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A PROBABILISTIC MODEL FOR ESTIMATING THE OPERATING COST

OF AN ELECTRIC POWER GENERATING SYSTEM

D. S. Joy and R. T. Jenkins

ABSTRACT

The concept of using a probabilistic simulation for
estimating the operating cost of generating plants within
an electrical utility was first introduced in 19^7^ and has
recently been gaining acceptance in the United States.
Basically, the probabilistic simulation technique develops
the cost of operating a utility system over an extended
period of time by forecasting the power to be generated by
each plant. The basic model for this technique requires
the following information: systemJLoad duration curve_j
loading order of units, generating unit characteristics,
and energy supplied by energy-limited units such as hydro-
electric_juLnit_s-^ The major advantage of the technique is
its capability for simulating the effects of random events
such as unit forced-outages.

This report describes the basic probabilistic simulation
model and modifications that have been made to represent more
effectively the operation of large thermal units during low
load periods and to take into consideration the effect of
hydroelectric and pumped-storage units. The model is versa
tile and can be modified easily. Computation times have
averaged between 0.001 and 0.01 sec/unit on an IBM 360/91
computer with a memory requirement of approximately 80 K
bytes. The probabilistic simulation model is used as a
subroutine for estimating operating costs in conjunction
with optimization techniques for studying utility planning
problems.

1. INTRODUCTION

The prediction of system operating expenses for a wide range of

conditions is an important aspect of utility planning. Some of the

long-range planning problems include those for system expansion, main

tenance scheduling, nuclear refueling, and hydroelectric utilization.

In applying classical optimization techniques to these problems, it is

necessary to simulate the operation of the utility system for different

values of the decision variables. This report describes an improved



technique that is capable of simulating the effects of random events

such as unit forced-outages.

Programs are available for determining the optimal dispatching of
1 2

generation units. ' These programs consider load changes on an hourly

basis (Fig. l) and are generally applied to short-term problems (i.e.,

problems extending from one day to one week) because the uncertainty of

unit availability and system load is relatively small. For long-term

studies, the uncertainties of unit availabilities and load forecast

errors are significant and these factors become more important. Since

these factors involve random events, a Monte-Carlo technique would have

to be used in conjunction with the hourly loading models in order to

estimate a statistically significant range and average for the operating

costs over extended time periods. The resulting computational require

ments make this approach unattractive, particularly in multiyear studies.

Prior to i960, a load duration curve, which is constructed by

rearranging the hourly loads in decreasing order of magnitude, was

utilized for estimating long-term utility operation. Horizontal lines

were drawn at the capacities of the various units, and the area between

these lines represented an approximation of the generating requirements

for each unit (Fig. 2). Outages were approximated by reducing the

capacities of the units by a few percent. This method tends to under

estimate the system operating cost since it cannot reflect realistically

the effects of unit outages and load forecast errors. In such a case,

the expected operation of the base loaded units will generally be over

estimated while the operation of the peaking units will be underestimated.

The magnitude of this bias depends on the particular power system and

becomes more important in systems featuring:

(1) a small number of units;

(2) a wide range of unit production costs;

(3) high outage rates;

(h) large variability in loads;

(5) large variability of energy availability.
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The need for a probabilistic simulation of utility operation has

developed because many of the modern utility systems are acquiring the

above-mentioned characteristics. The current trend toward the construc

tion of larger units and the subsequent retirement of old, smaller units

is concentrating a significant amount of the generating capacity in a

smaller number of units (item l). In recent years, a large number of

gas turbine peaking units have been installed to help carry the peak

load. With the increased operating cost associated with these units,

item 2 begins to be satisfied. The new, larger units are experiencing

a higher forced-outage rate than the older units (item 3). Item h has

emerged in the past decade with the advent of electrical heating and

air conditioning, thus making the daily peak load dependent on weather

changes, particularly during the summer and winter months. Hydroelectric

energy is dependent on rainfall, and nuclear units will probably be

classified under item 5 as these units approach their refueling date.

During the past few years a stochastic approach to utility simula-
k 5

tion has been developed by Baleriaux and Booth. This approach statisti

cally incorporates the random effect of unit outages into the load duration

curve. A plant loading order is required since the expected operation of

a given plant is influenced by the forced-outage rates of the plants

listed below it in the loading order. The algorithm calculates the proba

bility of loss of load, the expected generation requirement, and hours of

operation for each plant.

The basic algorithm is presented in this report. The simulation of

energy-limited plants such as hydroelectric units or pumped-storage units

is also discussed.

Acknowledgments. — This document is a progress report of the Power

Systems Simulation Task Force of the Joint Systems Analysis Study Group.

