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LMFBR FUEL CYCLE STUDIES PROGRESS REPORT FOR DECEMBER 1969, NO, 10 

ABSTRACT 

This r e p o r t  continues a s e r i e s  ou t l in ing  progress i n  
the development of methods f o r  the reprocessing and f a b r i -  
ca t ion  of LMFBR fue l s .  Development work i s  repor ted  on 
problems of i r r a d i a t e d  f u e l  t ranspor t  t o  the processing 
f a c i l i t y ,  the d i s s o l u t i o n  of the f u e l  and the  chemical 
recovery of the Pu0,-UO, values, the containment of vola- 
t i l e  f i s s i o n  products, product pu r i f i ca t ion ,  preparat ion 
of f u e l  mater ia l  by t h e  sol-gel  process, conversion of 
f u e l  processing p l a n t  product n i t r a t e  so lu t ions  t o  s o l i d s  
su i t ab le  f o r  shipping and f o r  f u e l  fabr ica t ion ,  f u e l  
f a b r i c a t i o n  of so l -ge l  mater ia ls ,  and f u e l  evaluat ion 
s tudies ,  both i n - p i l e  and out-of-pi le .  Per t inent  experi-  
mental r e s u l t s  a re  presented f o r  the information of 
those immediately concerned with t h e  f i e l d ,  
deser ip t ion  of experimental work and data a r e  included i n  
top ica l  r e p o r t s  and i n  the  Chemical Technology Division 
and Metals and Ceramics D i n s i o n  Annual Reports. 

Detailed 

HIGHLIGHTS 

Division 1 

Preliminary heat  t r a n s f e r  ca lcu la t ions  i n d i c a t e  t h a t  c a n i s t e r s  
cantaining short-decay f u e l  subassemblies and housed in s ide  a shipping 
cask containing up t o  19 c a n i s t e r s  w i l l  not  reach temperatures s u f f i -  
c i e n t  t o  cause can i s t e r  f a i l u r e  provided t h a t  there  i s  subs t an t i a l  
axial heat  t r a n s p o r t  within the can i s t e r  and t h a t  the  can i s t e r  mate- 
r i a l  has subs t an t i a l  s t rength  a t  temperatures approaching 1 SOO”F, 
expansion and r e v i s i o n  of an e a r l i e r  evaluat ion o f  LMFBR f u e l  shipping 
has been s t a r t e d ,  (Sect,  1 . 1  ) 

An 

Curves a re  presented f o r  c a l c u l a t i n g  the  center  p in  cladding 
temperatures of i n t a c t  LMFBR a r r a y s  f o r  t he  case i n  which r a d i a n t  
hea t  t r a n s f e r  i s  cont ro l l ing ,  (Sect.  3 , l )  

Tentative solvent e x t r a c t i o n  flawsheets f o r  processing FTR f u e l  
have been out l ined  with the help of t h e  computer code SEPHIS. The 
expected d i s t r i b u t i o n s  of plutoniun and uranium between t h e  aqueous 
and organic phases i n  the  ex t rac t ion  and s t r ipp ing  systems a re  
specif ied.  (Sect ,  7 .1)  
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I n  prel iEinary labora tory  t e s t s ,  exposure of TBP solvent  t o  l i g h t  
i n  the  presence of uranium and n i t r i c  ac id  r e s u l t e d  i n  appreciable  
se t en t ion  o f  t he  uranium by the  solvent, i.n t he  s t r ipp ing  s tep .  
(Sect.  7 . 2 )  

Butyl iodide was trapped very e f f i c i e n t l y  from a i r  streams with 
iodized charcoal, s i l v e r  impregnated alumina, and s i l v e r  zeo l i t e ,  
with the last ,  being the  most e f fec t ive .  (Sect. 10.1)  

Calculat ions ind ica t e  t h a t  an  i n f i n i t e  planar  array of FFTF or  
1,WBIE elements, spaced on 1 - f t  centers ,  w i l l  be s u b c r i t i c a l  i f  the  
voids a r e  f i l l e d  wi th  e i t h e r  a i r ,  water, o r  sodium, (Sect,  1 2 , l )  

Material balance Elowsheets f o r  an ex i s t ing  reprocessing f a c i l i t y  
were prepared based upon discharge mater ia l  from f o u r  d i f f e r e n t  
reac tors .  (Sect. 13) 

Division I1 

Glass equipment designed t o  simulate the operation o f  engineering 
equipment has been used successful ly  repeatedly t o  prepare p lu tonia  
s o l s  ( t h e  APEX Process) su i t ab le  f o r  mixing w i t h  uran ia  sols made in 
a v a r i e t y  of ways, including t h e  CUSP Process. After mixing, t he  
sols are kept c h i l l e d  t o  prevent thickening, 
c h i l l e d  until .  formed i n t o  spheres, it behaves very s a t i s f a c t o r i l y  
through sphere forming. A l l  s o l  combinations s tudied i n  the present  
s e r i e s  may be formed i n t o  microspheres with high y i e l d s  (>SO%). 
wide range of forming condi t ions can be t o l e r a t e d  when the  s o l  system 
i s  optimized t o  ob ta in  the h ighes t  metal concenlrat ton and lowest 
n i t ra te - to-meta l  r a t i o  cons is ten t  with sol. s t a b i l i t y .  (Sect.  2 . 2 )  

If the mixed s o l  i s  kept 

A 

Division I11 

Ten ( P U ~ , ~ ~ ,  U,,s , )O,  f u e l  rods,  r’ive with p e l l e t s  and f i v e  by 
the  Sphere-Pac process, have been fabr ica ted  for t h e  ETR i r r a d i a t i o n  
capsules  43-1 20 and 43-1 2 1 .  Assembly of these  instrumented capsules  
i s  now in progress.  (Sect ,  1#’.2) 

SG-3, the  t h i r d  capsule i i i  a s e r i e s  of instrument,ed i r r a d i a t i o n  
experiments i n  the  OHR (Oak Ri3f.e I‘tr’search l?eactor) t o  determine the 
thermal performance of sol-gel-cer ived (TJ, PujO,, was i n s e r t e d  on 
December 7, 1969. To date ,  the  capsule has operated s a t i s f a c t o r i l y  
t o  a maximum c e n t r a l  temperature OF 11OO”C, (Sect.  2.2.3) 

The second of t he  two Ser ies  I TRFAT experiments was returned t o  
ORNL and postirradiation cxarniiiation of tht: two capsules i s  now i n  
progress ,  The capsules have been disassembled and detai l  examination 
of tile fue l  p ins  has begun, (Sect.  >,? L+) 
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I. AQUEOUS FUEL REPROCESSING 
(W. E. Unger, R. E. Blanco, Do J ,  Grouse, A. R. I rv ine ,  G .  D. Watson) 

1 .  SHIPPING (TASK 1 ) 
( A .  E. I rv ine ,  J. 1). Roll ins ,  R, S, Lowrie, R, L. Cox, J. Ti. Evans) 

The object ive of Task 1 i s  t o  assure  t h a t  an economic and safe  
method of shipment of LMFBR spent f u e l  w i l l  be ava i lab le  when needed 
f o r  t ranspor t  of f u e l  f r o m  the  demonstration and ear ly  commercial 
LMFBR's. The work involves a n a l y t i c a l  s tud ies  of the var ious f a c e t s  
of t he  problem; design, construct ion,  and t e s t  of components, and of 
assemblies; and preliminary design of prototype casks. 

The bulk of t he  e f f o r t  on t h i s  task  i s  d i rec ted  toward expanding 
the  s t o r e  of information on t h e  e f fec t iveness  of sodium as  a primary 
coolant and of cask design feattares which can assure containment of 
coolant (and f i s s i o n  products) within the cask f u e l  cav i ty ,  Other 
coolants  ( including gases, l i qu ids ,  and s o l i d s )  have been considered, 
but  they do not appear t o  be a s  a t t r a c t i v e  a s  l i q u i d  sodium. 

Work performed during t h i s  r e p o r t  period was pr imari ly  i n  the 
a reas  of Tasks 1 . 1  through 1.4, which dea l  with evaluat ion and t e s t  
of heat  d i s s i p a t i o n  methods and of cpsk i n t e g r i t y .  

Reportable accomplishments include the  following: 

1.1 Evaluation of Heat Dissipat ion Methods 
(Task 1 . 1 )  

A.  Preliminary heat  t r a n s f e r  c a l c u l a t i o n s  were made t o  determine the 
maximum f u e l  can i s t e r  temperature i n  7- and 19-element ( A I  Follow- 
on subassembly) casks under a loss-of-coolant  (secondary) condition. 
It was assumed t h a t  decay heat was d i s s i p a t e d  by r a d i a t i o n  only 
from the i n t a c t  sodium-fil led c a n i s t e r s  (containing one f u e l  sub- 
assembly each) t o  the w a l l  of t he  cask cavi ty ,  
configurat ions represent  the  s i t u a t i o n  wherein primary coolant 
(sodium) i s  contained within fue led  c a n i s t e r s  (of unspecified 
c losure)  under accident condi t ions and secondary coolant (e .  g, , 
sodium, lead a l loy ,  or organic l i q u i d )  outside t h e  c a n i s t e r s  i s  
l o s t .  Resul ts  of the c a l c u l a t i o n s  are  given i n  Table 1 . 1 ,  
These da ta  w i l l  be u s e f u l  i n  e s t a b l i s h i n g  the  minimum decay 
per iod required t o  prevent f u e l  p in  f a i l u r e  during shipment. 
course, other p e r t i n e n t  da ta  such as  t h e  temperature gradient  
across  the  sodium-fil led c a n i s t e r  and the  temperature a t  which 
highly i r r a d i a t e d  LMFBR f u e l  cladding w i l l  rupture  ( f a i l )  must 
be determined before prec ise  decay periods can be establ ished.  
Data of the  l a t t e r  type will be obtained under other  tasks  
(Tasks 1 . 2  and 1.9) of this program. 

The above 

O f  



n i  l ao le  1 - 1 .  Maximum Fuel Cani.st,er Temperatures i n  Casks 
Containing 7 and I? A I  Follow-On LMFBR Fuel 
Subassemblies Under Loss-of -Coolant 
Condition A s  a Function of Dec2y Time 

Decay 
T i m e  Maxi-mum Fuel Canister Temp , (1)  OF 

Davs 7-Element 19-Element 

30 

60 

90 

120 

150 

11430 

1265 

1165 

1100 

1035 

('I Based on uniform hea t  f lux  over the  full length 
(15 f t )  of t h e  fuel can i s t e r  ( i . e , ,  assumption 
of i d e a l  heat  t r anspor t  by sodr im)  e 

( 2 )  Values i n  parentheses are based on heat  flux over 
a 43-in. sec t ion  ( ac t ive  fuel. length)  of the fuel 
can i s t e r  (worst case)  

1 . 2  Heat Gissipat ion Tes ts  
(Task 1 . 2 )  

Work i s  s t i l l  being delayed whi le  replacements f o r  defec t ive  
hea te r s  m e  being manufactured. A t o t a l  of 91 replacement hea te r s  
have now been completed, 32 of which have been del ivered and 56 of 
which a re  now i n  t r a n s i t  t o  Oak Ridge. 
s t a r t u p  i s  approximately 200. 

The number required for 

1.3 and 1 .k Cask I n t e g r i t y  Studies  and Tes ts  
(Tasks 1.3 and 1 . b )  

Be Effor- ts  were i n i t i a t e d  t o  rework a seal t e s t  block (which, with 
corresponding plug, simulate s a sh.ippi-ng cask p o r t  opening and 
s e a l )  t o  allox4 He leak  de tec t ion  3.1; r a t e s  of 1 x lo-' cc/sec 
o r  l o w e r ,  The t e s t  b l o c k  had been previous1.y fabr ica ted ,  t e s t ed ,  
and i t s  leakage de tec ted  (by the  wat,er displacement method) by 
the  Gamah Corporat ion ( see ORNL--Y'M-2795). 



S 

C. 

Test equipment i s  being modified and corresponding t e s t s  a re  
being planned wherein a Baldwin p r e s s  w i l l  be u t i l i z e d  t o  
accurately measure t h e  r e t a i n i n g  force  required f o r  sea l ing  
when t h e  proposed breach-lock ellamp (1 -mil r e l a x a t i o n  of s ea l  
r i n g  a f t e r  locking) i s  used, 

Cask modeling t e s t s  were conducted with impact specimens of 
1 :9.34 scale .  However, graphical representa t ions  of force-time 
da ta  recorded with load ce l l -osc i l loscope  equipment during 
t e s t i n g  exhibi ted anomalous c h a r a c t e r i s t i c s  (dual  maxima). 
Subsequent i n v e s t i g a t i o n  revealed t h a t  the  problem was due t o  
k i n e t i c  energy d i s s i p a t i o n  v i a  b i - d i r e c t i o n a l  movement of the 
impact surface (armor p l a t e )  a t  the base of  t h e  drop tower. 
The necessary r e p a f r s  (welds) were made and t e s t i n g  w i l l  be 
resumed t h e  first week i n  JanuaTy, 1970. 

D. We were unable t o  obtain seal ing with a metal wee s e d  assembly. 
The un i t  was sent  t o  t h e  gasket manufacturer f o r  h i s  examination 
t o  determine the  cause of f a i l u r e ,  

1.9 Engineering Evaluation of LMFBR Fuel Shipment 
(Task 1.9) 

E. E f fo r t s  t o  r e v i s e  and expand O R ? J L - C F - ~ ~ - I  2 -24  (An Engineering 
Evaluation of LMFBR Fuel Shipment) were i n i t i a t e d ,  
were performed t o  determine approximate i n t e r n a l  temperatures 
i n  a given cask configurat ion under accident condi t ions (see 
paragraph ( A )  under Task 1 . 1 ) .  Resul t s  of these c a l c u l a t i o n s  
w i l l  be included i n  the Heat Transfer Section of t h e  modified 
ORNL repor t .  Other a c t i v i t i e s  included c a l c u l a t i o n s  of f u e l  
c l a d  f a i l u r e  temperature f o r  t y p i c a l  INFBR f u e l  p i n s  based on 
experimental s t ress - rupture  da ta  f o r  neutron f luences ( c l ad  
exposures) up t o  1 x 10'' n/cm" ( E  5. 0.1 MeV). 
these c a l c u l a t i o n s  w i l l  be reported l a t e r .  

Calculat ions 

D e t a i l s  of 

Work during t h e  following r e p o r t  period w i l l  continue along the 

Revision and expansion of ORNL-CF- 
same general  l i n e s .  
(l/O sca l e )  t e s t i n g  a r e  planned. 
68-12-24 (An Engineering Evaluation of LMFBR Fuel Shipment) w i l l  
continue. 

Additional cask model t e s t i n g  and i n  s i t u  s e a l  
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2 .  RECEIVING AND STORAGE (TASK 2 )  
( A .  R. Trvine and C ,  D. Watson) 

This task i s  concerned with the  means f o r  rapid,  e f f ec t ive  econon- 
i-cal, and safe  operat ion of receiving and s torage f a c i l i t i e s  f o r  LMFBR 
f u e l s ,  The character  of t h e  work t o  be performed wider t h i s  t a sk  x i 1 1  
be determined l a r g e l y  by the  outcome of i nves t iga t ions  performed fo r  
the  shipping and f o r  the head-end processing tasks .  Conversely, these  
other  two t a sks  w i l l  be requi red  t o  take i n t o  considerat ion the  e f f e c t  
of va r i ab le s  i n  t h e i r  area on the  t a sk  of receiving and storage.  This 
work w i l l  take cognizance of r e l a t e d  work on f u e l  handling and sodium 
removal t h a t  w i l l  be performed under Elements 3 and 5, respec t ive ly ,  
of the LMFRR program plan. 

No e f f o r t  was devoted to  t h i s  task  during i h e  r epor t  period. 
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3.  HMD-END P1,OCESSLNG OF LMFBR FUELS (TASK 3) 
(c. D. Watson) 

Tile ob jec t ive  of t h i s  t a s k  i s  t o  develop economic heac-end proc- 
ess ing  s t e p s ,  i n  prepara t ion  f o r  Purex recovery methods, f o r  long- 
and short-decayed fue l s .  

I n  general  a l l  experimental  work i s  being deferred pending com- 
p l e t i o n  of a Head-End Engineering Evaluation Study now befng made. 

Reportable accomplishments include:  

3.1. Decay Heat Diss ipa t ion  (Task 3.1) 
(R. L. Cox) 

The computer code HEX w a s  used t o  generate  the  d a t a  shown i n  
Fig. 3-1 which can be used t o  determine t h e  cen te r  p in  temperature as 
a func t ion  of emiss iv i ty ,  hea t  generat ion ra te ,  and shroud temperature 
f o r  t h e  LMFBR f u e l  a r rays  shown. The o rd ina te  i n  F i g .  3-1 i s  dimension- 
less so t h a t  any set  of cons is ten t  u n i t s  can be  employed. The def in i -  
t i o n s  o f  t he  var ious  q u a n t i t i e s  i n  terms o€ English u n i t s  are: 

= p i n  sur face  hea t  flux, BTU/(hr-ft* of p in)  QA 
-8 4 

0 = Stefan-Boltman constant ,  0.1712 x 10 BTU/ (hr-ft2-OR 1, 

= absolu te  temperature of cen te r  p in ,  O K ,  

= absolu te  temperature o f  shroud, O R ,  

C 
T 

Ts 

PDR = p i t c h  t o  diameter r a t i o ,  and 

= number o f  rods i n  a r ray .  'Rods 

The r e s u l t s  presented i n  Pig. 3-1 are based on t h e  assumption of hea t  
t r a n s f e r  by r ad ia t ion  only between rods i n  t h e  a r ray .  This should be 
a reasonable assumption f o r  f u e l  assemblies being handled i n  a gas 
atmosphere. A s  would be expected, Fig. 3-1 shows f o r  assemblies having 
the  same number o f  rods,  t h a t  t h e  temperature inereases  as the  p ins  are 
more closed spaced. The e f f e c t  of increas ing  the  s i z e  of t h e  a r r ay  can 
be seen by comparing t h e  A I  follow-on assembly wi th  t h e  GE follow-on 
assemblies. The two assemblies have p r a c t i c a l l y  the  same p i t c h  t o  
diameter r a t i o ,  bu t  the  GE assembly has  two more rows o r  rods.  

The p i n  su r face  hea t  f l u x  as a funct ion of  decay t i m e  i s  given i n  
Fig. 3-2 f o r  t h e  A I  re fe rence  oxide core ( s p e c i f i e  power = 148 Mwimetric 
ton,  burnup = 80,000 Mwd/metric ton,  FFTF core ( s p e c i f i c  power = 100 
Mw/metric ton,  burnup = 45,000 Mwd/metric t on ) ,  AI follow-on inner core  
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Fig. 3-1 Dimensionless Center P i n  Temperature for LMFBR Fuel 
Assemblies, 
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ORNL- DWG-70-10 
IO00  

A - AI FOLLBW-o)1 INNER CORE 
B - A I  REFERENCE OXiOE CORE t C -GE FOLLOW-ON INNER CORE 

IO 
IO 

I I I 1 1 1 1  
I00 

DECAY TIME, DAYS 

Fig. 3-2 Decay Heat Generation of IMFBR Fuel Pins, 
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( spec i f i c  power = 105 Mw/111etric ton,  bumup = 77,000 Mwd/metr ic  t on ) ,  
and GE follow-on inner  core  ( spec i f i c  power = 138 Mw/metric ton,  burnup = 
101,000 Hwd/metric ton) .  

3.2. Dismantling of Multitubul.ar Assemblies (Task 3 . 2 )  
(G.  A. West, R. S.  Lowrie) 

A l l  experimental  work f o r  dismantling 1,MFBR fuel. assemblies has 
been deferred pending t h e  completion of Head-End Engineering Evaluation 
Studies .  

3 .3 .  Shearing (Task 3 . 3 )  
( G .  A. West, R. S .  Lowrie) 

The experimental work f o r  .the inves t iga t ion  of t he  shear ing of 
LMFBR-type f u e l s  has a l s o  been deferred pending completion of t he  
Head-End Engineering Evaluation Studies .  

3 . 7 .  Al te rna t ive  Bead-End Process (Task 3.79 
( S .  D. Clinton, A. R. Ervine) 

Melt-decladding i s  being considered as a backup process f o r  the 
shear-leach head-end. 
completion of t h e  Head-End Engineering Evaluation Study. 
ac t iv i t i e s  w i l l  be  l imi t ed  t o  following t h e  experimental  work 
conducted by Argonne National Laboratory. 

A l l  experimental  work has been deferred pending 
Future 
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4, VOMTIU FISSION PRODUCT REMOVAL (TASK 4) 
(D. J. Grouse, C. D. Watson) 

The objec t ive  of Task 4 i s  t o  develop a head-end proczssing method 
f o r  removing iodine,  xenon, 1.ugrp9;onl and t r i t i u m  from t h e  f u e l  p r i o r  t o  
aqueous processing. Ear ly  removal of t hese  gases  from the f u e l  i n t o  a 
r e l a t i v e l y  small volume of gas  would g r e a t l y  f a c i l i t a t e  off-gas  treat- 
ment. This  i s  of p a r t i c u l a r  importance with respect  t o  iodine con t ro l  
because of t h e  very high p lan t  r e t e n t i o n  f a c t o r s  t h a t  w i l l  be required 
f o r  13x1 when t r e a t i n g  short-cooled f u e l s  e 

There w a s  no repor tab le  progress on t h i s  task t h i s  month. 

