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RATIONAL DEVELOPMENT OF SOLVENT-EXTRACTION SEPARATIONS PROCESSES

-or-

GREAT FLOW SHEETS FROM LITTLE DATA GROW

Justin T. Long

ABSTRACT

The Kremser equation is derived in four forms, corresponding to the

four combinations in which three of the four stream compositions of a

simple solvent-extraction contactor can be related to one another. These

equations are then used to represent, in exhausting detail, a mathemati

cal description of a complete solvent-extraction cycle containing a com

pound extraction-scrub contactor and a stripping contactor, with the

organic stream recycled. Emphasis is given to the practical applications

of the resultant equations to radiochemical separations processes and

includes a treatment of decontamination factors, product losses, and in

ternal reflux.



1.0 INTRODUCTION

The purpose of this report is to set forth the mathematical develop

ment of the principles underlying the separation of substances by means

of solvent extraction with particular reference to those separations of

interest in nuclear-energy applications. For the man not directly con

cerned with flow-sheet development this presentation is intended to

clarify the reasoning behind the selection of values for such variables

as phase flow ratios, number of stages, or feed point, and to provide a

semiquantitative understanding of the manner in which the separation

would change as a result of a given change in any one of these or other

variables. For the man already versed in these relationships, at least

intuitively, this report may help to crystallize his thinking and to sug

gest new approaches.



2.0 FUNDAMENTAL MATHEMATICAL RELATIONSHIPS

The objective of this section is to describe the mathematical model

and to derive or present the important equations, based on that model,

that will be used to depict the separation of two components by solvent

extraction. The model is chosen solely on the basis of mathematical

tractability; any resemblance to the conditions of an actual process is

as gratifying as it is gratis.

2.1 The Model Described. Consider a pair of immiscible liquids.

Portions of each of these liquids isolated in some kind of vessel comprise

a two-phase liquid system. For convenience, the liquids will henceforth

be referred to as "the aqueous phase" and "the organic phase."

After an infinite time the two-phase system will have achieved some

kind of equilibrium; any solute originally present in either phase will

have become distributed between the two phases. If we let v_ be the con

centration of a solute in the organic phase and x be the concentration

of that solute in the aqueous phase, then we can define the ratio of

these concentrations, at equilibrium, as

(y/x)equil. -= d (2.1)

where D is the distribution coefficient.

Were we to repeat the procedure many times with varying amounts and

concentrations, we should discover that D is constant for a given equili

brium value of x, and specifically is independent of the relative amounts

of the two phases and of the phase in which the solute was originally,

but that D can be made to vary by changing the temperature or the concen

trations of other solutes.



The imaginary process of bringing two phases together until they

reach equilibrium (with respect to the concentration of a given solute)

and then separating the phases is defined as a theoretical stage (or an

equilibrium stage). Our model utilizes a set of countercurrent equili

brium stages; that is, a set of theoretical stages in which the organic

phase that has been equilibrated in the nth stage is transferred to

stage n+1 and the aqueous phase that was in equilibrium stage n is trans

ferred to stage n_-l. We further suppose continuous flow, with the amount

of each phase unchanged from stage to stage within a section.

A solvent-extraction cycle consists of the transfer of one or more

solutes from the aqueous to the organic phase and the subsequent separa

tion of the solute or solutes from the organic phase so that the organic

phase can be reused. In principle a cycle could be defined on the basis

of either phase; the definition we have assumed is preferable because,

in practice, the aqueous phase may be discarded but the organic phase is

always reused for the sake of economy. (Old proverb: Oil is more expen

sive than water.)

A set of stages having their aqueous and organic flows in common

(that is, no sidestreams) will be called a section. Each section is

usually further specified according to its function as extraction

section, scrubbing section, or stripping section. The number of

sections in a cycle must be at least one more than the number of

components to be separated.

2.2 The Mathematical Terms Defined. Certain mathematical expres

sions will be found to recur frequently in the development of equations
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applicable to the solvent-extraction model we have chosen. These expres

sions will be presented now so that they can be used later in the deri

vations without further comment.

Let ♦ and A be the flow rates of organic and aqueous phase, respec

tively, in liters per hour; (all concentrations will be expressed in

grams per liter). The extraction factor, g, is defined by

Q-D-f- (2.2)

The extraction factor frequently occurs in a series expression having

one of these forms:

N-l .

R ~ S Q (2-5)
i=0

and

i=0

Expansion of the expression in Eq. 2.3 gives

R=l+Q+Q2+ ..... + QN"2 + QN_1 (2.5)

and one can readily see that the expanded expression denoted by R^ can

be obtained from that for R in one of two ways: (l) multiply each term

N
of Eq. 2-5 by Q and add 1 to the series, or (2) add the term g__. These

two methods are stated mathematically by

R* = QR + 1 (2.6)

and

R* =R +QN (2.7)



Another type of expression frequently encountered consists of the

sum of the terms, each of which is the reciprocal of the corresponding

term in Eqs. 2.3 or 2.k, thus:

N-l

s =C Q"1 (2-8)
i=0

and

N

s* =2J Q'1 (2.9)
i=0

The expressions S and S_^ are related to the expressions R and R^; by

and

and

s = -

Q*

--3"#°-®X-&'- &' <2->
Q-

We can also show that

R=-%-irj- (2.12)

R* = \ :i (2.i3)

Some interesting relationships among the terms thus far defined are

presented in Appendix A.

2.3 The Mathematical Terms Quantified. Before proceeding with a

rigorous mathematical attack, a brief discussion of the relative magni

tudes of F£, Q, N, S_^, and D that we can expect to encounter will help

us to keep our perspective.



If, for the time being, we can dispense with quibbling about com

plicating effects such as internal reflux and back-cycling of aqueous

wastes, then the term R£ is simply a measure of the separating potential

of a given•section of an extraction cascade for a given component. In

the simple case, it is the ratio of the concentration of a given component

in the feed to the concentration of that component in the aqueous stream

leaving the contactor. Hence if 99-9 per cent of component A were ex

tracted in a given section, R. for that component in that section (with

our simplifying assumptions) would be l.O/O.OOl = 1000. If we truly

want to extract something, we usually want to extract most of it; that

is to say that, for an extracting substance, R will usually be a number

larger than 20 and indeed will quite often be of the order of 1000 or

more.

Conversely, for a substance that we don't want to extract, the ratio

cf feed to exit concentrations is essentially unity and Rf; must very

nearly equal 1.0.

When Q = 1.0, we see for the series form of R* (analogous to Eq.

2.15)that

0 12 N
R* = 1 + 1 + 1 + .... + 1 = N + 1

Further, when Q < 1.0, there are definite limits within which R* is pre

scribed. We shall assume that the number of stages can vary from 1 to

infinity. When N = 1,

R* „SL-ii .(Q +i)(Q -i) =i+Q (q<i.o) (2.14)
fej - J. H " X

This is the lower bound on R* for Q<1.0. On the other hand, when N is

very large then Q becomes vanishingly small and we can simplify



8

Eq.. 2.13 to

R* = ~ (Q< 1; N» 1) (2.15)

This is the upper bound on R* for Q < 1.0. Examples of Rf; for some values

of Q < 1 are given in Table 2.1. Note that for Q < 0.1 the two bounds

are very nearly identical.

