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INTRODUCTION 

This  report contains  the lecture notes from the ser ies  of lectures  in s t a t i s t i c s  and probability 

given by  members of the  Stat is t ics  Group of the Mathematics Division at  ORNL during the  period 

June 10, 1968, t o  August 12, 1968. Lecture notes were made available a t  each  lecture,  and s ince  

the completion of th i s  series of lectures  the requests from Laboratory personnel for additional 

sets of the lecture notes have prompted the compilation of t h e s e  notes into this  report. T h e s e  

lectures  were held on a weekly b a s i s  and were open to a l l  ORNL personnel a s  well a s  those  

interested individuals at  Y-12 and K-25. The lectures were well received by t h e  majority of 

those attending, who ranged from 75 t o  150 individuals per lecture. From an examination of the  

table of contents of th i s  report, which l i s t s  the t i t le and lecturer for e a c h  lecture,  it  can  b e  s e e n  

that th i s  se r ies  covered a wide variety of s ta t is t ical  topics.  Each  lecture was as self-contained 

as possible.  The  notes contained in  th i s  report emphasize the important concepts in each lecture.  

T h i s  series of lectures in  s t a t i s t i c s  and probability was an effort by the  Stat is t ics  Group t o  

familiarize investigators in  the physical and biological sc iences  with s ta t i s t ica l  methods and 

concepts.  Since the need for the serv ices  of s ta t is t ic ians  has  been recognized by the  Laboratory, 

one of the primary functions of the Stat is t ics  Group of the  Mathematics Division h a s  been ( ( t o  

encourage an atmosphere in  which new concepts c a n  b e  explored and fundamental research 

carried out using s ta t i s t ics  and biomathematics. ’” 
In line with this function these  lecture notes are published to: 

1. indicate the tools which are available in s ta t i s t ica l  methodology; 

2. acquaint those interested individuals with the  language and terminology of s ta t i s t ics ;  and 

3. i l lustrate the manner in  which statistics may b e  applied i n  scient i f ic  research.  

~~~~ ~ 

‘Maath. Div .  Ann. Progr. Rept .  Dec.  31 ,  1963,  ORNL-3567, p. 3 3 .  

ix  



. 



LECTURE I: PROBABILITY, RANDOM VARIABLES, AND DISTRIBUTION FUNCTIONS 

Donald A .  Gardiner 

1. PROBABILITY 

Any study, whether intensive or casual ,  of the subject  called s ta t i s t ics  must begin with a n  

understanding of probability because  probability is the b a s i s  of s ta t i s t ics .  In fac t ,  a t  universit ies 

where s ta t i s t ics  is taught seriously the student is given at leas t  a quarter or semester of prob- 

ability before he is allowed to  take h i s  f i rs t  real  course in s ta t i s t ics .  Since th i s  series of 

lectures is intended to  be a survey of some topics in s ta t i s t ics  and not a formal course,  we need 

not be s o  pedantic, but a proper groundwork must be  laid. W e  will begin by outlining t h e  three 

concepts of probability and by pointing out that  the  three concepts are not necessar i ly  incom- 

patible. 

1.1 Relative Frequency 

While interned in  Denmark during World War I1 a South African s ta t is t ic ian named Kerrich 

tossed a coin 10,000 times. He kept careful records,  which fortunately he was ab le  to  preserve, 

and t h e s e  records have become a valuable source for examples and i l lustrations.  Heads turned 

up 5067 times. One is inclined t o  conclude that t h e  probability that a head will turn up on a 

single t o s s  of Kerrich’s coin is 0.5067. This  is a n  example of the relat ive frequency approach 

t o  a definition of probability. 

Consider a simple experiment the outcome of which cannot be known in advance but  in  

which the possible outcomes may b e  classi f ied as “favorable” or “unfavorable.” Should the 

experiment be performed a number of t imes,  the  ratio 

number of favorable outcomes 

number of t r ia ls  

is the  relative frequency of favorable outcomes. Intuitively we feel that as the number of t r ia ls  

increases  the relative frequency will settle down to  some s tab le  value greater than zero and 

less than unity. T h e  l imi t  of this  ra t io  as the number of trials increases  is taken a s  the relative 

frequency definition of the probability of a favorable outcome. Inherent i n  t h i s  definition is t h e  

assumption that a favorable outcome from one trial is as likely as a favorable outcome from any 

other trial and that the  resul ts  of one trial d o  not affect the resu l t s  of another tr ial .  

In t h e  example of Kerrich’s coin the  favorable outcome was  the  appearance of a head and the 

experiment was the  tossing of the coin.  However, 10,000 tosses is not the limit of the number 

of tosses ,  even though Kerrich may have  wished that it were. T h e  rat io  5067/10,000 is a rather 

good estimate,  but we would be  very reluctant to  state that t h e  probability of get t ing a head on 

Kerrich’s coin is 0,5067, because  if Kerrich had stopped at some other number of trials t h e  ratio 

would have been different. 

1 
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1.2 Axiomatic Probability 

Although the  relative frequency approach has  great appeal on intuitive grounds i t  has  been  

more fruitful t o  treat probability in a more formal manner mathematically. Such a n  approach is 

the approach based  on three simple axioms. 

Consider a set 6 whose elements are denoted by x. If 6, is a s e t  consisting of a l l  the pos- 

s ib l e  outcomes of an  experiment, fi is called a sample space  and x represents a possible outcome. 

6 contains subse ts ,  A ,  B,  C, etc. ,  and i t  will be of interest  to consider 

1. the  probability that x E A ,  written P ( A ) ,  

2. the probability that x E B ,  written P(B) ,  

3. the probability tha t  x E 6, written P@) ,  

4. other probabilities. 

P(A) ,  P(B) ,  P(6), e tc .  are called probability s e t  functions if they satisfy the  three axioms of 

probability. 

Writing 4 as the  null s e t  (the set which contains no elements) and with t h e  understanding 

that A and B are subse ts  of G, the  three axioms of probability are as given below. 

The Three Axioms 

1. P(A => 0. 

2. P ( A  u B )  = P ( A )  + P(B)  if A and B are disjoint sets, tha t  is, if A n B = +* 

3. P ( f i ) =  1. 

Axiom 2 is the familiar “additive law” of probability which applies t o  mutually exclusive 

sets. 

From these  axioms many theorems and corollaries may be  deduced, t he  most important of 

which a re  these: 

1. If A C  is the  complement of A ,  P ( A c )  = 1 - P ( A ) .  
2. P(+)= 0. 

3. If A C B, P ( A )  5 P(B).  
< < 4. O =  P ( A )  = 1. 

5. Whether or not A n B = +, P ( A  u B )  = P ( A )  + P ( B )  - P ( A  n B ) .  

T h e  reader may find it amusing and instructive to  prove these  resu l t s  from t h e  three axioms. 

All that  is necessary is a knowledge of elementary set theory. 

T h e  question naturally arises:  “How does  one obtain a numerical value for P(A)?” This  

is the  question of choosing a probability model, the answer to which, from a strictly mathemati- 

c a l  point of view, is purely arbitrary. But from a practical point of view the  question is not 

trivial, and the answer, of course,  depends upon the type  of experiment that  is contemplated and 

what is known about it. In t h e  coin-tossing experiment one might choose  t h e  probability of the  

appearance of a head t o  b e  ’/. This  could b e  taken  as the  definition of a “fair” or “unbiased” 
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coin. If one assumes that Kerrich’s coin was a fair coin, one assumes that t h e  l imi t  of the  

relative frequency is v2. There is no way of proving or disproving t h i s  hypothesis  absolutely,  

but one  can  see that, in this sense ,  the relat ive frequency concept is compatible with the  axio- 

matic concept of Probability. 

Condi tiona I Probability 

Before discussing the  third concept of probability it will be  convenient to introduce t h e  

notion of conditional probability. 

Let A and B b e  two subse ts  of the sample s p a c e  6, and let x be  a n  element of 6. W e  in- 

quire now into the question: “If x E B ,  what is the probability that x E A?”  

The probability in  question is cal led a “conditional” probability because  it is t h e  probability 

that x is an element of the s e t  A conditional upon the fact  that x is an element of the  set B .  It 

is written P ( A ( B ) ,  which is read “the probability of A given B , ”  and is defined by  

P ( A n  B )  

P ( B )  
P ( A  IB) = , P ( B ) >  0 .  

Note that th i s  is a definition and not a result  of the three b a s i c  axioms. However, P ( A I B )  does  

sa t i s fy  the three axioms, and therefore the  s a m e  theorems which hold for “unconditional” 

probabilities hold for conditional probabilities as well .  [In showing th is ,  one should t reat  B as 

a sample s p a c e  so  that P(B1B)  = 1.1 

Sets as Events 

In s ta t i s t ica l  parlance a n  outcome of an experiment is called an elementary event, and t h e  

collection of a l l  outcomes which belong to a certain subset  is called simply an event. Thus  

there is the correspondence 

outcome, x: elementary event,  

subse t ,  A :  event,  A .  

If, in the performance of an experiment, an outcome x E A has been observed, we s a y  tha t  the 

event A has  occurred. It will b e  useful to speak  of the event  A and i t s  probability P ( A )  in  de- 

fining independence. 

Independence 

Independence in t h e  s ta t i s t ica l  s e n s e  is often cal led s tochast ic  independence to differentiate 

i t  from mathematical independence. We s a y  that  t h e  event  A is independent of the event B if 

P(A1B) = P ( A )  and conversely.  If the equality does not hold we s a y  t h e  events  and their prob- 

abil i t ies are dependent. 
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The definition of independence allows u s  to state the  familiar multiplicative ru le  of prob- 

ability, namely that if the  even t s  A and B are independent, then  

P ( A  n B ) =  P ( A )  x P ( B ) ,  

which is a direct consequence of t he  definition of conditional probability. 

Frequently in  applications P(A IB) is difficult to postulate, whereas P ( A )  and P ( B )  may not 

be s o  difficult. But P(A IB) = P ( A )  i f  t he  events  are independent, and so one is well  advised to  

plan one’s experiments t o  take  advantage of the result ing simplification. 

1.3 Inductive Probability 

The third concept of probability we wish t o  consider is inductive probability. It has been 

defined as the degree of belief one is willing to  place on a proposition in the light of certain 

evidence. We see immediately that inductive probability is not the same a s  the  l imi t  of a rela- 

tive frequency, nor is it  the same as the  probability that a n  element belongs to  a set of a sample 

space .  

One might say  tha t  one is “almost su re”  that Kerrich’s coin was a fair coin, in which c a s e  

almost sure”  is a nonquantitative measure of inductive probability. Some might wish  t o  L <  

quantify the inductive probability and say ,  perhaps, “I am 95% certain tha t  Kerrich’s coin w a s  

fair,” but the  95% is still a degree of belief or an  inductive probability. 

Th i s  statement about Kerrich’s coin contains a mixture of two kinds of probability: t he  95% 

is a measure of inductive probability, and the word “fair” means that theprobability that a head 

appears is ?2. 

Another statement that  could be made about Kerrich’s coin is: “I a m  95% confident that  

the probability that a head turns up is between 0.4967 and 0.5167.” This  is an  example of 

statistical inference which employs the idea of a confidence interval. L ike  the  previous state- 

ment it contains two kinds of probabilities: the  95% is a measure of inductive probability, and 

the  interval (0.4967, 0.5167) is a measure of the probability for a head with Kerrich’s coin. 

2. RANDOM VARIABLES 

Given sufficient ingenuity it is always possible to  assoc ia te  with every possible outcome 

of an experiment a number on the real l ine.  We sha l l  use lower-case letters to denote these  

numbers corresponding to the  possible outcomes. Then, for example, in a coin-tossing experi- 

ment we  could s e t  up the  correspondence 

if a head turns up, x = 1, 

i f  a tail turns up, x = 0. 

Before the  experiment is performed we do not know whether x = 0 or x = 1. Therefore, t o  represent 

the outcome of t he  experiment without a knowledge of how the  experiment turns out, we  will u s e  
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the corresponding capi ta l  letter, in th i s  case X. The  real  number which represents  t h e  outcome 

of a n  experiment before the  outcome of the experiment is known is cal led a random variable. 

Some examples will b e  instructive.  

2.1 Coin Tossing 

In the coin-tossing experiment we could set up the following definit ions:  

Sample space: a = {head, tail) or fi = {x;  x = 0, 1) 

Subsets : A = (head]  

B = I ta i l )  

or A = {x; x = 1) 

or B = Ix; x = 0) 

Then in  terms of the random variable X we have 

P(fi) = Prob { X  = 0 or 1) = 1 , 
P ( A )  = Prob ( X  = 11 = p ,  s a y  , 

P ( B )  = Prob { X  = 0) = 1 - p . 

It is an interesting a s i d e  to  point out that P ( A )  and P ( B )  may b e  summarized i n  one expression,  

< <  f(x> = p x  (1 - p) ' -" ,  x = 0, 1, 0 = p = 1 . 

. 

Thus i f  x = 0, f(x) = P ( B )  = 1 - p ,  or if x = 1, f(1) = P ( A )  = p .  For the moment we will  consider 

this t o  b e  merely an ingenious summarization. The  point here is to i l lustrate t h e  use  of the 

random variable t o  describe an experiment. 

2.2 Radioactive Decay 

Suppose an experiment c o n s i s t s  of placing a radioactive source before a counter for a 

specified period of time. The  possible outcomes of the experiment are a l l  the integers which 

might register on the counter. In this  case the  definition of the random variable is straightfor- 

ward and requires no ingenuity whatsoever. W e  could set up the  following correspondence: 

Sample space :  6 = la11 nonnegative integers] 

Subsets:  A = {integers less than 10)  o r A = ( x ; x = 0 , 1 , 2  , . . . ,  91 
or fi = (x; x = 0 ,  I ,  2, . . . I  

R = {integers  between 40 and SO] or B = {x; x = 41, 42, . . ., 49)  . 

Then in  terms of the random variables X we have 

P ( a ) = P r o b ( X = 0 , 1 , 2  , . . ,  ) =  1 ,  

P ( A )  = Prob {X = 0, 1, 2, . . ., 9)  , 

P ( B )  = Prob ( X  = 41, 42, . . ., 49) . 

If we wished we could postulate a probability model from which we could calculate  probabilities 

for the several  sets. Such a model could be  
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but t h i s  is purely arbitrary. What we have illustrated is the reduction of the description of an 

experiment to mathematical terms using the idea of the random variable. 

2.3 A Piscatorial Experiment 

A sport fisherman would agree that he could not predict the weight of a fish he  might catch,  

and he might a l so  agree that it is reasonable to  treat  t h e  weight of a f ish as a random variable. 

To describe this  phenomenon we could define some s e t s  as follows: 

Sample space :  6 = la11 possible weights] or 
Subsets: 

= Ix; 0 < x < 
A = (weights of fry] or A = (x ;  0 < x < 1) 

B = {weights of whoppers) o r  B = ( x ;  6 < x < -1 

Although these  definitions are quite arbitrary they i l lustrate t h e  concept of t h e  continuous 

random variable as opposed to t h e  discrete random variables of t h e  two preceding examples.  

The probability functions for t hese  sets in  terms of the random variables are 

P(G)  = Prob ( 0  < X < -1 = 1 , 
P ( A )  = Prob { O  < X  < 1) , 
P ( B ) =  Prob 16 < X  < M )  . 

It might be reasonable to postulate a function 

< 
f ( x )  = 2--axa-1 exp I - x / 2 1 / r ( a > ,  0 < a < -, 0 = x < M 

= 0 otherwise 

to aid in  describing the probabilities so that 

P(A)= f ( x ) d x  , 
0 

P ( B )  = la, f ( x ) d x  , 
6 

but again th i s  is purely arbitrary, and some other models could be  advanced which might b e  

more realistic. 

3. DISTRIBUTION FUNCTIONS 

Let X be  a random variable defined on an interval of the real line, a < x < b .  The d i s t r ibu t ion  

function of the random variable X is defined simply as 

< Prob ( X  = X I  . 
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It is customary to use a capital  letter from t h e  f i r s t  part of t he  alphabet to represent t h e  distribu- 

tion function, a s ,  for example, 

. F ( x )  = Prob { X  < = X I  . 

It will b e  useful t o  consider the  derivative of F ( x ) ,  which we will denote by the  corresponding 

lower-case letter. Thus  

If X is a continuous random variable, f ( x )  is a derivative in the  ordinary s e n s e  and i t  is defined 

at  each  point of continuity of x .  If X is a discrete random variable, then f ( x )  is not a derivative 

in the  ordinary sense .  In the  discrete case we define 

f ( X i )  = F ( X i )  - F ( x i - l )  , 

where we assume a sample space  6, such  that 

< < <  - < < <  < 6, = { x l ,  x 2 ,  . . .; a = x = x 2  = . . . - x i - l  = x i  = . . . = b ]  1 

Although it  is frequently overlooked for convenience, i t  t akes  a t  l ea s t  three statements to 

completely specify the  distribution function if the range of the  variable,  (a, b ) ,  h a s  finite l imi t s .  

Thus  

x < a  

If X is a continuous random variable the  integral above is an  ordinary Riemann integral. But if 

X is discrete we interpret the integral to mean 

in which A is the  set of all values of t which are less than or equal t o  x but greater than or 

equal to a. 

3.1 Some Properties of the Distribution Function 

A study of the  definition of the distr:ibution function F ( x )  will reveal tha t  i t  p o s s e s s e s  the  

following properties: 

< < 
1. 0 = F ( x ) =  1. 

2 .  F ( x )  is a nondecreasing function of x .  

3 .  F ( - )  = 1 and F ( - - )  = 0. 

4. F ( x )  is continuous to  the  right at each  point x .  
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< 
Roughly speaking, property 4 above means that the limit of Prob { X  -= X I ,  a s  one approaches x 

from values larger than x, e x i s t s  and th i s  limit is equal t o  F (x). 
From these  properties we may deduce that for x 1  < x 2  

< Prob {x1 < X = x 2  j = F(x,) - F(x,) . 

If x 1  = x 2  = x0, Prob { X  = xOj is equal t o  the height of the s tep  of F(x) a t  the  point xo. Thus,  

if F(x) is continuous at  x = xo, Prob { X  = xoj = 0 because the height of the  s t e p  a t  x o  is 0. 

3.2 The  Probability Density Function 

W e  have already defined f(x) a s  the  derivative in one s e n s e  or another of the distribution 

function F(x). We cal l  f(x) a probability densify function (p.d.f.), and we have already s e e n  

some examples. 

Coin Tossing 

In the coin-tossing experiment we had a function which we will rewri te  as 

< <  
f ( x )  = p x  (1 - p ) l - X ,  x = 0, 1, 0 = p = 1 

= 0 otherwise . 

This is a bona fide p.d.f. whose distribution function is 

0, x < o  
< < <  

F ( x ) =  1-p, O = x < l , O = p = l  
> i 1, x = l  

Poisson Distribution 

The example about radioactive decay assumed a probability density function 

= 0 otherwise. 

Its distribution function is 

This  is known a s  the Poisson distribution and is a realist ic model for many real  s i tuat ions.  
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A Gamma Distribution 

A s  an example of a continuous random variable we used the weight of a f i sh  and assumed a 

p.d.f. 

< f(x) = 2 - a ~ a - 1  exp I - X / ~ ~ / ~ ( C L ) ,  0 = x < oo, 0 < a < 

= 0 otherwise . 

The distribution function for th i s  model, which is a spec ia l  form of the gamma distribution func- 

tion, may b e  expressed only as P a g e  9, second displayed equation should read: 

x < o  f O, 
F(x) = < I LX f(t) dt, 0 = x < M 

x < o  

because the integral does  not ex is t  in c losed form. However, t h i s  distribution function is tabled 

for many values  of a .  

Exponential Distribution 

A s  an example of a probability model for a random variable whose distribution function does 

ex is t  in c losed form, consider 

The probability density function for th i s  random variable is 

< 
f ( x ) = e e - 8 x ,  o = ~ < ~ ,  O < O < ~  

= 0 otherwise. 

This  model is used extensively in the study of survival of organisms and in life tes t ing.  

3.3 Transformations of Random Variables 

Very frequently one is interested i n  the behavior of a random variable that is some function 

of another random variable. W e  sha l l  i l lust ra te  one method of finding t h e  distribution function 

(and hence the p.d.f.) of a transformed random variable.  

Suppose a random variable X is defined by a distribution function F(x) such  that 

0, x < - 1  
(1 + ~ ) / 2 ,  -1 = x < 1 

1, x = l  

< 
> 
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and that we are interested in  the  distribution function of the random variable Y = X 2 .  We have 

< < Prob ( Y  = y l  = Prob { X 2  = y )  = Prob 

= F (fi) - F (-m , 
s ince  Prob { X  = - dyj = 0. Continuing, 

,- 

Therefore 

0, Y < O  < 
Prob (Y = y )  = GO.) = 

which defines the distribution function for Y .  The probability density function will  be the  

derivative of GO.) with respect to y or 

= 0 otherwise.  



LECTURE II: CHARACTERIZATIONS AND LIMIT THEOREMS 

. 

. 

V. R. Rao Uppuluri 

1 .  INTRODUC ION AND SUMMARY 1 
In th i s  lecture we sha l l  review the  fundame tal concepts of a probability space ,  random vari- 

able, distribution function, and the probability ensity function and ind ica te  the tools of ana lys i s  

the concept of independence in the  context of drobability theory by pointing out severa l  characteri- 

zation theorems of the normal (Gaussian) distribution and the exponential distribution. In Sect. 4 

we will give the analytical  expressions of severa l  of t he  standard distributions that are encountered 

in statistics and indicate how they are derived. In Sect. 5 we will give the formulas for the char- 

acterist ic function and moments of some of t he  standard continuous distributions. In the l a s t  sec- 

tion we will introduce the concepts of convergence of random variables and distribution functions 

and give statements of the laws  of large numbers and the central l i m i t  theorem, 

that will be essent ia l  t o  probe into these  areas I In Sect. 3, we sha l l  indicate the  role played by 

2. REVIEW 

In the study of any random phenomena, the concepts of (1) probability space ,  (2) random vari- 

able, (3) distribution function, and (4) probability density function a re  very fundamental. 

In probability theory, the bas ic  sample space  and the set of all conceivable events  with a 

given probability structure will be the natural level a t  which one would work. In other words, one 

would work with a probability space  and make very fine analysis us ing  measure-theoretic ap- 

proaches. Thus  the results established would be theoretical in  nature and will tend to be  in the  

nature of ex is tence  theorems, as can  be i l lustrated by the strong law of large numbers and the 

ergodic theorem. 

At times, in several  physical  or natural phenomena it may be  possible to directly focus atten- 

tion on the random variables under consideration. By making a fine ana lys i s  of the structure of the 

phenomena, it may be possible to pin down the relationships between the random variables under 

consideration. Th i s  can  be  illustrated in  the context of regression ana lys i s  and ana lys i s  of vari- 

ance,  about which we will hear more. T h e  distributional properties and the moment properties of 

these  structured random variables are generally helpful to understand the underlying phenomena. 

In this context, i t  may be worth adding a note that the concept of a random variable is that of a 

continuous function where the domain of the function can  be an arbitrary sample s p a c e  but the 

range is usually the real l ine or  the Euclidean space .  Also, random variables help to bridge the 

gap between the results proved by a probability theorist and the user. Several types of conver- 

gence of random sequences  i l lustrate th i s  point, and an applied person may be sa t i s f ied  with the 

weakest type of a convergence theorem, whereas the theorist is restless till he  proves the 

strongest type of convergence theorems. 

11 
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The  next level one may choose to work at may be with the so-called distribution functions a s -  

sociated with random phenomena. A distribution function may b e  characterized as a real-valued, 

nonnegative, bounded ( l e s s  than or equal to l), and monotone nondecreasing function. A distribu- 

tion function need not necessarily be  continuous, but it will have a t  most a countable number of 

discontinuities. It is important to note that i f  one makes an  assumption about the form of a distri- 

bution function, it means that one is looking a t  a subc la s s  of t hese  functions. If one is fastidious 

about making technical assumptions, l ike the differentiability of a distribution function, one would 

work with distribution functions in studying the properties of the  underlying random phenomena, 

and one needs tools l ike  the  Lebesgue-Stieltjes integrals. Also, analytically it turns out t o  be  

simpler to work with distribution functions, as contrasted to probability density functions, in 

proving limit theorems l ike  the central limit theorems. 

Traditionally, any data that are recorded a re  grouped and represented as frequency histograms. 

Then one looks for patterns in these  histograms. Some try to  find mathematical functions that f i t  

these  histograms. If one consults a s t a t i s t i c s  book, one finds a certain class of neat mathematical 

functions l ike (1) the  normal probability density function, (2) gamma distribution, (3) beta distribu- 

tion, (4) uniform distribution, (5) binomial distribution, (6) Poisson  distribution, and so on, and 

one looks for a function that bes t  f i t s  the data.  Any nonnegative function which, when integrated 

over the whole range of permissible values,  integrates to unity may be characterized as a probabil- 

ity density function. The  data and the phenomenon that is under study generally help to pin down 

the probability density function that may be appropriate for a particular problem. At times this 

may be  an  initial s t ep  to formulate further hypotheses in the phenomenon under study and to carry 

on experimentation for further verification, Th i s  leads  to  the  aspec t  of s t a t i s t i ca l  inference. 

Though I have described the four concepts in  the  order (1) probability space ,  (2) random variable, 

(3) distribution function, and (4) probability density function, the importance of concept (4) should 

not be underrated. It should be acknowledged that the  growth of s o m e  of the  ideas  in probability 

theory has  its origin in  the study of the properties of probability density functions. Since th i s  

study requires only advanced calculus as a tool, th i s  is in the  reach of many. 

3. CHARACTERIZATION THEOREMS 

Though it may not be  specified,  in many practical si tuations one would work with random phe- 

nomena where one can  change leve ls  in  the  above setup. In other words, one  would l ike  to believe 

that one lives in a world free of pathological si tuations.  A situation where one can  have  a distri- 

bution function without necessarily having a (derivative or a) probability density function is a n  

illustration of a pathological situation. For  a l l  practical purposes, any further concept introduced 

at one level will s t i l l  be  valid a t  a l l  levels.  The  concept of independence is an  illustration of 

this. 

. 
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3.1 Normal Distribution 

In terms of independence one can  characterize the  distributional properties of severa l  random 

phenomena. We will i l lustrate below a few characterizations of the normal (Gaussian) distribution. 

Theorem 3.1: L e t  X , ,  X , ,  . . . , X n  be n independent but not necessarily identically distributed 

random variables. Suppose that the two linear forms Y 1  = a l X l  + . . . + a n X n  and Y ,  = b , X ,  + . . , + 
bnXn a r e  independently distributed. Then each random variable X i  which h a s  nonzero coefficients 

in both forms is normally distributed. 

T h e  vector analog of the  above theorem is also true and may be  s ta ted  as 

Theorem 3.2: L e t  X , ,  X , ,  . . . , X n  be  n independent but not necessarily identically distributed 

p-dimensional random vectors, Suppose that the two random vectors Y ,  = a , X 1  + , . . + a n X n  and 

Y ,  = b , X ,  + . . . + b n X n  a re  independently distributed. Then each  random vector X i  for which 

a ,  b ,  # 0 h a s  a p-variate normal distribution. 
1 1  

Another characterization of the  vector analog may b e  s t a t ed  as  

Theorem 3.3: Let X , ,  X , ,  . . . , X n  be  n mutually independent p-dimensional random vectors, 

and let A l ,  A,,  . . . , An, B, ,  B,, . . . , Bn be  nonsingular square  matrices of order p .  If 

n 
A i X i ’  

i =  1 

and 

n 
B,X(  

i =  1 

a re  independently distributed, then each X i  h a s  a p-variate normal distribution. 

The  next theorem characterizes the  normal distribution in terms of the independence of the  

sample mean and sample variance. T h i s  result  is useful in  deriving the distributions of random 

variables which a re  functions of sample mean and sample variance from a normal distribution, 

such as the Student’s t statistic and Fisher ’s  F s ta t i s t ic .  

Theorem 3.4: L e t  X 1 ,  X , ,  . . . , X n  be  a sample from a certain population, and denote the  sam- 

ple mean by F and the sample variance by s 2 .  T h e  s t a t i s t i c  F and sz a re  independent i f  and only 

if the population is normal. 

I t  can be eas i ly  proved that the distribution of the sum of two independent normal variables is 

normally distributed. The  next theorem te l l s  u s  about a form of the  converse of this  statement. 

Theorem 3.5: If the sum of two independent random variables is normally distributed, then 

each summand is also normally distributed. 
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3.2 Gamma and Exponential Distributions 

A nonnegative random variable X is s a i d  to have a gamma distribution i f  its probability density 

function is given by 

When a = 1, X is sa id  to  be exponentially distributed; /3 is referred to as the scale parameter. I t  

can  be  easi ly  proved that if Z 1  and Z ,  are  two independently distributed gamma variables with the 

same scale parameter, then Z 1  + Z ,  and Z , / Z ,  are independently distributed. The  next theorem 

is a converse of this  statement,  which together with this remark characterizes the gamma distribu- 

tion. 

Theorem 3.6: If Z ,  and Z ,  are  independent nonnegative random variables for which 2,  + Z ,  

and Z 1 / Z z  are independent, then both Z ,  and Z ,  have gamma distributions with a common scale 

parameter. 

The  next theorem shows that the only distribution which h a s  the property of not having memory 

is the exponential distribution. 

Theorem 3.7: L e t  T be  a nonnegative random variable. 

P(T > x + y1 T > X )  = P ( T  > y )  

i f  and only if  T has  an exponential distribution. 

The next theorem gives a characterization of the exponential distribution in  terms of the mini- 

mum and range of two random variables. 

Theorem 3.8: Suppose that the random variables X and Y are  independent and have absolutely 

continuous distributions. Then in  order that  U = min(X, Y )  and I/' = X - Y be  independent, it is 

necessary and sufficient that  both X and Y have exponential distributions.  

Let  X I ,  X,, . . . , X ,  be n independent identically distributed nonnegative random variables.  If 

we arrange them in order of magnitude a s  X I  , n  5 X 2 , n  5 . . . 5 - X n , n ,  X k , n  is referred to as the kth- 

order s ta t i s t ic  in a sample of size n. L e t  us  define 

Yi = (n - i + 1) (Xi,n - Xi-l ,n)  , i = 1, 2, . . . , n ,  

with the understanding that X , , n  = 0. The  next theorem character izes  the exponential distribution 

in terms of Y 1 ,  Y , ,  . . . , Y n .  

distribution. 

Theorem 3.9: Y 1 ,  Y , ,  . . . , Y n  are  independently distributed if and only i f  X has  an exponential  

A random variable U is s a i d  to have a uniform distribution on [O, 11 if  

P ( U S U ) = U ,  O i U 5 1 ,  

The following theorem shows the relationship between a random variable with uniform distribu- 

tion and a variable with exponential distribution. 

Theorem 3.10: L e t  0 < U < 1 and X = -In U ,  s o  that 0 < X < M.  X has  an exponential distri-  

bution with mean 1 if and only if  U has  a uniform distribution. 
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4. STANDARD DISTRIBUTIONS 

. 

In this  sect ion we will introduce the reader to  some of the standard distributions used i n  

statistics. 

4.1 Chi-square Distribution 

Let X be  a random variable distributed normally with mean 0 and variance unity; i n  other words 

let the probability density function of X b e  given by 

Then it can  b e  eas i ly  shown that  the variable Y = X 2  h a s  a probability densi ty  function given by 

y-1/Ze-Y/2 . g ( Y >  =- 

fi 
1 

This  g ( y )  is referred to as the chi-square distribution with one  degree of freedom. This  is a spe-  

cial case of the gamma distribution (1) with P = ‘4 and a = ‘4. The following is an important 

theorem concerning the gamma variables. 

Theorem 4.1: Let Y , ,  Y , ,  . . . , Y n  b e  n independent gamma variables with a common scale 

parameter p and perhaps different values of a given by a,, a,, . . . , an. Then Y ,  + Y ,  + . . . + Y n  

h a s  a gamma distribution with the same scale parameter p and with a = a, + a, + . . . + an . 
From theorem 4.1 and (3), we can  deduce the following useful  corollary: 

Corollary 4.1: Let X I ,  X , ,  . . . , X n  b e  n independent identically distributed normal var iables  

with mean 0 and variance unity. Then Y = X ;  + . . . + Xt has  a gamma distribution with a = n/2 

and p = (which is referred t o  as a chi-square distribution with n degrees of freedom) given by 

4.2 t Distribution 

It turns out that  the probability density function of R = mis given by 

which is referred to  as the root-mean-square distribution with n degrees  of freedom. 

The  variate T may be  defined as  the quotient of two independent var ia tes  X and R,  where X 

has  a normal distribution with mean 0 and variance unity and R is the root mean square of n other 

independent identically distributed normal var ia tes  with mean 0 and variance unity. 
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Theorem 4.2: T has  the probability density function given by 

which is referred to as the t distribution with n degrees of freedom. 

4.3 F Distribution 

If Y has  a chi-square distribution with n degrees of freedom, then W = Y / n  will have the proba- 

bility density function given by 

w ( n / 2 ) - 1  e-nw/2 , o < w < w ,  
(n/2)"/'  

f (w)  = 
r (n /2)  

(7) 

which is referred to a s  the mean-square distribution with n degrees of freedom. 

The  variate F may be defined as the quotient of the respective mean squares  of a and b inde- 

pendent identically distributed normal variables with mean 0 and variance unity. 

Theorem 4.3: F has  the probability density function given by 

This  is referred to a s  the F distribution with a and b degrees of freedom. Th i s  F is a l so  known as 

the variance ratio with a and b degrees of freedom. 

5. EXPECTATION 

5.1 C ha ra c ter i s t i c F unctions 

In this section we will introduce the notion of the characterist ic function of a random variable, 

which can be used in determining the moments (whenever they exist)  and which is helpful in proving 

the convergence of distribution functions. For brevity, we  restrict ourselves to continuous vari- 

ables.  Le t  X be a random variable with probability density function f(x). Then the characterist ic 

function of the random variable X is defined by 

The  following is a short  table of familiar probability density functions and characterist ic functions. 



Distribution 

Normal 

Laplace 

Rectangular 

Gamma 

Beta 

Cauchy 
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Probabi l i ty  Density Function 

- e  - - ( X - P [  /ff 

2 5  

Character is t i c F unction 

i p t - m 2 t 2 / 2  

5.2 Moments 

The  kth moment of the random variable X is defined by 

eipt--/t8j 

E ( X k )  = I xk f(x) dx . (10) 

For k = 1, E ( X )  is referred to  a s  the mean of the variable X. T h e  variance of X is defined as 

Var(X) = E ( X 2 )  - [E(X)12 . (11) 

An alternate way of obtaining the kth moment of the variable X is to differentiate the characterist ic 

function +(t) k t i m e s  and find its value at t = 0, that i s ,  

E ( X k )  = +Ck’(O) . (12) 

At t i m e s  this may turn out to  be an  easy  way of finding the kth moment, but not necessarily always.  

W e  will now give some formulas of moments for some well-known distributions. 

1. Normal distribution: 

1.3.5. . . . (k-1)ok for k even 

for k odd . E ( X k )  = 
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2. Rayleigh distribution: 

X 
f(x) =- e- x 2 / 2 $ ,  o < x < w .  

a2 

( G 1 . 3 . S  . . . k a k  for k odd 

3. Maxwell distribution: 

, O < X < M  

a3 

E ( X k )  ={&2k t 1 / 2  (y)! a k  for k odd 

1.3.5 . . . (k + l)ak for k even 

4. Gamma distribution: 

E ( X k )  = a(a + l)(a + 2 ) .  . . ( a  + k - l)@-k. 

5. Beta distribution: 

m(m + 1) . . . (m  + k - 1)  
( m + n ) ( m + n + l )  . . .  ( m + n + k - 1 )  

E ( X k )  = 

6. CONVERGENCE THEOREMS 

In this section we will introduce the notions of convergence in probability, convergence in 

quadratic mean, convergence with probability 1, and convergence in  distribution. We will point 

out the connections between these  convergences. We will indicate the  laws  of large numbers and 

the central limit theorem. 

6.1 Convergence of a Sequence of Random Variables 

. 

A sequence of random variables ( X n ] ,  n = 1, 2, . . . , is s a i d  to  converge to a constant c: 
P 

1. in  probability or weakly (and written X n  + c), i f  for every given E > 0 ,  
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l i m  
n --'m 

P( 1 X ,  - c I > E )  = 0 ; (13) 

a . s .  
2. strongly or almost surely (written l i m  X n  = c with probability 1 or Xn+ c) if 

n --'w 

P (  l i m  X n =  c ) = l ,  
n A m  

or equivalently 

l i m  P (  sup  1 X n  - c 1 > E )  = 0 for every E ;  

> n =  N N 'm 

q . m .  
3. in quadratic mean (written X n I  c ) ,  i f  

l i m  E ( X ,  - c)' = 0 . 
n --'m 

The  following theorem shows the relationship among the various types of convergences. 

Theorem 6.1: 

q . m .  P 
1. If X n  c ,  then Xn-+ c . 

2.  If Xn> c ,  then Xn* c .  
P 

m 
P a.  s .  

3. If Xn+ c and E ( X n  - c)' < m , then X n -  c . 
R = l  

6.2 Laws of Large Numbers 

Theorem 6.2 (weak law of large numbers): Le t  { X i ] ,  i = 1 ,  2, . . . , be a sequence of n inde- 

pendent and identically distributed random variables. Then 

( X 1  + . . . + X , )  P 
E ( X i )  = p < W ,  then + p .  n 

Theorem 6.3 (strong law of large numbers I): Let { X i  1 ,  i = 1 ,  2,  . . . , be  a sequence of n 

independent random variables such  that E ( X i )  = pi and Var(Xi) = 0:. Then 

cr; x l +  . . . +  x ,  - p l + p z + . . . + p n a . s ; Q  7 < 00 implies that  n n 
i =  1 

Theorem 6.4 (strong law of large numbers 11): Let { X i  1 ,  i = 1, 2, . . . , be a sequence of n 

independent and identically distributed random variables. Then 

(14) 

X I  + . . . + X n  a . s .  
4 if and only if  E ( X  j )  ex i s t s  and is equal to p . 

n 
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6.3 Central L i m i t  Theorem 

L e t  F n  (x) denote the distribution function of the random variable X n ,  that  i s ,  Fn (x) = 

P(X, 5 x ) .  

Definition: The  sequence of random variables { Xn 1 is s a i d  to converge in  distribution (or in 

law) to a random variable X with distribution function F(x)  = P ( X  2 x) i f  Fn(x)  +F(x)  as n ---t ou 

a t  a l l  points of continuity of F .  Such a convergence is expressed as Xn- X .  
Theorem 6.5: Let +,(t) be  the characterist ic function of Xn and +( t )  that  of X. L e t  +(f) b e  

continuous a t  the origin. Then 

L xn 4 X if and only i f  +n( t )  + +(f) . 

Theorem 6.6 (central limit theorem): Le t  { X i  1, i = 1, 2, . . . , be  a sequence of n independent 

and identically distributed random variables such  that E ( X i )  = p and Var(Xi) = d exis t .  Then 



LECTURE Ill: CONTINGENCY TABLES 

Marvin A. Kastenbaum 

1 .  INTRODUCTION 

Appended to these  notes is a bibliography of papers on the subject of contingency tables that 

have appeared in the literature primarily during the pas t  decade  and a half. Th i s  chronological 

l i s t ing  is by no means complete. It results from a partial literature search  of the s t a t i s t i c s  journals 

in the ORNL library and includes only a s m a l l  number of papers in the soc ia l  sc iences .  Therefore, 

if you know of any well-known papers that  have been omitted, kindly call  them to my attention s o  

that I may add them to the ex is t ing  l ist .  

My lecture will begin with some discussion of the underlying sampling distributions which go 

into the construction and formation of contingency tables. I will briefly review the history and 

theory of the x test criterion which is applied for tes t ing  hypotheses with contingency tables. I 

will touch on such  questions a s  partitioning of x 2 ,  contingency tab les  of more than two dimensions, 

measure of association, missing and mixed-up values in  contingency tables,  contingency tables 

which come about a s  a result o f  consumer preference testing, Markov cha ins  in contingency tables,  

the Bayesian approach to contingency tables,  and alternative ana lyses  to the x 2  in contingency 

tables. I will present some illustrative examples a t  certain points throughout my discussion. 

2. STRUCTURE OF 2 x 2 CONTINGENCY TABLES 

The bas i c  structure of contingency tab les ,  especially those which we are most accustomed to 

encounter, is described with admirable lucidity by G. A. Barnard and E. S. Pearson in  two papers 

which appear in  Vol. 34 of Biometrika for 1947. Although these  authors concentrate primarily on 

2 x 2 contingency tables,  their logical approach to the whole problem is stated in such elementary 

t e r m s  that  both papers should b e  read by all s ta t i s t ic ians .  A systematic elaboration and applica- 

tion of the ideas  of Barnard and Pearson appears i n  a series of papers by Roy, Mitra, and 

Kastenbaum in 1955 and 1956. 

According to Barnard, the theory of s ta t i s t ica l  significance t e s t s  dea ls  with abstraction of 

experimental results. The  fact  that the figures in  question may happen to be tensile strength of 

iron bars, counts of radioactive particles,  on-the-job accidents,  or number of defectives is ignored 

in carrying out the test .  For the purpose of the s ta t i s t ica l  theory, the experiment in question 

could j u s t  a s  well be  represented by an experiment involving drawing ba l l s  from an urn. Once the  

abstract  picture h a s  been formed, the ana lys i s  of it is largely a matter of pure mathematics. As 

Barnard points out, “What distinguishes the s ta t i s t ic ian  from the pure mathematician in  this con- 

nection should be the statist ician’s ability to form valid abstract  pictures of concrete c a s e s  and 

his c lear  recognition of the limits of validity of h i s  abstract pictures.” 

Consider the simplest  type of contingency table,  namely the 2 x 2 or fourfold table, a s  Table  

l a  is sometimes referred to. 

21 
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Table la: The 2 x 2 Contingency Table  - Cel l  Frequencies 

I 11 Total 

A "11 " 1 2  "I. 

"21 "22 "2. 

". 1 ". 2 

B 
- 

N Total  

Table  lb:  The  2 x 2 Contingency T a b l e  - C e l l  Probabi l i t ies 

I I1 Total 

p 1 1  p 1 2  p 1 .  A 

p 2  1 p 2  2 p 2 .  

p .  1 p. 2 

B 

Total 
___ - - 

I 

Th i s  table displays a sample of total s i z e  N divided into four mutually exclusive and jointly 

exhaustive ce l l s ,  s o  that n 1  

have come about. 
+ n 1  + n 2  + n Z 2  = N .  Let u s  consider how such  a table might 

2.1 One Multinomial, or T w o  Variates (Responses) 

A and B represent two shops  or processes  making the same articles.  Roman numerals I and 

I1 represent defectives and nondefectives respectively. All articles produced in shops  A and B 

are collected in a common bin, each  of the art icles having a s m a l l  marking specific to the shop 

from which i t  came. On the b a s i s  of a sample of size N we wish to determine i f  the percentage 

defective in  shop A is the same as i t  is in shop B.  The  sample of s i z e  N is taken from a common 

bin containing a large number of art icles from both shops.  If the true proportion of articles in 

category AI is p ,  while p 1  2, p 2  1,  and p , ,  represent the proportions of the other art icles,  then the 

probability associated with the table is given by the general t e r m  of the multinomial expansion of 

( P ,  1 + P 1 2  + P Z l  + p , y j  that i s ,  

N !  "11 " 1 2  " 2 1  " 2 2  , P I 1  p 1 2  p 2 1  p 2 2  ' n 1! n 2! n 2  1! n 2  ~. 
P =  (2.1.1) 
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2.2 T w o  Binomial Samples, or One Variate (Response) and One Way of Classif ication (Factor) 

. 

. 

Perhaps  a m o r e  rea l i s t ic  way in which our table may b e  constructed under a similar set of 

circumstances would b e  i f  n l .  articles from shop A and n,. ar t ic les  from shop B were examined for 

the proportion of defectives.  In th i s  c a s e ,  of course,  the art icles which had been manufactured 

would not be taken from the same bin, but rather shop A would have  i t s  bin and shop B would have 

i t s  bin. 

If the probability that shop A will produce defectives is given by p ,  and the probability that 

shop B will produce defec t ives  is given by p ,  1, then the probability of the arrangement in the 

table is equal  to the probability of finding n 1  defectives from a sample of s i z e  n l .  in shop A and 

n Z 1  defectives i n  a sample of s i z e  n,. in shop B.  

This  probability may b e  written a s  the general term of the product of two binomials, namely 

where P , ,  = 1 - p l l ,  P , ,  = 1 - p Z l ,  n l .  = n l l  + n 1 2 ,  and n2 .  = n Z 1  + n Z 2 .  

2.3 One Hypergeometric, or T w o  Ways of Classif ication 

(2.2.1) 

A third way in which the  da ta  in our table might occur is perhaps the most artificial of the 

three structures which we will d i scuss .  I t s  artificiality comes not from the fact that such a struc- 

ture does  not occur in real life. Rather, such  a structure occurs less frequently than the two 

structures already discussed. The c l a s s i ca l  example of such  a structure occurs in the "lady 

tasting tea" experiment proposed by Sir Ronald Fisher. In this case we not only fix the total 

sample s i z e ,  but we  a l so  fix the values in all the marginals. How might this come about? 

Here the experimenter h a s  two types of objects of known frequencies, let us  s a y  n l .  and n2. .  

He tells h i s  subject that there are among the  N objec ts  which he  is presenting to him n l .  of type 

A and n,. of type B.  He then a s k s  h i s  subject to identify these  objects accordingly. The proba- 

bility that  the subjec t  will place n 1  

are fixed in  th i s  way is given by the underlying hypergeometric distribution as follows: 

observations in the first  cell given that the marginal to ta l s  

n 1 . ! n , . ! n a l ! n . , !  
- -- P =  - 

N !  n ! n 1  2 !  n ,  1 !  n Z 2 !  N 
1 1  

n. 1 

(2.3.1) 

nz. * 
where n. = n 1 .  and n. , = 

T h e  three underlying distributions represented by Eqs. (2.1.1), (2.2. l ) ,  and (2.3.1) account for 

almost all  contingency tables which a re  encountered in  experimental si tuations.  
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3. DEGREES OF FREEDOM 

At this  point, i t  might b e  appropriate to  spend a l i t t l e  time d iscuss ing  the  degrees  of freedom 

which a re  assoc ia ted  with t e s t s  of hypotheses concerning the  da ta  in  contingency tables. T h e  

rule for determining the number of degrees of freedom assoc ia ted  with any contingency table of 

whatever structure is: the  number of degrees of freedom is equal to the total number of cells in 

the table,  minus the number of independent l inear constraints on the observations, minus the  num- 

ber of free parameters to be estimated from the data.  In the case of a 2 x 2 table consider the 

situation for the three structures which we discussed above. 

3.1 One Multinomial 

The total number of ce l l s  is 4, the number of independent parameters to be estimated from the  

da ta  is 2,  and the number of l inear constraints on the  observations is 1. How does  th i s  come 

about? The  sum of the  p i j ' s ,  p ,  , + p12 + p , ,  + p 2 , ,  is 1. Th i s  is true. However, these four 

p . . ' s  are not independent of one another because they a re  subjec t  to the two following constraints: 

p , .  + p z .  = 1 and p.  , + p . ,  = 1, so that there a re  only two independent parameters p ,  (or p, . )  and 

p , (or p *) to be estimated here. The one l inear constraint  on the observations is that n1  

n 2 ,  + n z 2  = N .  

' 1  

+ n12 + 

3.2 T w o  Binomials 

In the case of two binomials there is only one independent parameter to be estimated from the 

data,  and there are two linear constraints on the observations. The independent parameter comes 

from the  fac t  tha t  one set of marginal totals is fixed, leaving no parameters to  be estimated here. 

However, the  other s e t  of marginal totals is variable and must be estimated subjec t  t o  the con- 

n2. * straint  p e l  + p - ,  = 1. The two linear constraints are n i l  + n , ,  = n,. and n, ,  + n,, = 

3.3 One Hypergeometric 

In this  case there a re  no independent parameters to be estimated from the data. Instead there 

are four constraints on the  da ta ,  three of which are independent. T h e  values in  the two rows and 

two columns are  constrained by their respective to ta l s ,  but the fac t  that  both s e t s  of marginal 

totals a re  also constrained to add to  N reduces the number of independent cons t ra in ts  to 3.  

In all three cases we have four cells and a combination of three l inear constraints or inde- 

pendent parameters to  be estimated from the data. Thus the  number of degrees of freedom is equal  

to one in  all three cases. T h i s  is one very interesting resu l t  in  the  two-way table. Another perti- 

nent and interesting fac t  which we  may refer to  now in  pas s ing  is tha t  in  the two-way tab le  all 

three structures result  in the same large-sample x 2  test of the null hypothesis.  These two resu l t s ,  

which are perhaps a bi t  of mathematical good fortune, may b e  the  cause  of some of the confusion 

associated with the interpretation of da ta  in two-way tables. 
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4. STRUCTURE OF r x s CONTINGENCY TABLES 

Let  i = 1 ,  2,  ..., r designate rows  and j = 1, 2, ..., s designate columns. 

4.1 One Multinomial 

r s  r s  r S 

n . .  
r s  N !  

P =  II n Pi;] . 
I = 1  j=l r s  

Number of degrees  of freedom: r s  - [ (r  - 1) + ( s  - l)] - 1 = ( r  - l)(s - 1) . 

4.2 r Multinomial Samples 

S r s 
n i j  = ni. for all i; ni = N ;  1 p * I  . = 1 

j=  1 i= 1 j =  1 

n . .  

Number of degrees of freedom: rs - (s - 1) - r = ( r  - l)(s - 1). 

4.3 One Hypergeometric 

Number of degrees  of freedom: rs - (r + s - 1) = ( r  - l)(s - 1). 

(4.1.1) 

(4.2.1) 

(4.3.1) 
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5 .  THE NULL HYPOTHESIS IN THE TWO-WAY TABLE 

5.1 One Multinomial 

The composite hypothesis we sha l l  be  interested in tes t ing  is that the  two var ia tes  a re  inde- 

pendent, that  i s ,  H , :  p . .  = p i ,  p . , agains t  the alternative H f H , ,  where p i  and p . (for i = 1, 2 ,  

..., r and j = 1, 2, ..., s) are arbitrary posit ive parameters subjec t  to the constraints 
J I  .I .I 

This  is analogous to  the hypothesis of no correlation (p  

Under H a  the likelihood function is given by 

= 0) in a bivariate normal population. 
X Y  

r S N !  n .  n .  
P o  = n Pi.” n p . ; ’  . 

i= 1 j =  1 r s  
(5.1.1) 

5.2 r Multinomia ts 

W e  have r independent samples  of fixed sizes nl., n2., ..., n r . ,  with p . .  , the  probability of an 
‘ I  

observation in cell (ij),  such  that 

The  composite hypothesis of interest  is that p . . ,  for any j ,  is independent of i; that i s ,  the 
‘ I  

probability of an observation being in the jth position of row i is the same for all i. This  may be 

specified as 

H a :  p . .  = p . agains t  H f H , ,  
11 . I  

where p , ( j  = 1, ..., s) is an  arbitrary positive parameter subjec t  to the constraint 
.I 

Z P . j  = 1. 
i 

This  is referred to a s  the hypothesis of “homogeneity.” It is analogous to and a generalization 

of the hypothesis of equality of means for r homoscedastic univariate normal populations. For 

random samples from normal populations, N ( p i ,  u2) ,  i = 1, 2, ..., r,  the usual hypothesis of in- 

terest  is: 

. 

The standard test of th i s  hypothesis is the F t e s t  of equality of means. 
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T h e  likelihood function under the  hypothesis of homogeneity of r multinomial samples is 

(5.2.1) 

5.3 One Hypergeometric 

In this case, the likelihood function given by (4.3.1) is unchanged, and the  null hypothesis is 

one of “independence” or “inability to discriminate. ” T h e  question posed under th i s  structure 

is spec i f ic ,  as in  the c a s e  of t he  “lady tasting tea” experiment. 

Note that i f  we were to  s ta r t  with (4.1.1) and let H,: p i j  = pi .  p . j ,  and then find the condi- 

tional probability under H o  subjec t  t o  ni and n a j  being fixed, this probability would be  the  hyper- 

geometric given by (4.3.1). 

6. TESTS OF HYPOTHESES IN THE TWO-WAY TABLE 

In the year 1900, Karl Pearson proposed as a criterion for tes t ing  hypotheses,  such  as those 

mentioned above, the s t a t i s t i c  

r s (n . .  - N P . . ) ~  
11 ‘ I  

N p . .  
i=l j = 1  ‘ I  

x q  1 

Pearson suggested that in  the limit, as N becomes large, th i s  statistic h a s  the x 2  distribution 

with r s  - 1 degrees of freedom. He  further suggested that the number of degrees of freedom re- 

mains unchanged when the p . .  are estimated from the data. Th i s  we now know is wrong. F isher  

(1922, 1924) pointed out Pearson’s error and went on to give a proof of the limiting distribution of 

X 2  which avoids most of the  mathematical complexities in Pearson’s proof. A fully rigorous proof 

of the limiting distribution of X 2  is given by Cramer (1946). Cramer assumes ,  among other things, 

that  the  p . .  are  estimated by the method of maximum likelihood. 

I I  

I I  
The maximum likelihood es t imates  of p . .  under the null hypothesis are found to  be p . .  = 

11 11 

ni n j / N 2 ,  so  that  the usua l  form of th i s  s ta t i s t ic  for contingency t ab le s  is . .  

N 

This s ta t i s t ic ,  we s a y ,  is distributed in the  limit, as N becomes large,  a s  x 2  with (r - l ) ( s  - 1) 

degrees of freedom. 
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The  most pertinent question at this point i s ,  “IS the same x 2  t e s t  to be used  for all three 

structures?:’ The  answer is, “Yes,  when N is large.” However, th i s  is not so for small samples. 

When the sample size N is small ,  F isher  (1934) recommends that the  exac t  probabilities obtained 

from the hypergeometric distribution (4.3.1) be used. The  greatest  objection to  Fisher’s recom- 

mendation is that a loss of power may result  i f  the  hypergeometric probabilities are computed 

when the da ta  actually a r i se  from a s ingle  or from several  multinomial samples. 

K. D. Tocher (1950) h a s  proposed a modification of F isher ’s  exac t  t e s t  that  is most powerful, 

in the Neyman-Pearson s e n s e ,  for one-tailed tests with da ta  from any of the three structures. The 

modification is best  illustrated by an example. 

Consider the hypothetical example (Table 2) involving the frequency of failure due to cracking 

of specimens in 30-day tests on 24 large industrial  boilers. T h e  observations are c lass i f ied  as 

cracked and uncracked, and a l so  according to the addition or nonaddition of tannin to the feed- 

water. 

Table 2. Hypothetical Example 
~~~ 

