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EVAP~2 and EVAP-3: Modifications of a Code to Calculate
Particle Evaporation from Excited Compound Nucleil

M. P. Guthrie

Abstract

The EVAP computer programs calculate the types, multiplicities, and
energy distributions of particles evaporated from excited compound nuclei.
The modifications incorporated in EVAP-2 include updating the nuclear masses
and shell-plus-pairing energy corrections used as input data, providing for
the breakup of 8Be, and eliminating the possibility of the evaporation re-

7 sidual nucleus having a negative excitation energy. EVAP-3 retains all of
the modifications of EVAP-2 and, in addition, calculates the kinetic energies
of the recoiling nuclei. The codes are written in FORTRAN-IV and operate
on the IBM~360 computer. Data cards and the printed output for a sample

case are shown.



I. TINTRODUCTION

Dresner's Monte Carlo computer program EVAP! determines the types,
multiplicities, and energy distributions of particles evaporated from ex-
cited compound nuclei. This useful calculation has been modified many
times and is often used in association with other calculations including
Bertini's intranuclear-cascade codes LECC and MECC? and the nucleon trans-
port code NTC.3 HEVAP-2 and EVAP-3 operate without other codes. The evap-
oration process is started by the collision of an incident particle with a
target nucleus. An excited compound nucleus is formed, from which particles
are emitted until evaporation is no longer energetically possible. The
physics in EVAP-2 and in EVAP-3 is identical to that in the evaporation
codes used by the cascade calculations and NTC. The only difference in the
two sets of codes is in the formation of the compound nucleus. In EVAP-2
and -3 the compound nucleus is formed directly, while in the other cocdes
it is formed at the end of the intranuclear cascade.

EVAP-2 was written to update the input data used by the evaporation
calculation and to incorporate the most desirable modifications of earlier
versions into one "standard” code. EVAP-3 was originally written to be
used with the low-energy cascade calculation to study the effects of the
capture of negative pions in light elements.” It is identical to EVAP-2
in all respects except that the effects of the kinetic energies of the re-
coiling nuclei are included in the calculation. The two codes operate on
the IBM-360 computer and are written in FORTRAN-IV. The subroutines that

generate random numbers are in machine language.



II. EVAP-2

DESCRIPTION OF CALCULATION

Dresner's original calculation began with a compound nucleus of pre-
determined type and excitation energy. EVAP-2 begins one step earlier with
the collision of a particle of predetermined type and kinetic energy with
a stationary nucleus. The compound nucleus formed by this collision is de-
termined simply by adding the mass and charge of the incident particle to
the mass and charge of the target nucleus. The excitation energy of the
compound nucleus is the sum of the kinetic energy of the incident particle
and the binding energy of the incident particle in the compound nucleus.

After the determination of the type and excitation energy of the com~
pound nucleus, EVAP-2 follows Dresner’'s evaporation calculation very closely
except that only 6 types of evaporated particles are considered instead of
Dresner's original 19. The calculation is based on a theory originally
proposed by WeisskopfS and on a Monte Carlo code written by Dostrovsky.®
The calculation is clearly explained in Dresner's description of his code.!

Seven types of incident particles can be used in EVAP-2: neutrons,
protons, deuterons, tritons, helium-3 nuclei, alpha particles, and photons.
The first six types of these particles can be evaporated from the excited
compound nucleus. The output data include a table of the distribution of
residual nuclei following evaporation and, for each type of evaporated
particle, the average evaporation yield per collision, the moments of the

energy distributions, and tables of normalized energy spectra.



MODIFICATIONS INCORPORATED IN EVAP-2

Updated EVAP Table Tape

The nuclear masses used by EVAP were obtained from tables compiled by

Wapstra7 and Huizenga.8

Mattauch et al.? have recently published a new
tabulation of mass excesses and binding energies. The mass excesses in the
new tabulation are based on an atomic mass unit of 1/12 of 12¢., Since the
data used in EVAP are based on 160, the binding energies tabulated by
Mattauch et al. were used rather than the mass excesses. The binding energies
were converted to mass excesses on the EVAP Table Tape using the formula:

EMEX = 7 * (FMH-EMN) + A ¥ (EMN-UM) - BE
where

EMEX

mass excess in MeV

Z = charge of nucleus

A = mass number of nucleus
EMH = 938.7298, mass of proton in MeV
EMN = 939.512&, mass of neutron in MeV
UM = 931.145, unit mass in MeV

BE

]

binding energy in MeV tabulated by Mattauch et al.

For nuclei not tabulated by Mattauch et al. but having a mass number
within + 10 of the valley of stability of the periodic table, mass excesses
were calculated using the semiempirical mass relationship of Cameron. 10
These were stored along with the Mattauch et al. data in the WAPS array on

the new EVAP Table Tape in the same manner as they were stored on the pre-

viously used tape.



