27)-(3.40) by J1(a'r)r dr, inter-

grating from 0 to °° and using the Fourier-Bessel integral

CO 00

f(a') - / f(a) /J (a'r) J^(ar) ar drda (3.41)
0 0

gives, after dropping the primes,

-a t, ~a5t-\ a5C3ai(a)e °3-a2(a)e +b2(a)e (3.42)

-V, _a5t3 a5t3 ,-x ,->\Vl<°>e ° 3- B^^e 53- ^b^e , (3'43>

a2(a)e-a5h +b2(a)eV3 =a3(a)e"a4t2 +b3(a)eV2 , (3.44)
-a t act9 _aAt2 a4t2^5a2(a)e 52- ^COe - B^cOe - B4b3(a)e >

(3.45)

at- ar —a t ^r^na3(a)e" 4X+b3(a)e 4X=a4(a)e °X+b4«Oe °' . (3-46)
-a t a,t, "aAti antiB4a3(a)e 41- 8^). 4X- aoa4(a)e °X- aQb4(a)e , (3.47)

Va)e-V° +̂ .Vt) . a5(a)e-%Z0 +̂ j.Vo § (3.48)

an "anz0 a0 aOzO a0 , ~Vo S0,n aOzO
4 a4<a>e - "ST b4(a)e = a a5(a)e ' ~ b5(a)e

+ yIr0J1(ar0) , (3.49)

a5(o) +b5(o) =a6(o) +bfi(a) , (3.50)

aQa5(a) - a^a) =B^a) - B^a) , (3.51)
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alcl -aicia6(a)e XX+ bg(a)e l X a2Cl "Via?(a)e "+ b?( )e

hh -a,c, -a2Cl "Viha6(a)e -hb6(a)e 1 X"ha7(a)e ^±"BoNWe 2_± , (3'53)J2"7'

a?(a)e +b7(a)e 22-bQ(a)e 32
81

a2c2B2a?(a)e -e2b?(a)e 22--B3bg(a)e 32

(3.52)

(3.54)

(3.55)

Equations (3.42)-(3.55) constitute a set of fourteen linear,

inhomogeneous eequations in fourteen unknowns. The methods of solving

equations of this type are well known and thus will not be given here.

It is sufficient to state that the solutions to Eqs. (3.42)-(3.55) are

ultojr v ah*~Vo +VV° / r "WV

(V65)e
a5(t3-t2)

•J+ pi I (VB5)e
-a5(t2-t2)

(B4+B5)e
a5(t3-t2)' at.

4B435 '

ylrr

h "

"Vo . _ aozo r
r t n a Sle + SQe T
W ~o Vo - hh i(W P0 +

i ev2
(Wh

(3.56)

(3.57)
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Q "Vo . - Voylr„ S.e + Sne f

(BA+B5) Px] e"a5h

po +

""ohylr. se^0 +S/O20 r
w A vo -vx l(ao+V Qoe

Mir,

ylr

a,t.

<vVQie J 2B, '

"Vo _,_ c "aozo _
a he + V r

% Vo ~ Qih L

, Vi'(a0+B4)Qle
-Vi

e

2B4 '

C "Vo + q ."^'O
0 T, , ah6 +V QJ, (arn) —— <<n .a, - 2 lv 0' a, Vo" \h <0

a Sle + SOeylr,

\ " — Varo> ~0 Q0s0 - QA QiQi »

•Voin *Voylrn Qne U + Q,e
M 0 T , v a 0 1 e

Vo " Vl

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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avVo^v"Vo
ylr.

TW <C Vo - hsi V (3.64)

wir

a, •

-a z a 2

aQQe °Z° +Qle °2° r
3T W -„ Q.S. - Q^ [WhVo (Vh)soJ2h

(3.65)

Mir,

-a z a a

a V + Qie
2 W a q c rqpj— [<WS1 "<WSo] 2^ »0"0

(3.66)

yir.
"Vo + n Vo

Ji (°rJ7 2 lv 0' aQ q
u U+ Q.e u u f 1 "Yl

0s0 - qA [< WRo+ <*rV»ij5s^ '

ylr.

b7-

0 "Vo +n Vo
, s a V + V r

ri(aro) \ Vo - hh [^'^h " (B1+B2) R,

-a^z„ a„z

PIro a v ° °+ he ° ° / r VS-cO
— W^ VO" Vl [R0[(We "

-a2(c2-h)'(Sre2)e

(B^e

+h[(ei
a2(c2-c )

-62)e z 2 1 +

-Wh>He^
4BXB2 •

(3.67)

•f«2c1

4hh '

(3.68)

(3.69)
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where

Q0-e2Vl
2a5(t3-t2)

(aQ-B4) [(a0-B5)(B4+35)-(a0+B5)(3A-35)e ]

2a5(t3-t2) 2a4(t2-t1)
+ (aQ+B4) [(a0-B5)(B4-B5)-(a0+B5)(B4+B3)e

(3.70)

2a5(t3-t2)
Qx - (aQ+B4) [(a0-B5)(B4+B5)-(a0+B5)(B4-B5)e ]

2a5(t3-t2) 2a4(t2-tl)
Je+ (aQ-B4) [(a0-B5)(B4-B5)-(a0+35)(B4+B5)e

(3.71)

2a2(c2-Cl)
so" W[(W(W+(W(We ]

2ct (c —c ") 2ct c

+(a^) t(ei-82)(32-B3)+(31+B2)(B2+B3)e 2 2 X]e XX, (3.72)

2a2(c2-Cl)
S1 = (a0+Bx) [(B1+S2)(B2-B3)+(B1-B2)(B2+B3)e ]

2 Gt ^c ~c ) 2ct c

+(o0-B1) t(31-B2)(S2-B3)+(B1+32)(32+B3)e 2 2 X]e XX ,(3.73)

""oh
P0" [(V64)Q0e ^~ (V34)Qle ]e

"oh, _a4(t2"tl) (3.74)

"aoh
Pl = I<V34)QOa " * " ("0+B4)Qle ]e

"oh, "4(t2"h) (3.75)
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R0- t(Vh)si" (Vh)so]e
°lcl

(3.76)

Ri" t(Vh)si " (Vh)so]e
"Vi

(3.78)

The Vector Potential of a Finite Current

The solutions given by Eqs. (3.4)-(3.11) with the constants given

by Eqs. (3.56)-(3.69) give the vector potential in the various regions

for a delta function current. The problem of a finite size coil carry

ing a current I may now be solved by use of Eq. (2.17). It is very

important to note, however, that Eq. (2.17) does not present the complete

picture, for in the finite size coil case there exists a region which

was absent in the delta function current case. In Fig. 4 this region is

denoted by IV-V and requires special attention.

At a point, (r,z), in this region, the vector potential for a

rectangular cross section coil is given by

(4,5)
(r,z)

nl

(r2-h)(W r
J2 zA<4>(r.z)

dzn + /
A2 A(5)(r,z)

dz. dr
0'

(3.79)

i.e., for the part of the coil below the point in question the contri

bution to the vector potential is A(4)(r,z) while for the part above the

point, the contribution is A(5)(r,z). The explicit dependence of

A (r,z) and A (r,z) on rQ and zQ is exhibited by Eqs. (3.61)-(3.64).

Substitution of Eqs. (3.7) and (3.8) with Eqs. (3.61)-(3.69) in Eq.

(3.79) yields
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Figure 4. A rectangular cross section coil between conducting plates.
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A '(r,z) - J
r,

j" f "Vo
,c ""Vo Mc a0z0a^e + SQe

J, (aO
&, 0

2 1- 0' a0(Q0S0 - QlSl)

where

-a_z artz

[QQe ° +Q1e^°"]J1(ar)dadz0 + JZJ -y^ J^ar^
z 0

^rpioro

fn ""O'O . n VOLa(QQe + Q1e ) -aQz aQz

Wo - w [Sie +s°e ]

J- (ar)dadzn drQ ,

nl

X0" (r2-r1)(i2-i1)

(3.80)

(3.81)

In Eq. (3.80) we reverse the order of integration and perform the rf

integration to obtain

yin » aJ.(ar) -a„z a.zA^r.z)-^/ j(rlir2)^_^ [Qoe °+C^e °]

"Vo . „ "ozo -aQz a0z
/ [S;Le UU+SQe UU]dz0 + [Sle U +SQe U]

-"ozo Vo,J2 QQe w"+Q^e "u]dz0 Ida , (3.82)

where
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J(rrr2) - J2 rQ J^ar^ drQ

The integration over z. Is readily performed giving

uiA « aJ1(arQ)
A(4'5)(r,z) --/ /J(rifr2)

2 0' X ' «J(Q0S0 -QlSl)
2(Q0SQ - Q^)

V? "V? "V a0z+[Qle02-Q0e 02][Sle ° +SQe ]

(3.83)

Vi "Vi "V a0Z

-IV -V ]IQoe +Qie ]
da . (3.84)

If we let

ar.

J0(r1,r2) - / xJx(x) dx -aJ(r1,r2) ,
ar.

then Eq. (3.84) becomes

PiA(4'5)(r,z) --^ l-^3^rvr2) J^ar)
0 a a,

2 +

Vo ~anS _CV a0Z(Qle ° 2-Q0e 02)(Sle ° +SQe )
- Vo-hh

o~i „ _"Vi "V
a~z -i

0anl

<V "sie >%*_+v_i da .

Vo " Qih

(3.85)

(3.86)
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Substitution of Eqs-. (3.56)-(3.69) in Eqs. (3.4)-(3.U) and the results

In Eq. (2.17) yield

A (r">" "*V ^ W W«> ~ v^
-a5(t3~t2) ^(t,-t,)P0t(34+B5)e 5 3 2 - (B4-65)e 5 3 2]

-a5(t3"t2) «,(Vt,) i
+h[(We - (vh)e n

e-a0(z-t3)
^~4g^ da , (3.87)

"oh Vi "Vo -anAiyi oo s r.«2-Jl,e - 02 . 0 1,
Av '(r,z) - -=-

Z 0/ ^ WW*> 4(Qqs0 -Qi^)34b5

-a5(z-t2)
[(B4+B5)P0 + (34-B5)P1]e - [(B4-B5)PQ + (B^P^

+a5(z-t2)
e I da , (3.88)

"oh "oh ~anh "ViA<3), s ^0 ; l S (e - e ° X)-S. (e ° 2-e ° x)
0 aaQ x ^Vo Tl'l

"aoh ,„ o ^ aoh, "V2^
Ia0+e4)V " <VW ]e



A(4>(r,z)
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""oh "oh, V^h*[(aQ-B4)Q0e w* - (aQ+B^e " "]e - * | da , (3.89)

"oh "oh, _ ""oh ""oh,
- e )-S.(e -e ;yin °° i S.(e

-rj ~h J0<rrr2)Ji<ar> JL"
0 aa ' Vo'hh

0

-a z a z

[QQe U + Qie U] da , (3.90)

"oh "ihs . ,.-"oh /"oh,
(k\ ^n °° l Q (e , - e )-Q0(e "* )A(5)(r,z) - -^ / -^ JQ(r1,r2)J1(ar) -^

0 aa,

-a z a z

[S^ U + SQe U] da ,

Vo" hh

(3.91)

n , "oh "oh, n , ""oh ""oh,,,. yin «» . Q (e - e )~Qn(e -e )
A(6)(r,z) =-£ / -±2- J (r ,r )J (ar) -^-

A(7)(r,z)

0 aa
0

2(Vo " QlVh

-a.z a.zl

|[(aQ+B1)S1 - (a^B^S^e X - [^-Bps^^+B^S^e |da ,

(3.92)

n, "oh "oh, n , ""oh ""oh,Q,(e - e )-Qrt(e -e )yi
o r l/ 2JQ(r1,r2)J1(ar) 4(QnSn - Q^JB-P

aa_ 0 0 111
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-a (z+c.)
|[(B1+82)R0 + (B1-B2)R1]e l 1

a2(z+c1)]
[(B1-B2)R0 + (B1+B2)R1]e x da , (3.93)

A<8>, , ^71 h^ ~eVl)-Q0(e-V2-e"a0SA (r'Z) "h^V^W^ J p^l^

"2(VC1) ,a Ds -"2(c2-h)V(3l+32)e ~ (BrB2)e z z x ]

"2(c2"cl) -a (c -c )
+Ri[(erh)e - <h+h)e 3

a3(z+c2)

' 48lB2 d" <3'94>

for the vector potential in the various regions due to a current density,

iQ, flowing in a coil of cross sectional area (r -r )(£-£). With

Eqs. (3.86)-(3.94) any number of physically observable phenomena may be

calculated. Before attempting these calculations, however, we shall

.consider some limiting cases.