We can see that if Q, were very much smaller than 1, we could not

get an R* of 1000 no matter how many stages we used. This is a mathe

matical way of saying that Q must be greater than 1.0 for any substance

that we wish to extract. Now how large must Q be?

Once the magnitude of R* is established, the sizes of Q and N are

fixed by, and can be determined from, Eq. 2.13. Of course, an infinite

number of combinations of Q and N can theoretically be obtained for any

R*, but practical limits on both N and Q usually exist to limit — or

cramp — the flow-sheet designer.

We have already seen that Q must be greater than 1.0 for a substance

to be extracted and less than 1.0 for a substance to remain in the aqueous

phase. The extraction factor need not be greatly different from 1.0, but

the greater the difference, the better. For a reasonable degree of ex

traction (Rf;) and a reasonable number of stages (N), Q should be either

greater than 1.2 or less than 0.8 (depending on whether or not the sub

stance is to be extracted). On the other hand, the exponential behavior

of Eq. 2.13 is such that we should not often trouble ourselves to get a

Q larger than 2.0 (or smaller than 0.5; as the case may be).

The strong effect of Q on the number of theoretical stages needed

to obtain a given R* is shown in Fig. 2.1. At an R* of 300, an increase



Table 2.1 BOUNDS ON THE VALUE OF R* FOR Q < 1

R*

a Upper bound
(N =«*>)

Lower bound

(1-1)

0.99 100 1.99

0.90 10 1.90

0.50 2 1.50

0.20 1.25 1.20

0.10 1.111 1.10
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in Q from 1.05 to 1.10 can bring about a 30 per cent reduction in the

number of stages required or, for a given number of stages, can result

in a three-fold increase in R^. But at Rf = 300 and a Q of 2.35, a 30

per cent reduction in the necessary number of stages requires an increase

in Q to nearly k.0. Thus if Q is already much larger than 2.0, little

can be gained by going to still larger values of Q.

A further consideration with which we are usually faced is the

necessity to effect a separation of two substances; we cannot limit our

thinking to only one. Thus we must assume that while Q for the extract

ing substance is as large as feasible, the Q for the non-extracting sub

stance must be, under the same conditions of flow and concentration, as

small as is consistently feasible.

How big is N? Generally, it is greater than 2 or 3 and less than

30. Most of the widely used fuel-reprocessing flow sheets have about

5 stages in each section, but some sections contain as many as 10 or

more stages. If contacting time is not a deciding factor (as it might

be in processing nuclides of very short half life, or in intense radia

tion fields where solvent damage is important), then one could go to a

very large number of stages. But, again referring to Fig. 2.1, we see

that for more than 20 or 30 stages an increase in R^ is much more easily

obtained by a small increase in the extraction factor.

The quantity S_^ is important in a stripping section and is indeed

(as we shall later show) a measure of the effectiveness of stripping.

Numerically, S_^ is generally the ratio of the concentration of a solute

entering the stripping section to its concentration leaving. If we want

to remove 99-99 per cent of a solute (as we quite often do) then SJJ; would
have to be IOO/O.OI = 10 .



12

When Q <1, the value of Sf increases very rapidly with increasing

N or decreasing Q, (Fig. 2.2).

Examination of Eqs. 2.k and 2.9 shows that S* for any Q and N is

simply the reflection of R* for that N and the reciprocal of Q.

How big is S* when Q> 1? When Q = 1.0, we can show (as we did for

R*) that

S = N + 1

Also, by using the series form of Eq. 2.11, we see that the (upper)

limiting value of S* when Q = 2 is given by

lim S* =l+| +^+|+ =2
—*"oa

N

When Q = 3^

lim S* =1+4+|+—+ =3/2
N

In general,

lim S* =qQt-1 (Q> 1) (2.16)
N

We can arrive at the same conclusion from the exponential form of Eq.

2.11:

R*

QN+1 1- -9 ~-±- (2.17)
" qVd

N+1when 0^ _ » 1, which is true for Q>1 and very large N,
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then

Ik

N+1
5*- Q =S_ ^N+l(<T+J- » 1) (2.18)

This gives us an upper bound on S*. When N = 1 we get the lower bound.

Under this condition Eq. 2.17 becomes

s - <*? - J »«W-)te-D . Q+i J?Q >ill (2 19)
s " Qj&lJ Q(Q-i) Q t\N =/^

Typical values of £, with the corresponding upper and lower bounds of

S*, are given in Table 2.2.

The magnitude of Q and N needed to give selected values of S* for

stripping are shown graphically in Fig. 2.3.

Finally, we shall say a word about the distribution coefficient D.

We now know that we always want Q to be "large" (e.g., >~ 1.5) for a sub

stance that is to be transferred to or remain in the organic phase and

to be "small" (e.g. <~0.8) for a substance that is to be transferred

to or remain in the aqueous phase. Since Q is the product of distribu

tion coefficient, D, and organic-to-aqueous flow ratio, */A, the design

engineer must take the best distribution coefficient the chemist can

give him and then adjust the flow ratio to give the optimum value for

a-

Consider two substances, A and B, that are to be separated by the

preferential extraction of A. The following double inequality must hold:

% < 1< QA (2.20)

Therefore

BB|<KDA| (2.21)
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Table 2.2 BOUNDS ON THE VALUE OF S* FOR Q> 1

s*

Q

Upper

(N -
Bound

:«*)
Lower bound

(H-l)

1.01 101 1.99

1.10 11 1.91

1.2 6 1.83

1.5 5 1.67

2.0 2 1.50

5-0 1. 25 1.20

10.0 1..111 1.10
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Multiply through by A/* and we see the limits within which the flow

ratio must lie:

DB<f <DA (2.22)

Scheibel has shown, on the basis of a tacit assumption that the distri

bution coefficient of either substance is the same in both parts of a

compound contactor (extraction and scrubbing sections), that the least

number of stages is required when A/jfr is at the geometric mean of D.

and D :
B

(ijoptimum =Vl^dT" (2.23)
and that under these conditions the number of stages in the extraction

section, N, equals the number of stages in the scrubbing section, M. A

system for which N = M and for which Eq. 2.23 holds is called a sym

metrical system.

Actual solvent-extraction equipment is generally most efficient at

A/* in the neighborhood of 1.0, but the efficiency does not fall off

sharply on either side of that value. In practice, the operating

limits on A/<fr are generally considered to be 0.1 < A/$ < 10, but some

consideration is now being given to flow sheets in which the limits

are 0.01 < A/* < 100.