Uncracked Cracked Total  

+Tannin 9 

-Tannin 7 - 
Total 16 

2 11 

13 6 

8 24 

- - 

The null hypothesis is that the failure of t e s t  specimens is not influenced by the  addition of 

tannin to  the boiler feedwater. Given these  da ta ,  we wish to make a one-tailed t e s t  at the  5% 

level. T h e  two possible s e t s  of da ta  which deviate more from the  null hypothesis are 

10 1 11 11 0 11 
6 7 13 and 5 8 13 

16 8 24 16 8 24 

In Fisher’s exact t e s t ,  w e  add the probabilities of the three tab les  as computed from the hyper- 

geometric. T h i s  gives 

1 1 1 
+ + 

2! 6! 7! 9! 6! 7! lo! 5! 8! ll! 

8! ll! 13! 16! 

24! 

= 0.12833 + 0.02567 + 0.00175 

= 0.15575. 

This  value is regarded as the significance probability. 
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In Tocher’s modification we compute the total  probability of all more extreme c a s e s ,  that i s ,  

. 
0.02567 + 0.00175 = 0.02742 . 

If the numbers 0.15575 and 0.02742 are both below the s ta ted s ignif icance level  0.05, reject the 

hypothesis. If they are both above 0.05, accept  it.  If one is above and one is below, a s  in this  

example, we ca lcu la te  

0.05 - 0.02742 

0.12833 
= 0.17595 . 

Now, draw a random number between 0 and 1. If th i s  number is less than 0.27595, we reject;  if 

greater, we accept.  (Rationale: If H ,  is rejected only when the two most extreme c a s e s  occur, 

the significance level  is 0.02742. The third most extreme case, represented by the data ,  occurs 

with probability 0.12833. Tocher’s modification declares  a s  “significant” a fraction, 0.17595 of 

the cases in which the observed data are encountered.) The  Pearson chi-square s ta t i s t ic  for 

these data  is X 2  = 2.098. Inasmuch as the square root of a chi-square variable with one degree 

of freedom is distributed a s  a normal variable with zero mean and unit variance,  the probability i s  

P(x2 2 2.098) = 2 P ( x  2 1.448) = 0.148. For comparison with the exact  procedure we must con- 

sider only one tail  of the normal distribution, SO that  P(x ? 1.448) = 0.074. 

6.1 Yotes’ Correction for Continuity 

The distribution of the Pearson X 2  s t a t i s t i c  is discontinuous. When a l l  expectations a re  

small  the chi-square approximation may be poor. T h e  correction proposed by Yates  (1934) 

amounts to reading the chi-square table not  a t  X i  but a t  a point between X i  and the value of X 2  

immediately below X i  in the discrete  series of values. The formula for the 2 x 2 table is wel l  

known and need not be  repeated here. If i t  is applied to the da ta  in Table  2 ,  the result ing s ta -  

t ist ic is X,” = 1.028, and the probability is P ( x 2  2 1.028) = 2 P ( x  > 1.014) = 0.310. The  corre- 

sponding probability for the one-tailed t e s t  is P(x > 1.014) = 0.155. The following table gives 

comparable probabili t ies for a one-tailed t e s t  of the da ta  in Table  2: 

Test  One-To i l ed  Probabi I i ty 

Fisher exact  

X 2  uncorrected 

0.156 

0.074 

X,“ corrected 0.155 

Caution: If a number of X 2  values ,  each  with one degree of freedom, are added to form a total X 2 ,  

the individual values should not be corrected for continuity. The total X 2  may be corrected, after 

i t  has  been obtained, by a procedure given by Cochran (1952). Also see Pasternack (1966) and 

Grizzle (1967). 
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6.2 Cochran’s Recommendations Concerning Analyses of Two-way Tables 

1. 

2. 

3. 

4. 

5. 

The 2 x 2 table: For N < 20, or 20 < N < 40 and t h e  smallest expectation less than 5, u s e  

Fisher’s exac t  test .  For N > 40 u s e  X 2 ,  corrected for continuity i f  the smallest  expectation 

is less than 5. 
Tables  with degrees  of freedom between 2 and 60 and all expectations less than 5: For  small 

N ,  u s e  Fisher’s exact  tes t .  Otherwise u s e  X 2 ,  considering whether the continuity correction 

is needed. 

Tables  with degrees of freedom more than 60 and a21 expectations less than 5: Try to obtain 

the exact  mean and variance of X 2 ,  and u s e  the normal approximation to the exac t  distribution. 

See Haldane (1937). 

T a b l e s  with more than one degree of freedom and some expectations greater than 5: U s e  X 2  

uncorrected for continuity. 

Continuous data: T o  t e s t  goodness of fit, group the da ta ,  using enough cells to keep the ex- 

pectations down to 1 2  per cell for N = 200, 20 per cell for N = 400, 30 per cell for N = 1000. 

Pool a t  the ta i l s  s o  that  the minimum expectation is no smaller than 1. 

7. ALTERNATIVE ANALYSES TO T H E  TRADITIONAL CHI-SQUARE 

In recent years  many authors have discussed analyses  of contingency tables  other than the 

traditional Pearson chi-square analysis .  These  alternatives fall into two major categories,  

namely, (1) the logit  transformation in conjunction with standard l e a s t  squares  and (2) the l ikeli-  

hood ratio tes t .  

7.1 The Logit Transformation 

This  method was proposed by Woolf (1955) and elaborated on by Placket t  (1962), Gart (1962), 

Goodman (1963, 1964), Lindley (1964), and others. It may b e  demonstrated for the 2 x s table. 

L e t  n.. be the observation in  the ith row and j th  column of a 2 x s contingency table,  where 
‘ I  

i = 1 , 2 a n d j = 1 , 2  ,..., s. I f w e t a k e  

then 

S 

x2 = r, u. (z .  - 2)2 
I 1  

j =  1 

(7.1.1) 

is distributed asymptotically as x 2  with s - 1 degrees of freedom, where 
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S 

C ujzj 
- j = 1  
z =  

S 

E u .  1 
j= 1 

Equation (7.1.1) may a l so  be written a s  

S 

J J  
j =  1 S 

E uj 
j =  1 

(7.1.2) 

(7.1.3) 

Example: The  da ta  in Table  3 are  taken from Table  9.54 on page 292 of 0. L. Davies’ text 

Statistical Methods in Research and Production. “These da ta  show the number of times piston 

rings have failed in each  l e g  (North, Centre,  South) of two groups of compressors a t  an I.C.I. 

factory. The compressors are apparently identical  and are oriented the same way in the Compres- 

sor House. Each l e g  cons is t s  of two cylinders arranged vertically: the lower cylinder deals  with 

the first  s tage of compression, and the upper cylinder with the second s tage.  The  South leg  i s ,  

in  every case adjacent t o  the  drive.” Is  the probability of failure of a piston ring independent of 

compressors and location i n  compressor (leg)? 

Table  3. Fa i lure  of P iston Rings by Locat ion and Compressors 

Compress or 
Group North Leg Center Leg South Leg Total 

1 17 1 7  12 46 

2 36 __ 
24 - 60 120 - - 

Total 53 41 72 166 

Arithmetic necessary for calculating logit test s ta t i s t ics :  

17 17 12 

36 
x =-. , x2 =- 24;  x 3 = 6 0 *  

1 = -0.75031; z 2  = -0.34494; z3  = -1.60943 . 

1 1 1  1 1 1  1 1 1  

u1 17 36 u z  17 24 u3 12 60 
-=-+-= 0.08660;-=-+-= 0 ,10049 ; -= -+-=0 .1 .  

u 1  = 11.54736; u Z  = 9.95124; u3 = 10.0 . 
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3 3 3 

1 ui = 31.499; 1 ujzi = -28.191; E U.Z? = 33.587.  
I 1  

j=  1 j =  1 j =  1 

Logit X 2  = 8.357; Pearson X 2  = 8.760 . 

7.2 The Likelihood-Ratio Test 

This  tes t ,  proposed by Wilks (1935), h a s  been investigated by Woolf (1957), Chakravarti and 

Rao (1959), and Kullback, Kupperman, and Ku (1962). In their 1962 papers,  Kullback, Kupperman, 

and Ku resort  to  a n  information theory approach and define a minimum discrimination information 

s t a t i s t i c  (M.D.I.S.) with the following properties: 

1 .  distributed asymptotically as chi-square under the null hypothesis and as noncentral chi-square 

under the alternative hypothesis,  with appropriate degrees  of freedom and noncentrality 

parameter, 

2. additivity, 

3. convexity. 
A 

This  s t a t i s t i c  is 21 = -2 In A, where h is the likelihood ratio. For the r x s contingency table,  

A r s  
r S 

21 = 1 2nij  In nii + 2N In N - 2ni,  In ni - 1 2n In n j .  

i=l i=j i= 1 j =  1 

(7.2.1) 

If this  appears to be a formidable alternative to the Pearson X 2  s t a t i s t i c ,  the authors give u s  

reassurance by presenting tables  of 2y In y for values of y from 1 to 10,000. 

Applying the likelihood ratio approach to the data  in Table 3 yields  

2 3  r: 2nij  In n i j  = 1154.177; 2 N  In N = 1697.180 ; 
i=l i = l  

2 3 1 2ni. In ni. = 1501.233; 1 2n In n = 1341.204 . 
i= 1 j= 1 

The three comparable t e s t  s t a t i s t i c s  a re  

A 

21 = 8.920, 

logit X 2  = 8.357,  

Pearson X 2  = 8.760. 

In each  c a s e  the probability of observing a value of chi-square greater than X 2  is P ( x 2  > X 2 )  < 
0.02. If w e  were tes t ing a t  a 5% significance level ,  we would reject  the hypothesis of independ- 

ence  between compressor groups and location of the leg. Tha t  is t o  s a y ,  using any of these  pro- 

cedures w e  would conclude that  the performance of the two compressor groups is not the same a t  

all the legs. 
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8. PARTITIONING OF CONTINGENCY TABLES 

Assume, for one moment, that  in the piston-ring example there was  reason to believe,  prior to 

experimentation, that  the performance of the compressor groups is the same a t  the north and center 

leg but different a t  the south leg. Can we t e s t  t hese  hypotheses us ing  the same s e t  of data? 

T h i s  question often arises in the analysis of variance, where tools are available for partition- 

ing the sum of squares assoc ia ted  with the test of a hypothesis concerning the  equality of s means 

into a t  most s - 1 orthogonal sums of squares. With each  of the s - 1 sums of squares  so  derived 

a hypothesis may be tested.  Moreover, the total sum of squares  with s - 1 degrees of freedom is 

equal to the sum of all its orthogonal parts. 

Applications of an analogous technique to contingency tab les  are given by Lancaster (1949), 

Irwin (1949), Kimball (1954), and Kastenbaum (1960). The  t e s t  s t a t i s t i c  proposed by these  authors 

is the standard Pearson Xz. Kullback, Kupperman, and Ku (1962) show how the same additive 

partitions may be tested with the minimum discrimination information s ta t i s t ic .  

Example: Partition of da ta  in Table  3.  

Pearson X 2 :  

Compressor Group North L e g  Center L e g  T o t a l  

1 

2 

Total 

17 

36 

53 

17 34 

24 60  

4 1  94 

North and 

Center Legs  South L e g  T o t a l  Compressor Group 

1 

2 

Total  

34 

60 

9 4  

1 2  4 6  

60  120 

72 166 

(34)2] = 1.017 ( p  > 0.3) , 
(166)2 (17)2 (17)2 xz = 

(46)(120) +T -- 94 

(166)’ 1‘34)’ (12)2 (46)’] 
x 2  = -+--- =17.743 ( p  < 0.01) , 

(46)(120) 94 72 166 

1.017 + 7.743 = 8.760 = Pearson’s X 2  . 

M. D.I. S. : 

h A 
21, = 0.879 ( p  > 0.3), 21, = 8.041 ( p  < O.Ol), 

0.879 + 8.041 = 8.920 = 2?. 
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In e a c h  case we would conclude that performance of the compressor groups w a s  the same for the 

north and center legs  but different a t  the south leg. 

Alternatively, the contingency table may be partitioned into the same component parts, with 

the standard Pearson X 2  analys is  on each  part. T h i s  procedure will not result  in additive X 2 .  

However, th i s  approximate partition is adequate for most t e s t s  of significance. Moreover, i t  h a s  

not been shown that the additive partition is really preferable to the approximate partition in s m a l l  

samples. This  property of additive partitions, in fac t ,  may be the principal motivation for much of 

the work on contingency tab les  which h a s  appeared in the  literature in the pas t  15 years.  Con- 

sider only that s ta t i s t ic ians  have known for a long t ime  about a random variable whose distribu- 

tion may be specified by the chi-square probability density function, and that the sum of such  

random variables is a l so  distributed as chi-square. Add to  th i s  the knowledge that a t e s t  s ta t i s t ic  

ex i s t s  which is, a t  l ea s t  asymptotically, distributed as chi-square. Immediately you stimulate the 

desire t o  add things up or to separa te  things into their component parts. 

9 .  CONTINGENCY TABLES OF MORE THAN TWO DIMENSIONS 

Except for some brief references in two or three s ta t i s t ica l  texts,  the subjec t  of multidimen- 

sional contingency tables w a s  all  but ignored until 15 years  ago. Indeed, in h i s  text which was  

published in  1954, 0. L. Davies r a i se s  and summarily d i smis ses  the  three-dimensional case as  

follows: "Such examples may be treated by an extension of the methods already explained which 

the reader will have no difficulty in making i f  he  h a s  understood the principles." Unfortunately, 

things are not as simple as Davies ind ica tes  they might be. 

The  transition from two dimensions to three dimensions necess i ta tes  a full understanding of 

the underlying structure of the data,  a clear and concise  idea of what null hypotheses are to be 

tested, and knowledge of the appropriate estimators assoc ia ted  with these  null hypotheses in 

order to ca lcu la te  the  corresponding t e s t  statist ic.  Contrary to Davies' belief, new conceptual 

problems are posed i n  going from two-way to three-way tables. On the other hand, the extension 

from three- to higher-dimensional contingency tab les  does  not pose  any new problems. 

T h e  theory of multidimensional contingency tab les  is presented in  the many references cited 

in the bibliography. I sha l l  briefly present some of the  highlights and indicate some of the more 

important references. Notation: 

Let n i j k  denote the observed frequency and p . .  the probability of having an observation in 

cell ( i j k )  of a three-way table,  where i = 1, 2 ,  ..., r des igna tes  rows, j = 1, 2, ..., s des igna tes  

columns, and k = 1, 2 ,  ..., t des igna tes  layers. Also, l e t  the marginal frequencies b e  denoted by 

11 k 

r r s  S I 

n . = n i j k ;  n..k n i j k  = 1 n . j k  = 2 n i . k ;  .3k 
i= 1 i j  i 

4 
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t s t  S t 

n . .  = z n i j k ;  ni..  = nijk  = n . .  = E n i . k ;  I I .  11. 
k= 1 j k  j k 

c 

r s t  

For a single multinomial sample of size N ,  corresponding summations over the p . .  

denoted, and 

are similarly 
Ilk 

9.1 Hypotheses Concerning the Two-way Marginals of a Three-way Table 

Pairwise independence: 

H,: p . .  = p .  

H,: 

H o :  p .  j k  = p .  j .  p . .  

p . (independence of I and J )  , 
I ] .  I . .  .]. 

pi .k  = p i  .. p. .k  (independence of I and K )  , 

(independence of J and K ) 

9.2 Hypotheses Which Have No Analog in a Two-way Table 

Conditional independence (partial independence): 

Pijk  Pi.k p . j k  Pi.k p . jk  

P..k P..k P..k p..k 
, or P j j k  = H,: - =-. - 

(9.1.1) 

(9.1.2) 

(9.1.3) 

(9.2.1) 

Equation (9.2.1) is the  hypothesis of conditional independence of I and J given K .  This  condition 

is analogous to the hypothesis of zero partial correlation between I and J in a three-variate normal  

population. It does  not imply the independence of I and K or of J and K .  However, i f  I is inde- 

pendent of K and J is independent of K ,  and i f  (9.2.1) a l s o  holds,  w e  have the condition of mutual 

independence: 

Mutual independence: 

H o :  Pi jk  = pi . .  p . j .  P..k 

Multiple independence: 

H,: p . .  = p . .  p (independence of K and I J )  . i l k  11. ..k 

(9.2.2) 

(9.2.3) 

This  condition is analogous to the hypothesis of zero multiple correlation in a three-variate normal 

population. It implies independence between I and K and between J and K .  The converse, how- 
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ever, is not true. That is to s a y ,  (9.2.3) implies (9.1.2) and (9.1.3), but (9.1.2) and (9.1.3) do not 

imply (9.2.3). 

I t  was a t  this point in la te  1954 that Professor Roy and I found a need for additional theoreti- 

cal  concepts.  For, in the special  c a s e  of the multivariate normal population, not only does  zero 

multiple correlation imply zero correlation between a l l  pairs of variables, but a lso conversely. 

Obviously this  did not hold for a three-variate contingency table. Therefore the question we posed 

to ourselves  was ,  “What s e t  of conditions ex is t s  which, when superimposed on the conditions of 

independence between pairs of variables, will jointly yield the condition of multiple independence?” 

The answer t o  this  question was: 

“No three-factor interaction”: 

H O :  P r s t  P i j t  P i s k  Prjk = P i s t  Pr j t  prsk Pijk (9.2.4) 

Equation (9.2.4) is a generalization of the condition proposed by Bartlett  in 1935 for the 2 x 2 x 2 
and the 2 x 2 x 3 tables .  

There has  been considerable discussion in the literature of the pas t  ten years  concerning this  

hypothesis. For a summary of the theory and philosophy concerning some of the hypotheses which 

may be tested in a three-way table,  the reader is referred to the paper by B. N. Lewis (1962). T h i s  

paper a l s o  gives techniques for analysis  of da t a  in multidimensional contingency tables.  In addi- 

tion the recent work of Bhapkar and Koch (1961, 1965, 1966) sugges t s  that  other hypotheses might 

be more relevant and appropriate for certain types of contingency tables.  For detailed reading on 

the subject  of multiway contingency tables  see Bartlett (1935), Norton (1945), Simpson (1951), 

Lancaster (1951), Roy and Kastenbaum (1956), Roy and Mitra (1956), Kastenbaum and Lamphiear 

(1959), Lancaster (1960), Darroch (1962), Kullback, Kupperman, and Ku (1962), Placket t  (1962), 

Birch (1963), Goodman (1963), and Goodman (1964, Ann. Math. Statist . ;  1964, J .  Am. Statist .  

Assoc.). For a numerical demonstration of the techniques (other than higher-order interactions) of 

analyzing data  in multidimensional contingency tables ,  see the paper by P. N. Ries and Harry 

Smith (1963). 

Some of the diff icul t ies  which 0. L. Davies chose to  dismiss  in his  statement which I quoted 

earlier may be pointed up in remarks such a s  this one,  extracted from Goodman (1964, J. Am. 