5. DISSOLVING (TA3K 5 )  
$De J. Crouse, C. D. Watson) 

The objec t ive  of Task 5 i s  t o  ensure t h a t  LP/1FB€? f u e l s  can be d i s -  
solved i n  n i t r i c  a c i d  with high metal recoveries ,  
c h a r a c t e r i s t i c s  of the f u e l s  can vary widely depending on the i r  plutonium. 
content,  method of preparation, and i r r a d i a t i o n  h i s t o r i e s ,  extensive 
leaching data 5re being obtained t o  def ine  the e f f e c t s  of t h e  many va r i -  
ables. A thorough understanding of iodine chemistry i n  t h e  d i s so lve r  
system i s  needed as a guide f o r  providing e f f e c t i v e  iod ine  cont ro l .  The 
d i s so lve r  equipment must be designed and operated wi th in  rather narrow 
l i m i t a t i o n s  imposed by c r i t i c a l i t y  control. and off-gas considerat ions.  
It appears t h a t  s a t i s f a c t o r y  so lu t ion  of these  problems can best. be 
accomplished using a continuous d i s so lve r  and t h i s  zlpproach i s  being 
emphasized, 
of  eguipmnt  fo r  dependably moving t h e  sheared s t a i n l e s s  steel  h u l l s  and 
o the r  s o l i d s  through t h e  system, and development of seals for i s o l a t i n g  
t h e  system t o  prevent excessive in-leakage of d i luen t  gases. 

Since t h e  d i s so lu t ion  

Evolution of a successfu l  d i s so lve r  w i l l  r equ i r e  development 

This month s o l u b i l i t i e s  of tin and t e l lu r ium i n  n i t r i c  ac id  were 
determined. 
of t h e  metal carbides  when contacted wi th  b o i l i n g  water for 3 h r .  

I n  a tes t ,  w i t h  i r r a d i a t e d  ( U p  h ) C ,  t h e r e  was no r eac t ion  

5.1 Dissolut ion Data (Task 5.1) 

S o l u b i l i t i e s  of F i s s ion  Products (W.  Davis, Jr,, A. H. Kibbey) 

As described previously,  we have prepared a n i t r i c  a c i d  so lu t ion  
containing near ly  a11 of the f i s s i o n  product elements (non-radioactive 
i so topes)  for use i n  solvent  ex t r ac t ion  s tud ie s .  
u se fu l  information i s  being obtained concerning t h e  s o l u b i l i t i e s  of the 
var ious f i s s i o n  product elements i n  t h e  solvent  ex t r ac t ion  feed so lu t ions ,  
The concentrat ion of each element is as described previousl$ but  assuming 

A t  t h e  same t i m e ,  
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a d i s so lve r  product so lu t ion  containing 500 g ( U  + Pu)/ l . i ter .  Of t h e  
metal  cons t i tuents ,  a c t i n i d e  elements were not included nor were t i n ,  
antimony, te l lur ium,  and niobium. The last four elements are being 
t e s t e d  f o r  s o l u b i l i t y  i n  n i t r i c  ac id  and i n  t he  composite so lu t ion .  

We have now observed tha t  some f iss ion prsducts  slowly p r e c i p i t a t e  
from t h e  s tock so lu t ion  described above, which i s  about 3 molar i n  
n i t r i c  ac id .  A major component of t h i s  p r e c i p i t a t x  i s  s i l v e r ,  which 
would be present  t o  t h e  extent  of about 0.37 g/kg (U + Pu) i n  tile A I  
re fe rence  oxide composite f u e l .  For comparison, an advanced BIR running 
at stea.dy state wi%hout plutoniwn recyc le  at a po-wer dens i ty  of 35 
Mw/metric t o n  (U + Pu), and a burnup of b0,OOO Mdlmetr ic  t o n  ( U  + Pu) 
i n  1143 days i s  calculated2 t o  contain only 0.7-4 Q .4g/kg ( U  I- Pu).  We 
have f u r t h e r  estima;f;ed t h a t  only 0.08 g Phg/kg (U $. Pu) will be produced 
during burnup of t h e  TVA Brown's Fer ry  r eac to r  f u e l  t o  27,500 Mwd/metric 
t o n  ( U  + Pu). Thus, t h e  quan t i ty  of s i l v e r  formed i n  t h e  INFBR w i l l  be 
considerably g r e a t e r  than  i n  l igh t -water  r eac to r s .  
i ng  p lan t  of 5 tan/day capac i ty  would process near ly  2 kg of s i l v e r  per  
day, as we l l  as s ign i f i can t  amounts of palladium, and recovery of these  
elements conceivably could be economically f e a s i b l e .  

An LMFBR f u e l  process- 

The chemical form of t h e  s i l v e r  p r e c i p i t a t e  i s  not ye t  known. It 
does contain zirconium, ruthenium, and palladium, bu t  these do not; appear 
t o  be p a r t  of t h e  major an ian ic  species .  The mss of t h e  p r e c i p i t a t e  i s  
equivalent  t o  1.3% of t h e  total contained f i s s i o n  product mass. 

The s o l i d  a c l d i c  oxides af %in,  te l lur ium, and antimony were prepssed 
by d isso lv ing  t h e  pure metals i n  reageni; n i t r i c  ac id  so lu t ions .  Each of 
t h e  p rec ip i t a t ed  metal oxides was recovered by f i l t r a t i o n ,  water washed, 
a i r - d r i e d  a t  room temperature, and t h e  oxides of t i n  and t e l lu r ium sub- 
sequently were used t o  determine s o l u b i l i t i e s  i n  1, 3, and 5 M HMO . 
A t  a l l  t h r e e  ac id  concentrat ions,  t h e  s o l u b i l i t y  of t i n  was less t 2 an 
1 mg/ml ,  but  t e l lu r ium s o l u b i l i t i e s  showed an unexplained anomally: 
0,13, 0.59, and 0.037 m g / m l  i n  1, 3, and 5 
are now rechecking t h e s e  measurements, 

RNO3, respec t ive ly .  We 

Hydrolysis of I r r a d i a t e d  20$ PuC--80$ UC (J. II. Goode, V. C .  A. Vaugkien) 

We previously described3 an  experiment in which we contacted unclad 
fragmented p ieces  of 20% PuC--80$ UC, t h a t  had been i r r a d i a t e d  t o  about 
26,000 Mwd/ton 
and 4 h r  a t  85 C .  
t h e r e  w a s  no r eac t ion  o f  t h e  metal carbides  w i t h  %he water.  We s ince  
have obtained analyses  of t h e  leach water and found t h a t  it contsined 
no heavy metals bu t  about 1% of t h e  gross g a m  emi t t e r s  ( e s s e n t i a l l y  
a l l  1 3 7 ~ s ) .  

with demineralized water f o r  20 hr at room temperature b No evolut ion of gas  w a s  detected,  i nd ica t ing  that 

I n  a cont inuat ion of t h i s  t e s t ,  t h e  (U, rU)C pieces  were bo i l ed  i n  
f r e s h  water far 3 hr. Again, t h e s e  was no gas evolut ion 1101" s so lu t ion  

leached a 

of uranium o r  plutonium; however, an a d d i t i o n a l  2.$$ of the 1% C s  w a s  
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6 .  FEEXI PREPARATION (TASK 6 )  
(D. J. Crouse) 

The aqueous feed discharged from t h e  d i s so lve r  will contain so l ids  
(undissolved f i s s i o n  products, corrosian products, e t c .  ) and w i l l  
probably require c l a r i f i c a t i o n  prior to solvent  ex t rac t ion .  
of t h e  feed f o r  solvent ex t r ac t ion  also w i l l  include adjustment of t h e  
plutonium valence and the n i t r i c  a c i d  concentration, and a treatment t o  
remove iodine.  
process  cyc les ,  

Preparat ion 

This  t a s k  a l s o  covers feed preparat ion fo r  subsequent 

Th i s  month s tud ie s  of iodine removal from n i t r i c  ac id  so lu t ions  by 
gas sparging continued t o  show a decrease i n  t h e  iodine v o l a t i l i z a t i o n  
rate at low iodine concentrat ions.  A r e l a t i v e l y  l a rge  amount of black 
s o l i d s  (pr imari ly  s t a i n l e s s  steel components, s i l i c a ,  and noble metal 
f i s s i o n  products) p rec ip i t a t ed  from a solvent  ex t r ac t ion  feed so lu t ion  
t h a t  had been prepared from i r r a d i a t e d  LME'BR f u e l  specimens and had 
stood for 2 months. 

6.2 Iodine Control (Task 6.2) 
(G. I. Cathers, C .  J. Shipman) 

S tudies  were continued of variables a f f e c t i n g  t h e  release of iodine 
from n i t r i c  a c i d  so lu t ions  by sparging. E f f i c i e n t  removal of iod ine  
from t h e  d i s so lve r  so lu t ion  p r i o r  t o  solvent  ex t r ac t ion  should lead t o  
less iodine cont;amination of t h e  organic ex t r ac t ion  system and allow 
more e f f i c i e n t  r e t en t ion  af iodine i n  t h e  processing p l an t .  

The standard t r a n s p i r a t i o n  technique now being empl ed cons i s t s  
of sparging 250 ml of n i t r i c  a c i d  solution, containing 13% I t racer  and 
c a r r i e r  iodine,  w i t h  a mixture of 22 ml/min N2O3 and 45 mL/min N2.  The 
decrease of iod ine  concentrat ion i n  t h e  so lu t ion  with time i s  foLlowed 
by determining t h e  a c t i v i t y  of t h e  sparged so lu t ion .  It was found t h a t  
imgur i t i e s  i n  t h e  n i t r i c  a c i d  a f fec t  the  r e su l t s , '  and, therefore ,  only 



d i s t i l l e d  n i t r i c  ac id  h a s  been used r ecen t ly  i n  preparing t h e  n i t r i c  
a c i d  so lu t ions  fo r  t e s t .  This  has  seemed t o  improve t h e  q u a l i t y  and 
r ep roduc ib i l i t y  of t h e  data ,  bu t  we have not yet  i d e n t i f i e d  t h e  offend- 
ing  impurity t h a t  i s  removed by t h e  d i s t i l l a t i o n  s tep .  Tne p o s s i b i l i t y  
t h a t  sorp t ion  of molecular 12 on hydrated s i l i c a  could lead  t o  anomalous 
r e s u l t s  was considered but  r e j ec t ed  a f t e r  one t e s t  i n  which 0.05 M 
Na2SiO was added t o  t h e  so lu t ion .  

vo la t i l i za , t i on  rate w a s  discerned. 

Despite t h e  formation of a copious 
quant i  2 y of s i l i c a  g e l  i n  t h e  4 M HN03 solut ion,  no e f f e c t  on t h e  12 

We have r ecen t ly  considered t h e  hydro lys is  r eac t ion  

I2 f H20 xd H O I  + I€+ + I- 

t h a t  could inva l ida t e  Henry's Law (p  - C >  a t  low iodine concentrat ions 
and thus  lead  t o  a non-linear logari thmic r e l a t i o n s h i p  between iodine 
concentrat ion and sparging time. An analogous case has been observed 
i.n t h e  behavior of C1 
and organic solutions?2 If t h i s  i s  subs tan t ia ted ,  then t h e  i n t e r m i t t e n t  
add i t ion  of iod ine  might be a necessary r e q u i s i t e  t o  obtaining a l o w  
l e v e l  of '3'1 a c t i v i t y  i n  process  f u e l  so lu t ions .  
be  u t i l i z i n g  t h e  p r i n c i p l e  of i so top ic  d i l u t i o n  as we l l  as keeping t h e  
I2 concentrat ion i n  a range where t h e  v o l a t i l i t y  would be f i r s t - o r d e r ,  
r a t h e r  than a lower order, with respec t  t o  t h e  12 concentration. 

as evidenced by i t s  d i s t r i b u t i o n  between aqueous 

Such add i t ions  would 

6.3 Feed C l a r i f i c a t i o n  (Task 6.3) 
(J. H. Goode, V. C .  A. Vaughen) 

When a d d i t i o n a l  plutonium analyses  were requested on a sample of 
t he  solvent ex t r ac t ion  feed so lu t ion  ha t  had stood about 2 months after 
use i n  cyc l i c  solvent damage s tudies ,3  w e  found tha t  a r e l a t i v e l y  l a rge  
amount of b lack  s o l i d s  had p rec ip i t a t ed .  A f t e r  cen t r i fuging  the so lu t ion  
and washing t h e  so l ids ,  both t h e  supernatant so lu t ion  and s o l i d s  were 
analyzed by emission spectroscopy, A q u a l i t a t i v e  a n a l y s i s  a f  t h e  s o l i d s  
and a rough est imate  of t h e  concentrat ions of t h e  var ious cons t i t uen t s  
i n  t h e  supernatant so lu t ion  a r e  shown i n  Table 6-1. 
material appears t o  be a mixture of s t a i n l e s s  stecl components, s i l i c a ,  
and noble metal  f i s s i o n  products.  
95 g U/li ter--20 g P u / l i t e r  feed so lu t ion  had been indicated-ea 
dur in  radiochemical ana lys i s  by t h e  gradual  disappearance of 

s t a i n l e s s  steel  components and f i s s i o n  products i n  t h e  supernatant 
so lu t ion  were l a rge  enough t o  i n t e r f e r e  w i t h  t h e  ana lys i s  of plutoniwn 
by t h e  usual  coulometric t i t r a t i o n  procedure i n  a s u l f u r i c  acid medium. 

The p rec ip i t a t ed  

The i n s t a b i l i t y  of the 3 f.4 HB03-- 

i-@"f66,,, 
and 99 Zr-Nb from so lu t ion  upon s tanding.  The concentrat ions of the  



Table 6-1. Analysis of P r e c i p i t a t e  from 
Solvent Extract ion Feed Solut ion 

-~ 

Supernatant 
Prec ip i ta ted  Solut ion 

Element Sol ids  ( g l l i t e r )  

Al 
C a  
Ce 
co 
Cr 
cu 
Fe 
La 
Mn 
Mo 
N a  
N i  
Pb 
Pd 
R h  
Ru 
S i  
Sn 
Zr 

w 
W 
W 
vw 
T 
T 

s -vs 
VFT 
WJ 
W 
T 
M 
IJ 

M-S 
W-M 

Present  
s -vs 
w 
vw 

0.05 
0.1 - 0.5 

0.2 
Present 

0.02 
0.05 
0.5 
0.05 

0.05 

- 
0.5 - 2.0 

0.2 
0.04 
0.1 

c - 
0.2 
0.02 

VS = very strong, S = strong, M = moderate, W = 
weak, W = very weak, T = t r ace ,  WT = very f a i n t  
t r ace ,  - = sought, not found, 
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7. SOLVENT EXTRACTIIOX (TASK 7)  
(D. J. Crouse, C .  D. Watson) 

The os j ec t ive  of T s s k  7 i s  t o  e s t a b l i s h  thaf ;  I;MF"BR f u e l s  can be 
processed successfu l ly  by solvent  ex t r ac t ion  methods. I n i t i a l  emphasis 
i s  on development of solvent  e x t r a c t  ion flowsheet s s u i t a b l e  f o r  i n t e r im  
processing of LMFBR f u e l s  i n  e x i s t i n g  p l an t s .  Present f i r e x  flowsheets 
are being modified where necessary t o  provide f o r  t h e  high plutonium 
content of t h e s e  f u e l s .  The wide solvent  extraction experience accu- 
mulated at production s i t e s  i s  being assessed and fac tored  i n t o  t h e s e  
s tud ies .  P a r t i c u l a r  emphasis i s  being given t o  experimental  evaluat ion 
of iodine behavior i n  solvent  ex t r ac t ion  and t o  t h e  effect  of solvent 
damage on process performance, especi:zlly when processing short-cooled 
fue l s .  Di f fe ren t  solvent  ex t r ac t ion  contac tom a r e  being evaluated 
wi th  respect  t o  t h e i r  r e l a t i v e  mer i t s  f o r  processing W B R  f u e l s .  

This month t h e  SEPHIS computer code f o r  pred ic t ing  the d i s t r i b u t i o n  
of  plutonium and uranium i n  t h e  Purex system m.s re f ined  and t h e  code 
was used t o  he lp  formu1a.t.e solvent  ex t r ac t ion  flowsheets f o r  PTR f u e l s  
Solvent degradation s tud ie s  showed t h a t  exposure of t h e  solvent  t o  l i g h t  
i n  t h e  presence of uranium and n i t r i c  ac id  leads t o  considerable r e -  
t e n t i o n  of uranium by t h e  solvent .  A l i t e r a t u r e  survey w a s  made t o  
accumulate all use fu l  da t a  r e l a t i n g  t o  t h e  v a r i a t i o n  of t h e  TBP vapor 
pressure  wi th  temperature.  

7.1 Flowsheet Development (Task 7. I..) 

Computer Simulation of t he  TBP Ext rac t ion  System (14. S. Groenier) 

The computer code (SEPKIS) was wl-itten t o  p red ic t  plutonium and 
uranium d i s t r i b u t i o n s  i n  t h e  Puref system. 
of t h e  code w a s  given previously.  
f o r  solvent ex t r ac t ion  ana lys i s ,  t h i s  code d i f f e r s  i n  t h e  mnner  i n  
which d i s t r i b u t i o n  c o e f f i c i e n t s  (equi l ibr ium r a t i o  of s a l u t e  i n  organic 
phase t o  so lu t e  i n  aqueous phase) are chosen. 
p a r t i c u l a r  solvent  ex t r ac t ion  cantac tor  under study, and f o r  each time 
element of t h e  t r a n s i e n t  (approach t o  s teady-s ta te  operat ion) ,  d i s t r i b u -  
t i o n  coeff: 'cients are ca lcu la ted  from a c o r r e l a t i o n  t h a t  r e l a t e s  t o  t h e  
t o t a l  ion ic  s t r eng th  of t h e  system. This  c o r r e l a t i o n  has  been reported 
and discussed Ln detail . .  

A preliminary desc r ip t ion  
Compared t o  o the r  e x i s t i n g  methods 

For each stage of t h e  

2 

Brief ly ,  t h e  c o r r e l a t i o n  f o r  any one so lu t e  may be represented by 
t h e  following equations: 

where Dn i s  the d i s t r i b u t i o n  c o e f f i c i e n t  f o r  so lu t e  n, t h e  K val.ues are 
pseudo-equilibrium consixnts  f o r  t h e  "1'BP complex f u r ~ w t i o n  r eac t ions  
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( include im'oedded. a c t i v i t y  coe f f i c i en t s )  and t h e  x values a r e  aqueous 
phase compositions of each ionic  species .  Then each 

2 
K = f  ( s + b z  + c z * + d z )  3 , 

where z i s  t h e  t o t a l  i on ic  s t r eag th  of the system and 8, b, c ,  and d 
are empir ical  coe f f i c i en t s .  These coe f f i c i en t s  have been evaluated 
using 3he recent  pYutonium(IV) ex t rac t ion  da%a reported by J. G. 
Moore. 

The SEPHLS code w a s  recent ly  revised t o  embody severa l  new 
innovations and a t o t a l l y  new set of empir ical  coe f f i c i en t s .  Most 
changes s ince t h e  time of the previous repork on t7his  subject are con- 
cerned with obtaining t h e  des i red  fsm of pr in ted  computer output,. 
important change has  been t o  include t h e  possibility of cor rec t ing  
predicted d i s t r i b u t i o n  coe f f i c i en t s  t~ provide f o r  a change i n  %em- 
pera ture  from t h e  temperatwe t h a t  appl ied t o  t h e  empirical  coe f f i c i en t s .  
The new coe f f i c i en t  values were required bemuse  of e r r o r s  i n  the old 
set and because all. experimental data frm Reference 3 were not u t i l i z e d  
previously.  

One 

The revised computer code has been used to pred ic t  the  s teady-s ta te  
concentration p r o f i l e s  f o r  t h e  processing conditions used i n  two recent  
batch countercurrent tests,  Agreements between predicted and experf-  
mental aata were s a t i s f a c t o r y  fo r  t h e  f i r s t - c y c l e  co-extract ion of 
uranium and plutonium (Table 7-11 and f o r  plutonium ex t r ac t ion  I n  the  
second cycle (Table 7-22), although t h e  agreement. was not qu i t e  ~s good 
i n  t h e  d i l u t e  region 8s it was f a n  %he data reported previously.  

The revised code has also been used as an a i d  i n  formulating 
flowsheets f o r  processing FTR fuel. (Pigs, 7-1, 7-2, and 7-3) and for 
predic t ing  t h e  s teady-s ta te  concentration prs f rkes  i n  each. s tage ,  
predicted p r o f i l e s  for  co-extrae%ion of uranium and plutonium i n  t he  
first cycle and f o r  ex t r ac t ion  of plutoniwm in t h e  second and t h i r d  
cyc les  a r e  presented i n  Tables 7-3, 7-4? and 7-5. The p r o f i l e s  fo r  
s t r ipp ing  uranium i n  t he  first cycle arzd plutonium i n  t h e  t h i r d  cycle  
are shown i n  Tables 7-6 and 7-7. 

The 

I n  s t r ipp ing  plutonium i n  the t h i r d  cycle (Table 7-'7)j  t h e  aqueous 
phase plutonium concentration exceeds 40 g / l iLer  i n  some s tages .  
condi t ion favors  t h e  f o m t i o n  sf plutonium polymer a t  low aqueous 
a c i d i t i e s  (< 0.2 M ilNQ3) e 

0.3 - M ac d f o r  s t r ipp ing  rather than 0.15 
s tudies . t  Confirmation i s  needed thsut; a t h i r d  phase w i l l  not form at 
t h e  concentrated end of the plutonium sitsipping flowsheet. 
f o r m t i o n  i s  avoided i n  t h e  second and third plu%onim ext rac t ion  cycles  
(Tables 7-4 and 7-5) by operaking at 40%. 