First let us suppose that the relative permeability of each

region is. unity and at the same time the conductivity in each region

vanishes. In this case, if we assume e. = e for all i, then Q = S - 0

and

3 2a0t3
% " -8a0e » (3.95)
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•» 2otnc9SQ - 8a3e ° 2 , (3.96)

A(1)(r,z)-A<2)(r,z)-A<3>(r,z)-A(4)(r,z)

uift °° , anh Vi ""V
-r / -S- J0(h'r2)Ji("r)te e ]e da » (3,97)

0 aa

yi„ » , / +an(z-0 -an(z-£.) \

0 aa » '
(3.98)

A(5)(r,z) - A(6)(r,z) - A(7)(r,z) =A(8)(r,z) -

Mi« °° -. ""anAi ~an£o anz-T^l-y JQ(r ,r )J (ar)[e °X-e °2]e ° da, (3.99)
0 aa

which agrees with the answer obtained by Dodd (17).

Another case of interest is that for which v3 mV^ a y5 - 1

and a - a - or - 0; i.e., the case of a coil above a two-layered con-
3 4 5

ductor. In this case, 0. • 0 and

2a_t0
qq ._8a3e °3, (3.100)

2a2(c2-c1)
so " <Vh)t(h+B2)(32-"o)+(h-h)(82+ao)e ]+
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20,(0,-0 2a, c, 2a. c.
(o0+B1)[(B1-B2)(B2-a0)+(B1+B2)(B2-Kx())e l l X]e 11e X±>

(3.101)

2a2(c2-Cl)
h ' (V3l)[(h+32)(32-"0)+(6re2)(h+"0)e ] + (Oq-B^

2ct Cc —c ) 2ex c

[(31-B2)(B2-a0)+(B1+32)(B2+a0)e 2 2 X]e XX ,

so that

A(1)(r,z) - A(2)(r,z) = A(3)(r,z) = A(4)(r,z)

(3.102)

Mi, °"£- "^ ""oh "ViA1
e - e )—

b0

1 r i t/- \T/-\ 02 oi.,"J —j JQ(r ,r )J (ar) e - e )-(
0 aa„ L

"aoz ,e da , (3.103)

(4 5) P10 r°° 1A^4»5hr,z) - 0 / -ij j (r r )j (ar)
0 aaQ

an(z-£_) -an(z-Ji )
2-[eU ^ + e ° x

. ""oh "ViA "aoz .,
- [e - e J— e da,

b0

\

(5) yi
0 f 1A^(r,z)=^/^J0(r1,r2)Jl(ar)

0 aa

, ""oh ""oh,
(e - e )

(6)

V + h ""oz,
(e + — e )

b0
da ,

yin - . ""oh ""ohA^(r.z) - -/ / -Ij j (r r )j (ar) S ^
0 aaQ 1

(3.104)

(3.105)
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[[(a0+B1)-(a0-B1)^3eaiZ- [(Vh^Vh^6 V)d" »(3"106)

""oh ""oh
A(7)(r,z) -^/-^ Vh'r2>V"r) 6' 4M"sl?

0 aa,. 1 z u

-a2(z+c1)
[(B1+B2)R0 + (31-B2)R1]e

a2.(z+c1)\
- [(31-32)R0+ (31+32)R1]e da ,(3.107)

-a £ -aoh

A<8)(r,z) -^Af Vh'h>Jl("r) 6 43.LL
0 aart 12 0

|[(31+32)R0 +(31-32)R1]e 2 2 X

, , -"2(C2-C1)\ a3(z+c2) da ,- [(3rB2)R0 + (31+32)R1Je e

(3.108)

where we have assumed e = eQ for all i and where

ct c

R0 =[(«0+VSl -(VWe XX' (3.109)

—ct c

Ri =[(Vh)si "("o+h)so]e XX' (3,110)

Yet another interesting case is that for which y4 = \i^ = 1 and

o, = a =0 which is just the case of a coil above a three-conductor
4 5

plane. For this case Q = 0 and
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3 2aoh(^ --8oJe UJ, (3.111)

2a (c,-c.)

S0- (V3i>^3i+32^32-33)+(3r32)(32+33)e 3+ W

2a (c,-c.) 2a c.
[(61-B2)(B2-B3)+(B1+32)(B2+B3)e l l X]e 1 1 , (3.112)

2a (c9-c.)

h " ViH(W(VV+(8r52)(We ] + («0-y

2a,(c,-c.) 2a c.
[(B1-32)(B2-B3)+(B1+B2)(B2+B3)e l X]e Ll . (3.113)

Thus for a coil above a three-conductor plane, the vector potential is

given by Eqs. (3.103)-(3.108) with SQ and S now given by Eqs. (3.112)

and (3.113).

There are still other interesting cases, but we shall turn iow to

the calculation of some physically observable phenomena.

The Voltage Induced by a_ Finite Current

Now let us suppose that another coil of length £' - ll (£' ^ i

and V 1 O with inner and outer radii r' and rl is placed inside the

coil at hand. One can then ask what is the voltage induced in this

second coil. The answer is of course easily obtained by use of Eq.

(2.26) and Eq. (3.86). Substituting the latter in the former and per

forming the r and z integrations yield
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00

V• (r2-rP(4-ri)(r2-r1)(.2-,1) J^ Vh'h>Vri'r2> _2(42-Jip

0~2 » . -0"2,f. ,. "0"2 . -o~i. „ , "oh .Vi"nh _aoh ""oh ""^(Qle ° 2-QQe "^iS^i ) - SQ(e - e)]

"o(Vo " QiV

<VVl -he^tye^2 -e_Vl) -V*^ "^
"o(Qoso - QiV

da ,

(3.114)

where we have used Eq. (3.81) for iQ. Obviously, Eq. (3.114) is valid

only when the second coil is in region IV-V.

If instead we place the second coil in region I, then A in Eq.

(2.26) is identically equal to A( '(r,z) given by Eq. (3.87), while if

the coil is placed so that part of it lies in region IV-V and the remain

der in region IV, Eq. (2.26) becomes

V -

r

j2iTun' r*
(rj-rpwj-np r'. J2 A

V

(4»5)(r,z)dz + I1 A(4)(r,z)dz
1

dr .(3.115)

on
the other hand, if we let V3 - 1 and c?3 =0 and place the coil in

region VIII, then with QQ and Q1 given by Eqs. (3.70) and (3.71),

respectively, the induced voltage is

V -

GO

<.;-*i> <!&>(«,•*!>«,-V J .3.2 WWi-V
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n , "oh "oh, n , ""oh ""oh,Q1(« - e ) - QQ(e - e ) oQc2 -o^ -o^'

4"o(Vo" hh)3i32 e "e

a9(c9-c.) -a„(c,-c..) a,(c,-cj
|V(3l+32)e - (SrB2)e z l 1 ] +R1[(B1-B2)e 2 2 X

-a9(c9-c.)
+ (Bj+B^e Z Z ] | da , (3.116)

where RQ and R. are given by Eqs. (3.109) and (3.110) with 83 - aQ. if

we let the two upper conductors recede to infinity, Eq. (3.116) becomes

„ JTrcjynn'I t 1 T , ,T - , ,,
V" (r2-r')(£2-iip(r2-r1)(£2-Ji;L) J ^2 Vh'Wh'V

"Vl ""oh aftc9 -a.A' -an£_
6 4a03^SQ e <* "e >[t(h+h> R0 +<WRl3

a?(c -c ) -a (c_-c )'
e Z - [(B^Bj) RQ + (Bj+S^ R^ e z z I da , (3.117)

whereas before RQ and R., are given by Eqs. (3.109) and (3.110) while Sn

and S. are given by Eqs. (3.101) and (3.102).

Let us assume for the moment that we are interested in the voltage

induced in one coil by the current in another coil when the coils are

separated by an arbitrary number of plane conductors. First, for one

conductor Eq. (3.117) reduces, after considerable algebra, to
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00

2jTT0)ynn'I r 1_ T / . \T /,i rM
V" <V'lHVV<'2-<i%«i> </ A* J0(rl'r2>J0(rl-r2>

(o0+a1)c1
-aft£- -aft£0 -aft£! -a £' 23,e

(e ° X- e ° 2)(e ° X-e ° 2) -i-= da , (3.118)
0

where

so " (v3i)(3r"o)+("o+h)(h+"o)e * x » (3-119)

while for two conductors Eq. (3.117) can be written as

oo

2jTrcoynn'I r 1_ T / ,j /ri ri\

(aQ+a2)c2 (a1-a2)c1
-an£. -a £ -a £' -a £' 43,32e e

(e 01-e 02)(e 01-e °2) —^ § da,
b0

2"ih

where (3-120)

202(02-0^^)
SQ - (a0-B1)[(31+B2)(B2-a0)+(31-32)(B2+a0)e ]

2ot (c —c ) 2ct c

+(a0+S1)[(B1-B2)(B2-a0)+(B1+B2)(B2+«0)e 2 2 X]e Xl. (3.121)

Examination of Eqs. (3.118)-(3.131) shows us that, in general, the

expression for the voltage induced in one coil by the current in another

is
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V 2JTT0)ynn'I r__l_ , . , , ,*
(r2-ri) (£2-£1) <r»-r •> <£2-£») ^ ^2 Wr2>J0(rl«r2>

k ("o+a2)ck n (<V"i+i)ci, -"oh -"oh,, -oh -"oh, 2V A he „(e - e )(e - e )— ^ d ,
S0

(3.122)

where k is the number of conductors separating the two coils and where

(k) (k-1)Sq ' is obtained by replacing (B. . -a ), in the expression for S^ ,

with

2"k(ck-ck-l>
(3k-l+3k)(3k-"0)+(ek-rV(3k+a0)e (3'123)

and by replacing (B, , + aQ) with

2a, (c,-c,)

(3k-r3k)(3k-"o)+(3k-i+3k)(3k+"o)e • <3-124>

For example, if we define

,kfi (Wckk:x B ("i-"i+i>h
fk(«) * "^y-^ , (3.125)

b0

then for the case in which the coils are separated by three conductors,

we have

(an+ajc, (a..-a )c (a -a )c
83 6 3-e v**e *•'•*•,>*•>•>

f3(a) "- -^ , (3.136)
S0

(k)where, according to the above formula for obtaining S^ ,
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s<3) -(VV
2a3(c3-c2)

(B^)[(B2+33) (B3-aQ)+(32-B3) (B3+a0>e ] +

2a3(c3-c2) 2a2(c2-c1)
(B1-B2)[(32-33)(33-a0)+(32+33)(B3+a0)e ]e

+ (vh>

+(6^)[(B2-B3) (33-a0)+(32+33) (B3+aQ)e

(a +a )c (a2-a3)c2
f2(a) - 4B233 e e

2a3(c3-c2)

(a0-B2)t(B2+33)(83-a0)

(31-32)[(B2+B3)(33-a0)+(B2-33)(B3+a0)e "]

2a3(c3-c2) 2a2(c2-c1)

(3.127)

It is easily seen that f3(a) reduces to f2(a) when y3= 1, a3 =0,

e -e•on the other hand, if y]_ - p2» 0^ - a2 and e± - e2, then f3(a)

reduces to

2a3(c3-c2)
+ (B2-B3)(B3+aQ)e ]+ (a0+B2)[(32-83)(B3-a0)

2"lh

N2"3(C3"C2)1 2"2C2+ (32+B3)(B3+a0)e ]e (3.128)

which is equal, as it should be, to f2(a) with all subscripts greater

than zero increased by unity. Similar results are obtained when

y2 = y3» °2 " V and E2 =E3'
Further, let us suppose that there are an arbitrary number of

electromagnetically identical plates separating the two coils. In this

case, Eq. (3.125) becomes
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2B.e u K K
fk(«) * 2— . (3.129)

(VV(3k-"0)+(V3k)(3k^0)e

i.e., the voltage induced in the lower coil by the current in the upper

one is

V- 2Jirmmn'I f 1 . . . , ,,
(r2-r1)(£2-£1)(r2'-r')(£^-£p J ^2 Vh'Wh'V

, ""oh '"oh,, ""oh ""oh,
(e - e )(e - e )

2B.e

da (3.130)

VV'WWW8^
which is in agreement with Eqs. (3.118) and (3.119). Many more arguments

supporting the validity of Eq. (3.122) can be developed, but brevity

requires their omission.

In each of the cases given by Eqs. (3.114)-(3.130), the mutual

inductance of the two coils is easily calculated by the use of Eq. (2.35)

from which we see that division of these equations by jul is all that is

necessary.

The Impedance of a Finite Cross Section Coil

A quantity of extreme interest for any coil is its impedance. To

effect the calculation of coil impedance, we must first determine the
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self induced voltage. To this end, we substitute Eq. (3.86) in Eq.

(2.28) or, equivalently, let the dimensions of the two coils in Eq.