Therefore although A/* = 1 is desirable both from the standpoint

of maximum equipment efficiency and minimum number of theoretical stages,

our equipment seldom operates at that ratio. Scheibel shows that the

additional stages necessary for unsymmetrical systems (compared with

symmetrical systems) is not very great even for large departures from

the symmetrical. Then too (and probably more important), the separating
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power of a compound contactor can be improved by having different chemi

cal conditions in the two sections. We choose the conditions in the

extraction section to give the largest value of D. possible without un

duly increasing D_, and we choose conditions in the scrubbing section

to yield the smallest value of Dg/ .\ without unduly diminishing

D./ , \• Hence we are not justified in applying Eq. 2.23 a*d we must

optimize A/* on the basis of other considerations (to be discussed later).

Suffice it here to say only that most radioactive separations are car

ried out within the approximate limits 0.1 < D. < 10 and D < 0.001 and

flow rates are adjusted to conform with the inequality 1.21.

2.4 The Fundamental Equations at Last. Consider a section con

taining N theoretical stages; the stages are numbered beginning at the

end from which the aqueous phase leaves (Fig. 2.k). The concentrations

Organic in

Aqueous in

Aqueous out ^ I ~ I *

_^. Organic out

Fig. 2.4 Diagram of a Simple Solvent-Extraction Contactor

are subscripted with the number of the stage that the stream is leav

ing. (The feed streams are considered to be leaving the fictitious

stages numbered 0 and N + 1). An over-all material balance leads to

G^N
xn+l ^B =i (2.24)
x1 -£o

D
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More useful equations can be obtained by writing a material balance

around a portion of the section, starting at the top or bottom stage and

working down (or up) stepwise, taking one more stage at each step. The

equations are reduced by substituting, after each step, from Eq. 2.1.

2
The procedure is detailed by Benedict and Pigford, so that we shall

give only one example and leave the reader to infer the others.

Consider a material balance around stage number 1:

yQ4> + XaA =A +y^ (2.25)

But from Eq. 2.1,

*1 = D1X1
Therefore

V +XaA =V +Wl (2.26)

xaA =xxA(l + \) - yQ*

x2 -x^l +0^ -yQ | (2.27)

A material balance around the first two stages gives

yQ « + x3A = ya* + x^A

=x1A +Dax2 *f

= x_A + XaAQ2 (2.28)

Substitute for x2 from Eq. 2.27 and solve for x3:

x3A =aCjA +x1AQ2(l +0^) -yQ«t»Q2 -y <D

=^A (1 +Q2 +QjQa) -yQ 4> (1 +Q2)
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x3 =xx (1 +Q2 +Q^) -yQ |(1 +Q2) (2.29)

A material balance around the first three stages gives

yQ* + X4A = y3* + ^A

= X-jA + D3x3 * j

= x±A +X3AQ3 (2.30)

Substitute for x3 from Eq. 2.29 amd solve for x4;

X4A =^A +AQ3 [_x(l +Q2 +Qa^) -yQ j(l +Q2)J -yQ*

x4 =3^(1 +Qs+ Q3Q2 +QsQsft^ -yQ| (l +Q3 +O3Q2) (2.31)

In general, for the n stage

Xn =V1 +Qn-1 +Qn-lQn-2 +-" +Vl "" V " yo f (l +Q^ +

VlQn-2+ •••• +%-l"" Q2) (2'52)

For an extraction section of N stages, the entering aqueous stream has

the composition x^. (see Fig. 2.4), and so

J_ i_ ^ / N-l i
x.
N+1 -h1 *£UH -mr+S7>-j (2-34)
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Equation 2.34 allows us to calculate, for any component, the con

centration of the exiting aqueous stream from the concentrations of the

entering streams if we know the flow-rate ratio and the extraction fac

tor in each stage.

Unfortunately, Eq. 2.34 does not lend itself to simplification, and

clearcut generalizations cannot be drawn from it as it stands. Now it

must be admitted that the distribution coefficient, and hence the extrac

tion factor, varies from stage to stage in most actual processes. However,

in order to be able to continue our discussions, we shall assume a con

stant D (in any one section) and show what influence is exerted by the

other variables. The equations that we shall use will not give us

quantitative results, because of our assumption of constant D, but they

will be entirely valid for the type of qualitative discussion we intend

to pursue. Later we shall return to the case of varying D (that is,

from stage to stage) and examine the magnitude of the corrections that

we could anticipate were we to abandon our simplifying assumption.

If we assume that the extraction factor is constant throughout a

section, Eq. 2.34 can be written as

xn+i =V1 +Q+q2 +'' *' +qW) - y0 |(i +o+o2 + •• +ow_1) (2.35)
y=xx( 1+Q+Q2 +.... +QN) -̂ (Q +Q2 +.... +QN) (2.36)

y0
add and substract —

y o y
x_ .=x1 (1 +Q+Q2 + .... +QN) -:r°-(l +Q+Q2 + .... +QH) +^"N+1 1 D D (2>57)
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Then

y~ y.

XN+1
2 „NNf= x]_ -^ (1+0 +0^+ .... +QW) (2.38)

But we have already shown that

Therefore

N+1
2 N o - 1l+Q+Q+....+Q= HQ_x =R*

yo

*N+1 ~D =R* (2.39)
x - yo

D

This equation is the same as Stevenson and Smith's Eq. 4.5 in Ref. 3<

An alternate derivation leads to

D " D

yo
Xl-D"

= R (2.40)

4
This equation is the same as Benedict and Pigford's Eq. 6.56.

Other derivations lead to

and

x -i
N+1 D = S* (2.41)

XN+1 D
yN

^+1 1 =S (2.42)
yN

^+1 " D
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These last four equations are more useful than Eq. 2.24, since each

one is written in terms of only three variables (Table 2.3). Additional

equations are presented in Appendix B.

Table 2.3 SUMMARY OF FUNDAMENTAL SOLVENT-
EXTRACTION EQUATIONS

(Assuming g = a constant)

Eq. No. Variables Used

2.39

!

X

N+1 Xl yo yN

X X X

2.40 X X X

2.41 X X X

2.42 X X X
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3.0 THE SIMPLE SOLVENT-EXTRACTION SECTION

Now that we have a set of equations to relate stream concentrations

and number of stages, assuming a constant extraction factor, we shall

demonstrate in this section how these equations apply to simple extrac

tion and stripping operations. By "simple" is meant that the extraction

or stripping of only one component is considered and that reflux is

explicitly excluded. Compound-column operation (the separation of two

components) and external and internal reflux will be treated in later

sections.

