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FABRTUATI OTJ OF SOL -GEL -DERIVED THORIA-URANIA 

BY COLD PRESSING AND SJXTERIKG 

J PI Robbins and J. G. Stxadley 

ABSTRACT 

The use of  t h e  cold-press-and-sinter technique for 
producing so l -ge l  thoria-urania  OLel p e l l e t s  was inves t i -  
gated. We studied so l -ge l  powder ca lc ina t ion  temperature, 
moisture content, un iax ia l  and i s o s t a t i c  forming pressures ,  
and s i n t e r i n g  atmospheres. The sol-gel  powder was char- 
ac te r ized  by DTA, TGA, and BET surface area techniques. 
The s in t e red  fbeL p e l l e t s  were evaluated i n  terms o f  shrink- 
age, density,  and oxygen-to-uranium r a t i o .  Shrinkages 
ranged from 16 t o  204, bulk dens i t i e s  ranged from 78 t o  
9541 of theo re t i ca l ,  and the  oxygen-to-uranium r a t i o  was 
changed from 2.67 t o  2.00 by hydrogen reduction. 

INTRODiTC TION 

Sol-gel-derived thoria-urania  i s  o f  i n t e r e s t  because o f  t he  amen- 

a b i l i t y  of the sol-gel  process1,2 t o  t h e  recycle o f  f i e l s  and t o  the 

production of very homogeneous mixtures of f i s s i le  and f e r b i l e  mater ia l s .  

Sol-gel f i e 1  mater ia ls  have been prepared i n  two forms, fragments and 

microspheres. The s u i t a b i l i t y  of the  so l -ge l  mater ia l  for the  remote 

preparat ion of  thorium-oxide-base nuclear f ie ls  has been shown' by using 

'J. A. Lane, -- e t  a l . ,  "Thorium TJt i l izat ion Systems, I'  V a l .  6, 
pp. 333-343 i n  Proc. In te rn .  Conf. Peacef i l  Uses A t .  Energy: 3rd, 
Geneva, 1964, United Nations, New York, 1965- 

Ease Fuels," pp. 51'7-542 i n  Proceedings of t h e  Thorium Eke1 Cycle Sym- 
posium, Gatlinburg, Tennessee, December 5-7, 1362, TID-'765O, Bk. 2 
(July 1963 1.  

'0. C .  Dean -- e t  a l . ,  "The Sol-Gel Process f o r  Preparation of Thoria- 

'W. S. Ernst, Jr., "Recent Vibratory-Compaction Studies on Thoria- 
Urania," pp. 5857305 i n  Proceedings of t h e  Thorium Riel Cycle Symposiwn 
Gatlinburg, Tennessee, December 5-7, 1962, TID-7650, Bk. 2 (&ly 1963). 
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fragments with v ibra tory  compac-Lion. Sol-gel microspheres, because of  

their  spher ic i ty  and uniform size,  a r e  x e l l  su i ted  for  coating with 

p p o l y t i c  ca,rbon i n  f lu id ized  beds. 

t'nat carbon-coated 0xid.e microspheres w i l l  be sa t i s f ac to ry  fbels f o r  

high-temperature gas-cooled reac tors .  Since the  sol-gel  process appeam 

so promising fo r  nuclear f'uel appl-ications, t1il.s study was conducted t o  

det errni.ne t h e  appli-cab ili ty of cold-pres s -and -s i n t e r  f abi-icat ton tech-. 

niqyes f o r  producing f i e 1  p e l l e t s  o f  sol-gel oxide mater ia ls .  When we 

s ta r ted ,  no information was found i n  the  l i t e r a t u r e  per ta in ing  to cold 

pressing and s in t e r ing  of sol-gel  mater ia ls .  Since then, some in fo r -  

I r r ad ia t ion  t e s t  r e s u l t s 4  ind ica te  

and densipicat ion of 

same con- covered t'ne 

mation5, has been published on the  fabr ica t ion  

sol-gel. powders ; however, ne i ther  inves t iga t ion  

d i t i ons  considered i n  t h i s  study. 

EXPERIMENTAL PROCEDURE 

'Ehe mater ia l  used i n  t h i s  study w a s  a thor  

the Chemfcal Technol.ogy Division. Altiiough the 

a-irrania ge prepared by 

general sol-gel process 

has been described elsewhere, we w i l l  b r i e f l y  describe the  method used 

i n  preparing the  material. for t h i s  study. 