(3.114) become the same. Choosing the latter alternative and rearranging

terms yield

V
2jiraiyn I

(r0-ri)2(£0-^)2 0 a-aQ

oo

<VV +
2 r v 2 r

(Qle°2-Q0e °2)(S1e ° X- SQe ° V(QnSn- QlSl)
Wo " QiV

Vo" ^ri;

2"0h +*0\ +̂ -Oh +e-2VV
Vo(e

2ao(Vo - QlV

which we substitute in Eq. (2.42) to obtain

da , (3.131)

2j7TO)yn r It2, x

(r2-r1)2(VV2 * A0 ° ^ 2
(£2-£1) +

"oh(Qxe ° 2- Q0e *) (S^""oh, ,„ /"oh _ "oh, s >- sQe )-(Q0V Q1s1)

Wo" W

^ + **\ +Vi(e-2aoh + -o^
Vo(e

2ao(Vo - W
da (3.132)

for the coil impedance. For the case in which Eqs. (3.Ill)-(3.113) hold,

i.e., a coil above a three conductor plane, we have
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2j Trajyn

(r2-r1)2(£2-£1)2 0
1 T2/ ,. S

T2 J0(rl'r2)
a a.

i "WV
2 1 a0

2"0S0
[e"2"oh +e"2"oh _^"VVh^

da , (3.133)

which reduces to the answer obtained by Dodd and Deeds (18) for

y3 " X' °3 " °2'

Now let us suppose that we are interested in the impedance of a

coil above an arbitrary number of plane conductors, the lower one of

which extends to infinity as shown in Fig. 5. First, we define 30 = a.

and C0 = 0, then the impedance is given by Eq. (3.133) with

for one conductor with

fi Vh
so ~Vh

2ai(crco)S1 (Bq+B^ (B1-32)+(B0-B1) (6^62)6
S 2(y (p —*c )

0 (30-31)(B1-32)+(30+B1) (B-^B^e x 1 °

(3.134)

(3.135)

for two conductors. For three conductors, Eq. (3.133) is still valid if

we take
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1 = 1^

z = JL.

z=0

z = -c 1

z =

z =

-c2

-c,

z = -c.

z =-c,

Figure 5. A rectangular cross section coil above an arbitrary number
of conducting plates.
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2a2(c2-C]L)
(Bg+3^[(Bj+Bj) (32-33)+(h"32) (32+33)e ] +

2a,(c9-c.) 2a (c.-O
(B0-B1)[(31-B2)(B2-B3)+(B1+32)(B2+B3)e ]e

20(0,-0.)
(B0-B1)[(B1+32)(B2'-B3)+(B;L-B2)(32+B3)e x]+

2a (c9-c.) 2a.(c.-cn)
(B0+B1)[(B1-B2)(B2-B3)+(B1+B2)(B2+B3)e X]e x

(3.136)

From Eqs. (3.134)-(3.136), we see that for a coil above k con

ducting plates the impedance is given by

2JTTcoMn f 1 .2
2 ? ' 3 2 "Vh'h'(r2-r1)2(£2-£1)2 0a\2

I "WV(£ -£ ) + ±- [e ° 2 X- 1]
* 0

. 1 h , "oh Vl,2
da , (3.137)

where S1(k)/SQ(k) is obtained by replacing (Bk_2 -\_x), in the
expression for S. 'sn » wifch

(3k-2+h-i)(3k-rh)+(3k-2-3k-i^3k-i+3k)e Vl Ck"rCk"2 • <3-138>
and by replacing (B, 9 + B,,) with

(3k-2"3k-i)(h-r3k)+(3k-2+3k-i)(h-i+3k)e Vl Vl V2 • <3-139>

If we denote the thickness, c, - c, ., of the k conductor by t, , then

these expressions may be written as
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2"k-ih-i
(3k-2+h-i> (3k-r3k)+(h-2-h-i) (h-i+h)e (3.140)

and

2"k-ih-i
(3k-2-h-i) <3k-r8k)+(3k-2+3k-i) (h-i+h)e (3.141)

For example, if we choose to treat the case of a coil above four,

parallel, conducting plates, then according to the above formula we may

write

(4)

(4) <W
2a_(c,-c9)

(B1+S3) UB2+B2)(B3-B4)+(B2-B3)(B3+B4)e Z] +

2a3(c3-c2) 2a2(c2-c1)
Je(BrB2) I(B2-B3) (B3-B4)+(B2+33) (B3+34)e

<W (31-32)[(B2+B3)(33-34)+(32-B3)(B3+34)e
2aQ(c3-c2)

] +

(h+B2) t(h"e3) (h_34)+(32+33) (W
2a3(c3-c2) 2a2(c2-C;L)-

e J e

2a1(c1-c())
w [<h+B2) I(B2+B3)(B3-B4)+(B2-B3)

2a (c,-c )
(B3+B4)e J J z ] -P (Bx-B2) [(B2-B3)(33-B4)+(B2+33)(B3+B4)

2a3(c3-c2) 2a2(c2-C;L)
e J e + (B0+Bl) (B^Bj) [(B2+B3) (B3-B4) +

2"3(C3"C2)(B2-B3)(33+64)e ] + (B.^) [(B2-e3)(B3-84)+(32+33)

2a.(c0-c0) 2a0(c0-c.)"| 2a (c.-c0)
la .LQ \ "3^3 "2'l 2^2 wl'(B3+34)e J e "lv"l "2'

(3.142)
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Upon close scrutiny- of Eq. (3.142), it is seen that S.^ /SQ reduces

to S^7S0 when \i, -y_, a, - a^ and e4 - e... On the other hand, if

y - y , 0-. = o"2 and el ° e2' then Sl 'S0 reduces to

,(3)
1
,,(3)

2o3(c3-c2)
(B0+82)I(&2+e3)(B3-34)+(B2-B3)(B3+B4)e ]+ (B0-B2)

2a (c.-c9) 2a (c9-cn)
[(B2-B3)(B3-B4)+(B2+B3)(33+B4)e ]e

2a (c3-c.)
(B0-B2)[(32+B3)(B3-B4)+(B2-B3)(B3+B4)e z]+ (30+32)

2a.(c.-c9) 2a9(c„-cn)
[(B2-33)(33-34)+(B2+B3)(33+B4)e ]e , (3.143)

(3) (3)which is equal, as it should be, to S. /sn with all subscripts

greater than zero increased by unity. Similar results are obtained when

y3 = y2' °3 = °2 and £3 = £2*
Further, let us suppose that below the coil there are k conduct

ing plates, all of which have the same electromagnetic parameters, y^, a^,

e, , and that below these there are k' others, which havey « y/, a = a'

(k) (k)
and e = e/. In this case, S. t^n becomes

(k) 2"k(ck"C0)
fill (W(3k-h')+(V3k)(3k+3k')e
c.(k) 2ok(Vco) '

(3o-h)(3k-3k-)+(3o+3k)(3k+3k-)e

(3.144)

which is, as it should be, in agreement with Eq. (3.135). In the event

that m9 = y, ,, a, = a, ,, e, - e, ,, then Eq. (3.144) reduces to

S (k) 8 -Sfl 30 3k
s0(k) "30+3k (3.145)
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as it should. Many more arguments supporting the validity of the above

(Vl) Ck.)formula for obtaining S, /SQ can be developed; but in the interest

of brevity, we shall omit them.

Since it is conventional to normalize the impedance of a coil in

the presence of conductors by dividing by the magnitude of the impedance

of the same coil in air, we write here the impedance of the coil in air:

2
2jiTu)un

/
1 T2, ,

"air 2 9 ' 3 2 Vh'r
(r2"rl) <VV ° " "2

-a (£ -£ )
[e ° l L - 1] da

(vv+ -2

(3.146)

The Power Dissipated by the Eddy Currents

We turn now to the calculation of the power loss due to the eddy

currents that are induced in the conductors. Since the results are even

more complicated than those seen thus far, we shall compute the power

loss for only one conductor. Substitution of Eq. (3.92) in Eq. (2.54)

gives

oo o j- °°yi ±
*V /r / /——J (r r2)J (ar)

0 -c, LO aan

Qi(e °2- e°h -QQ(e °2- e °h
2(V0 " QlVh

-a z

[(a0+B1)S1-(a0-B1)S()]e

a z'

- [<vh)sr(Vh)so]e da f
yi

0 1 J'(r1,r9)J1(a'r)
_ 2 , ,2 °0v'l,t2,"l'0 a'a'Q

nI "oh Vl, OI ""oh "Vl,Q|(e - e ) - Qj(e - e )

2WoSo QlSi)3i

-a 'z

[(a^+3')S[-(a^-B')S^]e
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t *

UV^V^O^PV6 |d"' | dz dr (3.147)

where the primes indicate that a - a' in the expressions for the con

stants. Reversing the order of integration, using the Fourier-Bessel

integral and then integrating over a' yield

2 2 2
ira.u) y i0 «>

P6"
1 H 0 r 1 T2, .7
~—J ~n Jo(rrr2) /

0 a a,, -c.

V2 Vl "°0£2 "VlQ^e ° - e ° X)-Q0(e ° 2- e ° x)
2(Q0S0 " hVh

fWV(ao-We V-[Wsr(VWeV) dz da ,(3.148)

while the z integration gives

™ 2 2 2T2tto to y n I °° 1

36"4(r2-r1)2(£2-£1)20/A4J°(rx'r2)
0 re*0"2 "°\ n t ""O"2 ""°°\Qx(e - e )~Q0(e -e )

2(Q0SQ - Q1S1)B1

(a0+31)S1-(a0-31)S0
2 2Yi ,

e - 1
2x, (a0-B1)S1-(a0+31)S0

2 -2X;Lc
1-e

2x,

j [>0+31)S1-(a0-61)S0][(a0-31)S1-(a0+31)S0] * 1-e

2jylC;L

2y,

j l(VVsi-Wso]IWWi)so]
-2jy.lC

* e X X- 1
2yi

da ,(3.149)

where x;L and y1 are the real and imaginary parts of a ,respectively, and

where we have used Eq. (3.81) for iQ. Needless to say, Eq. (3.149) is of

little practical value; however, the computer integration of this
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equation is quite easily accomplished in the special case of a coil

above a semi-infinite plane. Hence, it is of benefit to see in what

way Eq. (3.149) simplifies for that case.

This simplification is easily obtained if, in the expressions for

Q Q SQ and S1, we set B± -aQ(l - 2,3,4,5) and then let ^ approach

infinity. Performing the first of these operations gives 0^- 0 and

n «32a°t3Q0 - -8aQe

h (a0+31)(B1-a0)+(a0-B1)(31taQ)e

U (a0-31)(B1-a0)+(a0+31)(B1+a0)e

2"lcl

2alcl

(3.150)

(3.151)

Substitution of Eqs. (3.150) and (3.151) in Eq. (3.149) and letting ^

approach infinity yield

2 2 2T2
ira^u) y n I

2 '1' v*2 "1'

- , , ,_aoh ""oh,2
r 1 t2/ n (e - e )

6"4(r,-r1)2(£,-£1>V ah4 °" V 2 8x,

(a0-B1)2-(a0+B1)2 2
(oq+B1)B1

da (3.152)

for the time-averaged power loss. The more realistic case of a metal of

finite thickness is readily obtained by substitution of Eqs. (3.150) and

(3.151) in Eq. (3.149):

2 2 2T2
•na.iM y n I

1 T2, N
/•« *(r2-r1)2(V»1)V «3a* °^ V*

-aQ£2 -aQ£ 2
(e - e )

om'
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iM»1-oi2+i"o*ii2'2Vlis-:r=J:
_. 2a,c. 2x.c,

* -2Jylcl ,„ w„ *, e X X- e x xj((B^MB^) e A+(31+a0)(31-ao) ] da,
yl

(3.153)

where S is a modified S_ given by the denominator of Eq. (3.151). It
om U

is easily seen that Eq. (3.153) reduces to Eq. (3.152) as c. approaches

infinity.