Statist .  Assoc.): “In 1951 Lancaster suggested,  on heurist ic grounds, a rather simple procedure 

for tes t ing the hypothesis of zero three-factor interaction. Unfortunately, the distribution of the 

tes t  s ta t i s t ic  suggested by Lancaster is not necessarily distributed a s  supposed (i.e.,  a s  chi- 

square asymptotically) . . . . Lancaster’s statement which has  been quoted by Kendall and Stuart 

(Vol. 2, 1961, p. 584) and by Snedecor (1958) that this  tes t  and Bartlett’s are  “asymptotically 

equal” is in error.” 

” 
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10. SPECIAL TOPICS IN CONTINGENCY TABLES 

10.1 Missing and “Mixed-Up” Values 

“d 

I 

t 

The  problem of contingency tab les  with missing or misclassified values h a s  been considered 

by Bross  (1954) and Watson (1956). In h i s  paper, Watson presents an iterative procedure, similar 

to the “missing-plot” technique i n  anaIysis of variance, for estimating the missing values in the  

contingency table prior t o  performing the standard Pearson X 2  test .  Kastenbaum (1958) demon- 

strated that explicit  algebraic formulas can  be found for certain s e t s  of missing values in con- 

tingency tables.  Th i s  problem h a s  been studied, elaborated on,  and generalized by Goodman 

(1968), Bishop (1968), Bishop and Fienberg (1968), and Caussinus (1964, 1965, 1966). Other re- 

cent  investigations in th i s  area are Asano (1965) and Mote and Anderson (1965). 

10.2 Consumer Preference 

An interesting structure for contingency tables is d iscussed  by Anderson (1959) in a problem 

involving consumer preference studies.  One lot  of each  of three varieties (v l ,  v 2 ,  v3) of snap  

beans was displayed in retail  s tores ,  and each of 123 consumers was asked to rank the  beans 

according to first,  second,  and third choices. The actual da t a  are given in Table  4. The 

question i s ,  “Does the usual X 2  t e s t  of independence of ranks and varieties with four degrees of 

freedom apply?” Tha t  i s ,  does  each variety have  the same chance ( ?3) of receiving a given rank, 

regardless of rank? Th i s  is not t he  usual problem of a contingency table with fixed border totals,  

because  repeated sampling is not a random rearrangement of 3 x 123 i t e m s  subject to border re- 

strictions. For i = 1, 2, ..., r varieties and j = 1, 2, ..., r ranks, Anderson shows that the appro- 

priate t e s t  s t a t i s t i c  for n consumers is 

which is distributed asymptotically as x 2  with ( r  - 1)* degrees of freedom. 

Table  4. Consumer Rankings of Three Variet ies of Snap Beans 

Variety Rank 1 Rank 2 Rank 3 Total 

42 64 17 123 

31 1 6  76 123 

50 43 30 123 

Total  123 123 123  369 

v1 

v 2  

v3 

(1 0.2.1) 
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10.3 Markov Chains 

The structures for contingency tables which we have d iscussed  involve some assumptions of 

independence of success ive  sample observations. There  frequently arise practical  si tuations in 

which these assumptions are not valid. One c l a s s  of such  situations involves dependent observa- 

tions resulting from realizations of s t a t e s  of a simple stationary Markov chain (Billingsley, 1961). 

In this situation the matrix of transition probabilities is given by a s tochas t ic  matrix which is 

square and whose row to ta l s  add to  1. The corresponding frequencies form a square contingency 

table. Analyses of such  data,  including t e s t s  of hypotheses of a specified matrix of transition 

probabilities, Markovity, and homogeneity of severa l  realizations of Markov cha ins  are given by 

Kullback, Kupperman, and Ku (1962). T e s t s  auxiliary t o  x 2  in Markov chains a re  given by Gold 

(1963). 

10.4 Measures of Association 

The two areas  of study covered by the broad t i t le of “s ta t i s t ica l  inference” are hypothesis 

testing and estimation. I have devoted a l l  my t ime  to the former and none to the latter. In con- 

tingency tables the lack of independence should give some indication of the degree of association. 

Measures of association in contingency tables have been proposed for a t  least a s  long as t e s t s  of 

hypotheses. Indeed they have been used and abused rather widely in the soc ia l  sc iences .  

I sha l l  not go into th i s  a rea  in detail.  T h e  series of papers by Kruskal and Goodman (1. Am. 

Statist.  Assoc. 1954, 1959, 1963) on measures of association for c ros s  classification and the 

recent papers by Goodman (1963) on interactions in multidimensional contingency tables provide 

an excellent history and summary of the subject. The  most recent paper on th i s  subjec t  is by 

Mosteller (1968). 

10.5 Bayesian Analysis 

Finally,  as i f  not to be  outdone, contingency tab les  have most recently been given considera- 

tion by the Bayesian s ta t i s t ic ians .  Lindley (1964) and Good (1965) describe how da ta  from a 

multinomial distribution and, in particular, da ta  in  the form of a contingency table may be studied 

using a prior distribution of parameters and expressing the results in the form of a posterior dis- 

tribution of the parameters. Gart (1966) shows how a Bayesian argument may b e  used  for choosing 

a crit ical  region for the exac t  test. 
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LECTURE IV: CONFIDENCE REGIONS 

Marvin A. Kastenbaum 

1.  AN EXAMPLE OF STATISTICAL INFERENCE 

Let X I ,  X,, . . . , X, b e  a sequence of n independent random variables,  X i  having the normal 

distribution N(xi;  p, a'). I f  

- 1  
n 

x =-(XI + x, + . . . + X,) , 

then the random variable 

2 = $(X - p ) / u  

has a standardized normal probability density function, N(z;  0, l ) .  Also i f  2 E a, where 

G = { z ; - c o < z <  a), 

and 

A ,  = (z; z < z,I 

and 

A = 12; Z >  z 2 ]  
2 

for z1 < z 2 ,  then 

1 
Prob {Z  E ( A ,  u A , ) " ]  = -Lz2 dt . 

d27.1 1 

With simple algebraic manipulation it follows that  

Prob (2 E ( A ,  u A , ) " )  = Prob (zn 5 $(E - p) /O  5 z 2 )  

= Prob ( z l O / &  5 (X - p) 5 z,D/vGI 

- Prob (X - z , D / ~ ~ S  p =< X - ~,~/fi) . 

(1.2) 

For z 2  = -2, = 1.96, the tables  of the cumulative normal distribution (Tables l a  and b) show that 

Prob 1-1.96 2 \/;;(? - p ) / ~  =< 1.,96) 

= Prob (si - 1.96 D / ~ ; S  p =< 2 + 1.96 U/d/nl 

0) 

= 1 - 2 1  f ( z )  dz = 1 - 2 f(z) dz  = 0.95 . 
1 . 9 6  
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If G- is known, each of the random variables 2 - 1.96  in and x + 1.96 ~-/fi is a statistic. 

The interval [x - 1.96 D / ~ K  x + 1.96 G-/$] is cal led a random interval. 

The  probability statement specified by (1.3) may be read as follows: Prior to the performance 

+ 1.96 CJ/$] of an experiment, the probability is 0.95 that  the random interval [E - 1.96 u/+, 

includes the unknown fixed point (parameter) p. 
Up to this  point the discussion has  been a probabilistic one in  the s e n s e  that the determina- 

tion of a probability densi ty  function for x and a random interval are merely exerc ises  in  proba- 

bility. The application of these  concepts to the realizations of an experiment can resul t  i n  

s ta t i s t ica l  inferences. 
- 

Suppose a n  experiment yields X, = x l ,  X 2  = x,, . . . , X n  = xn,  with a sample value of X given 

by X = (x, + x2 + . . . + xn)/n. If both X and Dare known, the interval [X - 1.96 u / f i  % + 1.96 

~-/fi] will have known end points. It should be obvious that 0.95 is not the probability that this  

specific interval includes the parameter p. In fact ,  ei ther p is in th i s  interval or it  is not i n  th i s  

interval. 

However, the fact  that ,  prior to the performance of the experiment, there w a s  a probability of 
_ -  

0.95 that the random interval [x - 1.96 u / d n ,  X i- 1.96 u /d i ]  would include the parameter p, 
l eads  one to have the same degree of faith in  the specif ic  interval [ X -  1.96 ~/fi, X+ 1.96 u/$]. 

This  faith or confidence in the observed interval [ X -  1.96 01 ’6  F +  1.96 c/fi] is the reason it 

is referred to as a 95% confidence interval. The  number 0.95 is cal led the confidence coefficient. 

The confidence coefficient is equal to the probability that the random interval includes the param- 

eter.  One may, of course,  obtain 90 or 99% confidence intervals for p. 

If CT is not known, the end points of the random interval would not  be statistics. Although the  

probability statement about the  random interval remains valid, a sample would not yield an interval 

with known end points. That  i s ,  when CJ is unknown a s ta t i s t ica l  inference about p does not 

appear to b e  feasible .  Fortunately,  a method does ex is t  for bypassing this obstacle .  

2. CONFIDENCE INTERVALS FOR A MEAN 

L e t  X I ,  X,, . . . , X n  be a sequence of n independent random variables,  X I  having the normal 

distribution N ( x l ;  p, c2) with both p (-m< p < a) and u2 (0 < 
E ( X l  - x)’/(n - 1 )  denote respectively the mean and variance of X,, . . . , X n .  T h e  problem is to 

find a confidence interval for p. 

< cc) unknown. Let  and S 2  = 

It can  b e  shown (1) that &(x - p)/G-has the normal distribution N ( 0 ,  l), (2) that  (n - 1 ) S 2 / u 2  

has  a chi-square distribution with n - 1 degrees  of freedom, and (3) that  f i(x - p)/uand 

(n - l)S2/c2 are independent. I t  can a l so  be shown that a random variable T may be  defined in 

t e r m s  of two such variables.  In fac t ,  

‘A statist ic is a function of random variables which does not depend upon an  unknown parameter. 
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= f i ( X  - p)/S 
6 ( X  - p ) / o  

T =  

h a s  a t distribution with n - 1 degrees of freedom, whatever the  value of u2 > 0 ( s e e  Appendix, 

Sect. 9 of th i s  lecture). 

For a given positive integer (n - 1) and a probability of 0.95, s ay ,  two values a and b (a < 6 )  

can  be found from a table of t h e  cumulative t distribution (Table 2) such  that 

(2.2) Prob { a  < T < b )  = Prob { a  < fi(x - p)/S < bt = 0.95 . 

Since the p.d.f. of t he  random variable T is symmetric about the vertical ax is ,  a and b are conven- 

tionally chosen s o  that a = -b, b > 0. If, for a = -b, the probability of th i s  event is written in 

the form 

Prob {Z - b S / f i <  p < + bS/$\ = 0.95 , (2.3) 

then the interval [x - b S / f i ,  x + bS/$] is a random interval having probability 0.95 of includ- 

ing the  unknown fixed point (parameter) p.  If the experimental values of X1,  X , ,  . . . , X n  are x l ,  

x,, . . . , xn, with 

n 
s2 = ( X i  - a,/(* - 1) , 

i= 1 

where 

n 
- x = x i / ”  , 

i= 1 

then the interval [(X - bs/$),  (X + bs/$)] is a 95% confidence interval for p,  for every c2 > 0 

( see  Table 2). 

Example: If n = 10, X = 3.22, s = 1.233, then the interval 

L3.22 - (2.262)(1.233)/m, 3.22 + (2.262)(1.233)/01 , 

or (2.34, 4.10), is a 95% confidence interval for p, where b = 2.262. 

3. CONFIDENCE INTERVALS FOR THE DIFFERENCE OF TWO MEANS 

The  random variable T may b e  used to obtain a confidence interval for the difference p1  - p ,  

between the means of two independent normal distributions, N ( x ;  pl, u 2 )  and N(y;  p 2 ,  c2), which 

have the  same (but unknown) variance, c2 * 

Let X I ,  Xz, . . . , X ,  and Y 1, Y, ,  . . I , Y ,  be  two sequences  of independent random variables 

having respectively the probability density functions N ( x ;  pl, u2) and N(y;  p 2 ,  c2). Denote the 
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means of the two sequences by 

four s t a t i s t i c s  a re  mutually independent. 

means p 1  and p 2  and variances 0 2 / n  and o 2 / m  respectively. Accordingly, their difference x - ? 
is normally distributed with mean p l  - p2 and variance D 2 / n  + c 2 / m .  Then the  random variable 

and and the  variances by Sx and S i  respectively. T h e s e  

Moreover, and y are  independently distributed with 

h a s  the  normal distribution N ( 0 ,  1). Furthermore ( n  - 1)S1/c2 and ( m  - ~ ) S ; / C J ~  have independent 

chi-square distributions with n - 1 and m - 1 degrees  of freedom respectively,  so that  their sum 

has  a chi-square distribution with n + m - 2 degrees of freedom. It follows that the random 

variable 

(3.2) 

has  a t distribution with n + m - 2 degrees  of freedom. 

As in  the earlier part  of th i s  d i scuss ion ,  a posit ive number b can be found such that 

Prob {-b < T < b f  = 0.95. 

If 

this probability may be written 

Prob {(x - L) - bS,  < 01, - p 2 )  < (E - y )  + bS, { = 0.95 . 

I t  follows that the  random interval I(x - r) - bS,, (? - y )  + bS, h a s  a probability 0.95 of in- 

cluding the unknown fixed point p1 - p 2 .  As usual, the experimental values of the  means and 

2' 
'If X and X are independent random variables, Var(X1 + X ) = Var(X1 - X z )  = Var X + Var X 

1 2 2 1 
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variances will provide a 95% confidence interval for p l  - p2 when the variances of the two inde- 

pendent normal distributions are  unknown but equal. 

Example: 

n = 10, m = 7, TT = 4.2, 7 = 3.4 ; 

SI = 54.44, si = 37.33, d =  j7 - 7 = 0.8; 

Sd = /Is-$ 9(54.44) + 6(37.33) 1 
= Jll.sss= 3.4 ; 

degrees  of freedom = 15, b = 1.753 . 

The 90% confidence interval for p1 - p z  is 

(-5.16, 6.76). 

We sha l l  not consider the difficult ies encountered when the variances are unequal. It will be 

sufficient to s a y  that  exac t  confidence intervals  are difficult to evaluate  when this si tuation pre- 

vails. One approach to this  problem yie lds  the Behrens-Fisher solution. F o r  m = n 

and 

h a s  a t distribution with 2(n - 1) degrees  of freedom. 

4. CONFIDENCE INTERVALS FOR A VARIANCE 

Consider a sequence of n independent random variables X 1 ,  X , ,  . . . , X n  which have the 

normal distributions N ( x i ;  p, oz). The random variable 

n 
Y = (Xi - p ) * / d  

i =  1 

has  a chi-square probability density function with n degrees of freedom (see Appendix, Sect. 9). 

For a given probability, s a y  0.95, and for the fixed posit ive integer n ,  values of a and b (0 < a < b) 

may be determined from the table of t h e  chi-square distribution (Table 3) so  that 

Prob {a < Y < b ]  = 0.95 , 
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or 

(Xi - p)’/u‘ < 
i= 1 

or 

If p is  known, then both z(Xz - ~ ) ~ / b  and x ( X l  - p) ’ /a  are s ta t i s t ics .  Moreover, [ z ( X z  - p)’/b,  

z(Xl - p)‘/a] is a random interval having probability of 0.95 of including the unknown parameter u2.  

When the random experiment has  been run, then the particular interval [ z ( x z  - p)’/b, z ( x Z  - p)’/a] 

is a 95% confidence interval for u‘. 

What is the si tuation, however, when p is  unknown? 

The fact that  (n - ~ ) S ’ / D ’  h a s  a chi-square distribution with n - 1 degrees  of freedom, what- 

ever the value of p, implies that  inferences can be made about the unknown variance CT‘ even though 

p is unknown. 

With some preassigned probability, s a y  0.98, a and b (0 < a < b) can be  found from tables  of 

the chi-square distribution s o  that 

Prob ( a  < (n - ~)S’/D’ < bj = 0.98 . (4.2) 

One convention for se lec t ing  a and b is to do s o  in such  a way that  

a, La yy) d y  = J f ( y )  dy  = 0.01, 
b 

or 

(4.3) 

Prob ( ( n  - 1)S’/c2 < a )  = 0.01 = Prob ( ( n  - l)S’/c~‘ > bj 

(see Table 3). Then 

Prob ( (n  - 1)S2/b < CT‘ < (n  - 1)S2/a)  = 0.98 , (4.4) 

s o  that [ (n  - 1)S2 /b ,  (n - l)S’/a] is a random interval having probability 0.98 of including the  

fixed but unknown parameter D’. After a random experiment is performed and X,  = x,, . . . , X n  = 

xn with 

s’ = z (Xi - X)’/(n - 1) , 

the  98% confidence interval for D‘ is 

[ (n  - 1 ) s 2 / b ,  ( n  - 1)s2 /a ]  . 

* 
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Example: 

n = 9, s 2  = 8.58 . 

The 90% confidence interval for u2 is given by 

8(8.58) 8(8.58) i,,,J,,b 
or (4.43, 25.12), where b = 15.507 and a = 2.733. 

5. CONFIDENCE INTERVALS FOR THE RATIO OF TWO VARIANCES 

L e t  X,, . . . , Xn and Y , ,  . . . , Y ,  be  two sequences of independent random variables having 

probability density functions N ( x ;  pl, u:) and N(y;  p 2 ,  ui) respectively.  Let the means of the 

two sequences b e  denoted by x and P and the variances by 

n 

s; = (Xi - X>Z/(n - 1) 
i= 1 

and 

The random variables (n - l)S;/u: and (m - l)Si/ui  are  independent and have chi-square distri- 

butions with n - 1 and m - 1 degrees  of freedom respectively. I t  follows, therefore, that  the 

random variable 

has  an F distribution with parameters n - 1 and m - 1 ( s e e  Appendix, Sect.  9). Thus,  for given 

values of n and m, and with a preassigned probability 0.95 (say), two numbers a and b (0 < a < b) 

can be determined from tab les  of the F distribution (Table 4a and b) ,  s o  that  

s ;/u; 
Prob { a  < s:/-r:< b] = 0.95 , 

or 

c 
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Accordingly, [ a S i / S ; ,  bS;/S:] is a random interval having probability 0.95 of including the fixed 

but unknown parameter D;/D;. 

If t h e  experimental values  of X 1 ,  . . . , X n  and Y , ,  . . . , Ym are xl, . . . , xn and y l ,  . . . , y ,  re- 

spectively,  and i f  

s 2  2 = z ( Y j  - j V / ( m  - 1) , 

then the interval [as i / s : ,  b s i / s ? ]  is a 95% copfidence interval for the ratio D;/D; of the two un- 

known variances. 

Example: Fina the 90% confidence interval for (D ; /D : )  gigen that 

n =  10, m =  5, s: = 20.0, si = 30.0, (si/s:)= 1 .5 .  

= l - S ” g ( f ) d f - J r n  g ( f )d f ,  
0 b 

where 

ha g ( f )  d f =  Prob < a) = Prob (i 
9 . 4  

= Prob { F 4 , 9  = 0.05 . (5.5) 

1 1 
-= 3.63, a =-. 
a 3.63 

Similarly b = 6.00 . 
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6. CONFIDENCE REGIONS FOR A VECTOR O F  p MEANS 

Define the p-dimensional random variable x ’ ~  a s  the vector 

x ’ =  Ex1, x2 ,  . . . , xpl 

whose elements are jointly distributed as the p v a r i a t e  normal distribution 

- p)’C--l(X - p )  for -a< x <a, 
1 

4(4 = 
(2 r)P’ 2 1 c 1 1 ’ 

1P 
7 D 1 2 . . . f f  

1 1  

. .  . .  . .  
u D 2 p .  . . 0- 

1P PP (6.3) 

On the bas i s  of a sample of s i z e  n from this population, es t imate  the mean vector p’by 

- -, x = [F1, X 2 ’  . . . , xpl 

where 

n 
- x i =  l / n  x . .  

11 
j =  1 

for a l l  i = 1, 2 ,  . . . , p ,  and the dispersion matrix 2 by 

S =  

f (6.4) 

3The notational conventions in multivariate analysis are such that the use  of lower-case letters for 
random variables a s  well a s  realizations of random variables is almost mandatory. Upper-case letters are 
used to designate matrices. 
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where 

for all i and k = 1, 2, . . . , p. 

The  confidence region for p is the  volume enclosed by the p-dimensional hyperellipsoid 

where F 

of freedom (0 5 P 5 1). T h e  risk incurred by falsely ass igning  the  point G1, p 2 ,  . . . , p p )  to th i s  

region is lOO(1 - P)%. 

is the upper lOO(1 - P)% point of the  F distribution with p and n - p degrees  
(1 -P;  P ,  " - P )  

- -  

7. CONFIDENCE REGIONS FOR A BIVARIATE VECTOR O F  MEANS 

When p = 2, the random vector x ' =  (x l ,  xz) is distributed as a bivariate normal with mean 

vector p ' =  (p l ,  p 2 )  and dispersion matrix 

Estimate p ' by  

K ' =  (Zl, jr2) 

and by 

p12 s 2 2 j  

where 

- 1 "  
x = - E x  , )  

n .  'J 
I =  1 

i n  
- 
x = L E  n .  x2; ' 

I= 1 

( X l i  - 3fJ2 2 1  S l 1 = s  1- 
n - 1 .  ]= 1 

i n  

(7 .3 )  

. 

r: ( X l j  - X,>(X . - 5;; ) s =- 
l 2  n - 1 .  21 2 

I =  1 
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The confidence region for p is the area enclosed by the  e l l i p se  

- 2(n - 1) 
n(n - 2) ( p -  x ) ’ S - - ’ ( p - F ) =  F ( l - p ;  2 ,  n-2) (7.4) 

The risk incurred by assigning the  point ( p l ,  p z )  t o  th i s  region is l O O ( 1  - /!I)%. 

An example of severa l  such confidence e l l ipses  calculated from da ta  collected on human 

chromosomes and plotted by the CALCOMP pen and ink plotter is presented in F ig .  1. 

ORNL DWG. 65-1411 

Fig. 1. Confidence Regions for the Mean Vectors of Chromosome Arm Lengths,  Cel l  811,  F.10. 
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9 .  APPENDIX 

9 .A  The Chi-square Distribution (x2): See Table  3 

L e t  Z,, Z,, . . . , Zfl be a sequence of n independent random variables e a c h  distributed as 

N(z; 0, 1). The probability density function of the random variable 

i s  

= o  

The corresponding cumulative distribution function is 

for y >  0, 

for y i - 0. 

(‘4.3) 

This  distribution is known a s  the x z  distribution. It contains one parameter n, which is denoted 

a s  the number of degrees  of freedom. 

9.B The t Distribution: See Table  2 

L e t  Z be a random variable which is N(z;  0, I ) ,  and l e t  Y be a random variable distributed as 

chi-square with n degrees  of freedom; and let Z and Y be  independent. The probability density 

function of the random variable 

z 
T=-- pz 

is 

for -a< t < co. 
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The corresponding cumulative distribution function is 

t 
G 2 ( t )  = Prob IT - 5 t = g 2  (w) dw . 0 3 . 3 )  

-a 

The t distribution is completely specified by the parameter n ,  the number of degrees of freedom 

associated with the random variable Y having the  chi-square distribution. 

9.C The F Distribution: See Table 4a and b 

Consider two independent chi-square variables U and Y having n 1  and n 2  degrees of freedom 

respectively. T h e  probability density function of the random variable 

is 

= o  

T h e  corresponding cumulative distribution function is 

for 0 < f < m ,  

elsewhere.  

T h e  F distribution is completely determined by two parameters n1 and n 2 ,  which are the degrees of 

freedom assoc ia ted  the  two chi-square variables. 
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- .o 
- .I 
- .2 

- '3 
- .4 
- -5 
- .6 
- ,7 
- *8 
- '9 
- 1.0 
- 1'1 
-1.2 
- 1.3 
- 1.4 
- 1.5 
- 1.6 
- 1.7 
-1.8 
- 1.9 
-2.0 
-2.1 
-2.2 
- 2.3 
-2.4 
- 2.5 
-2.6 
- 2'7 
-2.8 
- 2'9 
-3.0 
-3.1 
-3.2 
-33 
-3.4 
-3.5 
-3.6 
-3.7 
-3-8 
-3.9 
-4.0 
-4.1 
- 4.2 
-43 
- 4'4 
- 4 5  
- 4.6 
-4.7 
-4.8 
- 49 
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TABLE 1 a. THE CUMULATIVE NORMAL DISTRIBUTION FUNCTION 

Y 



67 

TABLE 1 b. THE CUMULATIVE NORMAL DISTRIBUTION FUNCTION 

z 

'0 
'I  

.2 

'3 
'4 
'5 
.6 
'7 
4 
'9 

I '0 

1.1 

1'2 

I '3 
I '4 
I '5 
I .6 
1'7 
1.8 
"9 
2.0 

2.1 

2.2 

2.3 
2'4 
2.5 
2.6 
2'7 
2.8 
2'9 
3'0 
3'1 
3'2 
3'3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4'0 
4" 
4'2 
4'3 
4'4 
4'5 
4.6 
4'7 
4.8 
4'9 

1 2  
~ ( z )  = P r  I Z  I 21 = - dx for 0.00 5 z 2 4.99. 6 - m  

.97982 

.98422 
'98778 

'9' 2857 
.92 4614 
'9'5975 

.9'78'4 

-9' 0613 

'9' 7020 

'92 841 I 

FXsnipk: F(2.57) 7 . 9 *4915  = 0.994915 

0 +I 
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I 

2 

3 
4 
5 

6 
7 
8 
9 

I O  

11 

1 2  

13 
14 
15 

16 

68 

TABLE 2. DISTRIBUTION OF t 

P = Probability. 
-9  *8  '7 * 6  ' 5  '4 '3 ' 2  ' I  ' 0 5  '02 SO1 a 0 0 1  

-690 
.689 
-688 
*688 
.687 

-686 
-686 
-685 
e685 
.684 

.684 
-684 
a683 
-683 
a683 

-681 
'679 
'677 
'674 

1-376 1'963 3'078 6.314 
1.061 1.386 1.886 2.920 
'978 1.250 1.638 2-353 
-941 1.190 1.533 2.132 
~ 9 2 0  1.156 1.476 2.015 

-906 1.134 1'440 1'943 
e896 I ' l l 9  1.415 1.895 
-889 1.108 1'397 1.860 

'879 1.093 1'372 1.812 
-883 1.100 1-383 1.833 

-876 1.088 1.363 1.796 
-873 1.083 1.356 1.782 

-868 1.076 1.345 1-761 
-866 1.074 1.341 

~870 1'079 1'350 1.771 

1 . 0 7 1  
1.069 
1.067 
1.066 
1.064 

1.063 
1.061 
1.060 
1'059 
1.058 

1.058 
1.057 
1.056 
1.055 

1'055 

1.050 
1.046 
1.041 
1.036 

1.337 
1.333 
1'330 
1.328 
1'325 

1.323 
1.321 
1.319 
1.318 
1.316 

1.315 
1.314 
1.313 
1.311 
1.310 

1.303 
I. 296 
1.289 
1'282 

I' 746 
I' 740 
1'734 
1.729 
1.725 

1.721 

1.717 

1'714 
1 . 7 1 1  

1.708 

I *  706 
"703 
1.701 

1.699 
1.697 

1.684 
1.671 
1-658 
1.645 

12.706 31.821 63,657 636.619 
4'303 6.965 9 .925  

2.776 3747 4'604 
2.571 3'365 4'032 

2'447 3'143 3'707 
2.365 2'998 3'499 
2.306 2.896 3'355 

2.821 3.250 
2.228 2-764 3'169 

2.201- 2.718 3'106 
2.179 2.681 3'055 
2.160 2.650 3.012 
2'145 2.624 2'977 
2.131 2.602 2.947 

2.120 2'583 2.921 
2.110 2.567 2.898 
2.101 2-552 2.878 

3.182 4'541 5.841 

2.093 2'539 2.861 
2.086 2.528 2'845 

2.080 2.518 2.831 
2.074 2.508 2.819 
2.069 2.500 2.807 
2,064 2'492 2'797 
2.060 2-485 2.787 

2.056 2.479 2'779 

2.048 2.467 2'763 
2.045 2.462 2-756 
2.042 2.457 2.750 

2.052 2'473 2.771 

2'021 2'423 2'704 
i.000 2'390 2.660 
1.980 2-358 2.617 
1.960 2.326 2.576 

31.598 

6.859 

5'959 
5'40.5 
5.041 
4.781 
4'587 

4'437 
4.318 
4.221 
4.140 
4'073 

4'01.5 
3'965 
3'922 
3'883 
3.850 

3.819 
3'792 
3'767 
3' 745 
3'725 

3'707 
3' 690 
3'674 
3'659 
3.646 

3.551 
3' 460 
3'373 
.3'291 

12-941 
8.610 

b T  
-b 0 

m 
= 2 4 f ( t )  dt 
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TABLE 3.  DISTRIBUTION OF x L  

deg of 
freedom - 

I 

3 
4 
5 

6 
7 
8 
9 
10 

I1 

1 2  

13 
'4 
15 

16 
1 7  
18 
'9 
20 

21 

2 2  

23 
24 
25 

26 
27 
28 
29 
30 

'99 

- 0 ~ 1 5 ;  

' 0 2 0 1  

* I 1 5  

'297 
'554 

,872 
1.239 
1.646 
2.088 
2.558 

3'053 
3'571 
4.107 
4.660 
5'229 

5.812 
6.408 
7.015 
7'633 
8.260 

8,897 
9'542 
10. 196 
10.856 

12.198 

11.524 

12'879 
13'565 
14.256 
14'953 

-0~628 
'0404 

-185 
'429 
'752  

1'134 
1.564 
2-032 
2'532 
3'059 

3' 609 
4.178 
4' 765 
5'368 
5'985 

6.614 
7 ' 2 5 5  
7.906 
8.567 
9'237 

9'915 
10.600 
11.293 
11.992 
12.697 

13' 409 

11'847 
15'574 
16.306 

14.125 

*003Y3 
-103 
'352 
.711  

1.145 

1.635 
2.167 
2'733 
3'325 
3'940 

4'575 
5.226 
5'892 
6.571 

7'962 

7.261 

8.672 
9. 390 

10.117 

10.851 

12.338 
13'091 
13'848 
14'611 

15.379 
16.151 
16.928 

18.493 

11.591 

17' 708 

'90 
- 

*or58 

094 
1.064 
1.610 

3.204 
2.833 
3-490 
4'168 

'211  

4'865 

5.578 
6-304 

6.547 

7.042 
7'790 

9.312 
10.085 
10.865 
11.651 
12.443 

13'240 
14.041 
14848 
15.659 
16.473 

I 7- 292 
18.114 
18.939 
19. 768 
20'599 

P = Probability. 
-80 - 7 0  - 5 0  '30 '20 ' I O  ' 05  ' 02  '01 '001 

- - - - - . . - - - ._ __ .__- 

e0642 .148 '455 1.074 1.642 2.706 3.841 5.412 6.635 1 0 8 2 7  
'446 '713 1.386 2.408 3'219 4.605 5.991 7.824 9 . 2 1 0  13'815 
1.005 1.424 2.366 3'665 4'642 6.251 7.815 9.837 11.345 16.268 
1.649 2.195 3.357 4'878 5.989 7779 9.488 11.668 13'277 18,465 
2.343 3.000 4.351 6.064 7.289 9.236 Ir.ojo 13'388 15.086 20.517 

3.070 3'828 5.348 7.231 8.558 10.645 12.592 15.033 16.812 21.457 
3 ' 8 2 2  4.671 6.346 8.383 9.803 12.017 14.06; 16.622 18.475 24'322 
4'594 5.527 7-344 9524 11*030 13.362 15.507 18.168 20.090 26.125 
5'380 6.393 8.343 10.656 1 2 . 2 ~ 2  14.684 16.919 19.679 21-666 27'877 
6.179 7.267 9.332 11.781 13'442 15.987 18.307 21.161 23'209 29.588 

6.989 8.148 10.341 12.899 14.631 17275 19.675 22.618 24'725 31.264 

8.634 9926 12.340 I ~ I I ~  16.985 19.812 22-362 25.472 27.688 33'528 
9.467 10.821 13'339 16.222 18.151 21.064 23'685 26.873 29.141 36.123 

10.307 11.721 14.339 17.32' 19.311 22.307 24-996 28.259 30.578 37-697 

11.152 12.624 15'338 18.418 20.465 23'542 26.296 29.633 32.000 39.252 
1 2 ~ 0 0 2  13'531 16.338 r y 5 1 1  21.615 24.769 27'587 30'995 33-409 40'790 
12.857 14'440 17.338 20.601 22.760 25'989 28.869 32.346 34'805 42.312 
13.716 15.352 18.338 21.689 23.900 27.204 30.144 33'687 36.191 43.820 
14378 16.266 19'337 22.775 25.038 28.412 31.410 35.020 37.566 45.315 

15.4~5 17.182 20'337 23'858 26.171 29.615 32.671 36.343 38.932 46.797 
16.314 18.101 21.337 24.9.39 27.301 30.813 3x924 37.659 40.289 48.268 
17.187 19*021 22'337 26.018 28-429 32'007 35.172 38.968 41.638 49'728 
18.062 19.943 2x337 27.096 2y553 33.196 36.415 40.270 42.980 51*1;9 
18.940 20.867 24.337 28.172 30.675 34.382 37.652 41.566 44.314 52.620 

7'807 9'034 11'340 I4.OII 15.812 18.549 21.026 24'054 26.217 32'909 

19.820 21.792 25'336 29.246 31.795 35.563 38.885 42.856 45.642 51*052 
20.703 22.719 26-336 30.319 32.912 36.741 40.113 44.140 46.963 55-476 
21.588 23'647 27.336 31.391 3-1'027 37.916 41.337 45.419 48.278 56.893 
22'475 2.)'577 28.336 32.461 35.139 30.087 42.557 46.693 49.588 58'.302 
23'364 25.508 23.336 33'530 36.250 40.256 43'773 47.962 5o.Sg2 59'703 
... . - __ - -- - -  

For larger values of e, the expression d2xa-42e- I may be used as a normal deviate with unit variance, remembering that 
the probability for x' corresponds with that of B single tail of the normal curve. 

0 Y 
b 



TABLE 4a. DISTRIBUTION OF I? 