(or converted t o  thorium oxide) with s'ieam a t  approximately 5OO0C, and 

t h e  resu l tan t  powder was made inLo an 8 - M thor3.a s o l .  Next, U03 powder 

was blended i n  t o  prod-uce a s o l  containing about 6, . f j4  normal i~.ranium by 

weight. Finally,  the sol- was dr ied  t o  a gel a t  approxirmtely 80°C. The 

dr ied  sol.-gel nlateria.l was in t he  form of sharp-edged, flab-faced chunks 

ranging from approximately 0 . 1  t o  1 i n .  on a s ide  ant1 having a, glassy 

appearance and orange--Lo- red col.or. 

Thorium n i t r a t e  was deni t ra ted 

J. H. Cooba and X. G. Wymer, "Preparation, Coating, Eval-uation, and f. 

Irradiat , ion Testing of Sol -Gel Oxide Microspheres, " Proc. B r i t .  Ceram. So@. 
- '7 ( 3 ) ,  61-'/? (1967). 

Sol-Gel.. Powders, WAPD-,TM-581 (Eovem'oer 1966 1 .  

Thoria and Thoria Gels, Department o f  Metal.l.urgy, University of IJtah, 
S a l t  Lake City, Utah, Technical. Repori; 28 (Dec. 15, 1965). 

- 

5H. H. Crain and C .  R. Hutchison, l_------O1... Fabrication of &el P e l l e t s  Born I 

6A. LJ. Daniels and M. E. Wadsworth, ---...-. Densification and Sinter ing - of 
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F i r s t  we cmshed the  chunks i n  a laboratory impact pulveri.zer unti.1. 

t h e  mater ia l  passed a 2CO-mesli ( r - ? ~ k  ii.1 screen. 

and screened powder was divided i n t o  foils equal l o t s .  One l o t  was put 

as ide  i n  a glass b o t t l e ,  while the  other  th ree  were placed i n  quartz com- 

bns t ion  boats  and calcined by rap id ly  hea,ting i n  an air-atmosphere muffle 

furnace t o  t h e  desired temperature (200, 400, and ‘750°C)  and holding fox 

1 hr. 

Next, a qu-antity of bl.end.eci 

??le powders were then allowed t o  cool wi.th the  f i rnace .  

Since sintered. dens i ty  normal1.y increases  with green o r  as-formed 

density,  we wanted t o  determine the e f f e c t  of’ pressing a ids  or  lubr icants  

on the  green densi ty .  Water i s  an exce l len t  Iubricant, for the Yorming of  

some ceramic powders, increasing t h e i r  green densi-ty. Yet, 1in.l.ike 

va,ri.ous organic lubr icants ,  it does not leave a carbonaceous residue t o  

be removed. Therefore, each l o t  o f  powder was dTvided i n t o  two groups. 

I n  one group, ca l l ed  the  control  group, t he  moisture corkent was estab- 

l i shed  at; about 1% by the  normal laboratory humidity. An additional- 5$ 
water was added t o  the  second group of‘ powders, ca l l ed  the  w e t  group, by 

placing them i n  an atmosphere sa tura ted  with water vapor a t  60°C for 40 br ,  

Right-cyl indrical  p e l l e t s  approximately 0.5 V 0 . 5  i n .  were cold 

formed i n  a s t e e l  d i e  lubr ica ted  with 8 so lu t ion  of s t e a r i c  acid i n  ace- 

tone. Pellets were formed f o r  each powder condition a t  th ree  uniax-i.al 

pressure l.evels, 2000, 3500, and 5000 p s i .  Then, a t  l e a s t  I x o  p e l l e t s  

from each .u.niaxial pressure l e v e l  were i sos t a - t i ca l ly  pressed ai; 20, $00 

r+cJ,OOO, and 60,000 ps i ,  making a t o t a l  of 18 di-fferent powder and forrming 

combinations. After being formed, al.1 the  p e l l e t s  were dried. fo r  a t  l e a s t  

24. h r  in B vacuim d-esiccator a t  6O”C. 

p e l l e t s  were placed on a l ayer  of  spherical  t ho r i a  grog on alumina s e t t e r  

p l a t e s ,  loaded i n t o  an e l e c t r i c  res i s tance  furnace that  had been preheated 

t!2 60°C, and s in t e red  i n  a i r ,  hel.ium, o r  hydrogen. 

