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ABSTRACT

Anomalies in the intensity of p-polarized light from concave

diffraction gratings and from thin grating foils have been analyzed

in terms of an interaction between the incoming photon and a surface

plasmon resonance in the grating surface.

Non-radiative surface plasmon dispersion curves have been

obtained for various metal- and dielectric-metal layers on concave

gratings. The cases investigated were an Al substrate coated with

(1) Ag, Au, and Al metals (2) AlpO ,MgF-, and diffusion pump oil

dielectrics, and (3) A12°-3 »A1» and A1?°? composite layers. The wave

length region investigated was from the infrared through the vacuum

ultraviolet (l^OOO - 500 A0). The experimental results are in sub

stantial agreement with the theoretical dispersion curves for these

cases.

Also considered were radiative mode surface plasmon excitations

in thin Ag grating foils and in Al and Al - A1?0 - Al layers on

concave gratings. A study was also made of the anomalous peak intensi

ties for (l) the first order on-blaze diffracted spectra (2) metal

overcoating layers of varieus thicknesses, and (3) some aapeets of the

reflected (zero-order) and off-blaze first order spectra,

in
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CHAPTER I

INTRODUCTION

Anomalies in the intensity of light diffracted from reflection

gratings have been the subject of extensive experimental and theoretical

study since they were first observed in 1902 by Wood, who termed them

anomalies because they could not be explained by the ordinary grating

theory of that time. These anomalies are rapid variations in the in

tensity of diffracted light that occur over a fairly narrow wavelength

region when the incident light is polarized with its electric vector

parallel to the plane of incidence which in turn is perpendicular to the

rulings on the grating. For a source with a continuous, slowly varying

spectrum these anomalies appear as sharp peaks or dips in the diffracted

spectra.

There has been a renewed interest in grating anomalies for two

primary reasons. One is the increasingly widespread use of concave

gratings in monochromators, due largely to the ability of these gratings

to disperse and focus light over a large spectral region, including the

vacuum ultraviolet, a region that has become of great importance lately

in space research and in solid state physics. In experiments where the

state of polarization of the light passing from the monochromator to the

specimen under study is required, it is desirable to know something

about these anomalous polarization effects and in many cases to modify

or eliminate them.



A second reason for the interest in grating anomalies is the

current belief that they can be explained in terms of plasma resonances

in the surface of the metal coating of the grating. These resonances

involve the excitation of certain collective modes of oscillation of

the electron gas that in ordinary metal surfaces can be difficult to

observe but in grating surfaces are detected without great difficulty.

Studies of the anomalies can lead to a better understanding of plasma

phenomena in metals, such as the dispersion of surface plasma waves, the

interaction of electromagnetic radiation and plasma waves, and the

elementary interactions.

I. ANOMALIES IN GRATING POLARIZATION

The first theoretical treatment was given by Rayleigh in 1907 and

was based on scattering between the incident and diffracted waves. This

theory involved an expansion of the electromagnetic field in terms of

outgoing waves which predicted a singularity at certain specified wave

lengths [Rayleigh (1907b)]. In simplest terms the theory says that for

a given angle of incidence there might exist several diffracted orders,

one of which, for a given wavelength of light, might be a "passing-off"

order; that is, one for which the angle of diffraction from the grating

normal is 90 degrees. This passing-off order would consist of light

moving across the grating and parallel to the surface (Figure l).

This light could then be scattered into one of the diffracted

orders and appear as a peak in intensity in that order at that
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Figure 1. Diffraction grating nomenclature for incident (lQ) and reflected (R) light and
diffracted orders for grating with line spacing <5 and blaze angle 9 . The diffraction
angle is 3 for the n = +1 diffracted order and the incidence angle is a .



particular wavelength. These wavelengths, which can be calculated from

the grating equation (Chapter II), are known as the Rayleigh wavelengths

[Rayleigh (1907a)].

Rayleigh's theory was useful in predicting the position of the

wavelengths but not their shape or intensity. Other theories presented

in recent years, in an attempt to correct this deficiency, have been

based on rather sophisticated multiple wave scattering techniques

[Twersky (1952, 1962)]. A good review of these has been given by Hessel

and Oliner (1965). The multiple-scattering theories predict the

position and shapes of the anomalies fairly well, but are only applicable

for gratings having shallow grooves. It has been shown, by Palmer (1952,

1956) that for gratings with deep grooves another anomaly appears for

light polarized perpendicular to the plane of incidence. This type of

anomaly was not observed, however, in the present work because only

gratings with comparatively shallow grooves were used.

Some of the more recent treatments of Wood's anomalies have taken

into account the dielectric properties of the metal coating of the

grating. In the treatment of Fano (1941) the passing-off plane wave of

Rayleigh is replaced by surface waves in the metal that can be resonantly

excited by incident light. The wave vector of the incident light is

modulated by the periodic grating structure so that it can resonate with

one of the surface waves having a similar wave vector. Fano showed that

the wavelengths at which this occurs are approximately equal to the

Rayleigh wavelengths.



A recent extension of Fano's idea was made by Hagglund and

Sellberg (1966) who took into special account the reflection and

absorption properties of the optical grating for Wood's anomalies. They

were able to confirm in some quantitative detail an earlier observation

of Wood's that the energy for the anomalous peaks comes from the central

image [Wood (1935)]; that is, peaks in the diffracted orders correspond

to dips in the zero order at the same wavelength. Their theoretical

treatment was similar to Fano's in that one represents the fields inside

and outside the grating as an infinite superposition of plane waves,

both homogeneous and inhomogeneous and expands the equation for the

grating surface as a Fourier series. The unknown field amplitudes are

found from the boundary conditions.

Recent experimental work has been done by Stewart and Galloway

(1962) on the Wood's anomalies appearing in the zero order and some of

the diffracted orders. They observed that where two anomalies occur at

close to the same wavelength (because of passing-off orders propagating

in opposite directions on the grating surface) there is a reluctance of

the anomalous peaks to coincide. Elsewhere the observed wavelengths

correspond rather closely to the Rayleigh wavelengths.

One of the most comprehensive theoretical treatments of Wood's

anomalies based on classical electromagnetic theory was given by Hessel

and Oliner (1965). Their treatment makes use of a surface reactance to

take into account the standing waves in the grating surface and derives

the locations and shapes of the anomalies. It is shown that two types



of anomalies may exist: A Rayleigh type due to the emergence of a new

spectral order at grazing angle, and a resonance type which is related

to the guided complex waves supportable by the grating. It is shown

that for shallow grooves such as are typical for many diffraction

gratings the two anomalies are virtually indistinguishable. In principle,

their guided wave approach is similar to that of Fano's where resonances

can occur between the incident light and the surface waves on the

grating,

Anomalous behavior has not been restricted to the optical range.

Palmer, Evering, and Nelson (1965) and Evering (1966) detected anomalies

from reflection gratings with rectangular profiles in the microwave

region. In fact, Evering produced artificial anomalies by reflecting

microwaves across the grating as if they were in a passing-off order.

Evering and Aujouanne (1969) later repeated the experiment in the optical

region with laser light.

II. SURFACE WAVES

The use of surface waves by several of the authors cited above

to explain Wood's anomalies leads us to investigate surface wave

phenomena in metals in more detail in their general historical context

and in their specific application to the problem of grating anomalies.

In 1909 Sommerfeld showed that an electromagnetic wave could

propagate at the boundary between two dielectric media. The solution of

Maxwell's equations for this case was not a plane wave but a bound



surface wave of the transverse magnetic (TM) mode type [Sommerfeld

(1909)]. It has since become known as the Sommerfeld surface wave

[Stratton (l94l)]. It was specifically derived for the case of radio

frequency waves propagating along the surface of the earth at the earth-

air boundary, but it is perfectly applicable to optical frequency waves

moving along a metal-vacuum boundary. One interesting property of a TM

wave is that it has a small longitudinal electric field component and as

such is parallel to the direction of wave motion. In a metal the

oscillating longitudinal field can interact with the conduction electrons

which in turn oscillate in the same direction. The essentially free

conduction electrons and the lattice ions constitute a plasma in the

metal. The conduction electron oscillation brought about by the surface

wave can be interpreted as a charge wave, plasma wave, or more exactly,

as a surface plasma wave.

Another interesting property of this surface wave is that its

phase velocity is less than the speed of light. Thus an incident plane

wave cannot excite the surface wave because momentum and energy cannot

be simultaneously conserved at the boundary. Exceptions can occur when

the surface is not perfectly smooth.

The Sommerfeld wave is only a special case of plasma excitations

in metals. There is also a bulk volume mode and, where the metal is

thin, more than one surface mode. Pines (1956) has shown that when fast

electrons are scattered by thin solid films, collective energy losses

occur in the valence electrons of the metal. A collective loss is



described as an energy transfer to a number of electrons moving cooper

atively in consequence of their mutual interaction, a type of motion

that is characteristic of the behavior of plasmas. The term "plasmon"

was introduced to describe the quantum of elementary excitation asso

ciated with this high-frequency collective motion. The energy associated

with this loss is

, 2 1/2
_ ^ , 4 t\ n e ^
Ti to = ^1 ( )

p m

where co is the plasma frequency, n the valence electron density,

and m the free electron mass. We shall refer to co as the bulk
P

plasma frequency since it depends only on the bulk properties of the

metal.

Ritchie (1957) has shown in a dielectric treatment of an electron

gas that when the boundary is taken into account in an interaction of

fast electrons with metal foils, a new energy loss appears at a reduced

frequency co / /2 . This is due to the depolarizing effect of the

vacuum at the metal-vacuum interface. The quantum of the energy loss at

the reduced frequency, il co /v2 , is referred to as the surface plasmon.

The term surface plasmon is also used to describe the quanta of surface

plasma waves. Ritchie also derived a dispersion relation for surface

plasmons on thin foils having the following form

1/2
UJ

oj = —E- [l + exp (-a<)
/2



where a is the foil thickness and < is the wave vector of the

surface plasma wave and which reduces to the previous expression for

large values of a or k . A plot of this relation is shown in Figure

2. The two branches of this dispersion relation describe two different

distributions of the electric field in the interior of the foil, or

two modes of plasma oscillation. The positive sign is associated with

electronic motion predominantly normal to the surface of the foil and

is referred to as the normal surface plasmon. The minus sign involves

motion predominantly parallel to the surface, and this mode is referred

to as the tangential surface plasmon. Typical electric field patterns

are shown in Figure 3. The above dispersion relation, which is the

electrostatic solution, is changed when retardation is taken into account;

i.e., when the full set of Maxwell's equations including the radiation

terms are used. In this case we obtain radiative and non-radiative

modes on each side of the light line, co = ck (Figure k) . The non-

radiative modes are split into the higher-energy normal mode and a lower

energy tangential mode, which, as the foil thickness increases, get

closer together and eventually merge into a single non-radiative mode

for a semi-infinite metal surface. This latter mode is identical with

the Sommerfeld surface wave discussed earlier. This non-radiative

dispersion relation has been derived by Ritchie and Eldridge (1962),

Otto (1965), and Kloos (1968). Radiative modes have been considered by

Kliewer and Fuchs (1967) and by Romanov (1964).
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thickness approaches infinity.
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The energy losses discussed above have been determined experi

mentally by measuring the energy of the electrons after they have

passed through the foil or by reflection from the foil surface. Ferrell

(1958) first suggested that for thin foils plasma radiation might occur

at the characteristic (bulk) plasma frequency and that detection of this

radiation would allow the energy loss to be measured directly. Ferrell

considered the excitation of the (radiative) normal plasma mode, which

because of the electronic motion normal to the foil would produce

radiation similar to an oscillating dipole. Radiation of the non-

radiative modes was discounted at that time because of the energy and

momentum considerations mentioned earlier. This normal mode radiation

has since been observed experimentally many times [Steinmann (i960),

Arakawa, Herickhoff, and Birkhoff (196*0, Boersch, et al. (1965) and

Arakawa, Davis and Birkhoff (196*0 ]. Ritchie and Eldridge (1962) showed

that the mathematical description of this radiation was identical to

that of transition radiation proposed earlier by Frank and Ginsburg

(1945).

In experiments designed to detect the surface losses predicted

by Ritchie, it was found for many metals, for example, aluminum and

magnesium, that an energy loss did occur at Hco //2 for a pure metal
P

surface, but if the surface were allowed to oxidize this loss peak

disappeared and a new loss peak appeared at a still lower energy. Stern

and Ferrell (i960) showed that this new loss line could be accounted

for by the thin oxide layer that forms naturally on aluminum and
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magnesium. By utilizing the dielectric constants of the oxide layer

and metal surface, they showed that this new loss should occur at the

reduced frequency co //l+e where e is the dielectric constant of the

oxide. For a metal bounded by a vacuum this reduces to Ritchie's

result.

That the non-radiative mode might indeed radiate under certain

conditions was pointed out by Stern (1966) and later verified in an

experiment by Teng and Stern (1967). As mentioned previously this mode

does not radiate because it propagates at less than the speed of light,

but a certain amount of surface roughness may permit momentum transfer

to occur that would permit coupling between the surface wave and light.

In Teng's experiment a grating surface coated with thick layers of

aluminum and silver was bombarded by normally incident electrons and

light from the plasma oscillations was detected. The surface roughness

in this experiment was provided by the periodic grating structure. From

his data dispersion curves for the non-radiative surface mode were con

structed for aluminum and silver.

The plasma excitation experiments discussed up to this point have

all been performed where the exciting agent is a beam of fast electrons.

But one should also be able to excite plasma oscillations with a plane-

polarized beam of light. This was first predicted by Ferrell and Stern

(1962), who reasoned that the decay of normal mode radiative plasmons

into photons indicated strong coupling between them and that the inverse

process of exciting plasmons by incident photons should be possible.
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Since a component of the incident electric field perpendicular to the

foil normal is required to excite normal mode plasmons, this requires

light polarized with its electric vector parallel to the plane of

incidence (p-polarized light). Because of momentum considerations this

radiation appears in the reflected beam only, and there is a corre

sponding dip in intensity in the transmitted beam. This phenomenon has

since been experimentally verified many times [Huebner, et al. (1965),

Brambring (1967), McAlister and Stern (1963)].

That plasma radiation excited by light could appear in directions

other than the reflected and transmitted beams was shown by Brambring

and Raether (1965, 1967). In this experiment a thin Ag foil was

irradiated at a large angle of incidence by p-polarized light and the

emitted (polarized) light was detected at the bulk plasma frequency in

a direction almost opposite to the reflected beam and at almost 90° to

the transmitted beam. In order for such radiation to occur, some

momentum transfer must occur at the foil surface to conserve momentum.

An explanation was offered by Stern (1967) and by Wilems and Ritchie

(1967). Stern's explanation was based on classical considerations in

which a certain amount of random surface roughness is assumed for the

foil surface. This roughness allows surface currents normal to the foil

surface to exist and thus normal mode radiation could occur. Wilems

and Ritchie used a quantum-mechanical approach involving a photon-

plasmon interaction. The normal modes of electronic motion in a plane

plasma slab were found from the Bloch hydrodynamical equations for a
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degenerate electron gas. The plasmon field was quantized with the

assumption that deviations from a uniform electron density, such as

might be found from surface irregularities, phonons, impurities, etc.,

could be represented by a static density variation function. Photons

and plasmons could then scatter on these density variations, allowing

momentum to be conserved at the boundary. These theories have agreed

quite well with the experimental results. This type of radiation, which

has come to be known as PREL (plasma resonance radiation excited by light)

has been observed in several other experiments [Bosenburg and Raether

(1967), Schreiber and Raether (1966), Steinmann, Hofmann, and

Stettmaier (1966)]. In an interesting speculation, Wilems and Ritchie

predicted that PREL radiation should be easily seen in grating foils

where the surface roughness (static density variation) is regular and

has a known value. The light should be emitted into definite directions

determined by the diffraction equation instead of into a sphere of

directions as in the systems studied by Raether and in most cases should

be more intense.

The preceding experiments with PREL radiation have been concerned

with radiative mode excitation in thin foils. Incident light can also

excite the non-radiative mode in thick metal substrates if certain

conditions are met. One is that the incident light pass into a medium

and be incident on the metal surface at a phase velocity less than light.

Non-radiative surface plasma waves have been produced in this way by the

exponentially decaying wave from a quartz prism at a quartz-air-metal
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interface in which absorption takes place at the plasma wavelengths,

but no radiation is produced [Otto (1968)]. The non-radiative mode has

also been excited by the exponentially decaying wave from an air-quartz-

metal interface where decay of this mode into radiation results from the

surface roughness [Kretschmann and Raether (1968)]. Another method of

exciting the non-radiative mode is to directly irradiate a metal having

surface roughness that can, as with the PREL experiments, allow

momentum conservation to occur at the metal surface. In the case of

diffraction gratings this roughness is provided by the regular grating

structure. In this sense the grating serves the same purpose for the

case of incident light as it does for the case of an incident beam of

electrons where radiation is produced. Beside the electron beam experi

ment, Teng and Stern (1967) also conducted an experiment where the

grating was irradiated by p-polarized light and the reflected beam

analyzed. Dips were found at the plasma frequencies in this zero-order

beam that corresponded to peaks at the same frequencies for radiation

resulting from the electron bombardment.

A review of optical plasma resonance phenomena in solids has been

given by Steinmann (1968).

III. SCOPE OF THE PRESENT RESEARCH

The previous experiments have suggested many possibilities for

studying photon-plasma interactions in grating structures. The objects

of the present research were essentially the following: (l) extend the

wavelength region covered in the usual studies of Wood's anomalies
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from the infra-red and visible into the near- and vacuum-ultraviolet

regions; (2) investigate the non-radiative modes by constructing dis

persion curves from the measured anomalous wavelengths for different

metal and dielectric coatings on concave reflecting gratings and com

paring these with the theoretical curves; (3) investigate the radiative

mode by conducting experiments with thin grating foils; (*+) evaluate

proposed quantum-mechanical descriptions of the photon-plasmon inter

action; and (5) compare intensities of the anomalies in the various

diffracted orders.

The major emphasis in this study was placed on the dispersion

relation calculations for the non-radiative mode and a secondary emphasis

on the intensity calculations and the work with thin foils.



CHAPTER II

THEORY

In this chapter we present first a discussion of the Rayleigh

wavelengths based on the diffraction equation. This is followed by a

section on classical macroscopic theory including derivations of the

dispersion relations for all the geometries considered in this study.

The final section is concerned with the quantum-mechanical description

of the photon-plasmon interaction and how it relates to anomalous

polarization effects.

I. THE RAYLEIGH WAVELENGTHS

The basic equation governing the performance of a diffraction

grating is the grating equation giving the order, n , and the wavelength,

X , in terms of the grating spacing, 6 , the angle of incidence, a ,

and the angle of diffraction, 8 , as follows

n X = S (sin a +_ sin 6 ) . (l)

For the reflection gratings used in this work, the plus sign is used

when both the incident and diffracted rays are on the same side of the

grating normal, and the minus sign, when they are on opposite sides of

the normal. The order number, n , can also be positive or negative;

the negative sign is used when the reflected beam lies between the

incident and diffracted beams. For diffracted orders lying on the

19
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opposite side of the reflected beam, the positive sign is used. These

are illustrated in Figure 1, page 3.

For a certain choice of grating parameters and at a given angle

of incidence it is possible for the diffracted beam to be parallel to

the surface of the grating; i.e., the angle of diffraction, g , is 90°.

In this case the grating equation becomes

m A = 6 (sin a + l) (2)
K —

where m and A are the particular order and wavelength for which
K

this occurs. The A_ are called the Rayleigh wavelengths because it
R

is these passing-off orders which Rayleigh said were responsible for

the grating anomalies. The order number, m , can be positive or

negative, as for n . In Figure 1, passing-off orders are indicated

for m = -2 and +3.

If the grating is bounded by a dielectric having a dielectric

constant, e , instead of by vacuum, Equation (2) becomes

mAT=<S(sina + v/e~). (3)

II. CLASSICAL MACROSCOPIC THEORY

In a homogeneous, isotropic medium of dielectric constant e ,

permeability y , and conductivity a , Maxwell's equations take the form

[Born and Wolf (1959)]:

vx£ = £ |f + ^ at (*0
C dt C
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V*E=-iif (5)

V•E = ^p (6)

V • H = 0

-»•->•-»• •+ -*• -*•

where we have used J = a E , D = e E and B = u H .

If an electromagnetic disturbance is incident on the medium from

outside, Equation (6) may be written V • E = 0 . This can be seen from

the following considerations. Taking the divergence of (*0 and using

(6) we obtain

£ W • — = 47fg . 4Tr
c at c e P

-*• .

The time derivative of (6) gives V • —57-= —tt- &n(i elimination of
dt £ dt

r}F . 4TTCT
V • — between these two equations gives p + p = 0 which on

ot £

integration yields p = p e where x = e/4iTa . For metals the
a o

-15 -19
relaxation time x is usually on the order of 10 to 10 sec, which

is smaller than the periodic time of the incident light wave, so p can

be considered always zero. Furthermore, in a non-permeable medium,

u = 1 . So Maxwell's equations become, for a non-permeable, homogeneous

isotropic conductor

V*K- = £f + ^aE" (7)
C dt C
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v xE = " c at (8<

V • E = 0

V • H = 0

If we use the vector identity V x (v x e) = V(V • E) - v E and

V • E = 0 we obtain from Equations (7) and (8) the equation

„2 + e 3 E _,_ 4to 3E ,__>
V E = T —^ + — It ' (10)

C dt C

If the incident field has the form E = E ela) (7) and (8)
o

can be rewritten as

Vx ff = ^ (e + i itES- ) | = o
C CO

-*• ICO -*•
VxE-— H = 0

c

and thus Equation (10) becomes the wave equation

V2 E + K2 E = 0 (11)

where <2 = ^ (e+ i-^2_ ). (12)
C CO

A similar calculation using the vector identity
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V x (v x H) = V(V • H) - V2 H where V •H = 0

2 -»• -2 -*- ,
V H + < H = 0 . (13)

If we define the expression in parenthesis in Equation ('12) by

a complex dielectric constant, I ,we obtain

2 2~<- co

- 2 e
c

where e = en + i e_ and where e, = e and e.

wave

It is interesting to note that the wave equations (11) and (13) for a

conducting medium have exactly the same form as the corresponding

equations for a non-conducting medium with the exception that 1? and co

are complex instead of real. We shall see later that complex notation

enables us to describe many phenomena of conducting media in the often

comparatively simpler formalism of non-conducting media.

One solution to Equation (ll) is that of a plane, time-harmonic

| = 1 ei(K-r-Ut) (lM
o

where |k| is the absolute square root of (12). If we also define the

velocity and index of refraction as complex by



24

/i " v ' £ " 0)

and set fl = n + ik , where n and k are real, we obtain the following

relations between e , n , and k

2 v2e, = n - k

e2 = 2 n k

:i5:

With these relations, Equation (1*0 can be written, for a wave

propagating in the x-direction, as

i(- x - t) (- —- )
E = E e e .

o

This shows that the wave is damped exponentially in the x-direction.

The coefficient k is thus called the extinction (or absorption)

coefficient and n is the (real) index of refraction. From these

relations we see that the phase velocity of the light in the medium

is given by c/n and the spatial field amplitude is decreased by the

factor

-kcox/c
e

The imaginary part of the dielectric constant, e? ,is associated

with energy absorption in the medium as we see from the following

discussion. The power loss is given by the real part of
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P = J • E (16)

and

* • f - It <'X* ♦ l'2*>

If we assume an incident electromagnetic wave having the form

we have

2 = 1 eiwt
o

J = (icoe - coe ) E

and the power loss is

Re P = -co|£2l|E|2 . (17)

Although in this work we do not deal with incident electron

excitation, it is nevertheless instructive to see the form of the

energy loss function and how it differs from that for electromagnetic

radiation. For incident electrons, V«D = 4Trp , the D field

arising from the moving electrons. We have

J = || =icoD (18)
dt

and

-> D ico i-*-i2
P = ico D • - = — D

e e ' '

and
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Re P = — |DT , where 1 = __£__ = Im(£) .(19)
lel |e| ei + e2

It will be subsequently shown in the discussion on the dispersion

of surface plasmons that e is also a measure of the width of the

anomalous emission peaks.