3.1 Simple Extraction. Consider Fig. 2.4 and apply Eq. 2.39:

x -Za
N+1 D =R* (2.39)
x- - yo

D

Vi-r-^-^r (3.1)

Vl =^1 "d2^* "x> <5-2>

and the ratio of the concentration in the entering aqueous stream to

that in the leaving aqueous stream is

XN+1 =R* -̂ S- (R* -1) (3.3)
xi Dxi

The ratio of concentration in the exiting organic stream to that

in the exiting aqueous stream is obtained from Eq. 2.40:

yN
D "

yo
D

xr-yo
D

R (2.40)
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T B - Rxi R D (3-M

^ =R^ -(R-l) ^°- (3-5)

^ =DR-(R-1)^ (3.6)
Xl n

and the ratio of concentration in the exiting organic stream to that

in the entering aqueous stream is found from Eq. 2.4l:

x. -i
-2ii—5L = s* (3.7)
x, -2h
TM. D

Vi-52-8"*-!-!11^ (5'8)

1^ *H "W8* "«*•£ ^.9)

,+1 V S*/ VA+l
(3-10)

3.2 What Is the Magnitude of 1q? Equations 3.3, 3.6, and 3.10

are greatly simplified if y = 0, and this assumption is commonly made

in studies that have been published. Let us examine the validity of

this assumption.
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If a substance for which Q < 1 is not appreciably extracted, then

its concentration in the organic stream will be quite low and, even if

poorly stripped, the amount returned to the extraction section will

indeed be negligible.

For an extractable substance (i.e, Q> 1.0) we can show that the

upper limit on y for an extraction section is Ibc.. Solve Eq. 2.39

for x :

- _i_ 1° R* ~1 /, ..v
xi " r* xn+i + d r* v.3-11;

For any Q and N, the value of x, is fixed by the concentrations in the

entering streams according to Eq. 3-H> The limiting lower value for

R* is 2.0 when Q>1.0. That is to say that R*> 2 and therefore

(R* - l)/R*>l/2. If we first assume that y >Dx_, the assumption also

holds that (y /d)>xl. But since the discussion is for a section in

which the solute is extracting, x^ 1 must be greater than jl.. But

Eq. 3•!! would then make x. equal to the sum of two terms, each of

which was more than half of a number that is itself larger than x..

Since the whole cannot be greater than the sum of its parts, the as

sumption that y > Dx is invalid.

If we assume that y = Dxl and substitute this value in Eq. 3.11

we obtain x.. . = x^; the contactor has performed no separation and we

are left with an intolerable absurdity. Therefore we conclude that y

must at least be less than Dx. .

We can state this condition as an equality by writing
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where 0 <€ < 1. Since x. for an extractable substance is intentionally

kept small, y must necessarily be quite small even if fe approaches unity.

The effect of having a large £, say greater than 0.5> is to increase the

amount of extractable substance lost in x, or, alternatively, to in

crease the number of stages needed to get a given x .

One may properly inquire as to the amount by which the separation

potential, R>, must be increased to make up for the solute introduced

into the extraction section in y • For this derivation only, let R*
o —

be the value of Rf; when y =0. Then from Eq. 2.39

R* -Vl
*1

and

R* xn+i '**!
xi-€*i

xN+1 =R*x1(l-^+€xi

**+1 =R*(l -£) +€
*1

Therefore

R* = R*(l -€) + 6

Since both R^; and RJJ; are much greater than 1.0 and since <g< 1.0,

then we can neglect 6 in comparison with the other two terms and write

R* = R*(l -4)

whence

R* -s*fe)
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This means that for any y > 0, R* is increased by the factor

— over what it would be if yQ were 0. To find the number of addi

tional stages required, one must solve Eq. 2.13 for N using the two

values of R*.

Example. Assume Q = 1.7, N = 7, and yQ = 0. By how much would N

be increased if yQ were 0.8 times the allowable concentration in the

raffinate?

€ = 0.8

For y =0:
o

r* - V^r= 98-2

If €= 0.8, then Rj^ would be

(i-^)x 98.2 -491

1.7N+1 -1=491 (1.7 -1)

N+1 = 11

N = 10

In this example, three more stages would be required than if y =
o

0.

For the systems that we deal with, one can frequently obtain more

efficient use of equipment by adding a stage to the stripping section

rather than to the extraction section (when necessitated by a large €).

Furthermore, the stripped solvent in a radiochemical processing plant
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is nearly always given a washing treatment before it is returned to the

process, thus washing out any solute not removed by stripping. Hence €

is nearly always much less than 1.0, and the assumption that y = 0 is

not jxist a dodge to simplify the equations but is actually realized in

practice.

In light of the preceding argument, we are justified in writing

Eqs. 2.39, 3•!?> and 3'10> for mos"fc systems as

*N+1 =R* (3-12)

and

*1

yN =DR^ (yQ = 0) (3-13)

respectively.

3.2 Simple Stripping. In a stripping section the entering aqueous

stream is ordinarily free of the solute being stripped, so that

XS(NS+1) -°-
We then write Eq. 2.4l:

or simply

(yo)„
(5.16)

(3-15)

"^Variables in the stripping section are subscripted by S; unsub-

scripted variables are reserved for the extraction section. Hence, when

the organic feed to a stripping section comes directly from the extraction
section, (yQ)s = yN.
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We can also relate the concentration of the aqueous stream leaving

the stripping section to that in the organic stream entering, by use of

Eq. 2.39:

to
'S = R* (3.17)

>W
(yo)s - R£ (yo>S "Vs^Vs ^.18)

(yo)s (RI "1) " DsR*s(xi>s (3.19)

S 1 / R* - 1 (3-20)
VS S \ R*g
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4.0 A SINGLE-SOLUTE CYCLE—SIMPLE

EXTRACTION PLUS SIMPLE STRIPPING

In order to make as much use as possible of our equations before

entering into the complexities introduced with mixtures of solutes, we

shall examine beiefly the characteristics of a system in which a simple

extraction section and a simple stripping section are combined (Fig. 4.1)

Feed

N+1

Product x,

/N x,
'SI

s(ifs+i)

*1
^

Extraction section
<- Stripping section

'N rS(Ng)

Fig. 4.1

We shall for the moment not make the assumption that y =0. Since the

system is tied together by means of the organic stream,

rS(0) yN

and

yS(Ng),: yo

From Eqs. 3-l6 and 4.1

ys<v" A
By combining Eqs. 4.2 and 4.3,

yo=
ŝ*

(*.l)

(*.2)

<m)

(4.4)

We can now relate y to either x_ or x^+1- First use Eq. 2.40:
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In. -5el
D S*D

1 S*D

= R (4.5)

Z« mSS BR

S

(*.6)

Next apply Eq. 2.4l:

whence

*N+1 ' S*D
b = S* (4.7)
yN

*N+1 " D

5t_ -D(s» -1? {kmB)
***•' (s*-|*)

If we assume that S* =co (equivalent to saying that y = 0), Eqs.
o O

4.6 and 4.8 become identical with Eqs. 3.13 and 3.14.