The members of the Task Force are: R. T. Jenkins, Tennessee Valley

Authority, Chairman; J. Whysong, Commonwealth Edison Company; and

D. Joy, Oak Ridge National Laboratory. The authors especially wish

to acknowledge the contributions made by R. R. Booth, State Electrical

Commission of Victoria, Australia, who introduced the concept of proba

bilistic simulation to the members of the Task Force.



2. THE BASIC BALERIAUX METHOD OF COMPUTING ENERGY

CONTRIBUTIONS OF THERMAL UNITS TO A GIVEN LOAD PATTERN

2.1 Load Representation

When the hourly system loads are plotted as a function of time, the

resulting curve (Fig. l) gives a chronological representation of the

transient generating power (load) requirement of a utility system. The

area under the curve is the total energy requirement to be delivered by

the system over the time period being considered. If these same hourly

loads are rearranged in decreasing order of magnitude, the resulting

curve (Fig. 2) is called a load duration curve. The area under the load

duration curve is the total energy requirement; however, the chronological

sequence of the loads has been lost. For the load duration curve, the

abscissa represents the number of hours during which the system load

equals or exceeds the value of the associated power on the ordinate.

By normalizing the time variable, the value at any point on the abscissa

becomes the fraction of the entire period for which the load equals or

exceeds the associated power. Carrying this logic a step further, the

abscissa can be considered to represent the probability that a particular

value of the system load will be equaled or exceeded.

By reversing the ordinate and abscissa (Fig. 3)> the load duration

can be considered as a cumulative probability distribution. The load

density function (Fig. h) can be derived from the load duration curve

by using Eq. (l):

tw - - ^ , (i)
where

<t(x) = load density function,

L(x) = cumulative load distribution function,

x = load, MW.
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2.2 Unit Forced-Outages

All generating units are subject to random outages caused by various

types of equipment malfunction. The occurrence and duration of these

forced-outages are unpredictable. The simplest stochastic method for

treating unit reliability is to define two possible states for each

unit. The unit is either available and capable of full power genera

tion, or the unit is not available and is unable to deliver any power.

More-complicated "state definitions" can be used to represent unit

deratings.

Associated with each state is the probability of a unit being in

that state. The probability of a unit being available is a., while the

probability of not being available is q^. Since the unit must be in one

of the two states,

a± + q± = 1.0 . (2)

The probability q. is normally called the expected forced-outage rate.

The probability of having various amounts of capacity out of service

due to forced-outages can be determined for any set of generating units

once the availabilities (a.'s) are defined. By assuming that the units

are totally independent of one another, a forced-outage distribution

function can be calculated using a recursive relationship similar to

that used for a binomial distribution. If all the generating units had

the same capacity and forced-outage rate, the forced-outage distribution

would be a binomial distribution. However, since generating units have

various capacities and different forced-outage rates, the forced-outage

distribution is built up sequentially by considering one unit at a time.

The following example will illustrate how the forced-outage distribution

function is generated. Consider the three generating units described

in Table 1. For a system consisting of only the first unit, the distri

bution function of forced-outages can be written by inspection and is

shown in column 2 of Table 2. When the second unit is added, it is

necessary to calculate the probabilities of having various amounts of

capacity out of service. This is done by using the previously calcu

lated distribution function and the availability of unit 2. When both



Unit No.

1

2

3

Power

Outage, x

(MW)

0

100

200

300

Uoo

500

Table 1. Sample Generating Units

Capacity
(MW)

200

200

100

Unit Probability

Available

0.80

0.80

0.90

Not Available

0.20

0.20

0.10

Table 2. Distribution of Forced-Outages

Mx)

o.8o

0.0

0.20

0.0

0.0

0.0

Probability of Occurrence

PP(x)

0.6k

0.0

0.32

0.0

0.0U

0.0

P3(x)

0.576

0.06k

0.288

0.032

0.036

0.001+
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unit 1 and unit 2 are available the outage, x (in MW), would be zero;

and, by multiplying the probabilities of these events, one obtains:

P2(0) =P1(0) • a2 (3)

= (0.80)(0.80) = 0.6k,

where

P (x) = the probability of having x MW out of service in a

two-plant system,

P, (x) = the probability of having x MW out of service in a

one-plant system,

a„ = the availability of unit 2.

The following two possible events would result in 200 MW being out of

service: unit 1 down, with unit 2 available; and unit 1 available,

with unit 2 down. The probability of this event is:

P2(200) = P1(200) • ag + P1(0) • q2 (k)

= (0.2)(0.8) + (0.8)(0.2) = 0.32.

The probability of both unit 1 and unit 2 being out of service simul

taneously (a total of ^00 MW out of service) is:

P2(U00) =P1(200) • q2 (5)

= (0.2)(0.2) = 0.04.