The Bulk (Volume) Plasma Frequency

A plasma is a large electrically neutral collection of charged

particles possessing opposite signs that shield each other from their

Coulomb fields as well as impinging fields. In a metal the plasma con

sists of the conduction electrons and the lattice ions. Because of

charge neutrality there arises a natural resonant frequency, the plasma

frequency, that is brought about by displacing the electrons as a group

a small distance £(t) from the positive ions. Then the charge density

p(t) which crosses a plane is p = ne£ where n and e are the

electron density and charge, respectively. The field arising from this

charge density is

E = - l+irp = — Utt ne£

and the equation of motion resulting from this field for a free electron

is

2 2
d E, _ e _ kit ne

dt2 " meff " " meff
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where m __ = m*m is the effective mass of the electron whose (rest)
eff o

mass is m . This is the equation of simple harmonic motion whose

resonant (plasma) frequency is

2 k* ne2
co =

P meff

It is called the bulk, or volume, plasma frequency since it applies to

an infinite metal without boundaries.

The dielectric properties, as well as co , may be derived in a

more general manner for a viscous medium by considering Maxwell's

equations [Raether (1965)]. Let us assume that we have a longitudinal

(plasma) wave traversing the medium. For longitudinal waves the

propagation vector , k , is parallel to E , so k * e = 0 , or more

generally, V x E = 0. But since

We have

V x E = — H , then V x H = 0 .
c

V x H = - — £ E , or £ E = 0 . (20)
c

Regarding E as finite, we have e = 0 which is the condition for

the existence of electrical longitudinal plasma waves.

Now let us consider the equation of motion of a free electron in

an oscillating field subjected to viscous damping forces. This equation

is, for vibration in the y-direction
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•.^-J-^fc-- E, "°
where x is the damping constant. A solution to this equation is

-icot
y = yo e

assuming E to vary as

We obtain

-*• -*• -icot
E = E e

o

w2 +i" = 2L or y = eff E . (22)
7 T y meff co2 - i£- y

x

Now, from D = E + 4ttP, we have, taking the time derivative

3D 3E ^ | 3P 3E _,_ ,, T f,v
at ' at + Uff at " at + UirJ (23'

where J corresponds to a polarization current,

J-•.t - £ - -n. g . (2-:

Thus we have for the y-component, using the complex dielectric constant,

3E 3E d
e 2- = *- - kn n e —*-e 3t St ^ n e 3t

and taking the time derivative of (22)
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e/m __ 3E
3y _ eff v_
at 2 ico at

co - —
X

and substituting, we get

2 2
Uirn e /m _. co

g = 1 n , 6ff = 1 - ^H? (25)
2 ioi 2 ico

x x

2
2 *+tt n e

where co = = the bulk plasma frequency.

p meff

and

From (25) the real and imaginary parts of £ are

el
= 1 •

2
CO

2
CO

1

1 + -
1

2 2
CO X

=

1

cox

2
CO

p
2

CO

1

b2
1 +

1

2 2
CO X

(26)

(27)

Now, if we allow for a complex frequency, i.e., co = co = co.. + i co?

and solve (25) for £ = 0 , we obtain

(28)
X P kS

and

(29)

2

Ul =
2

CO

P

1

**x2

"2 "
1

2x
,
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-' t -iw,t -—
The time dependence, which is of the form e becomes e e

which shows that the wave decays exponentially and thus that co? is a

measure of the damping. If the damping (e?) is small, that is, if the

lifetime x is large, (26) and (28) become

el
= 1 -

2
CO

p
2

CO

2
~

2

P
.

A simple formula has been given by Ferrell (1958) for the

broadening of the resonance peak

:30)

(31)

tfy = -R co e2 (32)

where y is the damping rate and "Ky is the width of the peak at

half-maximum, y is also the reciprocal of x , i.e., y = —

Bound Electrons

The previous derivations for the dielectric constant are valid

assuming a free electron gas, but are altered if bound electrons in a

periodic lattice are considered. In this situation the discrete single-

atom energy states are smeared into continua of states called bands

because of the degeneracy brought about by the overlapping of the single

electron wave functions. Descriptions for the calculation of the



31

dielectric constant can be made from quantum-mechanical considerations

where one sum over a large number of discrete electron excitations. It

is assumed that the electrons in a given band I are in Bloch states

characterized by a wave vector p . The dielectric constant takes the

form [Raether (1965)]

:<«> = 1"^ I I pWp (33)m , S 2 2
o £' m' co - co„ , ,

Jc'm'

where the summations are for transitions from all states m' to all

unoccupied states I' . It is assumed that damping is small, so that

e(co) = e (co) and that the equation is valid in the long wavelength

limit; i.e., for a vanishing wave vector k , where k = p' - p . The

f , , are the oscillator strengths for the transitions in question and

the co , , characterize the energy difference between two electron

states in different bands,

"h co„ , , = E„, - E ,
Jl'm' £' m'

Let us assume that we have, for example, two energy bands, one

an unfilled conduction band c and the other a free band f above it.

Equation (33) can be separated into contributions from the interband

and the intraband transitions as follows

,. kv e2 v f(P'»P} k, e2 . ffc (P'>P}
elU) = X"~m— I ~2 — ~ —£— i- ~2 —

O PCO-CO, O p 111 - 111.
r p'p fc
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where the second term describes intraband transitions within band c

and the third term describes (interband) transitions from band c to

2 2
band f . In dealing with the second term, one usually has co > > co ,,

so that by introducing n , the conduction band electron density, and

the effective electron mass, m _. , the summation term can be replaced
eff

and the second term becomes

p 2
4tt n. e _ p

m co co
eff

Thus the intraband transitions are absorbed into an effective plasma

frequency. If one assigns a finite lifetime to the electrons excited to

the conduction band to account for collisions with phonons, impurities,

or other electrons, the dielectric constant takes on a more complicated

form. Pines (1963) has shown, in a generalization of the treatment of

Lindhard (195*0, that these constants can be expressed as

p
co .2 f

«!<»> -1" ^-^T - ^- I 2 ^2 <*>
co+x o £ co- co.

£v

co+x o £ £v

where co is the same as that defined in (33) and x is the relaxation
P

time. Here f. is the oscillator strength for a transition from the
£v °

ground state distribution v to an excited state £ in the different

band, and 6( co - co ) is an energy-conserving delta function. Note
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that these equations, with the exception of the interband terms in each,

are identical in form to Equations (26) and (27) for the free electron

gas.

To see how the plasma frequency is shifted by interband transitions,

let us assume that the damping is small and apply the condition

e.(w) = 0 to Equation (3*0. This leads to a plasma frequency

2

2 %to' = E——- , where
P i * d* 1 - o e

2 f
r b b n £ r £v , ... , . _ .. . .
6 e = ) —r r:— and co is increased if the mter-

m L 2 2 p
o co - co.

£v

band frequency, is less than the plasma frequency co , but decreased

if co„ is greater than co . However, if to. is far away from the
£v ° p £v

plasma frequency, the plasma frequency is changed only slightly and the

excitation can still be considered as a free-electron resonance. For

example, a metal like Al exhibits free-electron behavior below 1 ev,

but because of an interband transition at 1.5 ev, the calculated plasma

frequency at 12.7 ev is shifted to 15.2 ev. The situation is more

complicated with a metal like Ag, which has a free electron plasma

frequency calculated at 9.2 ev, but because of an interband transition

at 3.9 ev and possibly others at energies greater than 9.2 ev, the plasma

frequency actually falls at 3-75 ev [Raether (1965)].
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Surface Plasma Excitations

The foregoing treatment has been concerned with bulk plasma

oscillations in infinite crystals. The situation is different for the

real case of a bounded crystal. Here we must account for what happens

at the interface between two media having different dielectric properties

when an electromagnetic disturbance passes from one medium into the

other. This analysis is a classical boundary value problem in electro

magnetic theory.

Let us assume that we have a semi-infinite conductor of

dielectric constant £ , bounded by a vacuum, as in Figure 5a, page 35,

and that we seek the solution for an electromagnetic wave propagating

along the interface; where, for simplicity we take the propagation

vector, k , along the x-axis. The electric fields must satisfy the

wave equations

v2 f _ i_ _L_2 =o z>o (36)
2 2

c at

V2 E - -^ -^ =0 z<0 . (37)
c at

Retardation effects are automatically accounted for by the time-

dependent terms. We find that the solutions to Equations (36) and (37)

have the following form
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Figure 5. Metal-dielectric configurations: (a) semi-infinite metal-
vacuum (b) metal foil bounded by vacuum (c) semi-infinite metal-
dielectric-vacuum (d) semi-infinite metal-dielectric-metal-vacuum
(e) semi-infinite metal-dielectric-metal-dielectric-vacuum (f)
metal foil bounded by uneven dielectric layers and by vacuum
(g) semi-infinite metal-dielectric 1-dielectric 2-vacuum.
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r - _kiz
A e z > 0

E" = eiUx " wt) .
•* k2Z
Be z < 0

where E = (E , 0 , E )
x z

/2 ^ V / 2 . to2kl =VK - — k2 =yK "£ ^2

(38)

Hereafter we shall drop the circumflex over £ , so that £ = e(to) = e

The media, exclusive of the boundary, are homogeneous and charge-free

and we may write

V • E = 0

from which we have

iK A - k, A = 0 , iK B + k0 B = 0 . (39)
x 1 z x 2 z

Now since the wave equations (36) and (37) have been cast in the form

appropriate for dielectric media, where conduction effects are absorbed

into the complex dielectric constant, we need not speak of free charges

at the boundary, but only polarization charges. Thus the normal com

ponent of the displacement field, D , is continuous across the boundary,

since it is discontinuous only when free charges are present. Using
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this and the condition that the tangential component of the electric

field is continuous across the boundary, we obtain

A = B
x x

A = e B
z z

(40)

Combining (39) and (*t0) we can write for the z-components of the field

strength

k, A + k0 B =0
1 z 2 z

A - e B = 0
z z

This set of homogeneous equations yields a non-zero solution for

the fields if its determinant vanishes, i.e.,

= 0

-e

and we obtain

kl£" k„ = 0 , or

K - £

e = -
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and solving for k ,

a/2
C £ + 1

which is the dispersion relation for the surface wave that we have

assumed to be propagating at the interface. This equation has been

obtained by other investigators using different methods [Teng and Stern

(1967b), Ritchie and Eldridge (1962)]. We see from Equation (38) that

the field has a component parallel to the direction of motion and

another one transverse to this direction. This is characteristic of a

transverse magnetic (TM) electromagnetic wave. Because the z-dependence

is exponentially decaying away from the interface the wave is bound to

this interface. Thus we may think of the wave as being a bound surface

wave, with the surface acting as a waveguide. Other modes such as the

transverse electric (TE) and transverse electromagnetic (TEM) waves do

not yield non-singular solutions, so the TM wave is the only type that

can exist in this situation. This TM mode is the same as the one

postulated by Sommerfeld for a wave propagating at an earth-air inter

face and it is also known as the Sommerfeld surface wave.

If we assign a value of unity to A and B , the following

fields are obtained, using Equations (39) and (8)

i(KX-COt )-»• -i

E = E e
o

r . -k z
(1, 0, -£*-) e z>0

k z

(1, 0, -J*- )e 2 z<0 (42)
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r -k z

(0, - -i- , 0 ) e z > 0

- i^ I ei(<x-tot) /
r, o \

£ k2Z(0, -£- , 0 ) e z < 0
*2

It is interesting to see the form of the charge density at the

surface. We can obtain this from Equation (*t2) and the divergence

equation in E ,

V • E = 0 z > 0 and z < 0

V • E = 4 up

At z = 0 , Equation (*+2) in E is

=| ei(<x-cot)/
(1,0, -i*.)

Kl

z = 0

'o+

IK

(i. o.-ir> zl0-
V ^2 °

and application of Equation (U3) gives

IK

p = T7
E ei(KX-Ut) 6 (z) .
o

(43)

(44)

This tells us that there is a longitudinal charge wave, propagating in

the direction of the surface wave (and tt/2 out of phase with it).

Since in the formalism used here we are not considering free charge, this

represents a polarization surface charge wave. It is this charge wave,
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propagating in the conduction electron plasma of the metal, that leads

us to also call it a surface plasma wave. Thus the alternate descrip

tions that have been considered up to now for this wave, such as the TM

wave, Sommerfeld wave, surface charge wave, and surface plasma wave, all

describe the same phenomenon. When this wave is quantized, it is also

called a surface plasmon.

Let us now consider the the conditions on the dielectric constant

that permit the surface wave to exist. Assuming an essentially free

electron plasma with small damping, we have e = 1 - —E— [Equation

(30)], which for a metal is typically negative for co < co . The square

root tern in Equation (*+l) represents the deviation of the propagation

vector from the light line, < = — , i.e., it tells us how fast the

wave is moving with respect to the free space velocity of light. Since

£ is negative k always lies to the right of the light line, that is,

the surface wave propagates at less than the speed of light. In the

limit of an infinitely large k vector, we see from Equation (*+l) that

£ = - 1 . e cannot be greater than -1 because (41) would become
co

imaginary. Substituting into (30), we find co = —*- which is called
/2

the surface plasma frequency. This is in agreement with Ritchie's

result.

Wave Damping

Following Teng's analysis (1967) we can express the dispersion

relation, Equation (*+l) as
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..,1/2 , 1/2

7? - f^' - <^7>

If we allow co and £ to be complex, i.e., co = to. + i co2 and

£ = e.. + i £p and k be real, we can solve for the half-width of the

peak, which is given as 2to . Near the light line, co e ck , so

— : 1 + —t— where IeI > > 1
to, 2e ' '

Solving for the imaginary part only, we obtain

2 "2 Ato £2
to, co 2 21 £X + E2

(45)

This is seen to be of the same form as that for the energy loss function,

Equation (19). For Al, Au, and Ag, £? increases with frequency greater

than does £.. up to co and the result is greater damping at the higher

frequencies. This is in agreement with the experimental results.

This treatment is for electronic damping only, and does not

include radiative damping. Radiative damping is considered later in the

section dealing with quantum mechanical transition rates.

Thin Foil Bounded by Vacuum

If we now consider a thin metal foil of thickness a , bounded on

both sides by vacuum, as in Figure 5b, page 35, a different situation

develops. Now the equations for the electric field become
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r _ -klZ
A e z > a

+ -k z k z
Be+Ce 0 <_ z <_ a (*+6)

- klZ
D e z < 0

where k and k? have the same value as in Equation (38). Using the

same method of analysis as before (see Appendix A), we obtain the

following dispersion relation

k k 2
2 ? P
e + 2e t=- coth (k a) + -=^- = 0 .

kl d kx2

Solving for e we obtain

kg J tanh kg ^
kl ^coth k2 |

This solution represents two plasma waves that propagate on each

surface of the foil. For the lower (symmetric) solution these waves are

in phase, and for the upper (antisymmetric) solution the waves are a

half-wavelength out of phase. These modes are referred to as the

tangential and normal modes, respectively, because in the former the

electronic motion is predominately parallel to the foil surface, and

in the latter it is perpendicular to it. For a thick foil the modes

become decoupled. All three modes are illustrated in Figure 3, page 10.

Equation (1+7) has been obtained in a slightly different form by Ritchie

and Eldridge (1962):
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-k a

kx£ + k2 = + (kl£ - k2) e (*+8)

where the plus and minus signs are for the normal and tangential modes,

2 2 2
respectively. If retardation is neglected, we assume that k >> co /c ,

or in effect that the speed of light, c , is infinite. This means that

instead of satisfying the wave equations (36) and (37), we need only

2 -*•
satisfy the Laplacian, V E = 0 . We have k -»• k and kp -*- < , so

that (1+7) and (1+8) become

tanh k —

E = - (49)

coth k —

and

e + 1 = + (e - 1) e"Ka

In the non-retarded solution the normal mode dispersion curve starts at

the plasma frequency for vanishing < and asymptotically approaches the

line to = co I-J2. for k -»- <*> . The tangential mode curve also

approaches co = co //2 for large < but begins at co = 0 for vanishing

k (Figure 2, page 10). The asymptotic solution becomes clear when we

realize that for large k, e = -1, and substitution into (30) gives

to = co //2 . Equations (*+9) have been obtained earlier by Ferrell

(1958) and Ritchie (1957). The effect of retardation is to split the

normal mode dispersion curve into two branches, one starting at the

plasma frequency and decreasing until it nears the light line and then
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asymptotically approaching and remaining to the left of the light line

as co •+ 0 . The other branch starts at to = 0 on the right of the

light line, rises sharply above the line co /-/2 and then asymptotically

approaches co /-/2 for large k. The retarded tangential mode curve is

shifted slightly from the non-retarded curve, remaining always to the

right of the light line. Some typical curves are shown in Figure *+, page

12, Those dispersion curves lying to the right of the light line indi

cate phase velocities less than the speed of light and those modes are

referred to as non-radiative modes. This is because energy and momentum

cannot be simultaneously conserved at the boundary, so the plasma waves

cannot be stimulated by or decay into electromagnetic radiation in free

space. However, if the surface is not smooth the momentum restriction

is relaxed, so in fact these surface waves can be excited in this way,

as will be pointed out in the next section. As the thickness of the

foil is increased, the two non-radiative modes get closer together until

they become degenerate.

The dispersion curve lying to the left of the light line is

called the radiative mode because its phase velocity is always greater

than light and can thus couple directly to the free-space electromagnetic

field. Equation (*+7) in its present form does not describe this mode

because it applies to a bound surface wave. In a rather extensive

analysis of the radiation modes, Kliewer and Fuchs (1967) pointed out

that those must be regarded as virtual modes, described by the following

equations
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i tan k' a

k' '

e= £T \ (Wa)
1 I -i cot k' a

(*+8b)

It can be seen that Equation (*+8a) results naturally when the trans

formation (*+8b) extending to the left of the light line is applied to

Equation (*+7). This no longer describes a bound wave, since the

coefficients k' and k' when substituted into (*+5) give a sinesoidal

instead of an exponential dependence. To insure proper behavior of the

wave at infinity, a complex frequency is used which allows for a temporal

decay of the radiating wave. In addition, the dielectric constant, e ,

and the wave vector, k, are made complex. So the frequency axis as

shown in Figure k, page 12, represents, for the radiative mode, only the

real part of the frequency. The branch of the radiative mode shown in

this curve is for a very thin foil and only for the lowest order exci

tation. In contrast to the non-radiative modes, the radiative modes can

have multiple excitations, corresponding to the cyclic arguments of the

tangent and cotangent functions, that can appear at frequencies larger
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than the plasma frequency. As the thickness is increased these modes

get closer together, but they can approach the light line asymptotically

toward infinity instead of zero.

Dielectric on ja Semi-Infinite Metal Substrate

The surface plasma frequency, it was found, appears at a value

reduced from the volume plasma frequency by a factor l//2~ . This

reduction is due to the depolarizing effect of the vacuum at the

boundary between the metal and the vacuum. If we now consider the

effect of a dielectric layer between the metal and vacuum, the surface

frequencies are further reduced, because the dielectric exerts an even

stronger depolarizing effect. This effect, which was predicted

theoretically and demonstrated experimentally many times for higher

energy excitations is extended in this section to the long wavelength

excitation region.

Let us assume a dielectric layer of thickness x and dielectric

constant n = r](to) = n. + i n_ extending infinitely in the x-y plane

and bounded by a semi-infinite metal slab on one side and vacuum on the

other, as shown in Figure 5c, page 35. The electric fields for the

surface plasma wave have the following form

r t ~^zA e z > x

t= eiUx-cot)J ge-k2Z+2ek2Z o<z<t (*+9)
- VV^ D e z < 0
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where

ki" a/ k • y k2 =
2 to

k - n —-
i , 2 co
k3=A/K -e7

Using the same method of solution as before (see Appendix A), the

following dispersion relation is obtained

e = -n

where

-2k2x
3 1 - y' e

-2k2x
1 + y' e

n k - k2

n k + k2

(50)

If retardation is neglected, k , k , and k all approach k , so

that we have

e = - n
1 - y e

-2k x

1 - y e
-2kx

where y =
n - 1

n + 1
(51)

This is the result that was obtained earlier by Stern and Ferrell (i960)

One sees that for either an infinite thickness of dielectric or an

infinite < , Equation (51) becomes

e = - n

and this, substituted into Equation (30) gives
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to

co = —-£-
/ l + n

This is the reduced surface plasma frequency. If the dielectric layer

is replaced by vacuum, we have n = 1 , so that we arrive at our previous

result for the surface plasma frequency,

to = to / /2 .
P

One encounters some difficulty with the retarded solution,

Equation (50), in the long wavelength range because k can become

imaginary. We are considering now only the non-radiative plasma wave.

This is because for many dielectrics the imaginary part of n is zero

and the real part of n is positive in this range, so that for points

2 2 2
on the dispersion curve near the light line, n to /c > k . This

difficulty is not encountered with k , because for metals the real

part of e is negative and the imaginary part is small. Equation (50)

can also be expressed in the following form

£ = -n

k n k1 tanh kgx + kg , •>
k n k + kg tanh k x

/ 2 2 2~If we make the substitution k -*• i k' where k' =y nto /c - <

Equation (52) becomes

k n k tan k'x + k'

£="n ~K, nk1 -k^ tan k^ x * (53)
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Equation (53) allows us to extend the dispersion curve as close to the

light line as we wish since the imaginary term has been eliminated,

which is the interesting part of the above transformation. This means

that there is no additional absorptive mechanism introduced by the

transformation. The form of k' shows that the exponential decay of

the surface wave away from the metal surface is replaced by an oscilla-

2 2 2
tory decay. Also, if n to /c > k the phase velocity of the surface

wave is greater than that of light in the dielectric, i.e.,

vn — > k which leads to v > where

c
= speed of light in dielectric

and this corresponds to a radiating wave. But this is only true within

the dielectric, and beyond the vacuum-dielectric interface, the wave

amplitude again decays exponentially. Thus we may consider the surface

wave here as being confined between the metal and vacuum. For the case

2 2 2
k > n to /c the wave is also confined between the metal and vacuum,

but the phase velocity in the dielectric is always less than light.

For an infinitely thick dielectric layer, Equation (50) becomes

S V"2" 7
e = - n —— = - n ' ) and solving for k

k2 / 2 u>
VK "n 7

we obtain
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(0
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£ n

e + n

1/2
(5*+)

Metal Layer on a Dielectric-Coated Metal Layer

An extension of the above case that was encountered in this work

was the coating of a metal layer over a dielectric-coated metal layer,

where both metals are the same as shown in Figure 5d, page 35. The

equations for the electric fields are as follows

+ _ i(KX-tot)
ill — 6

kl =

r - -k!z
A e

- "k2Z -* k2Z
Be + C e

+ -k z _^ k z
D e ° + E e D

kgZ
V.

F e

z > 0

-a < z < 0

-d < z < -a

z < - d

(55)

and £ and n are the dielectric constants for the metal and dielectric,

respectively. The following dispersion relations were obtained

tanh k x =

for

2r, £ kg k (e k2 + K

-2k a

(e3^2 +n2kg)(e 2-1)- EkgU^kg +sk2)(l +

2 to
k - n —

(56)
-2k2a

e I
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and

2n ek2 k^ (e k1 + k2)
tan kix = r:—' 0, (57)

3 o 2 p •? "2k?a ? p -2k a
(-e\k'3 +nkg)(e "-1) -£kg(n kxkg -ek^)(l +e )

for k -> i k'

and where a is the overcoating thickness of the metal layer and x is

the thickness of the dielectric layer. Equations (56 ) and (57 ) approxi

mate the case of a thin metal foil, except that here we have vacuum on

one side and a dielectric-metal layer on the other.

Dielectric-Coated Metal Layer on a Second Dielectric-Coated Metal Layer

The situation encountered in actual practice was to coat Al over

an AlpO -coated Al substrate. The top Al coating then oxidized naturally.