0 0  b 
Upper 5 % points F 

- 
12 

__ 
4 
- 

5 

- 
7 

__ 
8 

- 
9 

- 
10 

- 
24 

__ 
49.1 
19.45 
8.64 
5.77 

4.53 
3.84 
3.41 
3.12 
2.90 

2.74 
2.61 
2.51 
2.42 
2.35 

2.29 
2.24 
2.19 
2.15 
2.11 

2.08 
2.05 
2.03 
2.01 
1.98 

1.96 
1.95 
1.93 
1.91 
1.90 

1.89 
l.i9 
1.70 
1.61 
1.52 
__ 

- 
40 

_L 

60 

- 
120 1 

- 
161.4 
18.51 
10.13 
7.71 

6.61 
6.99 
6.69 
6.32 
6.12 

4-96 
4.84 
4.75 
4.67 
4.60 

4.54 
4.49 
4.45 
4.41 
4.38 

4.35 
4.32 
4.30 
4-28 
4.26 

4-24 
4.23 
4.21 
4-20 
4.18 

4-17 
4.08 
4.00 
8.92 
8.84 

2 
- 
.99.5 
19.00 
9.55 
6.94 

6.79 
6.14 
4.74 
4.40 
4.20 

4-10 
3.98 
3.89 
3.81 
3.74 

3.68 
3.63 
369 
3.55 
3.52 

3.49 
3.47 
3.44 
3.42 
340 

3.39 
3.37 
3.35 
3.34 
333 

3.32 
3.23 
3.15 
3.07 
3.00 

3 
- 
115.7 
19.16 
9.28 
6.59 

5.41 
4.76 
4.35 
4.07 
3.86 

3.71 
3.59 
3.49 
3.41 
3.34 

3.29 
3.24 
3.20 
3.16 
3.13 

3.10 
3.07 
3.05 
3.03 
3.01 

2.99 
2.98 
2.96 
2.95 
2.93 

2.92 
2.84 
2.76 
2.68 
2.60 
- 

6 15 
- 
45.9 
19.43 
8.70 
5.86 

4.62 
3.94 
3.51 
3.22 
3.01 

2.85 
2.72 
2.62 
2.53 
2.46 

2.40 
2.35 
2.31 
2.27 
2.23 

2.20 
2.18 
2.15 
2.13 
2.11 

2.09 
2.07 
2.06 
2.04 
2.03 

2.01 
1.92 
1.81 
1.75 

20 30 
- 

1 
2 
3 
4 

5 
6 
7 
0 
9 

10 
11 
12 
13 
14 

15 
16 
1'1 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
10 
60 

120 
a3 

24.6 
19.25 
9.11 
6.39 

5.19 
4.53 
4.12 

@ 
3.48 
3.36 
3.26 
3.18 
3.11 

3.06 
3.01 
2.96 
2.93 
2.90 

2.87 
2.84 
2.82 
2.80 
2.78 

2.76 
2.74 
2.73 
2.71 
2.70 

2.69 
2.61 
2.53 
245 
2.37 

30.2 
19.30 
9.01 
6.26 

6.05 
4.39 
3.97 
3.69 
3.48 

3.33 
3.20 
3.11 
3.03 
2.96 

2.90 
2.85 
241 
2.77 
2.74 

2.71 
2.68 
2.66 
2.64 
2.62 

2.60 
2.59 
2.57 
2.56 
2.55 

2.53 
2.45 
2.37 
2.29 
2.21 

134.0 
19.33 
8.94 
6.16 

4.95 
4.28 
3.87 
3.58 
3.37 

3.22 
3.09 
3.00 
2.92 
245 

2.79 
2.74 
2.70 
2.66 
2.63 

2.60 
2.57 
2.55 
2-53 
2.51 

2.49 
2.47 
2.46 
2.45 
2.43 

2.42 
2.34 
2.25 
2.17 
2.10 
-_ 

36.8 
19.35 
8.89 
6.09 

488 
4.21 
3.79 
3.50 
329 

314 
3.01 
2.91 
2.83 
2,76 

2.71 
2.66 
2.61 
2.58 
2.54 

2.51 
2.49 
2.46 
2.44 
2.42 

2.40 
2.39 
2.37 
2.36 
2.35 

2.33 
2.25 
2.17 
2.09 
2.01 

!38.9 
19.37 
8.85 
6.04 

4.82 
4.15 
3.73 
3.44 
3.23 

3.07 
2.95 
2.85 
2.77 
2.70 

2.64 
2.59 
2.55 
2.51 
2.48 

2.45 
2.42 
2.40 
2.37 
2.36 

2.34 
2.32 
2.31 
2.29 
2.28 

2.27 
2.18 
2.10 
2.02 
1.94 
__ 

'40.5 
19.38 

@ 
4.77 
4.10 
3.68 
3.39 
3.18 

3.02 
2.90 
2.80 
2.71 
2.65 

2.59 
2.54 
2.49 
2.46 
2.42 

2.39 
2.37 
2.34 
2.32 
2.30 

2.28 
2.27 
2.25 
2.24 
2.22 

2.21 
2.12 
2.04 
1.96 

41.9 
19.40 
8.79 
5.96 

4.74 
4.06 
3.64 
3.35 
3.14 

2.98 
2.85 
2.75 
2.67 
2.60 

2.54 
2.49 
2.45 
2.41 
2.38 

2.35 
2.32 
2.30 
2.27 
2.25 

2.24 
2.22 
2.20 
2.19 
2.18 

2.16 
2.08 
1.99 
1.91 

!43.9 
19.41 
8.74 
5.91 

4.68 

3.57 
3.28 
3.07 

2.91 
2.79 
2.69 
2.60 
2.53 

2.48 
2.42 
2.38 
2.34 
2.31 

2.28 
2.25 
2.23 
2.20 
2.18 

2.16 
2.15 
2.13 
2.12 
2.10 

2.09 
2.00 
1.92 
1.83 
1.75 

4.00 

__ 

!48.0 
19.45 
8.66 
5.811 

4.56 
3.87 
3.44 
3.15 
2.94 

2.77 
2.65 
2.54 
2.46 
2.39 

2.33 
2.28 
2.23 
2.19 
2.16 

2.12 
2.10 
2.07 
2.05 
2.03 

2.01 
1.99 
1.97 
1.96 
1.94 

1.93 
1.84 
1.75 
1.66 

!50-1 
19.46 
8.62 
5.78 

4.50 
3.81 
3.38 
3.08 
2.86 

2.70 
2.57 
2.47 
2.38 
2.31 

2.25 
2.19 
2.15 
2.11 
2.07 

2.04 
2.01 
1.98 
1.96 
1.94 

1.92 
1.90 
1.88 
147 
145 

1.84 
1.74 
1.65 
1.55 
146 

'51.1 
19.47 
8.59 
5.72 

4.46 
3.77 
3.34 
3.04 
2.83 

2.66 
2.53 
2.43 
2.34 
2.27 

2.20 
2.15 
2.10 
2.06 
2.03 

1.99 
1.96 
1.94 
1.91 
1.89 

1.87 
1.85 
1.84 
1.82 
1.81 

1.79 
1.69 
1.59 
1.50 
1.39 

52.2 
19.41 
8.5i 
5.6t 

4.42 
3.74 
3.3c 
3.01 
2-79 

2.62 
2.49 
2.38 

2.22 

2.16 
2.11 
2.06 
2.02 
1.98 

1.95 
1.92 
1.89 
1.86 
1.84 

1.82 
1.80 
1.79 
1.77 
1.75 

1.74 
1.64 
1.53 
1.43 
1.33 

2.311 

!53.3 
19.49 
8.55 
5.66 

4.40 

3.27 
2.91 
2.76 

2.58 
2.45 
2.34 
2.25 
218 

2.11 
2.06 
2.01 
1.97 
1.93 

1.90 
1.87 
1.84 
1.81 
1.79 

1.77 
1.75 
1.73 
1.71 
1.70 

1.68 
1.58 
147 
1.35 
1.22 

3.711 

151.3 
19.50 
8.53 
5.63 

4.36 
3.67 
3.23 
2.93 
2.71 

2.54 
2.40 
2.30 
2.21 
2.1: 

2.05 
2.01 
1.9f 
1.92 
1.88 

1.84 
1.81 
1.78 
1.76 
1.73 

1.71 
1.69 
1.67 
1.65 
1.64 

1.62 
1.51 
1.39 
1.25 
1.00 
- 

1.88 1.83 
I ____- 

1.67 1.57 
I 

B=a-3/g*, where 8:=S,/vl and 8; =S,/vr are independent mean squares estimating a common vnrinncc u9 and based on u1 and ~,degrees of freedom, respcctivoly. 4-h "¶ 
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625 
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28-71 

TABLE 4b. DISTRIBUTION OF F 

5 
___- 

5764 
99.30 
28.24 

- 
1 
2 
3 
4 

5 
6 
7 
8 
5 

10 
1% 
E3 
13 
E4 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
40 
60 

120 
03 

2.36 
2.33 
2.29, 
2.26, 

__ 
1 
- 
052 
98.50 
3412 
21.20 

16,26 
1375 
12.25 
11.26 
10.56 

10.04 
945 
9.33 
9.07 
8.86 

8.68 
8.53 
8.40 
8.29 
8.18 

8.10 
8.02 
7.95 
7.88 
7.82 

7.77 
7.72 
7.68 
7.64 
7.60 

1-56 
7.31 
1-08 
8-85 
8-63 

2.27 
2.23 
2.20 
2.17 

I 

982 
99.37 
27.49 
14.80 

10.29 
8.10 
6.84 
6.03 
5.47 

6.06 
4.74 
4.50 
4.30 
4.14 

4.00 
3.89 
3.79 
3.71 
3-63 

2 1 3  -- 
6022 

99.39 
27.35 
14.66 

10.16 
7.98 
6.72 
5.91 
5.35 

4.94 
4.63 
4.39 
4.19 
4.03 

3.89 
3.78 
3.68 
3.60 
3.52 

999.5 
99.00 
30.82 
18.00 

13.27 
10.92 
9.55 
8.65 
8.02 

7.56 
7.21 
6.93 
6.70 
6.51 

6.36 
6.23 
6.11 
6.01 
6.93 

6.85 
6.78 
(1.72 
6.66 
5 4 1  

6.67 
6.53 
6.49 
5.45 
6.42 

6.39 
6.18 
4.98 
4.79 
4.61 

5403 
99.17 
29.46 
16.69 

12.06 
9.78 
8.45 
7.59 
6.99 

6.55 
6.22 
695 
6.74 
6.56 

6.42 
5.29 
6.18 
5.09 
5.01 

4.94 
4.87 
4.82 
4.76 
4.72 

4.68 
4.64 
4.60 
4.57 
454 

4.51 
4.31 
4.13 
3.95 
3.78 

859 
99.33 
27.91 
15.21 

10.67 
8.47 
7.19 
6.37 
6.80 

5.39 
5.07 
4.82 
4.62 
4.46 

4.32 
4.20 
4.10 
4.01 
3.94 

3.87 
3.81 
3.76 
3.71 
3.67 

3.63 
3.59 
3.56 
3.53 
3.50 

15.52 

10.97 
8.75 
7.46 
6.63 
6.06 

6.64 
5.32 
5.06 
4.86 
4.69 

4.56 
444 
4.34 
4.25 
4.17 

4.10 
4.04 
3.99 
3.94 
3.90 

3.85 
3.82 
3.78 
3.75 
3.73 

3.70 
3.51 
3.34 
3.17 
3.02 

6928 
99.36 
27.67 
14.98 

10.46 
8.26 
6.99 
6-18 
5.61 

6.20 
4.89 
4.64 
4.44 
4.28 

4.14 
4.03 
3.93 
3.84 
3.77 

3.70 
3.64 
3.59 
3.54 
3.50 

3.46 
3.42 
3.39 
3.36 
3.33 

15.98 

11.39 
9.15 
7.85 
7.01 
6.42 

5.99 
5.67 
5.41 
6.21 
5.04 

4.89 
4.77 
4.67 
4.58- 
4.50 

4.43 
4.37 
4.31 
4.26 
4.22 

4.18 
4.14 
4.11 
4.07 
4.04 

4.02 
3.83 
345 
3.48 
3.32 

2.96 2.79 
2.801 2.64 

3.56 
3.51 
3.45 
3.41 
3.36 

3.32 
3.29 

I 

3.46 
3.40 
3.35 
3.30 
3.26 

3.22 
3.18 

3.17 
2.99 
2432 
2.66 
2.51 

3.07 
2.89 
2.72 
2.56 
2.41 

3.26 3.15 

3.20 3.09 
3.231 3.12 

- 
10 
- 
056 

99.40 
27.23 
1455 

10.05 
7.87 
6.62 
6.81 
5.26 

4.85 
4.54 
4.30 
410 
3.94 

3.80 
3.69 
3.59 
3.51 
3.43 

3.37 
3.31 
3.26 
3.21 
3.17 

3.13 
3.09 
3.06 
3.03 
3.00 

2.98 
2.80 
2.63 
2.47 
2.32 
- 

12 
- 
106 
99.42 
27.0: 
14-37 

9.8G 
7.72 
6.47 
5.61 
5.11 

4.71 
4.40 
4.16 
3.96 
3.80 

3.67 
3.55 
3.46 
3.37 
3.30 

3.23 
3.17 
3.12 
3.07 
3.03 

2.99 
2.96 
2.93 
2.90 
2.87 

2.84 
2.66 
2.50 
2.34 
2.18 

__ 

15 
- 
i157 

99.43 
26.87 
14.20 

9.72 
7.56 
6.31 
5.52 
4.96 

4.56 
4.25 
4.01 
3.82 
3.66 

3.52 
3.41 
3.31 
3.23 
3.15 

3.09 
3.03 
2.98 
2.93 
2.89 

2.85 
2.81 
2.78 
2.75 
2.73 

2.70 
2.52 
2.35 
2.19 
2.04 

__ 

20 
- 
1209 

99.4: 
26.6s 
14.01 

9.5: 
7.4( 
6.1t 
5.3t 
4.81 

4.41 
4.1C 
3.8E 
3.6€ 
3.51 

3.37 
3.26 
3.16 

3.00 

2.94 
2.88 
2.83 
2.78 
2.74 

2.70 
2.66 
2.63 
2.60 
2.57 

2.55 
2.37 
2.20 
2.03 
1.88 

3.08 

24 
- 
1235 

99.46 

13.93 

9.47 
7.31 
6.07 

4.73 

4.33 
4.02 
3.78 
3.59 
3.43 

3.29 
3-18 
3.08 
3.00 
2.92 

2.86 
2.80 
2.75 
2.70 
2.66 

2.62 
2.58 
2.55 
2.52 
2.49 

2.47 
2.29 
2.12 
1.95 
1.79 

26.60 

6.28 

- 

30 
- 
1261 

99.4: 
2&5( 
138e 

9.3t 
7.2: 
5.9s 
5.2( 
4.6t 

4.21 
3.94 
3.7c 
3.51 
3.35 

3.21 
3.10 
3.011 
2.92 
2.84 

2.78 
2-72 
2.67 
2.62 
2.58 

2.54 
2.50 
2.47 
2.44 
2.41 

2.39 
2.20 
2.03 
1.86 
1.70 

- 
40 
- 
1287 

99.47 
26.41 
13.73 

9.29 
7.14 
6.91 
6.12 
4.57 

4.17 
3.86 
3.62 
3.43 
3.27 

3.13 
3.02 
2.92 
244 
2.76 

2.69 
2.64 
2.58 
2.54 
2.49 

2.45 
2.42 
2.38 
2.35 
2.33 

2.30 
2.11 
1.94 
1.76 
1.59 

60 

i313 
99.48 
26.32 
13.65 

9.20 
7.06 
6.82 
5.03 
4.48 

4.08 
3.78 
364 
3.34 
3.18 

3-05 
2.93 
2.83 
2.75 
2-67 

2.61 
2-55 
2-50 
2.45 
2-40 

120 

1339 
99.4! 
26.21 
13.5t 

9.11 
6.9; 
674 
4.9: 
4.4( 

4M 
3.65 
342 
3.25 
309 

2.90 
2.84 
2.75 
2.66 
2.58 

2.52 
2.46 
2.40 
2.35 
2.31 

-7 3366 
99.50 I 

1 
26.13 
13.46 

9.02 
6.88 ' 
5.65, 
4.86 
4.31 , 
3.91 

3.36 
3.17 
3.00 

2.87 
2.75 
2.65 
2.57 
2.49 

2.42 
2.36 
2.31 
2.26 
2.21 

2.17 
2.13 
2.10 
2.06 
2.03 

2.01 
1.80 
1.60 
1.38 
1.00 

1 

3.60 

F=.:-S ". where a=SJv, and e;=S,/v, are independent mean squares estimating a conunon varianco ut nnd based on I,, and v, degrees of freedom, respectively. a#-",/.. 



LECTURE V: DISTRIBUTION-FREE TESTS 

W. E. Lever 

1.  INTRODUCTION 

T h e  purpose of this lecture will be  to acquaint you with some of the poss ib le  u s e s  of distri- 

bution-free t e s t s .  Roughly speaking, a distribution-free t e s t  is one which does not make any 

assumptions about the  prec ise  form of the  populations which a r e  being sampled. However, in 

many cases the  underlying distribution functions must b e  assumed t o  be continuous and/or to 

have the same form or to be symmetrical about t he  same point. 

The reason that we do  not  need to make ex tens ive  assumptions about the distribution func- 

tions is that the magnitudes of the  observations a re  not used directly in  the tes t .  Instead, w e  

use  the ranks, frequency, or some other such  attribute of the original observations to provide the 

information used by the  t e s t  s ta t i s t ic .  

Given these  types of measurements, distribution-free t e s t s  a re  usually concerned with 

medians, ranges,  e tc . ,  instead of the  parameters of t h e  distribution. 

However, if the  experimenter h a s  definite a priori knowledge of the parametric form of the  

distribution from which h is  observations arise,  he  should definitely u s e  the  c l a s s i ca l  t e s t  pro- 

cedures and not the distribution-free t e s t  procedures. 

2. ADVANTAGES AND DISADVANTAGES OF DISTRIBUTION-FREE TESTS 

Now distribution-free t e s t s  have severa l  advantages and disadvantages in relation to  classical 

testing procedures. Some of t h e  advantages are as follows: (1) Distribution-free t e s t s  are usually 

much eas i e r  to derive,  s i n c e  they can b e  derived by  u s e  of combinatorial formulas instead of t he  

complex mathematics usually needed to derive t h e  classical tes t s .  (2) T h e  computations needed 

for distribution-free t e s t s  a re  usually much eas ie r  than for the classical t e s t s ,  and they a re  

usually much faster to apply for small and moderate samples.  (3) Since distribution-free 

t e s t s  a r e  based on fewer and less elaborate assumptions than the classical t e s t s ,  they can  

be legitimately applied t o  a much larger class of populations. (4) If the assumption of 

continuous distributions is violated, both the fact and the  degree of the  violation become 

readily apparent from the  ex is tence  of extensive tied observations in the observed data. 

Checks of th i s  sort  a r e  not available to the experimenter to advise  him that a parametric 

assumption h a s  been violated. (5) Generally, distribution-free t e s t s  have a much wider 

range of possible measurements which can be  used. 

Now that w e  have  considered some of t h e  good points of distribution-free tes t s ,  l e t  u s  con- 

sider some of their disadvantages.  (1) When a large number of similar tests are  to b e  conducted 

using a computer rather than a desk calculator,  classical t e s t s  will usually b e  faster to do  at all 

sample sizes. (2) Generally, distribution-free t e s t s  have decreas ing  s t a t i s t i ca l  efficiency relative 

to classical t e s t s  a s  the  sample size becomes large. (3)  Problems c a n  a r i se  with the  choice  of 
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a rejection region for the  tes t ,  s ince  the point probability of a distribution-free test statistic 

does not necessarily increase  as the test  s t a t i s t i c  approaches its most probable value. (4) Also, 

since the distribution of the t e s t  s t a t i s t i c  is usually discrete,  a value of the t e s t  s t a t i s t i c  for a 

preassigned level of significance a may not ex is t .  

T h e  advantages and disadvantages we have  j u s t  considered a re  very important factors to be 

considered when choosing between a distribution-free test and a c lass ica l  t e s t ,  but possibly the 

most important factor is the sample s ize .  Th i s  is true for the following reasons: For  small 

samples (e.g., N 5 - lo), distribution-free t e s t s  are easier to apply, as indicated before, and only 

slightly less efficient even i f  all the  assumptions of the c l a s s i ca l  t e s t  are met. But a t  these  

sample s i z e s ,  violations of the  assumptions for the  c l a s s i ca l  t e s t s  generally have their most 

serious effects and are most likely to go undetected. Thus, un less  one  h a s  some a priori 

knowledge that all the assumptions are valid for the  classical t e s t ,  the wise choice would 

usually appear to be a distribution-free test. For  larger samples (e.g., N > 30), some distribution- 

free t e s t s  still compare favorably with c l a s s i ca l  t e s t s ,  but many are time consuming. Also, in 

contrast to c l a s s i ca l  t e s t s  whose assumptions a re  met, their calculated or tabled probabilities 

may only be  approximate. In addition, t he  violations of the  assumptions for the  c l a s s i ca l  t e s t s  

will have become apparent, and in many cases their effect may have been negligible due to the 

properties of the central l i m i t  theorem. Thus  for large samples the wise  choice would be the 

c l a s s i c  a1 test .  

In the remainder of t h i s  lecture I will try to point out some of the  common types of distribution- 

free t e s t s ,  so  that you will have an indication where they can  be  applied. In e a c h  procedure con- 

sidered, I will consider the rationale behind the  procedure, t he  null hypothesis (i.e., the  hypothesis 

to be  tested), the necessary  assumptions, and the treatment of t ied observations. 

3 .  SIGN TEST 

T h e  sign test is a very simple and easily applied distribution-free t e s t  for the equality of the 

medians of two distributions. It requires that the  observations from the two distributions occur 

in pairs and that we be able to a t  l ea s t  observe the sign of t he  difference of these two observa- 

tions. 

T h e  rationale for the s ign  t e s t  is as follows: Suppose we have two random variables A and B 

and that n pairs of observations are taken on A and B. Then i f  the medians of the distributions 

of A and B are the same, the observed values of the  differences A, - Bi can  be either plus or 

minus with probability '/. Let r b e  the number of p lus  or minus signs,  whichever is fewer. Then 

the probability of obtaining r or fewer of the  appropriate s igns  i f  t he  medians are the  same is 
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Thus,  i f  q, 5 a/2,  where a is the  level of significance, we  would reject  the hypothesis that  the  

medians are equal. 

Formally the null hypothesis is that for every difference A i  - Bi, 

P ( A i  > B i )  = P ( A ,  < B i )  = f/* , 

that  i s ,  the distributions of A i  and B ,  have  equal medians. 

Fo r  the null hypothesis to hold, we must assume that P ( A ,  = B i )  = 0, that i s ,  there are n o  

zero differences. Also, the  differences A i  - Bi  must be assumed to be independent. 

However, even i f  the assumption that P(Ai  = Bi) = 0 holds, the lack of precise measurements 

may lead to some zero differences. If this does  happen, the most accepted procedure for handling 

this situation is to  ass ign  half of t he  zero differences plus s igns  and half minus s igns ,  dropping 

one zero difference i f  there is an odd number of them. 

For an example of the  application of the  s ign  test we will u s e  problem 7.3, p. 201, of Brownlee 

(1960). The  example is as follows: 

In a trial of two types of rain gages,  69  of type A and 12  of type B were distributed a t  random 

over a certain area. In a certain period 14 storms occurred, and the  average amounts of rain 

found on the two types of gages  were as shown in the  accompanying table. Now suppose we wish 

Storm 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 
1 3  
14 

1.38 
9.69 

0.39 
1.42 
0.54 
5.94 
0.59 
2.63 

2.44 
0.56 
0.69 
0.71 

0.95 
0.50 

Type B Sign of A - B 

1.42 
10.37 
0.39 
1.46 
0.55 
6.15 
0.61 
2.69 

2.68 
0.53 
0.72 
0.72 
0.93 
0.53 

+ 

+ 

to t e s t  at the 5% level of significance,  by u s e  of the s ign  t e s t ,  that  the  two gages are giving the  

same results.  

To apply the  sign t e s t  we  must be able to assume that the probability of a zero difference is 

zero and that the  differences are independent. Both of these assumptions are reasonable, s ince  

the gages would b e  measuring continuous variables and the  measurements are based on different 

storms. Note that in  this case we do not make the  assumption that the  distribution of poss ib le  

measurements is symmetrical. 

4 

I 



75 

4 

Now there a re  2 plus s igns ,  11 minus s igns ,  and 1 zero  difference. Then the  probability that 

we would only find 2 p lus  s i g n s  out of 13 differences (we disregard the one zero difference) is 

given by 

q ,  = 
( 13 JT) 1 l 3  = 0.011 < 0.0572 

i= 0 

Thus in  th i s  case we would reject  the hypothesis that  the two rain gages give the same results.  

Sign t e s t s  a re  also available for testing trend in  location, trend in  dispersion, and cyclical  

trend. 

4.  SIGNED RANK TEST 

T h e  next procedure we  will consider is again a t e s t  based on paired observations, but in this 

case we  will consider the rank of the  differences in  addition to the  s ign  of the  difference. T h i s  

i s  done by ranking the absolute values of t he  differences and then ass igning  the  s ign  of the dif- 

ference to t h e  rank. 

T h e  rationale behind the s igned  rank t e s t  is as  follows: Consider two random variables A and 

B which are sampled in pairs.  Either if the distributions of A and B a re  the same or i f  they a re  

ju s t  symmetrical about the same point, then there a r e  2" poss ib le  ways the s igns  could be ass igned  

to the observed ranks, where n is the number of differences. Thus,  i f  t he  distributions a re  the  

same or are symmetrical about the same point, we would expect t h e  sum of the  ranks with p lus  

s igns  to b e  about the same as the  sum of the  ranks with negative s igns ,  in  absolute value. 

For  t h e  t e s t  statistic let T be the absolute value of the sum of the  ranks with p lus  or minus 

signs,  whichever is smaller. We will reject the hypothesis that  the  two populations a re  the same 

or that they are symmetrical about the same point i f  the probability of a value of T less than or 

equal to the  observed T is less than a/2,  where a is the leve l  of significance. T a b l e s  of critical 

values of T are  given by Wilcoxon, Katti, and Wilcox (1963) for 5 5 - n 5 50. 
Formally, the  null hypothesis i s  that  the medians and the  means of the two distributions are 

equal, i f  the  assumptions are true. 

T h e  necessary assumptions for th i s  t e s t  a r e  as  follows: The  two distributions have identical  

Also we require form, differing at  most in location, or the two distributions are both symmetrical. 

that the n differences be independent and that t h e  probability of a zero difference be zero. T h i s  

latter assumption can be  accomplished by assuming tha t  t he  two distributions are both continuous. 

If t ied differences occur through a lack of sufficient measurement precision, then the pro- 

cedure is as follows: If there is an  even number m of zero differences, consider them as  occupy- 

ing  the m lowest ranks. Then give each the midrank of this  group (m + 1)/2, and ass ign  half of 

them a p lus  sign and half a minus sign. If there is an odd number of zero differences, disregard 

one of them, and reduce the  sample size to n - 1. 
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If nonzero differences are tied in  absolute magnitude, the number of each  group should b e  

given the midrank of the  group and the  sign of i t s  corresponding difference. 

As an example of t h e  signed rank test ,  l e t  u s  again u s e  the  example used  for the sign t e s t  

with the additional assumption that both distributions are symmetrical. Then the differences and 

their ranks are as follows: 

Storm A - I 3  Rank of A - B 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 2  

13  
14 

-0.04 

-0.68 
0 

-0.04 
-0.01 

-0:21 
-0.02 
-0.02 
-0.24 

+0.03 
-0.03 
-0.01 

LO. 02 
-0.03 

-9.5 
-13 

-9.5 
-1.5 

-11 
-4 

-4 
-12 

i-7 
-7 
-1.5 
+4 

-7 

Then the t e s t  s t a t i s t i c  T is: 

T = + 4  + 7 = 1 1 .  

Then by checking t h e  Wilcoxon, Katti,  and Wilcox tables,  it  can be seen  that the cri t ical  value of 

T i s  17; thus 

P(T I l l )  - < 0.05 . 

So again we reject the  hypothesis that  the  gages give equal results.  

5 .  THE RANK SUM TEST 

The rank procedure to b e  considered in this section is again a method of comparing a spec t s  of 

the distributions of two random variables A and B. But unlike the two previous si tuations con- 

sidered, the da ta  a re  not assumed to arise in pairs. In this procedure we rank the n observed values 

of A and the m observed values of B (n and m are not necessarily equal) a s  i f  they a re  one popula- 

tion. Then we base  our t e s t  procedure on the sum of the ranks of the  observed values of A or the 

observed values of B. 

The rationale behind th i s  procedure is a s  follows: If two random samples are drawn from the 

same population, then they may be regarded as  a single random sample of size m + n which h a s  

been divided in some random manner into subsamples of sizes n and m. Thus  any assignments of 

n ranks to one population A and m ranks to population B are equally likely i f  t he  two samples 
came from the same population. For a t e s t  s ta t i s t ic  l e t  T be the s u m  of ranks  from the sma l l e r  
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I 

sample or, if the samples  a re  of equal s i z e ,  the smaller sum of ranks for the two populations. 

Then if t he  probability that a value of T can  occur less than or equal to the observed value of 

T is less than a/2,  given that all assignments of n ranks to population A and m ranks to popula- 

tion B are  equally likely, we will 

Critical values of T can be found 

Formally, the null hypothesis 

reject  the hypothesis that  A and B have  the same distribution. 

in Wilcoxon, Katti,  and Wilcox (1963). 

is that each of the 

pairs of rank assignments are equally likely. This  implies t he  null hypothesis that t he  distribu- 

tions of t he  random variables A and B are identical. 

The  necessary assumptions for th i s  procedure are: The  m + n observations are random and 

independent. Also, the  two distributions must have the same form, and the  two distributions are 

continuous (the probability of ties occurring is zero). 

If t i e s  do occur a s  t h e  result  of imprecise measurements, they are only a problem when the  

group of t ied va lues  lies in  both samples.  When a group of tied observations occurs totally within 

one sample, they should be  arbitrarily ranked as i f  they were not tied. If the tied group occurs in  

both samples,  the most frequently recommended procedure is to ass ign  each  member of the tied 

group the midrank of t h e  group. 

For an  example of the  application of the rank sum tes t ,  l e t  u s  u s e  problem 7.4, p. 202, of 

Brownlee (1960). The  example is a s  follows: 

A group of mice are allocated to individual cages  randomly. The  cages  are allocated, in  

equal numbers, randomly, to two treatments, a control A and a certain drug B.  All animals are 

infected, in a random sequence, with tuberculosis. Given that t he  drug is not toxic, we wish to 

t e s t  the hypothesis that  t he  drug had no effect a t  the 5% level of significance. The days  the mice 

died and their ranks are a s  follows (one mouse got lost): 

Control ,  A 

Day of Death  Rank 

5 
6 
7 
7 
8 
8 

8 
9 

1 2  

1 
2 
4 
4 
8.5 
8.5 
8.5 

13  

15.5 

Drug, B 

Day of Death  

7 
8 
8 
8 

9 

9 
1 2  
1 3  

14 
17  

Rank 

4 
8.5 
8.5 
8.5 

13  
13 
15.5 
17 
18  
19 
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Then the s ta t i s t ic  T is the sum of the ranks of A ,  so  that 

T = (1 + 2 + 4 + 4 + 8.5 + 8.5 + 8.5 + 13 + 15.5) 

= 65 . 

Then by checking the Wilcoxon, Katti, and Wilcox tables ,  we find that the cri t ical  value of T for 

m = 9 and n = 10 is 69. Thus P(T _< - 65) < 0.05, and we reject  the hypothesis that  the drug had no 

effect  . 

6 .  A K-SAMPLE PROCEDURE FOR UNMATCHED DATA - ONE-WAY CLASSIFICATION 

Up to this  point each of the procedures considered h a s  deal t  with comparisons of the distri-  

butions of two random variables.  So now let u s  consider some applications of distribution-free 

procedures to t h e  comparison of K distributions.  In this  sect ion we will consider unmatched data  - 

what is generally cal led a one-way classification. In the next sect ion we will consider a two-way 

classification. 

The one-way classif icat ion procedure which we will consider is an extension of the  rank sum 

t e s t  for unmatched data  considered in  the previous sect ion.  Thus  the rationale behind i t  will be 

similar t o  the rationale behind the rank sum test .  That  i s ,  suppose N random and independent 

observations were taken on C random variables and they were ranked from 1 to N regardless of 

what population they came from. Then, i f  the C random variables a r i s e  from the same population, 

the expected sum of ranks for the  observations on e a c h  of the C random variables would be 

ni(N + 1)/2,  where ni is the number of observations on the i th random variable and ( N  + 1)/2 is 

the average rank for all N observations. 

Now let R i  be  the s u m  of the observed ranks of the observations on the i th random variable. 

If the C random variables came from the same population, then the differences 

Ri - ni(N + 1)/2 

should be  small .  Then, using this  idea,  two of the s t a t i s t i c s  which have been proposed to t e s t  

the hypothesis that  the C random variables have arisen from the same population are as follows: 

C 

S = 1 [Ri - n i ( N  + 1)/212 , 
I = =  1 

and 

Exact tables  for S have been computed by Kruskal and Wallis (1952) and Rijkoort (1952) for 

C = 3 ,  4,  or 5 and for equal  sample s i z e s  on each  random variable of ni = 2, 3 ,  4, or 5 for C = 3 ,  

d 
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nI  = 2 or 3 for C = 4, and n f  = 2 for C = 5. Also, exac t  tables for H have been computed by 

Kruskal and Wallis (1952 and 1953) for C = 3 and nr 5 5 ,  the  n1  not necessarily equal. Also, for 

large values of nr ,  i = 1 ,  . . . , C, H is distributed approximately as a chi-square random variable 

with C - 1 degrees of freedom. 

Formally, the null hypothesis is that the C random variables all come from the s a m e  population. 

T h e  necessary assumptions for th i s  procedure a re  that the observations are drawn randomly 

and independently from continuously distributed populations. The continuous distribution require- 

ment is one way of forcing the  probability of a t ie to be zero. Also, i f  t he  approximate chi-square 

test is to be used ,  all t he  nI  must be large enough for the central  limit theorem to apply. 

If ties occur, ass ign  each  group of tied va lues  the midrank of the tied group. Then if there 

are t f  tied values in  a group, ad jus t  H in  the following manner: 

H H’= 
1 - C(tP - t i ) / ( N 3  - N )  

For an  example of the  application of the K-sample procedure for unmatched data, we will u s e  

the example on p. 284 of Bradley (1960). The example is as follows: 

Suppose that speed  of reading is to be tes ted  under three degrees of illumination, a t  5% level 

of significance. Nine subjec ts  are se lec ted  a t  random from a common population, and three sub- 

j e c t s  are randomly assigned to each  condition of illumination ( A ,  B ,  C). For some reason, one 

subject fails to complete the experiment. The  results and their ranks are given in the following 

tables: 

Result  R a n k  

A B C A B C 

22 36 39 1 4 6 
31 37 44 2 5 7 
35 51 3 8 

Sum 6 9 2 1  

Since the subjec ts  have  been randomly se lec ted  and the  response i s  continuous, the assump- 

t ions seem to be  satisfied.  

Then after ranking the  e ight  observations as one population, w e  find the rank sums for the 

three conditions to b e  6 ,  9, and 21 respectively. Also, we find their respective expected rank 

sums, under the hypothesis of one distribution, to be  3(8 + 1)/2, 2(8 +- 1)/2, and 3(8 + 1)/2. 

Thus  the test statistic H is given by 

12  (6 - 27/2)’ (9 - 9>* (21 - 27/2)2 

3 
+------+ 

2 
H = -  [ 

8 x 9  3 

= 6.25 . 
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Then by consulting the  Kruskal and Wallis tables,  we find tha t  given the null  hypothesis: 

P(H 2 6.25) = 0.011 < 0.05 

Thus we would reject  the  null hypothesis that  t he  speed of reading is the same  under t h e  three  

degrees of illumination. 

7. A K-SAMPLE PROCEDURE FOR MATCHED DATA - TWO-WAY CLASSIFICATION 

In th i s  next case, ins tead  of each treatment being applied to different subjec ts ,  e a c h  treat- 

ment will be  applied to every subject.  Thus  every observation will depend on two classifications.  

This  method differs from the  t e s t  considered in  the  previous sec t ion ,  s i n c e  tha t  test considered 

only one classification, t he  treatment. 

In this  procedure, t h e  application of a treatment to t h e  subjec t  must be  done in  such a manner 

that t he  response for another treatment applied to t h e  s a m e  subject will not b e  affected. T h i s  

requirement is needed s i n c e  we  will b e  interested in  see ing  whether t h e  responses  for the various 

treatments will be  t h e  same over each subject.  T h e  rationale behind th i s  procedure is as follows: 

Suppose tha t  w e  have m subjec ts  and n treatments and that each of the  n treatments is applied to 

every subject. Now suppose we  rank the n treatments over each  subjec t  separately;  then we  will 

have rn s e t s  of ranks from 1 to  n. 

Then i f  a subjec t  responds in  an  equal  manner to each  treatment, although th i s  response may 

be  different from subjec t  to subjec t ,  w e  would expec t  the sum of t h e  ranks for e a c h  treatment to 

be m(n + 1)/2, The  value (n + 1)/2 is the  average rank for each  treatment, averaged within a 

subject. 

Now l e t  R, be the sum of the  ranks for a treatment; then one statistic which h a s  been proposed 

for tes t ing  t h e  effect  of the  treatment on the sub jec t s  is as follows: 

If the hypothesis that t h e  treatments have an  equal  effect  on a subjec t  is true, then we  would ex- 

pect the value of S to  be  sma l l ,  so that we would reject  the  hypothesis for large va lues  of S. For  

small values of rn and n, cri t ical  values of S have been tabled by Kendall (1955), and for larger 

values of m and n,  12S/rnn(n - 1)  h a s  been shown to have approximately a x 2  distribution with 

rn - 1 degrees of freedom. 

Formally, the  null  hypothesis is as follows: For e a c h  subject,  the random variables which 

represent the responses  of the  subjec t  to the treatments have  t h e  same  distribution. Bu t  th i s  

does  not imply tha t  the  r e sponses  for the treatments on different sub jec t s  have  the  same  distri- 

butio n . 
T h e  necessary assumptions for t h i s  procedure a re  as follows: T h e  sub jec t s  a re  independent 

and the  observations on each subjec t  a r e  randomly se lec ted ;  tha t  is, the  treatments a re  applied i n  

8 

U 
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a random order. Also, t he  response distribution for each  subject is assumed to be continuous. 

This  implies that the  probability of tied observations on a subject is zero. 

If, through a lack of measurement precision, ties do occur, the  following procedure is recom- 

mended. For each  subject ass ign  the  tied group the midrank of that  group. A correction for the 

s ta t i s t ic  S when ties occur is a s  follows: Le t  tii be the number of tied observations in  the ith 

group of t i e s  within the jth subject.  Then u s e  the  corrected statistic 

- fij) 
rn - n(n + 1) j = 1  i - 

1 2  12(n - 1) 
- 

1 2  12(n - 1) 

For an example of the  application of the  two-way classification procedure we will u s e  the  

example on p. 292 of Bradley (1960). The  example is as follows: 

Each of three subjec ts  performs a well-learned task  three times, each  time under the  influence 

of a different drug. Performance is timed, and t h e  experimenter wishes  to t e s t  the  hypothesis 

that  n o  subject’s performance times were influenced more by one drug than by another, a t  a 5% 

level of significance. Tab le s  of t he  t i m e s  and of their ranks are as follows: 

T i m e  T i m e  Rank 

Subject Drug I Drug I1 Drug I11 Drug I Drug I1 Drug I11 

A 4.76 1.30 7.91 2 1 3 

B 14.51 10.27 35.84 2 1 3 
C 82.11 82.09 82.14 2 1 3 

Sum 6 3 9 

The assumption of continuous response distributions seems valid in  th i s  ca se ,  s ince  we a r e  

measuring t i m e .  So i f  the observations have been se lec ted  i n  the proper manner, the necessary 

assumptions seem to be valid. 