The forced-outage distribution for the two units is shown in column 3

of Table 2. The third unit is added to the distribution in a manner

similar to that just described, and the results of this calculation are

summarized in column k of Table 2.

The general form of the recursion equation for adding any number of

units is:

where

P (y) = P i(y) • a + P ,(z) • ci for z & 0, (6)
nKJ' n-lw/ n n-lv J n > \ j

P (y) = P i (y) ' a for z < 0 ,

x = capacity of nth unit,

y = MW out of service,

z = y - x .
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In Eq. (6), y is assumed to take on all possible values of the

power outages. For computational purposes, it is convenient to divide

the possible outages into even steps of 50 or 100 MW with the probability

of an outage not falling exactly on these steps being divided proportion

ally between the two adjacent steps.

2.3 Equivalent Load

After the load and the outages have been developed in separate

distribution functions, it is necessary to consider the combined effects

of the two sets of stochastic events. One generally considers that the

customer-imposed load on a power system is served by the total installed

capacity, minus the capacity which is out of service. An alternative

approach is to assume that the units that are down due to forced-outages

contribute their rated capacity to the total system capacity but, at the

same time, impose a load exactly equal to their rated capacity. This

approach leads to the following definition of equivalent load:

E = L + 0 , (7)

where

E = equivalent load, MW,

L = system demand, MW

0 = load caused by forced-outages, MW.

Both terms on the right-hand side of Eq. (7) are random variables,

and an equivalent load distribution function can be generated by con

volving the load density function with the forced-outage density function.

This technique is equivalent to determining the probability of observing

all possible combinations of system load and unit outages which equal the

same equivalent load and assigning the sum of these probabilities as the

probability of observing the equivalent load, as follows:
x -1
->

PE(x) =^PL(z) •P0(y) , subject (8)
to x = y + z ,

2 .- t - y
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where

P (x) = equivalent load distribution function,

PL(z)
P0(y)

system load distribution function,

forced-outage distribution function,

x = equivalent load, MW,

y = total system outage, MW,

z = system load, MW.

For continuous density functions, the equivalent load distribution

function would be calculated by

P (x) = | P (z) P (y) dy .
"0

(9)

This technique is best illustrated by an example. Consider the

outage distribution for a three-unit system, shown in Table 2, and the

discrete load density function, shown in Table 3- The calculation of

the probability of obtaining various levels of equivalent load is

shown in Table k.

Table 3- Discrete Load Density Function

Load (MW)

0

100

200

300

too

500

Probability

0.0

0.2

O.k

0.3

0.1

0.0
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Table k. Calculation of the Probability of Obtaining Various Levels of Equivalent Load

System
Load, L

(MW)

Power

Outage, 0
(MW)

Probabilities For:

Combined Probability
Probability of E

Equivalent
Load, E (MW) Load Outage

0 0 0 0.0 0.576 0.0 0.0

100 100

0

0

100

0.2

0.0

0.576
0.061+

0.1152'
0.0 j 0.1152

200 200

100

0

0

100

200

0.1+
0.20

0.00

0.576
0.061+
0.288

0.2301+""
0.0128
0.0 _

0.21+32

300 300
200

100

0

0

100

200

300

0.3
0.1+
0.2

0.0

0.576
0.061+
0.288
0.032

0.1728'
0.0256
0.0576
0.0

J

0.2560

1+00 1+00
300
200

100

0

0

100

200

300

1+00

0.1

0.3
0.1+
0.2

0.0

0.576
0.061+
0.288
0.032
0.036

0.0576'
0.0192
0.1152
0.0061+
0.0 J

• 0.1981+

500 500
1+00
300
200

100

0

0

100

200

300
1+00
500

0.0

0.1

0.3
0.1+
0.2

0.0

0.576
0.061+
0.288
0.032
0.036
0.001+

0.0 1
0.006!+
0.0861+
0.0128
0.0072
0.0 J

0.1128

600 1+00
300
200

100

200

300
1+00
500

0.1

0.3
0.1+
0.2

0.288
0.032

0.036
0.001+

0.0288'
0.0096
0.011+1+
0.0008^

0.0536

700 1+00
300
200

300
1+00
500

0.1

0.3
0.1+

0.032
O.036
0.001+

0.0032^
0.0108
0.0016^

>• 0.0156

800 1+00
300

1+00
500

0.1

0.3

0.036
0.-001+

0.0036"! 0.001+8
0.0012 J

900 1+00 500 0.1 0.001+ 0.0001+ 0.0001+

TOTAL 1.0000
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The load density function and the equivalent load distribution

have the same general shape. As expected, the sum of each distribution

is equal to unity. Both distributions have the same minimum load; how

ever, in general, the maximum equivalent load is equal to the sum of the

peak system load and the total system capacity. The maximum equivalent

load would be less than this sum only if some of the generating units

were 100$ reliable (a. = 1.0).