So in the real case one has a vacuum dielectric-metal-dielectric-metal

multilayer as shown in Figure 5e, page 35. The dispersion relation could

be obtained by continued application of the method used previously of

setting up electric fields for each boundary and expanding the resulting

determinant, but for more than three boundaries this becomes quite

tedious. An alternate method, especially applicable to multilayers, was

developed by Shieh (1963) and involves only 2x2 matrices of the

recursive type. Through rigorous examination of the boundary and

continuity relations for the electric and magnetic fields, Shieh (1963a)
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was able to show that the dispersion relation could be obtained by

expansion of the matrix equation (see Appendix B)

-k d k d n-1

(beaeX)n M
o o n P

p=l

where

and

M =
P

-kp+l dp+l
a e

P

P

a = £ _,_, k + £ Is.
P P+1 P P P+1

n+1 n
e k _,, ,
n n+1

e _,, k + £ k .
n+1 n n n+1

k -, d ,b e p+1 p+1
P

kp+l dp+l
a e

P

b = £ _,, k - £ k^n
P P+1 P P P+1

(58)

Here we are considering n layers with n+1 interfaces, and the pth

layer has a thickness d and a dielectric constant z . Thus for the
P P

three layer case, n = 3 and p ranges from 1 to 2. The resulting

dispersion equation is

exp (-2k d) = {(A+H) cosh k x sinh k x + (D+E) sinh k x sinh k x

+ (B+G) cosh k t cosh k x + (C+F) sinh k x cosh k x

+ (B+G) cosh(k1x1 +k t2) + (C+F) sinhU^ + kxXg)}(59)

t {(A+H) cosh k x sinh k x + (D+E) sinh k x sinh k x

- (B+G) sinh k^ sinh k xg - (C+F) cosh k x sinh k ij
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where

r~2 w2" i Z2 « , Z2 u
o =^K -7 ki= vK ~n7 2=vK ~e7

and

where

3 3 3 *+A = n eJ k k.J E = ej kn
o 1 1

2 2 2 2 3
B = n e k kn k_ F = n e k, k.

O 1 2 12

3 2 2 2 2
C = n e k k. k_ G = n e kn k0

O 1 2 12

*+ 3 3 3D = n k k_J H = rT kn kcJ
o 2 12

x = thickness of the dielectric layer next to the substrate

Xp = thickness of the dielectric layer next to vacuum

d = thickness of the metal overcoating layer

n = n(co) = dielectric constant of the dielectric

e = e(co) = dielectric constant of the metal

For values near the light line, k. -*• i k' where k i / 2.2 \
' = vn to /c - k

x

and Equation (59) is transformed into

exp (-2k d) = {(A-H) cos kjx sin kjx - (D+E) sin kit sin k'x

- (B+G) cos k'x cos k'x - (C-F) sin k'x cos k'x

- (B+G) cos (k^i + kjr )- (C-F) sin(k£-r + k^Xg)} (60)

t {(A-H) cos kJx sin kjx - (D+E) sin k'x sin kjx

- (B+G) sin kjx sin k'x + (C-F) cos k'x sin kjx }
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where k1 in terms A through H is replaced by k' . We note that

here, as well as with the single dielectric layer [Equation (57)] , the

dispersion relation near the light line comes out to be real, (if only

real parameters are used). And as with Equations (56) and (57) both

normal and tangential modes are excited, except that the modes on the

outer dielectric interface are relaxed from their vacuum-interface values,

We now consider a thin metal foil bounded on either side by

unequal thicknesses of dielectric. This configuration, shown in

Figure 5f, page 35,when analyzed by the previous methods yields

e + eh coth (kga) [F'(k3 t±) + F' (k Xg)]

where

and

k 2
+ n2 —^g F'(k3 xx) F'(k3 Xg) =0 (61)

it-

3

1 v. „-2x n k - k,
F-(x) = 1 - y e0 v' = i 3

l+y'e-2x Y ^kl+k3

v - 1J2- "2 /2 to2 . / 2 to2
ki^/K -7 k2=JK -e^ k3=JK -n7

and e and n have the same meaning as before. The thicknesses of

the metal foil and the dielectric layers are a and T , respectively.

Near the light line, where k -> i k' , we have
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and

55

e2 +£n coth (kg a) [F1 (k£ x±) +F' (k^ Xg)]

- n

F' (k3 x) =

S2
F' (k* t±) F' (k' Xg) = 0 (62)

n k tan k' x + k'

n k - k' tan k' x

Metal Substrate Coated with a Double Dielectric Layer

The situation often encountered in this work was that of a con

taminant, such as diffusion pump oil, adhering to the surface of a

dielectric-coated metal substrate, such as A1?0 on Al. In this case,

the dispersion properties of the surface plasma waves are affected not only

by one but by two dielectric layers , each having a different dielectric

constant. This configuration, as shown in Figure 5g, page 35, was

analyzed by the method of Equation (58) and the following dispersion

relation was obtained

where

-(A+H) - (D+ E) tanh kg d
tanh kl a= (C+F) +(B+G) tanh kp d (63)
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a = thickness of dielectric adjacent to vacuum [with dielectric

constant v = v(to)]

d = thickness of dielectric adjacent to metal substrate [with

dielectric constant n = n(co)]

2 2 „2
A = nvs k k-,k0E = nvk k, k. k = A; K -

o 1 2 ' o 1 3 o 'V 2

2 , , 2 _, 2 . . , , /2 coB= veko kg F = v nkQ kg k3 kx = J k -v—

C=n£ k± kg G = n kx k3 kg = J k -n—
c

2
2 „ , , , , / 2 to

D = v £ kn k^ H = v n kn k_ k_ k_ = A/ k - e
12 ' 1 2 3 3 '\/ 2

V c

£ = e(uo) = dielectric constant of metal substrate

When Equation (63) is extended close to the light line, either

one or both of the values k or kp can become imaginary, so that

three other forms of this equation are obtained:

(A + H) - (D - E) tan k^ d
tan k' a = (6*+)

(C - F) + (B + G) tan k^ d

kl -iki k2 *ik2 kl =\l V"% " <2

k2 M/ n~ " K
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- (A + H) - (D + E) tanh kg d
tan ki a= (-C +F) +(B -Q) tanh kg d kl "*ki (65)

- (A + H) + (D - E) tan kg d
tanh kia = (C + F) + (-B + G) tan ki d k2 " ik2 • (66)

In quantities A through H in these equations, k and k? are

replaced by k' and k' where appropriate. Note that here again all

the dispersion equations come out to be real (assuming one uses real

parameters).

III. QUANTUM MECHANICAL CONSIDERATIONS

The previous calculations have been concerned with the properties

of surface plasma waves, as derived from Maxwell's equations, under

different boundary conditions. These dispersion relations describe

the propagation of the surface waves but do not say anything about

how such waves are excited. Previous classical electromagnetic theories,

such as those of Fano (l9*+l) and Hessel and Oliner (1965) show that

the surface waves can be produced by resonant excitation. Their

analyses ,which were applied to grating surfaces, showed that coupling

between the incident free-space electromagnetic waves and the surface

waves was made possible because of the periodic roughness of the grating

structure. What we wish to do in this section is to show how the

excitation of the non-radiative surface waves can be described quantum-

mechanically in a second-order interaction between the quantized photon
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and plasmon fields, and how this leads to a description of the in

tensities involved. We shall also discuss the radiative mode exci

tation of a first order coupling between the photon and plasmon fields

and the intensities for the thin foil (non-retarded) case.

Volume and Surface Plasmons

We have previously derived the volume (bulk) plasma frequency,

co , as the frequency at which collective oscillations of the electron
Jr

gas of the metal occur, and that the energy of the plasmon was given by

i 2 1/2
Ex* u = n ( ^ "e )

P meff

We showed also that the surface plasmon energy is given by

co

E = 1i co = H —2-
P /2

for the pure metal in the limit of large k . However, we have seen

that surface plasmons can occur at many energies depending on the

surface plasmon dispersion, where the frequencies are those of the

surface plasma waves.

In the discussion to follow we shall refer to the "photon,"

"plasmon," and "surface plasmon" as the quanta of the elementary

excitations of the quantized electromagnetic field, the volume plasma

field, and the surface plasma field, respectively.
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The Quantum Hydrodynamical Model

A method of treating in a quantum-mechanical way the interactions

between electromagnetic and particle radiation and the electron plasma

of a metal is the quantum hydrodynamical model first used by Bloch (1933,

193*+). This model was extended by Ritchie (1957) to an investigation of

the surface modes and by Wilems and Ritchie (1967, 1968) and Ritchie

and Wilems (1969) to studies of non-linear interactions in quantum

plasmas. This model is appropriate because field perturbation techniques

can be easily used, and the resonances of the atomic system are empha

sized. Non-linear effects can also be treated easily since the hydro

dynamical equations themselves are nonlinear.

The total Hamiltonian of the system is obtained in the usual way

from a Lagrangian which yields the hydrodynamical equations of motion.

This Hamiltonian is divided into parts corresponding to the non-inter

acting fields, which for our case are the radiation and plasma fields,

and terms describing the interaction between them. The radiation and

plasma fields are then quantized into the photon and plasmon fields,

and the interaction terms are described utilizing the potential operators

of each quantized field. When the equations of motion are obtained,

they are linearized in the standard way so that they may be treated

analytically.

The linearized hydrodynamical (Bloch) equations found by the

procedure above for an electron gas have been obtained by Wilems and

Ritchie and are given below (in 1st order)
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w±
" 1 *1m 1

+
32

at n
o

2
V ^ == *+ire n

an

— = V • [no V h]

n1 (67)

pi a2 p -> i 3<fri 1+Tre n„

c at

where one assumes that the electronic density, the electromagnetic scalar

potential, the plasma velocity potential and the vector potential may be

expanded as

n(r, t) = n (?) + n. (?, t) + n9 (r, t) + ... (68)
o l d

<fr(r, t) = *q(?) + ^(r", t) + ...

*(r, t) = \p±{r, t) + ip2(r, t)

A(r, t) = A1 (r, t) + Ag (r, t) +

6 = v //§" is the hydrodynamic velocity, where v is the Fermi

velocity.

The total Hamiltonian for the electron gas is

H = HR + HP + HRP (69)
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where the subscripts refer to the radiation, plasmon, and interaction

terms, respectively. The energy, HD , of the radiation field is given

as

•+ 2

HR =-^-g /[( |f-) +c2 (V x!)2] dx (70)
8tt c

and that of the plasmon field, H , as

o

When retardation is neglected, the term (e/mc) A., is dropped from

H . This is done in the following equations, and only the radiative

mode is considered.

The Radiative Mode

+ n rirl tfirm fAThe interaction term, H , may be ordered in powers of A ; i.e.,

HRP =HRPU) + HRP(2) 'Where

H ("^ = -- A •VfndT (72)

2

^bp'2' - sr / *2 - ** ("J

When the radiation and the plasma fields are quantized by the

usual methods, Equations (70) and (7l) become
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HR = I *cok < c (74)
k,A k'X k'A

where the summation is over the k momentum states of the photon, and

A is a polarization index extending over the values 1 and 2 for

transverse waves, and

Hp = I * toK b+ b+ (75)
-*• K K
K

where the summation is over the k momentum states, Hk , of the kth

normal mode of the electronic motion. The creation and destruction

operators for the photon and plasmon fields are c and c and

b_^ and b , respectively.
K K

If one is dealing with an imperfect plasma, that is, where there

are structural irregularities, phonons, impurities, surface roughness,

etc., the interaction terms may be altered to account for these static

density variations (SDV). If we expand the density, n , as

n=n (r)+nn(r,t)+6n (r)
o 1 o

where n is the constant electron density deep in the interior of the

metal, n is a small time-dependent term, and 6n is a small static

density term that accounts for the SDV, and we define f(r) = Sn /n ,

the interaction terms (72) and (73) are split into
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(1)
V" - i no /A *v *idT (T6)

2
f o\ ^ w

HRP =7^2 / A ' Adx + —V- / A• Anx dx
oir c ott c n

o

both of which ignore the effects of the SDV, and

and

HRP-SDV " t no / %' V*l f(?) dT (TT)

r(2)
2

(H) "p f A•Af(?) dxV-SDV o 2 J A a ur; ax
OTT C

which includes these effects. The photon and volume plasmon fields do

not couple in first order [Equation (76a)] because the photon field is

transverse and the volume plasmon field is longitudinal, i. e.,

A • V ty = 0 . However, in the presence of the SDV, first order coupling

can occur [Equation (77 )]• In fact many different coupling mechanisms

arise when the proper operators are substituted into the total

Hamiltonian, Equation (69), and these have been elucidated in some

detail by Wilems and Ritchie. What we are interested in here is the

particular mechanism that applies to grating-type metal surfaces. When

we observe anomalies in grating diffraction, we are observing light

(except for specular reflection) that has a different angle of emission
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than incidence. This is a situation similar to PREL radiation, where

the light is emitted in a direction other than the reflected beam.

The light that is emitted from thin foils at a frequency near the

plasma frequency can be interpreted, according to Wilems and Ritchie, as

the decay of the radiative mode surface plasmon through coupling of

photons and surface plasmons via the SDV in the metal surface. With the

SDV interaction, one need not conserve momentum parallel to the boundary,

so the emitted light can leave the surface in some direction other than

the reflected beam. The interactions that might be involved are shown

in Figure 6 (a - e)•

The transition rate for this process may be written as

w = % |l + II + III + IV + V|2 6(co - to') (78)
11 IT

where co and co' are the frequencies of the incident and emitted

photons, and the numerals correspond to the most probable processes in

the diagram, which are 6a, 6b, 6c, and two time orderings of 6c. The

predominant contribution is that corresponding to diagram 6c:

lllm I I <flHRNplI'><I'lHNP-NP-SDvl T> ^RNP '*> ™
Y '(to - co + i jr- )

P 2

where the summations are over the intermediate surface plasmon states,

I , between the initial and final photon states, i and f, HJ..T1: is
RNP

the interaction Hamiltonian between the radiation field and the normal
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Figure 6. (a) - (e) Photon-radiative surface plasmon interactions in
thin grating foils (f) photon- non-radiative surface plasmon
interaction on semi-infinite metal substrate.
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mode surface plasmon, and HNP_NP_sr)V is "the interaction Hamiltonian

between the normal mode surface plasmons and the SDV, and y = y + y
R d

is the surface plasmon damping rate, which includes contributions from

radiative and electronic damping. These special Hamiltonians result from

the substitution of the proper potential operators for these modes into

Equations (76) and (77)- When one carries out the summations, the

factor (e^ • z) appears, which tells us that only photons with a
k,A

component of their polarization vectors in the z-direction, i.e.,

p-polarized light, are able to participate in the process. (See Appendix

C.) When one carries out all the processes in Equation (78), obtains

a transition rate, and then sums over the possible states of the emitted

photon, one has the differential emission probability per unit solid

angle for p-polarized light

where

dP 2 2 to 2 [to 2 + *+9 (y + y')2/l6]p_ _ tt a p p ' ' ' ' J
dn„ ~ ,,-, *+

f l6x rr ,2^ ,> ,2U, ,2 ,y\ 2ip L(u - u ) + (3-) ][(to - a) ) + (£-) J
p 2 p 2

x 8lfa sr2e o(k - it- )Icos a I p p

(80)

y = y + n tan a sin a (8l)

Y' = Yd + n tan 6 sin 6 ,
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a is the foil thickness, y, is the electronic damping rate of the

plasmon, n = co a/2c , and (a , 3) is the angle of the (incident,

emitted) photon relative to the foil normal. The terms in n , ot and g

account for radiation damping. The quantity G(k - k'j is the

Fourier transform of the autocorrelation function for the SDV in the

plasma.

Although s-polarized photons are excluded from the process above,

they do participate by elastic scatter. Using Fermi's Golden Rule the

transition probability for this process is

Wfi = % l<f IHRP-SDVI ^ ^~ «-') (82)

which by the same analysis as above leads to the differential proba

bility per unit solid angle for s-polarized scatter on SDV

fa = (ia)2 jcosfjL^ . +, ) (83)
dS! A i i p p

p | cos a|

where ty is the angle between the unit polarization vectors of the

incident and emitted photons.

The probability distributions, Equations (80) and (83)»are for

a thin foil where the surface roughness is incorporated into the auto-

/•*• •+• \correlation function, G(k - k') . If we have instead a grating foil

/•*• •+ \the surface roughness is regular, and the function G(k - k' ) may be
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calculated directly. The SDV function may be assumed periodic in x

and may be expanded in the Fourier series

f(?) = f(x, z) = I f(z) e27Tinx/6 (8*+)
n=-°°

where

f(z) =iT e"2lTinx/6 f(x,z)dx
n 6 -6/2

and 6 is the distance between adjacent rulings. Defining

k = k x + k y where x and y are unit vectors along the

x- and y- axes, one finds

G(kp) = (2*)* 6(ky) I t* 6(kx +-^f-) (85)

where f is the average of f (z) over the depth of the slab. Sub

stituting (85) into (80) and (83) and integrating over all directions

of the emitted photon, one finds the probability of nth order diffraction

for p- and s- polarized light per incident photon to be

2 2 2
•d - 1 -13l\ sin a sin g — 2

p |cosa||cosgI

to 2 [co 2 + 1+9 (y + Y')2/l6]
* P

2 2
[(to - a) )2 + (X) ][(u _ u f + (ll)

p 2 p 2

(86)
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=(_ua}2 cosfj, ?2 (8 }
sn A I II - I n

p |cos a I|cos g |

co co

where the diffraction condition (-^-) sin g = {-*•) sin a +
2im

. / oil; p — \ / alii w. • c

ceo

must be satisfied. If we take the ratio of these equations, the result

is independent of the density term, f ,

2 2 2 2 2 2
P , sin a sin g cos ip a> [co + *+9 (y + Y1) /l6]
£2. = 1 E E (88!

[(to - to )2 + (£)2][(u, - coJ2 + (^)2]

which in this form allows direct comparison with experiment without

knowledge of details of the surface density variations. Let us recall

that Equation (88) is for the radiative mode excitation in thin grating

foils for k •*• 0 and neglecting retardation.

The Non-Radiative Modes

When we investigate the non-radiative modes in the long wavelength

region we must include retardation and we wish to consider semi-infinite

grating surfaces as well as thin foils. The transition probabilities

have not been worked out for the retarded case as they have for the non-

retarded case considered above, but some qualitative assumptions can be

made on the nature of the interaction involved and the form that the

transition probability would take in this case [Ritchie, Arakawa, Cowan,

Hamm (1968)].

We assume first that the surface plasmon is only slightly per

turbed by the presence of density variations due to the grating structure.
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For example, we assume that the dispersion curve of the plasmon on a

grating surface will not be greatly different from that of a plasmon

on a plane surface of the same material, at least in the long wavelength

region. In this view, the anomalous resonances observed in the first-

order diffraction spectrum may be interpreted in terms of the Feynman

diagram shown in Figure 6f, page 65, in which we depict a second-order

process. Here a photon of wave vector k in the region outside of

the grating is incident upon the grating surface, which if perfectly

plane would only specularly reflect the photon; a surface plasmon could

not be excited under these conditions. Because there is a periodic

denisity variation in the region of the surface, the grating may absorb

momentum in a direction normal to the rulings and in multiples of

27TE/6 where 6 is the distance between rulings. We shall assume that

the average grating surface lies in the x-y plane, that the gratings

are parallel to the y-axis, and that the wave vector k lies in the

x-z plane. Thus at the lower vertex in the graph in Figure 6f a surface

plasmon with x momentum equal to 27rtln/6 plus the x component of the

momentum of the incident photon may be created. Here n is a positive

or negative integer. Note the similarity between the momentum transfer

processes considered here and the momentum conserving delta function

in Equation (85) resulting from the Fourier transform of the SDV

function. One sees that the qualitative interpretation of momentum

processes arises naturally from the mathematical interpretation based

on Fourier transforms.
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The interaction Hamiltonian giving rise to this process is

2
co

H = §- /A . •A f(?) dx
• 2 ' ph sp
47TC r e

where the integration is over the half space containing the grating.

A. is the vector potential operator of the photon, A is the vector

potential operator of the plasmon, and f(r) is the fractional vari

ation due to the grating structure of the conduction-electron density

from its value n deep in the metal. As with the thin foil case,
o '

f(r) can be expanded in the Fourier series, Equation (8*+).

In order for this effect to be observed in the first-order

diffraction spectrum, the plasmon must, in general, get rid of some of

the x momentum which it acquired from the grating by making a second

encounter, indicated by the top vertex, (Figure 6f, page 65) in which

a photon of wave vector k' is emitted. The compound process proceeds

through an intermediate surface plasmon state. As we saw for the thin

foil case, when the energy of an intermediate quantum state is nearly

the same as that of the initial state, a resonance in the cross section

for the compound process will occur. Thus we would expect that the

probability, P , for the process under discussion would have the

typical Lorentzian form

If f I2p .. n n±l' ,ft ,
Pn Zy(k ) 2 (89)

[uk " fi(Kn)] + t~T~ ]
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which is valid in the neighborhood of the frequency for which the

denominator has its minimum. We are neglecting here interference with

the ordinary first-order diffracted beam. In this expression co, = c|k|,

Q (|k|), and y(|<|) are the eigenfrequency and damping rate, respec-
->-

tively, of a surface plasmon of wave vector < , and F is pro

portional to a certain average of the nth Fourier coefficient of the

electronic density variation in the neighborhood of the grating surface.

The momentum transfer relation is expressed by

< = k +2^n- (90)
n x o

where k is the absolute value of the surface plasmon wave vector,
n

and k is the component of the incident photon wave vector parallel to

the x-axis. There may also arise possible higher order processes giving

rise to a probability function containing a product of several resonance

denominators, as was found for the thin foil case.

In obtaining the probability relation, P , we expect terms of

the type (e • z) to arise, indicating that only p-polarized light

participates in this process. This may be seen qualitatively from

Figure 6, page 65, where a component of p-polarized light intersects

the rulings and thus sees the density variations, while the components

of s-polarized light are parallel to the grooves and thus do not see

these variations.

The condition for intermediate state resonance is that the

energy of the virtual surface plasmon should be equal to the energy of

the incoming photon, i.e.,
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\ = n(Kn} >

dropping the subscript on co ,

to = fl(|( £)sin a+ 2p |) (91)

->•

where a is the angle between k and the normal to the grating surface.

Thus if the wavelength corresponding to the center of a resonance of

given order n is measured as a function of the angle of incidence a ,

the dispersion curve ft vs. k may be constructed.

The angle of incidence a is given as a function of the angle 6

by the grating equation

a = 9+ sin"1 { .*"' CQ } (92)
o to cos 9

where n' is the order of the diffracted light. Using this in Equation

(90), one obtains the dispersion relation

< = I- (2n +n') +- sin 9i/l -(-^ J2 . (93)
n 6 c y 6 cocos 9{•

This is the equation that one uses to plot the experimental values, as

shall be shown in Chapter V.

Surface Plasmon Self Energy

When consideration is made of the second-order self-energy of the

surface plasmons, some very interesting results are obtained. This
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self-energy involves the excitation of virtual plasmons with momenta

differing from the momentum of the plasmon under consideration by

multiples of 2tt'K/ 6 . Mathematically we may express the self-energy as

|<k |H'|k>|2
4E - I —r-rr (»">

I p I

where E and E are the energies of the initial and intermediate

states, respectively, and H' is the Hamiltonian describing the inter

action between states k and <__ , where kt = k - —r— . Near the
1 1 o

light line we have co = c|k| so the energy, E ~ He |k| . If we now

let k = 7— + A k we have
0

A E =

I in I I2<k I H' |k>|

t *. rI I I 2Trn |-,I tic Lk I - k - —r— J

<kJ H' |k>|2

tic [ l^a- +Ak| - I-^+ Ak|]

+1n L

<k\ H' |k>|2
-he ^ 2 A k

This shows a discontinuity at vanishing A k , which means that there

will be discontinuities, or zone gaps, in the dispersion relation at

values of k equal to integer multiples of xr/6 .



CHAPTER III

EXPERIMENTAL APPARATUS

In this study measurements were required of the diffraction

spectra in different orders from concave reflecting-type gratings and

from thin grating foils in a wavelength region extending from about

500 A° in the vacuum ultraviolet to about l*+000 A° in the infrared. One

of the first requisites was for a vacuum system that would prevent

absorption of light in the short wavelength region and would enable

vacuum evaporations to be made onto the grating surfaces in their

operating positions. Other necessary components were light sources,

polarizers, and detectors applicable for the wavelength regions studied,

and the associated amplification and recording devices.