This 

For "tis reason w e  are specifying t h e  use of 
a c i d  t h a t  w a s  used i n  earlier 

Third phase 

These flowsheel condi t ions represent  only our l a k e s t  predicted 
values  using the computer, and are no% Fully verified by experimental 
data. Calculated lo s ses  are probably low as no r e t en t ion  of" so lu te  
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Table 7-1. Comparison of Experimental and Predicted Data f o r  First-Cycle Go-Extraction 
of Uranium and Plutonium 

Aqueous Feed: 
Organic : 
Scrub Solution: 2 M HN03 
Relative Volumes, F&d/Organic/Scrub: 1.0/1.8/0.3 

3.2 M HNO , 67.7 g of U and 4-43 g of Pu(1V) per l i t e r  
15.3% TBPZ-84. $$ 2-dodecane 

Organic Phase Aqueous Phase 

(g / l i t  e r ) (g / I i te r )  
A B A B A B 

U Pu yy3 M u Pu 
(gl l i ter  ) (a l l i ter)  

Stage A 13 A B A B 

Scrub -3 
-2 
-1 

Feed 

ExtractZion -1 
-2 
-3 
-4 
-5 
-6 
-7 
-8 

~ 

38.8 37.6 2.53 2.45 
42.1 41 .1  2.91 3.31 
43.6 42.3 3.05 3.96 

0.21 0.12 
0.21 0.10 
0.24 0.09 

18.5 21.0 4.1 5.2 
23.0 28.3 5.8 9.1 
18.5 30.6 4.2 11.1 

2.07 1.86 
2-10 1.82 
2.90 1.96 

43.7 
13 -9 
1.28 
0.07 

<o. 02 
<o .02 
<O .G2 
<O .G2 

42.7 3.21 
17-6 2.65 
1.83 0 ~ 5 0  
0,090 0.074 
0.004 0.009 
<0.001 0.002 
<0.001 <0.001 
<0.001 0.004 

4.3r 
5.16 
1.36 
0.161. 
0.017 
0.002 
a. 001 
a & 001 

0-26 0.12 
0.29 0.28 
0.34 0.41 
0.34 0.44 
0.34 0.44 

0.34 0.44 
0 ~ 3 5  0.44 

0.30 o,40 

67.7 4.43 

18.2 24.4 3.75 ‘7.17 
2.72 2.53 0.91 1.88 

<o.oi <o.ooi 0-003 0.003 

0.11 0.125 0.092 0.223 
<0.01 0.006 0.015 0.024 

co.01 <O.OOL 0.001 <0.001 
<0.01 <O*OOl 0.001 <0.001 
<0.01 <0.001 0.010 <0.001 

3.23 

3-00 3.13 
2890 3.33 
3.10 3.36 
3.20 3.36 
3.10 3.36 
3.07 3.34 
3.01 3.31 
2.64 2.75 

A = Experimental value 
I3 = Predicted value 



Table '7-2. Camparison of Experimental and Predicted Data for 
Second-Cycle Extraction of Plutonium 

Aqueous Feed: 4.1 ,M EN0 
Organic : 15.0$ TBP--85.8$ 2-dodecane 
Scri;b Solution: 2 KNO3 
Relative Volumes, Feed/Organic/Scrub: l.G/0.9/0.11 

19.2 g of Pu(IV) per liter 

Organic Phase Aqueous Phase 
Pu 111~0~ PU HN03 

( g / 1 it e r ) (n) (g/lit e r ) (M) 

Stage A B A B A B A B 

Scmh -3 20.7 21.3 0.2h 0.20 14.1 12.9 2.2 2.0 
-2 20.9 22.9 0.24 0.21 13.9 12.7 2.5 2.2 
-1 19.9 22.9 0.22 0.23 11.4 10.1 2.s 2.6 

Iu 
N 

Feed - - 19.2 4.1 

Extraction -I 22.e 22.6 0.35 0.2s 6.60 6.34 3.9 4.0 
-2 7.2 7.82 0.33 0.39 1.52 1.26 3.9 4.1 
-3 1.8 1-55 0.34 0.45 0 307 0.204 4.C 4.1 
-4 0.351 0.252 0.36 0.46 0 .080 4.0 4.1 
-5 0.075 0.039 0.36 0.46 0.034 0.005 4.0 4.1 

0.032 

-6 0.015 G .006 0.38 0.46 0.044 <o .001 4.0 4.1 
-7 0.005 a. 001 0.37 0.45 0.029 <o. 001 3.9 3.7 

A = Experimental value 
B = Predicted value 



Table 7-3. Predicted Data for Firs t -Cycle  FFTF Co-Extraction 
of Uranium and Plutoniuma 

Aqueous Feed: 

Organic: 154 TBP--@$ n-dodecane 
Scrub Solution: 2 

55.3 Q of U and 14,7 g 

Rela t ive  Volumes, 1.0/1.8/0.3 

Aqueous Phase - Organic Phase 

U PU HN03 
mo3 ( g / l i t e r )  (g/ l i t e r )  (M) Stage (g/li.ter) (g /  liter) (M) 

U Pu 

Scrub -3 30.7 8.09 0.11 15.3 16.2 1.83 
-2 33.3 10.8 0.08 19.1 27.4 1.79 
-1 33.9 12.7 0.07 20.2 33.1 1.90 

Extraction -1 
-2 
-3 
-4 
-5 
-6 
-7 
-8 

34.1 
13.8 
2.36 
0,168 
0,009 

<o. 001 
a. 001 
<o ,001 

13.6 0.09 
18.0 0.19 
8.08 0.34 
1-435 0.41 
0.168 0.42 
0.020 0.42 
0.002 0.42 

<0.001 0.39 

19.2 25.0 2.88 
3.26 11.2 3 *09 
0 * 233 1.88 3.18 

<o 001 0.028 3.20 
<o 1001 0.003 3,20 

40.001 <o.ooi 2.62 

0 I012 0,233 3.20 

<o .001 <o.OOl 3.15 

Operation a t  3ooc. a 
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Table '7-4. Predicted Data f o r  Second-Cycle Extraction 
of Piutonim (FTR F U ~ )  

Aqueous Feed: 

Organic: 15% TBP--85$ n-dodecane 
Scrub Solution: 2 M HNZ3 
Relative Volumes, Fged/Organic/Scrub: 0.39/0.43/0.06 
Temperature : 4OoC 

4 ,M HNO3, 37.7 g of Pu(1V) and 
< 0.02 g of U/ l i te r  

Organic Phase Aqueous Phase 
Pu HN03 Pu IIN0 

Stage ( g / i i t e r )  (M) (g/i i ter  ) ( M I 3  

Scrub -3 34. la 0.15 24.1 1- 93 
-2 37.5 0.14 2'7.4 2.01 
-1 38.0 0.15 24,8 2.30 

- .. 4.00 Feed 37 3 

Extraction -1 37.6 0.19 17. E 3 -90 
-2 1'7.8 0.32 3.55 4.00 
-3 3.70 0.43 0,475 4.02 
-4 0 497 0.45 0.058 4.03 
-5 0,OGI 0.46 0.007 4.03 
-6 0.007 0.46 < 0.001 4.01. 
-7 < 0.001 0.44 < 0.001 3953 

< 0.02 @; U/l i te r .  a 
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Table 7-5. Predicted Data f o r  Third-Cycle Extraction 
of Plutonium (FTR Fuel) 

Aqueous Feed: 

Organic: 15% TBP--@$ n-dodecane 
Scrub Solution: 2 H 6 3  
Relative Volumes, Feed/Organic/Scrub: 0.37/0.k1/0.05 
Temperature : 4OoC 

4 M HNO3, 39.7 g of Pu(1V) per l i t e r ,  
< 5,002 g of U / l i t e r  

Organic Phase Aqueous Phase 
Pu HN03 Pu "NO3 

Stage (g / l i t  e r  > (M) ( g / l i t  er  ) (M) 

0.15 26.1 1.93 
0.14 29.2 2.02 -2 39.0 

-1 39.4 0.15 26.4 2.33 

Scrub -3 35 oa 

I .. 4.00 Feed 39.7 

Extraction -1 39.0 0. x8 19.0 3.92 

-3 4.17 0.42 0 * 537 4.06 
-2 19.5 0.31 4.08 4.03 

-4 0.550 0,45 0.064 4.07 

-6 0.008 0.46 < 0,001 4.05 
-5 0.065 0.46 0.008 k 0 7  

-7 < 0.001 0.44 e 0.001 3.62 

0.002 g of U/liter. 
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Table 7-6, Predicted Data for  First-Cycle Stripping 
of Uranium (FTR Fuel) 

S t r i p  Solution: 0.01 M HNO3 
Organic Feed: 26.3 g of U and < 0.002 g of Pu 

per l i t e r ,  0.024 M HNO 
Relative Volumes (Organic Feed/Strip 2 olution):  2.1/1.3 
Temperature : 30°C 

Organic Phase Aqueous Phase 
U HNO3 U HN03 

Stage ( g / l i t e r )  (M) ( g / l i t e r  1 (MI 

S t r i p  -1 < o*o0la < 0.001 < 0.001 0 IO10 
-2 < 0.001 < 0.001 0.035 0 I O 1 0  
-3 0.021 < 0.001 2.73 0 * 011 - 4. 1.69 < 0,001 14.3 0,011 
-5 8.86 < 0.001 27.2 0.012 
-6 16.9 0.001 37.1 0.016 
-7 22.9 0.003 42. Sb 0 e 049 

a< 0.001 g Pu/l i ter ,  

bo.oo3 g Pu/ l i te r .  
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Table 7-7. Predicted Data for  Third-Cycle S t r ipp ing  
of Plutonium (FTR Fuel) 

S t r i p  Solution: 0.30 M HNO 
Organic Feed: 35.9 g Gf PusIV) per l i t e r ,  0.15 

xN03, <: 0.002 g of U/li ter,  15% 
TBP- -85% n-dodecane 

Relative Volumes, Organi; FeedlStrip Solut ion:  
Temperature: 25-30'c 

0.41/0,26 

Organic Phase Aqueous Phase 
Iz1 HN03 pu HN03 

Stage (@;/lit 4 (M) ( g / l i t e r  1 (M) 

S t r i p  -1 o.o0la 
-2 < 0,001 
-3 0 023 
-4 1.23 
-5 10.3 
-6 23.0 
-7 32 .3  

0 e 025 < 0.001 0.30 

0.032 1*93 0.33 
0.043 16.3 0.33 
0.041 36.2 0.32 
0.035 50*9  0.33 
0.043 56. 6b 0.50 

0.027 0,036 0.31 
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by poss ib le  solvent  degradation products was considered and a l l  of 
t h e  plutonium w a s  assumed t o  be i n  t h e  quadrivalent state, whereas 
a small f r a c t i o n  might be present  as Pu(V1). 
t h e  code i n  analyzing s t r ipp ing  operat ions (low ion ic  s t rength)  must 
be v e r i f i e d  experimentally. 

F ina l ly ,  t h e  use of 

Continued app l i ca t ions  of t h e  SEEHIS code will be made i n  t h e  
forthcoming months f o r  A I  reference and follow-an f u e l  types  and fo r  
t h e  GE follow-on f u e l .  

7.2 Solvent S t a b i l i t y  (Task 7.2) 

Effect  of Light on t h e  Retention of Uranium by TBP (J. G. Moore) 

I n  a recent  hot  c e l l  cyc l i c  solvent ex t r ac t ion  experiment, losses 
of plutonium and uranium t o  t h e  s t r ipped  solvent increased from 8 
negl ig ib le  value (< 0.02%) i n  t h e  irst cycle  t o  0.43% and 0.35%, 
respect ively,  i n  t h e  fou r th  cyc leef ;  This  d id  not appear t o  be a 
r ad ia t ion  damage e f f e c t  s ince  it had not been observed i n  o the r  tests 
of t h i s  type at  approximately similar r ad ia t ion  expasure l eve l s .  I n  
t h i s  p a r t i c u l a r  experiment, t h e  solvent,  after s t r ipp ing  with d i l u t e  
n i t r i c  a c i d  and washing with sodium carbonate so lu t ion  i n  each cycle, 
w a s  contacted with 3 M HNO3 and allowed t o  stand overnight p r i o r  t o  
t h e  next ex t r ac t ion  cycle.  
observed damage may have been caused by n i t r i c  ac id  (or n i t rous  a c i d )  
a t t ack ,  possibly acce lera ted  by exposure t o  l i g h t .  Some preliminary 
laboratory tes ts  ind ica t e  t h a t  t h i s  may w e l l  have been t h e  cause of 
t h e  metal  r e t en t ion .  

We considered t h e  p o s s i b i l i t y  t h a t  t h e  

I n  one tes t  se r i e s ,  15% TBP--~~$ n-dodecane was loaded with uranium 
by contact with 3 M HNO --0.4 M UOp(NOT);2 so lu t ion  f o r  40 min and was 
then  scrubbed by szve ra l  conta%s with' 2 M HN9m-0.1 M UOp(N03)2 so lu t ion .  
An a l iquo t  of t h e  scrubbed e x t r a c t  w a s  i G e d i a t e l y  s t r ipped  by contact ing 
it with seven consecutive 0.5 volumes of 0.1 M HN03. The remainder of 
t h e  organic ex t r ac t  w a s  divided i n t o  two parts; one pa r t  was placed i n  
t h e  dark and t h e  o ther  w a s  placed i n  a graduate s i t ua t ed  15 cm from a 
15-watt f luorescent  l ight .  Aliquots  of each were taken a f t e r  1, 2, and 
3 days and s t r ipped  with 0-1 M HNO3. The amount of uranium re ta ined  by 
t h e  "dark" sample (0*04$) d i d n o t  change with time and w a s  t h e  s m e  as 
f o r  t h e  sample t h a t  w a s  s t r ipped  i m e d i a t e l y .  However, t h e  amount 
r e t a ined  by the ttlight" sample w a s  0.10, 0.20, and 0.36$ after 1, 2, and 
3 days, respec t ive ly .  

I n  another  experiment t h e  TBP-n-dodecane w a s  contacted with 3 M I 

€IN+ and t h e  organic phase, after szparat ion from t h e  aqueous, w a s  
placed before  the f luorescent  l i g h t  f o r  18 hr .  
cyc le  followed by a n  i m e d i a % e  s t r ipp ing  cycle using this organic 
so lu t ion  r e su l t ed  i n  only O.Ok$ of the  uranium being re ta ined  by t h e  
organic phase. 

An extract ion-scrub 

The f a i l u r e  t o  demonstrate metal r e t en t ion  i n  t h i s  test  
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i n d i c a t e s  %ha% t h o  presence of uranium during exposure or" t h e  solvent  
to 'Eight m y  be an fmpart~lnt factor ,  

Although rot3 of" Pmpcar.t;etnce w i t h  respec% t ; ~  plant  operation, e f fec ts  
observed above could be highby fmpsrar%aaat w i t h  respect t o  lsbora%ory and 
hot  cell experimelrats, 
t o  def ine t h e  magnf%ude nf  t h e  degradation under a, ~r~,rXet>y of conditions. 

Additional s t u d f e t  sf" this %me a m  being made 

Vapor Pressure sf Tri-m-bmyl Fhssphate (W. Dtzvf~,  Jr., A, H. Kibbey) 

KhmLedge of the vari&ican of the m p ~ r  pressure of TBP w i t h  
temperature i s  necessary f o r  (1) design of a fjiagh o r  steam d i s t i ~ a t i o n  
process far p u r i f i c a t i o n  of degraded TBP9 snd ( 2 )  refining %he computer 
simulation o f  t h e  sojlven% extracticsn process There are m n y  r e fe r~nees  
to this vapor pre88ure2 inc luding  lg Piffted by Lersy.5 

but other v d u e s  are of u~known o r i g i n ,  
l i t e ra ture  survey t o  determine which vqmr pressures were measured and 
which were ca lcu la ted .  Using vapor pressure messurements from only LO 
re ferences  i n  which w e  were able Lo f ind or ig ina l  experimental dvt;a, w e  
determined the  coef f ic ien ts  sf' the  AnA%oine mpor pressure equtxtlon, 

%ny of t h e  quo% d 
values  are simply derived from %he equation of Evans, Davfes, and Jones; E 

For this reason we performed a 

Considering %he impcsrtance o f  TBP in the nuclear f u e l  processing 
industry, i t s  vapor pressure and hesh of vaporization are known to a 
rather poor l e v e l  of accuracy+ 
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8. PLUTONIUM PUHIFICATION (TASK 8) 
(D. J. Crouse) 

This  t a s k  covers t h e  process s t eps  i n  pur i fy ing  plutonium, s t a r t i n g  
with t h e  plutonium product so lu t ion  from t h e  first Purex cycle  and con- 
t i n u i n g  through preparat ion of a product so lu t ion  of adeqxate p u r i t y  and 
concentrat ion f o r  de l ivery  t o  t h e  fuel r e fab r i ca t ion  operation. 

Plutonium chemistry i s  reasonably well-known although t h e  high 
plutonium content OS W B R  f u e l s  makes some process rev is ions  des i rab le .  
The l a rge  amounts of plutonium t o  be handled provide s t rong incent ive  
f o r  improving t h e  e f f i c i ency  of t h e  plutonium p u r i f i c a t i o n  processes 
s ince  t h e  cos t  of these  operat ions w i l l  represent  a much l a r g e r  f r a c t i o n  
of t h e  t o t a l  reprocessing c o s t s  than  previously.  
appears t o  be a need f o r  a higher  capaci ty  process than i on  exchange 
f o r  f i n a l  decontamination of t h e  plutonium, 

I n  p a r t i c u l a r  t h e r e  

This month progress was made i n  def ining t h e  Tlowsheeto f o r  t h e  
second and t h i r d  plutonium p u r i f i c a t i o n  cycles  for  FTR f u e l .  
information i s  included i n  Sec t .  7 . l w i t h  t h e  flowsheet i n f o r m t i o n  
fa r  t h e  first cycle.  

This 

Progress on t h i s  t a s k  i s  reparted separately.  



10. OFF-GAS TRE%TNEEJT (TASK 10) 
(D. J. Crouse, C, D, Watson) 

Retention of iodine i s  t h e  major problem i n  t r e a t i n g  the off-gas 
from 

krypton, and eventual ly  tritium, also may be required for f u t u r e  large 
processing p l an t s .  Logic diagrams i l l u s t r a t i n g  a l t e r n a t i v e  processing 
methods, based on present  knowledge, f o r  removing t h e  gases from off-gas 
streams were presented prev1ously.l  A l l  promising methods w i l l  be 
evaluated and add i t iona l  chemical and engineering da ta  developed where 
necesssry.  
spec ies  from gas streams with mercuric n i t r a t e - n i t r i c  a c i d  twd a l k a l i n e  
so lu t ions ,  (2) decomposition of organic solvent vapors and organic 
iod ides  by c a t a l y t i c  oxidation, and ( 3 )  testing of s o l i d  iodine adsorbents. 

rocess  ng of short-cooled LMFBR f u e l s  s ince p lan t  r e t en t ion  f a c t o r s  
of 10 s t o  LO 8 would be required.  Retention of most of t h e  xenon and 

Studies  are a c t i v e  i n  t h e  areas of (1) scrubbing iodine 

This month severa l  s o l i d  sorpt ion agents  were tested f o r  removing 
b u t y l  iodide from air streams with favorable r e s u l t s .  
c a t a l y t i c  oxidat ion of organic vapors, it was shown t h a t  Hopcalite i s  
much more e f f e c t i v e  than cupric oxide as a c a t a l y s t .  Harever, t h e  
Hopcalite w a s  poi6oned by passing an organic phosphate through t h e  
c a t a l y s t  bed. 
of iodine,  i n  the  form of methyliodide or bu ty l  iodide,  from air  streams, 

I n  s tud ie s  of 

Additional runs were made demonstrating e f f i c i e n t  removal 

10.1 Iodine (Task 10.1) 

Trapping of Vola t i le  Radiotodine by So l id  Sorbents (R. E. Adms, 
R .  D, Ackley, Zell Combs) 

The t rapping of iodine i n  t h e  form of' bu ty l  iodide (1-iodobutane) 
i s  under inves t iga t ion .  
iodide for  t h e  following sorbents  at  t h e  ind ica ted  temperatures: 
z e o l i t e  (AgN 
100°C; me 1 % s ieves  (untreated) ,  1/16-in. p e l l e t s ,  100°C; GXLOO 
(s i lver -conta in ing  alumina from North American Carbon), 8 x 14 mesh, 
U. S, ,  100°C; and MSA 85851. iodized charcoal  (from Mine Safe ty  Appliances), 
8-14 Tyler,  26-27%. 
e f f i c i e n t  . 

Data were obtained using Z31Z-labeled butyl 
s i l v e r  

-treated Linde Molecular Sieves Type l3X), 1/16-in. p e l l e t s ,  

Q.E t hese  sorbers, t h e  s i l v e r  z e o l i t e  was most 

I n  these  tests, a i r  containing '3lI-labeled b u t y l  iodide at a con- 
cen t r a t ion  of 41 pprn by volwne w a s  passed through a 2-in.-deep bed of 
the sorbent f o r  varying per iods of time (4 h r  or more). 
v e l o c i t i e s  employed were 40 f p m  a t  26-27Oc and 50 fpm at 100°C. 
also contained 2.9$ moisture, by volume, and t h e  sorbents  w i t h  t he  
exception of t h e  untreated z e o l i t e  were preequi l ibra ted  at  t h e  test 
temperatures by having t h e  air (with 2.9% HzO vapor) flow through t h e  
tes t  beds a t  t h e  v e l o c i t i e s  mentioned f o r  about 20 h r  p r i o r  t o  i n t r o -  
ducing the bu ty l  iodide.  I n  addi t ion,  t h e  air flow was, i n  each case, 

The face 
The air 



continued f o r  1 h r  after stopping t h e  add i t ion  of b u t y l  iodide.  