A cumulative equivalent load distribution (Fig. 5) can be generated

from the equivalent load density function by Eq. (10):

F(x) = 1.0 - P„(y) dy , (10)
J0 E

where

F(x) = the cumulative equivalent load distribution function.

As will be shown later, the cumulative distribution function is a con

venient way to represent the equivalent load data, and the curve gener

ated by using these data will be called the equivalent load curve. As

shown in Fig. 5; the equivalent load curve has the same general shape

as the load duration curve. As mentioned earlier, the area under the

load duration curve equals the total energy requirement for the system

over the time period being considered. As a result of the contribution

of unit outages to the equivalent load, the area under the equivalent

load curve is greater than the area under the load duration curve and

represents equivalent energy.

Z.k Loss-of-Load Probability, and Unserved Energy

Much information can be derived from the equivalent load curve and

its subsequent modifications. In Fig. 6, the equivalent load curve is

shown for a system of N generating units and is labeled F (x). That is,

the availabilities of N plants were used to generate the forced-outage

distribution that comprises a part of the equivalent load curve. The

system capacity, X^, has also been plotted on the abscissa. Referring

to the definition of the equivalent load curve [Eq. (10) ], it is evident
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that P* is the probability of having an equivalent load equal to or

greater than the system capacity. Since the generating system would

not be able to supply loads greater than the system capacity, P* is

the probability of loss of load, and the area under the curve to the

right of X\t is proportional to the expected energy demand that could not

be served. It is important to note that, whereas the area under the

equivalent load curve is not system energy, the portion of the area that

lies to the right of the system capacity, X , is true energy. Hence

u = t _ FN(x) dx , (11)
JX

where

u = expected amount of unserved energy, MWhr,

x = length of time period, hr.

2.5 Contribution of Individual Generating Units to Serving Load

The procedure described above can be modified to calculate the

expected generation requirement for each unit in a power system. The

discussion in this section will consider only conventional thermal

units. The simulation of hydroelectric and pumped-storage units will

be discussed in later sections.

When a power system is simulated, the order in which the plants

are loaded must be specified. In practice, the loading order will be

based on unit economics and geographic considerations that could include

transmission constraints. In the basic algorithm, a simplified interpre

tation which assumes sequential loading of the generating units is made

concerning the loading order.

Consider a subset of the original system containing (N - l) -units,

where the last unit in the loading order, unit N, has been removed from

the system. Following the procedures previously outlined, an equivalent

load curve can be generated for this subsystem. This new curve is

labeled F (x) in Fig. 7- Notice that the curve F (x) lies to the

left and below the original equivalent load curve, P-W(x)- This shift
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is caused by removing the effect of the forced-outages of unit N from

the outage distribution before the latter is convolved with the load

distribution. The probability P can be interpreted as the loss-of-

load probability of the subset of (N - l) plants. The area under the

curve F 1(x) and located to the right of the new system capacity, X ,

represents the expected energy requirement that cannot be served with

the set of (N - l) units.

If an additional unit (unit N) of capacity Y, which is defined as

Y =*N "\-l > <12>

is available, it would be used to generate the energy under the equivalent

load curve F„ ,(x) between the capacities X and X^. However, unit N

is also subject to random forced-outages and is not expected to be avail

able 100$ of the time. Hence the expected generation of this unit would

be:

ENGW = aN T
XN

FN-1(x) dx , (13)

Vl
where

ENGjx = expected generation of unit N, MWhr.

The probability P* represents the fraction of time that unit N

will be called upon to carry some load. Hence the hours of operation

of unit N (i.e., H-.) can be calculated by Eq. (ik):

HN =PN-1 *T •*N • (lU)

Also, the hours of operating unit N between any two-capacity limits c and

b can be determined from the equivalent load curve F (x) and Eq. (15):

e-t^Ff^Cc) -Vi(d)] (15)
for L s c <; d < X

'N
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The expected loadings of the next unit in the loading order, unit

(N - l), can be calculated by considering a subset containing (N - 2)

plants. Iterations of this type are repeated until the expected gener

ation of all units in the system have been calculated. When the expected

loading of the first plant in the loading order is calculated, the subset

used to develop the equivalent load curve is a null set; and, from Eq.

(7), the equivalent load curve, F , must be identical to the original

load duration curve. Hence the original equivalent load curve Fw(x)

will gradually reduce to the load duration curve as the effects of unit

forced-outages are removed.