Immediately af’ter drying, the  

Di f f e ren t i a l  thermal analyses (DTA) w e r e  performed on a l l  t‘be pow- 

ders .  
t o  1lC1(l”C i n  a DTA u n i t .  Surface areas of all the powders rhiere meamred 
by the  BET method. 

Loose powder placed i n  p3.atirru.m cups was heated i n  a i r  a t  lO”C/min 

7L.  H. Van Vlack, Introduct ion t o  ?hysieal  Ceramics, Addison-Wesley 
Publishing Co., Inc. ,  Reading, Mass., 1564, pp. 1,!+-.1, 14-3. 
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A l l  t he  bulk dens i t ies  , shrinkages, and wej.ght changes reported in 

t h i s  study were measured by standard micrometer and analyi5ical balance 

techniques. 

CHA.RACTFR1ZATION OF ThT SOL-GEL MRI’ERIAI, 

The sol-gel mte r?a l .  used i n  t h i s  study. had an oxygen-to-uranium 

r a t i o  o f  about 3.0 and conbained 2.20% n i t r a t e s  and. 0.04% C .  

graphic anal.ysis o f  the  mater ia l  after grinding and screening showed 

that these operations introduced a’mut, 50 ppm Fe and 5 pprn C r .  If these 

were controlled. t o  minimal amounts i n  the  start i-ng material ,  t h i s  a,ddi- 

t i o n a l  contamination would. probably be acceptable f o r  most fuel. appl i -  

cations.  

screen before use.  

i s  given i n  ‘Table 1. 

Spectro- 

The powders we processed were screened only through a 200-mesh 

A screen analys3.s on a typ ica l  sample of t he  powder 

Tab1.e 1. Screen Analysis of  Crushed Sol-Sel ( T h , U ) O 2  

Screen S i z e  
(U . S . Standard Mesh ) 

Retaiiied on Screen, $ 

Frac’iion Clm1.ative 

230 

270 

325 

17.3 

14.8 

1.7.0 

32.1 

49.1 

Pan 50.9 100.0 
~ 

Since fac tors  l i k e  surface area and v o l a t i l e s  such as  n i t r a t e s  and 

carbon a f f e c t  the propert ies  o f  some formed and s in te red  ceramic materials,  

we needed t o  determine the e f f e c t s  o f  calcinat ion on these var iab les  fo r  

t h i s  sol-gel  material. The changes caused by calcining a re  presented i n  

Ta,ble 2 .  As would be  expected, the weight loss  increased, While the 

n i t r a t e  content and surface area decreased with increasing ca lc ina t ion  

temperature. 

We noted e a r l i e r  that calcined sol-gel mater3.al.s a r e  hygroscopic. 

mil2 rnojsture pickup can be control led o r  prevented by b o t t l i n g  and 



Table 2 .  Changes i n  Ni t ra te  Content, Surface Area, arid 
Weight Loss Caused by Calcination 

Ni t ra te  Content Surface Area We igti t Loss Calcination 
Temperature 

(4) !mL /g 1 ($1 ('C) 

TJncaleined 2 . 20 
200 0.04 68.7 1.. 36 

400 0.001 41.6 2.38 

750 0.0001. 4 6 . 1  4.. 0% 

carefu l  handling of  the powder, it i s  d i f f i c u l t  t o  pro tec t  formed p e l l e t s  

without r e so r t ing  t o  a glove box operation. For example, p e l l e t s  formed 

from hjrgroscopic sol-gel  powder developed cracks, 2pparentLy rausecl by 

the  pickup of  moisture, between forming and s in t e r ing .  An exothermic 

reac t ion  between moisture and the  dry hygroscopic sol-gel  powder may 
explain the  cracktng observed i n  formed p e l l e t s .  Rir ther ,  the cracking 

c8.n be eliminated by allowing the powder t o  pick up f r e e  moisture before 

forming. The three  calcined l o t s  of powder i n  this study increased 

approximately 14 i n  weight when exposed f o r  L+t? hr  t o  the  1meontrolLecl 

humidity of the laboratory.  

f r e e  moisture, which, as  s t a t e d  i n  the  procedureJ represents  the control  

group. 

absorbed an addi t iona l  5$ moisture during the (40 h r  exposure $0 .% saku- 
r a t ed  humidity a t  60°C. 