The Electromagnetic Forces on the Conductors

We shall now make use of Eq. (2.62) and calculate the net electro

magnetic force on the conductor in region VI. Taking the curl of

A^ (r,z) and integrating over 9 yield

F6 =-Jirwo1 // A(6)(r,z)'|^ [A(6)(r,z)]* rdrdz , (3.154)

which, due to the axial symmetry, is in the z-direction. Substitution

of Eq. (3.92) in Eq. (3.154) and integration over r give

a_£_ a«£, -a„£„ -a„£,

oo 0

F6 =-jirwo^ //
°-h

/ 2.2

W lQ t2, n
TIT Vh'h*\ 4a a0

n , 0 2 "0 1 ft f 0 2 0LQ1(e -e )"Q0(e -e )
2(Q0S0 - O^S^

-a z a1z

[(oq+Bj^)S^(aQ-31)SQ]e -[(aQ-B1)S±-(a^)Sq]e

-a..z a..z \ *

-a1[(a0+31)S1-(a0+31)S0]e -a±[ (a0-B1)S1-(a0+B1)S()]e I da ,

(3.155)
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from which

2 2 2
jrwo.y n I °° 1 2

"oh "oh ""oh ""oh

F6-"J

Qx(e u -e )~Q0(e -e
2 .2 J 3 4 0V 1' 2

4<r2-r1)h£2-£1) 0 a ao
2(Q0S0 - Q^)^

2 e
2xlh

-"i l(V3i)sr(v3i)sol —s I+ai*lWsrWsol:

_2xici
^ ^^[("o^i^r^o-h^o^S-Vh-V3^^^

2jy1c1^-3^-jo1*[(a0-B1)S1-(a0+B1)S0][(o0+B1)S1-(a0-B1)S0]i

1-e
"^hh

2yi
da , (3.156)

where we have again used Eq. (3.81) for iQ. For the case of a single

conductor of thickness c , Eq. (3.156) reduces to

2 2T2 -an£9 -a £ 2
iruio pnI - 2 2. ,(e °2-e °1) *

f-— Jn(r, ,r,) • - ax
F* *"J *(r2-.1)2(i2-l1)V A> "O"1"2

om

2x c 2xlCl
IIK+Bj2 e"^-iB.-aJ2-^-—^- j[(B1-a0)(B1+a0) e* -2jyici

'0'M1' 1 01 x,

* 2aih 2xih
(31+a0)(31-a0) ]* f* |da , (3.157)

where S is the same as in Eq. (3.153). Letting c1 approach infinity

yields the semi-infinite plane case:

)•
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, „ 2 2.2 0 2 -an£o -«ftii 2irua.y n I » 2u, _ ,02 0 1>
F . _j 1 J—L. j2(r >r )1* ~e )
6 4(r2-h)2(Vh)2 ° "3"o ° V 2 h^Vi^p2"^!23

(Xl-jyi) da , (3.158)

where y. is the relative permeability of the conductor and where

ai = xl + Jyi• A. brief perusal of the preceding expressions for the

force shows Us that the time-averaged force is a complex quantity so

that when comparison with experiment is being effected only the real

part of the force:is of interest.

Expressions for the force, similar to those given above, may be

derived for the other conductors; however, their immense complexity and

little practical value preclude their being given here. Instead, we

shall proceed to the subject of defects in the conductor.

Defects in the Conductors

From Eq. (2.67), the change in the coil impedance due to the

presence of a current defect in a conductor is

AZ -Ivo,22V2
I

2

(3.159)

where the subscript k denotes the region in which the defect is located.

If we assume the conductor in region III to possess a defect located at

a point (r,z), then substitution of Eq. (3.89) in Eq. (3.159) yields

2 2 23va 9o.o) y n
AZ _ ££_i :

8(r2-r1)2(£2-£1)2 /•-TJo(rrr2)Ji(ar)0 aa0
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Q . "oh "oh, _ ( ""oh "Vi,SQ(e -e )-S1(e -e )

2(Vo " Q1S1)34
""oh "oh,[(a0+34)Q0e - (c^-B^e ]

-a4(z-t1) ""oh- [(a0-34)Q0e -(a^B^e ]e"oh, V^V
da , (3.160)

where we have again used Eq. (3.81) for i^. For the special case

a. • a_ «= a„ • a_ = 0 and y. = y_ • y, = y_ = 1; i.e., a single con

ductor of thickness t„- t^, Eq. (3.160) reduces to

2 2 2 r
3va' o u y n

8(r0-r,)2(£0-£1)2
AZ <='

•2-1' ^2 "I' L° ""0
[—2 J0(rl'r2)Jl("r)e

"(VVh, "oh "o\
(e -e )

a.z ~a/.z 2aAh
(a0-B4)e - (aQ+34)e e

"0 2a (t2-t ) d"
(a0-34) -("0+34) e

since S- = 0 and

« «32V2S0 - 8aQe

(3.161)

(3.162)

2a, (t -t ) 2a (t„-t )
Q1 =2a0(a0-B4)(aQ+B4)[l-e X]"e (3.163)

2 2 2a4(t2"tl) 2a0(t3"t2+tl)Q0 =2a0t(a0-34) -(a0+B4)h l X]e (3.164)

Again similar expressions may be derived for current defects

located in any of the other conductors.
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In this and .the preceding sections, a number of special cases

have been given for each quantity of interest. Obviously, a myriad of

other special oases still remain; however, these remaining special cases

are easily obtained by using the methods presented in each section.

Hence, we shall proceed to another general case, namely, a coil encircling

concentric spherical conductors.



CHAPTER IV

COIL ENCIRCLING TWO CONCENTRIC SPHERICAL SHELLS

The Vector Potential of a Delta Function Current

A delta function current encircling two concentric, conducting

spherical shells is shown in Fig. 6. Due to the inherent spherical

symmetry, we choose to use spherical coordinates in solving the problem.

Since the current flows only in the (j> direction, the r and 6 components

of the vector potential vanish. Examination of Eqs. (2.6)-(2.8) shows

us that the vector potential must thus be a solution of Eq. (2.8).

Replacing 3/3t with jo» and writing the Laplace operator in spherical

coordinates, this equation becomes

1 9 \2 8A

r
l^^) +X7Tle(-9lf)-^-^A +"2^A +2 3r i «i r^sine ou ' uu ' r^sine

y^(r-r0)6(e-60) =0, (4.1)

where A is the § component of the vector potential and where the last

term on the left vanishes except at r = r^, 9 = 6^.

Equation (4.1) is amenable to solution by the method of separation

of variables which yields the general solution

A(r,9) = I [a^i^r) + b^(a±r) ][pJ(cos6) +c^cose)], (4.2)

where PX(cos6) and Q (cos8) are the associated Legendre functions of
IL &

the first and second kind, respectively.

67
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Figure 6. A delta function current encircling two, concentric, spherical
shells.
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2
1/2

a 5 {juiy^ - ui yi^i} » (4.3)

and i„(a r) and k0(a,r) are the modified spherical Bessel functions of
* i. ** .

the first and third kind, respectively:

v> ^X4(Z) (4'4)

n42

We shall require the vector potential to remain finite at r = 0, r - '»

and 6-0, 9- tt so that d£ -0in all regions while a£ -0in region IV

and b - 0 in region I. Thus the solution for the various regions are
Xf

A(1)(r,6) = I a^1)iJl(a1r)pJ(cose) , (4.6)
Xjssx

A(2)(r,6) - I [afh^a r) +bf\(a2r)]pJ(cose) , (4.7)
£=1

A(3)(r,6) = I tafh^a^) +bf)k,(a0r)]pj(cos6) , (4.8)

A(4)(r,6)= I bj4)k£(a r)pl(cose) , (4.9)
£=1

where the superscripts refer to the specific region and

4/ 2 \1/2
"o ' j hi '

since regions III and IV are taken to be air.

(4.10)
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If we assume. \i± - yQ for all i, the boundary conditions are

A(1)(a,6) = A(2)(a,6) , (4.11)

(1)1 3A
V1 or

1 3A<2>1
" h 3r Jr-a *r-a 2

A(2)(b,6) =A(3)(b,9) ,

1 3A
(2)

u2 3r

(3>,_ a, = A(4)

(4)'

r=b .

3A^1
3r J u *Jr=b

A^(r0,e) =A^(r0,6) ,

3
Jr=r

3AV

3r
-y^-6(6-6 ) .

r-rQ h

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

Substitution of Eqs. (4.6)-(4.9) in Eqs. (4.11)-(4.16) yields

oo oo

I afh^a^P^cose) = Ifafh^a^) +bf)k£(a2a)]pJ(cos9) ,

h l± al1)il(a1a)pJ(cos6) =*z U*?^a) +

bf)k;(a2a)]pJ(cos8) ,

I [af}i£(a2b) +bf)k£(a2b)]pJ(cos9) =
X.—X

,V^3)^(a0b) +bf\(a0b)]pj(cos6) ,

(4.17)

(4.18)

(4.19)
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B2 I ta[2)i^(o3b) +bf)k;(a2b)]P1£(cos6)

aQ I ta^i^V) +b£3)k£(V)]P£(C08e) ' (4,20)
£=1

£•1

I bi4>k£("0r0)P£(COS6) ' (4'21)
£=1

Uf\<Vo> +bf\Vo>lpJ(c089> -

£=1 U U

where 3 =a./y.. Multiplying Eqs. (4.17)-(4.22) by pJ(cos6) sin6 d6,
integrating from 0 to it and using the orthogonality relations for the

associated Legendre functions,

J* p£(cose)pj,(cose) sine de -^Vi^ hr ' (4'23)
0

gives, after dropping the primes,

'f,¥v»-f1W'.fflV'!'> • (4-24)

.J2)it(«2b> +*?\<.«p -*fVo" +b«3>k«(»0b> • <4-26)
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32afh'(o2b) +B2bJ2)k'(02b) -vf'W) +"0bl3)k£("0b) • (4'27>

•£3)±£<V0> +b£3)k£("0r0) =b£4)k£("0r0> <4'28>
a(3)i'(a r )+ b(3)k'fa r ) = b(4)W'Ca r- ^ 2£ + 1a£ V"oV + b£ V"oV b£ k£("0r0} " 2£(£ + 1)

ylsin6n .
-^- P£(cose0) . (4.29)

Equations (4.24)-(4.29) constitute a set of six linear,

inhomogeneous equations in six unknowns, and their solutions are

(1) yIr0sin60 (2& +1) 1
a* = 4a2b2a2 £(£ +l)J£ B2k£(V0)P£(cos60) > (4'30>

(2) UIr0sinen 2£ + 1
H ^ £(£ +l)D£k£^orO)[gl1£(ala)k£(V) -

32i£(V)k£("2a)]P£(cose0) ' (4'31)

. (2) ,Mlr0Slneo 2£ + l
Do —1 X T7! 1—T£ =+ ^2— £(£ + i)Djl k£(a0r0)IBli£<O2a)1£(V)

32±£("la)i£<a2a)]P£(cose0) ' (4'32)

(3) Mlr0sineQ 2£ + 1 1
aH * £(£ + 1) "0k£("0r0)P£(cos60) ' <4-33>

,(3) Mlr0SineQ 2£ + l V"qV/W> r
" 2 £(£ +1) k^bT b2D rB1i£(a2a)i^(a1a)
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i,(aJ>)
B2i£(aia)i'(a2a)] - \ [BjiJ(a^k^^a) - B2h(c<la)

b D£

k;(a2a)j - -^°- i£(a0b) pj(cos60) , (4.34)

ylrQsine / k&(g2b)
4 -—t— irmy k*<Vo>[A , [3ih(a2a)i^ala)

where

-32i£(a1a)i;(a2a)] - *» "2 I^i^.)* <v> -
bD£kt(o0b)

2an i0(anb) ^(^oV 1 •,

(4.35)

D£ - [o0k4(a2b)kj(a0b) -B2kJl(a0b)k;(a2b)][B1iji(a2a)±;(a1a) -B^Ca^a)

i£:("2a)J "["0±£^2b)k£("0b) "32h(hb)k£("0b)] •

[B1i^(a1a)k£(a2a) - 32V<*1a)kl(a2a)] . (4.36)

The Vector Potential of a_ Finite Current

The solutions given by Eqs. (4„6)-(4.9) with the constants given

by Eqs. (4,30)-(4.35) give the vector potential in the various regions

for a delta function current. The problem of a finite size coil carry

ing a current I may now be solved by use of Eq. (2,17). In the interest

of simplicity we shall assume the coil to be an annulus bounded by
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conical and spherical surfaces as shown in Fig. 7. It is very important

to note that Eq. (2.17) does not present the complete picture, for in

the finite size coil case there exists a region which was absent in the

delta function current case, i.e., the spherical shell containing the

coil.

At a point, (r,6), in this region, the vector potential is given

by

"X{ A(4)(r,6) . .
} —ir-^rodro +

A(3,4) fv Q\ n 2nI

'2A<»Cr..>

where

±r~^ rodro deo» (4-37>
*• o J

i.e., for the part of the coil inside the point in question, the con

tribution to the vector potential is A^ (r,6) while for the part outside
(3)the point, the contribution is Av '(r,6). The explicit dependence of

A(3)(r,6) and A(4)(r,6) on rQ and 6Q is exhibited by Eqs. (4.33)-(4.35).
Substitution of Eqs. (4.8) and (4.9) with Eqs. (4.33)-(4.35) in Eq.

(4.37) yields

A(3*4)(r,e) 2"nI 2 2 I zmVn p£<cos6> /2sineV(cose)den
(62-6l)(r2"rl) i=1 h

k /2r0k£(V0)dr0+-^ ^ *oVaOrO>drO]k£(oOr)
l rl rl

2a
0 r2 2 \+-T h(a0r) I r0k£(o0r0) dr0J ' (4*38)
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Figure 7. A coil of finite cross section near two, concentric, spherical
shells.
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. k£(hb) h(a2b)
Si'\ zr~ ly-w-iw - 32h("ia)i£(v)] --^r"

\ bD. b D
'£

If we define

2ar[B1i;(o1a)k£(a2a) - ^afWfa*)} - -^ i^b) I*k^b)

(4.39)

"oh

1£(rl'r2) = I Xh(x)dx » (4,40)
"oh

a0h
k£(rl'h)" / ' x k&(x)dx , (4.41)

"oh

LA

P£(61'V "J sineopj(cos60)d60 , (4.42)
1

then Eq. (4.38) may be written as

A(3,4)(r(Q) 2ynl-7^777 £ $i¥i> >X-V *-•> 3
1M 2-rl; X a0(6.