Once the expected generations have been determined for each unit,

the expected operating costs may be estimated. The simplest method

would be to use an average incremental cost for each unit and simply

multiply this cost by the expected generation. More complicated cost

functions could be used since the hours of operating between levels of

various capacities can be determined from Eq. (15).

2.6 Sample Results

The results of applying the basic probabilistic model to a sample

generating system containing only thermal units are shown in Table 5.

The load duration curves are represented by a fourth-order polynomial,

Eq. (16):

y = ax4 + bx3 + ex2 + dx + e , (l6)

where

y = fraction of peak load,

x = fraction of time increment.

Three cases are shown in Table 5. The coefficients in Eq. (16) are the

same in each case for peak loads varying from 1872 MW to 2209 MW.

Each case covers a time period of 672 hr.

The basic probabilistic method predicts that each unit in the

system will be operated to some extent. There is also an expected load

that the system would not be able to serve. Note that the sum of the



Table 5. Results of Applying the Basic Probabilistic Model to a Sample Generating System

ST
Case I

Plant No. of

Units

Capacity/Unit
(MW)

BH 1 75

Nl 1 300

BA 1 250

Bl 1 250

B2 1 350

B3 1 250

Bit 1 200

B5 1 150

PK 3 50

PS 2 125

H 1 1+00

Load duration curve for each case:

Availability Position in

Loading Order

Expected

Generation

(GWhr)

1.00 1 50.1+0

0.92 2 185.1+7

0.85 3 ll+2.80

0.90 1+ 151.20

0.91* 5 219.97

0.92 6 132.37

0.95 7 67.97

O.96 8 29 M

O.98 9 ll+.OO

0.99 10 8.19

0.99 11 1.50

Unserved energy, GWhr 0.05

Total, GWhr 1003.35

Peak load, MW 1872

Energy required, GWhr 1003.35

Loss-of-load probability 0.00079

y = 1.1+37186 x* - 3.818328 x3 + 3.2l8ll+5 x3
where y = fraction of peak load

x = fraction of 672-hr time period.

1.223198 x + 1.003612,

Capacity
Factor

1.000

0.920

0.850

0.900

0.935

0.788

0.506

0.292

0.139

0.01+9

0.006

Case
Expected

Generation

(GWhr)

50.1+0

185.1+7

11+2.80

151.20

221.09

11+2.93

91.70

1+1.61+

25.*+0

15.66

3.51

0.16

1071.96

2000

1071.95

O.OO208

II

Capacity
Factor

1.000

0.920

0.850

0.900

O.9UO

0.851

0.682

0.1+13

0.252

0.093

0.013

Case

Expected
Generation

(GWhr)

50.1+0

185.1+7

1U2.80

151.20

221.09

152.32

112.57

69.23

1+6.23

39.31+

12.50

0.83

1183.98

2209

1183.97

0.01031+

III

Capacity
Factor

1.000

0.920

0.850

0.900

0.9^0

0.907

0.838

0.687

0.1+59

0.231+

0.01+6

00

H
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expected generation for each plant plus the unserved load equals the

area under the load duration curve.

For comparison, the same three cases are repeated in Table 6 by

assuming that all generating units are 100$ reliable. This is equivalent

to using the load duration curve to predict the unit loading. Under this

assumption, some of the units in the upper positions of the loading order

are not expected to generate any energy. These units (e.g., gas turbines)

are generally the most expensive units to operate, and the system oper

ating costs would be underestimated, in this case, by ignoring the effect

of forced-outages.

2.7 Two-Block Representation of Units

The simulation of the loading of the generating units used in the

basic method is somewhat unrealistic. This method essentially assumes

that a particular plant will be operated at its rated capacity before

the next unit in the loading order will be required to carry any load.

In actual utility operations, the units are not loaded in this manner.

Instead, several units will be operated at levels below their maximum

capacities in order to supply sufficient spinning reserve. During

periods of low load, many units might be operated near their minimum

capacity instead of forcing a short-term shutdown.

Booth has suggested that the simulation of unit loadings could be

improved by dividing the total capacity into two capacity blocks, which

are then placed in nonadjacent positions in the loading order. The

cross-hatched areas in Fig. 8 show how a single unit might be repre

sented. The sum of the line segments ab and ef equals the total capacity

of the unit. It would be unrealistic to have the segment ab represent

a capacity less than the minimum capacity; however, this segment could

represent a larger portion of the total capacity. The segment ab will

be referred to as the "base block" of the unit, and the segment ef will

be referred to as the "load following block".