The uncalcined powder eoritained about 1. I$ 

A l l  of the  powders of the  w e t  group, calcined or  uncdcined,  

D i f f e ren t i a l  thermal analyses w e r e  performed on the  control powders 

t o  e s t ab l i sh  a des i rab le  s in t e r ing  cycLe. The JYIX fo r  the  uncalciiied 

powder is  shown i n  E'ig. 1. 

endotherm due t o  moisture removal, then a strong exotherrn at about, 2OS'C, 

wnich i s  bel ieved t o  be a carbon-ni-trate reac t ion .  Another endotherm 

occ i~rs  near 430°C due t o  n i t r a t e  decomposition, and f i n a l l y  t h e  exc,therm 
i n  the  GJ5C t o  1000°C range shows the re lease  of su-rfnce energy from the  

powder. 

t h a t  fo r  the  inncalcined powder. However, both l o t s  of  powder calciced 

A t  approximately 1 2 ' J ' C  t he re  i s  R st rong 

The DTA f o r  the  powder calcined at; 2Vl"C was very s imi la r  t o  
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Fig. 1.. Differen t ia l  Thermal Aila1.ysis (DTA) Pat te rn  o f  Sol-Gel- 
Derived 'Thoriurn-Uran5m Oxide. 

a t  400 and 750°C had l o s t  the  265°C exotherm and had a reduced endotherm 

a t  430°C. Also ,  the  surface energy yelease exotherm was s l i g h t l y  

depressed f o r  t h e  powder calcined a t  750°C, as  would be expected because 

of  i t s  reduced surface area (Table 3 ) .  

uncalcined powder, we establ ished an 80" Chir f i r i n g  cycle with 2-hr soak 

period.s a t  240 and 4,OO'C and final1.y a 1.25-hr soak per iod a t  3.425"C. 

Pased on the DTA resu1. t ;~ for 

Sa t i s fac tory  green p e l l e t s  were produced from both groups of powders 

under a1 1. the  forming co:nditions invest igated.  

laminating, o r  moisture squeeze-out was seen i n  any o f  the specimens a t  
t he  three uniaxia l  pressures invest igated.  As expected, p z l l e t s  formed 

f r i s m  a l l  powders increased i n  a,pparent strengtfn with increased uniax ia l  

and i s o s t a t i c  forming pressfires and wi.th moisture content.  However, the 

apparent; skrength of the p e l l e t s  fomed rrom tal-cined powders decreased. 

as t he  mlc in ing  temperatuul-e increased. 

No pressure capping, 

Pe l l e t s  of t he  750°C calcined 



Table 3 .  Effect of PhTstxre Coritent 3pon the Balk Clensitjr 
of Formed and Air-Sintered !daterial 

Density" of 200°C Calcined Fowder 
Sintered Density Forming Pressure, p s i  Uniaxially Formed Is o s t a t  i ca 1 ly Formed jg/cm3 1 

Control Wet Control Wet Cont ro1 wet. Uniaxial I s o s t a t i c  

2000 

3 500 

5000 

20,000 

20,000 

20, 000 

4CI,3C;0 

40,000 

40,300 

60, 0co 

60 OOG 

60, 000 

3.62 

3 . '79 
3.33 

3.62 

3 "?9 

3.95 

3.64 

3.85 

4.16 

3.83 

3.36 

4.33 

4.74 

4 "71 

4.71 

5.21 

5.23 
5 , 2 4  

5.23 
5 i;i= 

5.55 

. J J  

5.21 

5.23 

5.21 

5.28 

5-30 

5.32 

5.33 

5.34 

5.34 

8.56 

8.63 

8.7'3 

9.14 

9.20 

9.21 

9.38 

9-42 

9.46 

9.42 

9.42 

9 .A4 

9.47 

9.49 

9-53 

9.56 

9.55 

9.55 
~ 

a Calculated on a dry weight bas i s .  
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powder formed. a t  t he  21300 p s i  uniaxial. ].eve1 required ca.re i n  handling 

t o  prevent chipping. No abnormal d i e  weai“ was noticed with the  sol-gel 

mater ia ls  as others8 have reported; however, our hj-ghest un iax ia l  pressu-re 

I.evel., 5030 ps i ,  was very low compared t o  the reported 100,000 p s i  a,nd 

grea te r .  

A s  menti.oned e a r l i e r ,  increasing the green densi ty  increases -the 

s ln te red  density.  