Cameron's mass relationship uses a set of "shell-plus-pairing" energy
corrections, which are stored as Cameron Functions on the EVAP Table Tape.
Cameron listed no values for these corrections for nuclides with Z or N
less than 11l. Cameron Functions for small Z or N were therefore set equal
to zero on the original EVAP Table Tape. Peelle and Aebersold!! cbserved
that large mass errors could be made using the zero Cameron Functions for
light nuclides. They obtained new values for the shell-plus-pairing energy
corrections for nuclides with Z or N less than 11 using a weighted least-
squares fit to Mattauch et al.'s masses., These new values have replaced

the zeros in the Cameron Functions on the new EVAP Table Tape.

8pe Breakup

When a 8Be nucleus is formed in the evaporation process, it will split
into two alpha particles instead of evaporating a lighter particle. This
fact was ignored in the original EVAP calculation but has been taken into
account in EVAP-2. If an evaporation residual nucleus has an A value of
eight and a 7 value of four, it is assumed that two alpha particles are
created. Each alpha particle has an energy equal to one~-half the sum of
the excitation energy of the 8Be nucleus and the binding energy for the re-
action. These alpha particles are then treated as evaporation particles
with no further evaporation taking place. A counter records the number of
times BBe breakup occurs.

Negative Excitation Energies

Because of the Monte Carlo sampling techniques used in the evaporation
calculation, it is possible for the kinetic energy selected for the evap~-
orated particle to be greater than the energy available for the reaction.

This results in a negative excitation =nergy for the evaporation residual
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nucleus. If this happens in EVAP-2, the calculation recycles and a new
kinetic energy 1is selected for the evaporated particle. If a physically
reasonable energy has not been obtained in ten attempts, the evaporation
process 1s terminated at the previously evaporated particle.

Additional Minor Modifications

In the tables of evaporation residual nuclei printed out by EVAP, re-
sidual nuclel were sometimes identical to evaporated particles when light
target nuclel were studied. These nucleil were not included in the multi-
plicities of the evaporated particles and their energies were not included
in the energy spectra. EVAP-2 tests the final evaporation residual nucleus.
When it is identical to one of the six types of evaporated particles, it is
treated as an evaporated pariticle and not as a residual nucleus. A count
is kept of the residual nuclei with changed status, so that all residual

nuclel are accounted for.

INPUT REQUIREMENTS

Only one input data card is required to operate EVAP-2. The card
format is 3115, F15.0, I15 . The five input variables are as follows:
NATA -~ the mass of the target nucleus;

NZTA - the charge of the target nucleus:

ITYPE -~ the type of incident particle specified by the following code:
1, neutron; 2, proton; 3, deuteron; 4, triton; 5, 3He nuclei;
6, alpha particle; 7, photon;
EKIN - the kinetic energy of the incident particle in MeV;
IHISNO - the number of incident-particle collisions to be calculated.

The remaining input data are stored on a magnetic tape referred to as

the EVAP Table Tape. The tape has the logical number 3 in the calculation.



Any number of cases may be run in succession by simply placing addi-
tional data cards behind the first one.

The evaporation calculation always begins with the same random number,
g0 that the same cases run at different times should be identical. However,
if more than one case is run in succession, all cases after the first begin

with the last random number generated in the preceding case.

SUBROUTINE STRUCTURE

EVAP-2 consists of a main program and six subroutines. Two of the sub-
routines, FLTRN and EXPRN, are machine language programs to generate random
numhers. The main program reads the input tape, does only a few minor cal-
culations, calls DRES, and writes the cutput tape.

DRES is the subroutine in which the major part of the calculation is
carried out. There are three calls to DRES from the main program. On the
first call, datz are read into the memory from the EVAP Table Tape. On the
second call, information from the input tape is transferred to DRES, and
appropriate variables are zeroed. On the third call, the Monte Carlo evap-
oration calculation is performed for the first incident particle. The
third call is repeated for the number of incident-particle collisions speci~
fied on the data card. If more than one case i1z run in succession, the
first call to DRES is not repeated sinze the data on the EVAP Table Tape
are the same Tor all cases.

THRES is a function subprogram that calculates the binding energy for
the formation of a compound nucleus from the collision of the incident
particle with the target nucleus. THRES is not called for incident photons.

The excitation energy of the compound nucleus is simply the kinetic energy

of the photon in this case.



ENERGY is a function subprogram that determines the mass excess of
any nucleus. The information is either read from the tabulation of mass
excesses stored on the EVAP Table Tape or calculated using the semiempirical
mass relationship formulated by Cameron.'!® Data needed for the Cameron
calenlation are also stored on the EVAP Table Tape.

DOST is a function subprogram that determines some of the factors used
in calculating the probability of the emission of each of the six types of
evaporated particles from a given compound nucleus.

SAMPLE CASE
The data card and printed output for a sample case, 18-MeV protons on

561e  gare shown.
26 ?