The area abed in Fig. 8 is proportional to the expected generation

of the base block, and the length ad is proportional to the expected



Plant No. of

Units

Capacity/Unit
(MW)

BH 1 75

Nl 1 300

BA 1 250

Bl 1 250

B2 1 350

B3 1 250

Bit 1 200

B5 1 150

PK 3 50

PS 2 125

H 1 1+00

Load duration curve for each case:

Table 6. Sample Results, Assuming That All Plants Are lOOjt Available

Availability Position in

Loading Order

Case Ia

Expected

Generation

(GWhr)
Capacity
Factor

Case II

Expected

Generation

(GWhr)
Capacity
Factor

Case III

Expected

Generation

(GWhr)
Capacity
Factor

1.00 1 50.1+0 1.000 50.1+0 1.000 50.1+0 1.000

1.00 2 201.60 1.000 201.60 1.000 201.60 1.000

1.00 3 168.00 1.000 168.00 1.000 168.00 1.000

1.00 1+ 168.00 1.000 168.00 1.000 168.00 1.000

1.00 5 233.50 0.993 235.20 1.000 235.20 1.000

1.00 6 132.01+ 0.786 11+8.90 0.886 161+.31 0.978

1.00 7 1+2.35 0.315 77.35 0.576 108.70 0.809

1.00 8 7.01 0.070 17.15 0.170 57.52 0.571
LN3
00

1.00 9 0.1+1+ 0.001+ 5.20 0.052 21.32 0.212

1.00 10 0.0 0.000 0.15 0.001 8.92 0.053

1.00 11 0.0 0.000 0.0 0.000 0.00 0.000

Unserved energy, GWhr 0.0 0.0 0.0

Total, GWhr 1003.3!+ 1071.95 1183.97

Peak load, MW 1872 2000 2209

Energy required, GWhr 1003.35 1071.95 1183.97

Loss-of -load probability 0.0 0.0 0.0

y = 1.1+37186 x* - 3.818328 x3 + 3.2l8ll+5 xs - 1.223198 x + I.OO3612,
where y = fraction of peak load

x = fraction of 672-hr time period.
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number of hours of operation. For the load following block, the expected

generation is proportional to the area efgh, and the expected hours of

operation is proportional to the length eh.

In the two-block representation, the development of the original

equivalent load curve E„(x) and the calculation of the loss-of-load

probability and the associated energy that is not served are the same

as described for the basic model. Only the total capacities of the

generating units are considered in these steps. The logic used to

modify the equivalent load curve for the calculation of the energy

contributions of each plant is somewhat different. To demonstrate the

logic of the two-block technique, consider a system containing four

generating units (PI, P2, P3, and l?k), each of which will be represented

by two capacity blocks. The nomenclature P1B and P1L will be used to

distinguish the base block and the load following block of the various

units. The loading order for this example is: P1B, P2B, P3B, P1L, P2L,

PUB, P3L, P^+L. As discussed previously, the energy requirements of the

units are calculated in the reverse order. Hence the first block to be

considered is pUl (load following block of unit k). The equivalent load

curve is modified by removing the forced-outage effects of unit k, thus

generating a new curve F^(x). The entire unit is removed in this step.
If this was not done, forced-outages of the base block would be partially

covered by the load following block. Such an arrangement is not physi

cally possible and also violates the two-state assumption, which speci

fies that a unit is either 100$ available or not available at all. As

in the basic method, the area efhg is multiplied by the availability of

the unit and the number of hours in the time period to determine the

energy contribution of the load following block [see Eq. (13)]. The

expected operating time of this block is calculated by Eq. (lk). Next,

the forced-outage rate of the base block of unit k must be added to the

equivalent load curve used to calculate the energy requirements of block

VkL. This step is necessary since any units above P^+B in the loading

order (unit P3L in this case) will help cover forced-outages of the base

block.
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The next capacity block to be considered is P3L, and the calcula-

tional procedure used above is repeated. Moving further down the loading

order, block PUB, the base block of unit k, is encountered. The equiva

lent load curve is again modified; however, only the forced-outage effects

of the base part of unit k are removed. The forced-outage effects of the

load following block were removed when the energy requirement of PUL was

calculated. The energy requirement and the hours of operation of this

block are again calculated by Eqs. (13) and (ik). Since this is a base

block of a unit, it is not necessary to remodify the equivalent load

curve before the calculations for the next capacity block are started.

In general, when a two-block representation of a generating unit

is used, the initial modification of the equivalent load curve consists

of removing the forced-outage effects of the block under consideration

and all blocks of the unit occupying lower positions in the loading

order. After the expected energy requirements have been calculated,

the equivalent load curve must be remodified by adding the forced-outage

effects of only those blocks of the unit that occupy a lower position

in the loading order. Note that, during these modifications, the unit

is treated as a single entity with a capacity equal to the sum of the

blocks being removed or added.