In the basic system light passes from a source through an entrance

slit and is incident on the concave grating. Light diffracted from the

grating is then focused through the exit slit to a detector, if the grating

itself is under study. If the grating is used as a monochromator, the

detector is replaced by a reflectance chamber, and light from the exit

slit passes to the object under study (usually, a grating foil) and from

there to a detector within the chamber. Two variations of the basic

system were used in this study: one, operated at high vacuum in the

wavelength region from 500 A° through 7000 A0 and having the angle

between the entrance and exit slits fixed at the Seya geometry is

illustrated in Figure 7 . The other, operated at atmospheric

75
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pressure for wavelengths above about 2500 A0, had a variable angle

between the source and detector, as shown in Figure 8. In each system

polarizers could be placed at either the entrance or exit slits, but

only the first system was used as a monochromator.

I. PRINCIPAL COMPONENTS

Light Sources

Several different light sources were used in this study, each

applicable to a particular wavelength range. There is little difficulty

in finding adequate sources of fairly high intensity above about

2000 A°. As one goes to shorter wavelengths problems of light stability

and intensity over a continuous spectrum of wavelengths become more

acute.

Commercially available lamps were used in the wavelength region

above 2500 A0. An ordinary tungsten lamp was used in the visible and

infrared range (*+000-l*+000 A°) and from 2500-*+000 A0 , a Beckman

hydrogen discharge lamp and a high pressure, high intensity xenon lamp

(Oriel C-72-50) were used. The tungsten lamp provided a continuous,

high intensity spectrum from 3500 A0 to the upper limits of the present

study. The Beckman lamp provided a comparatively lower intensity, and

the spectrum was continuous from about 2500 to 3500 A°. The xenon lamp

spectrum was continuous from about 2000 to *+000 A°, but of much higher

intensity than either the Beckman or tungsten lamps. The intensity of

this spectrum increases with increasing wavelength up to *+000 A0. Line
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spectra superimposed on the background appeared in the Beckman and Xe

lamp spectra at wavelengths longer than the continua for each. A prism

monochromator was available for use with the Xe lamp with a wavelength

drive and a minimum bandwidth of 10 A°.

For wavelengths shorter than about 3000 A°, a capillary discharge

source was used. With this light source, a gas, such as air, hydrogen,

helium, or argon, is injected at low pressure into a narrow capillary

aligned along the optic axis. A high voltage applied between the ends

of the capillary will cause, under appropriate conditions, a glow dis

charge to occur in what is essentially a gaseous plasma. These conditions

for the creation and stability of the discharge depend on the gas

pressure, the distance between the electrodes, and the voltage. The

capillary can be either a glass or quartz tube with a water cooling

jacket or a boron nitride cylinder, as depicted in Figure 9. Additional

cooling is provided by the water jackets at the brass electrodes. The

capillary fits into a receptacle on the monochromator, and a vacuum

seal is provided by 0-rings. The boron nitride capillary is about 8

cm long with an inner bore of 0.125 inches diameter, while the glass

and pyrex capillaries are usually 7 cm long with a slightly larger

diameter bore.

For wavelengths above 1000 A° the source was operated in the

constant-voltage, or d-c mode, the high voltage being obtained from a

commercial power supply (Consolidated Vacuum LC-031). For a stable,

relatively high-intensity line spectrum, the typical operating conditions



SOURCE GAS

1
E

//rmTT

HIGH VOLTAGE

POWER SUPPLY

80

ORNL DWG.68-4933

GLASS OR

BORON NITRIOE f̂~
"OeK ENTRANCE SUT

lr

Figure 9. Configuration of the light source capillary tube.
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were a current of 250 milliamperes at 1000 volts with a gas pressure

of 1000 microns. The gas flow was regulated by a needle valve and the

vacuum maintained by a l/*+-inch diameter tube leading from the capillary

to the forepump, the pressure being read on a thermocouple gauge

(Hastings DV-l+DM).

To obtain wavelengths shorter than 1000 A0, the voltage supply

must be operated in the spark, or intermittent, discharge mode. In this

mode the power supply was connected to a large capacitor (0.1 micro

farads) which was discharged at a constant rate (56 pulses per second)

through the source by a rotating spark gap. The high voltages and the

high peak currents through the gas excited line spectra down to 500 A0.

Typical operating conditions for this mode were an average current of

100 ma at 5000 volts with a source pressure of 250 microns. Stability

of the spark mode was improved by insuring that the gap between elec

trodes, which were made of l/*+-inch diameter tungsten rod, was just

large enough for clearance in the conducting position.

Of the different gases used, air was found to be most effective

in the 500-1200 A° region and above 1800 A° both for stability and the

abundance of closely-spaced spectral lines (not more than 50 A0 apart).

For the same reasons hydrogen was the most effective from 1000-1800 A0.

Vacuum Monochromator System

The monochromator system was designed and built at the Oak Ridge

National Laboratory to accommodate a concave diffraction grating having

a radius of curvature of 50 cm and with the entrance and exit slits set
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at the Seya geometry (70.1° apart). A third arm of the same size was

also connected to the chamber halfway between the other two (35° from

either the entrance or exit slit). The slit widths could be adjusted

from a closed position to 6 mm by a micrometer screw attached directly

to the slit assembly. The slit assemblies could be moved in or out of

their respective arms for focusing purposes, the vacuum seal being

maintained by 0-rings. A vacuum-tight slide valve was also located on

each slit assembly and it could be used to isolate the slits from the

vacuum chamber.

The entrance slit assembly was equipped with ultraviolet filters

to prevent light of certain wavelengths from reaching the grating and

causing unwanted second-order light to appear in the spectrum. The LiF

quartz, and glass filters, were mounted on a vacuum-tight metal slide

that could be controlled from a movable rod outside the assembly. LiF

stops transmitting below about 1100 A°; quartz at 1550 A°; and glass

at 2500 A°. Below 1100 A°, no filter was used, the slide being moved

to an "open" position. With the slide in this position, the entrance

slit was open to the vacuum chamber and a pressure differential existed

from one side of the slit which was at a few hundred microns pressure

-6
to the other which was in the range of 10 Torr. A small magnet

was placed just inside the vacuum chamber to sweep any charged gas

particles out of the optical path.
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Vacuum System

Initial pumpdown was accomplished by a rotary forepump (Welsh

model 1397) and final evacuation, by a six-inch diffusion pump (National

Research Corporation model VHS6) having a pumping speed of 2*+00 liters

—6
per second at 10 Torr and using Dow-Corning No. 70*+ pump oil. The

diffusion pump, which was backed by the forepump and had a water cooled

baffle between the pump and the vacuum chamber to prevent backstreaming

of the oil vapor into the vacuum chamber, could achieve an operating

-6 -7
pressure between 10~ and 10 Torr. The forepump pressure was measured

with a thermocouple gauge (Hastings DV-l+DM) and the vacuum chamber

pressure with an ionization gauge (Veeco RG 75K).

The reflectance chamber had a similar vacuum system, but it was

not used in this study since reflectance chamber measurements were made

only at atmospheric pressure.

Variable-Angle Optical System

It was necessary in this work to measure the diffraction spectra

of a given grating for several different angles between the source and

detector, and thus the vacuum monochromator system described above was

unsuitable, but since the measurements were made at wavelengths longer

than 2500 A°, no vacuum system was necessary. Only the tungsten,

Beckman, and xenon lamps were used for these measurements. The drive

mechanism of a grating calibrator that is used to rotate gratings at

a constant rate was adapted for this work by attaching it to an optical

bench. A slit assembly consisting of an adjustable width slit and a
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tube several cm long and of 3/*+-inch diameter could be clamped to a

ringstand and placed at various distances from the grating in front of

the source or detector. A protractor attached to the axis of the

grating drive mechanism permitted the angle between the source and

detector to be measured to within 5 minutes.

Polarizers

In the vacuum- and near-ultraviolet spectral region (500-3000 A°)

a triple-reflection polarizer developed at the Oak Ridge National

Laboratory was used [Hamm, MacRae, and Arakawa (1965)]. With this

polarizer a beam of light is reflected at large oblique angles (60° to

80°) from three gold mirrors in succession, and emerges in a direction

parallel to the incident beam. Light passing through this polarizer is

from 90 to 98 per cent plane polarized.

For wavelengths greater than 2700 A0, a sheet polarizer (Polaroid

HN-22) was found to be the most effective, producing light that is highly

plane polarized for wavelengths from the near ultraviolet through the

infrared. This polarizer is opaque to wavelengths shorter than about

2700 A°.

Both polarizers could be mounted in assemblies attached to the

entrance or exit slits of the vacuum monochromator and rotated by a

crank mechanism from the outside.

Detection and Amplification System

Light intensities were detected in the 500 to 7500 A° spectral

region by photomultiplier tubes and above 7500 A0 by a PbS detector.
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The photomultiplier attached directly to the monochromator and also used

in the variable-angle apparatus was an EMI 9558 BQ operated at about

1000 volts and the one used in the reflectance chamber was an RCA 1P28

operated at about 550 volts. The window of each photomultiplier was

coated with a layer of sodium salicylate to increase the quantum

-7
efficiency in the far ultraviolet. Photocurrents in the range of 10

to 10 amperes were measured with a picoammeter (Keithley model *+09)

and recorded by a chart recorder (Minneapolis-Honeywell Brown, 10 milli

volt). The PbS detector was used with the picoammeter and with the

a-c amplifier described below.

When one has a weak signal superimposed on a large background

intensity, it is convenient to use different amplification methods from

the one described above. If the weak signal is alternating periodically,

then this a-c signal can be isolated from the large d-c background and

amplified by a lock-in amplifier. In this amplifier an internal

oscillator or a "reference signal" is tuned to the same frequency as the

signal, that is, is "locked-into" it, and all other signals are blocked

by a filter capacitor. Then the signal is amplified and can be fed into

a recorder. In this study the signal is the difference in the intensity

of spectral light excited by incident p and s polarized light. If the

sheet polarizer that is located in either the incident or diffracted

beams is rotated at a known rate an alternating signal will reach the

detector that is proportional to this difference. Since the polari

zation is changed twice for each revolution, the amplifier must be tuned
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to twice this frequency. In our case the polarizer was mounted on a

bearing that was driven at 30 revolutions per second by a synchronous

motor, and the lock-in amplifier (Princeton Applied Research HR-8) was

tuned to 60 cycles per second. With the photomultiplier as the detector,

the output was branched into two parts, one going to the input signal

terminal and the other to the reference signal terminal of the lock-in

amplifier. With the PbS detector the operating power was obtained from

a 90 volt battery that was connected in series with the detector and

with a 10,000 ohm load resistor. The a-c output signal was taken from

either side of the load resistor and fed into the amplifier as described

above. When used with the d-c output, the PbS detector was connected

directly to the picoammeter.

Vacuum Evaporator

Vacuum evaporations could be performed directly onto the grating

surfaces in their operating positions by an evaporator connected to the

central arm of the vacuum monochromator. Two brass electrodes, each 25

cm long and 1/2-inch in diameter were attached through 0-ring sealed

holes to a 1/2-inch thick Lucite plate that was bolted to the flange on

the central arm. Evaporation filaments could be attached to the ends of

the electrodes about 25 cm from the grating surface. The filaments were

heated by step-down transformers operating through high-current rheostats

that drew currents on the order of 200 amperes.
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Reflectance Chamber

The reflectance chamber was a stainless steel cylinder 16 inches

long and 8-1/2 inches in diameter that could b-3 attached directly to the

exit slit flange on the vacuum monochromator. The sample holder could

accommodate thin foils and was capable of being lifted vertically or

rotated mechanically from the outside through 360 degrees. The photo

multiplier tube could be rotated in a similar manner around the axis

of the sample holder. Large glass viewing ports could be sealed so that

the chamber was light-tight. Angles could be measured to within 0.5°

by a vernier scale attached to an angle doubler outside the chamber.

Film Thickness Monitor

The thicknesses of the films evaporated in the vacuum system could

be measured at the time of deposition by a film thickness monitor

(Edwards High Vacuum, Ltd., model FTM-l). This instrument utilizes a

quartz crystal that is placed near the substrate so that it is coated

with the same thickness of evaporated material as is the substrate. The

principle of operation has been described by Garber, et al. (1969). The

crystal used was masked by a metal shield except for a 0.5 cm diameter

opening in the center. The two lead-in wires were connected to vacuum-

sealed electrodes in the Lucite port containing the evaporator electrodes.

Anodic Oxidation Apparatus

It was found that an effective method of producing oxide coatings

on the aluminum grating substrates was the anodic oxidation method
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described by Hass (l9*+9). In this method one uses an electrolyte that

contains a three per cent ammonium tartarate solution by weight and

sufficient ammonium hydroxide to produce a pH value of 5.5. A sheet of

pure aluminum is connected to the cathode and the aluminum surface to

be oxidized is connected to the anode. If a voltage is applied an oxide

layer forms whose thickness is proportional to the voltage. In this

study the voltage source was a 300-volt regulated power supply that had

less than 0.1 volt ripple in the output.

Diffraction Gratings

The diffraction gratings investigated in this work included the

Bausch and Lomb concave replica gratings and plastic replica grating

foils. The concave replicas had Al and MgF?-coated Al surfaces with

600 lines/mm and blazed for 1500 A°, and Au and Pt surfaces with 1200

lines/mm and blazed for 700 A°. For details on replica gratings in

general, see Bausch and Lomb (1967). The plastic replicas consisted of

thin plastic sheets with a 600 line/mm grating surface on one side and

were available either uncoated or with a 300 A° overcoating layer of Al

(Edmunds Scientific Co.). The only surfaces, however, that exhibited

anomalies were the 600 line/mm concave replicas.

If the grating grooves are cut in such a manner that the maximum

intensity of light falls at a particular wavelength, the grating is said

to be blazed for that wavelength, and the groove face angle is called

the blaze angle. The blaze angle and the blaze wavelength can be

calculated by assuming that the angle of incident light is the same as
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the angle of diffraction. In this case the grating equation reduces to

n\ = 26 sin g .

When g is equal to the blaze angle 9 the first order blaze wavelength,

X , is given by

X. = 26 sin 9 .
p

Thus we find that a 600 line per mm grating blazed for 1500 A° has a

blaze angle of 2°35' (See Figure 1, page 3).

The above calculation is for a flat surface. If the surface is

curved then ideally the blaze angle should vary slightly from one edge

of the grating to the other, but practically it is difficult to fabri

cate a grating in this way. On concave gratings a compromise is reached

by ruling the grating in three areas, a middle portion and two edges,

with each one having a constant blaze angle. The middle portion is

blazed with the value calculated above. The blaze angles of the edges

are only slightly different from this value.



CHAPTER IV

EXPERIMENTAL PROCEDURES

Measurements of polarization effects in diffraction spectra are

not inherently difficult in the pressure range used in this study. The

primary concerns are those of source stability and intensity at short

wavelengths, the reduction of scattered light that contributes to the

background intensity, the proper optical alignment and wavelength

calibration procedures, and, what is probably the most difficult in this

work, the preparation of reasonably high-quality metal and dielectric

grating surfaces on thick substrates and thin foils.

This chapter includes first a discussion on the preparation of

the different grating surfaces used. This is followed by a description

of the various techniques of alignment and measurement with the vacuum

monochromator, reflectance chamber, and variable-angle apparatus.

I. PREPARATION OF GRATING SURFACES

In cases where vacuum evaporation techniques are used to measure,

for example, the optical constants of a given metal, the substrate onto

which the metal is evaporated must be thoroughly cleaned by some rather

stringent methods to remove any impurities from the surface. Often

these substrates are glass slides that are not damaged when subjected

to heat and acid exposure. In this study, however, the substrates were

grating surfaces of metal or dielectric materials that were extremely

90
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sensitive to any outside agent. Great care had to be exercised in

handling these surfaces since a slight alteration of the periodic

surface structure such as rubbing off the tops of the grooves, or

scratching or pitting the surface, or causing undue roughness of the

surface, could result in spurious scattering effects and unwanted

broadening and loss of intensity of the anomalous polarization peaks.

The surfaces that were used most often as substrates were the

aluminized concave 600 line per mm gratings blazed for 1500 A0. Two

methods were found that were reasonably effective in cleaning this

surface. The first method was to rinse the grating in a slowly running

stream of distilled water for about 15 minutes, and then to remove

residual water droplets by rapid evaporation using a warm-air blower.

Small dust-like particles that adhere to the grating either from short

exposure to air or from evaporant contamination from the evaporation

system could be removed in this way. Vacuum system contamination was

not common, but could result from repeated evaporations where the small

metal evaporated particles would not adhere to the chamber walls and

could be stirred up when the system is opened to atmospheric pressure.

The second, and more effective method, was to coat the grating with a

thick layer of metal, usually 1500 A° to one micron of aluminum, and

then to remove this layer with Scotch Tape. This method, which has been

described by Hass and McFarland (1950) does not harm the grating in any

way and the impurities are removed along with the evaporated metal and

the tape. This method was also found to be effective in removing
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diffusion pump oil contamination, which adheres in molecular layers to

the surface after the grating has been in the vacuum system for weeks

and months. In some cases several evaporations were made in succession

onto the grating without exposing the system to atmospheric pressure, and

the chance of surface contamination was believed to be less severe than

if the vacuum were broken down and the grating were cleaned after each

evaporation. Care must also be taken when multiple evaporations have

been made because in cleaning by the stripping operation, the tape often

removes all evaporated layers down to the bare substrate.

The plastic replica gratings that were also used in "this work were

even more susceptible to surface damage than the concave replicas. No

attempt was made to clean these surfaces as above, but they were stored

in dust-tight containers until ready for use.

Vacuum Evaporation

The grating substrates were coated with layers of metal that con

densed onto the surface after being vacuum evaporated from a heated

tungsten filament. The metals used were aluminum, gold, and silver, and

each had a purity of over 99.99 per cent and was in wire form of about

20 mil diameter. The metal to be evaporated was inserted into or

wrapped around the tungsten filament, which was made of three woven

strands of 25 mil diameter wire fashioned into a helix about one inch

long and 0.25 inches in diameter and had about a half-inch of straight

wire on each end. This filament could be attached to the evaporation

electrodes that were connected through the Lucite window.
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The preliminary procedure was to position the concave grating

to be coated in its holder and rotate the grating table until the

surface was parallel to the filament to prevent any metal from striking

the surface obliquely. The thickness monitor crystal was positioned in

a holder on one side of the grating and a clean glass slide on the other

side, both being at the same distance, 25 cm, from the filament as was

the grating. A shutter between the filament and the grating was attached

to the lid of the monochromator and could be swung out of the way from

outside the vacuum chamber.

After charging the filament with the desired amount of metal, the

system was closed and pumpdown begun, first with the roughing pump and

finally with the diffusion pump. The system reached a vacuum of about
c

k * 10~ Torr in about 2 hours, but usually it was allowed to pump for

-6
12 to 2*+ hours, when it reached about 1 x 10 Torr. The entrance and

exit slits were isolated from the vacuum chamber by the slide valves

and the thickness monitor gauge was set to the null position. Current

was then applied to the filament, melting the metal enough so that

outgassing could occur. After a few seconds of outgassing, the shutter

was opened, and the current was increased enough to evaporate at about

a rate of 200 A° per second. It was desirable to make the evaporation

as fast as possible, since Holland (l96l) has shown that this produces

a much smoother film than a slow evaporation, especially for layers up

to 300 A° thick.
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If a substrate other than the concave grating were to be coated,

e.g., the plastic replica grating, the same procedure was followed,

except that the grating holder was removed and the new substrate placed

into its position.

The reading on the thickness monitor had been calibrated to read

Q

l*+.*+ x 10 gram of metal evaporated per square centimeter per scale

division by interferometry techniques. This thickness value could be

checked in this work by comparing with the thickness of metal evaporated

onto the glass slide, which was done by measuring the per cent of light

transmitted at a given wavelength through the metal and comparing with

transmittance-thickness charts obtained previously for this metal. The

procedure here was to use the xenon lamp set for the green mercury wave

length (5*+6l A°) by the prism monochromator to measure transmission

through the metal-coated glass slide and then through a (similar) glass

slide with no metal, the ratio of these readings giving the transmission

through the metal alone.

One might ask, in analyzing the evaporation process on a grating

surface, whether or not the grooves are filled up by the evaporated

metal. It has been shown by several investigators that this, in fact,

does not happen and that the evaporated layers adhere to a uniform

thickness across the whole surface, regardless of the structural irregu

larities [Emerson, et al. (1963), Teng and Stern (1967), Hass and

McFarland (1950), Anderson, et al. (1965)] .
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Anodic Oxidation Technique

The preparation of dielectric films such as Al 0. and MgF_ on a

substrate is difficult to do by vacuum evaporation since high filament

temperatures are required and often special evaporation boats and

techniques must be used to insure an even, high-quality layer free of

clumps and globules of evaporated dielectric. Since we are interested

in investigating A1?0 dielectric layers, these problems could be by

passed by the use of the anodic oxidation apparatus described in the prev

ious chapter for the production of non-porous oxide films on aluminum

substrates. This method was convenient to use in this study because of

the concave gratings being originally provided with aluminum sub

strates . The grating surface itself is rectangular (3 x 5 cm) and is

mounted by epoxy cement to the concave surface of a plano-concave glass

blank one cm thick and 6 cm in diameter, and the rest of the concave

surface not covered by the grating is coated with a thick layer of

aluminum. Thus the whole concave surface is conducting. A thin

aluminum strip was clamped on one end to the aluminum non-grating part

of the concave surface and on the other end to the anode of the

anodization apparatus. The grating blank was then placed in the

electrolyte until one-third or 2/3 of the grating surface was immersed,

depending on which portion of the surface anodization was desired

(Figure 10). According to Hass (l9*+9) the voltage-thickness relation

is linear, the layer thickness being 13.5 A0 per volt for an anodization

time of over two minutes. For thicknesses of less than 200 A0, however,

the relation has been shown to be non-linear, as given in Figure 11.
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The validity of this curve has been questioned, some authors holding

the view that the thickness values should be one-half what they are

given here [Garber, et al. (1969), Aisenberg (1967)].

The anodization technique was useful only on the original grating

substrate, because when one attempted to anodize an aluminum layer of

several hundred A0 thickness that had been evaporated onto the substrate,

the surface layer deteriorated by peeling and the formation of bubbles.

The probable reason for this behavior is that this method requires an

exceptionally clean surface, and because of the problems mentioned

earlier, it is difficult to evaporate onto a substrate entirely free of

impurities.

Grating Foils

In the usual method of preparing thin self-supported metal foils

one evaporates a desired thickness of metal onto a glass slide previously

coated with a wetting agent. If one immerses the slide in water the

foil separates and floats on the surface where it can be picked up by

a foil holder. This procedure was not successful, however, when applied

to a grating surface as the layer adhered to the substrate and did not

separate under water. This is probably because the adhesion between

the evaporated metal and the substrate (either Al or Alp0 ) was large,

even in the presence of the wetting agent, and also because the surface

was not smooth. So other methods had to be used to make grating foils.

It was found that if the aluminized plastic replicas (Al thick

ness - about 300 A°) were subjected to the anodization process, the



99

aluminum layer would separate from the plastic substrate and could be

floated off in the electrolyte. These self-supporting foils (of total

thickness - about 300 A°) had thicknesses of Al and A120 that depended

on the applied voltage and they appeared to maintain their grating

shape and uniformity even for this small thickness. When the clear

plastic replicas,on the other hand,were coated in the vacuum system and

then anodized the surface deteriorated as before.

When it was not necessary to have a self-supporting foil, such

as with Ag, one could mount the foil on a thick dielectric substrate.

It was found that the best method for making foils of this type was the

same as that used to clean the substrate. For example, a Ag grating

foil was made by coating the original aluminized surface of the concave

grating with 300 A0 of Ag, pressing a strip of Scotch Tape onto this,

and then slowly stripping off the tape. The entire Ag layer adhered to

the tape, the 300 A° thickness being verified by transmission measure

ments, and the grating surface was of reasonably high quality. One could

make electron micrographs to check the surface quality, but usually one

cculd determine this visually simply by observing the brightness and

resolution of the diffraction spectrum of the grating foil.