2a

(S£k£(rl'r2)k£("0r) +~ir Ih(rl»r)k£(aOr) +k£(rl»r2)1£(V)]) '
(4.43)

Substitution of Eqs. (4.30)-(4.35) in Eqs. (4.6)-(4.9) and the

results in Eq. (2.17) yields



77

AU>(r>6)._^x r -2» +1- A

hiTT V'i-r2>Vv> • (4'44)2a b o.2«0

A(ar.6) . *"i I ^1^- p^..,) pJ(coso)
(e2-e1)(r2-rp £=1 £

A

^^^ |-[3li£("la)k£("2a) - 32i£("la)k£("2a)]aQb I

h("2r) +[3lh(ala)i£("2a) - 32i£("la)i£("2a)]k£(a2r)) »
(4.45)

(3),(r'e) • „ Tu2 Vi ^^ p'<9i,62> pi<cos6)(62-01)(r2-r1)£=l

k&(r.,r ) 2a

A(4)(Ii„ . 2^2 z ^HrVrr *X'V *»->
(e2-e1)(r2-r1) £=1

"o

for the vector potential in the various regions due to a current I flow-

2 2
ing in a coil of cross sectional area (92~e1) (r2_rl^2, With Eqs* (4-43^'
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(4.47) any number of physically observable phenomena may be calculated.

Before attempting these calculations, however, we shall consider some

limiting cases.

First let us suppose that the relative permeability of each region

is unity and at the same time the conductivity of each region vanishes.

In this case, if we assume e - e for all 1, S = 0 and

2

D£ frr. (4.48)1 v„2 2,2
4a a b

so that

A(1)(r,e) =A(2)(r,6) =A(3)r,e) 2ynI , „ Y 2* + \ ^(e2-e1)(r2-r2) A^ +DVh'^

,1, „x k£(rl'r2>
PA(cos6) 2 i£(V) (4'49>

™0

A(3'4)(r.e)= 2ynI . . ~ 2* + 1 P1/yni v 2£ + 1 1, 1 1

(e.-ep^-r2) ji ^TTiT Wh> V^> -2

U£(rl'r)h(a0r) +h(r»r2)1£(o'Or)] ' (4-5o)

a (4) / „\ 2unl r 2o + 1 1. 1A ^ =(e2-ei)(r2-r2) k ^T» Pi(h-2) Pj(cos6)

Vh'V
k£(»0r) ' (4.51)2 £ vuo0

7ra0
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Another case of interest is that for which y^ - 1 and a^ - 0,

i.e., the case of a coil outside a spherical shell of thickness (b-a).

In this case

D£+ [a0Ma2b)k£<a0b) " 32k£(a0b)k^(a2b)][V£("2a)h(a0a) "

32i£(aoa)ii(a2a)J - [^(a^k'(aQb) - B^'Ca^k^l,)]

[V£(V)k£(°2a> " 02i£("oa)k£("2a)] (4'52)

and

/k.0* 9b) h("2b)
h "[-T1- t"0i£("2a)l£(a0a) " 32i£("0a)i£("2a)] "~^—\ b D£ bD£

2"0 \
["0i£("0a)k£("2a) -32V"0a)k£("2a)] " "T W} * k£ ("ob) •(4"53)

so that

A(1)(r,6) *m!*» 2 2, ,1 2,fa t 1)B, >X*2> P««°°«(e2-e1)(r2-r1) £=1 £

rr-rrs Vri-'2>W> • (4'54)

*(2)<^> -„2;-;( 22a ii%>w-2> *»..>^4^(e2-ei)(r2-r1 £=1 £ aQb
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t"0i£("0a)k£("2a) 32i£(V)k£("2a)]i£("2r) + [a0VZ(a0a)

V"2a) " 321£("0a)i£("2a)]k£("2r)

A(3)(r,6) 2ynI 2£ + 1 „1,
2~~2~ * 2I7TTTT P£(6i'e2) P£(CO80)-e^^-rp £-1 ^*C* + 1J * X 2 £

A(3'4)(r,6)

(e.

k£(rl'r2) r2"0

(6.

3 [— h("0r) +S£k£(V)] •

2ynl r 2£ + 1 1/A A . 1 . ,1
'fl w 2 2, I 2£(£ +1) MW h(c°s9> 3-91) (r2-r1) a()

(4.55)

(4.56)

I 2"0 \S£k£(h'r2)k£("0r) +IT [i£(h'r)k£("0r) +k£ <r»r2> i£<V>]J »

A(4)(r,0) 2^nI V 2£ + 1 1 Pl/„oofix 1
,6 fl w 2 2. * 2£(£ + 1) Vh'V P£(C0S6> 1"(6 -6 )(r -r ) £=1 a*

2a,

[S£k£(rl'r2) +~lTi£(rl'r2)]k£("0r) '

(4.57)

(4.58)

where we have assumed e. „ = e for all i.

Yet another interesting case is that of a coil outside a con

ducting sphere, which we obtain by allowing a to approach zero in Eqs.

(4.52)-(4.58):
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2ynlA(2)(r,6)
(62"6l)(r2-rl) *"1

CO -

k£(rl'h) i„(o0r) ,
3.2_, £x 2

VD£

A((3)(r,6) 2ynI 2£ +1 1, e ) PX(cos6)
(e2-ei)(r2-r2) W +1} £ x 2 4

A(3'4)(r,6)

k (r ,r9) 2a
JH^hrVv) +Wv)] •

"o

2ynl 2£ + 1

(e2-ei)(r2_rl) i=1
2 _.2K A 2£(£ + 1)TTT p£(ere2> p£(cose> 3

2a,

(4.59)

(4.60)

S£k£(rl'r2)k£("0r) +— Ii£(rl»r)k£(aOr) +k£(r,r2)l£(a0r)]j ,
(4.61)

(4), .,, 2ynl2 ; _2^1_ ^^ pl(cosQ) 1_
" " " a0

A^hr,6) -

where

and

(Bj-epCrJ-rp £=1

2a,

Isik£(rrr2) +-r-1£(rrr2)3k£(oor) '

Si = [-T~ h(a2b)£ b^D, £ I

2a,

irW^ * h("ob)

(4.62)

(4.63)
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D£ - "0V"2b)k£("0b) " 32i£("2b)k£("0b) ' (4'64)

As expected, the same results are obtained if we let y. - y9 and a. = a9

in Eqs. (4.52)-(4.58).

At this point, we shall conclude our discussion of the vector

potential and turn to the calculation of some physically observable

phenomena.

The Voltage Induced by a_ Finite Current

Now let us suppose that another annular coil also bounded by

conical and spherical surfaces is placed inside the coil at hand. One

can then ask what is the voltage induced in this second coil.r The answer

of course is easily obtained by use of Eq. (2.26) and Eq. (4.43). Sub

stituting the latter in the former and performing the r and 8 integrations

yield

v jSwoiunn'I " 2£ + 1 1 1 1_
(e-ep^-r^o^ep^-r2) £±i 2*<* +x> W*^^ a3

^Vh*h)k£<ri'r2>+^«£<ri'r2>
L"0

where the primes refer to the second coil and where

r'
h 2

(4.65)

8£(rl»r2) = \ r th(ri'r)k£(aor) + k£(r'r2):L£("0r)jdr * (4^6)
h

Obviously, Eq. (4.65) is valid only when the second coil is in region

III-IV.
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If instead we place the second coil in region IV, then A in Eq.

(2.26) is identically equal to A(4)(r,8) given by Eq. (4.47), while if

the coil is placed so that part of it lies in region III-IV and the

remainder in region III, Eq. (2.26) becomes

V •14^2 2 J! *™ f/|(e2-ep(r22-ri2 ei U»
r2 A(3)(r,e) dr +

/2 r2 A(3'4)(r,e) dr de . (4.67)
h

On the other hand, if we let y. = 1 and a^ = 0 and place the coil in

region I, then with D& and S£ given by Eqs. (4.52) and (4.53), respec

tively, the induced voltage is

oov is^u^i l ^J_i pi(e e2> pj(epep -j
(e2-ep(r22-r|2)(e2-e1)(r2-rj) £=i2Jia +x) ao

thVh'h^^Vh'hWh'h) • (4-68)
In each of the cases given by Eqs. (4.65)-(4.68), the mutual

inductance of the two coaxial coils is easily obtained by the use of Eq.

(2.35) from which we see that division of these equations by ju)I is all

that is necessary.
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The Impedance of a. Finite Cross Section Coil

To effect the calculation of coil impedance (an extremely impor

tant quantity), we must first determine the self induced voltage. To

this end, we substitute Eq. (4.43) in Eq. (2.28) or, equivalently, let

the dimension of the two coils in Eq. (4,65) become the same. Choosing

the latter alternative yields

J8™yn I V 2* + 1 rpl/fl fl n2 1
(e2-ep2(r2-r2)2 tii 2*<* +x> rVVe2» 3

3£ 2 2a0

L*0

which we substitute in Eq. (2.42) to obtain

j8Troiyn v ^±^_ tpj(e,.0]2(e.-e,)2^2-^)2 *-i 2*<* +» lr*lV°2'

S£ ? 2an

"o

(4.69)

(4.70)

for the coil impedance. For the case of a coil outside a spherical

shell, the impedance is given by Eq, (4,70) with D and S given by Eqs.

(4,52) and (4.53), respectively. On the other hand, for a coil outside

a sphere Eq. (4.70) yields the correct result if we replace S with S',

which is given by Eq. (4.63).

Since it is conventional to normalize the impedance of a coil in

the presence of conductors by dividing by the magnitude of the impedance
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of the same coil in air, we write here the impedance of the coil in air:

"air
(e

9 oo - i

j8TTU)yn v 2£ + 1 rpl/e e \ r] ,2. 2 2,2 i £(£ +1) [VVVJ
fV (r2"rl) ll

Mh'h* (4.71)

iro.

The Power Dissipated by the Eddy Currents

We turn now to the calculation of the power loss due to the eddy

currents which are induced in the conductors. Let us assume that we are

interested in the power loss in region I. Substitution of Eq. (4.44) in

Eq. (2.54) gives

. 2 2 2T2
4tto> u on I an00 °°

(6.

" " V X (I I r 2£ +1 2£'+l pl
-6 )2(r2-r2)2 0 0 £=1 £=1 [2£(£ + DD£ 2£'<£' + l)Dj, £

P^.ep pJ (cose)?1,, (cose) ^4)^3 k^r^rp

(e^ep

,(r;L,r2) V^Vh^ rsinGdedr . (4.72)

Carrying out the 6 integration and making use of Eq. (4.23) yield, upon

summing over £',

.22 2T2
4'pu) u o,n I

U+X 2[P£(ei'e2)]2
1 (W^h'V *=1 2M^ +1)lDJ

/ 4, 4
4a b

~12 k£(ri'r2)
"2"0

Jr2 [x2(r) +y2(r)] dr ,
0

(4.73)
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where x (r) and y (r) are the real and imaginary parts of i (o.r),

respectively. Similarly, the power dissipated by the eddy currents in

region II is

2 2 2 2
4iro) y on I »

P2 2 2 22 2 2& +1, l2 Igfoi.e,)]2(62-ephr2-rp2 £-1 2£(£ +1)|D |2 l x 2

where

I

"T2 k£(rl,r2)
!V

2 b 2

Jr lQ£i£(o'2r) +R£k£(o2r)| dr, (4.74)

h ' -[hi£("ia)k£(a2a) "hh^^^V^ (4,75)

R£ = 3li£("la)i£(a2a) " 32i£("la)l£("2a) ' <4'76>

In the event that o^ - 0, then D£ in Eq, (4.74) is given by Eq. (4.52)

and o1 and Q± must be replaced with a in the above expressions for Q

and R..
£

The Electromagnetic Forces on the Conductors

Due to the inherent axial symmetry of this problem, the net

electromagnetic force exerted on the conductors will be in the z-direction.