Data Card: 18-MeV Protons on SgFe, L4000 Histories
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DISTRIBUTION OF ReSIDUAL NUCLEI FCGLLOWING EVAPORATION
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IIT. EVAP-3

DIFFERENCES BETWEEN EVAP-2 AND REVAP-3

The evaporation calculation in EVAP-3 is identical to that in EVAP-2
except that the effects of nuclear recoil are included in EVAP-~3. EVAP-2
assumes that the initial excited nucleus is fixed and ignores recoil veloc-
ity. The same assumption is made for a nucleus after the evaporation of a
particle, allowing all of the energy of the nucleus to be available as ex~
citation energy for the next evaporation. 'This means, in effect, that
EVAP-2 neglects the difference between the laboratory and center-of-mass
systems.

In EVAP-3 the excitation energy used to calculate the evaporation of
the first particle from the original compound aucleus is the energy avail-
able in the center-of-mass system. Before evaporation, the velocity of the
center~of-mass system is equated to the recoil velocity of the compound
nucleus. After each evaporation, the velocity of the new residual nucleus
is calculated, and this becomes the velocity of the center of mass for the
next evaporation.

In EVAP-2 the particles are assumed to be evaporated isotropically
from the excited nuclei. In EVAP-3 the particles are evaporated isotrop-
ically in the center-of-mass system. The distribution in the laboratory
system is therefore no longer isotropic.

In general, the differences in the results calculated by the two codes
are small. The particle multiplicities are, on the average, slightly lower

in EVAP~3 and therefore the residual nucleil are slightly heavier.



CALCULATION OF KINETIC ENERGIES OF RECOILING NUCLEI IN EVAP-3

The first step in determining the recoill kinetic energy of the original
compound nucleus is the calculation of the momentum of the incident particle.
Since the target nucleus is assumed to be stationary, the momentum of the
compound nucleus was equated to that of the incident particle. The kinetic
energy of the compound nucleus was thea determined from the momentum, and
this value was subtracted from the excitation snergy of the compound nuce
leus calculated by the method of EVAP-2.

To calculate the recoil kinetic energy and the excitation energy of
each evaporation residual nucleus, the following symbols are used (primed

quantities refer to the center-of-momeatum system and unprimed gquantities

refer to the laboratory system):

E" = the excitation energy of thes evaporation residual nucleus;

;;‘= the velocity of recoil nuclesus before evaporation, which is
alsc equal to the velocity of the center-of-momentum system
after evaporation;

;IT.z the velocity of the next evaporated particle of type 1 in the
center-of-momentum system;

vr' = the reccll velocity of the nucleus after emission of partiecle 1
in the center-of-momentum system;

Mr = the massg of nucleus after enission of particle i,

Mi = the mass of evaporated particle 1

8 = the angle in the center-of-momentum system between Vi' and v _;
L (84

. . . . . . (s}
cos® is selected from an isotropic distribution between 0 and 1807.
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The velocities of the evaporated particle and the recoil nucleus in the

laboratory system may be expressed as follows:

i i c

vZ2 = v!? + v2 + 2v! v_ cosb
i i

v =v'+ v
r r c

vZi=v'2 + v2 + oy

''v_ cos(180 + 0) ,
T v c r ¢

and, in the center-of-momentum system,

therefore,

|2= 2 |2
Vr (Mi/Mr) Vi

The square of the recoil velocity of the nucleus in the laboratory system

is then
vZ= (M./M)?v!'?2 4+ v2+ 2(M./M ) v! v cos(180 + 8) .
r i’Tr i c i’ i e

The type of evaporated particle and the energy of the evaporated particle
are determined using Monte Carlo sampling techniques, and therefore Mi and
V{ can be calculated. v, can be calculated from the reccil kinetic energy
of the original compound nucleus for the first evaporated particle. For
subsequent evaporations, v, is simply the v, calculated for the previous
evaporation.

The excitation energy, Eiew’ of the residual nucleus after a particle

is evaporated is equal to the excitation energy of the nucleus before evap-

oration minus the sum of the kinetic energies of the evaporated particle
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and the residual nucleus and also minus the binding energy Q of the evap-

orated particle in the nucleus before evaporation,

i =F -%M v'2 LM v?-qg
new iy r 1 1

¥*
- 1 n 2 |2 —-
E 2[Mr(Mi/Mr) + Mi] vi Q .

The velocity of the evaporated particles in the laboratory system is
used to calculate the energies for the energy distributions and spectra

tabulated by EVAP-3.

INPUT REQUIREMENTS AND SUBROUTINE STRUCTURE

The input data card and the subroutine structure in EVAP-3 are identi-
cal to that in EVAP-2. The printed output is also the same in the two
codes except that in the table, "Distribution of Residual Nuclei Following
Evaporation,”" there is one additional column for the tabulation of the re~

coil kinetic energies of the nuclei.
SAMPLE CASE

The printed output for the same sample case that was used for EVAP-2
is shown for EVAP-3, The data card is identical to the one shown for
EVAP-2.

A comparison of the normalized neutron energy spectra calculated by
FEVAP-2 and EVAP-3 is shown in Fig. 1. Standard deviations are not calcu-
lated by the EVAP codes, but the difference between these two spectra is

almost surely due to the statistical nature of the calculation.
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