Now after we  have ranked the  times of each  subjec t  separately,  we find that the  sums of the  

ranks for the three drugs a re  6 ,  3 ,  and 9. Also we find that t he  expected rank sum for each  drug, 

under the hypothesis of equal effects, would be  

Thus the test statistic S is given by 

S = (6 - 6)’ + (3 - 6)’ + (9 - 6)’ = 18 
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Then by consulting Kendall’s exac t  tab les ,  it can  be found that, given the  null hypothesis, 

P(S 2 18) = 0.028 < 0.05 . 

Thus we would reject the  hypothesis that  t he  drugs produce equal effects. 

8. CONCLUSION 

The group of distribution-free t e s t  procedures which we have j u s t  considered is a s m a l l  but 

useful subse t  of the  set of distribution-free procedures. 

We a l so  have procedures available for various kinds of trends,  runs of events ,  confidence 

controls, and severa l  other si tuations.  T o  read about many distribution-free procedures I sugges t  

you read Wright Air Development Division (WADD) Technical Report 60-661, Distribution-Free 

Statisticaf Tes t s ,  by James V. Bradley, available a t  t he  Y-12 Technical Library. Th i s  report also 

contains extensive bibliographies a t  the  end of each  chapter. 
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LECTURE VI: LINEAR REGRESSION 

T. L. Hebble 

1 .  INTRODUCTION 

. 

The concept of linear regression is concerned with the relationship between a measured re- 

sponse  Y and a function of known constants (x,, . . . , x ) and unknown parameters (p, ,  . . . , p,). 
This  relationship is often written in the form 

P 

Y = p , x ,  + p , x ,  + . . . + p p x p  + e ,  

where e is the error in  measuring Y .  The word “linear” means tha t  Y is a linear function of the 

p ’ s  and not necessarily of the  x’s. If we know pl, . . . , p, we could predict the response exactly 

by the above functional (true) relationship. However, in general, we do  not know the  p’s, and it 

is desirable to find some function of the observations Y which provides a “good” estimate of 

p,, * .  . , p,. 
Examples of linear regression occur frequently in  chemical kinetics,  thermodynamics, and 

virtually all  areas of physics.  T h e  fixed cons tan ts  are usually specific va lues  of process varia- 

bIes such  a s  temperature, flow rate, and ca ta lys t  concentration. Although these  variables a r e  not 

exactly known, the  errors assoc ia ted  with measuring them are negligible relative to the  errors in  

measuring the  response. 

W e  sha l l  confine ourselves to a discussion of parameter estimation, confidence interval esti- 

mation, and some tests of hypotheses associated with l inear regression. Since a heavy reliance 

is placed on the u s e  of matrices,  a short review of t he  fundamentals of matrices is given in  the  

Appendix (Sect. 7 of th i s  lecture). 

1.1 Notation 

Every effort is made to  conform to the  notation of previous lectures,  but i n  certain ins tances  

tradition d ic ta tes  that  other notation be employed. In addition to capital  let ters (other than those  

in boldface) I sha l l  u s e  the  letter e to designate random variables. Cons tan ts  and the  realization 

of random variables are denoted by lower-case letters.  Also, parameter estimates which are indi- 

cated by a A (“hat”) or % (tilde) (such as p and Gz) are either random variables or numerical 

values of random variables.  

A 

2 .  L INEAR REGRESSION 

2.1 Definition of Problem 

Consider a random variable Y which is functionally related to known constants x,, . . . , x, 
and unknown parameters pl, . . . , p, by 

83 
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Y = p1x l  + p,x, + . . . + p,x, -t e ,  

where e is a random variable representing measurement error. Let the probability density function 

(p.d.f.) of Y be  given by 

Assuming that the expected value of e, E(e),  is equal to zero, we m a y  write 

E ( Y )  = P , x ,  + . . * P,x, . 

The  x’s are process variables or independent variables,  and Y is the response or dependent 

variable. T h e  0’s  are cal led the regression coefficients,  parameters, or effects. 

As an example, we might consider that  for some process,  efficiency Y is related to tempera- 

ture according to 

y = p,., + p,., + e t 

where x1 = temperature, x2 = x12, and e is measurement error, In this  model, the unknown param- 

eters  p ,  and P ,  are  the l inear and quadratic effects of temperature on efficiency. 

Now expand this i dea  of a single experiment with two parameters in the model to n experiments 

with p parameters in the model. That i s ,  we have n equations and p unknowns in  which each 

equation represents an  experiment and the Y’s and e’s represent random variables: 

I Y 1 = p  1x11 + . * .  + P p X 1 ,  + e l  

Y 2 = p,x , ,  + .  . . + P p X 2 ,  + e 2  
(2.1.1) 

The expected value of t h e  response for the ith experiment is 

E(Y , )  = P l x i l  + . . . + , X .  ( i = 1 ,  . . . ,  n). 

I t  is convenient and certainly less cumbersome to convert to matrix notation. Thus Eqs. (2.1.1) 

become 

where 
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Matrices and vectors a r e  denoted by boldface le t ters .  T h e  superscripts denote order and will b e  

omitted when the  context is clear.  

T h e  X matrix may be preselected as prescribed by an  experimental des ign ,  or the X matrix 

may be  ju s t  a collection of similar experiments. It is important that  the values of x a re  known 

constants,  or a t  least the  errors assoc ia ted  with measuring them a r e  negligible. 

3. ESTIMATION OF PARAMETERS 

Two general methods of parameter estimation as applied to l inear regression are presented. 

F i r s t ,  the  method of least squares  is discussed under the  assumptions: 

E(e) = 0 , E(ee’)  = u21 , 

where 0 is an n x  1 vector of zeros  and I is the identity matrix. The  prime (’) ind ica tes  the  

transpose.  Second, t h e  method of maximum likelihood is discussed under the  assumption that 

e % N ( 0 ,  u21), that  is, tha t  e h a s  a multivariate normal distribution. 

In the second c a s e ,  e a c h  ei (i = 1, . “ . ,  n)  h a s  a normal distribution with mean 0 and variance 

u2. Also, the  variance-covariance matrix u21 implies tha t  the ei a r e  mutually independent (in a 

s tochas t ic  sense) ,  s ince  the  covariance elements a re  0. 

3.1 Method of Least  Squares 

A technique of parameter estimation which h a s  a strong mathematical and intuit ive foundation 

is the method of least squares.  For a given function f(x, P )  and a response y ,  the set of parame- 

te rs  f l  is found so that t h e  residual sum of squares  is a minimum: 

n 

residual sum of squares  = [ y i  - f i ( x ,  P)I2 . 
i= 1 

(3.1.1) 

Here x is the vector of leve ls  of the  independent variables which corresponds to the  ith experiment. 

Equation (3.1.1) represents t he  sum of squared deviations between the observations and the 

function. 

In terms of our problem, we may write for the  residual sum of squares 

(3.1.2) 

Note that in Eq. (3.1.2) w e  must restrict  ourselves to  linear functions of f l ,  whereas in  Eq. 

(3.1.1) f ( x ,  6) may be virtually any function. If e ’ e  is divided by n - p ,  the degrees of freedom 

for error, we obtain the residual mean square: 

1 
residual mean square = -.-!I-. e? = - e ‘e  . 

n - p .  1 = 1  I n - P  
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Since we  have  va lues  for y (the outcome of the experiment) and x (the known leve ls  of the inde- 

pendent variables), we need only to find p s o  that e ‘ e  is a minimum. To do  th i s  we  differentiate 

e ’e  with respect to each p, set t h e  resulting equations equal to zero,  and so lve  for p. Thus:  

n 
e ’ e =  < y i - p  l x i l  - p 2 x i 2  - . . . - ppxip)2 , 

i= 1 

and the partials with respect to t h e  p ’s  a re  

. .  

In matrix notation, 

de ‘e 
-= -2X’(Y - xp, = -2X‘Y + 2 X ‘ X P .  
dS 

A 
The value of B for which de’e/dp = 0 is denoted /3 and is ca l led  the least-squares estimate of p. 
The equations (de’e/dp) = 0 = X’XP - X’Y are called the  normal equations.  Premultiplying both 

s ides  of the normal equations by (X‘X)-’, w e  have’ 

A 

A (xrx)-’(x/x)p = (X’X)-lX’Y if 1 X’X/  f 0 ,  

and hence 

A A  Ip = p = (X’X)- ‘X’Y . 

The method of l e a s t  squares  does not provide an  es t imate  of u*. An estimate of c2, denoted 
A A 
u2,  can  b e  found by substi tuting /3 for in  the equation for t he  residual mean square: 

( Y  - XP^)/(Y - Xa”) 
A 1 “  1 ,  1 

e e = -  c 2  =- 1 e ? = -  
n - p .  I =  1 I n - p  n - p  

It can  be shown that this estimate is unbiased, that  i s ,  that  E ( G 2 )  = c2. 

‘The matrix (X’x)-’ is not defined for 1 X’XI = 0. To avoid this, we s t a t e  that  x must be of rank p ,  
which implies that the p x p X’X matrix is a l so  of rank p .  A p X p matrix of rank p is nonsingular. 
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3.2 Example 

Suppose we consider the simple linear model 

Y i  = p , x i l  + p 2 x i 2  + ei f o r i =  1, 2 ,  . . . ,  n .  

There are  n observations and p = 2 parameters. T o  generate a n  intercept p l ,  le t  x i  

i = 1, . . . , n. Setting x i ,  = x i ,  this  model may be rewritten as 

= 1 for all 

Y i  = p l  + p 2 x i  t ei for i =  1, . . . ,  n .  (3.2.1) 

Now 

Since 

then 

Thus 

A 1 
B = ( X ’ X > - l  X’Y = 

A 

The elements of p can be reduced to 

A A 
p ,  = 7 -  P 2 X  

and 
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The unbiased estimate of u2 ,  the residual mean square,  is 

In the foregoing example the  summation over i is understood to go from 0 to n. 

For a numerical example, consider the problem presented in Graybil12 in  which we wish to  

predict t h e  d is tance  that a particle travels in  t i m e  x. Suppose the  t i m e  is measured accurately 

relative to distance and we measure the d is tance  the particle travels at severa l  points in  time. 

time, x 11 2 3 4 10 12  18 

distance,  d I 9 15 19 20 45 55 78 

Assuming that the particle travels a t  constant velocity, the model [see (3.2.1)] is 

di = 6, + p , x i  + ei ( i  = 1, 2, . . . )  n) , 

where p ,  is the position of the  particle a t  t = 0 and p,  is the velocity of the pa r t ide .  Thus,  if  

Y is the vector of d i s t ances  and X is the  matrix of times, 

Y’Y = 12,201 , 

3.3 Gauss-Markov Theorem 

The major properties of P as an  estimator of P are given in  an  important theorem called the 
A 

Gauss-Markov theorem. Th i s  theorem s t a t e s  that ,  under the following assumptions: 

1. Y(nxl) = X(“‘P) P b x 1 )  + e(nx1) ,  where X is of rank p - n, 

2. E ( e )  = 0, 

3. E(ee’) = u2l, 

the least-squares estimate @ provides the  bes t  linear unbiased estimate of @. The word “best” 

means that the  variance of pi is a minimum when compared with all other Zinear estimators of p i .  
(Note that here “linear” refers t o  a linear function of the observations.) Since the distribution of 

the residual e was  not specified,  p cannot be compared with all estimators.  

A 

A 

A 

~~ ~ 

2F.  A. Graybill, An Introduction to Linear S ta t i s t ica l  Models, vol. 1, McGraw-Hill, New York, 1961. 
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The Gauss-Markov theorem may be extended t o  all linear functions of 6. For a given p x 1 

vector of constants r, the b e s t  linear unbiased estimate of r’p is given by 

A r’p = r’(X’X)-’X’Y 

3.4 Parameter Estimation by Method of Maximum Likelihood 

To employ the method of maximum likelihood as a means of estimating parameters, we must 

assume that t he  joint  probability density function (p.d.f.) is known. When the p.d.f. is considered 

to be a function of the  parameters, i t  is called the likelihood equation, and for a given “random” 

sample,  the estimates of the parameters which maximize this  equation are called maximum l ike-  

lihood estimates.  

In t e r m s  of our regression problem, assume that  

e N ( O ,  u21) . (3.4.1) 

A s  mentioned earlier, (3.4.1) implies that each ei (i = 1, . . . , n) is normally distributed with mean 

0 and variance u2 and that the ei are  mutually independent. T h i s  joint  p.d.f. and hence  the 

likelihood equation L may be  written as 

1 
L = f(e;  p, a 2 )  = exp(-e’e/2u2) 

(2nu 2)n ’ 2 

(3.4.2) 

We now wish to find those  es t imates  of p and u2  which maximize (3.4.2). To  accomplish this ,  it 

will be easier to work with the  logarithm of the likelihood function: 

(3.4.3) 

The va lues  which maximize (3.4.3) also maximize (3.4.2). 

T o  obtain these est imates ,  the partials of Eq. (3.4.3) with respect to each  parameter are  

found. Thus  for /3, 

a l n ~  1 
-= -[X’Y - x’xpl , ap 0 2  

and for 02, 

a i n ~  1 
- = -- [(Y - XP)’(Y - xp) - nu21 . 

a 0 2  2 c 4  

Setting the above partials equal to zero and solving for the parameters, we have 

A p = (X’X)-’X’Y 
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and 

- 1  A 
f f 2  =,(Y - XP)’(Y - X i ) .  

Note that the maximum likelihood estimate of /3 is the same a s  the  least-squares estimate of p. 
As indicated earlier,  

and 

That i s ,  the unbiased estimate of cr2 is 

n -  1 A A - e 2  =-(Y - XP)’(Y - xp) . 
n - p  n - p  

Under t h e  assumptions 

1. e N ( O ,  c21), 

2. Y = Xp + e, where X is of rank p 5 - n, 

the estimators p and c2 have  severa l  important properties. Among these  are: 

1. /3 - N I P ,  D ~ ( X ’ X ) - ~ ]  (multivariate normal), 

2. minimum variance unbiased, 

3. (n - p)c2/ff2 - chi-square distribution with n - p degrees of freedom, 

4. p and c2 are independent. 

They a l so  have t h e  properties of being consistent,  complete, sufficient, and efficient. 

A A  

A 

A 

A A  

4. TESTING THE REGRESSION MODEL 

4.1 Test for Lack of Fit 

Regression ana lys i s  as presented can  a l so  b e  employed when the  relationship is not known or 

when we wish to approximate a more complicated expression. As  mentioned earlier, e‘e represents 

the residual (error) sum of squares  i f  the  functional relationship is known. However, i f  it is not 

known or we wish to approximate a complicated function, e’e contains the  sum of squares tha t  is 

due to the inability of the model to fit the  da ta  or simply lack of fit.  That i s ,  

[residual sum of squares  (RSS)] = [error sum of squares  (ESS)] 

+ [lack of fit sum of squares  (LFSS)] 

a 

We may t e s t  th i s  lack of fit i f  there are multiple observations at one or more values of x or if 

there is a separa te  independent estimate of u2. (By “multiple observations” is meant that  t he  

experiment is repeated and not j u s t  continued by extending a s ing le  experiment.) 
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In t e r m s  of matrices, 

A A A 
e‘e = (Y - X@)’(Y - XP) = Y‘Y - P’X’Y , 

‘ A  
where Y ’Y is the total  sum of squares  and P’X’Y is the sum of squa res  due t o  regression. Thus  

A 
LFSS = Y‘Y - @ ’X’Y - ESS . - 

The  error sum of squares  is computed by “pooling” (combining) the  sum of squares  about the 

mean at each  value of x for which there are multiple observations. F o r  example, i f  there are k 

observations made at a particular value x, then the sum of squa res  about 7, the mean of the 

response at x, is computed according to the familiar 

k 

j =  1 

where 

T h e  number of degrees  of freedom is k - 1. 

If there are  dis t inct  values  of x and there are ki (21) - in the ith group (i = 1 ,  . . . , $), then 

the error sum of squa res  is obtained by summing over all values.  Thus 

and h a s  n - $degrees  of freedom. Now, s ince  ESS and LFSS are independent and are  distributed 

x 2  with n - and 8 - p degrees  of freedom, respectively,  the ratio 

(4.1.1) 

For convenience,  this t e s t  may be outlined by using Tab le  1. 

If the ratio (4.1.1) exceeds  the  preselected percentage point of the Snedecor F distribution, 

the model is not an  adequate  representation of the da t a ,  and a new model should b e  found. If the 

ratio is not significant,  there is no reason to  reject the model. On the other hand, there is n o  

reason to assume that the model is correct or  even that i t  is the b e s t  model. 

The  question often arises as  t o  whether the residual  mean square can  replace the error mean 

square for tes t ing various hypotheses i f  the  lack of fit is not significant.  T h e  purpose of using 

the residual mean square is t o  increase the degrees  of freedom for error and thereby reduce the  

value from the F table.  There is no clear-cut answer, and the choice is left  up to the individual. 
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Table 1. Analysis of Variance 

F Ratio Degrees of Sum of 
Source Freedom Squares 

Mean Square 

Total - n Y ‘Y 

Regression P p X * Y  j ’X’Y’/p 

Residua 1 
1 

n - P  
y’y - p^ ‘X’Y - (Y’Y - $ ’X’Y) n - P  

Compare [see Eq. (4.1.1)l 
L F S S / ( ~  - p )  

ESS/(n - 4) 
Lack of f i t  4 - P LFSS 

Error ,-.e ESS 

4.2 comparison of Models Using R2 

A second measure of the effect iveness  of the regression model is the square of the multiple 

correlation coefficient R: 

Y’Y - nji2 

where 

Y’Y = total sum of squares,  

A 
/3 ’X’Y = regression sum of squares ,  

This  is the proportion of t he  total  sum of squares  (adjusted for the mean) which is accounted for 

by the model and should be used t o  compare different models us ing  the s a m e  data.  In general, 

for n 2 2 p ,  a value of R 2  < 0.85 indicates  a poor model. An R 2  > 0.90 indicates  a good model, 

and hopefully R 2  > 0.95. It should be recognized that when p = n ,  R 2  = 1, and when p is large 

relative to  n - p ,  R 2  is c lose  to  1. 

5. CONFIDENCE INTERVALS 

5.1 Confidence Intervals About f3 

Under the assumption that e N ( 0 ,  c21), we can place confidence intervals about individual 
. estimates of P or jointly about all P. Earlier i t  was  s ta ted that  s ince 

e N ( 0 ,  021) , 



then 

A A 
Thus the variance of pi ( i  = 1, . . . , p )  is given by c2c i i ,  where cii is the ith diagonal element of 

(X’X)-’. The 100(1 - a)% confidence interval about pi is 

where ‘ (n-p ,  1-a) is the  1 - a point of the t distribution with n - p degrees of freedom. However, 

the confidence interval statement s a y s  nothing about the  remaining coefficients. It is wrong to 

compute a similar confidence interval for each  coefficient and then consider all simultaneously. 

The  proper joint  confidence interval for a l l  pi (i = 1,  . . . , p )  is given by the following inequality: 

(p  - j3).XtX(P - 8) < p62 F(p, n - p) . 

A vector of cons tan ts ,  P ,  is sa id  t o  lie within the joint  interval i f  i t  sa t i s f ies  the above inequality. 

In a p-dimensional space  defined by the p parameters, th i s  inequality generates a p-dimensional 

hy pere Ilipse. 

In t e r m s  of the numerical example presented earlier, the individual 95% confidence intervals 
A on p ,  and p, (for n = 7, p = 2, t(,,,,,,) = 2.57, u2 = 2.22) are 

[571 - 2.57 5 p ,  =< 5.71 + 2.57 4(-] 
and 

[4.02 - 2.57 d2 .22) (0 .00415)  =< p, =< 4.02 + 2.57 4(2.22)(0.00415) 1 
respectively. The  joint  confidence interval on pl and p, simultaneously is an e l l ipse  in the 

space  of p ,  and p,. 
The corresponding 100(1 - a)% confidence interval about a linear function of the p, is given by 

where r is a p x 1 vector of known constants.  For example, if 

the 95% confidence interval about 
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is 

[(5.71 - 4.02) - 2.571/(2.22)(0.418) =< (p, - p,) =< (5.71 - 4.02) + 2.57,/(-) , 1 
or 

5.2 Confidence Interval About E (Y) 

The  l O O ( 1  - a)% confidence interval about 

is similar in form to  Eq. (5.1.1): 

where xo is a vector of constants representing specific values of the independent variables. This  

confidence interval gives u s  a measure of how well  we know the mean value of the response a t  a 

given s e t  of leve ls  of the independent variable. By plotting the response  aga ins t  one independent 

variable, the above interval generates a confidence band about the regression curve. 

5.3 Confidence Interval About Mean of Future Observations 

A confidence interval may be  placed about the mean o f  one or more future observations. Sup- 

pose n experiments have been completed and the least-squares estimate of p h a s  been computed. 

It is now desirable to perform k additional experiments at a particular set of x’s, say  xo. T h e  

lOO(1 - a)% confidence interval about the mean y o  of these  k proposed experiments is given by 

A A  
where p, x, cTZ, and t (n -P , l -a )  were defined earlier under Sect. 3.4. When k = 1, we have the 

confidence interval about a single future observation. 

6. SOME COMMENTS ON STEPWISE REGRESSION 

Most computer programs which generate least-squares es t imates  of parameters in linear re- 

gression belong to a class commonly referred to as s tepwise  regression programs. In general, 

s tepwise  regression programs build models by success ive ly  adding s ingle  parameters t o  the pre- 

. 
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viously determined model according to some scheme. The  criterion of such  a program might be to 

add tha t  parameter which causes  the greatest  reduction in the residual sum of squares.  Of course, 

there must be some ultimate model which is prescribed in the  input. If the choice of a l l  models 

suitable for your da ta  is a subse t  of the success ive  models that  are built and i f  the building 

criterion is compatible with your problem, the  concept of stepwise regression may be of some use.  

However, in  most c a s e s ,  the v a s t  amount of output of such a program clouds the important informa- 

tion to be  gained from its use .  An excellent account of the various types  of regression programs 

is given in Draper and Smith.3 

The  t t e s t s  in the printed output of most programs represent tests made on individual coeffi- 

c ien ts  and do not provide a joint t e s t  of all  parameters. 

The  numerical output from one program may differ substantially from the  corresponding output 

of another program. Th i s  can  be  attributed primarily to  the use  of different matrix inversion sub-  

routines. If the x’x matrix is nearly singular,  the results may be wild. When in doubt, the bes t  

way to check this is to compare (X’X)-l x‘x with the identity matrix. A second reason for differ- 

ing outputs is in connection with computing the sums of squares  associated with each  parameter. 

These  values depend on the  order in which they were calculated (unless the  X’X matrix is diagonal). 

A competent statist ician should be  consulted before us ing  these  sums of squares. 

The  Statist ics Section u s e s  spec ia l  computer programs which a re  based on the University of 

California BIMD series and are altered to meet our specific needs and philosophy. Other programs 

are equally as  good i f  not better. 

7. APPENDIX 

Fundamentals of Matrices 

An n x m matrix is a rectangular array of numbers having n rows and m columns ( n ,  m = 1, 

2, . ,.). Thus  

x = [x..] = 
11 

- 
11  x 1 2  . . .  X ~ m  

2 1  x 2 2  . . .  X2m 

X 

X 

. . .  

.xni ‘n2 ‘ .  . ’nm. 

The x.. (i = 1, . . . , n; j = 1, . . . , m) are called the  elements of the matrix, the first letter (or 

number) in the subscript  referring to the  particular row and t h e  second letter (or number) referring 

to the particular column. The  s i z e  of a matrix is called the  order. Thus X is of order Irn by m” 

11 

3N. Draper and H. Smith, Applied Regression Analysis, Wiley, New York,  1966. 
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and is written X(”Xm). The  order is usually omitted when the context is clear. If m = 1 the 

matrix is a column vector; if n = 1 the matrix is a row vector. A matrix of order 1 x 1 is a sca la r .  

A matrix is square when n = m, and a symmetric matrix is a square matrix i n  which xII = xjl 

(it j =  1, . . .  , n). 

The s e t  of elements {xlI 1 (for i = 1, . . . , n) consti tute the main diagonal. A diagonal matrix 

is one in  which only the diagonal elements differ from zero. If all  the diagonal elements a re  equal 

to 1, such  a matrix is called the  identity matrix. 

Basic Operations Using Matrices 

The  transpose of A,  denoted A’ (or AT), is the matrix A with the rows and columns inter- 

changed. Thus  [ a .  ]’ = [ a , . ] .  Note that (A’)’ = A. 
11 1 1  

The  addition of two matrices of the same order is performed by adding to each element of one 

matrix the corresponding element of the  second matrix: 

In multiplication, matrix B is prernultiplied by A i f  the sequence AB is preserved. If BA, B is 

postmultiplied by A. The  matrices A, B are  s a i d  to be conformable for multiplication i f  t he  number 

of columns in A is equal to the number of rows in B when A is postmultiplied by B. If A is pre- 

multiplied by B the number of rows in A must be  equal to the number of columns in 8 .  If A and B 

are o f  order n1  x m, and n2 x m 2 ,  respectively, and m, = n2, then the product AB is of order 

n 1  x m2.  Each element of C = AB, say  c.., is obtained by multiplying every element of the ith 

row of A by the corresponding element of the j th  column of B and summing the  result ing ml products. 

Thus  

I 1  

1 

c . .  == a .  b . 
11 Ik k ]  

m 

k= 1 

Note that AB does  not necessarily equal BA. 

The inverse of a nonsingular square matrix A, denoted A-’, is defined to b e  that matrix 

which sa t i s f i e s  

(A)(A-l)  = I (identity matrix). 

Matrix A is nonsingular if the determinant, IAl,  is not equal to 0. 

Properties of Matrices 

c 

A matrix of order m x n is said to be  of rank r (for 0 _< r < m =< n) if r represents the order of - -  

the largest  submatrix which is nonsingular. 



97 

L e t  Y be  a n  n x 1 column vector of constants  and A be a n  n x n matrix. Then 

is cal led a quadratic form in the y’s.  This  quadratic form is s a i d  to be  posi t ive definite (positive 

semidefinite) i f  and only i f  Y’AY > 0 (Y’AY 2 0) for all vectors Y f 0. The matrix A is a lso  sa id  

to b e  posit ive definite (positive semidefinite). 
- 

A matrix is sa id  to b e  orthogonal i f  A‘A = I ,  that  i s ,  i f  

n n  



L E C T U R E  VII: NONLINEAR ESTIMATION 

John J. Beauchamp 

1. INTRODUCTION 

In th i s  lecture we present a brief introduction to the subject of nonlinear estimation. Th i s  

dea l s  with the relationship between an observable random variable and one or more independent 

(nonrandom) variables, when that relationship can  be  expressed in a nonlinear functional form. 

Th i s  case arises when definite information is available about the form of the relationship between 

the random variable or response and the independent variable. When such  information is available, 

we usually prefer to fit the more realist ic model rather than a l inear model which might be less 

realist ic.  

In the  lecture on linear regression we d iscussed  the fitting, by least squares,  of models which 

were l inear in the  parameters of interest ,  that  i s ,  models of the type 

Y = p , + p l z l +  . . . + p  p z p +  E ,  (1) 

where Y can  represent the observable random variable; 2, , . . . , 2 can  represent any functions of 

the bas i c  independent variables X ,  , . . . , X k ;  and E can represent the  “experimental error” 

assoc ia ted  with Y .  Example: 

P 

Y = P I X 1  + P z X :  s i n X 2  + E .  

In th i s  case 2, = X, and 2, = X: s i n  X,. A s  we have seen  from the earlier lecture the estimation 

of the  parameters P o ,  . . . , p p  in equations of the  form given by (1) is well understood. 

Suppose that we assume a functional form which explains the observations apart  from experi- 

mental error, that is, 

or 

where 

0 = (0, , . . . , O p ) ’  (4) 

is the vector of unknown parameters to be  estimated and 

is the vector of known or controlled independent variables. There are n observations on the random 

variable Y corresponding to  an  observed value of the vector of independent variables 4. These  

observations are denoted by 
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where 

. for u = 1, 2, . . . , n. The actual observed values of Y u  are  denoted by y,, u = 1, 2, . . . , n. Our 

aim is to obtain the least-squares estimate of 8, that is, obtain a value of 8 that  minimizes 

n 

u =  1 

When the function f is nonlinear in  the elements of 8, then S(0) may have multiple or relative 

minima, whereas if  f is of the form given in Eq. (1) then the least-squares  es t imates  of the 

parameters are  unique and a l s o  the b e s t  l inear unbiased estimates for the case when the random 

variables tu are  assumed to  be  independent with constant variance. I t  should be  noted that the 

least-squares estimators of 8 are  equivalent to the maximum likelihood estimators of 8 when the 

additional assumption is made that  the cU are  normally distributed, s ince  minimizing S(8) with 

respect to 8 can be shown to be  equivalent to maximizing the likelihood function with respect to 

8. T h i s  can easi ly  be  seen  by examining the likelihood function, which, for th i s  case, can be  

written a s  
n 1 

2. GEOMETRY OF LEAST SQUARES 

Before we present some of the procedures to estimate the vector 8, we want to examine the 

geometry of the situation so that  we may appreciate some of the difficult ies that may ar ise  in 

nonlinear estimation. The contours defined by S(6) = constant may be  examined in two different 

ways. W e  may examine them in a subspace  of the sample space  cal led the estimation space,  

which cons is t s  of all points with coordinates given by 

that is, i t  is the locus of a l l  points with coordinates given by (9) as 8 t akes  on a l l  possible 

values. If the function f is linear in  8, then the estimation s p a c e  is a hyperplane with dimension 

equal to p .  In addition, the l ines  of constant 8 are equally spaced and orthogonal. If f is non- 

l inear in  8 ,  then one or both of these  conditions may not be met .  In Fig.  1 we have shown the 

sample s p a c e  and estimation s p a c e  for three simple models. Figure l a  is a simple linear model, 

Fig.  l b  is intrinsically l inear s i n c e  i t  is linear after a transformation of the parameter, and Fig. 

IC displays a model which is intrinsically nonlinear s ince  i t  is not possible to convert it into a 

form l ike Eq. (1). If we let $ = e' in Fig. l b  then i t  becomes l ike Fig.  la. 
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Fig. 1. Sample Space for Three Dif ferent  Regression Models. 
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Another related method of examining contours of constant S(0) is to examine these  contours in 

the parameter space  or 6 space.  If the function f  is linear, then the  contours of constant S(8) in 

the parameter space  cons is t  of concentric e l l ipses .  If the function f  is nonlinear, then the contours 

a re  often elongated or banana-shaped. In addition, the contours for the nonlinear model may have 

multiple loops surrounding many stationary values which provide alternative minima for S(0). 
Example: Consider the model 

If 8 ,  and 8, are interchanged, th i s  leaves  the model unaltered. Therefore, i f  the minimum for S(t9) 

is attained a t  (O1 ,  8,) = ( O 1 ,  e,), the s a m e  minimum value for S(8) is given a t  ( O 1 ,  8,) = ( O , ,  e,) ,  
so that  a double solution ex is t s .  

A h  A h  

3. METHODS OF ESTIMATION 

We will now discuss  some methods which may be used to find the least-squares estimate of the 

vector 8. These  methods make u s e  of one or both of the following: (1) the gradient or s teepes t  

descent  method and (2) the Gauss-Newton or linearization method. Both of these  methods are 

i terative and involve the choice of a vector 8 ( O )  of initial estimates of the parameters. These  

init ial  estimates may be intelligent guesses  or preliminary estimates based on some available in- 

formation. Hopefully, these  init ial  values will be improved upon in the success ive  iterations. 

A 

3.1 Gradient or Steepest Descent Method 

We will need the following definition before discussing the gradient or  s t eepes t  descent 

method: 

Definition: L e t  g(x) be a real-valued function, where x is a vector in p-dimensional Euclidean 

space .  The  gradient of g is then defined as 

v g =  - dg - dg , . . .  , ””)’ 
(axl 9 ax, d X P  

Hence we note that vg is vector valued and indicates a direction. If x(O) is some fixed point i n  

the p-dimensional space ,  then we can  show that vg(x(O)) points in the direction from x(O) in which 

g increases  most rapidly. 

creases most rapidly. 

Therefore -Vg(x(O)) points in the direction from x(O) in  which g de- 

For our problem, let i ( v )  be the  estimate of the vector 8 a t  the vth iteration; then the gradient 

method would find a new estimate of 8 by 
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where X is a positive constant. This  procedure is repeated with e ^ ( .  
The calculation proceeds in this  way until it is halted by some arbitrary rule. Some stop when 

the residual sum of squares is sufficiently small, some s top when the elements  of 8 ( v  “1 - 
are sufficiently small, and some s top  after a fixed number of i terations.  However, there is no 

generally accepted stopping rule. 

The gradient method h a s  the advantage that i t  is easy  to  compute and it gives rapid improve- 

ment in  reducing s(@ when 6cv) is far from the minimum. T h i s  method a l s o  h a s  some disadvantages,  

though, and some of these  disadvantages are: (1) the s tep  s i z e  from iteration to iteration must be 

determined; that  is, the value of the constant  X in (12) must be determined, and this  has  produced 

many variations of the method; (2) convergence can be very s low near the minimum value of 

S(8); and (3) the direction of s teepes t  descent  is not unique under a change of scale. 

The third disadvantage may be understood by considering the following example: 

Example: The  two models whose regression equations are  given by 

taking the place of ;(”). 

and 

for i = 1, 2, . . . , n, differ only in a change of s c a l e  of the parameter 8,. Let 

and 

then by comparing the vectors -vS, (19) and -oS,(e) it can easi ly  be s e e n  that these  two vectors 

do not have the same direction in the 8 space.  For  example, l e t  n = 3,  y ,  = 2 ,  y ,  = 1 ,  y ,  = 2, 

t2 = 1.0, (, = 0.5, 8, = 5, and 8, = 1; then 

= 1.5, 

-%,(e) = (- 1.47562,3.25976) 

and 

which do not have the s a m e  direction in the  8 space.  
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3.2 Gauss-Newton or  Linearization Method 

f 

The Gauss-Newton or linearization method of estimating the parameters in nonlinear regres- 

sion u s e s  the results of l inear least squares  in a succession of s t a g e s  and h a s  been referred to 

by some as linear regression for nonlinear models. The  f i r s t  s t e p  in this  method involves the 

expansion of f(tu, 0)  in Eq. (6) in a Taylor se r ies  expansion about the point 

es t imates  of the elements of 8 and curtail ing this  expansion after the l inear terms in the ele- 

ments of 8. That  is, the function f([", 8) is approximated by the following l inear function: 

of init ial  

L e t  

then it can be  seen  that the model in Eq. (6) is of the form, approximately, 

(14) 

That  is, i t  is of the linear form given in  Eq. (I) to the selected order of approximation. Then, near 

i t  should be true that $8) = S(e),  where $0) is S(0) when f(tu, 8) is approximated by (13), 

namely, 

where 

do) = (y ,  - fy) , . . . , yn - f I p ) ) '  , 

... 
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Since S(8) is a quadratic form in 8, i t  can  be  minimized with 
A p (0) = (Z(0,' Z(o))-l (Z(0, , 

if the inverse of Z(')'Z(') exis t s .  A new estimate of the vector 8 is found from 
A h A 

(17) O ( 1 )  = ~ ( o )  + p c o )  . 
A A A 

Using 8 ( l )  in the place of 8 (O), the above s t e p s  are repeated again. L e t  8 (v) be  the vector of 

estimates of 8 on the vth iteration; then 

,g(,+i) - - ,gW + p c ~  . A h h 

(18) 

The above procedure is repeated in th i s  way until it  is halted by some arbitrary stopping rule. A s  

was mentioned in the discussion on the gradient method, there a re  numerous stopping rules that 

may be adopted. The  iterative linearization method for estimating the  elements of 8 h a s  the 

advantage that (1) i t  can  so lve  our estimation problem in one iteration i f  f is linear and (2) i t  

usually converges rapidly when we are c lose  to the minimum, s ince  that is where the quadratic 

approximation to S(6) should be  rather good. However, th i s  procedure may a l s o  have some draw- 

backs in that (1) i t  may converge slowly, (2) i t  may oscil late widely, and (3) it  may fail to con- 

verge a t  a l l  when i t  attempts to take too large a s t ep  in the parameter space .  T o  combat some of 

these  deficiencies there have been numerous modifications proposed to circumvent these  problems. 