An attempt was made to produce a grating foil by the method

described by Hass and McFarland (1950), where one coats a grating with

a thick Al layer, removes it with tape, anodizes the layer on the tape,

and then separates the tape from the anodized layer. When this was

tried with about 2000 A° of Al, it was found that the Al layer cracked
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upon removal into many small areas on the tape and would not conduct

when connected to the anode. Hass used a much larger thickness than

this, however, (about one micron), and it may be that the cracking

problem will not arise with a thicker Al layer. Hass also used a thin

Mg layer between the tape and the Al layer which we did not use, but

this should have had no effect on the cracking problem.

A special type of grating foil could be made very easily by

coating onto a fairly thick (several hundred A0) anodized Al 0 layer

on the concave grating a metal layer of desired thickness. This type

of "foil" has the advantage of being a high quality grating surface that

can focus the diffracted light without distortion and of exhibiting thin

foil behavior with the exception that the air boundary is replaced by

an AlpO layer and a metal substrate (see Chapter II).

A method was used to prepare a thin metal grating "foil" on a

dielectric substrate that is similar to that used for making replica

concave gratings [Jarrell and Stroke (196*+)]. The concave grating

substrate is coated with a vacuum evaporated layer of metal, and this is

coated with a thin epoxy resin layer. Immediately a large glass convex

(lens) surface of similar radius of curvature is pressed against this,

and the epoxy is allowed to set for 2*+ hours. The surfaces can then be

separated by wedging a thin knife edge between them. The thin metal

layer adheres more to the epoxy than to the substrate and is thus removed

with it. A very good grating surface is formed in this way and one may

study it in this geometry; however, with a convex surface one needs an
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additional lens for focusing. The process can be continued by coating

the convex surface with another vacuum evaporated metal layer, applying

an epoxy layer to it, pressing this against a glass plano-concave

grating blank, and separating as above. One now has a thin metal layer

on a concave surface bounded effectively by semi-infinite glass and air

layers on either side. This method has the advantage of producing

grating surfaces almost as good as the original, but it is time consuming

and it is often difficult to separate the epoxy treated layers.

One last method was to vacuum evaporate metal layers onto the

clear plastic replica gratings or simply to observe the aluminized

plastic replicas, but as pointed out earlier, these gratings did not

show anomalous polarization effects.

It may be added that the only one of these methods useful for Al

foils in the vacuum ultraviolet is the direct coating of the dielectric

concave layer, since with the other methods the vacuum must be broken

down and the foil exposed to air before measurements can be made.

II. THE VACUUM MONOCHROMATOR SYSTEM

Optical Alignment

To align the optical system of the vacuum monochromator one opens

the system to atmospheric pressure, places the concave grating in

position, and replaces the capillary light source with a tungsten bulb.

The reflectance box is detached from the monochromator and a frosted

glass slide is taped over the exit slit. With the entrance and exit
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slits set at their usual operating widths of 150 microns, the grating

is rotated until the central specular reflected image is focused on the

exit slit. Vertical positioning of the image and fine focusing can be

accomplished with the entrance and exit slit assemblies by rotating them

or by moving them in or out of their respective arms and observing the

position and sharpness of the image on the glass slide. For still finer

adjustments the glass slide can be replaced with a magnifier. The

grating is adjusted so that the grooves are perpendicular to the plane

of incidence, which is that plane formed by the incident and diffracted

beams. The fore and aft tilt of the grating is also adjusted so that

the diffracted orders also are focused at the same position on the exit

slit as is the central image. Baffles are placed in the entrance arm so

that the light striking the grating is confined to a given area of the

ruled surface, and in the exit arm so that only the exit slit is

illuminated. Then with the system closed and the photomultiplier con

nected to the exit slit assembly, the grating is rotated to the central

image position until the photocurrent is maximum, and then the wave

length register is set to zero. Calibration is done by replacing the

tungsten bulb with a Hg lamp and comparing the register readings with

the known wavelengths of certain lines in the Hg spectrum.

Resolution

The resolution of the monochromator system depends on the radius

of curvature and line spacing of the grating, the distance between the

grating and the exit slit, and the width of the exit slit. If we assume
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a 600 line per mm grating and an angle of incidence of 35°, we obtain

from the grating equation [Equation (l)] a diffraction angle of *+1.5°

for 1500 A° and 7*+.5° for 65OO A°, giving a 5000 A0 spread over 33°. If

the distance from the grating to the exit slit is *+0 cm, then the

grating dispersion is 22 A0 per mm. For an exit slit width of 150

microns, the resolution is thus 3.3 A°. For a 1200 line per mm grating

the spectrum is spread over an angle twice as large and the resolution

is twice as good at 1.6 A°.

Polarization Measurements

Once the optical alignment of the system has been completed the

triple polarizer assembly can be clamped into position at the exit slit.

The central image of the tungsten bulb that diverges from the exit slit

is reduced by tape baffles at the slit to a spot of light about 2 mm

square at the exit side of the polarizer, and is observed on a frosted

glass slide taped to it. The assembly is then adjusted up or down or

from side to side so that when the polarizer is rotated the beam stays

in the center. This is necessary because if the beam wanders over a

large area of the phototube the response may be different due to

possible non-uniformity in the sodium salicylate coating.

With the phototube in position at the exit side of the polarizer

the system is pumped down and allowed to stabilize at 1 to 2 x 10 Torr.

Evaporations onto the grating surface can be made at this time, if

necessary, according to the procedures mentioned in the previous section.
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Intensity measurements can then be made for two orientations of the

polarizer; one, I , with the planes of incidence of the polarizer and

grating perpendicular to each other, and the other, I , with the

polarizer and grating having a common plane of incidence.

The plane of incidence of the grating or the polarizer is that

plane formed by the incident and reflected (or diffracted) beams, and

light whose electric vector is parallel and perpendicular to this plane

is p- and s-polarized light, respectively. If we define the reflectances

of the grating and polarizer for p- and s-polarized light as (R , R )
P s

and (r , r ), respectively, then we may express the degree of polari-
P s

zation introduced by each by the polarization ratios

R

P = —r^ for the grating, and
n

p = —^ for the polarizer
s

For incident unpolarized light of intensity I , the measured intensities

may be expressed as

I =h (R r + R r ) = (^ I R r )(1 + Pp)
s 2oss PP 2oss r

I =J- I (Rr +Rr ) = (^ I Ro r )(p +P) .
p 2osp ps 2oss

Solving for P we obtain



105

I - I p

P = -^ s-
I - I p
s p

The ratio, p , has been calculated from Fresnel's equations using

published values of n and k for gold [Canfield, Hass and Hunter

(196*+)] and the known incidence angles (75°-60°-75G) of the triple

polarizer and is given in Figure 12 for the vacuum ultraviolet region.

The general procedure is to pick a strong spectral line in the

wavelength region desired and obtain at least two readings for each p

and s orientation of the polarizer. This is repeated for other lines,

preferably not more than 50 A° apart. Then the background intensity,

which is due to unwanted scattered light, must be subtracted. This can

be done by slowly scanning the spectrum, with and without the ultraviolet

filters, and measuring the p and s intensities in regions where there

are no spectral lines. Usually the background has a low and constant

value but may often increase in the short wavelength region near the

central image, or for measurements made at spectral lines that are weak.

The I and I values are those measured above the background in-
P s

tensity.

When using the Polaroid sheet polarizer assembly for measurements

at longer wavelengths,the adjustment requirements are much easier, since

the beam is not deflected as with the triple polarizer, and the grating

polarization, P , can be obtained simply from the ratio I /I , since

the Polaroid is so highly polarizing in a given plane.
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III. THE REFLECTANCE CHAMBER

Once the vacuum monochromator system has been aligned the

reflectance chamber can be simply bolted to the exit slit assembly.

With tape baffles placed at the exit slit, the divergent beam produces

a spot of light about 3 mm square at the foil holder at the center of

the chamber. With a grating foil placed in this holder, a piece of

sheet Polaroid could be positioned either in the entrance beam or

across the one cm square opening to the phototube. Then with the

incidence and diffraction angles fixed, a scan of the spectrum could be

run with the grating monochromator. Usually in this region the spectral

intensity was continuous so the polarizer did not have to be rotated

at each measured wavelength as in the vacuum ultraviolet.

The concave diffraction grating could be observed under monochro

matic light by raising the foil holder and positioning the grating at

the center of the chamber and carrying out the measurements as above.

Care was taken in these measurements to use a grating for a

monochromator having a different coating from the grating being investi

gated. This was to prevent anomalies that might be present in one from

showing up in the other. For example, a 1200 line/mm gold coated

grating known to exhibit no anomalies in its 1st order spectrum was

always used with aluminum grating foils and aluminized concave gratings.

IV. THE VARIABLE-ANGLE APPARATUS

The procedure with this apparatus was to fix the angle 29

between the source and the detector and scan the spectrum by varying
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the angle of incidence, a , at a constant rate. The angle 9 could be

varied from 2 to *+0 degrees .

Whenever the angle between the source and detector is changed,

the grating dispersion changes accordingly, and as a result a new

calibration of the grating drive register is required. With the variable-

angle apparatus it was found easier to disregard the register and cali

brate each spectrum directly at the time it was being run by super

imposing discrete lines from a known Hg spectrum onto the grating

spectrum. This was done by positioning a half-silvered mirror at the

entrance slit at an angle of *+5° with the optic axis so that the light

from the Hg lamp positioned perpendicular to this axis could be reflected

into the entrance slit. This mirror was made by vacuum evaporating

different layers of Ag onto a glass slide and then using the one that

resulted in diffracted Hg lines appearing with the same general magni

tude as the spectra being investigated. This was effective when used

with the tungsten bulb since the greater intensity of the Hg lamp could

be reduced by this reflection technique. The polarization of the source

light was hardly affected since the mirror (about 150 A° of Ag) trans

mitted over 90 per cent of this light, which was always on the optic

axis. The technique was not as effective with the Xe lamp as the source,

since the light from this lamp was so intense that it cracked the mirror.

Calibration could be accomplished by running separate Hg and Xe spectra

and also by comparing with the tungsten lamp spectra made at the same

source-detector angle.
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The half-angle, 9 , between the source and the detector was

measured by focusing the reflected (zero-order) beam first on the

entrance slit and then on the exit slit and recording the angle through

which the grating was rotated. This gives 9 directly since rotating

the grating an angle 9 produces a reflected beam rotated through the

source-detector angle, 29 .

The entrance slit width could be varied by a micrometer screw

attached to a slit assembly and was set at about 150 A°. The exit slit

was made by tape attached directly to the window of the phototube or PbS

detector and the width fixed at 150 A°. Optical alignment was accom

plished by setting the source-to-grating distance at about 50 cm and

moving the detector until the image was in focus. When operated at close

to the Seya geometry (9 = 35°), focusing the central image at the exit

slit insured that the diffracted wavelengths, at least through the 1st

order, would be in focus as well, since this is the principal advantage

of this geometry. For smaller values of 9 the diffracted light is in

focus only over a smaller range of wavelengths [Fisher, Fujita, and

Weissler (1966)], unless, of course, the detector is moved along the

Rowland circle, which was not feasible to do in this experiment. A

reasonable compromise was reached by using the Hg lamp and focusing on

either the green line (5*+6l A°) or the yellow doublet (5770 A°). Since

these lines are effectively in the middle of the typical wavelength

region scanned (about *+000 A° to 8000 A0), the amount of defocusing at

either end of the spectrum is small.
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In making a spectral scan the room lights were darkened and

scattered light was reduced by long tube baffles aligned along the optic

axis and placed between the grating and the entrance and exit slits and

covered by black cloth. The sources used in this arrangement were

usually of such intensity that the background intensity from scattered

light was negligible.

The Polaroid rotation apparatus could be placed in front of the

tube leading either to the exit or entrance slit. To obtain the |p - s|

difference spectrum the Polaroid was rotated at a constant rate. To

obtain the d-c spectrum, it was not rotated, but placed so that either

the p- or s- polarized light would be transmitted to the detector.

In experiments where the prism monochromator was used with the

Xe lamp, the grating drive mechanism was replaced with a table onto

which a grating foil could be placed, and the exit slit was replaced with

a one square cm opening at the detector. Both the reflected and trans

mitted diffracted spectra could be observed with this arrangement.



CHAPTER V

RESULTS AND DISCUSSION

In this chapter we present as a primary result of this study the

dispersion curves obtained from the analysis of the anomalous peaks in

the first order on-blaze spectra for the various metal and dielectric

coatings on concave gratings. This is followed with results for some of

the other diffracted orders, such as the zero order and 1st order off-

blaze spectra, and some discussion of the intensities of the various

anomalous spectra, and of the measurements with thin grating foils.

I. NON-RADIATIVE SURFACE PLASMON DISPERSION

Metal Layers on Metal Substrates - Visible and Near-Ultraviolet

The 600 line/mm concave grating blazed for 1500 A° was coated

with about 300 A° of vacuum evaporated aluminum, and the spectra obtained

for different values of 9 for incident p-polarized light in the spec

tral region from 1+000 to ll+OOO A° are shown in Figure 13. If the light

is s-polarized the spectra vary smoothly with wavelength for all angles

of incidence. The same results are obtained if the polarizer is placed

in the exit beam, but this is to be expected since the p- and s- com

ponents of light reflected from a metal surface are not changed in

magnitude and are changed in phase only if incident plane-polarized

light is oblique to the plane of incidence [Jenkins and White (1957)].

Note that the anomalous polarization peaks evident in Figure 13 appear

HI
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Figure 13. Anomalous polarization peaks in p-polarized spectra for
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to change in wavelength in a regular fashion as 9 is changed. A

quantitative knowledge of this dependence can be gained by plotting the

photon energy corresponding to the wavelength at the center of an

anomalous peak as a function of angle 9 as in Figure 1*+. One sees

from this figure that definite branches appear to be formed in the data

suggesting a functional relationship between angle and energy. Also

included in this figure are data taken in exactly the same manner after

500 A° of gold had been vacuum evaporated over the aluminum layer.

Similar branching behavior is seen here too except that corresponding

branches are shifted to lower energies in the short wavelength region.

One notes also that where a branch sloping to the left approaches one

sloping to the right, the two branches appear to "repel" each other

instead of intersecting. This behavior is more apparent for gold than

for aluminum. These gaps in the energy-angle plot are comparable to

similar observations made by Stewart and Galloway (1962) in their studies

of the zero-order spectra with aluminized gratings. We see also that a

gap between two branches at a small value of 9 is found at exactly the

same photon energy as a second gap between two different branches at a

larger value of 9 .

To construct the dispersion curve from the data of Figure 1*+,

we utilize the dispersion relation, Equation (93)

k = t- (2n +1) +|- sin 9./n 6 He Y
! _(^L^ )2

v 6 E cos B'

where the frequency is expressed in terms of the photon energy, E = "hu ,
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and the order of the diffracted light, n' , is given the value +1.

This is because in the variable-angle apparatus the 1st order diffracted

beam we are investigating is between the reflected and incident beams.

Since the photon energy, Hoi , is equal to the surface plasmon energy,

•ftp. , at resonance (Equation (91) , the surface plasmon dispersion curve

is obtained by evaluating |k | as a function of the photon energy.

For a given point in the experimental data, the angle, 9 , the photon

energy, TIu , and the grating spacing, 6 , are known, and only n

needs to be determined. This is done by assuming a positive or negative

value for n , solving for k and then finding the best fit of |k |

to the dispersion curve, which, for example, in the low frequency region we

expect to be very close to the light line. It is found that each n

value corresponds to a given branch of the experimental data of Figure

1*+, the positive values being for branches sloping to the right and

negative values for those sloping to the left, the higher n values

being found for higher energy photons. Once an n for a given branch

is found, the others follow in sequence. These assignments are shown by

the symbols on the figure.

Figure 15 shows the anomalous spectra at selected values of 9

when the same grating had been coated with an additional layer of silver

(-500 A° in thickness). The relationship between photon energy and angle

is given in Figure 16 and the aluminum data of Figure 1*+ are included

for comparison. One notes the same general behavior as in Figure 1*+

except that the peaks for silver are not shifted toward lower energies

to the same degree as are those for gold.
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Equation (93) was evaluated for each of the experimental points

in Figures 1*+, page 11*+, and 16 using the proper n value for each,

and the resulting dispersion curves for Al, Ag, and Au are given in

Figure 17. The Feynman diagram for this process is also included. Note

that the parameters n' and k' for the diffracted beam have not

entered directly into the calculations, but they are implicitly related

to n and k through the diffraction equation. The dotted lines in

Figure 17 are the classical dispersion curves obtained from Equation (*+l)

for a surface plasma wave propagating at a metal-vacuum interface using

2 2
e(oi) = e = n -k , the real part of the dielectric constants of

Al, Au, and Ag from the data of Ehrenreich , Philipp, and Segall (1963) ,

Schultz (1954), and Schultz and Tangherlini (195*+), where n is the

index of refraction and k is the extinction coefficient. The agree

ment is seen to be excellent for all values except for slight deviations

for Al at higher energies. It is shown later in this chapter that this

can be explained by the oxide layer that forms on Al and not on the

other two metals.

These curves should approach ideally the surface plasma wave

lengths for these metals, which for Al, Ag, and Au are 1170 A° (10.5 ev) ,

3500 A0 (3.5*+ ev), and 5500 A0 (2.25 ev) , respectively. In the region

studied here above 2700 A°, it was found that the higher energy peaks

for Ag and Au decreased in intensity and became broader. This is to

be expected since the imaginary part, z , of the dielectric constant

of these metals, while small, does increase with respect to e.. as the
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energy is increased. It is however small enough so that one is still

justified in using only e1 in Equation (*+l) to obtain the classical

dispersion curve.

A feature noted on the experimental dispersion curves is the

discontinuity that appears at multiples of tt/6 . This is in accordance

with the self-energy picture of the surface plasmon developed in

Chapter II. These gaps result from the regular grating structure and,

of course, are not predicted by the classical dispersion theory, which

applies only to surface plasma wave propagation on a flat surface. The

gaps correspond to the gaps in Figures 1*+, page 114, and l6, page 117,

where a branch having a positive value of n makes its closest approach

to one having a negative n value. We may qualitatively regard the

phenomenon here as the interaction of surface plasmons having the same

momentum but propagating in opposite directions and forming standing

waves in the periodic electronic density of the grating surface. This

is analogous to the well-known formation of Brillouin zone gaps in

crystalline solids [Kittel (1966)].

To gain a clearer understanding of the meaning of the n values,

it is instructive to see the relationship of the anomalous polarization

peaks to the Rayleigh wavelengths. For example, at 9 = 20° the

anomalous wavelengths for the Al-coated grating appeared at the values

shown in Table I. The diffraction order was n' = +1 , and the angle

of incidence, a , was calculated from Equation (92). The values of

the passing-off diffraction order, m , were obtained from the Rayleigh



Table I. Anomalous wavelengths for 9 = 20°. Rayleigh passing-off
orders, m, are compared with branch values, n

n' X(A) E(ev) a(°) m=6(sina + l)/X n m=6(sina -l)/X n

+1 *+l80 2.97 27.7 5-8*+ -6 -2.13

1+630 2.68 28.5 5.31 -1.93 +2

5050 2.1+6 29.3 *+.92 -5 -1.68

6*+30 1.93 31.8 3.97 -*+ -1.22

7750 1.60 33.9 3.*+l+ -0.98 +1

-1 1+180 12.3 *+.8*+ -5 -3.1*+

1+630 11.5 4.32 -2.88 +3
it

5050 10.7 3.92 -1+ -2.68

61+30 8.2 2.97 -3 r-2.22

7750 6.1 2.1+5. -1.99 +2

t\>
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wavelength equation, (l), m = 6(sin a + l)/X and are given in the

table. In the last column of this table are the values of n obtained

by the method described previously. One sees that to the nearest whole

number, the m and n values agree except that the sign is different.

This is in agreement with the sign convention that has been adopted,

because a negative m value is for a diffracted order moving across the

grating in essentially the same direction as the incident light, while a

positive n value applies to momentum transfer also in the same direction

as the incident light [Equation (90)]. Positive m and negative n

values, conversely, are for motion in the opposite direction. The

larger the order number, n , the larger are the number of grooves

participating in the momentum transfer process.

If we observe the 1st order diffracted light on the opposite side

of the reflected beam, so that the reflected beam is between the inci

dent and diffracted beams, the order number, n' , is -1. This changes

the first term in Equation (93) from 2n + 1 to 2n - 1. The anomalous

peaks appear at the same wavelengths but at different angles of inci

dence, as calculated from Equation (92). This gives m values that

are changed in magnitude by unity, but as it turns out, the n values,

in being fit to the dispersion curve, are also changed by the same

amount. This is evident from Table I. Table II shows the calculations

for |k I for this grating also at 9 = 20°.

We expect the anomalies to occur near the Rayleigh wavelengths

as long as the dispersion curve is near the light line, as we have here,



Table II. Calculation of |k | for 9 = 20° using anomalous
wavelengths and Equation (93)

X(A) E(ev) n U/6)(2n+l)
E

TICn'
sin9^1-(E•ntic >2

cos 9^ \k |(105 cm"1)
' n1

+1 1+180 2.97 -6 -2.07*+5 • 5105 1.5630

1+630 2.68 +2 + .9*+25 •*+599 1.1+02*+

5050 2.1+6 -5 -1.6965 .1+208 1.2757

6*+30 1.93 -*+ -1.3195 .3275 .9920

7750 1.60 +1 + .5655 .2706 .8361

UJ
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but discrepancies are expected for low velocity surface plasmons

described by a dispersion curve far removed from this line.

The validity of Equation (*+l) in calculating the dispersion

curves of Ag and Au may be questioned since it applies to wave propa

gation on a semi'-infinite metal surface, while in reality the metals

were only a few hundred A° thick on an effectively semi-infinite Al

substrate. This could be checked from Equation (50), which is the

dispersion relation for a dielectric layer on a metal substrate, by

substituting the real part of the dielectric constant of either Ag or

Au in place of that of the dielectric and using e of Al for the

substrate. With these dielectric constants, Equation (50) becomes

the dispersion relation for a metal layer bounded on one side by a

metal substrate and on the other by vacuum and solutions are obtained

for the normal and tangential modes. The equation was solved on the

CDC l60*+-A computer and the results of the tangential mode solution for

a few selected thicknesses are shown in Figure 18. It can be seen that

significant deviations from the semi-infinite curves occur only for

very thin layers, and that there is essentially no difference for the

500 to 600 A° layer thicknesses that were used in this experiment.

The validity of Equation (93) may also be questioned since the

square root term becomes imaginary whenever 6 Hid cos 9 < ttctI , or

in terms of photon energy, whenever tlco (ev) < .371/cos 9. Considering

an extreme case where 9 = *+5°, we obtain tIgj < .525 ev. Since in

this experiment the photon energy was never less than 0.8 ev, no

difficulties were encountered in using this equation.
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Dielectric Layers on Aluminum Substrates - Visible and Near Ultraviolet

Regions, Al 0 and Diffusion Pump Oil

The theoretical dispersion curve obtained in the previous section

for aluminum is for the ideal case of a pure metal surface. In reality

an oxide layer several A° thick forms naturally on aluminum and the

thickness of this layer depends on the smoothness and purity of the

substrate. For example, Berning, Hass, and Madden (i960) report that

with 99.99 per cent pure Al layers 500 to 600 A° thick vacuum evaporated

in 1 to 2 sec, the oxide film formed after one hour is 10-12 A° thick,

reaches 15 A° after 1 day, about 20 A° after 10 days, and a maximum of

22 A0 after one month, after which any further growth ceases. Walkenhorst

(19*+1), and Hass (l9*+7) on the other hand, report maximum oxide thick

nesses of 1+0 A0 or more forming on thick, vacuum evaporated Al layers

after about a month's exposure to air. Berning, Hass and Madden

attribute the difference to the fact that they used super-pure aluminum

and faster evaporation times which reduced aggregation and formed

smoother films.

Because concave gratings are often operated in the vacuum system

for weeks and months, molecular layers of diffusion pump oil can adhere

to the grating surface. This was not the case for the grating (B and L

No. 221+3-32) investigated in the previous section, since it was exposed

to air within hours after the evaporation. Other gratings, however, had

to be analyzed for this additional dielectric layer.

The effects of the dielectrics on aluminum substrates were

investigated in several different ways; one, by cleaning and evaporating
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new layers onto the surface, two, by anodizing additional oxide layers,

and three, by analyzing the dispersion properties of the naturally

formed layers.