Consistent with the two-state representation, both blocks of a

generating unit are assumed to have the same availability. However,

different fuel costs may be assigned to each block to more accurately

reflect actual operating costs.

The use of the two-block representation gives the user two degrees

of freedom in simulating a utility system. The capacities associated

with the base block and the load following block are variables. The

only constraint placed on these variables is that the sum of the block

capacities must equal the total unit capacity. The position of each of

the two blocks in the loading order is also a variable. Additional

capacity blocks could be defined for any unit without any loss in

generality; however, experience has indicated that two blocks are

sufficient.
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A sample utility system containing only thermal units is described

in Table 7> where the division of the major units into two capacity blocks

and the assumed loading order are shown. The expected energy of each unit

was calculated for the system, using the same load data reported in

Table 5; the results are shown in Table 8. This is the same system that

was used for the sample calculations of Sect. 2.6. Note that the loss-

of-load probability and expected unserved energy calculated with the two-

block model are identical to the results shown in Table 5. Also, the

last three units in the loading order (PK, PS and H) are represented by

a single capacity block; and, as expected, the calculated expected ener

gies for these units are identical with the results of Table 5.

2.8 Simulation of Hydroelectric Units

Thermal generating units can be operated at their maximum capacity

for extended periods of time if this type of operation is required.

Because of reservoir constraints, hydroelectric units may only be able

to generate a fixed amount of energy. Hence it is desirable to utilize

the hydroelectric energy in the most economical manner. These units are

generally used to replace or off-load the more expensive thermal units

(i.e., the units in the upper positions of the loading order). In order

to simulate the effect of hydroelectric units, the amount of energy to

be generated by each unit must be specified.

The hydroelectric units are assigned to the top positions of the

loading order. As the result of various combinations of system load and

unit outages, a hydroelectric unit would be expected to generate some

energy to prevent excessive loss of load. At this point, the model does

not distinguish between a hydroelectric unit and a thermal unit. The

expected generation calculated for the hydroelectric unit would be

identical to the expected generation for a thermal unit with the same

capacity, availability, and position in the loading order. The expected

generation of the hydroelectric plant can be interpreted as a minimum

generation requirement. The expected generation of plant H (see Table 8)

would represent the expected minimum hydroelectric requirement.



Table 7- Description of Sample Utility System, Using Two-Block Representation Technique

No. of

Units

Total

Capacity/Unit
(MW)

Availability

Base Block Peak Block

Plant Capaci
(MW)

ty Position in

Loading Order
Capacity

(MW)
Position in

Loading Order

BH 1 75 1.00 75 1 0 _

Nl 1 300 0.92 75 2 225 7

BA 1 250 0.85 90 3 160 8

Bl 1 250 0.90 90 k 160 9

B2 1 350 O.9I+ 110 5 2^0 10

B3 1 250 0.92 100 6 150 13

Bk 1 200 0.95 65 11 135 Ik

B5 1 150 O.96 50 12 100 15

PK 3 50 O.98 50 16 0 -

PS 2 125 0.99 125 17 0 -

H 1 i+00 0.99 Uoo 18 0 -

CO

00



Table 8. Expected Unit Generations Using Two-Block Representation

Case I Case II Case Ill

Plant

Expected Generation (GWhr)
Base Load Following Total
Block Block

Capacity
Factor

Expected Generation (GWhr)
Base Load Following Total
Block Block

Capacity
Factor

Expecti
Base

Block

id Generation (GWhr)
Load Following Total

Block

Capacity
Factor

BH 50.1+0 _ 50.1+0 1.000 50.1+0 - 50.1+0 1.000 50.1+0 - 50.1+0 1.000

Nl 1+6.37 139.10 185.U7 0.920 1+6.37 139-10 185.1+7 0.920 1+6.37 139.10 185. "+7 0.920

BA 51.1+1 91.39 11+2.80 0.850 51.1+1 91.39 11+2.80 0.850 51.1+1 91-39 11+2.80 0.850

Bl 51+.1+3 96.77 151.20 0.900 51+.1+3 96.77 151.20 0.900 51+.1+3 96.77 151.20 0.900

B2 69. 1+8 11+5.1+1 211+.89 0.9l!+ 69.1+8 11+9-97 219.1+5 0.933 69.1+8 151.61 221.09 0.91+0

B3 61.82 58.89 120.71 0.718 61.82 7U.06 135.88 0.809 61.82 81+.81 1I+6.63 0.873 N
Bl+ 35.78 31*. 51* 70.32 0.523 38.1+0 1+9-05 87.1+5 O.65I 1+1.35 70.91 112.26 0.835 ^