Figure 2 compares the  influence of t h e  three  var iables  s tudied t h a t  a f f e c t  

the green bulk densi ty:  forming pressme, calcining temperature, and 

moisture content.  

the green densi-ty increased with formring pressure and  decreased with 

increased ca lc ina t ion  temperature. The e f fec t  of tal-cination became more 

pronounced with increasing forming pressure f o r  t h e  control  group. While 

only one of the family of curves for  the  wet group ris shown, it i l l u s t r a t e s  

the  decrease i n  slope caused by the  addi.Lisna.1 moisture. This addi.tiona1 

moisture equalized the  isosta-tlic formiag pressure,  allowing us t o  achieve 

a.pproximately the  same green densi ty  a t  20,000 p s i  with the  wet group as 

Iience, am high a green densi ty  as  p r a c t i c a l  was d-esired. 

The family of curves Cor the control  gwup shows t h a t  

* ‘13. E.  Crain and C .  R .  Hutchison, Fabrication of Fuel P e l l e t s  E’rorn 
Sol-Sel Powders, WAPD-TM-581 (November 1966). /-- 

I! 
is, f 

O R N L - D W G  67 4184R 

[L w 

CALCINING CONDITIONS 
IN P A R E N T H E S E S  

10 20 30 40 SO 60 70 
ISOSTATIC PRESSURE ( 1 0 O O p s i l  

t 

Fig. 2 .  Effect o f  I s o s t a t i c  Pressure and Calcining 
the k l k  Density of i s o s t a t i c a l l y  Pressed h t e r i a l .  

Conditions on 



a t  4C,C?G0 p s i  i n  t h e  control  group. 

decrec?.sed t h e  maximum green dens i ty  achieved; huwever, t h i s  was not 

detrimental  t o  the f i n a l  o r  s in t e red  densi ty .  

The addi t iona l  moisture a l so  

The i n i t i a l  moisture content s i g n i f i c a n t l y  a f fec ted  the  dens i ty  of 

the  a i r - s in t e red  so l -ge l  ma,terial. The uniax ia l ,  i s o s t a t i c ,  and a i r -  

s in te red  dens i t i e s  fo r  the  sol-gel  powder calcined a t  200°C w e  shown. 

Two poin ts  a r e  outstanding about t h i s  da ta .  One, mentioned previously, 

perta, ins t o  t h e  narrow spread i n  t h e  s in t e red  dens i ty  of the w e t  group: 

it runs from ‘3.4;) t o  9.56 g/cm’, compared t o  8.5; t o  9.40 g/cm3 f o r  the  

dry group. Thus, t h e  addi t iona l  moisture appears t o  luwer t h e  pressure 

required t o  achieve the  g rea t e s t  s in t e red  densi ty .  The second point  

pe r t a ins  to the  increased dens i f ica t ion  t h a t  occurred i n  the  wet group. 

For example, a w e t  p e l l e t  (6% moisture) formed a t  2OCO and 20,000 p s i  

had  a green densi ty  o f  5.21.. g/cm’ and a s in t e red  densi ty  of‘ 9.4.2 g/cm3, 

while a control  p e l l e t  (1% moistiire) formed at %00Q arid 40,000 p s i  also 

had a green dens i ty  of 5 . 2 1  4/cm3 but  s in t e red  t o  only 9.14 g/cm3. The 

reason i s  not completely clear ,  but  apparently the  presence of addi t ional  

moisture during forming promotes s in t e r ing .  The e f f e c t  of‘ moisture must 
occur during forming s ince  1 .0  t o  6.0$ moisture was removed during drying 

a t  60°C i n  vacuum. 

the  individual  c r y s t a l l i t e s  t o  enhance dens i f ica t ion .  We be l ieve  t h a t  

this cementing i s  possible  because the  sol-gel  thoria-urania  behaves 

much l i k e  some o ther  co l lo ida l  mater ia l s  (sodium s i l i c a t e ,  e t c .  ) i n  the  

presence of water.  If excess water i s  added, t he  mater ia l  ge ts  s t i cky  

and w i l l  develop a tenacious bond t o  other  mater ia l s .  A l l  the  da ta  i n  

Table 3 a re  f o r  the  powder calcined a t  2OO0C, but  they are representat ive 

o f  t h e  behavior of the o ther  t h ree  powders. 