Now we shall inquire into the relationship between the feed and pro

duct concentrations, x„ , and (x n) for the common but special case when
N+1 si'

x and y are negligibly small in comparison with x^ . and (x ). A

material balance around the extraction section then gives

W = yN* ^9)
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or

x.

or

Therefore

M = * (4.io)
yN "A

Likewise, a material balance around "the stripping section gives

fx )A = v 4> (^.11)
US1; S yF

^L. =J- (4.12)
yN AS

(xsi} */A;
Vi "^ As^-♦zt-t: <*l-*o-0> (4'15)

The ratio of concentration is merely the ratio of aqueous flow rates.

Note that the value of the distribution coefficient has no effect. (We

have assumed a sufficient number of stages to give complete extraction

and complete stripping).

We can make some generalizations about the effect of the extraction

factors in the extraction and stripping sections, §, and Qg, on the pro

duct concentration. Applying Eq. 2.39 to the stripping section, we get

—5a— =R* (4.i4)
i - (x )Ds <XS1>
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which rearranges to give

Since Qg< 1.0,

si = —w y
l-QgN+1 -1+Qg

RS ' X r^oi
*

RS l-Q/*1
1-%

X-C1

(*.15)

(4.16)

(*.17)

N+1
But for practical purposes Qs is negligibly small, so that

*

RQ - 1
Ar— =Qq (^18)
R.
S

Then Eq. 4.15 becomes

(xq,) %

yN S

In addition, from Identity 5,

3* - 1 _ _R_
S* R*

1

Q (4.20)
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!££-§ (4.21)
yN D

When Eq. 4.19 is divided by Eq. 4.21 we get

S1 S (4.22)
XN+1 ^S

From Eq. 4.22 we shall make three observations. First, x must

always be less than x_ when D = D . This must be true because Q <

1 < g. Furthermore, if the system is symmetrical in the sense that

Qc = l/0, then

^ = q! (q- l/Q) (4.23)
XN+1 ^ S

Second, if we want the product to have the same concentration as

the feed, then the distribution coefficients in the two sections must

be different and, indeed, the coefficients are related by

For the case of the hypothetical symmetrical system,

D=Q2^ (Q =l/Qg) (4.25)

Third, if we are using the solvent-extraction system as a concen

trating device by means of which a dilute solute is concentrated by a
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factor F, then

D=F-|- Ds (4.26)

or, for a symmetrical system,

D =FQ^ (4.27)
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5.0 SEPARATION OF TWO SOLUTES

The real field of application for solvent extraction is in the

separation of mixtures, a subject upon which we now enter. The pre

ceding discussion is essentially introductory in character, and has

served the purpose of defining terms and providing some familiarity

with their use and significance. From now on the mathematics becomes

a little more messy but no more difficult.

In the course of this treatment we first examine the functions

and importance of a compound extraction contactor (i.e., one having

an extraction and a scrubbing section). We next discourse on the mathe

matical relations describing the performance of a compound contactor

in terms of the widely used concepts of decontamination factor, pro

duct recovery, and variously defined separation factors. We next treat

external reflux and internal reflux, and show how contactor performance

is affected by internal reflux that is either intentionally or unavoid

ably introduced. A subsequent document will consider the application

of these relationships to some topics of practical significance in

contactor design that are outside the scope of our analytical model,

including variable distribution coefficients, entrainment, extraction

kinetics, and differential extraction.

5.1 The Compound Contactor. The separation of two solutes

ordinarily implies three sections having a common organic flow (Fig. 5.1)

*1
*

*

Extraction

r^l Section, E. •^

'N

*B
x=0

Scrubbing

Section, B

Fig. 5=1

'M

s

x=0

Stripping

^ Section, S -1
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The organic flow rate is not subscripted because

*E =*B =*S =* (5-l)

Let there be N stages in the extraction section, M stages in the scrub

bing section, and NQ stages in the stripping section. In general, the

subscripts S and B will refer to the stripping and scrubbing (i. e.,

backwashing or back-extraction) sections, respectively. The subscript

E will be understood for the extraction section without being explicitly

written. Thus, the aqueous streams leaving Stage 1 of the extraction,

scrubbing, and stripping sections will be designated, respectively, as

V fBl' Snd fsT
The extraction and scrubbing sections together constitute our defi

nition of a compound contactor. The performances of the two sections are

related by the flow of the aqueous stream entering the scrubbing section

and by the necessity for a material balance around the feed point.

The functions of the two parts of a compound contactor are clari

fied by the concept of turn-around. This concept will now be explained

and then the equations pertinent to describing the performance of a com

pound contactor will be derived.

The Concept of "Turn-around." If we look at the n equilibrium

stage of an extraction contactor, we may inquire into the amount of

solute entering that stage in, say, the aqueous stream that turns

around and leaves by way of the organic stream (Fig. 5-2). The turn

around is merely that amount of solute that is transferred from one

phase to the other in a given stage. Its magnitude is rigorously

fixed by the equilibrium and material-balance relationships that prevail.
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Solute I

n+1

"Turn-around"

>y.

Fig. 5.2 The concept of "turn-around"

The amount of turn-around of a solute in a stage can conveniently

be expressed as a fraction of the amount of that solute entering the

stage, thus:

fractional turn-around = 1 - n (5-2)
x.
n+1

The fraction x /x , can be found by letting n and (n+l) be equal to
n n+1 "~ —

(N+1) in Eq. 2-39. (We assume that yQ = 0). Then

and so

X
n

xi

cf-i
0-1

1

Qn+1- 1
0.-1

Xn+1

*1

n

n+1

Qn-1

Qn+1-1

(5.3)

(5A)
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In the scrubbing section we can no longer let y = 0, but we

know that x , = 0 and so we use Eq. 2.4l as it applies to the scrub-
m+1

bing section

y Qm+1
N ^ -1 (5-5)
m _m

4 'V1'

and consider the turnaround from the organic phase

.m

yN %-l
ym-l - ^v1)
yN

ym C"-1
«B 'V1'

\ «B«S "«
'm-1 (c£~ -1)

At first blush we can assume that, for a substance with large Q,

Q » 1 and Eq. 5.4 reduces to

y^_i fnm+1

(5-6)

(5-7)

X Tn 1 /^m
(<r»D (5.8)

x , Q
n+1

In similar fashion Eq. 5«7 reduces to

ym % m

ym-l %
-7T-1 (Q»D (5-9)
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Equations 5.8 and 5.9 imply, for a substance that is preferentially ex-

Q-l
tracted into the organic phase, that the fractional turn-around is -£-

in each stage of the extraction section and that no turn-around occurs

in the scrubbing section.

In like manner we can assume, for a substance with small Q, that

Qn « 1 and Eqs. 5-4 and 5-7 reduce to

n (Qn«l) (5.10)
n+1

and

m

ym-l
% (5.H)

respectively. These equations imply, for a substance that is preferen

tially extracted into the aqueous phase, that no turn-around occurs in

the extraction section but that the fractional turnaround is (l -0^)

in each stage of the scrubbing section.