The r e s u l t s  of t h e  tests, peyformed under condi t ions i n  which 
t h e  amounts of b u t y l  iodide were r e l a t i v e l y  l a rge  compared t o  t h e  
amounts of sorbent,  a r e  presented i n  Table 10-1. The s i l v e r  z e o l i t e  
was observed highly effccbive at  100°C up t a  a butyl. iodide i n j e c t i o n  
l e v e l  of 87 m g / c d  of sorbent.  Untreated z e o l i t e  was i n e f f e c t i v e  at 
3-OO°C. The GXlOO sorbent, i s  f a i r l y  e f f e c t i v e  3% 100°C i f  t h e  amount 
of b u t y l  iodide introduced i s  not t o o  la rge .  
MSA 8 5 8 5 1 t y p ~ t  of iodized charcoal  exh ib i t s  good t rapping  c a p a b i l i t y  
up t o  35 mg b u t y l  iodide pe r  cm3 sorbent under t h e  condi t ions t h a t  
ex is ted ,  although the permanency of t h e  iodine r e t e n t i o n  by t h e  charcoal  
remains t o  be determined. 
f a c t o r  with respect  t o  t h e  s i lver -coota in ing  sorbents  a t  100°C. ) Simi lar  
t c s t s  with b u t y l  iodide on s i l v e r  z e o l i t e  and GX1.00 at  2OO0C are c u r r e n t l y  
i n  progress  along with t e s t s  a t  28OC on another  type  of iodized charcoal.  

Also, a t  26-27Oc, t h e  

(This aspect  i s  probably not a n  important 

Ca ta ly t i c  Oxidation of Organic Vapors (G.  I. Cathers, M. R. Bennett)  

The removal of organic material from process off -gas  i s  des i r ab le  
as a means of minimizing t h e  f o m t i o n  of organic iod ides  and t h e  
a t tendant  danger of inadeqwate control.. of t h e  r e l e a s e  of radioiodine 
t o  t h e  atmospheric environment. Oxidation of organic vapors i n  t h e  
presence of c a t a l y s t  i s  t h e  method being emphasized at present  t o  e f f e c t  
t h i s  removal. 

Ca ta ly t i c  oxidat ion s t u d i e s  were i n i t i a t e d  with butane-air  mixtures 
i n  l a rge r - sca l e  equipment than w a s  used i n  pas t  work. The i n t e r r e l a t i o n -  
sh ip  of tempereture and butane concentrat ion with degree of oxidat ion w a s  
inves t iga ted  as vas t h e  r e l a t i v e  e f f ec t iveness  of Hopcalite and cupric  
oxide (wire form) as c a t a l y s t  ma te r i a l ,  
hydrocarbon analyzer,  it w a s  poss ib le  t o  follow t h e  course of oxidat ion 
i n  each tes t  as t h e  c a t a l y s t  bed temperature was increased stepwise,  
t e s t s  with Bopcal i te  c s t a l y s t ,  the air  contained butane at concentrat ions 
of 256 o r  137 ppm. E s s e n t i a l l y  loo$ oxidat ion was ach.ieved st l>O°C 
f o r  t h e  lover butane concentration, and at 225OC fo r  t he  higher  con- 
cen t r a t ion .  With cupric  oxide c a t a l y s t  and butane concentrat ion of 
256 ppm i n  air, l e s s  t han  10% oxidat ion was achieved at 225°C. Fur ther  
increase  i n  t h e  temperature t o  400°C increased t h e  amount o f  oxidat ion 
t o  about 40$, which i n d i c a t e s  some degree of c a t a l y t i c  e f f e c t ;  however, 
t h i s  c a t a l y s t  i s  d e f i n i t e l y  i n f e r i o r  t o  Hopx.li te.  

Using a Reckman continuous 

I n  

One of t h e  main a reas  of concern i n  the  use of Hopcalite as c a t a l y s t  
ma te r i a l  i s  t he  p o s s i b i l i t y  o f  c a t a l y s t  poisoning. Poisoning due t o  t h e  
presence of organic phosphates (from use of a t - r ibutyl .  phosphate e x t r a c t i s n  
process)  appeared t o  be a p o s s i b i l i t y ,  and is ,  therefore ,  being evaluated. 
I n  a preliminary scouting test ,  air containing about 3-000 ppm of: t r ime thy l  
phosphate vas passed through 10 mL of HopeaZite at  3TO°C f o r  122 hr. 
t h e  end of t h i s  time a black res idue  (nssumed t,a be decomposition products 
of t h e  T I P )  had condensed i n  t h e  cool zone at the  cap a f  the  column. 

A t  

A i r  



. 

Table 10-1. Efficiency of Y&rious Sorbents for Trapping Iodine i n  the Form 
of Butyl Iodide 

w t .  of Butyl Observed Trapping 
Face Velocity Butyl Iodide Iodide per Efficiency for  

Temp. of A i r  Exposure Time 2-in. Bed Depth 
Sorbent P C 1  (fpm) (hr ) ($1 

S i l v e r  zeolite 3.00 50 
S i l v e r  z e o l i t e  100 50 
S i l v e r  z e o l i t e  LOO 50 
S i l v e r  z e o l i t e  100 50 

4 
8 
20 
40 

17 
35 
87 

174 

99.98 
99 a9 
994 88 
98.2 

Untreated z e o l i t e  LOO 50 20 87 20 

a100 
GXlOO 
GXlOO 

MSA 85851 
IVE;A 85851 
MSA 85851 
E A  85851 

100 50 
100 50 
100 50 

26 40 
26 40 
27 40 
27 40 

4 
0 
20 

4 
8 
20 
40 

17 
35 
87 

3-7 
35 
87 

174 

99.2 
98.4 
86.1 
57.7 
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containing about 256 ppm butane w a s  then  gassed over t h e  c a t a l y s t  at 
var ious temperatures.  No not iceable  oxidat ion was observed up t o  a 
tern e r a t u r e  of about 4OOoC. Fur ther  increase  I.n t h e  temperature t o  
500 C r e su l t ed  i n  about 8% oxidation; however, t h i s  can probably be 
a t t r i b u t e d  t o  t h e r n a l  e f f e c t s .  

B 

The almost complete loss  of c a t a l y s t  e f f i c i ency  i n  t h e  phosphate 
We a r e  planning t e s t  i s  a t t r i b u t e d  t o  t h e  massive overdose employed. 

t o  continue evaluat ion of t h e  phosphate poisoning e f f e c t  bu t  using 
shorter phosphate exposure periods.  

Scrubbing of A l k y l  Iodides  from Air Streams wi th  Mercury Solu t ions  
(D. J. Crouse, W .  B. Iiowerton) 

L The d i s t r i b u t i o n  coe f f i c i en t  (DG) of 1311-labeled butyl iod ide  
between 0 . 1  M HMO 
be approximazely 2 at  25OC. T h i s  d i s t r i b u t i o n  coe f f i c i en t  i s  about 
a f a c t o r  of 2 lower than  that measured previously2 f o r  methyl iodide.  

Scrubbing Tes ts .  - In e a r l i e r  t es ts ,2  highly e f f i c i e n t  removal 
of methyl iodide from air  w a s  obtained by d ispers ing  t h e  a i r  i n t o  
f i n e  bubbles through iz g l a s s  f r l t  i n t o  a column contalning mercuric 
n i t r a t e - - n i t r i c  a c i d  so lu t ion .  A high pressure  drop across t h e  frit, 
however, l imi ted  t h e  gas flows t o  r e l a t i v e l y  low values .  Some recent  
runs idere made using a n i c k e l  metal frit t o  d i spe r se  t h e  gas  i n t o  a 
;?-in.-diam column of so lu t ion .  The bubbles produced were much coarser  
and t h e  pressure drop was much lower than  when using t h e  glass fr i t ,  
The absorpt ion e f f i c i ency  was also somewhat lower although s t i l l  high. 

(no mercuric ion present )  and a i r  was measured t o  

I n  t h r e e  runs with methyl iodide,  t h e  methyl iodide concentrat ion 
i n  t h e  feed a i r  stream ranged from 0.04 t o  0.07 mg pe r  l i t e r  of air. 
I n  t h e  first run, a t  an a i r  f low r a t e  of 2 l i t e r s  per  minute and with 
32 i n .  of O.l.M H F ; ( N O ~ ) ~ - - O . ~  M HN03 i n  t h  
contamination f 'actor obtained Gas 1.2 x LO 
were e s t i m t e d  t o  be 3 to 4 ml i n  diameter and t h e r e  was no apparent 
coalescence of t h e  bubbles as they  t r ave led  up t h e  column. 
second run, under t h e  same condi t ions but  with an air flow r a t e  of 3 
l i t e r s  per  min, t h e  iodine decontamination f a c t o r  w a s  
t h i s  run, t h e  bubbles appeared t o  be 2 Lo 3 m i n  diameter i n  t h e  bottom 
few inches of the column, but  t h e r e  was considerable  coalescence, 
producing bubbles as l a rge  as 10 mi i n  diameter a-t Lhe t o p  of the column. 

colurnn, t h e  iodine de- 
The bubbles produced 

I n  t h e  

x 103. In  

t 

A t h i r d  run w a s  then  made, again at an air  flow r a t e  o f  3 l i t e r s  
p e r  minute bu t  w i t h  32 inches o f  0,3  3 Kg(N03)2- -0"15  M IHN03 so lu t ion  
i n  t h e  column. 
concentrat ion was greatly improved, being 6.7 x IO4. 
ac ross  the  colwnn was eq.uiva1en.t t o  96 mm of Hg; about 30% of t h i s  
pressure  drop w a s  across  t h e  metal fr i t .  
large throughout t h e  column, rangi.ng i n  diameter from 3 t o  10 m. 
Attempts t o  increase  t h e  air  flow r a t e  through t h e  co1.imn t o  5 l i t e r s  
p e r  minute r e s u l t e d  i n  extremely unstable  operat ion w i t h  t h e  air puls ing  

The iod ine  decontamination f a c t o r  at; t z e  h igher  mercury 
The pressure  drop 

I n  this run the bubbles were 
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through t h e  so lu t ion .  

b u t y l  iodide at  an i n i t i a l  concentration of 0.045 mg per  l i t e r .  
air  flow rate was 2 l i t e r s  per  min and t h e  column contained 32 inches 
of 0.1 M Hg(N0 )2--0.1 M HMO3. The iodine decontamination f a c t o r  

f o r  methyl iodide under approximately t h e  same column condi t ions,  

A s ing le  run was then made with air t h a t  contained 1311-labeled 
The 

obtainex was 8 a 0, which-compares with a DF of 7 x 1 4  obtained above 

A s  described previously,3 absorption of iodine i n  t h e  form of 
alkyl iodides  with mercury so lu t ions  i s  i n e f f i c i e n t  i n  packed columns 
operated with t h e  gas phase continuous ( t h i s  is  des i r ab le  t o  minimize 
t h e  c o l m  pressure drop) because of t h e  low so lu t ion  hold-up i n  the  
column. 
column t h a t  i s  packed with porous packing. 
packing, which reportedly holds 17% of i t s  volume of solut ion,  has  
been located and some of t h i s  packing has been ordered f o r  testing. 

We w i l l  t r y  t o  circumvent t h i s  l i m i t a t i o n  by operat ing with a 
A source OS porous ceramic 
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11. RADIATION AND SHIELDING (TASK 11) 
(J. P. Nicho1.s) 

The objec t ive  o f  t h i s  t a sk  is t o  develop information on r ad ia t ion  
proper t ies  and shielding requirements of LMFBR f u e l s  outs ide o f  the 
r eac to r  with emphasis on those proper t ies  and requirements t h a t  r e l a t e  
t o  shipping and aqueous processing of t hese  fue l s .  The work involves  
development of the  basic  r ad ia t ion  p rope r t i e s  and production da ta  f o r  
radionuclides (Task ll. 1) ; development of computer programs f o r  pred ic t ing  
the r ad ia t ion  p rope r t i e s  o f  LMF'BR f u e l  (Task 11e2); development of dose 
a t tenuat ion  d a t a  f o r  sh i e ld  materials of interest (Task 11.3);  and appl i -  
ca t ion  o f  these  da ta  t o  LMFBR f u e l  cycle  processes (Task 11.1~). 

1 1 . 2  Radiation Proper t ies  o f  LMFf3R Fuel (Task 1 1 . 2 )  
(M. J. B e l l )  

Calciilations were made w i t h  t h e  ORIGEN program t o  est imate  the 
concentrations o f  ac t in ides  i n  seve ra l  types o f  l i g h t  water moderated 
power reac tors .  
i so top ic  compositions that  may be recycled t o  I$TFBR's and f o r  conparison 
of t h e  curium concentrations (thus,  t he  neutron source s t rength)  of LWH 
fue ls  with LlJIFBR f u e l s  a 

These data  are usefu l  f o r  e s t i m t i o n  o f  plutonium 

The feed compositions and burnup charac te r i s  t i c s  assumed f o r  these 
ca lcu la t ions  aye representa t ive  of advanced l i g h t  water reactors charged 
with enriched uranium and LWR discharged plutonium. They a re :  

1. An LWS, fueled w i t h  3.3% enriched uranium operat ing a t  an average 
spec i f i c  power of 30 Mw/metric ton of heavy metal charged t o  t h e  
reac tor  and i r r ad ia t ed  t o  a burnup of 33,000 Mwd/metric Lon. 

2. An LWR fue led  wits? recycled plutonium and nat,ural uranium 
operating a t  an average spec i f i c  power of 27.5 Mwd/metric ton  
t o  33,000 Mwd/metric ton burnup. 

3. A plutoniiun recycle  LMH w i t h  depleted uranium discharged from 
an LWR, a l s o  i r r a d i a t e d  t o  33,000 Mwd/metric ton a t  a s p e c i f i c  
power of 27 .5  Mwd/metric ton ,  

The composition of t h e  LWR discharged plutonium and the  depleted uranium 
used f o r  cases  ( 2 )  and (3) was taken t o  be t h a t  computed f o r  case (1). 

Table 11-1 gives the composition of a nurnbber o f  important isotopes 
i n  the  f r e s h  f u e l  and 5.n the  discharged f u e l  a t  Is0 days cooling t,ime. 
More complete information on t h e  composition, a c t i v i t y  and heat  generation 
r a t e  of spent  LWB f u e l s  w i l l  be presented i n  a. forthcoming r epor t .  



Table 11-1. Camposition of Act inides  i n  Fuel  Charge and Discharge from Light Water deactors  

Composition (g/metric ton of U + Pu chasged t o  r eac to r )  

Ehriched Pu fiecycle- Pu Recycle- 
Uranium Fuel Natural Uranium Depleted Uranium 

Is0 tope 
Charge Discharge a Charge Di s charge a Charge  is char gea 

237% 

Z3SPU 
238Pu 
233 Pu 

OPU 
24 lPu 
24 2Pu 

2Crn 
2 4 4 ~ m  

Total 

33, NQ 7,930 6,930 
4,080 

96 7,000 943 3 000 968,000 

764 

9.50 x 
306 

5,330 rs;,o00 
2,160 6,230 
1,000 2,770 

351. 998 

49.9 
91.2 

6.5 
31.1 

1,000,000 965,000 1,000,000 

184 

2.31 x 
260 

5,625 15,900 
3,590 6,230 
2,360 2,770 
2,130 998 

3-70 
1,070 

42.2 
705 

2,280 
3,390 

942, OOo 

936 

608 
5,670 
3 3 650 
2,390 
2,130 

1.37 x 10-3 3 

176 
1,040 

42*3 
669 

965,000 

"Concentrations reported a f t e r  150 days of p o s t i r r a d i a t i o n  decay. 
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1 2 .  CRITICALITY STUDIES (TASK 1.2) 
(J. P. Nichols) 

The objec t ive  of this t a s k  i s  t o  develop the  c r i t i c a l i t y  da t a  and 
c r i t i c a l i t y  con t ro l  techniques t h a t  are needed f o r  t h e  safe and economical 
shipment and recovery of W B R  f u e l s .  Present ly ,  the work on t h i s  t a s k  
cons is t s  o f  process desi-gn s t u d i e s  a t  ORNL, t h e o r e t i c a l  c r i t i c a l i t y  s tud ie s  
a t  t he  Oak Ridge C r i t i c a l  Experiments F a c i l i t y ,  and experimental and 
t h e o r e t i c a l  c r i t i c a l i t y  s tud ie s  a t  t h e  BaLtelle Northwest Plutonium 
Cr i t ica l  Mass Laboratory. 

The t a sk  is divided i n t o  seven subtasks.  Task 1 2 . 1 ,  "Arrays of 
LMFBR Elements," has t h e  purpose of developing cr i t , i .cal i ty  d a t a  f o r  t h e  
shipment and s torage  of  LFFHH. f u e l  elements. 
a t  Low Moderation, has  t h e  purpose of  developing t h e  c r i t i c a l i t y  parameters 
of U0,-PuO, i n  a i r  and molten metal t h a t  are needed f o r  design of head-end 
equipment and s a f e  a r rays  of PuO, product.  Task 12.3, YJ02-Pu0, Sol ids  i n  
F i s s i l e  Solut ion,  If has t h e  purpose o f  developing c r i t i c a l i t y  d a t a  f o r  the 
design of f u e l  d i sso lvers .  Task 1 2 . 4 ,  ifHomogeneous Solut ions of Uranium- 
Plutoniumj' has the  ob jec t ive  o f  developing c r i t i c a l i t y  da ta  f o r  the  design 
of processes  and equipment f o r  f eed  adjustment, so lven t  ex t rac t ion ,  i o n  
exchange, product evaporation, and plutonium so lu t ion  storage. Task 12,5, 
1lComputational Techniques , 
methods t h a t  may be used f o r  r e l i a b l e  and. accura te  p red ic t ion  of the 
c r i t i c a l i t y  parameters of systems containing uranium and plutonium. 
Task 12.6, "Evaluated C r i t i c a l i t y  Data Compilation, '1 has the  purpose of 
generat ing a comprehensive compilation of c r i t i c a l i t y  d a t a  for systems 
containing plutonium and mixtures of uranium and plutonium. Task 1.2,7, 
llNondestructive Assay o f  F i s s i l e  Materials,  has t h e  ob jec t ive  of develop- 
i n g  nondestruct ive techniques f o r  accoun tab i l i t y  and con t ro l  of f i s s i l e  
materials. 

Task 1 2 . 7 ,  11U02-PuOz Sol ids  

has t h e  object ive of developing computational 

1 2 . 1  Arrays of LMFBR Elements (Task 1 2 . 1 )  
(D. W. Magnuson) 

Treliminary c r i t i c a l i t y  ca lcu la t ions  have been made f o r  i n f i n i t e  
p l ana r  arrays of FFTF and LMF'B3 f u e l  elements t o  e s t a b l i s h  t h e  b a s i s  f o r  
the  design of f u e l  element s torage  f a c i l i t i e s .  The rec tangular  arrays 
were spaced on 12-in.  c a t e r s  i n  a i r ,  water, and sodium. Smeared atom 
d e n s i t i e s ,  found t o  be s a t i s f a c t o r y  i n  previous ca l cu la t ions , l  were used 
t o  cons t ruc t  a s imulat ion of t h e  core and axial b lanket  regions f i l l e d  
with a i r ,  water, o r  sodium; these  regions were then assumed t o  be s u r -  
rounded by a region of e i t h e r  a i r ,  water, o r  sodium. For the air-spaced 
case, a concrete r e f l e c t o r  was included adjacent  t o  the a x i a l  b lankets  
b u t  was not  included f o r  -the water o r  sodium cases.  The KENO Monte Carlo 
code w i t h  16-group Hansen-Roach cross  sec t ions  was used because of i t s  
a p p l i c a b i l i t y  t o  t h e  geometry of these  problems, 
i n  Table 1 2 - 1 .  

The r e s u l t s  a r e  given 
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Table 12-1. keff Values for I n f i n i t e  Planar Storage Arrays of LMFBR and 
FFTF Fuel Elements Calculated by the  KENO Monte Carlo Code 

keff f o r  I n f i n i t e  Planar  Arrays Stored in :  
Fuel Element Air Water Sodium 

A I  Ref, =de 0,917 2 0,007 0.617 - e 0.007 0.883 - + 0.005 

GE Follow-On Outer 0.859 I + 0.007 0.562 - + 0.006 0.658 + ..." 0.00k 
FFTF Outer 0.799 2 0.005 0.599 - + 0.007 0.751 2 0,005 

AI Follow-On Outer 0.835 - 4. 0.006 0.564 - + 0.005 0.?50 - -4 0.005 

For the  elements i n  water, the leakage is  less than 0.2% and the 
r e f l e c t o r s  on top  and bottom can be considered i n f i n i t e .  Additional 
ca lcu la t ions  may be required t o  evaluate  the room r e t u r n  through the 
sodium and sodium-fil led blanket regions s ince  t h e  leakage was f r o m  30 
t o  35%; however, the keff values  would be expected t o  increase but  t o  
be less than the keff values  f o r  the air-spaced calculat ions.  