Therefore, in Eq. (2.62) we express the curl of the vector potential in

cylindrical coordinates and obtain

h ="1 Juok M A(k)<r'e) h tA(k)<r.e>J* ^ , (4.77)
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since A, in spherical coordinates is identically equal to A0 in cylin-

drical coordinates. If we make use of the familiar formula of partial

differentiation,

then we may write

L_=y!fiiL_
3xi j 3h 3h '

d n 9 sine 3
ae *

(4.78)

(4.79)

Substitution of Eq. (4.79) in Eq. (4,77) and integrating over <j> yield

Fk - -JlT0)Ok II A(k)(r,6) |^ [A(k)(r,e)] rsine cos6 d6 dr

-II A(k)(r,6) |s- [A(k)(r,6)fr sinh d6 dr (4.80)

If we wish to know the time-averaged force exerted on the con

ductor in region I, then k = 1 and the first integral in Eq. (4.80)

becomes

. 2 2T2
4u n I

a tt °° °°

_ / j I I
(62-ep2(r2-r2)2 0 0 £=1 £'=1

2£ + 1 2£* + 1

_2£(£ + 1)DA 1V(V + 1)D*

2 *
it a

^h'V P£'(6l'e2) Pi(cos9> PJ' (C°S6) 7474 2 3

a2"0

0r)i;(a1r)*]r sin 6 cos 9 d8 dr .kl^Vv2)kV(-rl'r2) h("

(4.81)

Use of the recurrence relation
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xpl£<x> - 2TTT pl£+i<x> +fr+T pLi« .
integration over 6 and summation over £' give

/n2 2-2
4y n I

2 *
oo it a,

I L_
(B2-ep2(r2-rJ)2 £-1 4a4b\

B,

2 2

"2"0
^VWh'^

(4.82)

[2(£+ J)D* P*+l(6l'e2)k£+l<h'h>*0/ r2h(V>h+l(V>* dr

1 JL ,„ „ .. , s* ^ 2,
+7^h-i(ei'Vk£-i<h'r2) /rVv)!- ("ir) dr

£-1 £-1

(4.83)

On the other hand, the second integral in Eq„ (4.80) is

(6.

, 2 2_2 a tt oo oo r
4" " ' (f T T 2t + 1 21' + I .1.. a,

-01)2(r2-r2)2 o'o A £1l»<* +«»t 2..(i.+l)B* ^'^
£»

pJ.CG^ep pJ(cob9) Ig-Pj, (cose)
4a4b4 2 3

"2"0
V'l'V

k£(rl'r2) i£'(air)i£»(a1r)* rsin26 de dr

In this case, use of the recurrence relation

(4.84)

(1 -x2) d pl(x) .,(£ fI)2 1 ___£i_ l
dx £v 2£ + 1 £-lW 2£ + 1 P£+1W »

integration over 6and summation over £' yield

(4.85)



2 2 2 °° 24y n I ...._ y n

(e2-9l)2(r2-rl)2 *"1 ^^
2 3

a»a„
2 0

89

pJ<Ve2)k£(rl»r2>

1+2* pl£+l(9r92>k£+l(h'h> ' r MV'WV* dr2(£ + 1)D,+1 0

£ - 1 JL

2£D
P£-l<h'e2)k£-l("lr) 'r h("lr)

£-1

h-i("ir)* drJ • (4.86)

Substitution of Eqs. (4.83) and (4.86) in Eq. (4.80) and use of

the recurrence relations

kWri-Mrt-^i-Wz £+1

and

h W> "V*> *— i. •<•>z £-1

give, upon simplification,

2 2_2 2
_ it my on I t

1" (62-ep2(r2-r2)2 2aV 2 3

"2"0

2 CO $

J6—X a»

1 PL (en .eo)k0i1 (r. ,r9)* +—J— Pj ,(6, ,6,)
.(£ + 1)D

— h+i^rVh+i^rV * i-ivi'2
£+1

£D
£-1

k£-l(h'r2)
2r 2, v . 2,/ r [x£(r) + y^(r)] dr

(4.87)

(4.88)

(4.89)
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for the net electromagnetic force on the conductor in region I. Of

course, the actual physical force is obtained by taking the real part of

this expression.

A similar expression may be derived for the conductor in region

II; however, the degree of its complexity precludes its being given

here. Instead, we shall proceed to the subject of defects in the con

ductors.

Defects in the Conductors

From Eq. (2,67), the change in the impedance due to the presence

of a current defect in a conductor is

AZ=fva33V2(^)2 , (4.90)
where the subscript k denotes the region in which the defect is located.

If we assume the conductor in region II to possess a defect located at

a point (r,6), then substitution of Eq. (4.45) in Eq. (4.90) yields

2 2 2
3va„_a a) y n °° v /*• *• n

-•2ce2-:ikH>2 JL *&*k *•*•v >> «-> iP

"[3lX£("la)k£(a2a) " 32X£("la)k£(a2a)] +

^lh^l^Vh*0 "62V"la)i£(a2a)]k£(a2a) (4>91)

for the change in the coil impedance. For the case in which o - 0 and

y-L - 1, i.e., a single spherical shell of thickness (b-a), Eq. (4.91)

reduces to
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2 2 2 „ k (r .r )
3va o oj y n - 2£ + 1 1, s ~1 / n lK V 2>

-[Vl(V)k£("2a) " 32i£(V)k£("2a)]i£("2r) +

t"0h("0a) h("2a) "32i£("0a)h("2a) ]k£("2r)) (A'92)
with D given by Eq. (4.52). Again similar expressions may be derived

for current defects located in region I.

In this and the preceding sections, a number of special cases

have been given for each quantity of interest. Those cases which have

not been treated are easily obtained by using the methods presented in

each section. Therefore, we shall proceed to another general case,

namely, an infinitely long straight wire between parallel, conducting

plates.



CHAPTER V

LONG WIRE BETWEEN CONDUCTING PLATES

The Vector Potential of a Delta Function Current

An infinitely long delta function current flowing in the z-

direction between parallel, conducting plates is shown in cross section

in Fig. 8. Due to the inherent rectangular symmetry, we choose to use

rectangular coordinates in solving the problem. Since the current flows

only in the z-direction, the x and y components of the vector potential

vanish. Examination of the first section of the second chapter shows us

that the vector potential must thus be a solution of Eq. (2.2) with

n - z. Replacing 3/3t with jw and writing the Laplace operator in

rectangular coordinates, this equation becomes

92A . 32A A 2J~2 +—j " 3^±o±A + a) u^A + yl6(x-X())6(y~y0) -0, (5.1)

where A is the z component of the vector potential and where the last

term on the left vanishes except at x = x . v = v
0' J J0

Equation (5.1) may be solved by the method of separation of

variables which yields the general solution

~a±y a.y
A(x,y) =/[a(a)e +b(a)e ][cosa(x-x0) +c(a)sina(x-x )] da

(5.2)

where

92
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y = C2

y = c1

:yo

^y=0

y=-c0

X = X,

Figure 8. Cross section of a delta function current between conducting plates,
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2 2 1/2ai = {a -u> v^e + juiy^} (5.3)

and the subscripts refer to the region of interest. We shall require the

vector potential to remain finite at z « ±°° so that a(a) » 0 in region

VI and b(a) = 0 in region I. Furthermore, the fact that the vector

potential will be symmetric with respect to x - x~ requires c(a) • 0 in

all regions. Thus the solutions for the various regions are

(1) r°° ""lyAv (x,y) - J a..(a)e cosa(z-x0)da , (5.4)
0

(2) 7 "V VAU;(x,y) - /[a2(a)e Z+b2(a)e Z ]cosa(x-x0)da , (5.5)

(3) 7 "V VA^ ;(x,y) = /[a (a)e u+ b (a)e u ]cosa(x-xn)da , (5.6)
0

00 —ot y ex y

A(4)(x,y) =/[a4(a)e °+b4(a)t °]cosa(x-Xpda , (5.7)

f5% z ~a5y a5y
AV3;(x,y) = J[a,(a)e + b (a)e J ]cosa(x-xn)da , (5.8)

0

oo a,y

A(6)(x,y) =/b6(a)e 6cosa(x-x0)da , (5.9)

where the superscripts refer to the specific region and

2 2 2aQ - {a - u /c } , (5.10)

since regions III and IV are taken to be air.
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Now the boundary conditions are

3A

A(1)(x,c2) -A(2)(x,c2) ,

(1)1 3A

y-L *y

(2)
1 3A

y0 8y-'r>

y=c„ l y=c.

A(2)(x,c )-A(3)(x,Cp ,

1 3A
(2)

y2 3y
y-c.

ay Jy-c,

A(3)(x,yQ) =A(4)(x,yQ) ,

(3) (4)
3A

3y y-y 3y
- yl6(x-XQ)

y=yf

A(4)(x,0) =A(5)(x,0) ,

(4)
3A 1 3A

(5)

ay y=0 ^5 9y Jy=0

(5) (6)A^hx-cp = Avw(x-cQ) ,

1 3A
(5)

u5 3y
1 3A

p, 3y-. y=-cQ 6

3A<6>1

Substitution of Eqs. (5.4)-(5.9) in Eqs, (5.11)-(5.21) yields

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.18)

(5.19)

(5.20)

(5.21)
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~"lC2/ a1(a)e cosa(x-xQ) da

"a2c2 , ,. , x "2C2/ [a2(a)e + b (a)e ] cosa(x-xft). da , (5.22)

00 _Q| c

t 12
J B,a..(a)e cosa(x-x-) da -

0 u

7 ""2C2 "2C2J B2[a2(a)e - b2(a)e ] cosa(x-x ) da , (5.23)

""2C1 . , , x Vl,/ [a (a)e + b„(a)e ] cOsa(x-xn) da
0 L °

7 "Vl VlJ [a3(a)e + b3(a)e ] cosa(x-xQ) da , (5.24)

2 1 a2c1/ B2[a2(a)e - b2(a)e ] cosa(x-xQ) da =

7 _"oci "ociJ aQ[a3(a)e - b3(a)e ] cosa(x-xQ) da , (5.25)

00 —a y ay

1 [a_(a)e + b (a)e ] cosa(x-xn) da =
0 J u

7 "Vo "oyoJ [a4(a)e + b4(a)e ] cosa(x-xQ) da , (5.26)

1 r / n ~Vo u i ^ O0y0t , ,j aQ[a3(a)e - b3(a)e ] cosa(x-xQ) da -

00 —ct y ct y

1V*4(a)e " b4(")e ° °1 cosa(x-x0) da +yI6(x-Xp , (5.27)
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CO

J[a (a) +b (a)] cosa(x-Xp da =/ [a,, (a) +b,.(a)] cosa(x-Xp da ,
0 °

(5.28)

CO

/aQ[a4(a) -b4(a)] cosa(x-Xp da -/B5[a5(a) -b5<a)] cosa(x-Xp da ,
(5.29)

J[a (a)ea5C° +b5(a)e"a5C°] cosa(x-Xp da =/b6(a)e 6°coso(x-xp da ,
0 5 °

(5.30)

a c _anc_
5 0 t , . 5 0,-J Bs[a,(a)e 3U-b5(a)e ]cosa(x-Xp da =

0 *

JB£bt(a)e °C° cosa(x-x )da , (5-31)
0 6 6

where B -a./y.. Multiplying Eqs. (5.22)-(5.31) by cosa'(x-xQ)
i ii

d(x-x ), integrating from -« to 4- and using the fact that

f(a') -- / f(o) I cosa'(x-x0) cosa(x-x0)d(x-Xp
11o L-oo

gives,after dropping the primes,

a^e""1'2 -.2C>."°2Cj +V.).V* . (5.33)

»,.,(.). X2-B2[a2(«)e 22-b2(a)e 22] , (5-34)

-anc^ a?C-[ "Vl , , x a0°l (c orxa2(a)e 2X+b2(a)e 2X=a3(a)e +b3(a)e , (5.35)

da (5.32)
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-a c a c -a c a c.,
B2[a2(a)e X- b2(o)e l X] - a0[a3(a)e UL- b3(a)e Ui] , (5.36

""oyo Vo "Vo Voa3(a)e UU+ b3(a)e ° U=a4(a)e ° °+ b4(a)e ° ° , (5.37)

a3(a)e"V°- b3(a)eV° - .,<.)/Vo- b4(o)eV°+ J& , (5.38)

a4(o) + b4(a) = a5(a) + b5(a) , (5.39)

aQ[a4(a) - b4(a)] - B^a^a) - b5(a)] , (5.40)

a5(a)ea5C0 +b5(a)e"0'5C0 =b6(o)e'a6C0> ^

B5[a5(a)e U- b5(a)e * U] - -B6b6(o)e b ° . (5.42)

Equations (5.33)-(5.42) constitute a set of ten linear, inhomo

geneous equations in ten unknowns. The methods of solving equations of

this type are well known and thus will not be given here. It is

sufficient to state that the solutions to Eqs. (5.33)-(5.42) are

(a -a )c.