Equations 5.8 through 5.11 give us the simplified picture of a com

pound contactor (Fig. 5.3). The mixture of I and II in the feed is

All the I Feed (A+B)

Solute II Solute I

Fig. 5-3 Simplified picture of a compound contactor
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separated, with the II leaving in the organic stream and the I leaving

with the aqueous stream. An obvious flaw in this picture is that if

there were no turn-around of II in the extraction section, there could

be no II in the organic stream to turn around in the scrubbing section

and, indeed, there would be no need for the scrubbing section at all.

Nevertheless, the simplified picture of Fig. 5-3 is useful in emphasizing

that the function of the extraction section is the turn-around of the

extracting solute and the function of the scrubbing section is the turn

around of the non-extracting solute. Any (unavoidable) transfer of I

in the extraction section or of II in the scrubbing section is, in a

sense, incidental; that II which transfers into the aqueous phase in the

scrubbing section is transferred back into the organic phase when it

returns to the extraction section.

Examination of the rigorous equations (5.4 and 5.5) shows that for

the first few stages, at least, the simplifying assumptions that we have

been using are far from justified. In the extraction section the devi

ation is greatest for that stage farthest from the feed point. Thus,

for the non-extracting species, nearly all the undesired extraction takes

place in the last stage (Table 5.1). For the extracting species the

turn-around is greater in the last few stages but since the amount of

solute left in the aqueous stream is by this time quite small the en

hanced extraction is of little benefit.

In the scrubbing section, the stages nearest the feed point are

most affected by the departure from the simplifying assumption. The

enhanced scrubbing of the non-extracting species is not great enough to

ease the design problems, but the back-extraction of the extracting
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Table 5.1 TURN-AROUND IN STAGE n OF THE EXTRACTION SECTION

Fractional turn-•around

Stage
nor Q = 0.1 o = 0.5 Q = 1.05 Q = 1.10 Q = 1.20 Q = 1.60 Q = 2.0

1 0.191 0-333 0.51 0.52 0.54 0.62 O.67

2 0.009 0.143 0.35 0.37 0.40 0.50 0.57

3 0.0009 O.067 0.27 0.29 0.32 0.44 0.53

4 0.0001 O.0323 0.22 0.24 0.28 0.41 0.52

5 0.0159 0.19 0.21 0.25 0.40 0.51

6 0.0079 0.16 0.19 0.23 0.39 0.50

7 O.OO39 0.15 0.17 0.22 0.38 0.50

8 0.0020 0.13 0.16 0.21 0.38

9 0.0010 0.12 0.15 0.20

10 0.0005 0.11 0.14 0.19

«o 0.0 0.0 50.048 0.091 0.167 0.375 0.500

'Fraction of a given solute entering stage n that is extracted

in that stage.
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species is significant throughout the length of an ordinary scrubbing

section (five or six stages) unless its Q is quite large (Table 5-2).

The return of extracting soluteII to the extraction section

because of unavoidable turn-around of II in the scrubbing section

causes an increase in the concentration of II entering the extraction

section; that is, x- .. is larger than it would be if there were no turn

around of II in the scrubbing section. Therefore the value of R^ must

be greater for the extraction section of a compound contactor than it

is for a simple extraction contactor. We will be able to calculate the

amount of the increase in R^, and hence, in the number of stages required,

as soon as we develop the fundamental equations for a compound contactor.

Equations for a Compound Contactor. The equations that tie to

gether the feed, aqueous raffinate, and product streams are obtained by

first relating x and x^ to the concentration in the organic stream

that is common to them (vj and then substituting these values in the

material balance around the feed point.

We will need to know y„ as a function of y ; to get this we write
N 1°.

Eq. 2.4l for the stripping section:

y3(o) s* (5-12)
yS(Ns) S

But ys(o) =yM aM ys(Nq) =V therefore

y =tf (5-13)

ss
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Table 5-2 TURN-AROUND IN STAGE m OF THE SCRUBBING SECTION

Fractional turn-aroundr

Stage

no. Q = 0.1 0 = 0.5 Q = 1.05 0 = 1-10 Q = 1.20 Q = 1.60 Q = 2.0

1 0.91 O.67 0.49 0.48 0.46 0.38 0-33

2 0.90 0.57 O.32 O.30 0.28 0.19 o.i4

3 O.90 0.53 0.23 0.22 O.19 0.11 0.07

4 O.52 0.18 0.16 O.13 0.04 0.03

5 O.51 0.15 0.13 0.10 0.04 0.02

6 O.50 0.12 0.11 0.08 0.02 0.008

7 0.11 0.09 0.06 0.02 0.004

8 0.09 0.07 0.05 0.01

9 0.08 0.06 0.04 0.006

10 0.07 0.05 0.03 0.004

00 0.90 0.50 0.0 0.0 0.0 0.0 0.0

Fraction of given solute entering stage m that transfers to the

other phase in that stage.
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By writing Eq. 2.4l for the scrubbing section we get

M°l =s* (5.no
yB(M) B

But yB(M) = yM "* yB(o) = yN; therefore

yN=SByM (5.15)

Equations 5.13 and 5.15 combine to give

y = yN
o # *

SBSS
(5-16)

In order to relate x^ to y , we write Eq. 2.4l for the extraction

section.

^+1 ' y° -S* (5.17)
^+1 - y]

Dx,T., - 'N,XN+1 " -^ =S*DxN+]_ -S*yN (5.18)
SB SS

xN+1 D(S* -1) -yH (S* -̂ -) (5.19)

x =yN (s* 1~ N
N+1 r sbss

s* - 1 /

(5.20)

By remembering the definition of i^ and by applying Identity 1 we get

^•tfs-w ) (5-a)
s* - 1
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s*

Yxtf
SIS£ (5.22)

We can relate x to y by writing Eq. 2.39 for the scrubbing sec

tion:

'N

Vm" yN"^j:"**

rN = D x
B Bl

Applying Identity 4 and the definition of Q,

ft ^i^Bl "yN KAB> R*

A material balance around the feed point gives

AXN+rVP + Vbi

Substitutein Eq. 5-26 from Eqs. 5.22 and 5-25

ApXj, yN* s* - 8S SI

or from Eq. 5«15>
r

Vf =W s* - s* s*
B S

-3i

-h.

(5-23)

(5-24)

(5-25)

(5.26)

(5-27)

(5-28)
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Therefore

s* -

li
8K

(5.29)

If y =0, then we lose that term in Eq. 5«17, and Eq. 5.29 becomes

yM 1 /AF

" sslv*F
s|_Rb (5.30)

The decontamination factor, D. F., for solute I from solute II is

defined by

D.F.

Rearranging,

D.F. =

(*4

1M

V

*F,
II

(5.31)

(5.32)

By substituting Eq. 5.30 into Eq. 5.32 for components I and II we

get

S*.

D.F. =
BII

S*.
BI

S*
BII

S* S*
SII BII.