Refer enc e s 
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13. ENGINEERING STUDIES (TASK 13) 
( A ,  R. I rv ine ,  C .  D, Watson) 

The purpose of t h i s  task  i s  t o  examine the overa l l  problem of  
LMFBR. spent fuel. recovery p l an t  design and t o  r e l a t e  t h e  i-ndividual 
problems involved i n  f u e l  recovery t o  the  overa l l  problem and t o  t h e  
other ind iv idua l  problems, The p lan t  design surveys which a re  t o  be 
made include adaptation of ex i s t ing  LWR reprocessing f a c i l i t i e s  foF 
recovery of f u e l  f rom FFTF a.nd i n i t i a l  demonstration reac tors ,  possi-  
b l e  adaptat ion of l a t e r  LWR reprocessing f a c i l i t i e s  t o  accept LMFBR 
spent f u e l  from commercial r eac to r s  during the  f i r s t  decade ( o r  more) 
of t h e i r  exis tence,  and, f i n a l l y ,  preparat ion of a conceptual design 
f o r  a f a c i l i t y  t h a t  w i l l  be needed when a l a rge  number of breeder 
r e a c t o r s  a re  i n  use. 1ndividua.l problems t o  be evaluated range f rom 
spec ia l  problems in safe ty  and containment (which are  pecul ia r  t o  
reprocessing of IlQBR spent f u e l )  t o  equipment design and operat ional  
procedures t o  prevent formation of plutonium polymer. 

13.1 Exis t ing Commercial F a c i l i t i e s  

A study of e x i s t i n g  commercial f a c i l i t i e s  i s  under way t o  de te r -  
mine t h e i r  s u i t a b i l i t y  f o r  reprocessing spent f u e l  or ig ina t ing  i n  the 
Fas t  Test  Reactor (FTR). 
modifications would be requi red  t o  accommodate f a s t  breeder r eac to r  
type f u e l s  from demonstration and e a r l y  commercial LMFBR' s .  The 
general  approach i s  t o  i nves t iga t e  the  lowest c a p i t a l  investment 
method (consis-tent with reasonable and safe  operating p rac t i ce )  and 
then t o  detei-mine the capital-  investment requirement f o r  obtaining 
add i t iona l  development information o r  lower overall- operat ing cos t .  
The Nuclear Fuel Services, Inc , ,  reprocessing f a c i l i - t y  j.s being used 
a s  the b a s i s  f o r  t h i s  study a s  it i s  cur ren t ly  the  only commercial 
f a c i l i t y  i n  operation. 

The study w i l l .  a l s o  determine what addi t iona l  

Gener a1 

Plans t o  v i s i t  the  Nuclear Fuel Sel-vices p lan t  t o  d iscuss  var ious  
aspects  of .that f a c i l i t y  and proposed FTR f u e l  processing methods were 
delayed i n d e f i n i t e l y  because of i n t e r n a l  problems a t  NES, A l i s t  of 
quest ions was t ransmit ted t o  NFS t o  ind ica te  the a reas  of g rea t e s t  
i n t e r e s t .  

Reference Flowsheets (S. n. Clinton, W. S. Gronier, D. E.  Horner) 

Mater ia l  balance f low sheets  have been prepared f o r  -the processing 
of four  Liquid Metal Fas t  Breeder Reactor f u e l  types using as a basis 
1000 kg of U and Pu as f e d  t o  the  r eac to r .  The reac tor  f u e l  types 
considered a re  t h e  Fast  Test  Reactor (FTR), Atomics In t e rna t iona l  ( A I )  
Reference Oxide, A I  Follow-On, and General E lec t r i c  (GE)  Follow-On 
fue l s .  For a reac tor  fuel. i-nvolving both core and b lanke t  regions,  



it i s  assumed t h a t  reprocessing i s  performed on an homogenized b a s i s  
where material from each region i s  blended i n  the r a t i o  i n  which the 
reac tor  i s  fueled.  

The reprocessing p lan t  mater ia l  balance flowsheets fcr the MCR 
( see  Fig. 13-1), A I  Reference Oxide ( see  Fig. 13-2), A I  Follow-On 
(see  Fig,  13-3), and GE Follow-On (see Fig, 13-4) fue ls  present  an 
est imate  of the amount and concentration of uranium, plutonium, 
f i s s i o n  products, and s t a i n l e s s  s t e e l  a t  t h e  var ious equipment loca-  
t i ons .  For each case the  f u e l  assemblies are  assumed t o  be decayed 
f o r  180 days p r i o r  t o  reprocessing. The d i f f e ren t  f u e l  assemblies 
f o r  the  KC and GE r e a c t o r s  were homogenized t o  coincide with t h e  
scheduled r a t e  of r e a c t o r  discharge. For each flowsheet, the  d i s -  
solver  product concentration was set a t  250 g of U and Pu per l i t e r ,  
and the  feed t o  t h e  first TBP solvent e x t r a c t i o n  cycle was d i l u t e d  
t o  70 g of U and Pu per  l i t e r .  Detailed flowsheets f o r  t he  first, 
second, and t h i r d  solvent e x t r a c t i o n  cyc les  f o r  FTR f u e l  a r e  shown 
i n  Sect.  7.0. Due t o  the  higher Pu content of the  FTR f u e l  assemblies 
(no blanket  mater ia l  p resent ) ,  the aqueous feed i n  the  dissolver  i s  
poisoned with 0.2 M boron f o r  c r i t i c a l i t y  control.  Presently,  i t  has 
not  been decided wEether the  unfueled s t a i n l e s s  s t e e l  gas plenum 
sec t ions  from the  shearing operation should be diver ted away from t h e  
dissolver  or  pass through it. 
s t e e l  was assumed t o  dissolve i n  the b o i l i n g  10-13 M HNO,. The FTR 
material balance flowsheet has been presented previGusly,' however, 
a r e v i s i o n  i s  being published due pr imari ly  t o  r e c e n t  modifications 
i n  t h e  TBP solvent ex t rac t ion  cyc les  and t o  a change from use of 
cadmium t o  use of boron f o r  nuclear poisoning. 
was made because of expected adverse behavior of cadmium i n  the  waste 
during c a l c i n a t i o n  and the  b e n e f i t s  t o  be gained from the presence of 
boron i n  the  waste ca lc ine ,  I n  addition, the cadmium cos t  would be 
approximately $7SO/metric ton of uranium p lus  plutonium; boron c o s t  
w i l l  be only about $5O/metric ton  of heavy metal feed,  

Approximately 1 w t  % of the  s t a i n l e s s  

This l a t t e r  change 

Head-End Processing (C .  D. Watson, R. S. Lowrie, R. L. Cox, W. S. 
Groenier, G. A. West) 

The Head-End Engineering Evaluation Study was continued of the 
reprocessing of 180-day decayed FTR f u e l  i n  a Nuclear Fuel Services- 
type p lan t .  Later,  A I  Reference Oxide, A I  Follow-on, and GE Follow- 
on f u e l s  w i l l  be s tudied and compared t o  FTR reprocessing. 
of the  dismantling, shearing, and d isso lu t ion  processing s t eps  i s  
present ly  being made. 
essing, sodium deact ivat ion,  heat d i ss ipa t ion ,  and c r i t i c a l i t y  aspects ,  
I n i t i a l  emphasis has  been placed on a study of t he  mechanical proc- 
ess ing  equipment a t  NFS t o  revea l  problem areas,  if any, brought about 
by the  physical dimensions of FTR fuel and the possible  presence of 
sodium. During t h i s  month an evaluat ion of the a d a p t a b i l i t y  of the 
w a t e r - f i l l e d  fue l - s torage  canal  t o  accommodate FTR f u e l  was completed 
a s  f a r  as p r a c t i c a l  p r i o r  t o  discussions with Nuclear Fuel Services  
per sonnel. 

An a n a l y s i s  

The ana lys i s  w i l l  include the mechanical proc- 
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Fig. 13-4 Reprocessing Plant Material Balance for Homogenized GI3 
Follow -On Fuel Assemblie s. 
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The bas i c  assu.mptions made f o r  this study of the  f u e l  storage 
canal  were: 

1 .  A l l  of the  ex terna l  sodium on the  f u e l  assemblies was 
deact ivated and removed p r i o r  t o  t h e i r  r e c e i p t  i n  t h e  canal ,  
Further,  cleaned f u e l  assemblies with detectable  ruptured 
furl rods  were sealed i n  wa te r - f i l l ed  cans before  being 
sent, t o  t he  canal.  

2. Fuel assernblies were received a-t t h e  canal  decayed a miniinurn 
of 45 days. 

From an  operating standpoint,  no major problercls should a r i s e  
since most  of t h e  equipment has  been used i n  previous campaigns. 
w i l l  probably be necessary t o  increase  the cooling capacity,  increase 
the ion-exchanger capaci ty  t o  accommodate an increased sodium load, 
and modify the  ex i s t ing  storage baske ts  t o  handle Fl” f u e l ,  

It 

Preliminary shielding ca l cu la i i  ons ind ica te  t h a t  the dose r a t e  
a t  the  surface of the  pool, assuming 1 1  f t  of water over the  top  of 
4S-day cooled f u e l  assemblies s tored  i l l  a square a r ray  (20 i n ,  center  
t o  center ) ,  would be less tnan 1 m/hr, 
(see  Sect. 12.1) show t h a t  FTR f u e l  assemblies s tored  i n  water i n  a 
square array ( 1 7  i n .  cen ter  t o  cen te r )  a r e  subc r i t i cz l .  The calcu-  

C r i t i c a l i t y  ca l cu la t ions  

value was 0.599 5 0,007. late‘ Keffec t i v e  

C r i t i c a l i t y  (A.  12. I r v i n r ,  J. D, Rol l ins ,  0. 0. Yasbro) 
-_I_ 

No ser ious  c r i t i c a l i t y  problem i n  t h e  head-end por t ion  of -tihe 
f a c i l i t y  i s  present  other than i n  t h e  d isso lver  and solvent  ex t r ac t ion  
system feed  tanks,  I n  the  case of t he  dissolvei-, ca l cu la t ions  
ind ica t e  t h a t  c r i t i c a l i t y  can d e f i n i t e l y  be avoided through use of 
0.2 M boron i n  the  dissolvent ,  8 in .  di-am poisoned baskets,  and by 
mainzaining the l i q u i d  l e v e l  down t o  a poi-nt only s l i g h t l y  above the  
top  of t h e  fuel baskets .  
except i n  the presence o f  g ros s  amounts of uiidissol.ved f u e l ,  Rrighes 
f1.ui.d l e v e l s  are not  des i rab le ,  however, i n  dissolving FTR f u e l  as 
they would. resul-l; i n  a d<.ssolver product with an undesirably low 
metal cont,enl, 
s u b c r i t i c a l  provided the mole r a t i o  of boron t o  f i s s i l e  plutonium i s  
3 I or  i f  cadmium t o  plutonium i s  2 0.95. I n  prac t ice  l a r g e r  r a t i o s  
than those indicated would be desired. t o  provide ;? margin f o r  safety. 

Hj-gher f l u i d  I.evels would be  acceptable 

The tanks rece iv ing  t h e  dissolvei- product will be 

Preliminary inves t iga t ions  of c r i t i c a l i t y  problems i n  t h e  extrac-  
t i o n  column ind ica t e  that, t he  c r i t i c a l  f i s s i l e  plutonium concentrati  on 
i n  the  jacketed por t ion  i s  44 g / l i t e r  and is 61 g/lit,er i n  t h e  un- 
jacketed scrub por t ion  i n  t h e  absence of dissolved nuclear poisons. 
When using 15% TRP as the  ex t rac tan t ,  borderl ine condi t ions can be 
produced by gross deviation from standard flowsheet conditions.  



However, we bel ieve  t h a t  the use of nuclear poisons i n  the scrub 
solut ion and the  presence of nuclear poison i n  the e x t r a c t i o n  column 
feed so lu t ion  will el iminate  the  problem i n  t h i s  column. 



El. FUiL MATEl<Z;AL PREPMIATION 
R .  G .  Wymer, R, E .  Brooksbanh, R .  E. Leuze, 

J .  P-. McBride, W. D .  Bond, P .  A. Haas 

1. CONVERSION STUDIES 
(E. E ,  Brooksbank) 

I n  t h e  LMFXR f u e l  cyc le ,  it would be highly advantageous t o  convert 
t h e  product so lu t ions  from the  f u e l  reprocessing p l an t s  t o  s o l i d  f u e l  
ma te r j a l s  t h a t  a r e  s u i t a b l e  both f o r  shipping and f o r  d i r e c t  use i n  re-  
f ab r i ca t ion  of fuel. elements. E a r l i e r  fue l  cycle s tud ie s  have not neces- 
s a r i l y  optimized t h e  conversion t o  meet both of t hese  requirements. Ln 
order t o  meet both requirenimts,  tile s o l i d s  must be i n  t h e  desired chemi- 
c a l  form with t h e  necessary pur.ity. 
t h e  bes t  method for accomplishing t h e  desired conversion. Although t h e  
major emphasis w i l l  be placed on conversions t o  oxides,  t h e  conversion t o  
advanced fuel. forms (such as carbides ,  n i t r i d e s ,  and ca rbon i t r ides )  wi1 . l  
be included i n  our s t u d i e s .  

Pa  t h i s  study, we hope t o  determine 

We are studying processes t h a t  are cu r ren t ly  i n  u s e  o r  under develop- 
ment; an economic evaluation i s  being made p r i o r  t o  undertaking extensive 
laboratory and engineering process s t u d i e s .  The conversion processes 
being evaluated include a v a r i e t y  of approaches , such as fluidized-bed 
conversion, flame d e n i t r a t i o n ,  sol-gel,  and numerous p r e c i p i t a t i o n  
processes.  

1,1 Sln te rab le  Powder Preparatton 
(W. D .  Bond, P .  A ,  Haas, R .  E ,  Brooksbank) 

Laboratory and engineering s tud ie s  of t he  conversion o f  aqueous s0l.u- 
t i o n s  of uranium and plutonium t o  powders w i l l  be in i t i a . t ed  a f t e r  our 
process evaluation s tud ie s  (Sec t .  lS21 have indicated which of t h e  possible  
methods are t h e  more promising. 

1 . 2  Process Evaluation 

Cwreilt ly plutonium Is  shipped from chemical. processing p l a n t s  as a 
n i t r a t e  solution. While t h i s  i s  s a t i s f a c t o r y  a t  present , s a f e t y  consid- 
e ra t ions  w i l l  probably d i c t a t e  t h a t  the increased. q u a n t i t i e s  of plutonium 
t h a t  w i l l  r e s u l t  from MFBR f u e l  processing be shipped in a s o l i d  form. 
The object ives  of t h i s  program a r e  t o  de-fi-ne t h e  most reasonable form f o r  
shipment t o  f a b r i c a t i o n  p l an t s  and .'io develop o r  adapt processes for t h i s  
purpose. Processes cu r ren t ly  used or  being developed wi.3.1 be stud;-ed, and 
ai economic evaluation w i l l  he made t o  es tabl- ish t h e  most promising ap- 
proach. 
work. As a need f o r  f u r t h e r  developmental work i s  recognized, it w i l l  be 
reported.  

'This work w i l l ,  in t u r n ,  pr0vid.e guidance f o r  f u r t h e r  experimental 

The existj-ng methods under study include those t h a t  a r e  most l i k e l y  
t o  be used i n  production of f i r s t  generation f a s t  r eac to r  f u e l  elements. 
They a r e :  
( 2 )  cop rec ip i t a t ion  of plutonium and uranium t o  provide a mixed oxide f o r  

(1) dry powder blendi-ng of oxide powders f o r  p e l l e t i z i n g ,  



p e l l e t i z i n g ,  and ( 3 %  use of t h e  sol-gel method t o  form e i t h e r  separate  o r  
blended U02 and PuOz microspheres o r  p e l l e t i z i n g  s tock .  These a r e  t h e  
most d i r e c t l y  useful  conversions, but  if i t  appears des i r ab le  t o  convert 
t o  an intermediate s o l e l y  f o r  shipping purposes, t h i s  can a l s o  be con- 
sider-i?. 

1.2.1 Chemical Conversion (F. E .  Karrington, J. D. Sease, I?. B. P r a t t )  

We completed t h e  study of t h e  cos t s  involved i n  fou r  a l t e r n a t i v e  
routes  t o  t h e  fuel preparat ion and f u e l  element f a b r i c a t i o n  f o r  a s p e c i f i c  
LMFBR, as described earlier.’ 
study was c i r c u l a t e d  i n t e r n a l l y ,  and the r e s u l t i n g  comments a r e  being eval- 
uated. 

The f i r s t  draf t  of’ t h e  r epor t  of t h i s  cos t  

Additional d e t a i l e d  cos t  s tud ie s  will not b e  s t a r t e d  u n t i l  t h e  conver- 
s i o n  process has been more c l e a r l y  defined. 

1.2.2 Shipping and Storage ( R e  W .  Worton) 

Earlier studies’ have shown t h a t  shipping s o l i d  oxide i s  s i g n i f i -  
can t ly  lower i n  cos t  (based on current  charges) and much s a f e r  than ship- 
ping a n i t r a t e  s o l u t i o n .  We are continuing t o  study t h e  f a c t o r s  involved 
i n  optimizing t h e  forms of uranium and plutonium t o  be shipped from t h e  
reprocessing p l an t  t o  t h e  f u e l  f a b r i c a t o r s .  

1.3 Advanced Fuel Studies 
CW, D, Bond) 

Increasing demands on r eac to r  f u e l s  make t h e  development of new o r  
improved f u e l s  important. Among t h e  more promising advanced f u e l  mate- 
r ials f o r  t h e  ZMFBR a r e  t h e  monocaxbides, ca rbon i t r ides ,  and n i t r i d e s  of 
plutonium and uranium. 
ma te r i a l s  a r e  being developed on a laboratory s c a l e ,  S t ab le ,  codispersed 
oxide-carbon sols are prepared by e f f e c t i n g  dispers ion of carbon black i n  
UOz, Pu02, o r  PuO2-UO2 sols be u l t r a s o n i c  a g i t a t i o n ,  and t h e  oxide-carbon 
sols are then formed i n t o  g e l  microspheres o r  shards .  After drying t h e  
g e l s  t o  remove v o l a t i l e  materials, t h e  g e l s  are converted e i t h e r  t o  t h e  
monocarbide o r  t o  n i t r i d e s  o r  ca rbon i t r ides ,  depending on t h e  atmospheres 
used i n  carbothermic reduct ion.  Monocarbides a r e  formed when t h e  reduct ion 
i s  under vacuum o r  i n e r t  gas atmosphere, whereas n i t r i d e  o r  ca rbon i t r ide  
conversion i s  e f f e c t e d  under a ni t rogen atmosphere. 

Sol-gel processes f o r  t h e  preparat ion of t hese  

Most of  our work has been concerned with t h e  preparat ion of carbides .  
We have previously demonstrated t h e  preparat ion of dense Tho2 and (Th,U)C2 
microspheres by sol-gel  processes.  
and plutonium carbide microspheres on a laboratory s c a l e .  We are now 
studying t h e  preparat ion of uranium-plutonium carbide spheres and of 
uranium-plutonium ca rbon i t r ide .  Kinetic s tud ie s  a r e  being c a r r i e d  out on 
t h e  carbothermic synthesis  s t e p  t o  gain a b e t t e r  understanding of t h e  r a t e -  
con t ro l l i ng  mechanism. 

We have also prepared uranium carbide 

lLNFBR Fuel  Cycle Studies  Progress Heport Nor 5 ,  OKNL-TM-2671 (August 
2969). 



1.3.1 Fundamental Studies of (U,Pu)(C,N) Synthesis (T. B. Lindemer, 
W. L. M o o Y " ~ )  

We have star-Led a p rogrm f o r  t h e  study of t h e  k i n e t i c s  and thermo- 
dynamics of t h e  carbothermic sgnthesis  o f  (U Q ,  8Puo $1 (C ,N) . The conversion 
equipment t o  be used f o r  t h i s  work ( located 1.n B u i l  ing 3019) i s  comprised 
pr imari ly  of a f l u i d i z e d  bed furnace t h a t  w a s  o r ig i .na l ly  used t o  apply 
carbon coatings t o  microspheres Three rims on t h i s  equipment ve re  made 
with UO2-C sol-gel shards t o  determine t h e  operat ing c h a r a c t e r i s t i c s  of 
t h e  system. \?e found t h a t  tBe product of t hese  runs had an ul t imate  oxygen 
content o f  1 . 2  t o  l . 7  w t  % 02, and. a t o t a l  carbon content Lhat decreased 
wi-th time of conversion. We know from previous work by Leitnaker,  Notz, 
and Beatty t h a t  t h e  oxygen content should be a few hundred p a r t s  pe r  mi l l i on .  
These r e s u l t s  s t rongly indicated t h a t  t h e  f l u i d i z i n g  gas was contaminated 
with oxygen or  t h a t  t he  o r i g i n a l  piping w a s  inadequate f o r  t h i s  app l i ca t ion .  
We have, t he re fo re  , replaced the  o r i g i n a l  p l a s t i c  gas l i n e s  with s-Lainl-ess 
s t e e l  tubing, and have also i n s t a l l e d  a g e t t e r i n g  systeiti t o  remove oxygen 
and water f-rom t h e  argon and nitrogen. Several  items of aux i l i a ry  equip- 
ment have been designed and b u i l t  f o r  oxygen-free containment and t r a n s f e r  
of the  oxide-carbon feed and of the ca rbon i t r ide  product. An oxygen meter 
i s  a l s o  being b u i l t  t o  monitor t h e  oxygen p o t e n t i a l  i n  the s y s t e m ;  t h i s  
instrument i s  capable of i nd ica t ing  oxygen pressures  from 0 . 2  t o  
atmospheres of oxygen, 

Since t h i s  work w i l l  r equ i r e  seve ra l  small batches of sol-gel i l laterial  
t h a t  have widely varying r a t i o s  of metal. t o  ca-chon, a second box i s  being 
converted f o r  use as a shard preparat ion box. 'The ex te rna l  u t i l i t i e s  t o  
t h i s  box have been i n s t a l l e d  and the re  a r e  a, few minor i n s t a l l a t i o n s  lef t ,  
on thP i n s i d e  of t h e  box. Equipment t o  dry t h e  ma te r i a l  and t o  ad jus t  the 
oxygen t o  metal  r a t i o  of t h e  oxide i s  almost complete. 