The addi t iona l  moisture may cause cementing between 

The shrinkage of a ceramic mater ia l  i s  an important consideration 

when one attempts t o  produce p a r t s  t o  a predetermined s i z e  with close 

tolerances.  The e f f e c t  of powder ca lc ina t ion  and green dens i ty  on the  

diametral  shrinkage during s i n t e r i n g  t o  1425°C i n  a i r  i s  s l i m  i n  Fig. 3’. 

P e l l e t s  of  t he  uncalcined powder and from t h a t  calcined a t  200°C d i f fe red  

very l i t t l e  i n  shrinkage. The decrease s h m  fo r  t he  powders calcined a t  

400 and 750°C r e f l e c t s  t h e  reduced surface areas .  
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Fig. 3. Effect  o f  Green Dens i iy  and Gal-cining Conditlons on tile 
Diametral Shrinkage During S-intering. 

Avera,ge bulk dens i t ies ,  which show the e f f e c t s  o f  d i f f e r e n t  forming 

preasiires, ca lc ina t ion  s t a t e s ,  and moisture contents f o r  the sintered. 

p e l l e t s ,  aye si.immarized i n  Table 4 .  As expected from the  discussion of 

green bulk dens i t ies ,  the s in t e red  bulk densities decreased unlformly 

with the increase i n  ca lc ina t ion  temperature. Also, the s in t e red  bulk 

dens i t i e s  increased with increasing forming pressure and mois%ure content.  

I n  fac t ,  ca lc ina t ton  e f f ec t s  can apparently be overconie by increasing the  

formtng pressure.  

from the unca1ci.ned powders and the powders cal-cined a t  200 and 400°C 

a r e  about t he  same fa.r equivalent green dens i t i e s .  For example, i f  a 
p e l l e t  of a 400°C-calcined powder was formed a t  a green densi ty  of 

5.’7 g/cm3, i t  should d isp lay  a s in t e red  dens’i-ty equal t o  Uia-l; of the 

1.mc;zl.cined powder w i t h  t h e  same green densi ty .  

Figure 4 shms tha t  t he  s in t e red  dens i t i e s  o f  p e l l e t s  

F i g ~ ~ e  5 sham typ ica l  microstructures of t h e  sol-gel  thoria-urania 

a f t e r  s in t e r ing  i n  a i r  a t  1425°C. 

gyaiii s i z e  t h a t  only p a r t i c l e s  can be distingu.i.shed by conventional 

met:sllography. Iiowesber, “Lie microstructures i n  F’ig. 5 do show something 

Sol-gel. m t e r i a l  has such a small 
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fig. 4 .  
Sintered Density. 

Effect  of Green Density and Calcining Conditions on the  

imusual. 

p a r t i c l e  s i z e  and pore d i s t r i b u t i o n  f o r  the  two a r e  qu i t e  d i f f e ren t .  The 

bulk dens i t i e s  o f  (b) and ( c )  a r e  v a s t l y  d i f f e ren t ,  buf; the s t ruc tu res  . x e  

very much a l ike .  Studjririg these and many o ther  microstructures f o r  

pel- le ts  made i n  t h i s  program, we deduce t h a t  -Forml.ng pressure has more 

of a bearing on the  s in t e red  s t ruc tu re  than does s in te r ing .  

( c )  some of  -the coarse parti.cl.es were apparently sheared with the  

69,000 p s i  formhg load, thereby decreasing the s i z e  of  the  pores.  

'The hu1.k dens i t i e s  o f  (a)  and (b) a re  aboilt the  same, ye t  the 

I n  (b) and 

Tfle e f f ec t s  of s in t e r ing  atmosphere on 'uu1.k densi-ty a.re shown i n  

Table 5 .  'These pe l l e t s  were a l l  un iax ia l ly  ihrmed a t  3500 p s i  and iso- 

s b a t i c a l l y  pressed a t  LO, 003 p s i  from control  powder. P e l l e t s  sintered. 

l.n a i r  had the  highest  bu1.k density-, those s in t e red  i n  helium had a 

s l i g h t l y  lower density,  and those s in t e red  i n  hydrogen had the lowest 

densi ty .  

r e f i r e d  i n  hydrogen t o  reduce t h e i r  oxygen-to-uranium ratio, t h e i r  f ina .1  

While those s in t e red  i n  a i r  decreased some i.n dens i ty  when 



I .3 

Fig. 5 .  Thoria-Urania Sol-Gel Sintered i n  A i r .  (a) TJncalcined 
control powder formed at 1200 p s i  uniaxial  and 20,Or30 p s i  i s o s t a t i c  
pressures; 8.'76 g/c^m3. (b) 750°C calcined control powder formed a t  
1.800 p s i  uniaxial  and 60,000 p s i  i s o s t a t i c  pressures; 8.86 g/cm3. 
( e >  TJncalcined wet powder formed a t  1800 p s i  uniaxial  and 60,000 p s i  
i s o s t a t i c  pressures; 9.58 g/cm3. Etchant: 30 W:jPO4-L HF. 