II

S*

1 SIlSBl/ ^1
Hi

h II

"bIIJ (5-33)
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3l
Lsii

h II

R*
BIU

(5.3M

Hi

N M NUnder the conditions that Q and QL. are much less than 1.0 and (^
Mand 0lTT are much greater than 1.0,

D. F. =

II

v Sn - l/L (^BII-J
i ~i

_Qi
il

<&«w J
JM

D.F. =~ ^iS[(1-V
(1 - QjJ

(5.35)

(5-36)

Product Loss. The product loss to the raffinate from the extrac

tion section is defined by Ax /(A-A^x^. In order to arrive at this

expression, we need to get xl. . and Xg in terms of x^ but in order to

do so we must first get yw in terms of x_. Hence we write Eq. 2.40 for

the extraction section, remembering that

_ 2L

'N

Dx -

'N

SISS
'N

S* S*
S DB

= R

(5.16)

(5-37)
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I R-l
yN IX + S* S*

r
RD

= RDx,

yN = Xl 1 +
R-l

SSSB

Now we write Eq. 2.42 for the extraction section:

XN-

— = s
XN+1 " Xl

- R -1

*N+1 " *1 1+^iL1 ^i

xK+1(s -1) - x^
r

1 +

R

R-l

s*s*
S B

f+1 ~ Xl
1 +

R-l
RS-l

R-l

S - 1

J

From Identity 10,

(RS - 1) = S*(R - 1)

Therefore

N+1 11 1 +

ssss

From Identity 8,

RJL1= N
S - 1 H

R - 1 1/ S* - S* S*
x„ , = x,| , R-l " b B

s - 1

(5-38)

(5-39)

(5.1»0)

(5^1)

(5.42)

(5.43)

(5M)

(5^5)
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*N+1 "*lf 1+̂
S B

R* -

N
.9,

SISI

Next write Eq. 2.39 for the scrubbing section:

-V:N

hhl " yN = RB

-yN= VbA - yft

^ " X) = Wbi

"EL ~ yN h - 1

R|D
B

^-m hJ(%\
Now we can apply Identity 4:

*"• =M*BJf^
Substitute for yN from Eq. 5.39> letting D4> = QA:

^ =MV(*B
r~

RQ

1 +
R-l

S* S*
S B

(5.^6)

(5^7)

(5-W)

(5^9)

(5-50)

(5.51)

(5.52)

(5.53)
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Now we can substitute in Eq. 5.26 from Eqs. 5-46 and 5-53-

R* -i-1
SSSI

**!
1 +

R-l Vii
RQ

R-l

S£sfj
1 +

(A-^Xj, (5.5*0

SISS

xf(a"V =*iA:—r=i
i +

SISI

r

R* - ^ ROs*s* -RW (5-55)

A little simplification is possible, based on the definitions of S

and S*:

XpfA-Ag) =x^ _£&.

1 +
R-l

S£SB"

S*

s*~ nH"*(*? (5.56)

SISI (5.57)

The use of Identity 4 brings Eq. 5.57 into the same form as Eq. 5-30.

Xj, A

1 +
R-l

S* S*
S B

RQ S* -
S* s* s* - 1
S B - DB

s ss

A still simpler form is obtained by using Identity 4

S
QR = R*

S*

(5.58)

(5.59)
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1 +
R-l

^(¥1) S*JR*.
B

li

The product loss is expressed by

r

Product Loss
R*

1 + R-l

SS*SS

^^5' us
s*

R*
B

When Sc = oo,

Product Loss =
R*

^58
(y0 - o)

L H
J

For an extracting substance, QV> 1.0 so that s/s* = 1.0 and

r
~ / 1Product Loss = |-=r^ (y0 - o)

Now R/R* is very closely approximated by l/Q, so that

Product Loss = (-*% (y0 - o)

(5.60)

(5.61)

(5-62)

(5-63)

(5.64)

Some Implications of Equation 5.64. The addition of a scrubbing

section to a simple solvent-extraction contactor causes an increase in

the concentration of the extracting solute at the feed point because of
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that back-extraction that takes place in the scrubbing section. The

separation potential of the extraction section, R^, must be increased

over what it is without scrubbing, in order to remove the additional

solute from the aqueous stream. The mathematical equivalent of the

no-scrub condition in Eq. 5-64 is obtained by letting Q = oo. The

product loss without scrubbing is seen to be equal to l/R*.

Conversely, in order to achieve a given product loss, the R* with

scrubbing must be greater than the R* without scrubbing by the factor

Product Loss to Spent Solvent. The fractional product loss in

the spent solvent is represented by ♦yq/u 'jAWS" We shall assume
o

that the stripping solution is free of the solute under consideration.

Then Eq. 3.4l for the stripping section is

'M

yS{Ns)
= S„ (5-65)

Dividing Eq. 5.3O by Eq. 5.65 gives

^V AF/ 1
** ♦ lss SI S* -

s! ss n -i

(5.66)

ss

Hence

r

Product loss to organic =
S£S*B

(5.67)

'S*
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If y to the cascade is zero, Eq. 5-30 reduces to

3s ?*Xp-^S.
B

and Eq. 5-67 becomes

Product loss to organic =

/S*
s* r3 - v

SI

stss

(y0 - o)

/_J

(5-68)

(y~ - °)

(5.69)

Internal Reflux. One other- question we might ask ourselves is:

What is the effect of the scrubbing section on the concentration of

the aqueous stream entering the extraction section, x^+1? That is,

how much internal reflux occurs between the scrubbing and extraction

sections? We shall obtain it from a relationship between x_ and

xn+i through i*
Write Eq. 2.4l for the extraction section:

DXN+1 " S* S*
D JD

DXN+1 " y]N
S*

DXN+1" s]fs* " S*DXN+1 " S%

xN+1D(S*-l)=yN^S*-^-)
S* - 1

yN " *TMT S*
s* s*DS B

(5-70)

(5.71)

(5-72)

(5-73)
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Substitute Eq. 5-73 into Eq. 5«50:

(5.74)

Now substitute Eq. 5-74 into the material balance (Eq. 5«26):

*Vx"<a-V*f +*b 2-/^1^-Y^r5
B S* ^r ^

(5-75)

Ax.
N+1

JL S* - 1 B

S* SI
= (A-A^Xj, (5.76)

&fSB

*N+1 '^T
'S* - 1

S* - 1

and when S* = oo.

*N+1 /A-AB,

S*

rJ

3*
B

„ S*
S*S* A B
SB "

S*-l

(5-77)

(yQ = 0) (5-78)

J

When there is no scrubbing section, A^

approaches oo, S* -1 becomes l/O,,, or 0.