Work i n  t h e  immediate f u t u r e  w i l l  be concerned pr imari ly  with comple- 
t i o n  of t h e  equipment modifications and construction. Precautions w i l l  be 
taken t o  ensure t h a t  t h e  equipment i s  capable of maintaining an environment 
t h a t  has a low oxygen p o t e n t i a l ;  t h i s  i s  e s s e n t i a l  t o  t h e  con t ro l  of t h e  
carbon t o  nitrogen r a t i o  and of t h e  oxygen content of t h e  product. Sol-gel. 
(U,Pu)O2-C material t o  i n i t i a t e  t h e  s tud ie s  f.n t h i s  system has been obtained. 



2 ,  SOL-GEL PROCESSES FOR PR.EPARI1TION OF LMFBR RECYCLE FUEL 
(R. E. Leuze) 

CJl-gel processes a r e  i d e a l l y  su i ted  t o  the preparat iyn of LMFBR 
recyc le  f u e l  s i n c e  they can be r e a d i l y  adapted t o  continuous and remote 
operat ion f o r  processing materials behind shielding,  The processes under 
development prepare s 01s by control led solvent  ex t rac t ion  o f  n i t r a t e  f rom 
plutonium and uranium n i t r a t e  solut ions,  t he  produc ts from f u e l  reproces- 
s ing p lan ts .  
usual ly  high densi ty  oxide micraspheres, required for subsequent f a b r i c a -  
t i o n  i n t o  recycle  fuel elements. 
of t h e  process development and demonstration, equipment design, and 
ins trwnent development being c a r r i e d  out t o  obtain s u f f i c i e n t  information 
f o r  design of a full sca l e  f a c i l i t y .  
of s o l - g e l  materials required f o r  t e s t ing  and f o r  use i n  other p a r t s  of 
the LplFBR f u e l  cycle  program. 

The sa l s  a r e  then converted t o  the  des i red  ceramic f o m ,  

This sec t ion  repor t s  progress f o r  a l l  

Also included is  t h e  preparat ion 

2 . 1  Urania S o l  Process and Equipment Development 
(J, P. McBride) 

Although the LMFBH. recycle  f u e l  under consideration i s  mixed urania- 
plutonia ,  s tudy of urania  sol preparat ion is important because urania i s  
used as a f e r t i l e  mater ia l  i n  an LKFBR and i s  t h e  major component i n  the  
mixed oxide. 
the program such as sphere forming and tray drying. 

Uranfa sols a r e  also useful  f o r  studying other phases of  

The CUSP process (ConcentpatLon Urania S o l  Preparat ion)  developed 
at! ORNI, has been se lec tgd  as tihe methzd f o r  Freparat ion of mania s o l s  
s i n c e  it i s  most amenable t o  scale-u and cons is ten t ly  produces good 
s o l s  with d e s i r a b l e  c h a r a c t e r i s t i c s  *'J 

covers a l l  aspects  of CUSP sol preparat ion including uranous n i t r a t e  
feed preparat ion,  laboratory-  and engineering-scale process development, 
s o l  preparat ion,  and equipment design and instrumentation. 

This s e c t i o n  of t h e  r e p o r t  

Equipment Development (B. C. Finney) 

The development of contactor concepts f o r  preparing urania s o l  by 
the CUSP process i n  t h e  P i l o t  Plant  (ELdg, 3019) was continued. A s e r i e s  
of six runs was made using t h e  packed column contactor  t h a t  had been moved 
from the  P i l o t  Plant t o  BEdg. 3503 and reported l as t  month,3 Tlze purpose 
of the cur ren t  work was t o  evaluate  a per fora ted  p l a t e  and a spray header 
for dispers ing  t h e  aqueous phase i n t o  the organic solvent and a l s o  evalu- 
a te  what e f f e c t  s l i g h t  v a r i a t i o n s  in operating procedures, espec ia l ly  
during the  second n i t r a t e  ex t rac t ion  cycle (i e . ,  c r y s t a l l i z a t i o n  per iod) ,  
might have on the  U02 502 product. 
continuous with co-current downflow. 

The runs were made operating organic 

The 1/2-i.ne ceramic Berl  saddles were removed f r o m  the 2-in.-ID x 
36-in. -long g l a s s  pipe3 and a perforated fluorothene p l a t e  ( 2 5  equal ly  
spaced 0.12S-in. -diarn holes 1 was used t o  d i sperse  the aqueous phase i n t o  
t h e  organic solvent  f o p  R u n s  PPHE3-7 and 8 (Table 2 - 1 ) .  The aqueous was 
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Table 2-1.. Summary Data for  the Preparation of Urania S o l  by 
the CUSP Process Using a Free-Fall Column 

Run No. 

u, w/d 
u m ,  % u 
NO3'-, m g / d  

NO -AJ, mole r a t i o  
conductivity, 
p &os/crn @ 25°C 

3 

conductivity a t  s h r t  
o f  f i rs t  axtraction 
(feed), u mhos/cm 

time, nin 

1.L mhos/cm 

&os/cm 

First extraction 

Conduc t l v i t y  a t  s t a r t  
of second extraction, 

Peak conductivity during 
second extraction, 

T b , e  above k0,OOO p mhos 

Second extraction time, 
(second extraction) 

min 

PFHB - 7a 
335.0 

76 
6.74 
0.109 

3648 

682 00 

116 

4000 

71000 

67 

86 

230.2 239.8 
79 86 
7.87 7.53 
0.13 0.12 

3420 4275 

67200 67000 

116 119 

4000 35000 

63000 41300 

63 8 

72 5h 

238.3 238.3 24003 239.3 
87 88 85 89 
6.24 6.8b 6.58 4.58 
0.10 0.11 0.106 0.07 

2860 3329 4 8 4  2668 

- 58500 65300 67000 

- 1 2 L  11s 119 

- 64 69 71 

aA perforated fluorothene p la te  (twenty-four 0.125-in. -dim holes) used t o  disperse 

bA spay  header (3/b in .  dim wi th  six O.I25'-in.-diam holes) used t o  dispexsa aqueous 

'The sol from Run SCHB-9 w a s  l e f t  in the equipment overnight and additional NQ - was 

h e  U(IV) n i t r a t e  feed solution f o r  Runs SCHB-11 and 1 2  w a g  prepared i n  a 9-in.-D 

aqueous phase i n  organic. 

phase i n  organic. 

extracted . 
T&UC~OX",  whereas, the feed solution for previous runs o f  th i s  series (PCHB-1 throu 
SCHB-10) was prepared in a 6-in. -ID reductor. 

3 
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s a t i s f a c t o r i l y  dispersed i n t o  drople t s  b u t  gas co l lec ted  below the 
perforated p l a t e  during c r y s t a l l i z a t i o n  d is rupt ing  t h e  flow of aqueous 
and organic down through t h e  p l a t e .  The second n i t r a t e  e x t r a c t i o n  was 
s t a r t e d  when t h e  conduct ivi ty  of t h e  aqueous phase reached 40,000 
($7"C) and the  r a t e  of n i t r a t e  ex t rac t ion  was regulated t g  hold the  
coridtcLtivity above 40,000 p mhos f o r  -3. h r  a t  62°C. 
t i o n  apparently resu l ted  i n  excessive oxidation as ind ica ted  by the  U(1V) 
contents of 76 and 7%. 

mhos 

This mode of opera- 

A spray header (3/4 i n .  diam w i t h  s i x  0,125-in,-diam holes) was used 
t o  d i s p e r s e  the aqueous phase f o r  Runs  SCHI3-9 Wrough 1 2 .  
phase was s a t i s f a c t o r i l y  dispersed. i n t o  d r o p l e t s  and t h e  gas re leased  
during c r y s t a l l i z a t i o n  was vented of f  through the  annulla space between 
the  spray header and g lass  pipe with no d is rupt ion  of t he  flowing streams. 
The procedure used f o r  these runs w a s  t o  start the second nitrate extrac-  
t i o n  when the conduct ivi ty  of t h e  aqueous phase reached 35,000 t - ~  mhos/cm 
and t o  regula te  t h e  rate of n i t r a t e  ex t rac t ion  t o  hold the conductivity. 
below 40,000 p rnhas. 
ally v a r i e d  t o  prepare s o l s  with a range of NO '/U mole r a t i o s .  

The U(1V) n i t r a t e  feed f o r  duns PPHE-7 through SCHB-10 was prepared 
i n  a &in.-ID reductor and the feed f o r  Runs SCHE-11 and 1 2  (2 s o l  rum/ 
feed batch) was prepared i n  a 9-in. - I D  reductor,  
d i f fe rence  i n  the feeds as determined by a chemical analysis (see Tabla 
2-2).  
i n d i c a t e  t h a t  the 6-in.-I~ reductor i s  more e f f i c i e n t  than the  9-in. 
reductor,  

The aqueous 

The f i n a l  conduct iv i t ies  o f  the  s o l s  were in ten t ion-  

3 

There i s  no d iscern ib le  

The d i f fe rence  i n  reduction times o f  1.47 h r  and 3.87 h r  would 

Table 2 - 2 .  U(IV) N i t r a t e  Feed Analysis 

Density, g/cm 3 

Conductivity, U mhos/cm 
Reduction Time , h r  

RR.-73a 
SCHB-9 and 10 

2 4 ~ 2  
76 6' 
126.9 
0.014 

4.57 
17.1 

1.04 

5 9 9 6 4  

lek7 

1.3367 

SR-29b 
SCESB-11 and 1 2  

239.9 

1 2  8 
0.014 

5455 
20,5 

1.04 
1.3368 

7 7c 

62586 
3.87 

"Feed prepared i n  &in. - I D  reductar.  

bFeed prepared i n  9 - i n  a -ID reduc t o r ,  
'Analyses of  f r e s h  feed samples i n  H PO are usual ly  low; control  

chemical tests ind ica ted  ~ 9 9 %  U ( 1 V )  e 3 4  
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The U02 sols prepared during Rms PPHB-7 through SCI-TB-12 w i l l  be 
character ized and conduct ivi t ies  monitored as a func t ion  o f  time t o  
determi.ne what e f f e c t  the various modes o f  operation have on t h e  
proper t ies  of t h e  s o l s .  

2.2 Urania -Plutonia S o l  Process and Equipment Development 
(a. E. Leuae) 

This sec t ion  of t he  repor t  covers all aspecks o f  mixed uran5.a- 
plutonia  s o l  preparat ion including preparat ion of. high -n i t r a  Le plutonia  
s o l ,  spec ia l  treatment of CUSP sol p r i o r  t o  mixing with plutonia ,  tech- 
niques f o r  mixing plutonia  and urania so ls ,  and treatments required t o  
produce s a t i s f a c t o r y  mixed s o l  ready f o r  subsequent processing into t he  
desired ceramic form. 
scale  demonstration i s  also reported here e 

Progress on equipment development and engineering- 

Ef for t s  a t  the  present  tiins a r e  d i rec ted  a t  s e t t i n g  process conditions 
and preparing equipment i n  order t o  demonstrate engineering-scale prepara- 
t i o n  of mixed UO -Pu02 and t o  produce severa l  kilograms of i r r a d i a t i o n  
t e s t  mater ia l .  I n  the  process se lec ted  f o r  this demonstrati.on, urania 
s o l  i s  pre t rea ted  t o  remove excess formate and i s  l;nm mixed with a high- 
n i t r a t e  pl-utonia sol prepared by a n  alcohol  ex t rac t ion  process (APEX). 
The mixed sol i s  contacted with a secondary amine t o  ex t r ac t  excess 
n i t r a t e  and is subsequently formed i n t o  microspheres o r  shards which 
can be dr ied  and calcined t o  dense oxide product. 

Mixed Plutonia-Urania Sol Flowsheet Development (0. K. Tallent, and 
M. H. Lloyd) 

A s e r i e s  of  experiments a r e  present ly  i n  progress t o  prepare 
(u-pu)02 microspheres by the  CUSP-L44pEX mixed s o l  prucess.  
of these  experiments i s  t o  demonstrate t h e  reproducib i l i ty  and r e l i a b i l i t y  
of t he  process on a labora tory  scale. 
plutonia  sol preparat ion,  pretreatment of urania 
mi.crosphere forming has been previously reported e l. 

Tne pirpose 

The flowsheet used, which involves 
s 01 blending, and Fol, 

When completed, t h i s  s e r i e s  w i l l  have involved t h e  preparat ion of 
four  APEX s o l s ,  blending each APEX s o l  with each of th ree  CUSP sols and 
forming each batch (-10 g of t o t a l  metal)  i n t o  nlicrospheres. 
w i l l  t herefore  cons is t  of 1 2  microsphere-forndg runs in which tile 
behavior o f  four  plutonia  sols and th ree  urania s o l s  a r e  compa.red. 
Although the  primary piirpose of t h i s  work is t o  denionstrate reproduci- 
b i l i t y  of mixed sol-forming behavior, t w o  s o l  parameters, concentration 
and n i t r a t e  content,  were varied. The concentration o f  t h e  plutonia sol 
was var ied  from 0.5 t o  1.1 M and t h e  N03-/Pu mole r a t i o  was varried from 
about 0,s t o  0.8. 
r a t i o  var ied from 0.09 t o  0.13. 

The s e r i e s  

Urania sgls were s e l e c t e d  i n  which the  NO -/U mole 
3 

A pr inc ipa l  d i f f i c u l t y  i n  an object ive evaluation of sols is  t h a t  
they must be judged i n  p a r t  by forming behavior and mierosphere 



cha rac t e r i s t i c s ,  and these p r o p e r t i e s  are s u b j e c t  t o  numerous forming, 
drying and calcining v a r i a b l e s  i n  addition t o  s o l  c h a r a c t e r i s t i c s .  I n  
order t o  i s o l a t e  t h e s e  e f f ec t s ,  each mixed s o l  was formed i n  th ree  i n d i -  
vidual  batches. 
each batch was formed mder conditions which var ied with r+gard t o  water 
content of the  solvent ,  pH, e t c .  Two drying conditions were also evaluated, 
Gel spheres were d r i e d  rap id ly  i n  argon and slowly i n  air p r i o r  t o  c a l c i -  
nation. 
concentrations were varied somewhat t o  q u a l i t a t i v e l y  ascer ta in  t h e  e f f ec t s  
o f  these  va r i ab le s ,  These v a r i a t i o n s  were not  intended t o  optimize forming 
and drying conditions,  but  they  were ex t r emdy  he lpfu l  i n  i s o l a t i n g  effects; 
which can be cont ro l led  by forming and dq-ing cond-ftions. 

Since a s t i l l  was not, used i n  t h e  forming c c l m  system, 

During the course of t h e  experiments, solvent  pH and s u r f a c t a n t  

A d e t a i l e d  evaluat ion of t h e s e  runs  w i l l  be made next month; however, 
severa l  preliminaqy observations can be made. 

1. Consis tent ly  u n i f o r m  APEX s o l s  can be made i n  e x t r a c t i o n  equip- 
ment designed f o r  t h i s  purpose. 
simple acid-base t i t r a t i o n s  t o  determine t o t a l  n i t r a t e  are 
usefu l  t o  cont ro l  necessary end-points, 

I n  a l l  cases,  mixed sols maintained a t  O°C remained f l u i d  during 
the  course o f  the experiments (4 t o  6 h r ) ,  and flow character-  
i s t i c s  t o  t h e  forming column and i n  the two-fluid nozzle were 
exce l len t  

Conductivity measurements and 

2 .  

3 .  Although forming and drying conditions have n o t  been optimized, 
it Fs present ly  poss ib le  t o  c o n s i s t e n t l y  prepare calcined micro- 
spheres (400 t o  600 1 i n  diameter) i n  9% y i e l d  on a laboratory 
s c a l e  (batch s i z e  contains  LO g o f  metal) .  

Four types of p a r t i c l e  rnal.fomatiora were observed during micro- 
sphere preparat ion.  
forming c o l r n ,  cherry p i t t i n g ,  sphere cracking (which can be 
described as sur face  pee l ing) ,  and microsphere cracking which 
r e s u l t s  i n  the  worst  case i n  two half-spheres .  
can be completely control led by v a r i a t i o n s  i n  sur fac tan t ,  solvent  
water content and pH. 
appropriate  s e l e c t i o n  of t h e s e  var iab les .  
t o  be pr imari ly  associated with drying conditions.  It was elirni- 
nated completely by rap id  drying o f  t h e  ge l  microspheres, and was 
aggravated by prolonged contact  of  g e l  spheres with solvent .  
P a r t i c l e  cracking, r e s u l t i n g  i n  half-spheres,  appears t o  r e l a t e  
t o  s e v e r a l  var iab les .  It can be expected t h a t  t h i s  problem w i l l  
be the  most d i f f i c u l t  t o  e l iminate  i n  large-scale  runs. However, 
the  present  work suggests t h a t  forming and drying conditions a r e  
extremely important in minimizing t h i s  problem. 

4. 
These were coalescence of wet spheres i n  the  

Cherry p i t t i n g  

Coalescence can probably be eliminated by 
Surface peeling appears 

5 .  A l l  sol combinations evaluated i n  t h i s  s e r i e s  appear t o  be capable 
of producing microspheres i n  high y i e l d  i f  appropriate  forming and 
drying conditions are se lec ted ;  however, a wider range of forming 
conditions can be to l e ra t ed  when the  s o l  system i s  optimized t o  
obtain maximum metal concentration and the  minimum n i t r a t e  concen- 
t r a t i o n  consis tent  with good sol s t ab i l i t y ,  



2 ~ 3 Sphere Preparat ion 
(P. A .  Haas) 

A l l  iriformation concerning t h e  conversion of mania and man ia -  
p lu tonia  sols i n t o  microspheres of t h e  desired s i z e  and with the  des i red  
p rope r t i e s  is  reported he re  e This includes s t u d i e s  on sphere-forming, 
chemistry o f  the  sphere-forming column, recycle  of t h e  d.ryfng alcohol,  
drying and f i r i n g  of g e l  spheres,  and c l a s s i f i c a t i o n  o f  t h e  f i r e d  
p a r t i c l e s .  'The la tes t  information on  adapting these  process s t eps  and 
equipment t o  renote  opera-Lion is  a l s o  included. 

Factor ia l .  Forming 
E. L. Pa t t i son ,  W.? Bond, J. P. McUride) 

eriments f o r  CUSP UO? S o l s  (P. A.  Ha.as, A.  R, Meservey, 

An experimental program i s  i n  progress  t o  determine t h e  e f f e c t s  of 
s e l ec t ed  va r i ab le s  on t h e  formation of g e l  spheres from CUSP U02 sols. 
'IYie principal.  v a r i a b l e s  w i l l  b e  s tudied by a series of fac tor ia l .  design 
experiments and secondary va r i ab le s  w i l l  be checked by simple comparisons 

We have r e s u l t s  f o r  the  th ree  preliminary solvent  compositions and 
f o r  so lvent  cleanup versus  noncleanup f o r  t h e  high Ethomeen-low Span 
composition. 
i n  the  approximate order  o f  decreasing magnitude o f  the  e f f e c t s .  
f irst  t h r e e  genera l iza t ions  are c lear -cu t  and ea.sy t o  see while t h e  
remainder a r e  l e s s  c l e a r  -cut and a d i f f e r e a t  observer might estimate 
d i f f e ren t  ahsol-ute values and order  of magnitude, 

The following generalizatAons from UNOP tests are l i s t e d  
The 

1. 

2 .  

3. 

4. 

5 .  

6. 

7. 

The 0.8 v/o Span r e s u l t e d  i n  a wrinkled or  rlraisi.n" type of  
d i s t o r t i o n  over about one - th i rd  the  sur face  of every p a r t i c l e  e 

The remaining two-thirds of the s i r f a c e  of each p a r t i c l e  was 
smooth. The 0 . 2  and 0.5 v/o Span gave none of Ynis d i s t o r t i o n .  

The 0.05 v/o Span gave much more c lus t e r ing  and doublets than 
0.2 v/o Span ( 5  t o  40% doublet,s and c l u s t e r s  compared t o  2 t o  
5%). 
G e l  spheres kept  i n  A r  showed much less cracking and shoved 
s h i n i e r  sur faces  than g e l  spheres d r i e d  i n  a i r  a t  room 
Lernperature e 

The f i r s t  sample formed i n  a batch of 2 FA1 is of poorer appearance 
Lhan the  remaining th ree  sarnpl.es. This e f f e c t  i s  sinaller t'nan 
t h e  e f f e c t  o f  a i r  drying versus A r  atmosphere, 

The 0.8 v/o Span gave d u l l e r  and/or grayer surfaces than  the 
lower  Span concentration. 

The 0 . 2  v/o Span gave samples with about 2% doublet  p a r t i c l e s  
from coalescence while the  0.8 v/o Span gave no doublets.  

The high Ethomeen concentrat ion r e su l t ed  i n  a su r face  s p a l l i n g  
type of cracking. 