Table 5. Effect o f  Sihter ing Atxiosphere 
on the  Bulk Density of Sintered P e l l e t s  

Bulk Density (g/cm3 ) f o r  Different  
Cal r inat ioi i  
Temperature -.---- .._.._.-__I 

Si n te r ing  Atrnosph, 'ares 

( " C )  A i r  He L ium Hydro en 

Uncalcined 9.25 9.06 8.91 

2 00 9.20 9.12 8.95 

400 8.8'1 8*,78 8.58 

7 50 8.46 8.31 8.12 
-__ ._.__.__ _Y. .._..... _l_l 

densi ty  was s t i l l  g rea te r  than t h a t  of a pel le- t  si-ntered only i.n hydrogen. 

For exaup?le, t he  densi ty  of 9 .25  g/cm3 f o r  a pei.let s in te red  i n  a i r  

becomes 9.20 a f t e r  hydrogen reduction. There i s  110 difference I n  the  

microstructures o f  p e l l e t s  with equIval.ent densj-ties s in t e red  i n  diy- 

f e ren t  atmospheres. 

The e f f ec t  of  oxygen-to-uranium rati .0 o s  the co1.o~ of t'ne s in te red  

p e l l e t s  was qui te  pronounced even though the  s t a r t i n g  mater ia l  contained. 

only 6% uranium. As previously mentioned, the  s barting sol-gel  mater ia l  

was orange Lo red and had an oxygen-to-uraniun r a t t o  of  approximately 

3.00. After a i r  s in te r ing ,  t h e  oxygen-to-uranium r a t i o  was about 

2.67 (U308), and the  product was dark brown. Helium and hydrogen 

s in t e r ing  prod.uc,ed p e l l e t s  with a l i g h t  green color and an oxygen-to- 

uranium r a t i o  of 2.00. 

CONCLUSIONS 

1. hXel p e l l e t s  may be produced from sol--gel thoria-urania  by the  

co ld-pr~ss-and-s in te r  technique with bulk dens t t i e s  95% of  theoretical- .  

2, The use of moisture, a t  least; i n  amounts up t o  64, lowers t h e  

forming pressure required t o  achieve a p e l l e t  with a spec i f i c  s in te red  

densi ty  . 



3. The s in t e red  bulk dens i ty  i s  control led by powder ca lc ina t ion  

temperature, powder moisture content, forming pressure,  and s i n t e r i n g  

atmosphere. Proper combinations of these  may be used to produce p e l l e t s  

with s p e c i f i c  s in t e red  bulk dens i t i e s .  

4 .  The s in t e red  structxre q p e a r s  t o  be establ ished by the forming 
load r a the r  than s i n t e r i n g  conditj-ons . 

5 .  Sinter ing i n i t i a l l y  i n  a i r ,  followed by hydrogen reduction, 

produces a denser p e l l e t  than s i n t e r i n g  completely i n  hydxogen; s in t e r ing  

i n  helium produces only s l i g h t l y  lower densi ty .  

v .  Specimens formed from uncalcined powder achieved the  highest 

bulk densi ty .  Equivalent dens i t i e s  can 'oe achieved from powders calcined 

cit  2OQ and 4C)O°C, b i ~ t  higher forming pressures  a re  required+ 

We wish t o  thank F. P. Jeffers for  his m s i s t a n c e  i n  preparing 

specimens; W. W. Proaps for general  ass is tance;  M. D. A l l e n  f o r  metal- 

logrzphy; H. Beutler, R. L. Hamrler, and J. 1,. S c o t t  f o r  t h e i r  technica l  

reviews arid encouragcment; and Sharon Woods o f  the  Metals arid Ceramics 

Division Reports Office f o r  typing and preparing the report for 

rcproductiorl .  
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