Grating 221+3-32 was coated with 200 A0 of aluminum (evaporation

time = 2 sec) and measurements taken in the vacuum monochromator immedi

ately after evaporation and later after exposure to air at atmospheric

pressure. The results are shown in Table III where the first column

gives the anomalous wavelengths for the freshly evaporated layer at a

-6
pressure of 10 Torr and the second after exposure to air for 10 hours,

A definite shift to longer wavelengths is noted for the exposed surface

and is attributed to the formation of an oxide layer.

The original aluminized surface of a second grating (B and L No.

2*+06-22-l-5) that had been operated in the vacuum system for seven

months was also analyzed for anomalous wavelengths, and the results after

two months exposure are shown in Figure 19. This shift is believed due

entirely to pump oil because this surface had been exposed to air for

almost two months before being installed in the vacuum system. Two

verifying experiments were made: (l) when the edge of the grating not

normally exposed to the incident beam in the monochromator was cleaned

by the process mentioned in Chapter III, the anomalous peaks shifted

back to the values they would have had for the normal oxide layer.

The edge was used here because Berning, Hass, and Madden have shown that

direct ultraviolet radiation on an aluminum surface can increase the

natural oxide thickness by as much as 15 A0; (2) coating the uncleaned
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Table III. Wavelengths of anomalous peaks at 9 = 35° for
a layer of Al: (a) freshly vacuum-evaporated at

10-6 Torr; (b) the same layer exposed
to air for 10 hours

Vacuum Exposed to Air

5826 5863

1+823 481+3

1+107 !+132
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surface with a vacuum evaporated layer of Al (600 A°) and exposing to

air for 2*+ hours produced a shift to wavelengths characteristic of the

oxide layer (Table IV).

The same grating (2*+06-22-l-5) was subjected to further study by

anodizing additional oxide layers with the anodic oxide apparatus

described previously. With 9 fixed at 25.7° one edge of the grating

constituting one-third of the total grating surface was cleaned and

oxide layers were obtained for 6 v. (75 A°), 9 v. (125 A°), 18 v.

(2*+3 A0), *+0 v. (5*+0 A°), and 60 v. (810 A0). The measured shift of

the anomalous polarization peaks to longer wavelengths for some of these

thicknesses are shown in Figure 20. The opposite edge was then anodized

at *+0 v. (5*+0 A°) with 9 again fixed at 25.7°. A final anodization

was done, also at *+0 v., on the center section, but at several different

values of 9 . All of the anomalous wavelengths obtained were evaluated

by Equation (93), and the resulting points in the dispersion diagram are

shown in Figure 21. The solid lines are theoretical dispersion curves

obtained from Equations (52) and (53). Since the extinction coefficient

2
of A1„0 is effectively zero in this wavelength region, n(w) ~ r\ = n ,

where the index of refraction, n , for anodized Al 0 ranges from 1.62

at 6000 A0 to 1.67 at 3000 A0 [Hass (l9*+9)]. We also use in these

equations e(to) = z1 , the real part of the dielectric constant of Al.

That there are discrepancies between theory and experiment is

evident from Figure 21, and could be due to several factors: (l) The

relation between thickness and voltage, which was derived for a flat
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Table IV. Wavelengths of anomalous peaks at 9 = 25.7° for
an Al-coated grating (a) used in a monochromator for

seven months and coated with diffusion oil; (b)
same surface with the oil removed; (c) the

surface coated with 600 A° Al and
exposed to air for 2*+ hours

Oil Cleaned Al(600 Ac)

1+530 1+1+80 1+1+80

5I+50 5*+00 51+00

6670 6580 6550

69I+O 68TO 6870
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Figure 20. Anomalous polarization peaks for Al (grating) substrate
coated with various thicknesses of anodized Al 0 .



3.0

2.8

2.6

>

(5 2.4
CE
UJ

UJ

~Z 2 2p 2-2
o
X
0_

2.0

1.8

1.6

0.9 1.0

ORNL-DWG 69-6849

1.1 1.2 1.3 1.4 1.5 1.6 1.7

SURFACE PLASMON WAVE VECTOR \t\ (105 cm-1)

Figure 21. Surface plasmon dispersion curves for different anodized A1?0? thicknesses
on concave grating. • - left edge, 0 - right edge, k - center.



134

surface, might be different for a grating surface, (2) The polarization

peaks for anodized surfaces are broader and not as well-defined as for

the unanodized case, thus introducing an error in reading the wavelengths,

(3) The voltage-thickness curve itself may be in error (see Chapter IV),

and (*+) Equal voltages applied to similar grating surfaces might not

always produce the same thicknesses. One notes, for example, the large

spread in values, all obtained at the same voltage, for three sections

of the same grating. Equally evident is the spread in values that were

obtained with the center section alone. The dotted line is the theo

retical curve that appears to match these values the best, and is for a

thickness of 650 A°. We further observe, however, that some points of

the center section, and notably those from the second edge of the grating

to be anodized, are very close to the original value of 5*+0 A0.

When Equations (52) and (53) were applied to the experimental

dispersion curve obtained earlier with grating 22*+3-32 (Figure 17, page

119), a very good fit was obtained assuming an oxide thickness of 50 A°.

Since the substrate could not be made perfectly clean because of the

difficulties mentioned earlier, the evaporated Al layer may have had

more surface roughness than a layer prepared under more ideal conditions,

and thus a 50 A° thickness seems reasonable.

The original aluminized surface of the other grating (2*+06-22-l-5) ,

being prepared under more exacting conditions, was assumed to have

developed an oxide layer of only 20 A° after long exposure to air. The

experimentally determined dispersion curve for this grating after



135

several weeks exposure in the vacuum system was very similar to that

obtained above for grating 22*+3-32. One finds that the theoretical

curve giving the best fit in this case is for an assumed oil thickness

of 20 A° on top of the 20 A0 oxide layer using Equations (63) - (66) for

a double dielectric layer on a metal substrate. This, as well as all

subsequent dispersion curves discussed in this work, was evaluated on

the CDC l60*+-A computer. We use here the optical constants of anodized

Al 0 as above. Those for the pump oil (DC-705) were obtained from

reflectance measurements made in this laboratory. For wavelengths

greater than 2*+00 A0, the extinction coefficient, k , is zero, and the

index of refraction, n , can be taken as constant at n = 1.7*+. The

pump oil used in our vacuum system was DC-706, but the difference in

the optical constants between this and DC-70*+ are not believed appreci

able. However, there may be some variation due to the fact that these

are bulk values rather than those for thin films.

Magnesium Fluoride

A third Bausch and Lomb concave grating was analyzed that had

the same line spacing and blaze (600 lines/mm; 1500 A0 blaze) as the

other two, but with its aluminum substrate coated with 350 A0 of MgF .

(This thickness value was verified by personal correspondence with the

Bausch and Lomb Corp.) A typical spectrum of the |p-s| difference

signal extended into the near ultraviolet is shown in Figure 22. Note

that the anomalous peaks get closer together, appearing to approach a

continuum as expected, and also less intense and broader. The photon
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energy at which the peaks occur as a function of angle 9 is given in

Figure 23 where it can be seen that the gap spacing is larger than for

the other aluminized grating that was uncoated. That this could be due

to the dielectric alone is not conclusive, however, since two different

gratings are involved. The gold data obtained previously is included for

comparison, and one can see the similarity between the gap spacing for

the two different coatings. That this might be due to both dispersion

curves being farther removed from the light line than those for either

pure Al or Ag is also questionable, since here, again, two different

gratings are involved.

The experimental dispersion curve obtained from Equation (93) for

the MgF coated grating is given in Figure 2*+. The dotted line is
2

Equation (52) and (53) using n(oj) = r\ = n , where here, the extinction

coefficient, k , is effectively zero, and the index of refraction, n ,

for MgF varies from 1.382 at 7000 A° to 1.390 at *+000 A° [Duncanson

and Stevenson (1958)]. The Al data are also included in Figure 2*+.

Note that there is excellent agreement between theory and experiment.

Dielectric Layers on Metal Substrates-Vacuum Ultraviolet Region

Time studies of the polarization ratio (R /R ) were made in the
r p s

vacuum ultraviolet with the aluminized grating 22*+3-32 after vacuum

evaporating layers of aluminum, silver, and gold. The results are given

in Figure 25. Note that the peak appearing at 1580 A0 for a layer of

aluminum (115 A0) decreases only slightly after remaining in vacuum

(10-6 Torr) for several days, but after exposure to air for a few hours
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its intensity decreases and shifts to longer wavelengths (1750 A0 at

maximum). The peak was shifted back to 1580 A0 by recoating with a

fresh layer of Al (90 A°) and the shift to longer wavelengths observed

by re-exposing to air. This peak has been identified as the surface

plasma wavelength in Al modified by the presence of an A120 coating.

The 1580 A° peak occurs at a longer wavelength than the surface plasma

peak in Al (1170 A0), but this is believed due to the small oxide layer

-6
that forms at 10~ Torr.

Using the dispersion relation, Equation (53) and (5*+), extended

into the vacuum ultraviolet energy region, we obtain the set of curves (Fig. 26,

for different thicknesses of Al 0 on the aluminum substrate. One sees

that for large |k| these curves approach the same asymptotic value,

7.0 ev, corresponding to a wavelength of 1770 A0, but for smaller |k|

the maxima of these curves have different values. Since our analysis

of the observed peaks is based on the idea that momentum transfer occurs

at the grating surface, we would expect peaks to occur at those energies

that have the greatest "density of states." That is, for |k| far

removed from the light line, even though the contribution to the

intensity from each state may be small, the total transition probability

is large if many states having the same or similar energy are involved.

From Figure 26 we see that the greatest density of states occurs in a

region slightly below where these curves have their maxima, so the

observed peaks should occur at the corresponding energies. Note that

an energy-angle plot, as in Figures 14, page 11*+, 16, page 117, or 23,
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page 137, is not appropriate, since for large energies (and large n ),

as we have here, the branches become so close together that they are

indistinguishable. We are using e.. for Al from the data of Hass and

Waylonis (1950) and of Hunter (196*+). The values of ru used in the

dispersion relation were calculated from the optical constants n and

k for anodized films of A1?0 measured in this laboratory for wave-

2 2lengths shorter than 3000 A°. Here n = n - k and n2 = 2nk . The

imaginary part, r\ , is not small in this region and, in fact, its

inclusion in Equations (53) and (5*+) shifts the maxima of the dispersion

curves to lower energies. The dispersion curves using n(co) for

several thicknesses are shown in Figure 27. It is seen that the curve

[using n(<*))] having its maximum density of states at 7.85 ev (the

1580 A° peak observed at 10~ Torr) is for an oxide thickness of about

20 A°, and the peak of 1700 A0 resulting from exposure to air for 2*+

hours corresponds to an oxide thickness of *+5 to 50 A°. While these

values seem somewhat high for a perfectly smooth surface, they may be

reasonable for the surface used here. If we use n only (Figure 26),

the calculated thicknesses are larger, being about 30 A° and 50 to 55 A0,

respectively. Note that both sets of dispersion curves (using either

n or n ) approach the same asymptotic value of 7-0 ev.

When we use a complex dielectric constant, n , in the dispersion

equation we are assuming that the imaginary parts of the other parameters,

such as z, k, and co, are small and are therefore neglected. What we

are trying to find here is the effect of the imaginary part, np , of

the dielectric constant on the real part of the dispersion relation. In



10

^ 8
>-

or
Ld

5?

o

£6

ORNL-DWG 69-6848

*<•

1

0 =

i—r—

=c| F
T-l—

^y^~^
\5A

"~ —»_ o

s10

-__30

U

f—*f-l r

+ ^

"^

650^

//

10* 10'

IKI (crrH)

Figure 27. Theoretical surface plasmon dispersion curves for various thicknesse
Dstrate. Uses n = n^ + H2 for AlpO
and 20 A° pump oil on Al substrate

of Al 0,
on an Al substrate. Uses n = n^ + n2 for AlpO-^ and e = e for Al. Dotted line-
20 A° Al 0 "~A on A° --••" -- "'' -------- 1



145

the computer program for this situation the imaginary parts were

retained through the final solution, and the thickness printed out with

a real and an imaginary part (see Appendix A). We used only the real

part in plotting the dispersion curves.

The peak around 850 A0 is identified as the volume plasma peak

in Al (A = 830 A°). The wavelength of this peak does not shift in time

although its intensity decreases. Since this behavior is related to

the radiative mode in aluminum, a more detailed discussion shall be

given later in this chapter.

Coating this surface with either Ag or Au causes both the volume

and surface peaks to disappear. This is to be expected, since the plasma

wavelengths of Ag and Au do not lie in the vacuum ultraviolet (3300 A0

for Ag and 5200 A° for Au).

Similar time studies have been made on a fourth 600 line/mm,

1500 A° blaze grating (B and L No. 2*+06-22-l-9) having a new, aluminized

surface [Painter, Birkhoff, and Arakawa (1968)]. The results of the

polarization measurements made while the grating was in the vacuum system

for 27 days are given in Figure 28. This grating had been exposed to air

for about three months before being installed in the monochromator, and

had already developed an Al 0 coating of about 20 A°, if we assume a

high-quality surface. Thus the shift to longer wavelengths of the peak

at l*+00 A° was attributed to diffusion pump oil condensing onto the

surface rather than to an additional oxide layer. The l*+00 A0 peak is

believed to be the surface plasma peak in Al shifted by the assumed 20 A0
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oxide layer. The applicable dispersion curves (Figures 26, page 1*+1,

and 27, page l*+3) show that for the photon energy at l*+00 A0 (8.85 ev),

the corresponding oxide thicknesses are about 12 A° [using n(w)] and

18 A° (using n-, )• The rather good fit for 18 A0 and the poorer fit for

12 A° indicates that perhaps the measured value of n? is slightly

larger than it should be or perhaps that the actual oxide layer is

thinner than 20 A0, although this possibility is believed small.

The extension into the vacuum ultraviolet region of Equations (63)-

(66), which apply to the double dielectric layer on a metal substrate,

is shown in Figure 27 assuming a 20 A° pump oil layer on top of the 20 A0

oxide layer and using n for the oxide and v(w) for the oil. The

dispersion curve gives a maximum density of states at 6,*+0 ev, which is

0.6 ev less than that for an infinite oxide layer. The wavelength

corresponding to 6.1+0 ev is 1938 A0, and is in excellent agreement with

the 1930 A0 peak observed after a 27 day exposure in the vacuum system.

We are justified in using n instead of n(w) for the oxide here

because r\ is very small around 6.50 ev.

The large width of the peak at 1938 A0 is probably due to the

large value of v , the imaginary part of the dielectric constant of

pump oil. In fact, from 1800 A° to 2000 A° , v>2 is larger than \>1 ,

which means that because of the resulting short lifetime the surface

plasmon is almost out of the range of being regarded a collective

oscillation. In Equation (*+5) the half-width is given approximately by

Acq _ A_ (~Kai) _ J2
co = Hu 2^2'v1 + vx
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At 1950 Ac, we have v = 2.95 and v = 0.93, so that Aco/oo = .309.

Thus at 601+0 ev the half-width is I.98 ev. From Figure 28, page l*+5,

the peak at half-maximum extends from about 1600 A° (7»T*+ ev) to 2300 Ac

(5.62 ev), giving a half-width of 1.92 ev.

The peak at 700 A° is believed due to the radiative mode and will

be discussed later in this chapter.

Grating 2*+06-22-l-5 with its 650 A° anodized Al 0 coating was

investigated in the vacuum ultraviolet and the results of the polari

zation measurement are shown in Figure 29- The observed peak at 1750 A°

is in good agreement with the theoretical value of 1770 A° (7-0 ev)

obtained from the dispersion curve (Figures 26 and 27, pages 1*+1 and l*+3),

using either n or n(w) for this thickness of dielectric. The volume

peak is not observed here because of the absorption of light due to the

extinction coefficient, k , becoming large at wavelengths shorter than

1700 Ac.

II. INTENSITY CONSIDERATIONS

The previous analyses have been concerned with the positions of

the anomalous peaks in the 1st order diffraction spectrum and their

relation to the theoretical dispersion curves. No comparable conside

ration has been given to the intensities of these non-radiative

surface plasmons because the transition probability, Equation (89), is

not precisely known at this time. We present in this section some of

the experimental results on the intensity measurements made with the
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zero order, the 1st order on- and off-blaze spectra and of metal over

coating layers of various thicknesses.

The Zero Order (Reflected) Beam

For some time it has been believed and considered well understood

that the energy for the anomalous peaks comes from the reflected (zero-

order) beam, i.e., a peak in the diffracted beam corresponds to a dip in

the reflected beam at the same wavelength [Wood (1935), Hagglund and

Sellberg (1966)]. This was verified in an experiment where the concave

grating 22*+3-32 (Al coated) was placed in the reflectance chamber and

illuminated by light from the monochromator. The results of measure

ments made of the reflected and first order (on-blaze) spectra, given in

Figure 30, show a peak in the first-order diffraction and a dip in the

reflected beam occurring at the same wavelength. Although the dip appears

to be small, it is in a spectrum that is 100 times as intense as the

diffracted spectrum.

The First Order Off Blaze Spectrum

Apparently energy is removed from the first-order diffracted beam

on the off-blaze side as well, as can be seen from Figure 31, where

typical spectra for the first-order on- and off-blaze diffracted beams

are shown for the same value of 6 where the overcoating metal is Ag.

The anomalous wavelengths (off-blaze) appear as dips at the same wave

lengths as the peaks on the on-blaze side. Note the dip at the plasma

wavelength for both cases indicating volume plasma absorption regardless
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of the diffraction order. This absorption in Ag is in contrast to the

behavior in Al where an emission peak was observed at the volume plasma

frequency. The reason for the difference is not entirely clear at this

time, but may be related to the radiative mode behavior discussed later

in this chapter.

Metal Layers

The effect on the intensity of overcoating different thicknesses

of Ag onto an aluminum substrate at a fixed value of 9 is given in

Figure 32. The intensities of the peaks in the jp—s| difference spectrum

increase but their positions stay the same as the layer thickness is

increased. It was pointed out earlier in this chapter that for metal

thicknesses above about *+00 A° on a metal substrate the dispersion

curve is essentially that for an infinite layer, so we expect no shift

in the wavelength of these peaks. The changes in intensity indicate

less plasma wave damping as the thickness is increased and is probably

due to an overall smoother aggregate being formed on the surface with

the larger thicknesses. This increase of intensity with thickness was

noted also with Al and Au evaporated layers.

The First Order On-Blaze Spectrum

The relative intensities of the anomalous peaks in the p-polarized

spectra were obtained for the aluminum coated grating 22*+3-32 and are

given in Figure 33 for positive n values and in Figure 3*+ for negative

n values. The relative intensity is defined here as the ratio of the
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intensity at the peak to the intensity at the continuum in the absence

of the peak, where both intensities are measured above the background

level. The results show that the intensity increases as the n values

decrease, which is what could be expected, since a large momentum trans

fer, corresponding to a large n , might be less probable that a small

momentum transfer, involving a small n . A large n may also be

associated with greater damping of the surface plasma wave. One also

finds in general that as 6 increases the intensity decreases for

positive n and decreases for negative n , but the reason is not clear

at this time. It is hoped that a detailed perturbation calculation of

the intensities which is new in the process of being completed, will

elucidate some of these experimental results.

III. GRATING FOILS AND THE RADIATIVE MODE

Foils on Concave Gratings - Non Radiative Mode

The first grating "foil" to be considered is the one formed by

coating a thin metal layer over a dielectric coating on a concave

grating. We refer to a foil here as any metal layer thin enough for

coupling to occur between the surface plasma waves on either side of it.

Grating 2*+06-22-l-5, with its 65O A° A1?0 layer on an aluminum sub

strate, was coated with 150 A° of vacuum evaporated aluminum, and the

spectrum in the vacuum- and near-ultraviolet and visible regions scanned

for evidence of both the normal and tangential mode surface plasmons.

The thickness of 150 A0 was chosen because the dispersion curves,
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Equations (56) and (57) for an oxide-free coating or Equations (59) and

(60) including the oxide, show that the peaks for each mode should fall

far enough apart on the dispersion plot to be resolvable. With a

smaller thickness, on the other hand, a surface plasmon might not propa

gate without considerable damping and resultant broadening of the

anomalous peaks.

Measurements made in the vacuum ultraviolet for the freshly

evaporated surface showed that no anomalous polarization peaks were

present. The same result was obtained when the surface was allowed

to oxidize. The reason may be that the anodization of such a large

dielectric thickness caused the grooves to become altered in such a way

as to prevent coupling between the photons and the short wavelength

surface plasmons.

In the longer wavelength region anomalous peaks were found, but

only for the tangential mode. The experimental dispersion curve,

obtained from Equation (93), is given in Figure 35. The solid lines

are Equations (59) and (60), assuming an oxide layer of *+0 A° on the

aluminum surface, and the dashed line is the non-radiative mode for

*+0 A° Alp0 on a semi-infinite Al substrate. One sees that there is

a definite shift of the tangential mode from the semi-infinite case

to values characteristic of thin foils, and this shift is in good

agreement with theory.

The reason that the normal mode excitations did not appear could

be due to (l) excessive broadening of these peaks because of some
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unknown damping mechanism and (2) that fact that they may naturally

have a low intensity for the thickness used. The best available theory,

which applies to incident electron excitation, predicts equal intensities

for the normal and tangential modes for an aluminum thickness of 100 A0

(no oxide layer). For smaller thicknesses the tangential mode intensity

is greater, but for larger thicknesses the normal mode intensity pre

dominates, being about twice as great as the normal mode intensity at

150 A0 [Schmuzer (196*+)]. The experimental results, obtained at

energies characteristic of the surface plasma wavelength, show good

resolution of the normal and tangential peaks [Boersch, et al. (1966)]

at 150 A0, but with the normal peak much weaker. Better intensity is

obtained at a thickness of 270 A°, but with the peaks just barely re

solvable. Other experimental results [Swan, Otto, and Fellenzer (1967)]

give almost equal intensities and good resolution at a thickness of 110

A0. In both these experiments the foils were assumed to be coated with

a *+0 A° of oxide layer on each side.

The grating was coated once more with an additional layer of

100 A° of Al, but all this did was to shift the peaks to values on the

dispersion curve characteristic of a 250 A° Al thickness, and no normal

mode excitation was observed.

Some of the results obtained previously in the vacuum ultraviolet

for grating 22*+3-32 could be re-interpreted if the Al coating is

regarded as a foil. What we have is 100 A0 of Al evaporated onto an

Al substrate that has oxidized naturally, so there is a vacuum-metal-
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dielectric-metal multilayer. The *+0 to 50 A° oxide layer was disregarded

in the earlier treatment. The only difficulty is that the peak at

1580 A° would have to be explained as a normal mode excitation, and there

should be another peak at 1900 A° due to the tangential mode. These

peaks are predicted from the appropriate dispersion curves, Equations

(59) and (60), extended into the vacuum ultraviolet. Also previous

results indicate that the tangential mode has a greater probability of

appearing than does the normal mode.

A further attempt was made to detect the normal mode in the

visible and near-ultraviolet by preparing a 300 A° Ag grating surface on

a concave grating blank by the epoxy treatment mentioned earlier. The

anomalies seen here were very weak and broad, corresponded to the

tangential mode only, and in some spectra, were non-existent. The

anomalous peaks became more pronounced if additional thicknesses of Ag

were evaporated onto the surface. The weakness of these peaks may be

related to the form of the dispersion equation [Equation (62)], which

applies to the case of a metal foil bounded on one side by vacuum and

on the other by an (effectively) infinite thickness of dielectric. For

values near the light line, the F' term is oscillatory instead of

exponential and difficulties are encountered when an infinite dielectric

thickness is substituted into the argument of the tangent. Physically

this means that the surface wave at the metal-dielectric interface can

be spread out through the whole dielectric layer, and this could lead

to excessive damping of the wave. As the foil thickness is increased,
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coupling to the metal-dielectric surface is decreased and we approach

the condition of a pure metal substrate.

Concave Gratings-Radiative Mode

The peaks observed in the vacuum ultraviolet at 850 A° and 700 A°

for gratings 22*+3-32 and 2*+06-22-l-9, respectively, have been tenta

tively attributed to radiative mode excitation.