8, 

9. 

The d i f fe rence  between two standard I M CUSP UOC, sols was small,. 

The e f f e c t s  of washing the  su r fac t an t s  and p a r t  o f  t he  2EH with 
HN03-NaOH-very d i l u t e  HN03 t o  pH o f  4.5 were small. The observed 
e f f e c t s  were probably due more t o  t h e  reduced swf 'ac tan t  concen- 
t r a t i o n s  and/or NaN03 remaining i n  the  2M ra the r  than f r o m  wash- 
ing. 
wash. 
washes made emulsions even more troublesome. 

- 

Stable  emulsions were formed even with a very d i l u t e  HN03 
Higher Span concentrations and/or demineralized water 

On.e Ethomeen-Span f a c t o r i a l  e x p e r b e n t  described i n  t h e  November 
report ,S was completed. 
with about 1.2% H20 i n  t h e  2EH, a r e  i n  the  region of 0.05 t o  0.2 volume 
percent Ethomeen S/ls with about 0 . 2  volume pereent Span 80. 
d i f f e r e n t  s u r f a c t a n t  conditions were run, comprising t h e  n i x t u r e s  of  
zero,  O,Os,  0.20 and 0.80 volume percent of Ethomeen with these same 
f o u r  l e v e l s  of Span. A t  
zero and 0.05% Span l e v e l s ,  c l u s t e r i n g  occurred i n  a t  LeEist some o f  the 
sols no ma t t e r  what t h e  Ethomeen concentration. 
was not a s i g n i f i c a n t  problem. 
d i s t o r t i o n )  was preva len t  a t  zero and 0.05% Ethomeen l e v e l s ,  
yields (50 t o  95%) were obtained a t  0,2% and 0.8% Ethorneen i n  0.8% Span, 
but the high sur fac tan t  l e v e l  caused problems of abrasion, cracking, o r  
excessive emulsif icat ion,  s o  t h a t  we prefer  t h e  0.2% Span l e v e l  over t h e  
0.8% l e v e l .  

The bes t  column conditions a t  pH N 4.5 and 2 8 " C ,  

Sixteen 

S i x  s o l s  were ca r r i ed  through the eqeriment. 

A t  0.2% Span, c lus te r ing  
A t  0.8% Span, wrinkle-pi t t ing ( the r a i s i n  

Several high 

Clustering with no Span was almost stopped by the  highest  Ethomeen 

If any Span i s  used 
l e v e l  (0.8%), but  t h i s  high l e v e l  caused emulsif icat ion problems, so t h a t  
we p r e f e r  t o  use Spa.n as the a n t i c l u s t e r i n g  agent,  
( a t  l e a s t  i n  an a c i d i c  medium), wrinkle-pi t t ing becomes prevalent  unless 
Ethomeen i s  added t o  prevent t h e  p i t s  and smooth t h e  surfaces o f  the 
microspheres, Thus, Span-Ethmeen mixtures are d i s t i n c t l y  b e t t e r  than 
e i t h e r  s u r f a c t a n t  alone. 

Differences were apparent among the  s e v e r a l  l o t s  of  U02 sols, some 
being more prone t o  c l u s t e r  and some forming b e t t e r  o r  worse beads than 
o t h e r s  i n  t h e  range o f  conditions t e s t ed .  Ow first r e s u l t s  have been 
somewhat confused by cracking problems and we cannot y e t  pick the  b e s t  
s o l s ,  The cracking seems t o  have occurred during a i r  exposwe after 
argon drying a t  200°C; exposure t o  a i r  would not  occur during normal 
operation. 
I n  the absence o f  cracking, .high y i e l d s  (~90%) look probable €or m o s t  
CUSP sols i n  mixtures of 0.05 t o  0.2% Ethomeen w i t h  0.2% Span. 

Some o f  t h e  work w i l l  be repeated with modified procedures, 

2.4 Preparation o f  Sol-Gel Test Materials 
(W, T. McDuffee) 

Preparat ion o f  s o l - g e l  mater ia ls  f o r  use i n  other p a r t s  o f  the 
LMFBR f u e l  cycle program i s  reported here .  This includes mater ia l s  f o r  
i r r a d i a t i o n  capsules and the  development of f u e l  f a b r i c a t i o n  techniques 
such as Sphere-Pac o r  p e l l e t  f o r m t i o n .  
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Preparation of Enriched Urania Sol  (W. T. McDuffee) 

Urania sol containing 2 . 7  kg of 93% enriched uranium was prepared 
by the  prec ip i ta t ion-pept iza t ion  method (pII 7.5) , 6  
of t h i s  mater ia l  was made f o r  blending with Pu02 sol f o r  the preparation 
of dense mixed oxide microspheres (see below) f o r  the  EBB-I1 Ser ies  I1 
i r r a d i a t i o n  specimens. 
preparat ion s tud ie s  e 

The bulk (2  .l kg U) 

The r e s t  o f  the sol was bo be used i n  HTGR f u e l  

During the course of t he  work, sol preparat ion techniques continued 
t o  improve and 1.0 t o  1.1 E, s t a b l e  UO2 s o l s  are now r e a d i l y  prepared a t  
a >9@ y ie ld .  
N03-/U mole r a t io s  i n  t h e  f i n a l  s o l s  of 0.1 t o  0.12, with no not iceable  
differences being observed i n  t h e  time required f o r  complete dispers ion 
and pept iza t ion .  P r i o r  t o  blending these U02 s o l s  with Pu02 s o l s  the  
"free forinatell was extracted with dry n-hexanol. Since t h e  n-hexnnol 
a l so  ex t r ac t s  water, U02 sols of  up t o  1.55 M U were obtained. These 
sols have been s t a b l e  (ice., deposited no so'Sids on standing) and did 
not  ge l  o r  not iceably thicken during a week of s torage  under argon. 

Preparation of Dense (0.2 Pu, 0.8 23sU) 03 Microspheres (We T. McDuffee) 

The amount of peptizing a c i d  was a l s o  decreased t o  give 

Approximately 1.5 kg of dense (0.2 Pu, 0.8 235U)02 microspheres a r e  
to  be prepared f o r  loading the EBR-11, Ser ies  11 i r r a d i a t i o n  speclhens 
by the  Sphere-Pac technique. Approximately 65% of the  total-  is t u  be i n  
the 200 t o  400 p diam range and the  balance i n  t h e  & ll range. 
l a rge r  s i z e  f r a c t i o n  has been prepared and is being c l a s s i f i e d  i n t o  t h e  
intermediate s i z e s  required.  Preparat ion of the  smaller s i z e  f r a c t i o n  
w i l l  begin immediately upon completion of the  classification-characteri- 
aa t ion  o f  the la rger  s i z e  f r ac t ion .  

The 

In  preparing the mixed PuO2-UO2 sols from Pi102 sol and t h e  enriched 
uo2 sol (previously ex t rac ted  with n-hexanol t o  reduce t h e  formate con- 
cent ra t ion)  we a r e  l imi ted  t o  batch s i z e s  of -200 g U + Pu because of 
c r i t i c a l i t y  considerations.  I n  addi t ion  and f o r  the same reason, "he 
enriched U02 sol is prepared i n  batches of 300 g U each. 
batch differences i n  microsphere f o m b g  behavior of the  mixed oxide 
s o l s  were observed, 
behavior bu.t a lso i n  t h e  physical  appearance and c h a r a c t e r i s t i c s  o f  the  
ge l  and dense oxide microsphwes. 
during which the range o f  operating conditions f o r  microsphere forming 
were explored, r a t h e r  l a r g e  f r ac t ions  of t h e  dr ied gel  microspheres 
were cracked when removed from t h e  forming column and the  y i e l d  of 
round crack-free dense microspheres var ied  widely. From an ini tLa1 
low y i e l d  of  25% t h i s  has increased t o  as high as 9% i n  some o f  t he  
l a t e r  batches. The p a r t i c l e  dens i t i e s  of those l o t s  s o  fa r  character-  
i zed  a r e  395% of theo re t i ca l  with 15 p s i  Hg porosi ty  of <l%. IIowever, 
the  '!tap densi ty"  has been 58 t o  60$, somewhat ~ O G J W  than the desired 
61 to  62%* Since it has been noted i n  t h e  p a s t  t,hat f i r i n g  at; l45O'C 
noticeable increases tlcle l l b p  density",  it is  f e l t  that t h e s e  mricro- 
spheres w i l l  be s u i t a b l e  f o r  use i n  loading the  i r r a d i a t t o n  specimens. 

Some batch-to- 

'These a r e  seen not only i n  t h e  sphere-forming 

I n  t h e  e a r l y  phases o f  the program 
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Small Diameter Urania Wcrospheres (P. A .  Haas) 

S m l l  diameter (44 11) microspheres (see above) are being prepared 
from urania s o l  without the  additfon of  plutonium. I n  experiment,ation 
an ths Sphere-Pac technique these w i l l  be used t o  fill t he  void spaces 
between the  l a rge r  spheres. 

Two batches of -325 mesh urania microspheres were prepared f o r  the  
Metals and Ceramics Division, using the new nonfluidized sphere-forming 
system.7 About 1600 g of  microspheres with a mean diameter o f  25 U, was 
prepared f o r  i r r a d i a t i o n  tes t ing  from 2 M U02 s o l  using 2-ethyl 1-hexanol 
as the drying alcohol. An addi t ional  658 g of microspheres with a mean 
diameter of 15 p was prepared for Sphere-Pac development from 1 M  U02 
s o l  using isoangrl alcohol as t h e  drying solvent.  

- 
References 

1. 

2. 

3 .  

L. 

5 

6*  

76 

J. P. McBride, K. H. McCorkle, W. L. Patt ison,  and B. C .  Finney, 
"Preparation of Concentrated, Crystal l ine Urania Sols  by Solvent 
Extraction," presented a t  the 15th Annual Meeting of t he  American 
Nuclear Society, Sea t t l e ,  Washington, June 15-19, 1969; summary 
published i n  Trans. Am. Nucl. Sac. 12, 206 (1969). Submitted f o r  
publ icat ion i n  Nuclear Applications 7 
J. P. McBride, K e  H. McCorkle, and W. La Patt ison,  LMFBR Fuel C c l e  
Studies Progress Report, No. 5, August (1969), ORm-TM-2671, P. 57- 
B ,  C. Finney and F. G. K i t t s ,  LMFBR Fuel Cycle Studies Progress  
Report, No, 9 ,  November (1969), (1RNL-TM-2795, pp. 51, 52. 

0. K.  Tal lent  and M. H. Lloyd, m R  Fuel Cycle Studies Progress 
Report f o r  October, No, 8, November (1969), ORJ%-TM-276L, pp. 64, 65. 

W, D. Bond, P. A ,  Haas, and J. P. McBri.de, LMFBR Fuel Cycle Studies 
Progress Report, No. 9, November (1969), ORNL-2795, pp. 56, 5'7. 

Chm. Tech. Div. A n n ,  Prog. Rept., May 31, 1969, ORNL-Lh22, pp. 248- 
250" 



60 

111. FUEL FABRICATION AND EVALUATION 

(A. L.  Lot t s ,  C.  M. Cox, J. D. Sease, and 
T. N. Washburn) 

The primary emphasis of f u e l  f a b r i c a t i o n  and evaluat ion s-tud.ies 
r e l a t e d  t o  Llie f u e l  cycle f o r  -the l iquid-metal  f a s t  breeder r eac to r  
is on oxide f u e l s .  The object ive of OUT program i s  to obtain an 
economically optimized (U,Fu)  02 f u e l  cycle f o r  a l iquid-metal  f a s t  
breeder r eac to r  by extending t h e  perfo-rmance c a p a b i l i t y  and advancing 
the  fabrica-Lion technology of oxide Pue1.s. These f u e l s  have t h e  most 
advanced technology and g r e a t e s t  p o t e n t i a l  f o r  r e l i a b l e  operat ion i n  
f i r s t -genera . t ion  LMFBR's. 
ments b u t  as y e t  have not  been exposed under a c t u a l  prototypic  con- 
d i t i o n s .  Currently, t he  burnup and hea-i; r a t e  a r e  1-imited t o  about 
50,000 Mwd/rnetric t on  and 16 kw/ft, respect ively,  based on i r r ad ia - t ion  
experiments wri.tli f u e l s  t h a t  a r e  not  necessa r i ly  op-timized f o r  thermal, 
chemical, and mechanical performance. 

They have been t e s t e d  i n  f a s t - f l u x  environ- 

The c a p a b i l i t y  of oxide f u e l s  can poss ib ly  be improved by 
ad jus t ing  s t r u c t u r e s  o r  void d i s t r i b u t i o n  i n  t h e  fu.els, We emphasize 
i r r a d i a t i n g  fue ls  derfved from t h e  sol-gel process with 'i'noroughly 
character ized s t r u c t u r e s  and void d l s t r i b u t i o n s  d i f f e r e n t  from those 
of t h e  oxide f u e l s  i r r a d i a t e d  heretofore .  These include fuels f a b r i -  
cated by Sphere-Pac, v ib ra to ry  compaction, extrusion, and p e l l e t i z a t i o n .  
We compare t h e  performance of t hese  with t h e  performance of reference 
f u e l s  such as p e l l e t s  derived from mechanically blended powders and 
coprecipi ta ted material. ?"ne development of computer programs t o  a s s i s t  
i n  the  ana lys i s  of t e s t  r e s u l t s  and t h e  development of a mathematical 
model t o  p red ic t  the  performance of a f u e l  rod a r e  in t eg ra t ed  wi-t'n t he  
t e s t  program. 

1. FAEKCCATION DEVELOPr/cENT 

(J. D. Sease) 

"ne purpose of our f a b r i c a t i o n  development work i s  t o  providc 
s u i t a b l e  f a b r i c a t i o n  processes f o r  sol-gel-derived ma te r i a l s  and to  
f a b r i c a t e  i r r a d i a t i o n  t e s t  specimens and capsules f o r  9 v a r i e t y  of 
i r r a d i a t i o n  t e s t s .  

1.1 Process Development 

This work i s  cu r ren t ly  concerned with t he  engineering-scale 
development of t he  Sphere-Pac process and t h e  development of sol-gel  
p e l l e t i z a t i o n  techniques f o r  t h e  f a b r i c a t i o n  of i r r a d i a t i o n  Lest 
specimens. 
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1.1.1 Sphere-Pac (C.  R. Reese) 

The purpose of the  Sphere-Pac development program i s  t o  s tudy the  
var iab1.e~ t h a t  a f f e c t  t he  use of v ib ra to ry  loading of f u e l  microspheres. 
I n  previous experiments the  f i n e  t h o r i a  microspheres used t o  i n f i l t r a t e  
t he  coarse bed were predominantly 744'30-p s i zed  p a r t i c l e s .  A s  t he  
mean p a r t i c l e  s i z e  of t he  coarse bed d i s t r i b u t i o n  was decreased the  
coarse bed dens i ty  increased, whereas t h e  t o t a l  dens i ty  decreased 
rap id ly .  
e f f i c i e n t  packing. 
f i l t r a t e d  w i t h  -25+15-p, U02 f i n e s  showed an increase  i n  packing 
e f f i c i ency .  The Chemical Technology Divis ion was requested t o  supply 
-25" 5-p Tho;? microspheres f o r  Purther  study. 

The f i n e s  used f o r  i n f i l t r a t i o n  were t o o  l a r g e  t o  a f fo rd  
A cursory s tudy i n  which a Tho2 coarse bed was i n -  

1.1.2 P e l l e t i z a t i o n  of Sol-Gel Urania-Plutonia 
(R. A. Bradley, W. H. Yechin) 

'ETR i r r a d i a t i o n  capsules 43-120 and 43-121 w i l l  each contain two 
pins  loaded with (Puo. 20,Uo. 8 0 ) O z  microspheres by the  Sphere-Pac 
process and two p ins  loaded w i t h  8476 dense sol-gel (Puo.80,Uo.8~)0~ 
p e l l e t s .  For both the  p e l l e t s  and microspheres, t he  O/M must be 
1.98 ? 0.01 and t h e  gas r e l ease  l e s s  than 0.10 cm3/g, preferab ly  less 
than 0.05 cm3/g. 
fou r  batches of p e l l e t s  were descr ibed previously.  

The prepara t ion  of t h e  powder and the  f a b r i c a t i o n  of 
1 

The gas r e l ease  of' t he  p e l l e t s  from these  fou r  batches was 
extremely high, about 1.0 cm'/g; theref  ore,  they  were unacceptable. 
Most of those p e l l e t s  were used i n  gas r e l ease  s tud ie s  described i n  
Sect ion 1.1.3 of t h i s  r epor t .  

During t h e  past month we f ab r i ca t ed  s u f f i c i e n t  add i t iona l  p e l l e t s  to 
l aad  the  ETR capsules.  We used t h e  same f a b r i c a t i o n  procedures used 
previously except t h a t  we cooled the  p e l l e t s  from 850°C i n  argon i n -  
s t ead  of Ah'$ H2 t o  prevent t he  r e t en t ion  of H2 by t h e  f u e l .  

Ten ET% pins  have been loaded, f i v e  with p e l l e t s  and f i v e  by the  
The d e n s i t i e s  of t h e  p e l l e t s  were 84 k 1.4 which Sphere-Pac process.  

i s  equivalent  to a smear dens i ty  of 81 t 1% T.D. The smear dens i ty  of 
t he  p ins  loaded by the  Sphere-Pac process was 83 t o  84% T.D. 
rods a r e  p re sen t ly  being welded and undergoing nondestructive t e s t i n g .  

These 

We have completed the  prepara t ion  of the  powder f o r  t he  EBR-11 
pe l le t s  and a r e  p re sen t ly  ca l c in ing  it and performing s i n t e r a b i l i t y  
t e s t s .  

'R. A. Bradley, " P e l l e t i z a t i o n  of Sol-Gel Urania-Plutonis,  " 
Fuel Cycle Technology Monthly Report f o r  Period Ending October 1969. 



1.1.3 ( U , h ) O *  Gas Release Studies  (W. 13. Pechin, 8. A. Bradley) 

The invest igat ion.  of r e t en t ion  of H;! by (IJ7 Rpu)O;? p e l l e t s  during 
heat  treatment has been continued. It was reported l a s t  month t h a t  
a low temperature rnoistiire peak was observed i n  t h e  furnace e f f luen t  
upon hea t ing  ( U , P u ) 0 2  p e l l e t s  i n  C 0 2  a f t e r  cooling i n  A r 4 $  H2. We 
a t t r i b u t e d  t h i s  peak to t he  oxidatioii of IE;? evolved by -the p e l l e t s ;  how- 
ever, the magnitude of the peak was only grea t  enough t o  explain about 
S@ of the  gas volume observed i n  the  gas r e l ease  measurement a t  IGO0"C. 
We f e l t  t h a t  t h i s  might be due t o  incomplete oxidat ion of the  I$% as it 
w a s  evolved. To ge t  more complete oxid-ation of t he  H2, we made two 
runs heat,i.ng t o  400°C i n  a i r  rinstead o f  C02. 
temperature moisture peak equivalent  .to 0.17 cm'//g i n  one run ancl 
0.22 cm3/g i n  -t'e other .  
tile gas r e l ease  volume measured on such p e l l e t s  after cooling i n  
Ai.+$ 132. The increased. value observed on hea t ing  i n  a i r  in s t ead  of 
CO;! i nd ica t e s  t h a t  t he  H2 was not completely oxidized i n  the  C 0 2  and. 
leaves t h e  p o s s i b i l i t y  .Lha'i i-i; may ns-t be comple-Lely oxidized- i n  a i r ;  
thus we have instal.1.ed a c a t a l y t i c  u n i t  i n  t h e  e f f l u e n t  l i n e  from t h e  
furnace t o  ensure complete r eac t ion  between 3 2  and 0 2  before .tie gas 
reaches the moisture monitor. 

This r e su l t ed  i n  a low 

These valu-es represent  about 25 t o  5076 of 

1 . 2  Capsu1.e Fabricat ion 

Fabr ica t ion  of .the EBR-ii, Ser l e s  11 unencapsulated fuel. rods and 
the  ETR oxide capsules continued. 

1.2.1 ERR-11, Se r i e s  11 Unencapsulated Fuel  Rods 
(R. B. P r a t t ,  M. K. Preston) 

During 1970 we plan Lo f a b r i c a t e  19 unencapsulated f u e l  rods f o r  
Planning, a 37-rod subassembly t o  be in se r t ed  i n  t h e  EBR-11 Reactor. 

scheduling, design, and procurement have been the pr inc ipa l  a c b i v i t i e s  
t o  da te .  

Fuel  Rod Design. - The preliminary design f o r  t he  f u e l  rod 
described last month has been t ransmi t ted  t o  the  Rrgonrie Rational. 
Laboratory f o r  review and approval. Approval i s  expected i n  line near  
fu tu re .  

Raw Material Procurement and Qual i f ica t ion .  - Near the end of 
l a s t  month r a w  material. samples were submitted f o r  chemical. ana lys i s .  
To da te  no r e s u l t s  concerning these  samples have been received, Tne 
urgency of this work i s  not c y i t i c a l  a t  t h i s  time. 

Fabriea-Lion of Fuel  P e l l e t s .  - Work i s  continuing on comiiiuution 
Work i s  a l s o  continuing on preparat ion 

The pellet:. specs are 50% 
of t ray-dr ied  plutonium shards.  
of fuel  pe7.let and Sphere-Pac spec i f i ca t ions ,  
complete; those f o r  Sphere-Pac a r e  204'0 complete. 