MI e X 2 2 Vl r/n , s"a0cl „ , . a0clh =2^' b1+b2 e~" Kh+V6 "*Qi - (h-Ve °xV

o s + o <> » (5.43)
Vo + Vl
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_ -("5-"6>C0 Qle"O°y0 -QneV°
b6 -2^e B5+B6 I("0+h>S0 "<VB5)S1> QlS0 fQ^ •

where

2a2(c2~c1) ""2a2ci

(5.52)

Qi " t(h"62)(82-"o) + (VB2)(lWe ^e » (5-53)

2a(c2-cp
Q0 - C(B1-B2)(B2+a0) + (B1+B2)(B2-ape x ] , (5.54)

2a5C0SQ = (aQ-B5)(B5-B6) + (a0+B5)(B5+B6)e 3u, (5.55)

2"5C0
Sl = (a0+e5)(35"36) + (V35)(h+g6)e ' (5.56)

The Vector Potential of a Finite Current

The solutions given by Eqs. (5.4)-(5.9) with the constants given

by Eqs. (5.43)-(5.52) give the vector potential in the various regions

for a delta function current. The problem of a finite size wire carry

ing a current I may now be solved by use of Eq. (2.14). It is very

important to note, however, that Eq. (2.14) does not present the complete

picture, for in the finite size wire case there exists a region which

was absent in the delta function current case, i.e., the layer of space,

parallel to the conductors, that contains the wire. Following the format

established in the preceding chapters, this region shall be denoted by

III-IV and, as usual, will require special attention.
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At a point (x,y), in this region, the vector potential for a wire

of rectangular cross section is given by

P-^-^r TV *>* vi! 4^*o]w( 2 1 -w/2 L 0 y 0 J
dxQ ,

(5.57)

where w is the width of the wire and %2 - ^ its height. The explicit

dependence of A(3)(x,y) and A(4)(x,y) on xQ and yQ is exhibited by Eq.
(5.46)-(5.49). Substitution of Eqs. (5.6) and (5.7) with Eqs. (5.46)-

(5.49) in Eq. (5.57) yields

(3,4), Pi
w/2

1 t
AVJ,"tyCx v) = t?—x-v I ~~ I cosa(x-xn)dxn
A U'y; 2irw(42-h> 0 "0 -w/2 ° °

i, hso +Qoh

Vo
-ay ay

(Qxe - QQe )dyQ

+/ 1„ .. „A (8,8 + Sne )dyQ"V. „ v

hS0 + Vl l 0
da , (5.58)

where the order of integration has been reversed. Performing the xQ and

y integrations and simplifying give

cosax.(3,4), . yi f-i-sina-
A (x«y> " ^w7 =~T rJ 2 slna 2

wv 2 r 0 aa

2-

anh _"nh "oy "V(Q0e °2+ Qle °2) (SQe °+S]e °)
hS0 + Vl
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"oh ""oh "oy -aoy(S e ° - Se ° h(Q0e ° - Q.e ° )
+ os + 0 g ~ da . (5.59)

Q1S0 + Vl

To obtain the vector potential in the other regions due to a cur

rent, I, flowing in a straight wire of cross sectional area w(£- - i. ),

we substitute Eqs. (5.43)-(5.52) in Eqs. (5.4)-(5.10) and the results in

Eq. (2.14):

*(!)/ \ yl /• 1 . w
A (x'y) " ™u0-0 J~2 sin"2 cos"x

2 10 aa_

SQ(e ° 2- e° X) - spe ° 2- e ° X) ^WV
¥o +Vi e h+h

""oh "oci -ai(y-c9)[(B2+ape \ - (B2-ope ° \)e X 2 da ,

»(2), . yl t 1 . w
A (x'y) =irwU.-i.) J T~2— sina2 C0S"X

2 10 2aaJ

S^e"^2 - ,B°S - Sl(e-a0&2 -^\
Vo + Vi

(5.60)

[(B2-*>pe \ - (B2-a0)e ° XQ()] e 2 X
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""oh ,„ . , "oh, , a2(y"h)+ [(B2-ape ° \ - (B24a0)e ° \U da , (5.61)

00

A(2)(x'y) =™u-i ) ' ^T sin"f cosaxTrw(.Ji2 xp 0 aa^

, "oh "oh, Q. ""oh ""oh.SQ(e - e ) - S1(e - e )

hS0 + Qoh "

-any any(Qle ° - QQe ° ) da , (5.62)

(4), yl r 1 j w

A <x'y> " " TO(£0-O nJ ~ 2C°SaXv 2 1 0 aa_

-«oh ""oh, + n , "oh "oh.Q1(e - e ) + QQ(e - e )

hS0 + Vl

-ay any
(Sxe ° +SQe ° ) da , (5.63)

(5) . ul r 1 • w
A (x>y) = irwa -I ) J 2~~ sin"2 cosax™Ch V 0 2aaQ&2

n , ""oh ""oh, . n . "oh "oh.Q1(e - e ) + QQ(e - e )

Vo + Vi

[(a0+B5)S1 - (a0-B5)S0] e
-a5y
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v
[(oQ-B5)S1 - (a0+B5)SQ] e J da , (5.64)

00

A(6)(x,y) ="Trw(L-Ap J — sinaf cosax
z

0

~anh ~an£i anAo ^iQpe °2- e °h -f QQ(e °2- e°X) e-"5C0
Q1S0 +hh fyh~

afi(y+cn)
[(a0+B5)S0- (a0-B5)S1] e° Uda . (5.65)

With Eqs. (5.60)-(5.65) any number of physically observable phenomena may

be calculated. Before attempting these calculations, however, we shall

consider some limiting cases.

First let us suppose that the relative permeability of each region

is unity and at the same time the conductivity of each region vanishes.

In this case, if we assume e = e for all i, then Q and S also

vanish while Q1 and S_ reduce to

2 2a0C2_4a0ClQ1 =4aQ:e °2 °x (5.66)

2 2a0C0
Sn " 4»n« » (5-67)0 0

so that

A(1)(x,y) =A(2)(x,y) =A(2)(x,y)

mi 7 J w ,"oh "oh "Vttw/j) _A ) J—2 smay cosax(e - e )e da ,(5.68)
2 10 aa.
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.(3,4), , yl 7 1 j w
A (x'y) "irw(£,-£.) J ~2 Sln"2 COS"X

v 2 1 0 oaA

-a (A -y) -an(y-£1) \
2- [e ° 2 + e ° X ] do , (5.69)

A(4)(x,y) -A(5)(x,y) =A(6)(x,y)

yi 7 i . w ,""oh ""oh, V ,
"irw(£,-£.) J ~ Sim2 C°SaX ^ 'v 2 1 0 aa

for an infinitely long straight wire of rectangular cross section.

Another case of interest is that for which y. = y_ = 1 and

a = a = o, i.e., the case of a straight wire above a two-layered con

ductor. In this case Q vanishes, S and S are given by Eqs. (5.55)

and (5.56), respectively, and Q. reduces to the value given in Eq. (5.66);

thus

A(1)(x,y) =A(2)(x,y) + A(3)(x,y) =

CO

Ml r _1

'<W 0J aa

a £~ an£n
w ,, 0 2 0 1.

-- -,-. „ . j 0 sma-r- cosax [ (e - e ) -
ttw (£„-£., ) n* _,„.2 2

0

(5.70)

Sl _"oh "Vl "V-i(e ° 2 - e 01)]e ° da , (5.71)
b0

.(3,4), . yl /• 1 . w
A <x'y) =nw(L-£.) ' ~ Sin"2 COS"X

2 10 aa.

' r-"o(Vy) -ao(y-h> h . ""oh ""oh "V .2 - [e + e ]- — [e - e [e j da ,
0

(5.72)
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A(4)> . yl r 1 . w , 0 2 0 1.A (x,y) - - wtT<-^ . , J —y sina-^- cosax (e - e )
2 V 0 aa.

"oy h _oloy(e U +^e ° ) do , (5.73)
S0

a(5)/ n yi 7 i A w , "aoh ""oh,A (x,y) = - ffw^ _& ^ J 2— sinaj cosax (e - e )
™<W 0200385

Sl a5y[(a0+e5) " <a0-B5> jj e3

Sl "a5y[(oQ-B5) - (aQ+B5) g1-] e da , (5.74)

t y- \ -p 1 " A O " A 1

A (x'y) =" W(fco J ~2 Sln"f COS"X (e )2 10 aan

e"a5C0 S a (y+c )
-J^T "W - ("o-h) s7] e d" • <5-75>

5 6 0

where we have again assumed e. = e_ for all i.

There are still other interesting cases, but we shall turn now to

the calculation of some physically observable phenomena.

The Voltage Induced by a Finite Current

Now let us suppose that another wire of cross sectional area

w'(£' - £p is placed between the plates parallel to the first one. One

can then ask what is the voltage induced per unit length in the second

wire. The answer, of course, is easily obtained by use of Eq. (2.31)

with n' =1. For convenience, we shall measure the center-to-center
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separation, d, of the two wires along the x-axis; thus if the second wire

lies entirely within region III-IV, then substitution of Eq. (5.59) in

Eq. (2.31) yields

dV jwyl r 2cosad . w . w' 2(£j-£p

(QQe °2+ Qle 02)[S0(e02-e01)-spe °2- e °h]
Wo + Vl>

Vi "Vi "nh Vi _aoh "Vi "(SQe °h Sle °^[QpCe °2- e°X) +Q^e °2- e °X)]
a0(QlS0 + QQSp da

(5.76)

for the voltage induced per unit length of wire. Obviously, Eq. (5.76)

holds only if the wire is in region III-IV.

If instead we place the second wire so that part of it lies in

region III-IV and the remainder in region III, Eq. (2.31) becomes

d+w'/2 |-£_ £' T
,3" ,n / I2 A(3'4) (x.y)dy +J2 A(3) (x,y)dy dx ,
' ^2 V d-w»/2 Li.' £2 J

while if we let y, = 1 and a, = 0 and place the wire in region VI the
o o

voltage induced per unit length is
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dV JojuI r 2cosad , w , w

-a„£„ -a„£, a^o a_.£..
Qi(e Q2-e 0x)+Qo(e02-e01) jVo

hso+ Vi VhT

a0(y+cp
[(a0+B5)S1 - (a0-B5)S0]e u da , (5.78)

where Q1 and Qn are given by Eqs. (5.53) and (5.54), respectively,

2a c

SQ = (a0-B5)(35-a0) + (aQ+B5)(B5+a0)e Ju (5.79)

2a c

Sl = (aO+05)(35~"0) + (a0_B5)(35+a0)e • (5,80)

Letting the two upper conductors recede to infinity and at the same time

letting d approach zero will yield the special case of two parallel wires,

separated by a distance (£„ + £ - £' - £')/2, with a conductor of thick

ness c between them. In this case, Eq. (5.78) becomes

dV joyI 7 4 . w , w' "oh Vl.
~r~ = - . ,„ • „..—7- —r j ~ ^ sma-r- sina-r— (e - e )ds ttw' (£l-£.,)w(£.-£1) _J 2 3 2 2

2 12 1 0 a a

(a +a )c

-aoh -aoh 35e(e ° X- e 2) 5—: g— da . (5.81)
(aQ-ep (B5-ap + (a0+B5)(B5+a0)e
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In each of the cases given by Eqs. (5.76)-(5.81), the mutual

inductance per unit length is easily obtained by using Eq. (2.38) from

which we see that division of these equations by jwl is all that is

necessary.

The Impedance of a Finite Cross Section Wire

Another quantity of interest for this case is the impedance per

unit length of a wire. To effect the calculation of this quantity, we

must first determine the self induced voltage per unit length. To

this end, we substitute Eq. (5.59) in Eq. (2.31), or, equivalently, let

the dimensions of the two wires in Eq. (5.75) become the same and take

d » 0. Choosing the latter alternative and rearranging terms give

dV

ds

dV 4ju>yl i;-n""M "fV
TTW (£2~h) 0 " "0

(y^2+ he"a°'2)(y"0'1- v""0'1^5"- Q-Si)
Wo + Vi>

<1"0 X0"1J

2a £ 2a £ ~2aQl2 _2VlQ0S0(e °2+e ° h-Q^pe ° 2+ e X)
2Wo + QoV

da , (5.82)

for the impedance per unit length. For the case in which Eqs. (5.71)-

(5.75) hold, i.e., a straight wire above a two-layered conductor, we

have



dZ

ds

dZ = 4jtuy

uw (£2-£1)2 0 a aQ/-
1 , 2 w

2~2 Sin "2

-a (£ -£) S
[e ° 2 X - 1] + x

2aoso
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(VV +a^

, ""oh ""oh 2
(e - e ) da , (5.84)

where SQ and S1 are given by Eqs. (5.55) and (5.56), respectively.

Since it is conventional to normalize the impedance of a coil in

the presence of conductors by dividing by the magnitude of the impedance

of the same coil in air, we shall do the same for a straight wire. Thus

we write here the impedance per unit length of the wire in air:

dZ _ 4jmydZ

ds
r

TTw2(£2-£p2 0 a aQ
1 . 2 w

n Sln "2
(£.-£p + i-

2 1 a.
[e
-VVV

- 1] da

(5.85)

The Power Dissipated by the Eddy Currents

We turn now to the calculation of the power loss per unit length

due to the eddy currents which are induced in the conductors. Since the

results are even more complicated than those seen thus far, we shall com

pute the power loss per unit length for only one conductor. Substitution

of Eq. (5.64) in Eq. (2.56) gives

dPf
ds~

1 2 ?
-c„

2 5

Ml r
ttw(£ -£ ) J 2_

2 10 2aa g

""oh ""oh.Q1(e w' - e v *) + QQ(e u"- e" x)

Vo + Vl

w
sma— cosax

"oh "oh.