The first of these peaks, at 850 A°, is for the same "foil" surface

considered in the previous section, where a 100 A0 Al layer on an oxide

layer of *+0 A0 is on a semi-infinite Al substrate. An approximation to the

intensity of this peak may be obtained from Equation (88), which strictly

applies to a metal foil bounded on both sides by vacuum. At the plasma

frequency this reduces to

2 2 2 2 2
P sin a sin 6 to [_ + 1+9 (y + y') /l6]

-sn P p
P 2 .2

sn y Y

where ty = 0° with the grooves perpendicular to the plane of

incidence. The electronic damping, li y , is given by „ y =

"ft 00 e = 5.52 ev where e_ = 0.26k and the angles of incidence and
p 2 2 °

diffraction, a and g , are 33.3 and 36.7°, respectively, at a

diffracted wavelength of 850 A°. Thus using the thickness of 115 A0

and the expressions for y and y' (Equation (8l) , we obtain

P /P = 6.3
pn sn
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One might ask whether the thin foil interpretation is correct, since

it did not seem to be applicable to the non-radiative mode considered in

the previous section. We believe, however, that the radiative mode

excitation, which requires only a small momentum transfer due to the

small k vector, is more probable than the non-radiative excitation,

which required a larger momentum transfer. The measured peak (Figure 25,

page l*+0) includes effects from the normal diffracted light as well as

the anomalous polarization. In the absence of the peak this ratio is

about 0.*+, and with it, about 0.9- The p to s ratio for the peak is

thus increased by a factor of 0.9/0.*+ = 2.25 over the continuum value.

The calculated half-width is of the same order of magnitude as the

measured value of about *+ ev (800 to 1100 A°). For the second Al

evaporated layer of 90 A0, which gives a total thickness of 205 A°

(neglecting the oxide layer between the two), the calculated polari

zation ratio becomes P /P ~ 3.3. The measured value is increased
pn sn

over the continuum value by a factor of 1.1/0.*+ = 2.75. This peak also

had a measured half-width of the same order of magnitude as the calcu

lated value. The above experimental results would compare favorably with

theory if the continuum polarization ratio were normalized to unity.

The peak at 700 A0 on grating 2*+06-22-l-9 could not be due to

any foil effects since the surface is an Al substrate several hundred

A0 thick. Kliewer and Fuchs (1967), however, have shown that radiative

modes can exist in slabs as thick as 12000 A° (for a plasma frequency

of 15 ev), and furthermore, that the energy at which these modes appear
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is a function of the angle of incidence. Figure 36 shows this

dependence for the lowest order excitation for 12000 A° and 2*+0 A°

thick slabs. The 700 A0 peak occurs at an incidence angle of about 35°•

From Figure 36 the radiative mode at this angle for the thick slab should

appear at 1.2 times the plasma frequency, or an energy of 18.2 ev, which

corresponds to a wavelength of 680 A0, in good agreement with the

measured peak. For a thickness of 2*+0 A0, on the other hand, the

radiative mode appears at the plasma frequency for an incidence angle

of 35°. This agrees with the results found for grating 22*+3-32, if we

can regard that surface as being equivalent to a thin foil.

These comparisons must be considered somewhat tentative, since

the work of Kliewer and Fuchs applies to absorption instead of re-

emission. Their theory does not explain the absorption at the plasma

wavelength in Ag in the on- and off-blaze spectra, because here there

was a thick layer and angles of incidence larger than 35°. One expla

nation might be that resonance absorption simply predominates over

radiative emission. Another might be that interband effects in Ag

near the plasma frequency have some influence on the absorption. These

are, however, a matter of speculation at this time.

Grating Foils

Grating foils of many types were investigated, and these included

thin layers of Au, Al, and Ag in thicknesses from about 100 A° to

several hundred A0. These were analyzed in the reflectance chamber or

with the prism monochromator by scanning the spectrum with p-polarized
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monochromatic light holding the angles of incidence and diffraction

fixed and detecting the transmitted or diffracted light.

The only foils exhibiting plasma effects were those made of Ag

having layer thicknesses on the order of 300 A°. All foils of this type,

whether made with plastic replicas or reproduced from a concave grating,

showed pronounced absorption at the plasma wavelength (3300 A°) in the

transmitted beam at large angles of incidence (a = 60°). This is

characteristic of plasma resonance absorption and has been observed many

times with ordinary Ag foils of this thickness (see Chapter I).

The theory of Wilems and Ritchie, which predicts a peak in the

p-polarized spectrum at the plasma frequency should be applicable for

this situation. The geometry is similar to that used in the PREL (plasma

resonance emission, excited by light) experiments for ordinary foils.

The only grating foil to show this behavior was the one made with the

groove profile of grating 22*+3-32. The results of the transmitted and

diffracted beam measurements are given in Figure 37. Note that the

intensity of the diffracted peak decreases as the incidence angle

decreases and also as the diffraction angle increases (Figure 38). This

is almost in accordance with theory for flat foils, which predicts that

the maximum intensity should occur at a diffraction angle of 30°

[Kretschmann and Raether (1967)]. Evaluation of Equation (88), with

a = 60°, B = 30°, y = 1.10 ev,and-h _ = 3.76 ev, and a = 300 A0,
^* XT

yields P /P ~ 12, which is larger than the observed peak. The ratio
* pn sn ' °

of the diffracted peak intensity to that of the transmitted beam is
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-2
very good, however, being on the order of 10 . This compares with a

value of about 10~ obtained by Brambring and Raether (1967) in a PREL

experiment.

The Grating Profile

The previous experiments have all illustrated the importance of

the grating profile in allowing coupling to occur between the incident

photons and the surface plasmons. It is curious that only the 600

line/mm, 1500 A° blaze grating demonstrated anomalous polarization

effects. In an effort to see if there were significant structural

differences in the groove shape between this grating and the others ,

electron micrographs were made of the surfaces of grating 22*+3-32 and

one of the plastic replicas (Figure 39). These photographs do not,

however, show any unusual differences between the two surfaces. It

is hoped that later photographs using shadowing techniques will bring

out the relief features of the grooves in more detail.
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CHAPTER VI

SUMMARY

This study has revealed many interesting results concerning Wood's

anomalies and the properties of surface plasma waves in metals. In the

first place it is believed that Wood's anomalies can be well explained

in terms of the dispersion of surface plasmons, whether on the pure

metal surface or on one coated with different dielectrics. This has

been demonstrated in the visible and near ultraviolet by the excellent

agreement between the experimental dispersion curves obtained directly

from the anomalous wavelengths and those curves obtained theoretically

assuming surface plasmon propagation on the surface. In particular, we

have investigated those cases dealing with (l) semi-infinite Al, Au,

and Ag substrates (2) semi-infinite Al substrates coated w._th varying

thicknesses of the dielectrics MgF?, A1?0 , and diffusion pump oil

(3) thin Al layers separated from an Al substrate by a thick Alp0

dielectric layer. In the first two of these it was the non-radiative

surface wave that was excited. A (retarded) dispersion relation was

developed for the case of dielectric-coated metal layers that was

extended into a low energy region not previously investigated. Shifts

to longer wavelengths were found for the dielectric coated surfaces that

were characteristic of the depolarizing effect of these layers. In the

third case the wavelength shift was characteristic of the non-radiative

tangential mode on thin metal layers.

171
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Studies were made to detect Wood's anomalies in the vacuum ultra

violet, a region that had not been investigated earlier for their

presence. Peaks were found in this region that corresponded very well

with the appropriate non-radiative surface plasmon dispersion curves.

Here Al substrates with various thicknesses of A1?0 and diffusion pump

oil were investigated. It was found that only a small dielectric layer

(~50 A°) will shift the anomalous peaks several hundred A° in this

region, but for greater thicknesses any further shift is small. In the

visible and near-ultraviolet regions, on the other hand, the wavelength

shift is small for small layers (~50 A°), but can be quite large (several

hundred A0) for a dielectric layer several hundred A° thick.

Radiative modes on concave gratings and thin grating foils were

also investigated. With the concave gratings an Al substrate and an

A1-A1?0 thin layer on an Al substrate were investigated. The results

were in reasonably good agreement with the theory for radiative surface

plasmons, but the evidence is not as conclusive as for the non-radiative

modes.

We believe that the results show good evidence for the existence

of the surface plasmon as an elementary excitation and for the use of

time-dependent quantum mechanical perturbation theory to describe the

interactions involved. A further quantum-mechanical effect, the self-

energy of the surface plasmon, was used to predict quite accurately the

band-gap effect that was particularly evident for the MgF? coated Al

grating and the Au coated grating. No further definitive remarks can
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be made about these gaps except that they appear to become more pre

dominant the further their dispersion curve is from the light line,

co = c|k| , i.e., for surface plasmons that are propagating much

slower than the speed of light.

Experiments conducted on the intensities of the anomalies revealed

the following: (l) surface plasmons propagate with less damping as the

metal layer thickness is increased (2) the energy for the anomalous

peaks in the on-blaze spectra comes from the central (reflected) image

and perhaps even from the off-blaze spectra (3) anomalies appearing at

higher energies are damped to a greater degree than those at lower

energies.

It was also verified that anomalies do not appear at wavelengths

less than the plasma wavelength, X , of the metal that coats the

grating. For example, anomalies that were found in the vacuum ultra

violet for Al did not exist for Ag and Au.

We believe that the presence of the anomalies is greatly in

fluenced by the groove shape of the grating profile. The fact that the

anomalies appeared for only one type of grating with a particular blaze

angle is evidence of this. The groove shape obviously affects the

strength of the coupling between the incident light and the surface

plasmons, but electron micrographs did not reveal this difference.

It is suggested that further studies could be conducted with (l)

comprehensive experimental and theoretical investigations of the

intensities in all the diffracted orders (2) different overcoating
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layers, such as certain metals whose plasma wavelengths lie in the

vacuum ultraviolet, or with certain semi-conductors, to see if plasma

waves can be made to propagate, and (3) experiments with different

grating line spacing and blaze angles to find some correlation between

groove shape and the anomalous polarization peaks.
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APPENDIX A

We present here the derivation of the classical dispersion

relation [Equations (52) and (53)] for a bound surface plasma wave

(TM electromagnetic wave) on a dielectric coated metal surface (Figure

5c, page 35). The method is the same as that used by Otto (1965) and

Kloos (1968).

The electric fields for the surface plasma wave have the

following form:

A e z > a

E = e
i ( KX-COt )

-k^z k„z

Be 2 + C* e 2 0 < z < a (Al)

k2z
V

D e z < 0

E = (Ex, 0, Ez)

ki= \r
v / 2 -2 k / 2 „2
k2= y K -n -j k3= v K -E 7

These solutions satisfy the wave equations

2 -+•
2 -»• 1 9 E
V E - -±- =0 for z > a

c 3t

2 + n 3 E
V E " 2 2 = ° for 0 _ z <_ a

c 3t
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2

V2 E--|- -2-JL =0 for z<0
c 3t

In a homogeneous, charge-free medium we may write

V • E = 0

From which we have

i< A -LA = 0 iK C + k_ C = 0
x 1 z x 2 z

i< B - k0 B = 0 iK D + k_ D = 0
x 2 z x 3 z

(A2)

At the boundaries the tangential component of the electric field, E ,

-*•

and the normal component of the displacement field, D , must be

continuous. Thus we have

-k a -k a k a

A e = B e +Ce
XXX

D = B + C
X XX

-k a -k a k a

Ae =n(Be+Ce)
z z z

e D = n(B + C ) .
z z z

(A3)

Combining (A2) and (A3), we can write the z-components of the field

strength
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-k a -k a k a

k.. e A-k_eB+koeC=0
1 z 2 z 2 z

- k_ B^ + k0 C - k_ D =0
2 z 2 z 3 z

-k1a k a k a
e A„-ne B-ne C =0

Z Z z

-nB-nC + e D =0
z z z

(A*+)

This system of homogeneous equations yields a non-zero solution for the

fields if its determinant vanishes. The dispersion relation, Equation

(52),results from this calculation. Equation (53) results from the

same procedure if we let k + i k' .

Dispersion curves were most easily obtained by solving for the

thickness so that (52) and (53) have the following form

-n k (k + ek )
tanh (__t) = —--• J

2 2 2ek2* + rr ki k3

n k» (k, + e kJ
tan (ki t) = g 3 X

2 2 2e k^ - n k_ k3

Explicit solutions for t were obtained for a given value of _ by

letting k take on a large number of values beginning at the zero

dielectric thickness line, k = — ( •—-—0 ,and extending in small
c 1+e,

equal increments to the infinite dielectric thickness line

e. n, 1/2
_ / 1 J- \

< = — ( ; ) . These calculations were performed on the CDC
C nl + £1

l60*+-A computer.



APPENDIX B

We show here the expansion of the matrix equation (58) for the

case of a dielectric coated metal layer bounded by a second dielectric

coated metal layer (Figure 5c, page 35). The general terms become, for

this case,

where

a = U +L
o o 1

b = n k - k,
o o 1

ax = e kx + n kg b = e k - n kg

a2 = n k2 + E k3 b2 = n k2 " e k3

z ^ k - e k ^ •+ e k„ - n k0 = xn
n+1 n n n+1 3 2 1

z ... k + z k ,. -*• e k_ + n k^ = x0
n+1 n n n+1 3 2 2

ko ~\\ K ""2 kl
2 a)2 /2 _2k - n— k2 = i/K - e-—

c V c

and (58) becomes

(b e X X a e X X),o o M -k2d kgd
bx e &1 e J \b2 e ag e

-k2d k2d\ / k t k,x
al e bl e l/a2 e b2 e

"klTl klT2
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= 0.
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When this is expanded we obtain

* >, "klTl " ^^ ( * 2 ^ - 2 "k2d^b bn e (- b. e + a., e J
o 1 1 1

, * "klTl +^^ ^ ^ „ "k2 d,+ b an e (b. an e - a, b, e )
o 1 11 11

. klTl " klT2 , k2d _ "k2d,
+ a b. e (-a., bn e + b. an e j

o 1 11 11

Vl +klT2 . 2 k2d ,2 "k2d _
+ a a. e (a. e - b. e ) = 0

o 1 1 1

Expansion and rearrangement of terms leads to Equation (59) and

substitution of k •+ ik' leads to Equation (60).



APPENDIX C

In the interaction described by Figure 6c, page 65, and Equation

(78), one defines the initial and final states by

N*.
1. 1 / '+ \ k,A 1 n ^|i > = ( c+ ) I0 >

/n~~ k,X
k,X

N_^ - 1

|f >_ X — c+ (c* )k'X |0 >
/[¥" - 1)! k',X' k,X

k,X

and the intermediate states by

N - 1

|I >= 1 b+ <c + )k>* I0 >
v~T - 1)! k k,X

k,X

I'> =

N - 1

k,Xb+ (c+ ) k'X I0 >
v-T - 1)! k k,X

k,A

where b and c are the creation operators for the surface plasmon

and photon, respectively. N is the number of photons in state

k'X (1)k,X , and |0> is the vacuum state. The Hamiltonians, HRNp and

H„ „_, „_„ , contain both creation and destruction and destruction
NP-NP-SDV '

operators for the photon and the surface plasmon [Wilems and Ritchie

(1968)]. The summation over the surface plasmon intermediate states

yields
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3

III = -*\ N^1/2 (I •z)(e^ •z) g(£ -k' )
Sl^ k,X k'.X' k,X p P

*+
00

x E

1/2 Y' Y
(__') ((_ — (_ + i j-t) (a) - (jo + i r)

p 2 p 2

where the autocorrelation function, g(k - k' ) , includes the effects

of the SDV.
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COMPUTER CODE LISTINGS
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PROGRAM DISPREL

C DISPERSION RELATION FOR METAL FOIL,NORMAL AND TANGENTIAL

C MODES, EQUATION (*+7). READ ENERGY IN EV, THICKNESS IN ANGSTROMS

TYPE REAL KSQ.K

1 READ 2.E.EP

2 FORMA-T(2F10.0)

W-tj067o\*+8*E

WSQ-W*W

K=W

PRINT 3,E,EP

3 FORMAT(1H1 .9HENERGY = ,F6.2,5X,*tHE - ,F7.2/)
PRINT 13

13 F0RMAT(1H ,10X,1HK,11X,8HD NORMAL,11X.12HD TANGENTIAL/)
AINF-SQRTF(WSQ*EP/(1.O+EP))

DO *tl = 1 ,200

KSQ=K*K

A1=KSQ-WSQ

B1=KSQ-EP*WSQ

A-SQRTF(AI)

B=SQRTF(B1)

X_-EP*A/B

IF(K.LT.AINF)9,10

9 XT--Q.5*L0GF(ABSF((1.0-X)/(l.0+X)))

DN=(2.0*XT/B)*(1.OE+8)

PRINT 7,K,DN

7 F0RMAT(1H ,E15.3,5X,E10.3)
GO TO i+

10 XO-0.5*L0GF(ABSF((X-1 .0)/(X+1 .0)))

DT=(2.0*XC/B)*(1.OE+8)

PRINT 8,K,DT

8 F0RMAT(1H ,E15.3,26X,El0.3)
*+ K=K+250.

GO TO 1

END
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PROGRAM DISPREL

C DISPERSION RELATION FOR DIELECTRIC LAYER ON METAL SLAB,

C EQUATIONS (52) AND (53). LOWER ENERGY REGION. K TERMINATES

C AT INFINITE DIELECTRIC THICKNESS

TYPE REAL KSQ.K

1 READ 2,E,EP,ETA

2 FORMAT (*+F 10.0)

WSQ-(50678.48*E)**2

K-SQRTF(WSg*EP/(1.O+EP))

PRINT 3.E.EP.ETA

3 F0RMAT(1H1,9HENERGY = fF6.2,5X,4HE = ,F7.2,5X,6HETA = ,F7.2/)
PRINT 13

13 FORMATdH ,10X,1HK,11X,1HT/)
AMAX=SQRTF(WSQ*EP*ETA/(ETA+EP))

AK-K+250000.

IF(AK.LT.AMAX)14,15
14 IMAX=500

GO TO 16

15 IMAX=(AMAX-K)/500.

16 DO 41=1,IMAX

KSQ=K*K

AUKSQ-WSQ

B1=ETA*SQ-KSQ

C1=KSQ-EP*WSQ

A=SQRTF(A1)

C=SQRTF(C1)

IF(A1,LT.0.0.0R.B1.LT.0.0)9,10

10 B=SQRTF(B1)

TN=ETA*B*(C+EP*A)/(EP*B*B-ETA*ETA*A*C)

X=ATANF(TN)

GO TO 12

9 B-SQRTF(-BI)

TN=-ETA*B*(C+EP*A)/(EP*B*B+ETA*ETA*A*C)

X=-0.5*L0GF(ABSF((1.0-TN)/(l.O+TN)))
12 T=(X/B)*(l.0E+8)

PRINT 7,K,T,B1

7 FORMATdH ,E15.3,5X,E10.3,10X,E10.2)

4 K-K+500.

GO TO 1

END
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program disprel

c dispersion relation for metal layer on dielectric coated metal

c slab, equations (56) and (57). lower energy region. k terminates

c at infinite dielectric thickness

type real ksq.k.num

1 read 2,e,ep,eta,d

2 formatUfio.o)

W=50678.48*E

WSQ=W*W

K=W

PRINT 3,E,EP,ETA,D

3 FORMAT(1 HI.9HENERGY = ,F6.2,5X,4HE = ,F7.2.5X.6HETA = ,F7.2,

1 5X.4HD = ,F7.2/)

PRINT 13

13 FORMATdH ,10X,1HK,14X,1HT,20X,2HC1/)
AMAX=SQRTF(WSQ*EP*ETA/(ETA+EP))

AK=K+125000.

IF(AK.LT.AMAX)14,15
14 IMAX=500

GO TO 16

15 IMAX=(AMAX-K)/250.

16 DO 41=1,IMAX

KSQ=K*K

A1=KSQ-WSQ

B1=KSQ-EP*WSQ

C1=ETA*WSQ-KSQ

A=SQRTF(A1)

B=SQRTF(B1)

EX=EXP(-2.0E-8*B*D)

IF(C1.LT.0.0)9,10

3 C=SQRTF(-C1)
NUM=2.0*ETA*EP*B*C*(EP*A+B)

DN1=(EP**3)*A*C*C+ETA*ETA*(B**3)

DN2=ETA*ETA*A*B+EP*C*C

TNH=NUM/(DN1*(EX-1)-EP*B*DN2*(EX+1 ))

Y=-0.5*LOGF(ABSF((1.0-TNH)/(1.0+TNH)))
GO TO 11

10 C »SQRTF(Cl)

NUM=2.0*ETA*EP*B*C*(EP*A+B)
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dn1=eta*eta*(b**3)-(ep**3)*a*c*c

dn2=eta*eta*a*b-ep*c*c

tn=num/(dn1*(ex-1)-ep*b*dn2*(ex+1))

y=atanf(tn)

11 T=(Y/C)*d.0E+8)

PRINT 7,K,T,C1

7 FORMATdH ,E15.3,5X,E10.3,10X,E10.3)
k K-K+250.

GO TO 1

END
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PROGRAM DISPREL

C DISPERSION RELATION FOR DIELECTRIC LAYER ON METAL LAYER ON

C DIELECTRIC LAYER ON METAL SLAB, EQUATIONS (59) AND (60), USES
C COMPLEX DIELECTRIC CONSTANT FOR DIELECTRIC LAYER

TYPE REAL KSQ.K

TYPE COMPLEX ETA.B1,B,AA,AB,AC,AD,AE,AF.AG,AH.CS1,SN1,CS2,

1 SN2,CS12,SN12,AN1,AN2,AN3,AN4,AN5,AN6,DN1,DN2,EX,Y,D

1 READ 2,E,EP,ETA,T1,T2

2 FORMAT (2F10.0,C(F10.0,F10.0),2F10.0)
W=50678.48*E

WSQ=W*W

K=W

PRINT 3,E,EP,ETA,T1,T2

3 FORMAT (1H1,9HENERGY = ,F6.2,5X,4HE - ,F7.2,5X, 6HETA = ,
1 C(F7.2,F10.2),5X,5HT1 = ,F7.2,5X,5HT2 = ,F7.2/)

DO 41=1,500

KSQ=K*K

A1= KSQ-WSQ

B1=ETA*WSQ-KSQ

C1=KSQ-EP*WSQ

A=SQRTF(A1)

C=SQRTF(C1)

AD=(ETA**4)*A*(C**3)

IF((REAL(B1)).LT.0.0)9,10

3 B=CSQRT(-B1)

AA=ETA*(EP**3)*A*(B**3)
AB=ETA*ETA*EP*EP*A*B*B*C

AC-(ETA**3)*EP*A*B*C*C

AE=(EP**3)*(B**4)

AF=ETA*EP*EP*(B**3)*C

AG=ETA*ETA*EP*B*B*C*C

AH=(ETA**3)*B*C*C

CS1=0.5*(CEXP(B*T1*1.0E-8)+CEXP(-B*T1*1 .OE-8))
SN1=0.5*(CEXP(B*T1*1.0E-8)-CEXP(-B*T1*1.0E-8))
CS2=0.5*(CEXP(B*T2*1.0E-8)+CEXP(-B*T2*1.OE-8))
SN2=0.5*(CEXP(B*T2*1.0E-8)-CEXP(-B*T2*1.OE-8))
CS12-0.5*(CEXP(B*(T1+T2)*1.0E-8)+CEXP(-B*(T1+T2)*1 .OE-8))
SN12=0.5*(CEXP(B*(T1+T2)*1.0E-8)-CEXP(-B*(T1+T2)*1 .OE-8))

AN1=(AA+AH)*CS1*SN2



196

AN2=(AD+AE)*SN1*SN2

AN3=(AB+AG)*CS1*CS2

AN4=(AC+AF)*SN1*CS2

AN5=(AB+AG)*CS12

AN6=(AC+AF)*SN12

DN1=(AB+AG)*SN1*SN2

DN2=(AC+AF)*CS1*SN2

EX=(AN1+AN2+AN3+AN4+AN5+AN6)/(AN1+AN2-DN1-DN2)

GO TO 11

10 B=CSQRT(B1 )

AA=ETA*(EP**3)*A*(B**3)

AB=ETA*ETA*EP*EP*A*B*B*C

AC=(ETA**3)*EP*A*B*C*C

AE=(EP**3)*(B**4)

AF=ETA*EP*EP*(B**3)*C

AG=ETA*ETA*EP*B*B*C*C

AH=(ETA**3)*B*C*C

CS1=CC0S(B*T1*1.OE-8)

SN1 = CSIN(B*T1*1 .OE-8)

CS2=CC0S(B*T2*1.OE-8)

SN2=CSIN(B*T2*1.OE-8)

CS12=CC0S(B*(T1+T2)*1.OE-8)

SN12=CSIN(B*(T1+T2)*1.OE-8)

AN1=(AA-AH)*CS1*SN2

AN2=(AD+AE)*SN1*SN2

AN3=(AB+AG)*CS1*CS2

AN4=(AC-AF)*SN1*CS2

AN5=(AB+AG)*CS12

AN6=(AC-AF)*SN12

DN1=(AB+AG)*SN1*SN2

DN2=(AC-AF)*CS1*SN2

EX=(AN1-AN2-AN3-AN4-AN5-AN6)/(AN1-AN2-DN1+DN2)

11 Y=-CLOG(EX)

D=(Y/(2.0*C))*(l.0E+8)

PRINT 7,K,D,B1

7 FORMAT (1H ,E15.3,5X,C(E10.3,E14.3),10X,C(E10.3,E14.3))
k K=K+7500.

GO TO 1

END
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PROGRAM DISPREL

C DISPERSION RELATION FOR METAL FOIL BOUNDED BY UNEQUAL

C DIELECTRIC THICKNESSES, EQUATIONS (61) AND (62)

COMMON A.B.B1,ETA

TYPE REAL KSQ.K

1 READ 2,E,EP,ETA,T1,T2

2 FORMAT(5F10.0)

V^»50678.*+8*E

WSQ=W*W

K=W

PRINT 3,E,EP,ETA,T1,T2

3 FORMAT(1H1.9HENERGY = ,F6.2,5X,5HEP = .F7.2.5X.6HETA = .F7.2.5X,

1 5HT1 - .F5.0.5X.5HT2 - ,F5.0/)
PRINT 13

13 FORMATdH ,10X, 1HK,11 X, 1HD/)
AMAX=SQRTF(WSQ*EP*ETA/(ETA+EP))

AK-K+125000.