0 and Qp = co . But as

Therefore, for no scrub-

H

bing section,

*H+1
= 1

= oo

(5-79)
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which is exactly what it should be. With scrubbing, the increase in

concentration entering the extraction section caused by back-extraction

in the scrubbing section can be found exactly from Eq. 5-77 or Eq. 5«78,

and if Q» 1.0 and Qg » 1.0, then

N+1
A-.,AB

*F 1-fe
(5.80)

XN+1 ~ /A_AB )/ V (5-81)

^
- 1QQB

The concentration Xy x^, and x^ will all be equal provided

that

A

<*F =W (5.82)

Conditions for a "No-mix" Contactor. Consider stage n of any

contactor (Fig. 5-4). The criterion for a "ho-mix" contactor is that

Fig. 5.4 A small portion of a solvent-extraction contactor.
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the ratios of the concentration of two solutes, I and II, be the same

in the two streams entering any (i. e., the nth) stage. In other words,

n+l) Tn-l)
a y, = \ '* (5.83)
*»+1JlI f-1^

Xn+l) _/"n+l I (5-84)
7n-l / (yn-l#II

/II

Algebraic rearrangement gives

x
Let us concern ourselves with the evaluation of the term/ n+1 \for

any component. We know that
yn-l

yn = Dxn (5.85)

We also know that, for y = 0,
o

When N = n,

When N = n-1,

whence

QN+1 -1
*N+1 " *1 0-1

xn+l =xl f^fe^ ^.86)

*n=M^y (5'87)

fn+1 /Qn+1-1
Xn " Qn- 1

(5.88)
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Now write a material balance around the nth stage:

A<Xn+l -Xn) =*(yn "yn-l>

Substituting for x ftom, Eq. 5.88 and for yn from Eq. 5.85,

a *n+1 - xn+1 £^1

Ax
'n+1

'- "^ " Vi'

^ £5 -y-
>nAQxn+1 J^l_

Qn+1 - 1

*4*i- +^
.on+1-1 Qn+1- 1

♦y
n-1

= <l>y
n-1

n+1 _ ♦

yn-l " QCQ+l) 0n-l _J
L 0°+1-l J

(5.89)

(5.90)

(5.91)

(5.92)

(5.93)

If we assume a symmetrical system such that Q. = -x— and substi

tute these values in Eq. 5.93, then we find that

n+1

^n-1 /I =1

n+1

^n-1
11

(QA "V (5.91*)
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and the criterion for a no-mix contactor has been satisfied. For any

other values of Q, the simplification does not occur and

If QjJ » 1and Q^ « 1, then

x ,
n+1

yn-l / _ Q.
II

x . \ 1
n+1

Vl #II Qi

(5-95)

=QjQjj (5-96)

When Q = —r~ , Eq. 5.96 reduces to the same result as Eq. 5.9^-
'I hi
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6.0 SUMMARY

Those equations of most significance are summarized here.

The four equations relating the concentrations of streams enter

ing and leaving a section are:

Dx ,. - y^
n+1 °- =r* (2.39)

D^-Je

7W "7° =R (2.40)
D:,Xl"yo

DXN+1 "yo =s*
^+1 - yN

(2.41)

Dx„ ., - Dx
—M 3L =s (2.42)
*** " y:N

The fractional turnaround of a component in stage n of an extrac

tion section is

,Q" fo"1) (fromEq. 5-3)
Qn+1 -1

The fractional turnaround of a component in stage m of a scrubbing

section is

1

(from Eq. 5.6)

V+1 -1
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When for any solute it is assumed that the solvent entering the

extraction section is free of that solute, then the following relation

ships hold:

^ =R* (3.3)'

-S = dr (3.6)

yN ^ R

*N+1
R*

(3-10)

5 -s* (5.1*0
yM B

^ -({)(?) (5.21)yN as

yM ~AV s

5* =UVh
yN V^B/R*

*B1 _/♦

yM "lA,
B

(5-24)

(2.42)

•\ Equations in which this assumption is not made are presented
in the text.
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XF <m s*
(5.29)

The decontamination factor for component I from component II is

D-.F. =

S*
BII

sSi

S*
II

II

s!

\ II

R*.
BIU

5e
Hi

The product loss to the aqueous raffinate is

A
xl

R*/l

H
s*

The product loss to the organic stream is

*y«s(ns)

Vf * /S* ^B
SS SB ~S * R*

(5-33)

(5.60)

(5-68)

The amount of internal reflux between the scrubbing section and

the extraction section (as a ratio of the feed) is:

**»+1

Vf
(5.72)

H
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7.0 NOMENCLATURE

A — Aqueous-phase flow rate

D — Distribution coefficient for an extracting species, defined by

Eq. 2.1

F — Factor by which feed is to be concentrated

M — Number of equilibrium stages in a scrubbing section

m — Ordinal number of an equilibrium stage in the scrubbing section

N — Number of equilibrium stages in an extraction section

n -- Ordinal number of an equilibrium stage in an extraction section

Q -- Extraction factor, defined by Eq. 2.2

R — Separation potential, defined by Eq. 2.3

R* — Separation potential, defined by Eq. 2.4

S — Separation potential, defined by Eq. 2.8

S* — Separation potential, defined by Eq. 2.9

x — Solute concentration in the aqueous phase

y — Solute concentration in the organic phase

£ -- Factor defined by Eq. 3-12

♦ — Organic-phase flow rate

Subscripts

B — Scrubbing section

S — Stripping section

0, 1, M, N, M+l, N+1, N , N+1 — Number of a stage that a stream is

considered leaving

I-, II — Components I and II
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S = Q(S* - 1)

1 S
S* - S =

W R*-l

S- 1

0

QH - 1
Q1*"1- 1

JL - oJL - R* - i
S* ~ ^Hr* R*

S*
= R*

R
S* - 1

S-1

S* - 1

_QH-0
oK-i

S* - 1
= R

S* - s

S - 1 =
R-l

N
0'

R S ^S^

S* =
RS - 1

R-l

N,
R - 1 = Q (S-1)

N,R* - 1 = Q (S-1)
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Appendix A

IDENTITIES

(Identity 1

(Identity 2

(identity 3

(Identity 4

(Identity 5

(Identity 6

(Identity 7

(Identity 8

(Identity 9)

(Identity 10)

(Identity 11)

(Identity 12)
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APPENDIX B

To complete our listing of fundamental equations, we cite the

additional equations that can be obtained by manipulation of Eqs. 1.39-

I.43. We have already encountered the over-all material balance:

yN
*N+1 " ^""5"
x -Q^o

= 1 (2.24)

We can also obtain

yN

Vl "D- -QN (B.l)
"Zo

Xl D

by dividing Eq. 2-39 by Eq. 2.41, and

*N+1 " Xl

yN yo
= Q (B.2)

D D

by substituting Eq. B.l into Eq. 2.40. This is a variation of the

material balance (Eq. 2.24).

Multiplying Eqs. 2.42 and B.l gives

*N+1 " Xl no (B-3)
yo

"i " d

- **

Dividing Eq. 2.42 by Eq. 2.41 gives

Vl " Xl s

ns+i" -jj-
" s*

(B.4)
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and by virtue of Identity 4 we can also say

*N+1 "Xl =OR =R-l
y R* ~ R

^+1 " F"

(B.5)

These equations have no utility to the present discussion but are

interesting because of the simple expressions that are obtained.
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