One of t hese  modifications takes  only a fraction of the p ( y )  vector and adds  to 8 (v), that i s ,  

t akes  very short s t eps  in the parameter space .  For some problems th is  h a s  been quite effective 

in achieving convergence to a minimum of S(8). 

A h 

B 

3.3 Marquardt's Compromise 

D. W. Marquardt has  developed a modification of the linearization method that a l so  h a s  con- 

nections with the gradient method. Marquardt's method represents a compromise between the 

lineazization method and the s t eepes t  descent  method and appears to combine the bes t  features 

of both while avoiding their limitations. Since the gradient and linearization methods each give 

a correction vector for the vector of init ial  estimates of the parameters, the  Marquardt algorithm 

provides a method for interpolating between these  two vectors and a l s o  for obtaining a suitable 

s t ep  size. The  bas ic  idea behind th i s  algorithm is that i f  the linearization approximation yields 

a function $8) which is a good approximation to S(8) only in a certain neighborhood of the current 

i terate on 8, then $8) should be minimized only within that neighborhood and not globally. Intui- 

tively, th i s  should be a better procedure than merely continually halving the correction vector 

found by the linearization procedure, s ince  th i s  vector may be pointing nearly 90' away from the 

optimum local direction, which is the direction found by the gradient or s t eepes t  descent method. 

The  complete reference on Marquardt's algorithm is given in the  list of references. There have 

a l so  been numerous nonlinear estimation procedures developed for c a s e s  when f is of a particular 

form, for example, i f  f is a sum of exponential terms. However, s ince  i t  would be difficult to 
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d i s c u s s  all of them, we will only give a reference to an extensive bibliography on the general 

subject  of nonlinear estimation that covers many of these spec ia l  techniques.  This  bibliography 

is found a t  the end of the chapter on nonlinear estimation in the book by Draper and Smith which 

is a l s o  l is ted in the references. 

4. ESTIMATES OF VARIANCES 

In order to obtain estimates of the variances and covariances of our least-squares  estimates 
A 

of the elements of the vector 8, which we denote by 8 (”), some approximation must be used, s ince  

it is generally impossible to obtain exact  expressions for these  variances and covariances. If we 

assume that  the observations y,, u = 1, 2, . . . , n, are observed values  of n independent random 

variables each having a constant variance CJ’, then the covariance matrix of 8 (’) may be  approxi- 

mated by 

A 

where Z(”) is the n x p matrix of partial  derivatives of the function f with respect  to the elements 

of 8 evaluated at 8 (”1, which h a s  been defined earlier. In order to evaluate  this covariance matrix 

the constant  0’ is estimated by 

A 

A h 

where S(S ( v ) )  is the residual s u m  of squares  evaluated at 8 ( v ) .  By subst i tut ing &’ into (19), the 

estimated variance of 0;”) is found a s  the i th  diagonal element of the result ing matrix. 
A 

5. INITIAL ESTIMATES 

T h e  iterative procedures that have been discussed above all require ini t ia l  es t imates  of the 

parameters 8, ,  . . . , H p .  It is important that  a s  much prior information as possible  be  used to 

make t h e s e  s tar t ing values a s  reliable as possible.  With good ini t ia l  values i t  will often be 

possible  for an i terative method to  converge to a solution faster  than would otherwise be possible. 

In addition, good start ing values may protect against  the convergence of the i terative scheme to 

an unwanted stationary point of S(6) when multiple minima exis t  or i f  severa l  local  minima exist ,  

one of which is the absolute minimum. Parameter values which may be  physically impossible or 

which do not provide the true minimum of S(8) may result  from such unwanted points. One way to 

help avoid such difficulties is to  set up a grid of points in the parameter s p a c e  where S(8) is 

evaluated. From this  set of values of S(8) it will usually be  possible  to see what the form of the 

sum of squares  surface is, and it may a l s o  reveal that  multiple minima are  possible. In any case, 

the grid point at which S(6) is smallest  can be  used a s  a s tar t ing point of an i terative procedure, 

or a reduced grid can be examined in  the b e s t  neighborhood, to obtain a better start ing point. 

Frequently it is possible to obtain ini t ia l  es t imates  of the parameters in a nonlinear regression 

model by a graphical or visual  examination approach. In order to demonstrate how the approach 

can  b e  used we consider the model given by 
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Fig. 2. Regression Curve and Data  Used  to Obtain In i t ia l  Est imates of  8 ,  and 6,. 

s 

for u = 0, 1, 2, . . . , 10. In Fig. 2 a plot of the observed data points (tu, y , )  is given along with 

a smooth hand-drawn curve to approximate the function E(Y)  in Eq. (21). T h e  hand-drawn curve 

appears to approach an asymptote of about 8.5 as 6 increases.  Therefore an  init ial  estimate of 8, 
could be  taken as iy) = 8.5. In order to obtain an init ial  estimate of 8, we u s e  that point where 

E ( Y )  achieves  about one-half of its maximum value and then read off the  value of 4 where this 

occurs, which is denoted by t*, that  is, find [when E(Y)  = 4.25. Many other points could have 

been used for th i s  step,  but th i s  point was  chosen s ince  E(Y)  is equal to 8 , /2  a t  th i s  point, which 

implies that  e 
- e 2 e *  

= 0.5. W e  then estimate O 2  by 

A 

From Fig. 2, [* = 1.25 and 8 1') = 0.55. Although we are  unable to make any statements about the 

s ta t i s t ica l  properties of 8 1') and 8 T), they are eas i ly  found and can  he lp  in  choosing a particular 

region of the 8 space  where we evaluate S(8). In addition, these  graphical es t imates  could be used 

as init ial  estimates in the  i terative estimation procedures described earlier. 

A A 
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LECTURE VIII: ANALYSIS OF VARIANCE 

David G. Goss lee  

1. INTRODUCTION 

Repeated observations generally exhibit variation due  to changing conditions, observers,  

material, and other factors.  These  factors can  seldom, if  ever, be controlled easi ly  and inexpen- 

sively. Thus  many factors are controlled by the experimental design, and other factors are con- 

trolled in a probabilistic s e n s e  by randomization and replication. A properly designed experiment 

allows efficient ana lys i s  of the variation due to specif ic  factors and unbiased estimation of the 

effects of factors controlled by design. 

Sir Ronald F i she r  (1925) originally defined ana lys i s  of variance as “separation of variance 

ascribable to one group of causes  from the variance ascribable to other groups.” The analysis  of 

variance is a statistical method that  h a s  been widely used  for many years s ince its development 

by Fisher.  Thus  many books and journal papers contain the theory, method, designs,  principles, 

calculations,  and examples necessary  for intelligent u s e  of the method. Many programs for com- 

puters exis t  to perform the  calculations for a variety of designs.  

In previous lectures  in th i s  series the ana lys i s  of discrete  observations and distribution-free 

tests were developed and described. The ana lys i s  of variance is a method of analyzing continuous 

observations assuming that the error term distribution is Gaussian. T h e  design factors can be 

quantitative or qualitative. 

The development of l inear regression a l s o  was  given in  a previous lecture us ing  the general 

linear hypothesis theory. The analysis of variance can be  derived from the theory, although a 

difficulty a r i s e s  s ince  the  design matrix is singular and not of full rank. Th i s  can be  overcome by 

reparameterization or by u s e  of t h e  generalized inverse  (Kempthorne 1952, Graybill 1961, and  

Searle 1966). 

I will speak  of s ingle  observations on an  experimental unit  such  as the diameter of a reactor 

fuel pellet  or of “one at a t ime”  ana lyses  of multiple measurements which could include, for 

example, other measurements on the pellet. Methods of analyzing multiple measurements include 

the analysis  of covariance and multivariate analysis  of variance. 

2. MODELS 

The ana lys i s  of variance is used to analyze observations in experiments and surveys in  social ,  

physical ,  and biological s c i ences .  T h e  variation might be considered in some investigations as 

variance per se, while in  others it  might be  considered a s  the variation caused  by effects of factors 

on the mean levels .  

models respectively. The mixed model which contains both fixed and random effects will not be  

d iscus  sed. 

The  models for the two cases are called variance components and fixed 

108 
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2.1 Variance Components Model 

Interest in t he  relative variation or variance due to different sources  is typical in genetic 

studies.  T h e  variation due  to inheritance (genotypic variation, ffi) is compared with the variation 

due to the interaction of inherited traits with the environment @henotypic variation, 02). The 

calculation of 5; and oi will be described in Sect. 3. Other examples are common, such  as the  

investigation of the precision of manufacturing operations. 

P 

The leve ls  of a factor are assumed t o  be random samples from a population of leve ls ,  and w e  

are interested in  making a n  inference about the  variance among leve ls  from the sample to the  

population. In t he  genetic study i t  might be assumed that herds of cows were sampled randomly 

and that cows within herds  were sampled randomly. Likewise, i t  might be  assumed in a production 

study that types of machines were randomly sampled and that machines of a given type were ran- 

domly sampled. 

T h e  ana lys i s  of variance for random models is used  to answer questions such  as: 

1. What proportion of variability is due  to inherited traits? That i s ,  what is the  estimate of 
q(a; + o;)? 

2. In how many generations will th i s  ratio stabil ize? 

3. How much variation is caused  by nonhomogeneous raw material relative to  the  variation caused  
by differences among machines? 

4. What is the  optimum allocation of effort on material, machines, operators, and training to reduce 
the  variation in product? 

2.2 Fixed Model 

T h e  fixed model is assumed i f  we  a re  interested in  the effect due to a treatment compared with 

a control or  in the  differences among several  treatment effects. T h e s e  differences can be  expressed 

as variances and analyzed by the  analysis of variance. If we trained operators by several  different 

methods we might wish to test whether differences among the  programs were significant in  order to 

test hypotheses on the effectiveness of training programs. That  i s ,  we are primarily interested i n  

testing differences among mean levels. 

3. CALCULATIONS 

T h e  ana lys i s  of variance is obtained by decomposing the  sum of squares of the observations 

into meaningful component sums of squares.  Each s u m  of squares  is divided by the  corresponding 

degrees of freedom to obtain a variance, usually termed a mean square. 

Given y , ,  y , ,  . . . , y ,  as realizations of the  random variable Y ,  we wish to subdivide the  total  

sum of squares,  cy: ,  i = 1, 2, . , . , n, where the y 's  represent measurements on a random sample of 

experimental units.  The treatments are allocated to the  units by a restricted randomization pro- 

cedure. The  particular set of restrictions determines the experimental design. The  model is de- 

termined by the  design and the  assumptions. 
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Table  1. Summary of Measurements i n  o One-way Clossif icot iona 

Group 1 Group 2 ... Group i ... Group t 

y t  1 

Y t 2  

y t 3  

. . .  yi 1 

YiZ 

y i  3 

. . .  
y 1 1  YZ 1 

y 1 2  y 2  2 . . .  ... 
. . .  . . .  ’13 ’2 3 

Y t j  . . .  Y i j  . . .  Y 1  j Y z j  

- - - - 
y t .  . . .  yi. . . .  Y 1 .  y 2 .  Group mean 

Grand mean 7 

aThe table naturally hides the randomization scheme. The experimental units should be 
assigned to  the groups randomly. 

For example, given n observations from t groups with r units in each  group, we let y . .  represent 
11 

the jth measurement in the ith group (Table 1). The  following algebraic identity demonstrates a 

meaningful decomposition: 

T h e  corresponding model for this one-way classification is: 

E ( Y )  = p + 7i , 

y . .  = p + 7i + e . .  . 
11 11 

Thus  a measurement is represented a s  a linear combination of the  mean p,  the effect of the ith 

group T ~ ,  and the  error e . . .  The summary ana lys i s  of variance is shown in Table 2. The  expected 

mean squares indicate that the  s t a t i s t i c s  s; and s i  can  b e  used  to t e s t  hypotheses and make 

estimates on the  parameters o: and T ~ .  

11 

In a previous lecture we learned that the ratio of two independent random variables each having 

a chi-square distribution is a random variable having an  F distribution. In th i s  ana lys i s  of variance 

and 
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k 

Table 2. Summary o f  Ana lys is  of Variance Calculat ions 

Expected Mean Squares Source of Degrees of Mean 
Variation Freedom Sum Of Squares Square Random Model Fixed Model 

Total n = rt i i Yi”i 

r t  
5 2  ff2 Within treatments t(r - 1) ( Y i j  - s2 E 

j=1  i=l 

are independently distributed as chi-square with t - 1 and t(r - 1) degrees  of freedom, respectively,  

and 

The t e s t  of the hypothesis that  a$ = 0 is easily formulated s ince  F then reduces to s;/si. How- 

ever,  if the  ratio of interest  is o$ /(02 + 5:) and not c2/(02 + r o;), then the development of 

confidence l imi t s  on the ratio is more complex. 

The mean squares  i n  Table  2 for the random model can b e  related to the genetic example by 

considering that  the variability among herds represents genetic variation and the variability among 

cows within herds represents phenotypic variation. It i s  assumed that  a random sample of t herds 

and r cows within herds was selected.  The ratio 

can be  estimated by 
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For the fixed model we  can consider the treatments to b e  the training methods mentioned earlier. 

Then F = .$/si is a s t a t i s t i c  that  is obviously sens i t ive  to variation in training methods s i n c e  

S$ is a n  unbiased estimate of 

u2 + r C T 2 / ( t -  I ) .  

Furthermore, the distribution of F is the  Fisher-Snedecor distribution when C r :  = 0. Thus we can  

t e s t  the hypothesis tha t  r 1  = r 2  = . . . = r t  = 0 us ing  F .  

4.  TESTS OF HYPOTHESES 

Given a properly designed and conducted experiment we can obtain efficient and unbiased 

es t imates  of the parameters and linear functions of the parameters in the  model. In addition, each  

linear combination that is estimable h a s  a corresponding unique mean square that can  b e  used to 

tes t  the hypothesis that t he  l inear function of the  parameters is zero. 

For example, if 

h = r  - r  
1 2 ’  

L j 7  _ -  1. Y Z .  ’ 

and E($) = A, then h is estimable and s; = r t 2 / 2  is a unique mean square. A t e s t  of the hypothe- 

sis that 7-1 - T~ = 0 (i.e., that r1 = r 2 )  is obtained by computing F = s$/si and comparing it 

with the l O O ( 1  - a) percentile of the F distribution with 1 and t(r - 1) degrees of freedom, 

FJl ,  t ( r  - l)]. W i t h  two treatments, one degree of freedom, an equivalent test can b e  made by 

calculating a t statistic which will b e  t h e  square root of the F s ta t i s t ic .  In this c a s e ,  

t = (Fl. - F 2 . ) / d q d  

For three treatments and two degrees of freedom w e  can  construct many pa i rs  of independent 

contrasts such  tha t  the sum of squares  for each  pair is the same. For  example, for one pair we can  

choose 

x e -  1 Y l .  _ -  Y3.  and $2 = Y1. -w2. + y,. 

and for another pair 

and 
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are s ingle  degree of freedom mean squares  associated with the corresponding contrasts.  It can be  

shown that  

which is equal  to the among treatments sum of squares  in Table 2 when f = 3. 

Furthermore, each  contrast  can be used to tes t  a hypothesis using the assoc ia ted  mean square. 

Thus  the most meaningful pair  can be chosen. 

This  procedure can b e  generalized to more than three treatments and demonstrates the manner 

in which the F test on the equality of several  means is a generalization of the Student t test on 

two means. 

5. ASSUMPTIONS 

L e t  m e  introduce th i s  sect ion with a quote from Mainland (1968): “Until the very l a s t  s t e p ,  

when w e  take the  variance ratio ( F )  t o  a published table ,  the method h a s  n o  connection with the 

Gaussian or any other particular frequency distribution. It represents a nea t ,  exact  and rather re- 

markable relationship that e x i s t s  in any group of numbers that  is divided into two or more subgroups 

(c lasses)  either equal or unequal in size.” 

A s  a f i rs t  s tep,  the ana lys i s  of variance table  is a meaningful way to summarize the observa- 

t ions.  If, secondly,  we choose to estimatle parameters in the model or perform tests of hypotheses ,  

in a probability s e n s e ,  then we need to assume that  the  random components are independently and 

normally distributed about zero mean and with common variance. 

Normality is often justif ied after examining data.  Repeated observations on identical  material 

can be analyzed to test t h e  assumption of normality. Also, the residuals  from the model can  be  

analyzed in a s i m i l a r  manner. The residuals  a r e  the  differences between the observed values and 

the corresponding estimated values .  For  example, given p and ri to  b e  maximum likelihood esti- 

mates of the  parameters p and ri, then 

A A  

are the n residuals  for the model previously stated.  Graphical methods are particularly useful in 

examining residuals.  

6. DESIGN OF EXPERIMENTS 

The proper decomposition depends on the  design. In some cases poor planning or  loss of ex- 

perimental uni ts  and observations c a u s e s  difficulty, and a s ta t is t ic ian is sought to “salvage some- 

thing” from the experiment. A stat is t ic ian should b e  consulted to a id  i n  planning the experiment. 

A good design will  ensure unbiased estimates of the  effects of factors  and an unbiased est i -  

mate of the error variance. The design can  be  chosen either to obtain the most sens i t ive  tests for 

a given effort or  to minimize the  effort for a given sensit ivity.  
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T h e  principles of experimental design are a l s o  directed toward ensuring that t h e  assumptions 

are valid. Thus  randomization is es sen t i a l  to allow u s  to assume independence of error terms, 

obtain an unbiased estimate of the error variance, and to make valid inferences. 

One restriction on randomization is a type of sampling, termed systematic,  in which the experi- 

mental units a re  chosen in a cyclic manner s o  that every kth unit is chosen. For example, every 

5th unit on a production l ine  might be  chosen for testing, every 3d plot in an  agricultural experiment 

might be selected for treatment, or every 12th name on a list is chosen for interview in  a survey. 

Systematic sampling is often less expensive, and the means are sometimes estimated more 

accurately. However, the estimate of t he  variance is often biased. In the examples mentioned 

above, such  b ias  would e x i s t  if  there was  a trend in  quality of t h e  item under production, if there 

was  a fertility gradient in t h e  agricultural trial, and i f  the  l i s t  of persons had been ordered by a 

variable correlated with a variable measured in the survey. Obviously, the means could b e  biased 

if a cyc le  exists in  the sequence  of units,  for example, i f  the  units on the production l ine  came 

from f ive  machines and always i n  the  same sequence. 

7. TRANSFORMATIONS 

If normality cannot be  assumed or i f  t he  variance is not homogeneous, a mathematical trans- 

formation of the  observations can  c a u s e  the assumptions to b e  more nearly valid. Since investi- 

gators are accustomed to the concept that measuring devices  and experimental un i t s  often perform 

transformations on the  variable of interest ,  the idea of a mathematical transformation should seem 

somewhat natural. 

The  investigator very often measures a variable that is functionally related to the variable of 

interest. The  function may be known or unknown. An example from several  divisions of the 

laboratory is the measurement of t h e  diameter of an experimental unit, the diameter then being 

transformed into surface,  volume, or mass ,  depending on the investigation. The  s ta t i s t ica l  analy- 

sis is made on the  va lues  m o s t  nearly validating the  assumptions. 

Transformations are used  in ana lys i s  of variance most frequently to correct for nonhomogeneity 

of t h e  error variance. T h e  need  might be  discovered by plotting residuals or  by  plotting means and 

variances for subgroups of the data.  Also, spec i f ic  transformations a re  proposed for certain types 

of data on a theoretical or a common usage basis.  

Some variance-stabilizing transformations based  on s ta t i s t ica l  theory are: (1) square root if  

t he  variance is proportional to the  mean, (2) logarithm i f  t he  standard deviation is proportional to 

the mean, and (3) inverse s ine  for proportions. 

The square root transformation is common for counts less than 100 and also for proportions 

less than 0.2. 

A transformation also affects the  additivity of effects and the  distribution of the error term. 

For example, the logarithmic transformation will change a multiplicative model to an additive model. 

A transformation that s tab i l izes  the  error variance is expected to make the  distribution more nearly 

normal. A s  we learned from a previous lecturer, the  normal distribution is the only distribution in 

which the variance is independent of t he  mean. 
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8. MULTIPLE COMPARISONS 

In the  ana lys i s  of variance situation the investigator usually h a s  some specific tests planned 

and a l so  wi shes  to search for significant effects which could not b e  anticipated. Thus the standard 

procedure for testing a few carefully posed hypotheses needed to be, and was,  modified to include 

multiple comparisons. Even if some of t h e  specific hypotheses could be  included in  a general 

multiple comparison procedure they should b e  considered separately in order to make the overall 

procedure more sens i t ive  or powerful. Th i s  is an example of providing more powerful tests by in- 

cluding more information in the procedure. 

For example, a specific comparison of the mean of a control group with the mean of several  

treated groups or comparison of t h e  control with each treatment individually is more powerful than 

a multiple comparisons test among all t h e  group means. 

A multiple comparisons test is a procedure for performing all possible pairwise comparisons. 

If t he  standard t test is used ,  too many s i p i f i c a n t  resu l t s  will be declared. Tha t  is, the  actual 

leve l  of significance is larger than t h e  nominal level and inc reases  rapidly as  t h e  number of con- 

t r a s t s  increases .  T h e  new methods allow multiple tests to be performed and maintain a chosen 

leve l  of significance. 

The  text by Steel and Torrie (1960) h a s  an excellent discussion of t hese  procedures. 

9 .  CONCLUDING REMARKS 

The assumptions are realistic in many experimental si tuations,  and the analysis of variance 

method is a widely used tool for the  following reasons: 

1. In many s i tua t ions  the  errors, which are often a composite of several  sources of error, are 

random variables which a r e  approximately Gaussian, independent, and additive. 

2. The  ana lys i s  of variance t e s t s  and estimation procedures are robust. That  is, they are not 

highly sens i t ive  to departures from normality. This  is particularly true for t e s t s  of hypotheses on 

means. Caution is in order for tests of hypotheses on variances. 

3. Transformations can  b e  made easily on observations to make the error terms approximately 

normal. 
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LECTURE IX: DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHODOLOGY 

Toby J. Mitchell 

1. INTRODUCTION 

In its widest  sense ,  experimental design can  b e  defined briefly and directly as t h e  planning 

of experiments. In th i s  lecture, we shal l  center our attention on experimental design from the 

statistical point of view. That  i s ,  we shal l  view the resul ts  of the experiment in terms of s o m e  

sor t  of probabilist ic mathematical model, and we shal l  see what principles of experimental de- 

sign emerge. 

Why has  the s ta t is t ic ian become involved in this  area? Generally he is not knowledgeable in 

the subject  field in which the experiment is being conducted, and it is fair to  a s k  why h e  feels 

able  to contribute anything a t  all. T h e  answer is based to some degree on the fact  that  virtually 

all inferences concerning the  resul ts  of experiments are, implicitly or explicit ly,  prot Abilistic in 

nature. In addition, there is an increasing tendency to u s e  probabilist ic models to dt-scr" e the  

actual resul ts  of the experiment itself. T h i s  dual u s e  of probability to  describe not only the re- 

s u l t s  of experiments but the inferences which can be  made from these  resul ts  h a s  brought the 

stat is t ic ian,  whose bus iness  is applied probability, into the middle of scient i f ic  experimentation. 

Many experimenters, recognizing this,  dutifully (and sometimes reluctantly) take their data to a 

s ta t is t ic ian from t i m e  to  time. Far from being grateful, the s ta t is t ic ian is often heard to grumble 

because h e  was not consulted when the experiment was s t i l l  in the  planning s tage.  Disagreeable 

or not, the  s ta t is t ic ian h a s  a point, and it is this :  In order to carry out a reasonably valid statis- 

t ical  analysis  of the data,  i t  is desirable f i r s t  that  t h e  data  b e  collected in such a way that cer- 

tain probabilistic assumptions are  sat isf ied.  If th i s  is not possible ,  then the da ta  should be  col- 

lected in such a way that failure to sa t i s fy  such assumptions will not foul up the inferences made 

from the results.  In any case ,  the  manner of collecting the  data,  that  is, the design of the  ex- 

periment, is important to the  validity of the analysis.  If t h e  statistical principles of experimental 

design are ignored, it is quite possible  to  collect an enormous s e t  of data for which there are no 

known methods of making valid inferences about the  results.  

Experimental design i s ,  in other words, an integral part of the  whole i terative process  which 

is involved in scientific experimentation. Professor  George Box of the  University of Wisconsin 

often i l lustrates  this  point by means of the following diagram: 

EXPERIMENT 

CONJECTURE 
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T h i s  diagram i l lustrates  how the prior knowledge of the  experimenter is first  used to formulate a 

conjecture about the underlying physical mechanism of the system h e  is studying. He uses  this  

conjecture to  design an experiment, the resul ts  of which are then analyzed. 

analysis  help him formulate a new conjecture, which in turn leads  to a new design, and so forth. 

T h i s  i terative process  is continued either until the goals of the  project have been reached or, 

perhaps more realist ically,  until there are no more funds available.  

The  results of the 

Just  a s  the s ta t is t ic ian is often quite ignorant of the subject  field of the  experimenter, s o  the  

experimenter often lacks  a deep understanding of statistics, Even i f  h e  recognizes the importance 

of s ta t i s t ica l  experimental design, he may feel so intimidated by the  prospect of getting involved 

with statistics that h e  essent ia l ly  ignores t h e  formal aspects  of experimental design altogether. 

Fortunately, the common s e n s e  of a good experimenter often leads him to behave just  a s  he would 

i f  h e  knew al l  the  s ta t i s t ica l  rules. Most of the  bas ic  principles of experimental design are, a s  

we shal l  see ,  almost obvious, and simple adherence t o  them will generally be enough to keep the 

experimenter out of trouble. In some s i tuat ions,  however, especial ly  those  in which an explicit 

mathematical model is conjectured, a more sophisticated approach is necessary i f  the  experimenter 

is to  squeeze  as much information a s  possible  out of h i s  data.  In any c a s e ,  the better h i s  experi- 

ment is designed, t h e  more useful information h e  can expect to get  out of it. 

In this  lecture, we shal l  f irst  d i scuss  a few of the  bas ic  “common sense”pr inc ip les ,  which 

will be presented in connection with some of the older “standard” designs.  W e  shall  then con- 

s ider  the designs which have arisen more recently in connection with response surface methodology. 

2. BASIC PRINCIPLES OF EXPERIMENTAL DESIGN 

2.1 Classif ication of Variables 

Before beginning a discussion of bas ic  design principles, it will be helpful to consider the 

different types of variables present in an experiment. W e  shal l  c lass i fy  t h e s e  a s  follows: 

1. Response variables.  These  are the variables which correspond to the results of the experi- 
ment. They are represented by the observed da ta  and are not directly under the control of 
the experimenter. There are generally many response variables corresponding to each 
experimental run, though only a few may be of sufficient interest  to be measured. 

a)  Variables of interest .  T h e  purpose of the experiment is generally to discover what effect 
changes in these  variables have on the response variables.  Therefore the levels  of these  
variables,  which can be controlled by the experimenter, are deliberately altered during the 
course of the experiment. 

6) Variables which are not of interest .  The  main reason for considering these  is to  control 
them in such  a way that their effects on the response variables will not bias  conclusions 
about the effects  of the variables of interest .  

3. Uncontrolled variables.  T h e s e  variables a l so  affect the response variables and are,  in fac t ,  
the c a u s e  of the “random error” associated with the response.  

Most s ta t i s t ica l  models consider an observed response y to  be composed of two parts: 

2. Controlled, measurable variables.  
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1. the “true value” q of that response,  where q depends only on the levels  of the controlled 
variables,, and 

2. the “random error” E caused by the uncontrolled variables.  

Often these  two parts are assumed to ac t  additively, s o  the basic  mathematical model is of the 

form: 

c 

y = q + e ,  (2.1.1) 

where 7 is some function of the controlled variables and E is presumed to  be a random variable. 

The usual goal of a good experimental design is to perform the experiment in  such  a way 

that the nature of the relationship between 7 and the controlled var iables  will become clear  

in sp i te  of the uncontrolled variation. 

2.2 Randomization 

One of the most important principles of experimental design is randomization. Probably 

the simplest  application of th i s  technique decides  the order in  which to  perform a set of ex- 

perimental runs, after all other aspec ts  of the design have been sett led.  If there are  n runs 

in the experiment, this  sort  of randomization can be  accomplished by writing the integers 

from 1 t o  n on separate  pieces  of paper and then drawing them out of a hat,  one by one. The  

order in which the numbers happen t o  be drawn specif ies  the order in which the runs are  t o  be 

performed. (Equivalently, a table  of random numbers could b e  used.)  

What is the purpose of this?  F i rs t ,  we must recognize that no experiment is under perfect 

control, hence the inclusion of the random error t e r m  ( E )  in t h e  basic model (2.1.1). We can 

write this model in terms of the individual observations: 

y .  = 7. + E .  i = l , 2  ,..., n ,  (2.2.1) I 1 I ’  

where n is the number of runs in the experiment. If we now assume that each e i  depends only on 

the s t a t e  of the uncontrolled variables,  which in turn depends only on the t ime  of the  i th  run, 

then we can regard the E ’ S  as being “fixed” by the choice of t imes at which the experimental 

runs are to be  performed. By choosing the order of the runs we are,  in  effect, “assigning” the 

7’s to the fixed e’s. There are,  in fact ,  n! possible assignments which could be  made. Even 

though we do not know the magnitudes of t h e  errors, we can  at leas t  give each  experimental 

arrangement an equal chance by drawing the arrangement, as from a hat, in such a way that  the 

probability, prior to  the  draw, of obtaining any particular arrangement is l /n! .  

The  effect  of this  randomization procedure is t o  ensure a “fair  game.” For  example, 

suppose the E ’ S ,  unknown to us ,  increase as the experiment progresses.  If we fail to  randomize 

the order of the runs and choose instead to do the experiment in the most convenient way, we 

shal l  unwittingly inf la te  all the readings y i  corresponding t o  the s e t s  of conditions which were 

convenient for u s  to  run toward the end of the experiment. Of course,  we can  never give each  
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experimental run an equal  random error. What we can d o  through randomization, however, is t o  

give each  experimental run an equal chance  of being associated with any particular error from 

the s e t  a t  hand. 

It should be noted here that we have not, in the above, made any assumptions about the 

distribution of the E’S - in fact ,  we have not even assumed that they have a distribution. There 

are some experiments in which the only probabilistic structure assumed is that which is imposed 

by the (known) randomization scheme itself. In other s i tuat ions,  when one prefers not to make 

any distributional assumptions about the E ’ S ,  one can, for tes t ing certain hypotheses,  make u s e  

of nonparametric “randomization” tests which are based only on the probability structure induced 

by the randomization. 

Usually the s ta t i s t ica l  analysis  of data is based on further assumptions which include 

specifying some underlying distribution for the E ’ S .  Generally the assumption is that the 1 
behave a s  i f  they were independent realizations of a random variable with distribution function 

F ( E ) ,  where F is specified.  The assumption of independence is crucial  to  most s ta t i s t ica l  

analyses ,  more so, in fact, than the  correct specification of F .  In practice,  one can expect 

the assumption of independence to be  quite wrong. If, however, randomization is carried out 

and the y’s are assigned randomly t o  the  E ’ S ,  then (for reasons we sha l l  not d i scuss  here) the  

observed y’s often behave approximately as if the E’S were drawn independently from some 

distribution and then tacked onto the 17’s to  give the y’s .  Besides  ensuring a “fair game,” 

therefore, randomization gives our s ta t i s t ica l  assumptions a f i rmer  footing than they would 

otherwise deserve. 

So far,  we have d iscussed  randomization in connection with the order of performing ex- 

perimental runs. More generally, randomization involves the assignment of treatments 

(combinations of the controlled variables) to experimental units (e.g., intervals in t ime).  

For an example in which the experimental units are not jus t  time intervals,  let u s  

consider a hypothetical experiment which has  to  do with the spinning of straw into gold. We 

shal l  suppose there are  two processes ,  A and B, for doing this,  and we wish to  tes t  ex-  

perimentally to see which process is superior. W e  may select 20 ba les  of straw, say ,  and 

we decide to  put 10 of these  through process A and 10 through process B. Which 10 ba les  

should we assign t o  process  A? By the principle of randomization, we should choose at 

random one of the 

possible subse ts  of ba les  out of 20, so that each  subse t  h a s  an equal chance of being 

selected.  In particular, randomization will ensure that a particularly “well-nourished” bale 

(i.e., one which would provide, under either process,  more gold than most of its fellow ba les  

on the same process) h a s  the same chance of being assigned to process  A a s  t o  process B. 
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Similarly, a (‘dud” bale would have an  equal chance of being assigned to  each  of the two 

processes,  thus ensuring a fair game. Once the ba les  had been assigned to  the two processes,  

we would apply randomization once more t o  determine the  order of performing the  runs. 

In more complex experiments, the  appropriate randomization procedure is not so  obvious. 

In general, i t  is helpful t o  think of each  experiment a s  being systematically designed up to  

a certain point, after which we throw up our hands and randomize. In the  above example, for 

instance,  we carefully specified that 

1. there are t o  be 20 ba les  of straw in  a l l ,  

2. 1 0  ba l e s  are t o  be  assigned to  each  process. 

The  restrictions (2.2.2) correspond to our systematic design. T h e  design is not completely 

specified, however, until we determine 

1. the  assignment of ba les  t o  processes,  and 

2. the  order of the experimental runs. 

(2.2.2) 

(2.2.3) 

The decisions (2.2.3) a re  made by randomization, which e s s e n t i d l y  considers all des igns  which 

satisfy (2.2.2) and gives each  an equal chance of being selected.  

One of the most common mistakes when randomizing h a s  been to ignore part of the  class of 

designs which sa t i s fy  the  systematic requirements. That is, some des igns  which sa t i s fy  these  

requirements have no chance of being selected.  Often the  effect  of t h i s  is that a choice is made 

from a class of des igns  which has  more restrictions than were designed into the  experiment. 

No harm is done until the  da ta  are analyzed, at  which t i m e  the  experimenter estimates h is  error 

without taking into account the added restrictions which he  h a s  unwittingly imposed through 

faulty randomization. An example of this type of mistake will be given later in connection with 

Latin square designs.  

2.3 Blocking 

Returning t o  our straw-into-gold example, we now consider a situation in which i t  is possible 

to separate the ba les  of straw into two parts and submit one part t o  process A and the  other t o  

process B. T o  keep the  total  number of tests the s a m e ,  we  sha l l  now assume a total  of ten 

bales altogether. Assuming that an  individual bale is more homogeneous in “nourishment” than 

different ba les ,  we can  now obtain comparisons between processes  without regard to  the  differences 

in nourishment between bales.  Even if a bale were espec ia l ly  well nourished compared with the  

others, that fact would not affect the  comparison of the  two processes  within that  bale. By 

averaging the  differences between the  yields of process A and process B within all the  bales,  

we obtain an estimate of the “true” difference which is much more precise than the  “one bale, 

one process” procedure we d iscussed  in Sect. 2.2, simply because  the  “between bale” variation 

is no longer assoc ia ted  with our estimate. T h e  only variation due  to  nourishment which is now 

associated with our estimate is that which represents the inhomogeneity within bales.  

k 
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This  is an example of the technique known as blocking, which is simply the  arrangement of 

the experimental units into separa te  blocks (e.g., bales), based on the  expectation that the 

variation in response within blocks will be  considerably lower than the variation between 

blocks. An experiment which is to  be performed by several  National Laboratories, for example, 

might be designed s o  that the experimental runs performed by a s ingle  laboratory are al l  

considered part of t he  same block, while those  performed by different laboratories are assigned 

to different blocks. In this  way, overall differences in  results from one laboratory to  the next 

would not be assoc ia ted  with the es t imates  of the effects of the variables of interest ,  even 

though data  from all the laboratories are used t o  obtain these  estimates. 

We should remark that  most blocking arrangements are made assuming that, for a given 

treatment, the mean difference in response from one block to  the next is simply a constant 

which depends on the pair of blocks involved, but which does  not depend on the particular 

choice of treatment. In other words, the mean difference in response between treatment A, 

block 1 ,  and treatment A, block 2,  is exactly the same as the mean  difference in  response 

between treatment B, block 1,  and treatment B, block 2. While this  assumption is seldom true 

in  practice, it is a good first  s t e p  toward accounting for differences in response between 

blocks. Though it is implicit in most standard blocked des igns ,  this  assumption can  b e  

relaxed i f  more sophisticated blocking is desired.  

One of the most useful applications of blocking has  to  do with the order in  which runs are 

performed, a problem which h a s  already been d iscussed  in t e rms  of complete randomization. 

If the random errors are  expected to follow some sort  of a t i m e  trend, it is often advisable t o  

set up the experimental program in a sequence of subexperiments, where each subexperiment 

is treated as a s ingle  block. Within each  subexperiment, or block, the runs would be  performed 

in random order. 