Ill

-o5y o-y

([(oQ+epSj^ - (o0-B5)S0]e J - [(o0-B5)S1 - (a0+Bps0] e )da

TTW

yl r 1 . ,w

<VV 0J 2""035 2
cosa'x

ftI,-"oh ""oh, + "ohQ|(e - e )+ QQ(e

Vo +Vi

"oh,
e )

(J(«0+BJ)8- - <a0-ej>s0]

-aly a'y
3 5 -[(a'-Bpsp- (a^+BJ)Sj]e )da' dz dy , (5.86)

where the primes indicate that a - a' in the expressions for the constants.

Reversing the order of integration, using the Fourier integral theorem and

then integrating over a' yields

jS . 2 2T2
dPe acw y I °° ,

5 5 t X

ds 2ttw2(£2-£1)2 0 a2aQ
2 w

2. ' 2 4 Sin "2

0

I
-c

ft , '"oh '"oh, +n ( "oh "oh, ,Q1(e - e )+ QQ(e - e ) /

2(hS0 + Q0S1)35

a5yl
" t(V35)Sl- ("0+35)S0]e

while the y integration gives

[(a0+B5)S1 - (a0-B5)SQ]e
-a5y

dy da ,
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2 2 2
dP sinpl

ds 2ttw2(£2-£1)2 0 a2a4 2

n , ""oh ""oh, _, n , "oh "oh, 2Q1(e - e ) + QQ(e - e )
f 1 , 2 wJ -r-r sin a- -2(Q1S0 + Q0spB5

(a0+B5)S1 - (a0-B5)SQ
2 2x5cQ

e -1

2xr
(a0-e5)S1 - (aQ+B5)S0

"2X5C0
1-e

2xr
J[(a0+B5)Sl (a0-B5)S0][(a0-B5)S1

, . +2jy5C0
(V35)S0] " V " ^V35)S1 " ("0+35)S0]

[(a0+BpSl- (a0-B5)S0]
* "2jy5°0 ,* e - 1

2y,
da , (5.88)

where x and y,. are the real and imaginary parts of a , respectively.

For the special case of a single conductor of infinite thickness, Eq.

(5.88) reduces to

jS 2 2T2 -a.Jl. -a.£. .
dP- aca> y I °" , o / 0 2 0 1.2
5 5 r 1 . 2 w (e ^e ) , ,_ on.

J —7r~^ sin a— ••••-• —^ — da , (5.89)
ds 2 2^22ttw (£ -£p 0 a an 2 h'Vh)2

which is of somewhat greater practical value.

Expressions similar to Eq. (5.88) may be derived for the power

loss per unit length due to the eddy currents in the other conductors,

but we shall consider next the electromagnetic forces on the conductors,
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The Electromagnetic Forces on the Conductors

We shall now make use of Eq. (2.64) to calculate the electro-

agnetic force on the conductor in region V. Taking the curl ofm,

A(5)(x,y) yields

dF

ds
P-'-k ^ // A(5)(x,y) 1- [A(5)(x,y)]* dx dy ,

3y
(5.90)

which, due to the axial symmetry, is in the y-direction. Substitution

of Eq. (5.64) in Eq. (5.90) and integration over x give

dFP
2 2

jwa y I
t 1 , 2 w
/17 sin a~ds 2ttw2(£2-£1)2 0J a3a4

ft , ""oh ""oh, . n , "oh "oh. 2Q1(e - e )+ QQ(e - e )
2(QlS0 + QQSpB5

Vl-a5y

/ [(V35)S1 " (V35)S0]e " [(V35)S1 " (a0+35)S0]e
-c.

-cx5[(a0+B5)S1- (VB5)S0]e 5 -a^-B^ -

from which

ay \ *

(a0+B5)S0]e dy da , (5.91)

dF5 Jug5M2I2 7 1 .2w
^ ="2,w2(£2-£p2 o' a2a4 Sin °*

• ""oh ""oh, An , "oh "oh, 2Q1(e u - e ) +QQ(e - e )

2<V0 + Vl)B5

f * 2X5C0
" "5 l("0+35)Sl " (V35)S0I2 2xc" 1
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"2x5C0
+**5 K"o-35)si- (V35)so2 ^H^—

2jy5C0
j"5 ^"0+35)Sl -(V35)S0][(V35)S1 "("0+35)S0]* ° 2y'5 "'

*1 "2Jy5C0 \
"J°5 [(V35)S1 "(V35)S0H("0+35)S1 "(V35)S0] -^4^ Jd">

(5.92)

where as before x,. and y,. are the real and imaginary parts of a,,

respectively. For the case of a single conductor of thickness cn, Eq.

(5.92) reduces to

j^ • 2T2 -a_£„ -a_£, „
dF< JW°^ Z " "» .2w (e ° 2-e ° V *

sin a-=- — • r -— ar
1 _ 5 f 2 . 2 w (e - e " "T

ds = „ 2,„ „ .2 J ~Y1 Sln "2 " TT72 "5
2ttw (A2-V ° " "0 'S0'

2x c

j[|a0+B5|2 eXsC° -|B5-a0|2] e'°~ x-j[(B5-c0)(B^)*

-2yscn , 2"5C0 2x5C0 1
e r. (B5+a0)(B5-a0) ]^ —£- -da , (5.93)

where SQ is given by Eq. (5.79). Letting cQ approach infinity yields

the semi-infinite plane case:

dF jwa,.y2I2 - 2y2 aoh Vl,2
5 _ 5 t 5 . 2 w (e -e ) . . . ,

ds 2 2 ^ ~1T2 Sln a2 2 ' ? (xs~jy^ da '2w/(Vh) ° ""0 x5[(a0p^5)hyp 5 5

(5.94)
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where y. is the relative permeability of the conductor. From this and

the two preceding expressions, we see that the time-averaged force per

unit length is a complex quantity so that for purposes of comparison

with experiment only the real part of these expressions need be con

sidered.

Again similar expressions may be derived for the electromagnetic

forces on the other conductors, but we shall omit them for the sake of

brevity.

In this and the preceding sections, a number of special cases

have been given for each quantity of interest. Obviously, a great many

other special cases still remain; however, these remaining special cases

are easily obtained by using the methods presented in each section.

Hence, we shall omit further discussion.



CHAPTER VI

CONCLUSIONS

The general theory for the vector potential produced by a sinu

soidal current of finite cross section has been developed and applied

to several different current and conductor geometries: a coil between

a number of conducting plates; a coil encircling two, concentric,

spherical shells; and a straight wire between a number of conducting

plates. Linear, isotropic and homogeneous media have been assumed

throughout each analysis. In each case the Green's function solution

was first obtained, and the principle of superposition then used to

effect the desired result. A number of physically observable phenomena,

such as the induced voltage, the power loss due to the presence of the

conductors, the time-averaged electromagnetic force on the conductors,

jet al., were subsequently calculated from the vector potential.

Each case is sufficiently general to allow the solution of a

considerable number of difficult electromagnetic induction problems since

special cases not contained in this dissertation may be obtained simply

by using the methods persented herein. Furthermore, each of the

expressions for the physically observable phenomena is in terms of an

infinite integral or sum which may be readily evaluated on a computer.

In addition, several special cases contained in this dissertation have

been experimentally verified (19). Among these are the impedance of a

116
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coil above a single, conducting plate of both finite and infinite thick

nesses, the electromagnetic force due to a coil above a conducting plate

of infinite thickness, and the induced voltage for two coils separated

by a conducting plate. In all cases, the agreement between calculated .

and observed values is within the limits of experimental error. Pre

liminary investigations of other special cases tend to support the

validity of the corresponding theoretical expressions.

Several obvious extensions of the present work are worthy of

mention. The first and most obvious is the extension of the experi

mental observations to include each of the cases presented here.

Secondly, the effects of uniform motion of the conductors on the

impedance, the mutual inductance, the electromagnetic force, et al.

deserve investigation. Since the methods used in this dissertation are

not restricted to coils or wires having cross sections of a particular

shape, another possible extension is to the case of a coil of rectangular

cross section encircling two, concentric, spherical shells. Similarly,

an analysis of a straight wire of circular cross section between

several conducting plates might prove fruitful. Yet another possible

extension is to current densities which vary over the cross section of

the coil or wire, in which case one does not factor the current density

from the integrands of the integrals involved. The effect of non-

sinusoidal currents, particularly pulses, might also be fruitfully

investigated. However, these and many other extensions will be left to

future work.





LIST OF REFERENCES





LIST OF REFERENCES

1. Hughes, D. E., Phil. Mag. 8 (5), 50 (1879).

2. FSrster, Friedrich, Z. Metallk. 43, 163-171 (1952).

3. FSrster, Friedrich, and Kurt Stambke, Z. Metallk. 45 (4), 166-179
(1954).

4. Forster, Friedrich, Z. Metallk. 45 (4), 197-199 (1954).

5. Waidelich, D. L., and C. J. Renken, Proc. Natl. Electron. Conf. 12,
188-196 (1956).

6. Hochschild, R., "Electromagnetic Methods of Testing Metals," Progress
in Nondestructive Testing, Vol. 1 (Macmillan Company, New York,
1959).

7. Libby, H. L., Broadband Electromagnetic Testing Methods, Hanford
Atomic Products Operation, HW-59614 (1959).

8. Russell, T. J., V. E. Schuster, and D. L. Waidelich, J. Electron.
Control 13, 232-237 (1962).

9. Vein, P. R., J. Electron. Control 13, 471-494 (1962).

10. Atwood, K. W., and H. L. Libby, Diffusion of Eddy Currents, Hanford
Atomic Products Operations, HW-79844 (1963)

11. Dodd, C. V., and W. E. Deeds, "Eddy Current Impedance Calculated by
a Relaxation Method," pp. 300-314 in Proceedings of the Symposium
on Physics and Nondestructive Testing, (Southwest Research Institute,
San Antonio, Texas, 1963).

12. Cheng, David S. S., "The Reflected Impedance of a Circular Coil in
the Proximity of a Semi-Infinite Medium," (Ph.D. Dissertation,
University of Missouri, 1964).

13. Burrows, Michael Leonard, A Theory of Eddy Current Flaw Detection
(University Microfilms, Inc., Ann Arbor, Michigan, 1964).

14. Dodd, C. V., A Solution to Electromagnetic Induction Problems, Oak
Ridge National Laboratory, ORNL-TM-1185 (1965), and M.S. Thesis,
The University of Tennessee, 1965.

121



122

15. Philippe, A.» Non-destructive Control of Non-ferromagnetic Metal
Sheet by Means of Eddy Currents. Calculation of the Complex Imped
ance of a Coil in the Presence of a Metal Plate under Pure Alternating

Conditions, European Atomic Energy Community, EUR-3483 (1967).

16. Onoe, M. , An Analysis of a_ Finite Solenoid Near a_ Conductor, Institute
of Industrial Science, the University of Tokyo, 17 (25), 1-36 (1967).

17. Dodd, C. V., Solutions to Electromagnetic Induction Problems, Oak
Ridge National Laboratory, ORNL-TM-1842 (1967) and Ph.D. Dissertation,
The University of Tennessee, 1967.

18. Dodd, C. V., and W. E. Deeds, J. Appl. Phys. 39, 2829-2838 (1968).

19. Dodd, C. V., W. E. Deeds and J. W. Luquire, Phys. and Non-Destructive
Testing, I. I"62 (1969).

20. Dodd, C. V., W. E. Deeds, J. W. Luquire and W. G. Spoeri, Some Eddy-
Current Problems and Their Integral Solutions, Oak Ridge National
Laboratory, ORNL-4384 (1969).

21. Luquire, J. W., C. V. Dodd, W. E. Deeds and W. G. Spoeri, Computer
Programs for Some Eddy Current Problems, Oak Ridge National
Laboratory, ORNL-TM-2501 (1969).



APPENDIX





APPENDIX

LIST OF SYMBOLS

Symbols used in this work are given in the first column, while

the quantities they represent are given in the second column. The

corresponding meter-kilogram-second (MKS) unit, if any, if given in the

third column, and the dimensions in terms of mass (M), length (L), time

(T) and electric charge (Q) are given in the last column.

Symbol Name

A vector potential

B

j

L

M

magnetic induction

electric intensity

force

applied current

applied current density

current density

square root of negative one

inductance

mutual inductance
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MKS Unit Dimensions

weber ML

meter TQ

weber

2
M

meter TQ

volt ML

meter 2
QTZ

newton
ML

T2

ampere
T

ampere

„ 2
meter

_2_

TL2
ampere

„ 2
meter

-2-

TL2

henry
ML

henry
ML



Symbol

N

n

P

t

V

v

Z

a

3-

B

126

Name

turns per unit area

number of turns

power

time

voltage

volume of defect

impedance

normalized impedance

current scattering matrix

magnetic scattering matrix

dielectric constant

permeability

conductivity

angular frequency

MKS Unit

1

,. 2
meter

watt

second

volt

.. 3
meter

ohm

Dimensions

1

ML

ML

2
QT

L3^
ML'

to/

farad
2 2
tV

meter 3
ML

henry ML

meter Q2
mho TO2

meter ML3

1 1

second T
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