Fabrication of UQ2 BEarke5 Pel le ts .  - l o  date -the Ceramic Process 
group has t e s t  s in te red  some U82 pel le t s .  These p e l l e t s  Lave been sub- 
mitted f o r  chemical analysis  and gas release determim%ions. We a r e  
c u r r ~ n t l y  awaiting the resu1-k cf: these t e s t s .  Also, a p./zssing die  was 
designed. Fabrication of t h i s  die ib 90% complete. 

Fabrication of Tho2 Insulator  Pel le ts .  - k ~ i n g  the past morlth 
a number o f  tes t  p e l l e t s  were pi-essed and s intered,  
t h a t  %he d i e  being fabricated f o r  pressing Yne UOz bla-riket pel le ts  w i l l  
a l s o  be su i tab le  f o r  pressing T'h.02 insu la tor  pe l le t s .  The 73x02 -Lest 
p e l l e t s  a r e  ready t o  be submitttGi f o r  chemical analysis. 

.Kt was debem-iaed 

Sphere-Pac Act iv i t ies ,  - 'The Chemical. Technology Divis - ion  i s  
current ly  having good success preparing (U, Pu) 02 m.L@rospheres. The 
c r i t i c a l  path present ly  concer??~ Sphere-Pa@ and pel le% fabri  Tat ion 
a c t i v i t i e s  
i n  the  near future ,  

Development work a i  Sphere-Pac loading needs rri~re emphasis 

Equipment Design. - During fabr ica t ion  of the  f u e l  rods a t  l e a s t  
1 em3 of xenon tagging gas must be introduced i n t o  each fuel rod. 
After reviewing methods developed by GE, Pm, AXL, and EBR-11 f o r  
introducing xenon, work was begin on a nzethod more su i tab le  for OUT 
f u e l  pin design. Using the proposed system, each rod i s  evacuated, the 
f r e e  volume determined, and then re-evacuaxed p r io r  t o  val.ving a 
measured amount of xenon i n t o  the rod, 
introduction of a measured amount of helium. The resul. t ing rriixture i s  
a t  a pressure s l i g h t l y  above atmospheric. Cases a r e  introduced through 
a capi l la ry  which i s  pinched, cut, f la t tened,  and welded. This system 
appears t o  be advantageous i n  t h a t  helium and xenon are mixed i n  the  
f u e l  rod. 
needles combined with a system which includes a septum arid a mercury o r  
cryogenic pumping system. Another approach USES a premj-x of helium and 
xenon. This system has the  apparent disadvantage t h a t  subs tan t ia l  
amounts of cos t ly  xenon are l o s t  Lo the system. Our preliminary design 
f o r  the  OEUUL xenon tagging sys-tera has been submitted t o  Em-11 personnel. 
f o r  review and approval. 
have been ordered, and other cornpmen%s a r e  being accwmiL 

This ac t ion  i s  followed by 

Other systems investigated require the use of long hypodermic 

Pressure gages which have long del ivery time 

Welding Development and QuaLiff.ca%ion. - We a r e  presently 
fabr ica t ing  development hardware t o  qua l i fy  the  proposed welding 
procedures, f o r  x-ray technique development, and t o  prepare metallography 
samples. The welds t o  be qua l i f ied  a r e  the : 
tube [a cold area weld], 
[a cold area weld], 
( 4 )  xenon tagging tube closure [glove-box weld]. 
the top end cap w e l d  u n t i l  we 9bi;ain f i n a l  approval on Yne proposed 
f u e l  rod design. 

(1) bd6tom end plug t o  

and 
(2) xemm tagging tube t o  top end plug 

( 3 )  top end plug t o  tube [glove-box weld], 
We w i l l  not develop 
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l..2.2 ETR Mixed Oxide (M. K. Preston) 

The next thermal f lux i r r a d i a t i o n  t e s t  of mixed oxide f u e l s  i s  a 
s e r i e s  of fou r  instrumented capsules fo r  tAe Em. Tie capsules w i l l  
be double encapsulated wi.th NaK hea t  t r a n s f e r  bond and thermocouples 
for  monitoring the  clad sur face  temperatures Fabr ica t ion  of two 
capsules w i t h  f ou r  3-in. fue led  sec t ions  i n  each capsule i s  under way. 

During the  p a s t  month we have completed the  following subassemblies: 
(J.) five each Sphere-Pac f u e l  pins,  
(3) s i x  bottom capsule subassemblies, and ( 4 )  one brazed thermocouple 
assembly cons i s t ing  of t h e  t op  end plug and e igh t  thermocouples brazed 
i n  place.  Two of the  p e l l e t  loaded f u e l  p ins  w i l l  have to  be opened and 
a new end plug welded i n  place due t o  poros i ty  i n  t he  f i n a l  c losure 
welds. We have assembled one complete ET73 diuluny capsule pr imar i ly  t o  
check out t he  NaK-44 loading procedures which i s  scheduled t o  be done 
the  f i r s t  week i n  January. 

(2) f i v e  each pel-let  loaded fuel- pins,  

2 ,  FUEL EVALUATION 

(C.  M. Cox, T. TJ. Washburn, 
J. M. Lei tnaker)  

The f u e l  evaluat ion work involves both out-of-reactor  and i n -  
reac tor  t e s t s  t o  charac te r ize  the f u e l s  of i n t e r e s t  and t o  determine 
performance l i m i t s  of t he  fue l s .  

2 .1  Character izat ion of fiels 

The development of so l -ge l  f u e l  f a b r i c a t i o n  requi res  charac te r i -  
za t ion  of t he  ma te r i a l  t o  con t ro l  -“ne process and t o  determine which 
proper t ies  are important t o  ? - - rad ia t ion  behavior. Casrac te r iza t ion  
requi res  determining both the  chemical composition and the  phys ica l  
p roper t ies .  Thermodynamic s tud ie s  cont r ibu te  t o  the development of 
’che process f o r  t he  f u e l  and a i d  i n  p red ic t ing  fuel performance for 
both i r r a d i a t i o n  t e s t i n g  and model studi-es. 



2.2 I r r a d i a t i o n  of Fuels 

The f i n a l  eva lua t ion  of (U,Pu)02 f u e l s  wikl be based upon t h e i r  
i r r a d i a t i o n  performarlce, The i r r a d i a t i o n  t e s t i n g  program i s  coneen- 
t r a t -  ag on comparative %s%s of" three Pabricat ion forms: 
p e l l e t s ,  and extrusions.  The program includes thermal-f lux i r r a d i a  - 
t i o n s  that permit u s e  of instsurnented capsules and acriiwemerit of nigh 
burnup l e v e l s  i n  r e l a t i v e l y  short times. These t e s t s  will provide 
supplemental information essent;ial t o  the analysis of %he f a s t - f l u x  
i r r a d i a t i o n  tests, i n  which the r a d i a l  f i s s i o n - r a t e  d i s t r i b u t i o n  and 
cladding damage a r e  m o r e  t y p i c a l  of an t i c ipa t ed  L&FBR o-perating con- 
d i t i ons .  The t e s t  program a l s o  includes power trarisien-t; t e s t s  t o  
i nves t iga t e  fuel perf ormame under abnorrflal operat tng conditions 
The development of mathematicab models to pred ic t  f u e l  behavior and of 
computer programs f o r  analyzing f u e l  perf"3mance a r e  -In+,egral p a r t s  
of t he  i r r a d i a t i o n  tes t  program. 

Xphere-Pac, 

No progress to r epor t ,  

2.2.1 Uninstrwnented ETR Tests  (A, €3. Olsen, D. R., Cuxo)  

A s e r i e s  of uniastrumented @a-psules i s  being i r r a d i a t e d  i.n t h e  
X-basket f a c i l i t i e s  of t h e  Engineering T'esC, Reactor (EYE). Each 
capsule contains  four  t e s t  rods arranged i n  tandem. The i n i t i a l  
ob jec t ive  of these  tes ts  was t o  imesti.ga+,e t h e  e f f e c t s  of f a b r i c a t i o n  
form with extended burnzap on f i ss ion-gas  re lease ,  fission product 
migration, and f u e l  swelling. Some capsules a r e  now being i r r a d i a t e d  
s p e c i f i c a l l y  t o  provide short-cooled i r r a d i a t e d  T u e l  f o r  LMFEB re- 
processing s tud ie s .  The cur ren t  s t a t u s  of these  test;~ i s  given i n  
Table 1, 

The metallographic examination of capsules 43-1133 and A3-115 
continued during the pas t  month. Only sec t ions  frm rod 43-115-3 
have not been examined metal lographical ly .  #Be alpha and beta-gamma 
autoradiographs of se l ec t ed  sect ions from both 43-103 and 43-115 a r e  
scheduled f o r  next month, Lhtil these are ava i l ab le ,  d e t a i l e d  ana lys i s  
of t h e  da t a  cannot be completed. 

Fuel f o r  capsules 43-11'7 through 43-119 was scheduled f o r  de l ivery  
t h i s  month, However, a cki.ange i n  the p e l l e t  spec i f i ca t ions  f o r  Fas t  
T e s t  Reactor f u e l  was made recent ly ;  therefore ,  de l ive ry  of t he  f u e l  
f o r  these  t e s t s  i s  now expected i n  February, A final capsule design 
has been developed and hardwdre has been ordered. Detailed s a f e t y  
ana lys i s  ca l cu la t ions  w i l l  be i n i t i a t e d  as soon as the  f u e l  cornposi- 
t i o n  i s  a m i l a b l e .  

Experiment 43-113 is  operat ing witliaut inc ident  in the  Em, 
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2.2.2 Instrumented ETFi Tests  (C. F. Sanders) 

Two instrumented ETR capsules a r e  being constructed to i nves t iga t e  
the swell ing of Sphere-Pac f u e l s  under cond.itions of high f i ss ion-gas  
r e t en t ion .  

During the past month the f u e l  pins  were loaded, and t h e  capsule 
assembly w i l l  be completed i n  January 1970. 

2.2.3 ORR Instrumented Tests 
(R. B. F i t t s ,  V. A. DeCarlo, D. R. Cuneo) 

The ORR instrixnented t e s t s  a r e  designed t o  s tudy t h e  thermal 
performance of test  f i e 1  rods. The f i rs t  s e r i e s  of t e s t s  involves 
studying t h e  sol-gel-derived (V, F’u) 02 fue l s .  

The f irst  test ,  SG-1, was employed t o  check out t h e  t e s t  capsule 
design and obta in  a preliminary look a t  t h e  t h e m a l  performance of 
so l -ge l  Sphere-Pac fue l .  Both objec t ives  were a t t a ined ,  and t h e  
Sphere-Pac f u e l  the-mal performance was found t o  be genera l ly  the  same 
a s  would have been expected f o r  p e l l e t  fuel .  

The second tes t ,  SG-2, contained. Sphere-Pac (U-20$ P u ) O 2  f u e l  and 
was operated a t  gradual ly  increas ing  hea t  generation r a t e s  u n t i l  a f u e l  
central- temperature of 1500°C was reached. 
experiment was removed from the r eac to r  i n  order  t o  metal lographical ly  
examine t h e  f u e l  s t ruc tu re .  This examination w i l l  provide a charac te r i -  
za t ion  of t h e  fuel s t r u c t u r e  a t  and below 1500°C f o r  use as a tempera- 
ture i nd ica to r  i n  uninstrumented i r r a d i a t i o n  tests. Samples f o r  t h i s  
purpose are awaiting t h e i r  t u r n  f o r  examination. Detai led ana lys i s  of 
the in - r eac to r  operat ing data  i s  proceeding. 

A t  t h i s  temperature the  

The t h i r d  capsule, SG-3, contains one f u e l  rod of (G-2@ F u ) O 2  
Sphere-Pac f u e l  a t  a smear dens i ty  of 82% of t h e o r e t i c a l  and a second 
f u e l  rod of so l -ge l  p e l l e t  f u e l  of the same composition and smear 
dens i ty ,  This experiment w i l l  provide a d i r e c t  comparison of 
Sphere-Pac and p e l l e t  f u e l  thermal performance t o  c e n t r a l  temperatures 
of about 2000°C and furnish.  t he  s t ructure- temperature  r e l a t i o n s h i p  a t  
temperatures near  2000°C. This capsule was in se r t ed  i n  the ORR pool- 
side f a c i l i t y  on December 7, 1969 and has operated s a t i s f a c t o r i l y  t o  
a maximum c e n t r a l  temperature of 1100°C t o  date. 
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2.2-4  Tracs ien i  i r r a d i a t i o n  Tests  of Sol-Gel-Derived (U,Pu)O2 
Sphere-Pac: and P e l l e t  Fuels 
(C.  M. Cox, U. R. Cuneo, E- J. Manthos) 

' f i e  second of t he  -two capsules,  TR-1 and TR-2, which were 

Preliminary t e s t  da ta  were 
subjected -to power t ramien 'cs  at the  'm.T reac'cor, was re-turiied 
t o  Oak Ridge on November 17, 1969. 
reported l a s t  month, 
t he  e a r l i e r  i nd ica t ion  t h a t  gone of the  fuel. p ias  f a i l e d .  

I Pos t i r r ad ia t ion  examinations have confirmed 

%ne empty shlpping cask. was returned .to GR-Vallecitos v i a  
Idaho Falls. The inner  capsuJ.es from 7%-I and TR-2 were removed. 
from t h e  outer  capsulks without inc ident  except t h a t  one of t he  
graphi te  s leeves TH-2 was broken during disassembly. Rot'n ou ter  
capsules were returned t o  Building 4508 a f t e r  t h e  inner  capsules 
were removed. The hea ter  cans were removed from both capsule bodies 
and inspected; we saw iio evidences of danmge t o  eit'fler hea t e r  can. 
Tne thermocouples and hea te r s  were checked f o r  e l e c t r i c a l  cont inui ty  
and r e s i s t ance ,  and. the  r e s u l t s  were i d e n t i c a l  t o  those observed 
a f t e r  assembly. The -two hea te r  thermocouples t h a t  apparent ly  f a i l e d  
a f t e r  t he  c a l i b r a t i o n  t r a n s i e n t  of 733-1 were undamaged, and i t  appears 
tliat t he  f a i l u r e s  may have been caused by a f a u l t y  connector e i t h e r  
i n  o r  out of t he  capsule. The lower spr ing  assemblies i n  both capsuJ-es 
were d.amaged. An Allen head s e t  screw which ac ted  as a sp r ing  t r a v e l  
s t o p  was sheared apparent ly  while t he  capsules were being handled a t  .the 
r eac to r  s i t e .  The sheared s e t  screws were removed, and. t h e  two capsules 
were reassembled. We detected. no t r a n s f e r r a b l e  contamination on t'ne 
i n t e r i o r  of t h e  hea te r  cans, capsiile bodies, o r  e x t e r i o r  of t he  capsule 
bodies. 

Both outer  capsule i n t e r i o r s  were evacuated and purged. with argon 
seve ra l  t imes and then f i l l e d  wi th .  argon and sealed.  The outer  sur faces  
of t he  capsule bodies were wrapped with a vapor-phase r u s t  i n h i b i t o r  
paper. The beta-gamma a c t i v i t y  of tile capsule bodies due -to neutron 
a c t i v a t i o n  w m  35 rnr/hr a . t  a d is tance  of 2 in .  
were s to red  on t h e  roof over Room 265 i n  BiiJ-ding 4508. 

Both capsule bodies 

Two flux monitor wires were exposed on t h e  e x t e r i o r  of each 
capsule 'oody during the  t r ans i en t s .  One wiye from each capsule was 
sect ioned i n t o  1- in .  lengths  and submitted f o r  ana lys i s .  The r e s u l t s  
fro-m each s e t  of wires have beer1 recei-ved, and the  f l u x  p r o f i l e  from 
each - i rans ien t  compares favorab1.y with t h e  flux t r ave r se  obtained a t  
TREAT wi.th a 235U fission counter. 

'C. M. Cox and E. J. ManLhos, "Transient Reactor Tests ,"  i a F B R  
Fuel  Q c l c  Studies  Progress Report f o r  November 1969, No. 9, 
ORNL-'TM-2?95, pp. 74-77' (December 196'3) e 
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A request  was received from €'NIL to borrow and use t h e  TREAT 
shipping container  for shipnent of two of t'neir un i r r ad ia t ed  TREAT 
capsules. Their request  was granted, and t h e  empty shipping container 
has been sen t  t o  PNL. 

Pos t i r r ad ia t ion  exmina t ions  of t h e  inner  capsules have been 
i n i t i a t e d .  The inne r  capsules, containing three  f u e l  p ins  each, were 
removed from t h e i r  ou-ter containrnent and gmma scanned outs ide of t h e  
hot  c e l l s ,  The beta-gamma a c t i v k t y  of these  inner  capsules was about 
200-250 mr/hr at 2 in .  f o r  TE-l. and abouk 300-350 mr/hr for W-%. 
Comparing t h e  two, the inner  capsule of !E?-2 showed considerably 
g rea t e r  hea t ing  d i sco lo ra t ion  than  'chat of: TR-1" 

Both inner  capsules have been x-radiographed by Inspect ion 
Engineering. Neutron radiographs were taken a t  TRE2lT. Some regions 
of low dens i ty  and f u e l  colutin separa t ion  have been noted from these,  
Gamma scans outs ide  the  hot, c e l l s  showed normal appearances. Gas 
samples, both from the regions between t h e  inne r  capsules and t h e i r  
containments and those from the  regions above the  N a  coolant, showed 
no f i s s i o n  product actiTritles, 
capsules and t h e  f u e l  p in  assemblies were removed. 

The JJa was melted Prom t h e  inner  

The t o p  and bottom fuel. p ins  of TB-1 and t h e  middle and bottom 
f u e l  p ins  of TR-2 exhibited c i r c m f e r e n t i a l  grooves near t h e i r  bottom 
ends. Discussions with those who handled t h e  pins  during f a b r i c a t i o n  
i n d i c a t e  t'nese may have been caused by a c o l l e t  . used to hold them 
during welding i n  a glove box. 

The six pins  a r e  l i s t e d  here f o r  reference:  

TR-1 Descriptions - 
Top f u e l  pin 14-35, '3%-IC 
Middle f u e l  p in  14-30-1, TR-IB 
Bot-tam f u e l  p in  14-38, TR-IA 

TR-2 
__c 

Descriptions 

Top fuel  p in  14-36-2, TR-IIC 
Middle f u e l  pin 14-30, TR-IIB 
Botton f u e l  pin 14-30, TR-IIA 
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A l l  .t;'rie pins  from TE.-II showed spot ty  d isco lora t ions ,  The 
bottom f u e l  p in  shows these spots  over most of i t s  length. The 
spot ted region of t'ne middle p in  t ape r s  off  t o  a clean appearance 
at t h e  'iop of t he  pin.  me t op  p in  has r e l a t i v e l y  f e w  spots,  and 
they a?-e da.rk aga ins t  a clean eladding background, as opposed to 
l i g h t  spots  zgainst  a dark background TOY the  o ther  two pins,  The 
pins  from m-I were found to be much freer  of these d isco lora t ions ,  
Ma,cro-photographs were taken t o  record these observations. 

Dimensioning and gemianium di ode gama scanning ( i n  Bldg. 4501) 
a r e  cu r ren t ly  under way. Sectioning of the  F u e l  pins w i l l  be done 
a f t e r  consideyation of a l l  the  nondestructive measurements. 

2-2.5 Pas-t Flux I r r a d i a t i o n  T e s t s  (A. R. Olsen, F. J. Koman) 

The E8R-I1 fast  f l u x  i r r a d i a t i o n  tes.t;s are designed t o  approxi- 
mate conditions t o  be encountered i n  a commercial s ca l e  Liquid-Metal 
Fas t  Breeder Reactor. The objec t ive  of these  tes ts  i s  t o  es- tabl ish 
the  effec-Ls of f u e l  f ab r i ca t ion  form, Sphere-Pac o r  pe l l e t ,  and void 
d i s t r i b u t i o n  on t h e  f u e l  swelling, fuel-cladding mechanical- in te rac t ion ,  
i'ission-gas re lease ,  and f i s s i o n  product d i s t r i b u t i o n  i n  a (U,fi) 02 fuel 
operat ing a-t t y p i c a l  heat rates t o  design isurnup l e v e l s  f o r  a power 
productng TJ"BR. 

lFe Se r i e s  I encapsiilated tests a l l  contain Sphere-Pac (U, Pu) 0 2  

fu .e l .  
FIMA. calculated peak burnup) because of t h e  current  scheduled shut- 
down of t he  EBR-11. Two of t'nese fTve capsules a r e  scheduled f o r  
remova.1. during January a:t a peak ca lcu la ted  bumup of 4% FIMA. 
A~p'roval-in-pl.inciple Tor t h e  conbinued i r r a d i a t i o n  of the other  t h ree  
capsules t o  a lournup l e v e l  of 10% FIMA has been received. The revised 
s a f e t y  ana lys i s  for t h i s  extended burnup exposure i s  approximately 
95% complete. 
ca lcu la t ions  have been completed. The r e su l t i ng  s t r e s s - s t r a i n  r e l a t ion -  
sh ips  were calculated by the  F'M,dDEL code, 
f iss i .on products and decay a c t i v i t i e s  a r e  b e h g  calculated.  

Tflere has been no change i.n the s t a t u s  of these  tests (3*4$ 

Tlne f i s s i o n  'gas pressure buildup and f u e l  swelling 

i n  addi t ion,  the  buildup of 

The Se r i e s  11 unencapsulated f u e l  rod design has no t  y e t  been 
approved by the EBR-IT project .  
pins i s  described i n  Section 1.2 of t h i s  r,aport;. 

The sta.tus of the  f ab r i ca t ion  of these 
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