The  incorporation of blocks into a design belongs to  the “systematic” phase of designing 

the experiment. T o  analyze the data  from a blocked design, we need to include the appropriate 

blocking variables in  our model. (These  blocking variables are generally “controlled variables 

which are not of interest ,” in terms of the classification of Sect. 2.1.) When we decide to  

block instead of randomizing completely, we are, in effect, considering a more elaborate model. 

Where are we t o  draw the l ine? We might be  tempted to get carried away with our blocking 

and end up making every experimental run a s ingle  block. Such a design would be doomed, of 

course, because  it complicates the model too much for the number of runs at hand. (In general, 
blocking a design into b blocks usually adds b - 1 parameters t o  the mathematical model.) There  

are no hard and fast rules which specify when to s top  blocking and s tar t  randomizing, but one 

useful rule of thumb is that the number of parameters in the model, including the b - 1 blocking 

parameters, should b e  no greater than three-fourths of the total  number of observations. 
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2.4 “Fixed Variables” 

In most experiments, there is a set of controllable variables which could be  varied during t h e  

course of the  experiment but which are held constant,  or “fixed,” t o  avoid overcomplicating t h e  

design. T h e s e  variables are often of secondary interest  to the  experimenter, who holds them 

constant so  that the effects of the  variables of primary interest  will stand out more clearly. 

While th i s  is often a good idea ,  care must be taken in interpreting the results,  s ince  any 

conclusions drawn from the experiment are technically valid only for the Zevels of the fixed 

variables which pertain during the experiment. In order t o  make a more powerful statement, 

it is necessary to assume, either by conjecture or by referring to  other data, that  the e f fec ts  of 

the primary variables on the response a re  the same no matter what the leve ls  of the fixed 

variables, In the  jargon of the  s ta t i s t ic ian ,  th i s  is equivalent t o  say ing  that there is no 

interaction between the fixed variables and the primary variables. When such  interactions d o  

exist ,  it is advisable t o  “free” the fixed variables which interact with the  primary variables,  

by varying them in the experiment. Though th i s  may appear to overcomplicate the  experiment, 

there are designs,  as we sha l l  see, which are particularly good for estimating the  main effects 

and interactions of a large number of variables,  all of which are 7 vied in a highly systematic 

fashion, during the  course  of t he  experiment. 

. 

2.5 Replication 

Repetition, or replication, of a n  experiment or part of an experiment can  be a very valuable 

feature of an experimental program. In designed experiments, replicating some of the experimental 

runs allows the experimenter t o  obtain an estimate of the random error. If, for example, we are  

observing yield as a function of temperature in a chemical reaction, and if  we test the yield a t  

n different temperatures, then all the  observed variation in yield will c o m e  from two sources:  

1. variation due  to  the  difference in  yield from one temperature to  another, and 

2. random variation which would be present even if the  temperature were constant. 

Without replicating some points, that  i s ,  making severa l  t e s t s  a t  the same temperature for one or 

more temperature levels,  we  would not be  ab le  to  tell  how much of the total  variation was  due 

to source 1 and how much to source 2. T h e  variation among multiple observations a t  a s ingle  

point, however, is due strictly to  source 2,  and we c a n  get an estimate of it by combining such  

information from all points with repeat observations. 

T h e  estimate of random error arising from repeat observations is valid no matter what model 

is used to fi t  the data. Th i s  estimate is extremely useful in  checking the adequacy of any 

proposed model. If, for example, our estimate of random error, under the  assumption tha t  the  

model is correct, is much larger than the estimate of random error from repeat observations, 

then we have evidence that the  model is inadequate. 

Replication can  a l s o  b e  used  by the  experimenter t o  check the  predictive power of h i s  

conclusions from the  init ial  experiment. Nothing adds more weight to a theory than evidence 

of its ability t o  predict t he  results of future experiments with reasonable accuracy. 
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2.6 Sequential Experimentation 

c 

Virtually all experimental programs are sequent ia l  in nature. An init ial  experiment is run, 

the da ta  are analyzed, tentative conclusions are drawn which indicate the direction of further 

experimentation, and so forth. In general, the  advantages of sequent ia l  experimentation make 

it undesirable to  perform too elaborate an experiment init ially,  no matter  how sophis t icated or 

s ta t is t ical ly  appealing the design may appear. 

Unfortunately, because of the mathematical difficult ies involved in considering the  design 

a t  each  s t a g e  of a sequent ia l  experiment t o  be,  in effect ,  a random variable depending on the 

results at the previous s tage ,  much of the statistical literature h a s  so far ignored the formal 

aspects  of sequent ia l  design. In practice,  however, it is often sufficient to  “play i t  by ear,” 

designing and analyzing each s t a g e  in the usual  fashion (as i f  it were a s ingle  experiment), 

always utilizing the knowledge gained a t  previous s tages .  Often i t  is helpful to “pool” the 

data from a series of s t a g e s  and analyze them all together as if the whole design had been 

laid out beforehand. When th is  is done, it is important t o  include whatever block differences 

there might be (from s t a g e  t o  s tage)  a s  terms in the model. 

3. SOME STANDARD DESIGNS 

3.1 Completely Randomized Design 

W e  consider an experiment i n  which five treatments, A, B, C, D, and E,  are  to be compared. 

The  systematic part of the design specif ies  that each  treatment i s . t o  be tested three times. 

Subject to th i s  restriction, a random order for performing the runs was selected,  as follows: 

E C B B D E D A D E B C A A C  (3.1.1) 

T h e  model corresponding t o  this  design would probably be  of the form: 

y i  = p + t(i) + e i  , i = l , 2 ,  ..., 1 5 ,  (3.1.2) 

where p is an overall “base  level” for the response,  t 

appears in the i th  run, and ei is the  random error. 

is the effect of whatever treatment 
(i) 

3.2 Randomized Block Design 

Now suppose that ,  instead of the order given i n  (3.1.1), the result  of our randomization 

happened to  be the order AAABBBCCCDDDEEE. It would be  tempting t o  asser t  that  this  

ordering is “not random,” discard it, and try again, However systematic  the ordering might 

appear, the fact  would remain that  it was selected fairly and squarely,  every other ordering 

having been given an equal  chance. If we a s k  ourselves why this  ordering is “not random,” 

we sha l l  probably find that  the reason we are  worried about the clustering of treatments is 

that, in the presence of a time trend, one treatment might get a l l  the  high random errors and 
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Block 

1 
2 
3 

present a false impression of superiority. We can  so lve  this  problem by dividing the runs 

into three sequentially run blocks and specifying that  each  treatment is t o  appear in each 

block exactly once. The  randomization procedure is now applied to give the order of runs 

within blocks. For example: 

Order 

A D B C E  
B A E C D  
B A D E C  

(3.2.1) 

This  type of design is cal led a randomized block design. I t  successfu l ly  prevents t he  severe  

clustering of treatments which might occur in  a completely randomized design. 

When the blocking parameters are incorporated into the model (3.1.2) we have an appropriate 

model for the design in (3.2.1): 

y . .  = p + bi + t ( . .  + E i i ,  i = 1, 2, 3 ,  
j = 1 , 2 ,  ..., 5 ,  I J  I J )  (3.2.2) 

where the subscript  i refers to the block number and the subscript  i j  refers t o  the j th observation 

in the i th block. Again, p is an overall “base  level” of response, t is the effect of whatever 

treatment occurs a t  the i j th observation, and E . .  is the random error at the i j th observation. The  

three blocking parameters b, ,  b,, and b ,  allow for a cons tan t  shif t  in response from block to  

block. 

(ii) 

I 1  

3.3 Lat in Square Design 

A design with even more systematic restrictions than the randomized block design was used 

in an experiment whose purpose was to compare the effects of the following five different types 

of background music on the  efficiency of workers in a defense  plant: 

A: Country and Western 

B: None 

C: Viennese wal tzes  

D: Rock and roll 

E: Sen. Dirksen 

Because i t  is felt that the day of t he  week and even the week itself have an effect  on worker 

efficiency, over and above that of the background music, t he  experiment was  carefully planned 

to ensure that all five treatments (types of music) can be  compared not only within each  row 

(weeks) but also within each  column (days). For example: 



b 

Day 
M T W T F  

Week 

1 A B C D E  

2 E C D A B  

3 C A B E D  

4 D E A B C  

5 B D E C A  

Inspection of t he  design shows that,  indeed, each  treatment appears once in each  row and once 

in each  column. Th i s  type of arrangement is called a Latin square design. In th i s  particular 

example, it is an application of blocking with respect t o  two variables (weeks and days) which 

are not of direct interest  but whose influence on the  response we wish to  account for in our 

model. A s  a result  of using th i s  type of design, the  variation in worker efficiency due to  

differences between days  and between weeks does  not cloud up our es t imates  of the differences 

between types of background music. 

To apply the  principle of randomization in th i s  case, we must s e l ec t  a single design from 

all those  which sa t i s fy  the  requirements of a Latin square, namely, that  each  letter should 

appear exactly once in each  row and once in each  column. It would not do  to make up a 

convenient Latin square,  for example, 

A B C D E  

E A B C D  

D E A B C  

C D E A B  

B C D E A  

and then “randomize” by assigning the  le t te rs  randomly to  the  treatments, because th i s  would 

restrict our selection to  a particular subset of a l l  5 x 5 Latin squares.  If the da ta  from a design 

derived from such  a “randomization” procedure are analyzed according to  the usual Latin square 

analysis,  the estimate of error would probably be all wrong. 

T h e  usual model corresponding to  a n  rn x m Latin square design is 

y . . = p ~ r ~ + c . + t ( ~ ~ ) +  € . . ,  i = l , 2 ,  ..., m ,  
j = 1 , 2 ,  ..., m ,  11 I 11 (3.3.1) 

where p is the overall “base  leve l”  of response, ri is the effect of the ith level of the factor 

associated with rows, c .  is the j th  level of the  factor assoc ia ted  with columns, 

effect of whatever treatment is associated with the i j th observation, and E . .  is the corresponding 

random error. 

is the 
I t ( i i )  

11 

Latin square des igns  are useful when blocking with respect t o  two variables, a s  in the above 

example, or when there are no interactions among the variables associated with rows, columns, 

and letters. When such  interactions are present, however, the results of the analysis of a 

Latin square design can  be quite misleading. 
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3.4 Graeco-Latin Squares 

In many c a s e s ,  the Latin square des igns  can  be generalized to  include yet another restriction. 

Whereas with the Latin square we dealt  with three variables (represented by rows, columns, and 

letters) we sha l l  now consider four variables (represented by rows, columns, Latin letters,  and 

Greek letters). Again, our restrictions require that any leve l  of any variable must be associated 

once and only once with any level of any other variable. 

A 4 x 4 Graeco-Latin square is given below. 

A a  BP C y  D6 

B y  A6 D a  C p  

C6 Dy A B  B a  

D p  Ca B6 A y  

Note that the problem of constructing a I .  x 4 Graeco- 

following parlor game: 

atin square is the same as that of the  

Take  the four highest  cards of each  su i t  in  a regular deck  of cards  and arrange them in a 

4 x 4 array in such  a way that each  row and each  column contains exactly one card from each  

suit (clubs, diamonds, hearts, or spades)  and one card from each  denomination (‘jack, queen, 

king, ace). 

T h e  question of the  ex is tence  of Graeco-Latin squares of specified dimension became a 

c l a s s i ca l  mathematical problem nearly 200 years before these  squares  were ever utilized in 

the design of experiments. T h e  great Swiss mathematician Euler (1707-83), having shown 

that n x n Graeco-Latin squares ex is t  when n is odd or a multiple of 4, conjectured tha t  they 

did not ex is t  for any other value of n. In 1901, the French mathematician Tarry showed 

Euler’s conjecture to  be correct for n = 6. It was not until 1958 that the  problem was solved. 

Three mathematicians, R. C. Bose ,  S. S. Shrikande, and E. T. Parker, all spec ia l i s t s  in the 

combinatorial a spec t s  of experimental designs,  finally proved Euler’s conjecture to  be  wrong 

in every case except for n = 6. (An interesting account of t h i s  discovery is given in  t he  

November 1959 i s s u e  of Scientific American.) 

3.5 Balanced Incomplete Block Design 

Often the  number of available experimental units is restricted in such  a way that it is not 

possible to  apply each  treatment once within each  block. A hypothetical example is the 

problem of having seven  swimmers race in a three-lane swimming pool. An obvious approach 

is to  arrange the race in severa l  heats.  It is not possible to  compare all seven  treatments 

(swimmers) within each  block (heat). We can ,  however, s e t  up seven  hea t s  in such  a way that 

each swimmer swims in three hea ts  and competes against  every other swimmer exactly once 

during the  course of the  meet .  For example: 
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Heat 

1 2 3 4 . 5 6 7  
1 2 3 4 1 2 1  
2 3 4 5 5 6 3  
4 5 6 7 6 7 7  

Swimmers 

Such an arrangement is cal led a balanced incomplete block design, incomplete in the s e n s e  

that the whole s e t  of treatments does not appear within each  block, and balanced in the  s e n s e  

that every pair of treatments appears together in the same number of blocks. 

3.6 Youden Square Design 

If, in  the comparison of swimmers in  Sect. 3.5, we feel that  certain lanes  are generally 

more favorable than others,  we can  arrange the hea ts  in such  a way that each swimmer, during 

the course of h i s  three heats ,  swims once in  each of the three lanes .  This  added restriction 

removes from the  analysis  of differences among swimmers that part of the variation which is 

due merely t o  differences among lanes.  Such a design is cal led an incomplete Latin square,  

or a Youden square, and is shown below: 

Heat 

1 2 3 4 5 6 7  
Lane  

1 1 2 3 4 5 6 7  
2 2 3 4 5 6 7 1  
3 4 5 6 7 1 2 3  

4. FACTORIAL AND FRACTIONAL FACTORIAL DESIGNS 

4.1 Factorial  Designs (General) 

One of the simplest  designs for investigating the effect of several  variables on a response is 

the factorial  design, in which every combination of the levels  of the variables of interest  is 

investigated. If, for example, there a re  m variables of interest  (often cal led “factors”), and we 

consider p .  levels  of the j th  factor, j = 1, 2, ... , m, then the factorial  design, which includes 

every possible combination of factor leve ls ,  cons is t s  of p ,  x p ,  x ... x p ,  runs. 
1 

An advantage of factorial  designs is that  they are e a s y  t o  construct and analyze. T h e  

regular pattern of the observations makes the data easy  t o  “look at.” If, for example, we find 

that some of the factors have a negligible effect on the  response,  then the data can often be 

viewed as a replicated factorial  in the remaining variables. 

The  main disadvantage of factorial  designs is that the  number of runs required soon gets  

out of hand i f  the  number of variables or the number of levels  of the variables becomes large. 

In Sects.  4.3 to 4.5, we sha l l  see how t o  reduce the  number of runs by performing only a 

specially selected subse t  of the  runs required by the full factorial. 



There are several  empirical models which can be fi t ted t o  the data  from a full factorial  

design. One is the “multiway” classif icat ion model with one observation per ce l l ,  which is 

often discussed in connection with analysis  of variance techniques. For example, consider 

the usual  two-way classif icat ion with I rows and J columns, where I is the number of levels  

of factor A and J is the number of levels  of factor B. T h i s  i s ,  of course,  jus t  an I x J factorial, 

and the model is: 

y . .  = p + a .  + p .  -t y . .  + E . .  i = = 1 , 2  ,..., I ,  
j = 1, 2, ... , J ,  11 I I 11 11 ’ (4.1.1‘: 

where y . .  is the observation a t  the i th level  of A and the j th  level  of B ,  ~1 is an overall base  

level of response,  ai is the main effect  of the i th level of A, p .  is the main effect of the j th  

level of B ,  y . .  is the interaction of the i th level of A with the j th  level  of B ,  and E . .  is the 

random error. (If there were repeat observations, they would be used to  es t imate  the random 

error. When there are no  repeat observations, some of the interaction te,,.,s y . .  must be 

assumed negligible if an est imate  of error is desired.) 

11 

I 

11 11 

11 

The form of the model (4.1.1) can  easi ly  be extended to  apply to any factorial  design. 

A second type of model, which is really a reparameterization of model (4.1.1), is often 

used in connection with factorial  designs.  This  reparameterization is performed for reasons of 

mathematical convenience - most of the individual t e r m s  in the model are not physically 

meaningful. In this  lecture,  we sha l l  give an example of this  model in the 3 x 3 case and le t  it 

go at  that. 

Suppose we are investigating two factors,  A and B, each  at  three levels.  For  the purposes 

of th i s  model, we label  the levels  0, 1, and 2 for both variables.  Let t ing y . .  denote the observa- 

tion a t  the i th level  of A and the j th  level  
11 

J, we write the model 

(4.1.2) 

where the subscr ipts ,  which are all integers (mod 3) ,  indicate the “levels”  of the “effects” 

(A) ,  (B) ,  (AB),  and (AB2) .  The physical significance of these  parameters seems rather abstract .  

For example, (AB2) ,  is defined as (i) - (ii), where (i) is the mean of the treatment combinations 

for which the level  of A plus twice the level  of B is equal  to  k (mod 3) and (ii) is the mean of 

all treatment combinations. 

It is fair to a s k  why such an apparently meaningless parameterization should be introduced 

at all. The  answer comes when we are faced with the problem of select ing a subse t  of treatment 

combinations which is t o  be run instead of the full  factorial. In this  si tuation, it turns out that  

the parameterization (4.1.2), with i t s  “modulo p” operations and all, is much more productive 

than (4.1.1). A more complete discussion of the “modular” model (4.1.2) is given in Kempthorne, 

1952. 

Another model which is used in connection with factorial  designs is the polynomial regression 

model, which we sha l l  d i scuss  later with regard t o  response surface designs.  This  type  of model 



129 

is more restrictive than the  models previously d iscussed  in that i t  forces the  response to  be 

represented by a polynomial in the controlled variables. It is often extremely useful, however, 

especially in giving an overall “picture” of the response. 

There are many other kinds of models which have been used t o  fit da ta  from factorial experi- 

ments. Th i s  is because factorial  des igns  arose principally on the  bas i s  of their own merits, 

rather than from consideration of a particular model. In effect ,  models such  as (4.1.1) and 

(4.1.2) were constructed to fit the design. More recent work in experimental design theory 

has tended t o  emphasize the  opposite approach: the  selection of a design to su i t  the current 

working model. 

4.2 2k Factorial Designs 

A particularly important class of factorial  designs,  in its own right and as a building block 

for more elaborate des igns ,  is the  c l a s s  of 2“ factorials. Although each  of the k factors takes  

on only two leve ls  in th i s  type of experiment, it is often remarkable how much information can  

be obtained through the  use  of these  designs.  

In the 2k factorials,  the  main effects and interactions have a clear physical interpretation. 

To illustrate, let u s  focus our attention on a s ingle  variable A. We see that every combination 

of leve ls  of the  remaining variables is associated once with the  low leve l  of A and once with 

the high leve l  of A (where ‘‘low” and “high” are convenient ways of referring to  the two leve ls  

of a variable). T h e  difference between the “true” responses at these  two points represents the  

effect of A a t  that  particular combination of the other variables. There are N / 2  such  differences, 

where N = 2k = total  number of observations. W e  now define the main effect of A t o  be the 

average of a l l  these  differences. The  main effect of A i s ,  in other words, indicative of the 

overall change in response (averaged over the whole design) when A is switched from its low 

level t o  i t s  high level. The  main effects of all the other variables are defined in  a s i m i l a r  

way. 

Now suppose we consider the  factorial design which corresponds only to  those observations 

taken a t  the high leve l  of factor A ,  and we define, for th i s  design, the  main effect of another 

variable B in the usua l  way. We then do  the  same thing for the factorial  design corresponding 

to the low level of factor A .  We now have (i)  the main effect of B at the  high level of A and 

(ii) the  main effect of B a t  the low level of A .  The  interaction between A and B is defined to  

be one-half the difference between (i) and (ii), that  i s ,  

1 
2 

A B  interaction = -[(i) - (ii)] 

It is a measure of the  change in the  main effect of factor B when factor A is changed from its 

low level to its high level. 

If we  were to consider, instead, the change in the  main effect of factor A when B is changed 

from its low leve l  t o  its high level, we would obtain exactly the same formal expression. In 
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other words, the AB interaction is happily the same as the B A  interaction. The  remaining 

two-factor interactions can  b e  defined in the s a m e  way. 

Similarly, we can  define three-factor interactions, four-factor interactions, and s o  forth. 

For example, the ABC interaction is equal t o  one-half the difference between the AB interaction 

at the high level of C and the AB interaction at the  low level of C .  Equivalently, t he  ABC 

interaction could be defined in terms of the  change in the AC interaction between the  low and 

high levels of B ,  or the change in the BC interaction between the low and high levels of A - all 

such definitions result in the same formal expression. 

T o  see what form is taken by the  formal expressions for the main effects and interactions, 

we sha l l  consider the  following 2 3  design: 

A B C  “true” response 
~- 

71 

772 

773 

74 

77.5 

- - -  
+ - -  

t -  

t t -  

+ 
+ -  + 

+ +  
+ + +  

- 

- -  

776 

777 

7 8  

- 

(4.2 .l) 

where we use  a minus s ign  to  represent the  low leve l  of a factor and a plus s ign  t o  represent the 

high level. We note that all possible combinations of levels of the three factors are included 

in the  design. The  main effect  of A i s ,  by our definition above, 

The  expression (4.2.2) can  be obtained mechanically by multiplying each  of the  7’s by the 

corresponding sign in the  A column, taking the  sum, and dividing by the  number of plus s igns  

(4) in the  column. It turns out that  the  same sort  of rule can  be followed to  obtain the  expression 

for any interaction without having to go back t o  the  bas i c  definition. For  example, t o  obtain the 

expression for the  ABC interaction we would first form column A B C ,  the i th element of which 

is the  product of the i th elements of columns A ,  B ,  and C .  The  ABC column is therefore: . 
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and the ABC interaction is found by multi 

column and dividing by the number of plu: 
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ABC I 

1 
ABC interaction =- (-77 + 77 + r 4 1 2 1  

Expressions for a l l  the main effects and i 

Esfimates of the effects  are  obtained 

{ v i )  in the expressions for the effects. F 

1 

4 - (-Y1 + Y ,  + Y 3  - Y 4  + Y ,  - Y ,  - Y ,  + Y 8 >  - 

‘ling the 7’s by the corresponding elements of this 

:s (4): 

teractions can be obtained in the same way. 

ierely by substi tuting the  observed ( y i  for the 

r example, the estimated ABC interaction is: 

(in t e r m s  of the y ’ s )  should be understood we s h a l l  often refer to  both merely as “effects.” 

Some appealing properties of the esti L ated effects are: 

1. They are all uncorrelated (if the original observations are uncorrelated). 

2. They all have variance 4 0 2 / N ,  where o2 is the variance of the original observations and N 
is the total  number of observations. T h i s  means that for N > 4, the effects  are much more 
precisely determined than the expectations of the individual observations. 

3. They are  usually approximately normally distributed, even though the distribution of the 
original observations may be quite nonnormal. 

4.3 2k-1 Fractional Factorials 

T h e  principal disadvantage of the 2k factorial  designs is that,  for k even moderately large,  

the number of runs required ( N  = 2 k )  is excessive.  In th i s  c a s e ,  we often perform only a subse t  

of these  runs, where the subse t  is chosen so  that the important information (e.g., main effect 

estimates) is retained while less important information (e.g., high-order interaction est imates)  

is sacrificed. 

Suppose, for example, we are considering four factors (which we sha l l  label  1, 2, 3 ,  and 4 )  

but we want to  perform only half the runs required by the f u l l  2 4  factorial. Let  u s  arbitrarily 

choose to perform only those  eight runs which correspond t o  a plus s ign  in  the 1234 column of 
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the 2 4  design. (We recall  that  the i th  element of the 1234 column is obtained by multiplying 

the i th  elements of the 1, 2, 3, and 4 columns of the 2 4  design, where [as in (4.2.111 we 

represent the low level of a variable by a minus s ign  and the high level  by a plus sign.) T h e  

corresponding combinations of levels  are given by the following design matrix: 

Factor  

1 2 3 4  
Observation 

Y' 

+ y 2  

+ y 3  

y 4  

y5 

y7  

- - - -  
+ - -  
- + -  
+ + - -  

+ +  
+ - + -  
- + + -  
+ I - + +  

- -  
' 6  

' 8  

(4.3.1) 

This design is a n  example of a 24-1  fractiona2 factorial  design, where the 4 in the superscript  

s tands for the number of variables and the -1 indicates  that  th i s  is a 2-' (or one-half) fraction 

of the full  factorial. 

Note that i f  we construct the  1234 column in th i s  design, it will  turn out t o  b e  a column 

of pluses.  T h i s  is to  be  expected, s i n c e  we have deliberately chosen only those  runs of the 

2 4  factorial  which have a + sign in the 1234 column. Symbolically, we write 

I = 1234 , (4.3.2) 

where the letter I s tands  for a column of pluses. W e  call (4.3.2) the defining relation of the 

design. The  defining relation, which a r i ses  from the way in which the fractional factorial 

is constructed, is extremely useful in determining the  properties of the design. In th i s  lecture,  

however, we sha l l  not go into th i s  important aspect  of the theory. 

Now suppose that we u s e  column 1 of (4.3.1) to  form the linear combination: 

1 
~ l = q ( - Y , + Y 2 - Y 3 + Y 4 - Y 5 + Y 6 - y 7 + y g ) .  (4.3.3) 

We might expect .e,, by analogy with the full  factorial  analysis ,  t o  b e  a valid es t imate  of the 

1 effect. T o  our disappointment, however, we find that 4, estimates not the 1 effect but the 

sum of the 1 effect and the 234 interaction, where the effects are as originally defined in 

connection with the full  2 4  factorial. Similarly, 
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82 estimates 2 + 134 , 

‘3 es t imates  3 + 124 , 

estimates 12 + 34 , 

estimates 13 + 24 , 

estimates 23 + 14 , 

‘1 2 

‘2 3 

‘1 3 

‘123 estimates 4 + 123 , 

(4.3.4) 

where the subscript  on an 8 indicates  the column of pluses  and minuses which is used t o  obtain 

that particular l inear combination. 

We s a y  that effect  1 is confounded with (or aliased with) the 234 interaction, effect  2 is 

confounded with the 134 interaction, etc. Confounding is the price of doing only half the 

runs of the full factorial. If, however, we can  assume three-factor interactions to be  negligible 

compared with main effects  and two-factor interactions, then ‘,, .e2, /e3, and 8, 2 3  estimate, 

essent ia l ly ,  the main effects  1, 2, 3, and 4,  respectively.  

In fact ,  the  design of this  example was chosen, through the  defining relation (4.3.2), so  

that this  sort  of confounding would occur. In general, if  we choose for the defining relation 

of a half fraction of a 2k  factorial  

I = 12 ... k , (4.3.5) 

it will turn out that  (1) main effects are confounded with (k - 1)-factor interactions and (2) 

two-factor interactions are confounded with (k - 2)-factor interactions,  etc. 

T h e  same sort of confounding occurs if  we choose 

I = - 1 2 . . . k ,  (4.3.6) 

that i s ,  if our half fraction cons is t s  of those runs which have a minus s ign in  the 12  ... k column 

of the fu l l  factorial. Had we done this in our 24-’  example above, the confounding relationship 

(4.3.4) would have been: 

es t imates  1 - 234 , 81 

$2 
est imates  2 - 134 , 

(4.3.7) 

es t imates  123 - 4 . 
‘1 2 3  

T h e  design should, of course,  be chosen in the light of whatever prior knowledge ex is t s  

about the relative importance of the variables. The  experimenter will attempt to  choose a design 

which will confound those  effects  assumed to be  important with those  presumed t o  be unimportant. 
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In the absence of prior information, it is generally assumed that  main effects are more important 

than two-factor interactions,  which are more important than three-factor interactions,  e tc .  T h i s  

kind of rationale supports the choice of defining relations such  as (4.3.5) and (4.3.6). 

4.4 Zk-p Fractional Factorials 

In the previous sect ion,  we constructed a 2k-1 fractional factorial  by deciding t o  perform only 

those runs from the 2k factorial  which corresponded t o  the  plus s i g n s  in a special ly  se lec ted  

column. (As  we remarked earlier, we could just  as well have chosen the half  fraction associated 

with minus s igns  in  the selected column.) If we want to cut this  fraction again in half ,  we c a n  

select another column, half of which is minus and half of which is plus, and do the  s a m e  sort of 

thing. 

If we do th i s  p t imes,  the result ing design is a 2k-P fractional factorial ,  where the k in  t h e  

superscript refers to  the number of variables and the -p refers to  the fact  that we have a 2-P 

fraction of the full  factorial, T h e  number of runs in  a 2k-P design is, of course,  2k-p. 

In the original 2k design there are, in general, 2p - 1 columns which, when a 2k-p 

fraction is taken, appear in that  fraction as columns of all pluses  or all minuses. T h i s  

means that the defining relation [see (4.3.2)] of a 2k-P design contains  2p terms, including 

I. The confounding relationships,  which can be obtained directly from the defining relation 

(in a way which we sha l l  not d i scuss  here), are correspondingly more complicated than in 

the 2k-’ case. 

In this lecture,  we s h a l l  avoid a general discussion of the  2k-P designs and s h a l l  give, 

instead, methods for constructing two very useful kinds of t h e s e  designs.  

Resolution Ill Designs 

One important class of 2k-p designs cons is t s  of the so-called “resolution 111” designs 

(where the 111 re fe r s  to the number of variables in the “shortest” t e rm of the  defining relation, 

not counting I). Resolution I11 designs are  characterized by the property that all main effects 

can be estimated c lear  of one another, but some of them are confounded with interactions 

involving two or more factors. If a l l  interactions are assumed negligible, then clear est imates  

of all the main effects can  be obtained. 

Resolution I11 designs can  be constructed simply as follows. Suppose we are investigating 

k variables and we wish to  construct a resolution 111 design in 2m runs, m < k .  We fi rs t  write 

down the m columns corresponding to  a full  2” factorial  and labe l  these  columns 1, 2, ... , m. 
(In what follows, t h e s e  will be cal led the “original m columns.”) Each of the remaining 

columns m + 1, m + 2, . . . , k is constructed by taking some product of the  original m columns. 

There are 2” - m - 1 such products, and it does  not matter which ones  we s e l e c t  to  complete 

our resolution I11 design. 
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. 

T o  give a specif ic  example, we now construct a resolution 111 design in k = 5 variables 

and 2“’ = 8 runs (m = 3): 

1 2 3 4 = 1 2  5 = 1 3  Observations 

+ + Y l  - - -  

y 5  
- -  + +  - 

+ ’ 6  + -  + -  
- + +  - y7 

- 

+ Y 8  + + +  + 

(4.4.1) 

The original rn columns correspond t o  variables 1, 2, and 3 and form a 2 3  factorial  design. T h e  

remaining variables (4 and 5) are associated with the product of columns 1 and 2 and the product 

of columns 1 and 3 respectively.  Our design is now completely specified.  If we can assume 

interactions negligible relative to main effects, the est imate  of any main effect can  be  obtained 

simply by multiplying the s igns in  the appropriate column by the corresponding observations,  

adding, and dividing the result  by the number of plus s igns  in the column. 

Since there are 2” - m - 1 products of the original m columns which can  be  used to give 

the columns associated with new variables,  the  maximum number of new variables which can  

be accommodated is 2” - rn - 1. T h e  total  number of variables in such a saturated design is 

therefore 2m - 1. That  i s ,  in the absence of interaction, we can  investigate 2m - 1 main 

effects in 2” runs. 

T h e s e  designs are used frequently in “screening’’ s i tuat ions,  where there are a large 

number of variables present and the experiment is to  indicate  which factors have the largest  

main effects. 

Resolution IV  Designs 

Resolution IV designs are characterized by the property that  main effects are not confounded 

with two-factor interactions but are confounded with interactions involving three or more 

factors. Two-factor interactions are  confounded with each other and with higher-order 

interactions. 

T h e s e  designs are  particularly useful when the experimenter is interested primarily in  

estimating main effects  but cannot assume that  two-factor interactions are negligible. 

T h e  simplest  way to construct a resolution IV design in k variables and 2” runs is 

first to  write down a resolution 111 design in k - 1 variables and 2”-’ runs. Denoting this  

array of p luses  and minuses by D, we write a new array 



136 

that is, the lower half of array D is jus t  the “mirror image” of the  

that each  sign in the  upper half is changed to  the  opposite sign in  

upper half, in the s e n s e  

the  lower half. At th i s  

point, we have a design in 2m runs but only k - 1 variables. W e  complete the  design by 

adding the kth column, which cons is t s  of 2m-’ plus s igns  followed by 2m-1  minus signs.  

A s  an example we sha l l  construct a resolution IV design to accommodate four variables 

in eight runs. We f i r s t  construct, as described above, a resolution I11 design in three 

variables and four runs: 

1 2 3 = 1 2  

We now tack the  “mirror image” of th i s  design onto i tself  t o  give: 

1 2 3  

+ - -  

+ + +  
+ + -  

+ +  
+ -  + 
- 

- - -  

The las t  column (for variable 4), which cons is t s  of four p luses  followed by four minuses, is 

now constructed t o  give our resolution IV design: 

1 2 3 4  

+ +  
+ - -  + 

f -  + 
+ + + +  
+ + - -  
- + + -  

- -  

- 

+ -  + -  

Note that th i s  design turns out t o  be the same as the  design (4.3.1), with the  runs rearranged, 
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4.5 Other Fractions of 2k Factorials: T h e  Plackett-Burman Designs 

The fractional factorials described above are not the only designs which could b e  selected as 

subse ts  of the 2k designs.  Much of the recent literature on two-level designs has ,  in fact ,  been 

devoted t o  studying the  properties of such “irregular” fractions. 

One class of “irregular” designs which h a s  been in u s e  for some t i m e  is the  c l a s s  of 

Plackett-Burman designs.  T h e s e  designs are essent ia l ly  “main effect plans” in that  they, 

like the resolution 111 designs,  provide clear  estimates of all main effects as long as all 

interactions are negligible. The  number of runs in any Plackett-Burman design is always 

a multiple of 4. This  is less restrictive than the fractional factorials,  which require the  

number of runs to  be a power of 2. Methods for constructing the Plackett-Burman designs 

can be  obtained through the references at the end of these  notes. 

4.6 Fractions of General Factorial  Designs 

When select ing fractions of general factorial  designs,  the same bas ic  principles apply a s  

when select ing fractions of two-level factorials.  The  goal, as usual,  is to  derive a fraction with 

the l e a s t  undesirable confounding properties. 

T h e  mathematics is somewhat more difficult, however, and we sha l l  not go into it here. 

Methods for choosing fractions of factorials of form p k ,  where p is a prime number, are quite 

well es tabl ished and involve the u s e  of mathematical operations “modulo p.” When the 

number of levels  (p) o€ each  of the  k factors is not a prime but is a power of a prime, the 

problem of choosing a fraction can be  solved through the introduction of “pseudofactors.” 

Again, we sha l l  not d i s c u s s  th i s  approach here. It h a s  been only within the pas t  year or two 

that a n  approach has  been developed t o  handle the most general  problem, that of select ing 

fractions of a p ,  x p ,  x ... x p k  factorial ,  where the p’s are  not necessarily equal. 

4.7 Blocking Factorial  and Fractional Factorial  Designs 

We remark in  passing that  there ex is t  methods for blocking factorial  and fractional factorial 

designs,  and these  are very closely related to the methods for select ing fractions which we 

discussed above. Each  block is, after all, a fraction i n  its own right. Historically, in fact ,  

fractional factorials f i r s t  arose as blocks of the  full  factorials,  long before they were applied 

on their  own. 

5. THE MODEL-ORIENTED APPROACH TO EXPERIMENTAL DESIGN 

5.1 Notation 

In th i s  section, it will  be  convenient t o  define a set of “coded” variables {xi) which are  

related to the controlled variables {ti] in an experiment by the  following type of linear 

transformation: 
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(5.1.1) 

where ti0 and Si are  arbitrary constants ,  chosen for convenience. 

For example, consider two controlled variables,  temperature ( T )  and concentration (C), of 

a chemical in an experiment involving a chemical reaction. T h e  design 

T C  

200 1.4 

400 1.4 

200 2.0 

400 2.0 

can be put into “coded” form by writing 

T - 300 

100 

C - 1.7 
x -- 

- 0.3 
X I  = -, 

to give 

x 1  x 2  

-1 -1 

1 -1 

-1 1 

1 1  

(5.1.2) 

(5.1.3) 

which is now in the form of a 2‘ factorial  design. 

When we d iscuss  a particular type of design, we sha l l  generally write it in t e r m s  of the  

coded variables.  It should be understood that the coded design is actually a represenfafive 

of a large c l a s s  of designs,  each member of which can be transformed into the coded design 

by means of the  appropriate coding (5.1.1). 

Without l o s s  of generality, we sha l l  a l so  write our models in terms of the coded variables.  

If our original model is a polynomial of degree d in the c s ,  as i t  often will be,  we note that 

the corresponding model in  terms of the x ’ s  will a l s o  be  a polynomial of degree d. 