IF(AK.LT.AMAX)14,15
14 IMAX=500

GO TO 16

15 IMAX=(AMAX-K)/250.

16 DO 41=1,IMAX

KSQ=K*K

A1=KSQ-WSQ

B1-ETA*WSQ-KSQ

C1=KSQ-EP*WSQ

IF(B1.LT.0.0)9,10

9 B=SQRTF(-B1)

GO TO 11

10 B=SQRTF(B1)

11 TNH=(EP*ETA*C*(G(T1)+G(T2))/B)/

1 (-EP*EP*G(T1)*G(T2)-ETA*ETA*C*C/(B*B))

Y=-0.5*L0GF(ABSF((1 .0-TNH)/d .O+TNH)))

D=(Y/C)*(l.0E+8)
PRINT 7,K,D,B1

7 FORMATdH ,E15.3,5X,E10.3,10X,E10.3)
4 K=K+500.

GO TO 1



END DISPREL

FUNCTION G(X)

COMMON A,B,B1,ETA

IF(B1.LT.0.0)15,16

15 TN=TANH(B*X*1.OE-8)
G=(ETA*A+B*TN)/(ETA*A*TN+B)

RETURN

16 TN=TAN(B*X*1.OE-8)

G=(ETA*A-B*TN)/(ETA*A*TN+B)

END

198
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PROGRAM DISPREL

C DISPERSION RELATION FOR DOUBLE DIELECTRIC LAYER ON METAL SLAB,

C EQUATIONS (63)-(66). K INTERVAL SMALL BELOW 3.0 EV AND LARGE

C ABOVE 3.0 EV. USES REAL PARAMETERS

TYPE REAL KSQ.K.NU

1 READ 2,E,EP,ETA,NU,T2

2 FORMAT (5F10.0)

V**50678.48*E

WSQ-W*W

K-W

PRINT 3,E,EP,ETA,NU,T2

3 FORMAT(1H1.9HENERGY = ,F6.2,5X,4HE - ,F7.2,5X,6HETA - ,

1 F7.2,5X,5HNU - ,F7.2,5X,5HT2 - ,F7.2/)

PRINT 13

13 FORMATdH , 10X, 1HK, 14X.2HT1 ,20X,2HB1 ,20X,2HC1/)
IF(E.LT.3.00)12,17

12 AMAX=SQRTF(WSQ*EP*ETA/(ETA+EP))

AK=K+125000.

XINO250.

IF(AK.LT.AMAX)14,15
17 XINC=7500.

14 IMAX=500

GO TO 16

15 IMAX=(AMAX-K)/250.

16 DO 41=1,IMAX

KSQ=K*K

A1=KSQ-WSQ

B1=NU*WSQ-KSQ

C1=ETA*WSQ-KSQ

D1=KSQ-EP*WSQ

A=SQRTF(A1)

D=SQRTF(D1)

IF(B1.LT.0.0)9,10

9 IF(C1.LT.0.0)21,22

21 B-SQRTF(-BI)

C-SQRTF(-Cl)

GO TO 11

22 B=SQRTF(-B1)

C-SQRTF(CI)

GO TO 11
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10 IF(C1.LT.0.0)23,24
23 B=SQRTF(B1)

C-SQRTF(-CI)
GO TO 11

24 B=SQRTF(B1)

C=SQRTF(C1)

11 AA-ETA*NU*EP*A*B*C

AB=NU*NU*EP*A*C*C

AC=ETA*EP*B*B*C

AD=NU*EP*B*C*C

AE=ETA*ETA*NU*A*B*D

AF=NU*NU*ETA*A*C*D

AG=ETA*ETA*B*B*D

AH=NU*ETA*B*C*D

IF(B1.LT.0.0)19,20
19 IF(C1.LT.0.0)31,32

31 TN=TANH(C*T2*1.OE-8)

TNH=(-(AA+AH)-(AD+AE)*TN)/((AC+AF)+(AB+AG)*TN)

Y=-0.5*L0GF(ABSF((1.0-TNH)/(l.O+TNH)))

GO TO 41

32 TN=TANF(C*T2*1 .OE-8)
TNH=(-(AA+AH)+(AD-AE)*TN)/((AC+AF)+(-AB+AG)*TN)

Y=-0.5*L0GF(ABSF((1.o-tnh)/(i.o+tnh)))
GO TO 41

20 IF(C1.LT.0.0)33,34
33 TN=TANH(C*T2*1.OE-8)

TNH=(-(AA+AH)-(AD+AE)*TN)/((-AC+AF)+(AB-AG)*TN)

Y=ATANF(TNH)

GO TO 41

34 Tf*=TANF(C*T2*1 .OE-8)

TNH=((AA+AH)-(AD-AE)*TN)/((AC-AF)+(AB+AG)*TN)

Y=ATANF(TNH)

GO TO 41

41 T1=(Y/B)*(l.0E+8)

PRINT 7,K,T1,B1,C1

7 FORMAT (IH ,E15.3,5X,E10.3,10X,E10.3,10X,E10.3)
4 K=K+XINC

GO TO 1

END
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PROGRAM DISPREL

C DISPERSION RELATION FOR DOUBLE DIELECTRIC LAYER ON METAL SLAB,

C EQUATIONS (63)-(66). HIGH ENERGY REGION. USES REAL DIELECTRIC

C CONSTANT FOR METAL AND ONE OF DIELECTRIC LAYERS-COMPLEX

C DIELECTRIC CONSTANT FOR OTHER DIELECTRIC LAYER. REDUCES TO

C EQUATIONS (52) AND (53) FOR T2=0. CAN OBTAIN FIGURE 27 FOR

C ALUMINUM OXIDE USING COMPLEX DIELECTRIC CONSTANT

TYPE REAL KSQ,K

TYPE COMPLEX NU.B1,B,AA.AB,AC,AD,AE,AF,AG,AH.TNH,Y.T1

1 READ 2,E,EP,ETA,NU,T2

2 FORMAT (3F10.0,C(F10.0,F10.0),F10.0)
W=50678.48*E

WSQ=W*W

K=W

PRINT 3,E,EP,ETA,NU,T2

3 FORMAT(1H1,9HENERGY - ,F6.2,5X,4HE - .F7.2.5X.6HETA = ,

1 F7.2.5X.5HNU - ,C(F7.2,F10.2),5X,5HT2 = ,F7.2/)

PRINT 13

13 FORMATdH ,10X,1HK,14X,2HT1 ,30X,2HB1 ,30X,2HC1/)
DO 41=1,500

KSQ=K*K

A1=KSQ-WSQ

B1=NU*WSQ-KSQ

C1=ETA*WSQ-KSQ

D1=KSQ-EP*WSQ

A=SQRTF(A1)

D=SQRTF(D1)

IF((REAL(B1)).LT.0.0)9,10

9 IF(C1.LT.0.0)21 ,22

21 B=CSQRT(-B1)

C=SQRTF(-C1)

GO TO 11

22 B=CSQRT(-B1)

C=SQRTF(C1)

GO TO 11

10 IF(C1.LT.0.0)23,24

23 B=CSQRT(B1)

C=SQRTF(-C1)

GO TO 11



202

24 B-CSQRT(BU

C=SQRTF(C1)

11 aa=eta*nu*ep*a*b*c

ab=nu*nu*ep*a*c*c

ac=eta*ep*b*b*c

ad=nu*ep*b*c*c

ae=eta*eta*nu*a*b*d

af=nu*nu*eta*a*c*d

ag=eta*eta*b*b*d

ah=nu*eta*b*c*d

if((real(bi)).LT.0.0)19,20

19 IF(C1.LT.0.0)31,32
31 tn=tanh(c*t2*1.0e-8)

tnh=(-(aa+ah)-(ad+ae)*tn)/((ac+af)+(ab+ag)*tn)

Y=-0.5*CL0G((1.0-TNH)/(l.0+TNH))

GO TO 41

32 ti^tanf (c*t2*1 .oe-8)

tnh=(-(aa+ah)+(ad-ae)*tn)/((ac+af)+(-ab+ag)*tn)

Y=-0.5*CLOG((1 .0-TNH)/d .O+TNH))

GO TO 41

20 IF(C1.LT.0.0)33,34
33 Tli=TANH(C*T2*1 .OE-8)

TNH=(-(AA+AH)-(AD+AE)*TN)/((-AC+AF)+(AB-AG)*TN)

Y=CATAN(TNH)

GO TO 41

34 TN=TANF(C*T2*1 .OE-8)

TNH=((AA+AH)-(AD-AE)*TN)/((AC-AF)+(AB+AG)*TN)

Y=CATAN(TNH)

GO TO 41

41 T1=(Y/B)*(l.0E+8)

PRINT 7.K.T1,B1 ,C1

7 FORMAT (1H ,E15.3,5X,C(E10.3,E14.3),10X,C(E10.3,E14.3),10X,E10.3)
4 K=K+7500.

GO TO 1

END



203

INTERNAL DISTRIBUTION

1-2. Central Research Library (CRL) 91.
3. Document Ref. Section (DRS) 92-93.

4-18. Laboratory Records (LRD) 94.
19. Laboratory Records (ORNL RC) 95-119.
20. ORNL Patent Office 120.

21-45. E. T. Arakawa 121.

46-55. R. D. Birkhoff 122.

56. A. E. Carter 123.

57. L. G. Christophorou 124.
58. R. N. Compton 125.

59-83. J. J. Cowan 126.
84. F. J. Davis 127.
85. W. R. Garrett 128.

86. R. N. Hamm 129.

87. J. A. Harter 130.
88. C. E. Klots 131.

89. J. L. Liverman 132.
90. H. G. MacPherson 133.

W. J. McConnell
K. Z. Morgan
D. R. Nelson

R. H. Ritchie

H. C. Schweinler

W. S. Snyder
J. A. Stockdale
J. E. Turner
A. M. Weinberg
J. E. Cantlon (C)
C. D. Cooper (C)
J. C. Frye (C)
E. Gerjuoy (C)
J. B. Hursh (C)
G. S. Hurst (C)
J. L. Magee (C)
M. R. Williams (C)
H. O. Wyckoff (C)

EXTERNAL DISTRIBUTION

134. F. Abeles, Institute d'Optique, 3, Blvd. Pasteur, Paris, France.
135. N. Axelrod, Bell Telephone Laboratories, Murray Hill, N.J. 07971.
136. G. Arnett, Space Sciences Laboratory, SNE-SSL-TR, George C.

Marshall Space Flight Center, Alabama.
137. R. L. Batdorf, Bell Telephone Laboratories, P. O. Box 241, Reading,

Pa. 19603.

138. D. E. Bedo, Air Force Cambridge Research Lab., L. G. Hanscom
Field, Bedford, Mass. 01730.

139. H. E. Bennett, Physics Optics Branch, Michelson Laboratory, U.S.
Naval Ordnance Test Station, China Lake, California 94108.

140. A. J. Blodgett, Jr., I. B.M., East Fishkill, New York.
141. H. Boersch, I. Physikalischen Institut der Technischen Universitat,

Berlin, W. Germany.
142. A. Bril, Phillips Eindhoven Project Department, Phillips Laboratory,

Eindhoven, Netherlands.
143. P. Broquet, Faculte des Sciences, Paris, France.
144. Fred Brown, Department of Physics, University of Illinois, Urbana,

Illinois 61801.

145. Thomas Callcott, Physics Department, University of Tennessee,
Knoxville, Tennessee 37916.



204

146. Manuel Cardona, Physics Department, Brown University, Providence,
Rhode Island 02912.

147. Y. Cauchois, Faculte des Sciences de Paris, 11, rue Pierre Curie,
Paris, France.

148. W. H. Chambers, University of California, LASL, Box 1663, Los
Alamos, New Mexico 87544.

149. M. L. Cohen, Physics Department, University of California, Berkeley,
California 94720.

150. J. T. Cox, Night Vision Lab., USAECOM, Fort Belvoir, Virginia 22060.
151. J. R. Cuthill, Metallurgy Division, National Bureau of Standards,

Washington, D. C. 20234.
152. PaulE. Dalbec, Dept. of Physics, The American University,

Washington, D. C. 20016.
153. N. and H. Damany, CNRS, 1, Place Aristide-Briand, Bellevue, France.
154. R. N. Dexter, Department of Physics, 475 North Charter Street,

The University of Wisconsin, Madison, Wisconsin 53706.
155. P. Dobberstein, Physikalisch-Technische Bundensanstalt, Berlin-

Charlottenberg, Germany.
156. J. G. Dodd, Department of Physics, University of Tennessee, Knoxville,

Tennessee 37916.

157. A. Ejiri, Institute of Physics, College of General Education, University
of Tokyo, 865, Komaba, Megaro-ku, Tokyo, Japan.

158. Brother James Farrell, FSC, Physics Department, University of Notre
Dame, Notre Dame, Indiana 46556.

159. B. Feuerbacher, Sektion Physik, der University Munchen, Germany.
160. H. A. Fowler, Electron Physics Section, National Bureau of Standards,

Washington, D. C. 20234.
161. H. Fujita, Department of Physics, University of Illinois, Urbana,

Illinois 61801.

162. John C. Garth, Radiation Effects Branch, Solid State Sciences
Laboratory,Air Force Cambridge Research Labs., Laurence G. Hanscom
Field, Bedford, Massachusetts 01730.

163. M. P. Givens, University of Rochester, Institute of Optics, Rochester,
New York 14627.

164. Allen N. Goland, Physics Department, Brookhaven National Laboratory,
Upton, L. I., New York 11973.

165. Paul M. Grant, IBM Corporation, Research Laboratory, Monterey and
Cottle Roads, San Jose, California 95114.

166. R. Haensel, Physikalisches Staatsinstitut, II. Institut fur Experimental-
physik, der Universitat Hamburg, Hamburg 50, Luruper Chausee 149,
West Germany.

167. H. D. Hagstrum, Bell Telephone Labs., Murray Hill, New Jersey 07971.
168. W. F. Hanson, Apt. H-ll, 301 Woodlawn Pike, Knoxville, Tenn. 31920.
169. G. Hass, U.S. Army Electronics Command, Fort Belvoir, Va. 22060.
170. J. David Hayes, 3402 Kavanaugh, Huntsville, Alabama 35810



205

171. R. J. Herickhoff, Apt. H-19, 1401 Monks Avenue, Mankav^. Minn. 56001.
172. L. J. Heroux, AFCRL, L. G. Hanscom Field, Bedford, Mass. 01730.
173. D. C. Hinson, ITT Industrial Lab., Ft. Wayne, Indiana 46805.
174. Jerome Holiday, U.S. Steel Corp., Laboratory for Fundamental

Research, Monroeville, Pennsylvania 15146.
175. R. H. Huebner, Division of Biology and Medicine, USAEC, Washington,

D. C. 20545.

176. Dr. T. Huen, University of California, Lawrence Radiation Laboratory,
L121, Box 808, Livermore, California 94550.

177. W. R. Hunter, U.S. Naval Research Laboratory, Washington, D. C. 20390.
178. Mitio Inokuti, Physics Department, Argonne National Laboratory,

Argonne, Illinois 60439.
179. P. Jaegle, Laboratoire de Chimie Physique, Faculte des Sciences de

Paris, Paris, France.
180. Mel Johnson, Bendix Corporation, Research Laboratory Division,

20800 10| Mile Road, Southfield, Michigan 48076.
181. Wolf gang Klein, Night Vision Laboratory, U.S. Army Mobility

Equipment Research and Development Center, Fort Belvoir, Va. 22060.
182. O. Klemperer, Imperial College, University of London, London, England.
183. C. Kunz, II. Institute for Experimental Physics, DESY, 2 Hamburg,

Germany.

184. G. J. Lapeyre, Department of Physics, Montana State University,
Bozeman, Montana 59715.

185. L. J. LeBlanc, University of Moncton, Moncton, N.B., Canada.
186. P. W. Levy, Brookhaven National Laboratory, Upton, L. I., New York.
187. R. E. LaVilla, Matls. B-212, National Bureau of Standards, Washington,

D. C. 20234.

188. Dave Lynch, Physics Department, Iowa State University, Ames, Iowa.
189. R. A. MacRae, Physics Department, Jacksonville, State University,

Jacksonville, Alabama.
190. R. P. Madden, Far UV Physics, Division 222, National Bureau of

Standards, Washington, D. C. 20234.
191. L. Marton, National Bureau of Standards, 4515 Linnean Avenue, SW,

Washington, D. C.
192. H. Mayer, Physikalisches Institut des Technischen Hoshchule, Clausthal,

Germany.

193. H. Mendlowitz, Department of Physics, Howard University, Washington,
D. C. 20001.

194. Kazuo P. Miyake, Inst, for Optical Research, Kyoiku University,
Tokyo, Japan.

195. M. Y. Nakai, Osaka Laboratory, JAERI, 588 Mii, Neyagawa-City,
Osaka, Japan.

196. Takeshi Namioka, Institute for Optical Research, Tokyo University of
Education, 400 Hyakunintyo-4, Sinzyuku-ku, Tokyo, Japan.

197. A. H. Nielsen, Department of Physics, University of Tennessee,
Knoxville, Tennessee 37916.



206

198. P.-O. Nilsson, Chalmers University of Technology, Department of
Physics, Gibraltargatan 5B, Gotenburg, S Sweden.

199. J. F. Osantowski, Code 284, Bldg. 5, Room 14, Goddard Space Flight
Center, Greenbelt, Maryland 20771.

200. A. Otto, II. Physikalisches Institut der Universitat Munchen,
Munchen, W. Germany.

201. Mrs. L. Pajasova, Institute of Solid State Physics, Czechoslovak
Academy of Science, Cukrovarnicka 10, Praha 6, Czechoslovakia.

202. J. C. Phillips, Institute for the Study of Metals, University of
Chicago, Chicago, Illinois.

203. C. M. Pleass, Bell Telephone Laboratories, P. O. Box 241, Reading,
Pennsylvania 19603.

204. W. A. Pliskin, IBM Components Division, East Fishkill, New York.
205. W. Pong, Department of Physics and Astronomy, University of

Hawaii, Honolulu, Hawaii 96822.
206. C. J. Powell, Electron Physics Section, National Bureau of Standards,

Washington, D. C. 20234.
207. F. Pradal, C.N.R.S., Faculte des Sciences, 118, route de Narbonne,

118,31 - Toulouse 04, France.

208. H. Rabin, Solid State Division, U.S. Naval Research Lab., Washington,
D.C. 20390.

209. H. Raether, Institute fur Angewandte Physik, Universitat Hamburg,
Hamburg, Germany.

210. William A. Rense, Physics Department, University of Colorado,
Boulder, Colorado 80304.

211. Mme. S. Robin, Laboratoire de Spectroscopic, Faculte des Sciences,
Avenue du General Leclerc, 35 Rennes, France.

212. Mme. S. Robin-Kandare, Faculte des Sciences, Laboratoire de
Physique, 34 - Montpelier, France.

213. D. M. Roessler, Bell Telphone Labs, Mountain Avenue, Murray Hill,
N. J. 07974.

214. J. A. R. Samson, Geophysics Corporation of America, Experimental
Physics Department, Bedford, Mass. 01730.

215. T. Sasaki, University of Tokyo, College of General Education,
Komaba, Tokyo, Japan.

216. G. Sauerbrey, Physikalisch-Technische Bundensanstalt, Berlin-
Charlottenburg, Germany.

217. E. J. Scheibner, Georgia Institute of Technology, Atlanta, Georgia.
218. S. E. Schnatterly, Department of Physics, Palmer Physical

Laboratory, Princeton University, P. O. Box 708, Princeton,
N.J. 08540.

219. W. J. Scouler, Solid State Physics, Massachusetts Institute of
Technology, Lincoln Laboratory, Lexington, Massachusetts 02173.

220. S. Y. Shieh, Physics Department, University of Tennessee,
Knoxville, Term. 37916.



207

221. B. Fitton, Surface Physics Division, European Space Research and
Technology Center, Noordwijk, Holland.

222. M. Skibowski, Section Physik der Universitat Munchen, Munchen,
Germany.

223. W. E. Spicer, Stanford Electronics Laboratory, Stanford University,
Stanford, California.

224. J. L. Stanford, U. S. Naval Testing Station, China Lake, California.
225. W. Steinmann, Section Physik der Universitat Munchen, Munchen,

Germany.
226. G. Stephan, Laboratorie de Spectroscopie, Faculte des Sciences,

1, Rue E. Rostand, Rennes, France.
227. J. R. Stevenson, Physics Department, Georgia Institute of Technology,

Atlanta, Georgia.
228. J. B. Swan, Department of Physics, University of Western Australia,

Nedlands, Western Australia.
229. Nils Swanson, West 103, National Bureau of Standards, Washington,

D. C. 20234.

230. Ye-Yung Teng, Lowell Technological Institute, Lowell, Massachusetts
01854.

231. J. Toots, A-50 Physics Bldg., National Bureau of Standards,
Washington, D. C. 20234.

232. R. C. Vehse, Bell Telephone Labs, P. O. Box 241, Reading,
Pennsylvania 19603.

233. B. J. Waclawski, 104 FW Bldg., National Bureau of Standards,
Washington, D. C. 20234.

234. W. C. Walker, Department of Physics, University of California,
Santa Barbara, Goleta, California.

235. G. L. Weissler, University of Southern California, Department of
Physics, Los Angeles, California 90007.

236. R. E. Wilems, No. 3, Hillside Court E, Morris Plains, N.J. 07950.
237. S. E. Williams, University of Western Australia, Perth, Australia.
238. F. T. Wooten, Lawrence Radiation Laboratory, University of

California, Berkeley, California.
239. S. Yamaguchi, Department of Physics, Tokyo Metropolitan University,

Setagaya-ku, Tokyo, Japan.
240. A.Y.-C. Yu, Fairchild Semiconductor, Research and Development Lab.,

Palo Alto, California.
241. Laboratory and University Division, AEC, ORO
242-256. Division of Technical Information Extension, ORO.


	image0001
	image0002
	image0003
	image0223