5.2 First-Order Designs 

In recent years,  much of the work in design theory h a s  departed from the tradit ional 

approach of constructing a model t o  su i t  a given design and h a s  turned instead to  the  problem of 

choosing a design to  su i t  a conjectured model. 

The  s implest  sort of empirical model for the response is one which is linear in the  controlled 

variables. If our k controlled variables are El ,  E,, ... , tk, we write 
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where the x ’ s  are the  coded values  of the  e s .  T h i s  model is cal led a first-order l inear model, 

where “first  order” refers to the x’s and (‘linear” refers t o  the p’s. When it is understood 

that the model is linear in  the p’s ,  i t  is cal led simply a “first-order model.” 

What sort of designs are sui table  for the type of model (5.2.1)? T h i s  depends on the  

cri teria for a ((good” design, but in  th i s  case the generally accepted criterion requires that  

the design should be  chosen so that  the variances of the estimated coefficients (p) are  

minimized. It can  be shown that i f  the  (‘spread” of the design points is fixed, where the  

“spread” of the design points corresponding to  the i th  controlled variable is defined as 

A 

n 

c .  = 1 (XiU - X i )  2 , 
u =  1 

A 

then the n-run design which achieves the  minimum variances for all the p ’s  simultaneously 

must be  “orthogonal,” that is, 

n 

E (XiU - X i ) ( X j U  - X j )  = 0 
u =  1 

for all i +’j , 
i ,  j =  1 ,  2, ..., k .  

Designs possessing th i s  desirable property are,  for example, the factorials,  fractional factorials, 

and Plackett-Burman designs d iscussed  above. 

If we increase the  “spread” of the  variables,  we find that  the variances of the estimated 

coefficients decrease.  The  “improvement” achieved in th i s  way is illusory, however, s i n c e  

the model (.5.2.1), which may be a good local approximation t o  the  response in  a small region 

of the x s p a c e  (space of the coded variables), usually becomes less and less adequate as the 

“spread” of the x’s  increases .  It is important to  remember that  the design criteria we sha l l  

d i scuss  a re  often developed under the assumption that  the model is good. We must always be 

careful not to  let t h e s e  cri teria lead u s  t o  a design for which th i s  assumption no longer holds. 

The  most economical c l a s s  of orthogonal first-order designs is the c l a s s  of s i m p l e x  designs,  

which can  be used to  invest igate  n - 1 variables in n runs. We have already encountered some 

simplex designs,  namely, the  saturated two-level fractional factorials of resolution 111 and the  

Plackett-Burman designs.  Geometrically, in the x space ,  the general simplex design cons is t s  

of n points in n - 1 dimensions, arranged s o  that all the d is tances  between points are  equal. 

For example, in  two dimensions (i.e., for two variables x and x 2 ) the  points of a simplex 

design form an equilateral  triangle; in three dimensions, a tetrahedron. Although the simplex 

designs are efficient in that  the number of runs is equal t o  the  number of parameters t o  be 

estimated, it should be remembered that ,  unless  they are augmented in some way, they cannot 

provide a check on the  adequacy of the model. For  this  reason, two-level factorials and un- 

saturated fractional factorials are often preferred a s  first-order designs.  
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5.3 Second-Order Designs 

When a first-order model proves inadequate, it is often helpful to consider a second- 

order model, that  is, a model which represents the response as a quadratic function in  the  

x’s. In two variables x 1  and x2, for example, a second-order model would take the form: 

(5.3.1) 

We mentioned previously that such models a re  s o m e t i m e s  used to fit da t a  from the  class of 

3k factorial designs. Another class of designs,  one which was developed specifically 

for second-order models, is the class of central  composite designs. A central  composite 

design in  k variables is made up of three bas i c  parts: 

1. a “cube,” which may b e  a 2k factorial or 2k-p fractional factorial, 

2. 2k “star  points,” which lie on the  k axes  (two on each  axis ,  both at the same dis tance  
from the  center but in different directions), 

3. “center points,” which are repeat points located at t h e  center (x = 0, x 2  = 0, ... , xk = 0) 
of the design. 

An example of a central  composite design in two variables is as follows: 

‘ ‘cube ’ ’ 

“star” 

“center” 

-1 -1 

1 -1 

-1 1 r 1 1 

-1.414 0 

1.414 0 

0 -1.414 

0 1.414 

0 0 

0 0 

0 0 1 0 0 

(5.3.2) 

The d is tance  (1.414) of the  star points from the  center of the  design (5.3.2) was chosen so that  

the variance of the estimated response at  any point in the x space  depends only on t h e  d is tance  

of that  point from the  center. [Note: the estimated response at any point x = (xl, x 2 ,  ... , xk) 
is obtained by substi tuting the estimated coefficients (p) for t he  P’s in  t he  model and dropping 

the random error term.] Th i s  criterion, which requires equality of the variances of the estimated 

responses on any sphere centered at the origin, is called the criterion of rofafability. We s h a l l  

not go into i t s  justif ication here, except to  say ,  rather weakly, that  t he  corresponding rotatable 

designs essent ia l ly  give equal information about the response in  all directions from the origin. 

A 
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T h e  need t o  introduce a new criterion, such  as rotatability, in connection with second-order 

designs,  when the minimization of the  variances of the coefficients served u s  s o  well in the 
first-order case, a r i ses  because  t h e  latter criterion is no longer applicable. In general, it is 

not possible  t o  select a second-order design which minimizes the variances of all the  P ’ s  

simuZtaneousZy. In an attempt t o  meet th i s  difficulty a “generalized variance,” which is the 

determinant of the variance-covariance matrix of the B’s ,  h a s  been suggested as a s ingle  

overall measure of the variances of the coefficients.  Minimization of this  generalized variance 

is equivalent to  minimization of the volume of the confidence ell ipsoid for the P’s ,  a fact which 

supports its u s e  as a design criterion. 

A 

Another approach i n  the select ion of design criteria h a s  been t o  consider not the variances 

of the  coefficients but the variance of the  estimated response function ;(x), where x is a point 

in the s p a c e  of the coded variables.  Even then, no unique criterion has  been accepted. 

Some which have been suggested are: 

1. Rotatability: V[; (x ) ]  is a function only of r = (x ’x)~’’. 

2. Minimize max V[$ (x ) ] ,  where R is some “region of interest”  in  the x space .  
x .5  R 

3. Minimize 1 w(x)  V[;(x) ]  dx, where w(x)  is some weight function which indicates  the 
R 

importance of estimating the response well  at the point x. 

Other cri teria have been introduced which consider, in addition t o  the  variances,  the bias  

which might arise if the  model is inadequate. 

T h e  exis tence of s o  many competing criteria, no one of which is clearly superior, points 

up the futility of trying t o  select an “optimum” design for practical  use.  What is generally 

required in practice is not a design which will be optimum with respect to  a finely defined set 

of criteria but one which will  be  “good” with respect to many criteria. 

G. E. P. Box and J. S .  Hunter have l is ted some key properties of “good” designs for 

polynomial models, which should serve as useful guidelines: 

1. T h e  design should allow the approximating polynomial of degree d (tentatively assumed 
to  be  representationally adequate) to  be estimated with sat isfactory accuracy within 
the region of interest .  

2. It should allow a check to  be made on the representational accuracy of the assumed 
polynomial. 

3. It should not contain an excessively large number of experimental points. 

4. It should lend i tself  to  blocking. 

5. It should form a nucleus from which a satisfactory design of higher order can be built i n  
case the assumed degree of polynomial proves inadequate. 

5.4 Higher-Order Designs and Designs for Nonlinear Models 

Jus t  as a quadratic model can  be useful when a first-order model is inadequate, s o  can  cubic  

and even higher-order models be  applied if necessary.  The number of parameters in these  
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higher-order models becomes rather large, however, and i t  is difficult t o  assoc ia te  a clear 

physical meaning with many of them. Often a more “parsimonious” parameterization can  be 

achieved by considering nonlinear models, that  i s ,  models which are no longer linear in the  

p’s.  A simple example of such  a model is a sum of exponentials: 

+ e u ,  u = l , 2  ,..., n .  4 2  ZX2u 
+ p21e 

.-4 2 X l U  
y ,  = 6 1  

Until a few years ago, there was very little in the s ta t i s t ica l  literature concerning des igns  for 

such models. Some recent “first s teps”  a re  indicated in the references at  the end of these  

notes. 

6. RESPONSE SURFACE METHODOLOGY 

6.1 Viewing the Response as a Surface 

The  characteristic concept of response surface methodology is that of considering the  

“true” response,  which is a function of the controlled variables, as a surface over t he  space  

of those variables. 

Th i s  idea is most clearly understood when we consider jus t  two (coded) controlled variables 

x1 and x2.  The true response a t  t he  points of the x1-x2 plane i s  viewed as a surface hovering 

over that  plane. If th i s  response surface is reasonably smooth, we can  expect it t o  be adequately 

represented by a linear function within a s m a l l  neighborhood of any given point (x o, x 2  o). Over 

a slightly larger region a quadratic approximation may be necessary,  a larger region may require 

a cubic, and s o  forth. Th i s  rationale is often employed t o  justify the  use  of t he  polynomial 

models described above. 

6.2 An Optimum-Seeking Method: Steepest Ascent 

We shal l  now briefly i l lustrate an application of experimental design, in conjunction with 

response surface concepts,  to the problem of finding the  point of maximum (or, equivalently, 

a minimum) response. 

Suppose that there are two (coded) controlled variables x 1  and x 2  and that we wish to  find 

the leve ls  of x 1  and x 2  at which the  maximum “true” response can  be  attained. We might 

f i rs t  “guess”  a point (x lo ,  x z 0 ) ,  which we feel is near the  region of maximum response, and 

center a first-order design about that  point. Th i s  design could well include a few repeat points 

at the center, not only t o  provide an estimate of the random error but also as a check  on possible 

curvature in the  surface.  

When the  first-order model h a s  been fitted: 

a 

A h 

= P o  + P I X l  + p 2 x 2  I (6.2.1) 
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we move our next experiments away from the region of the first  experiment, along the direction of 

s teepes t  ascent ,  that  is, the direction in which the fi t ted surface rises most sharply. T h i s  

direction can  be calculated eas i ly  from (6.2.1), and we have that any point (x l ,  xz) on the line of 

s teepes t  ascent  satisfies: 

(6.2.2) 

where h is just  an arbitrary positive constant which determines how far the point ( x l ,  xz) lies 

from the center (x l0 ,  x , ~ )  of the init ial  experiment. T h e  usua l  procedure is then to  perform 

several  experimental runs a t  points along the line of s teepes t  ascent  (6.2.2), continuing t o  

move along that l ine until  the observed response no longer increases .  By this time, we 

may be  quite far away from the original conditions ( x l o ,  xzo).  We now center a new first-order 

design about the point we have reached, calculate  a new direction of s teepes t  ascent  leading 

away from that point, and proceed as before. 

Eventually, we sha l l  come to  a region for which the l inear model is no longer adequate. 

This  may mean that we are near the top of the “hil l” we have been climbing. At th i s  point, 

we can  eas i ly  augment a first-order design, perhaps with some “star” points, to  give a 

second-order design. When the second-order model is fitted, it should indicate  the location of the 

point of maximum response.  A few confirming runs should then determine whether or not the  

actual maximum h a s  been attained. 

In practice, there are other considerations,  such a s  the problem of maintaining other responses  

within certain specification l i m i t s  while a s ingle  response is being “optimized. ” Sometimes, 

in fact ,  it  is never possible  to  “optimize” - one just  tries t o  do better today than one  did 

yesterday. The  principles involved in the s teepes t  ascent  approach are valuable, however, and 

have often been applied with considerable s u c c e s s .  
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LECTURE X: ELEMENTS OF STOCHASTIC PROCESSES 

. 

V. R. Rao Uppuluri 

1. DEFINITIONS AND PRELIMINARIES 

Stochastic process: An indexed family of random variables X ( t )  is called a s tochast ic  process.  

The parameter t belongs to  a set T referred to  a s  the index set .  

If T = (0 ,  1, 2, . . .I, then we will s a y  that X ( t )  is a discrete-time stochastic process .  When T 

is discrete  we shal l  write X n  instead of X(n). If T = (-W, w), then X ( t )  i s  cal led a continuous- 

time stochastic process. 

We note that the index s e t  T can  a t  times be an arbitrary set. For example, X( t )  could b e  the  

height of an ocean wave a t  a location given by the lati tude and longitude and denoted by t .  

The space  in  which the possible values of X( t )  lie is called the s ta te  space  and is denoted by 

S. If S = {O, 1, 2, . . .I, we refer to  the s tochast ic  process  a s  a discrete-state process.  If S = (-m, 

-), then we will c a l l  X ( t )  a real-valued s tochast ic  process .  If S is Euclidean k space ,  then  X( t )  

is sa id  to b e  a k-vector process. 

Generally, the relationships among the random variables X(t) ,  t E T ,  are specified by giving 

the joint distribution function of every finite family X ( t , ) ,  X ( t , ) ,  . . ., X(t,) of variables of t h e  

process.  

For the purpose of th i s  lecture, a s tochast ic  process  may b e  considered a s  well defined once 

i t s  s t a t e  space,  index parameter, and family of joint distributions are prescribed. 

Process with independent increments: Let T = [0, -), and let t ,  < t ,  <. . .< t, be  an arbitrary 

choice of t i m e  points. If the random variables X(t , )  -X ( t , ) ,  X( t , )  - X( t , ) ,  . . ., X(t,) - X(t,-,) 

are independent, then we say that X ( t )  is a process  with independent increments. 

Markov process: Let  T = [O, M), and let t ,  < t ,  <. . .< t, < t be an arbitrary choice of time 

points. A process  is sa id  to  be Markovian if 

< < 
P [ a <  X( t )=  b 1 X ( t , ) =  x,, X( t , )=  x,, . . ., X(t,)= ",I = P[a < X( t )=  b 1 X(t,>= x,] . 

In other words, a Markov process is a process with the property that,  given the  value of X(t) ,  

the values  of X(s), s > t ,  do not depend on t h e  values  of X(u), u < t ;  that  is, the probability of 

any particular future behavior of the process ,  when the present state is known exact ly ,  is not 

altered by additional knowledge concerning its past .  

The  function 

P(x ,  s; t ,  A )  = PIX(t)  E A 1 X ( S )  = XI , 

t > s and A an interval of the real l ine,  is called the transition probability function and is bas ic  

to study the structure of Markov processes .  

145 
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Stationary processes: A s tochas t ic  process X(t )  is sa id  to  be strictly stationary i f  the joint 

distributions of the families of random variables [ X ( t ,  + h),  X ( t ,  + h),  . . ., X(t,  + h)] and 

[X(t , ) ,  . . ., X(t,)] are  the same for all h and arbitrary se lec t ions  t , ,  t2, . . ., t, of T.  In particular, 

the distribution of X ( t )  is the  same  for all t E T .  This  condition a s se r t s  that in e s sence  the 

process is in probabilistic equilibrium and the particular t i m e s  at which we observe the  process 

are of no relevance. 

A stochastic process X(t )  is said t o  be wide sense stationary or covariance stationary if  i t  

p o s s e s s e s  finite second moments and i f  Cov[X(t), X(t  + h)] = E[X( t )  X ( t  + h)] - E[X(t)]  E[X(t + h)] 

depends only on h for all t E T .  
Stationary processes  are found to be appropriate models for describing many phenomena tha t  

occur in communication theory, astronomy, biology, and economics. 

2. EXAMPLES 

2.1 Brownian Motion Process (or Wiener Process) 

The Brownian motion process is a special  type of s tochas t ic  process which is t h e  most re- 

nowned and historically the first that was thoroughly investigated. A s  a physical phenomenon the  

Brownian motion w a s  discovered by the English botanist Brown in 1827. In 1905, a mathematical 

description of th i s  phenomenon was  first derived from the l a w s  of physics by Einstein.  The  physi- 

ca l  theory was further perfected by Smoluchowski, Fokker, Planck, Burger, Furth, Ornstein, 

Uhlenbeck, Chandrasekhar, Kramers, and others. The first concise mathematical formulation of 

the theory was given by Wiener in  h i s  1918 dissertation and later papers. In terms of the general 

framework of s tochas t ic  processes,  the Brownian motion process  is an example of a continuous- 

time, continuous-state-space Markov process,  

In 1827, Brown observed that s m a l l  particles immersed in  a liquid exhibit ceaseless ir- 

regular motions. In 1905, Einstein explained this motion by postulating that the particles under 

observation are subject t o  perpetual collision with the molecules of the surrounding medium. L e t  

X(t)  be the  position of the particle at  time t ,  and let X(0)  = xo. Let  p(x, t I xo) be the conditional 

probability density of X(t  + to) ,  given that X(to)  = x0 ,  s o  that 

We postulate that t he  probability law governing the transit ions is stationary in time; that i s ,  

p(x, t 1 x o )  does  not depend on to. Further, we assume that 

Iim p(x, t I xo) = O for x f x o  , 
f +  0 

which implies that X(t  + t o )  is likely to be near X(to)  for s m a l l  f. From physical principles 

Einstein showed that p(x, t I xo) must satisfy the partial differential equation . 
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. 

which is cal led the diffusion equation, D being the diffusion coefficient. The evaluation of D is 

based on the formula D = 2RT/Nf ,  where R is the gas  constant,  T is the temperature, N is 

Avogadro's number, and f is the coefficient of friction. By choosing the proper scale we may 

take D = '4. Then we can  show that 

is the unique solution of (2.1) with the above boundary conditions. Thus p(x, t 1 x o )  gives the  

probability density function of X ( t )  - X ( 0 ) .  The complete Brownian motion process  is given by 

the following definition. 
> 

Brownian motion process is a s tochast ic  process  X ( t ) ,  t = 0, with the following properties: 

1. X ( t )  is a process  with independent increments. 

2. Every increment X ( t  + S )  - X ( s )  is normally distributed with mean 0 and variance ct; c > 0 is 

a fixed constant.  

The physical origins of the Brownian motion process  suggest  that  the possible realizations 

X ( t >  (sample paths) whose movements result from continuous col l is ions in  the surrounding 

medium are  continuous functions. The proof of this  statement requires del icate  analysis.  The  

sample paths X ( t ) ,  although continuous, are very kinky, and their derivatives ex is t  nowhere. 

This  fact  is rather deep. Using the property of continuity, we can compute some interesting 

probabilities associated with the Brownian motion. For instance,  i t  can be  shown that 

under the condition X ( 0 )  = 0. 

If Ta  denotes the random t i m e  (variable) a t  which X ( t )  f i r s t  a t ta ins  the value a ,  where X(0)  = 

0, it can be  shown that 

(2.4) 
< > 

P(T,  = t )  = P[ <max ~ ( u )  = a 1 X ( O )  = 01 , < 
o = u =  t 

which gives  u s  the probability density function of T a .  

The probability that X ( t )  h a s  at leas t  one zero in the interval ( t o ,  t , ) ,  given X ( 0 )  = 0, can  b e  

shown to be  

2 
-arc cos dt , / t ,  . 
71 

2.2 Poisson Process 

(2.5) 

Another important example of a continuous-time ( T  = [O,  m))  s tochast ic  process  is t h e  Poisson  

process.  The sample function X ( f )  counts the number of times a specified event occurs  during 

the period [0, t).  Thus each sample path X ( t )  is represented by a nondecreasing s tep  function. 
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A sample function of a Poisson  process,  with X(0) = 0. 

Concrete examples of Poisson  processes  are  the following: 

1. the number of x rays emitted by a substance undergoing radioactive decay, 

2. the number of telephone calls originating i n  a given locali ty,  

3. the occurrence of accidents  a t  a certain intersection, 

4. the occurrence of errors in  a page of typing, 

5. the breakdowns of a machine. 

These  examples may b e  viewed a s  Poisson processes  based on the concept of the law of rare 

events.  W e  have a situation of several  Bernoulli t r ia ls  with a s m a l l  probability of s u c c e s s  a t  

each  trial, where the expected number of s u c c e s s e s  is constant .  Under these  conditions it is a 

familiar theorem that the actual  number of events  occurring follows a Poisson  law. In the c a s e  

of radioactive decay the Poisson  approximation is excel lent  i f  the period of observation is very 

short compared with the half-life of the radioactive substance.  

W e  will now give a s e t  of postulates which lead to the fact that X ( t )  follows a Poisson  d is -  

tribution, where X ( t )  denotes  the number of events  during [ O ,  t) .  

Postulates 

1. The numbers of events  [ X ( t , )  - X ( t , ) ]  and [ X ( t , )  - X ( t , ) ]  are  independent, where t ,  < t ,  < t,. 
2. P[X( t  + h )  - x(t) 2 X] depends only on h and x, but not on t or on X ( f ) .  
3. The probability of a t  l e a s t  one event happening in a t i m e  period of duration h is 

p(h) = ah + ~ ( h )  , 

where o(h)/h tends to  0 as h + 0. 

4. The probability of two or more events  happening in time h is o(h). (This  leads  to the im- 

possibil i ty of the simultaneous occurrence of two or more events.)  

From these postulates ,  it can be shown that 

(at)" e-at 

m! 
P[X(t)  = m] = , m = O , 1 , 2  , . . . .  
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Often the Poisson  process  arises in a form where the time parameter is replaced by a sui table  

spat ia l  parameter, as i l lustrated by the following formal example. Consider an array of points 

distributed in  a s p a c e  E .  Let N R  denote the  number of points contained in the region R of E. 

W e  postulate that  N R  is a random variable. T h e  collection I N ,  ) of random variables,  where 

R varies over all subse ts  of E ,  is said to  b e  a homogeneous Poisson process i f  the  following 

assumptions are  fulfilled: 

1. 

2. 

The  numbers of points in nonoverlapping regions are independent random variables. 

For any region R of finite volume, N ,  is Poisson distributed with mean h V(R) ,  where V ( R )  

is the volume of R.  T h e  parameter X is fixed and measures in a s e n s e  the intensity component 

of the  distribution, which is independent of the size or shape. 

Spatial Poisson  processes  ar ise  in considering the distribution of s t a r s  or galaxies  in  space ,  

the spat ia l  distribution of plants and animals, the distribution of bacteria on a s l ide ,  e tc .  

We shal l  now give some more properties of the Poisson  process.  Let u s  recall  that  from the  

definition of a continuous-time, discrete-state Markov process ,  with stationary transit ion proba- 

bi l i t ies ,  

p . . ( t )  = P[X(t  + u )  = j 1 X(u)  = il 
‘ 3  

will be  independent of u ,  for a l l  i, j = 0, 1, 2, . . . . 
The Poisson process  is a Markov process on the nonnegative integers which has  the  follow- 

ing properties: 

1. P[X( f  + h )  - X ( t )  = 1 1 X ( t )  = XI = ah + o(h), x = 0, 1, 2, . . ., 
2. P[X(t + h )  - ~ ( t )  = 0 I x ( t )  = XI = 1 - ah + o(h>, 

3. X ( O ) =  0. 

At times the Poisson  process is referred t o  as the completely random process,  a s  it distributes 

points “at  random” over the interval [0, W )  in much the same way that  the uniform distribution distributes 

points over a finite interval. In particular, the probability of an observation fall ing in a sub- 

interval is a function of its length only, and the numbers of events  occurring i n  two disjoint time 

intervals  are independent random variables.  

Another i l lustrative example of the Poisson  process is that of fishing. Let X ( t )  denote the 

number of f ish caught in  the time interval [0, t).  Suppose that the number of fish available is very 

large, that  the enthusiast  s tands  no better chance of catching fish than the  rest  of u s ,  and that  as 

many fish are likely to  nibble at one instant of time a s  a t  another. Under these “ideal”  condi- 

t ions,  the process {X( t ) ,  t 2 8) may be considered as a Poisson  process.  This  example serves  to  

point up the Markov property (the chance of catching a f ish does  not depend upon the number 

caught) and the  “no premium for waiting” property, which is the most dist inctive property possessed  

by the  Poisson process .  It means that the fisherman who has  just  arrived a t  the pier has  a s  good 

a chance of catching a fish in the next instant of time a s  he who h a s  been waiting for a bite for 

a few hours without success. 
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Another example is afforded by problems ar is ing in the theory of counters.  If X(t) is the  

number of radioactive disintegrations detected by a Geiger counter in the  interval [O, t ) ,  t h e  

process is Poisson  as long as the half-life of t h e  substance is large relative to t .  T h i s  provision 

ensures  that the chance for a disintegration per unit of t i m e  may b e  considered as constant over 

t ime. 

Let Tk denote the time (random) between the  kth and (k + 1)st  event.  The random variables  

T ,  are called the "waiting times" between success ive  events ,  and 

denotes the time at which the kth event occurs. 

In the case of a Poisson process,  we have the following: 

Theorem: The waiting t imes Tk are independent and identically distributed random variables,  

following an exponential distribution with parameter a. 

3. MARKOV CHAINS 

3.1 Definitions and Preliminaries 

A discrete-time Markov chain { X n \  is a Markov s tochast ic  process  whose s t a t e  s p a c e  is a 

countable or finite set and for which the index set T is (0, 1, 2, . . .). It is convenient to labe! 

the s ta te  space  of the process  by {O, 1, 2, . . .], and i t  is customary to  speak of X ,  being in s t a t e  

i if X n  = i. 

The probability of X n + l  being in s ta te  j ,  given that X ,  is in  s ta te  i (called a one-step transi-  

tion probability), is denoted by 

pnln+i = R X , + l  = j 1 X ,  = i] . 'I 

When the one-step transition probabilities are independent of the t i m e  variable (i.e., independent 

of the value n), we s a y  that the Markov chain has  stationary transit ion probabilities. In th i s  c a s e  

~ n : ~ + '  = p . . ,  and p . .  is the probability that the s ta te  value undergoes a transition from i to  j in 

one trial. It is customary to arrange the elements p . .  as a matrix and to refer to  the matrix 
'I ' I  ' I  

' I  

P = ( p . . ,  o 5 i, j 2 -) 
* I  

as the transition probability matrix of the Markov chain; we note that a l l  the elements of th i s  

matrix, p . . ,  are nonnegative and that the sum of the elements in any i th  row, 
' I  

W 

2 Pij , 
j= 0 

is equal to unity. 

The Markov chain is completely determined when once the transition probability matrix P and 

the value of X ,  are specified.  We note that 

. (3.1.1) 
0 n- 13in 

P(Xo = io,  X 1 1  = i , X ,  = i , ,  . . ., X, = i n ) =  P. ' * P i 0 ' i l  P i l l i 2  - . . . * Pi 
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3.2 One-Dimensional Random Walks 

A one-dimensional random walk is a Markov chain whose s t a t e  space  is a finite or infinite sub-  

s e t  (a ,  a + 1, . . ., b)  of the integers,  in which the particle (s ta te  of the system), if it is in s t a t e  i ,  

c a n  in a s ingle  transition either s tay  in i or move to  one of the adjacent states i - 1, i + 1. If 

the state space  is taken a s  the nonnegative integers,  the transition matrix of a random walk h a s  

the form 

where 

q i + r i + p i =  1 , i =  1 ,  2, ..., r ,+p,= 1 .  

The fortune of a player engaged in a series of contes t s  is often depicted by a random walk 

process. Specifically, suppose an individual (player A) with fortune k plays a game against  a n  

infinitely rich adversary and has  probability p k  of winning one unit and probability qk = 1 - p k  

(k  2 1) of losing one unit in each contest ,  and r o  = 1. The process  {X , ! ,  where X ,  represents h i s  

fortune after n contests ,  is a random walk. Note that once state 0 is reached (i.e.,  the  player A 

is wiped out), the process  remains in that s ta te .  This  process is also commonly known as  the  

“gambler’s ruin.” 

If p ,  = 0 and r,, = 1, then 0 a c t s  as  a n  absorbing barrier. Once the particle reaches zero it 

remains there forever. If p ,  > 0 and r o  > 0, then 0 is a partially reflecting barrier. 

A classical mathematical model of diffusion through a membrane is the famous Ehrenfest  model, 

namely, a random walk on a finite set of s t a t e s  where the boundary s ta tes  are  reflecting. T h e  

random walk is restricted t o  t h e  s t a t e s  i = -a ,  -a + 1 ,  . . ., - 1, 0, 1, . . ., a with transit ion 

probability matrix 

i f j = i + l  

i f j = i - 1  
p . .  = 

( 0 otherwise . 

The physical interpretation of this  model is as follows: Imagine two containers containing a 

total of 2a balls.  Suppose the  f i r s t  container, labeled A ,  holds k bal ls  and the second container 

B holds 2a - k bal ls .  A ball  is selected at  random (all se lec t ions  are equally l ikely) from among 

the totali ty of the 2a bal l s  and moved to the  other container,  E a c h  selection generates a transi-  

tion of t h e  process .  L e t  the s t a t e  of the system be determined by the number of ba l l s  in A .  
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3.3 A Discrete Queueing Markov Chain 

Customers arrive for service and take their place in a waiting line. During each  period of 

time a s ingle  customer is served,  provided that a t  l e a s t  one customer is present.  If no customer 

awaits  service,  then during this period no service is performed. During a service period new 

customers may arrive. We suppose that the actual number of arrivals in the nth period is a random 

variable 5, whose distribution function is independent of the period and is given by 

P(k customers arrive in  a service period) = P([, = k )  = a k ,  k = 0,  1, 2, . . ., ak 2 0, 2 ak = 1 

W e  a l s o  assume the random variables 5, are independent. The s ta te  of the system a t  the 

start  of each period i s  defined to be the number of customers waiting in l ine for service.  If the 

present s ta te  is i ,  then after a lapse  of one period the s ta te  is 

where 4 is the number of new customers that arrived in th i s  period while a s ingle  customer was 

serviced. In terms of the random variables of the process ,  we can  express  th i s  as 

The transition probability matrix is given by 

- 
a ,  a l  a 2  a3  a4 . . .  
a ,  a l  a 2  a3 a4  . . .  
0 a ,  a ,  a 2  a 3  . . .  
0 0 a ,  a ,  a 2  . . .  
0 0 0 a ,  a ,  . . .  
. . . . .  . . . . .  
. . . . .  - 

It is intuitively clear  that i f  the expected number of new customers,  

$ kak J 

k= 0 

that arrive during a service period exceeds 1, then certainly with the  passage  of t h e  t i m e  the  

length of the waiting l ine increases  without limit. On the  other hand, if Zkak  < 1,  then we sha l l  

see that the length of t h e  waiting l ine approaches a n  equilibrium. If Zkak  = 1, a situation of 

gross instabil i ty develops.  
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3.4 Success R u n s  

. 

I 

Consider a Markov chain on the  nonnegative integers with transition probability matrix of the  

form 

j:: io 

where qi > 0, pi > 0, and qi + pi = 1, i = 0, 1, 2, . . . . The zero state plays a distinguished role 

in that it can be reached in one transition from any other state, while state i + 1 can  b e  reached 

only from s t a t e  i. 
A special  case of th i s  transition matrix ar ises  when one is dealing with s u c c e s s  runs result- 

ing from repeated trials, e a c h  of which admits two possible  outcomes, s u c c e s s  (S) or failure (F). 

More explicitly, consider a sequence of t r ia l s  with two possible outcomes, S or F. Moreover, 

suppose that i n  each trial, the  probability of  S is a and the probability of F isp = 1 - a. We s a y  

a s u c c e s s  run of length r happened at trial n i f  the outcomes in the  preceding r + 1 tr ia ls ,  includ- 

ing the present tr ial  a s  the las t ,  were, respectively,  F, S, S, . . ., S. Let us  now label  the present 

state of the process  by the  length of the s u c c e s s  run currently under way. In particular, i f  t h e  

las t  trial resulted in a failure, then the s ta te  is zero. Similarly, when the preceding r + 1 trials 

in order had the outcomes F, S, . . ., S, the s t a t e  variable would carry the  label r. T h e  process  is 

clearly Markovian, and the transition matrix h a s  the above form with 

P , = p ,  n = O ,  1, 2 . . .  . 

3.5 Branching Processes 

Suppose a n  organism at the  end of its lifetime produces a random number 5 of offspring with 

probability distribution 

P ( t =  k)= a k ,  k =  0, 1, 2, ..., 

where ak 2 0 and E a ,  = 1. We assume that all offspring act  independently of each  other and at t h e  

end of their lifetime (for simplicity, the life-spans of all organisms are assumed to  b e  t h e  same) 

individually have progeny in accordance with the  same probability distribution, t h u s  propagating 

their spec ies .  T h e  process t X n l ,  where X, is the population s i z e  at the nth generation, is a 

Markov chain.  The transit ion matrix is given by 

where the t 's  are independent identically distributed random variables.  
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3.6 A Genetic Model 

The following idealized genet ics  model was introduced by S. Wright to investigate the fluctua- 

tion of gene frequency under the influence of mutation and selection. We begin by descr ibing a 

so-called simple haploid model of random reproduction, disregarding mutation pressures  and 

select ive forces.  W e  assume that we are dealing with a fixed population of 2 N  genes composed 

of type a and type A individuals.  The makeup of the next generation is determined by 2N inde- 

pendent binomial t r ia ls  as follows: If the parent population cons is t s  of j genes of type a and 

2N - j genes of type A ,  then e a c h  trial  resul ts  in a or A with probabilities p .  = j / u V  and q .  = 

1 - ( j / 2 N )  respectively.  Repeated select ions are done with replacement. By th is  procedure we 

generate a Markov chain ( X n { ,  where X n  is the number of a genes in the nth generation among a 

constant population s i z e  of 2N elements.  The s t a t e  s p a c e  contains the 2N + 1 values (0, 1, 2, . . ., 
2 N ) .  The transition probability matrix is computed according to the  binomial distribution a s  

I I 

p(X,+l = k 1 X, = j ) =  p .  l k  = (7) prq?N-k, k, j = 0, 1, . . ., 2N 

4. PROPERTIES OF MARKOV CHAINS 

4.1 n-Step Probabilities 

A Markov chain is completely defined by i t s  one-step transit ion probability matrix and t h e  

specification of a probability distribution on the s t a t e  of the process  at t i m e  0. Let pn .  denote 

the probability that the process goes from state i to  s t a t e  j in n transit ions,  that  i s ,  
' I  

P!'. 'I = P(X,+, = j 1 X, = i) . 

It c a n  be shown that 

m 

p n .  = 2 p': p s . ,  where r + s = n . ' I  kZ0  Ik kl 

If the probability of the process  init ially being in State  1 iS p . ,  that  i s ,  p(x - . 

probability of the process  being in state k a t  t i m e n  is 
then the I 0 - ,>= Pj' 

m 

p;: = p . p n  = P(X, = k )  , 
j= 0 J l k  

In order to s tudy the limiting behavior of pn .  a s  n + W ,  we need to introduce some principles of 

c lass i fying the states of a Markov chain. 
' I  

4.2 Classification o f  States 

A s t a t e  j is s a i d  to b e  accessible from s t a t e  i i f ,  for some integer n 2 0, p y j  > 0. Two s t a t e s  

i and j ,  each access ib le  to  the other, are said to communicate. A Markov chain is said to  b e  

irreducible if all states communicate with each  other. 
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J 

We define the period o f  s t a t e  i, written d(i), to b e  the greatest  common divisor of all integers 

n 2 1 for which p:i > 0. (If pyi = 0 for all n 2 1 define d(i) = 0.) A Markov chain in  which e a c h  

state has  period unity is called aperiodic. 

Let  f yk  stand for the probability that, in a process s tar t ing from state j ,  the f i rs t  entry t o  

s ta te  k occurs a t  the nth s tep .  Let  us put 

Clearly f j k  is the probability that,  start ing f r o m  s ta te  j ,  the system will ever p a s s  through s t a t e  k. 

The s t a t e  j is sa id i to  be persistent if f j i  = 1 and transient i f  f j j  < 1. A persistent state j is 

called a null  s t a t e  if its mean recurrence t ime  p. = M. 
J 

An aperiodic persistent state j with p j  < M is cal led ergodic. 

4.3 L i m i t  T h e o r e m s  

Theorem: 

1. T h e  state j is transient i f  and only if 

In th i s  case 

W 

2 p?. < W 

n=o ' J  

for all i. 

2. The (persistent)  s t a t e  j is null if and only if 

but pn. + 0 a s  n + W .  In th i s  case pyj  + 0 for all i. 
J J  

3 .  An aperiodic s t a t e  j (persistent)  is ergodic if and only if p j  < W .  In this  case as n 4 W ,  

pyj + f . . /  .. 
11 I"J 

A Markov chain is said to be ergodic if a l l  its s t a t e s  are aperiodic and persistent with finite 

mean recurrence times. We have the following important theorem. 

Theorem: In a n  irreducible ergodic chain the limits 

l im  pf = u 
n+w 

Ik k 

exist  and are independent of the init ial  s ta te  j .  Furthermore, 
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Conversely, suppose that the chain is irreducible and aperiodic and that there exis t  numbers 

uk 2 o satisfying 

u k =  1, u . =  z u i p i i .  
J i  

Then the  chain is ergodic, the uk are given by 

and uk = l /pk ,  where pk is the mean recurrence t ime  of s t a t e  k. 
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