B5 26.27 17.55 1+3.82 0.1+35 28.71 25.87 51+.58 0.51+1 31.1+0 1+3.83 75.23 O.7I+6

PK 13.99 - 13.99 0.139 25.!+0
-

25.1+0 0.252 1+6.22
- 1+6.22 0.1+58

PS 8.19 -
8.19 O.0U9 15.66

-
15.66 0.093 39.31+ - 39.31+ 0.231+

H . 1.50

Unserved

Peak load

Energy re

energy, GWhr

Total, GWhr

., MW

:quired, GWhr

1.50

0.05

1003.31+

1872

1003.35

0.CO6 3.51 3.51

0.16

1071.96

2000

1071.95

0.013 12.50 12.50

0.83

1183-97

2209

1183.97

0.01+6

Loss-of-load probability 0.00079 O.OO208 0.01031+
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If the minimum energy requirement is greater than the energy allo

cated for the hydroelectric unit, the system is deficient in energy, and

this deficiency should be added to the unserved energy. However, if the

allocation of hydroelectric energy is greater than the minimum require

ment, the excess energy is available for reducing the generation require

ments of the units that lie below the hydroelectric unit in the loading

order.

After the minimum generation requirement of the hydroelectric unit

has been calculated, the expected generation of the next unit in the

loading order (unit z) is calculated. Following the procedure outlined

in the basic method, the expected generation of this unit would be pro

portional to area A in Fig. 9(a).

ENG = a t
z z

Fn(x) dx (17)
a

The result obtained from Eq. (17) assumes that the hydroelectric unit

is loaded after unit z. However, if the hydroelectric unit has suffi

cient available energy, it would be loaded in preference to unit z.

When the hydroelectric unit is available 100$ of the time, the equivalent

load would be reduced by the capacity of the hydroelectric unit; this

would shift the equivalent load curve to the left by the capacity of the

hydroelectric unit [see Fig. 9(t>) ]• ±n this case, the expected generation

of unit 7 would be proportional to area B in Fig. 9(b).

where

ENG' = a t
z z

F'(x) dx , (18)
n

a

ENG' = expected generation of unit z if it is loaded after the

hydroelectric unit,

F'(x) = shifted equivalent load curve.

Since the hydroelectric unit is being loaded before unit z, unit z would

be expected to help cover any forced-outages of the hydroelectric unit.

Therefore, the forced-outage rate of the hydroelectric unit must be

included in the shifted equivalent load curve shown in Fig. 9(b).
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AREA
A

a) HYDROELECTRIC UNIT LOADED AFTER UNIT X

FN'(x)

a T
EQUIVALENT LOAD

b) HYDROELECTRIC UNIT LOADED BEFORE UNIT X

9. Effect of Hydroelectric Unit on Expected Generation of Unit X.
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The energy generated by the hydroelectric unit is calculated from

the difference between the expected generations of unit z,

ENG,, = ENG - ENG7 , (19)
H z z

and this amount of energy is then subtracted from the remaining hydro

electric allocation.

This procedure of shifting the equivalent load curve to calculate

the expected generations of the various units is repeated until the

entire hydroelectric energy allocation is utilized. Generally, the

remaining hydroelectric energy allocation will not permit the complete

off-loading of the last thermal unit. In this case, the fraction of the

energy that could be off-loaded is calculated by dividing the remaining

hydroelectric allocation by the value of ENGtt calculated from Eq. (19)•

The equivalent load curve used to calculate the expected energy of the

thermal unit is then constructed from a linear interpolation of the

curves in Figs. 9(a) and 9(b) (see Fig. 10).

This procedure can be easily extended to include multiple hydro

electric units. No assumptions were made as to what type of plant was

represented by unit z in the above discussion. This unit could be

another hydroelectric unit, with the area B in Fig. 9(b) being propor

tional to its minimum generation requirement. In order to calculate the

expected energy of the next unit in the loading order (i.e., unit y), the

appropriate equivalent load curve must be shifted twice, once for each

hydroelectric unit. This case is illustrated in Fig. 11(a), where the

area A is proportional to the basic energy requirements of unit y if both

hydroelectric units are loaded after unit y. In Fig. 11(b), the equiva

lent load curve has been shifted to the left by the capacity of the first

hydroelectric unit, and the area B is proportional to the expected energy

of unit y if unit y is loaded after the first hydroelectric unit but

before the second hydroelectric unit. The difference between areas A and

B is proportional to the energy generated by the first hydroelectric unit.

To calculate the effect of the second hydroelectric unit, the equivalent

load curve in Fig. 11(b) must be shifted to the left by the capacity of

this unit [Fig. 11(c)]. The area C is proportional to the expected
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Fig. 10. Interpolation of Equivalent Load Curves.
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a)NO HYDROELECTRIC
UNIT

AREA A

b) ONE HYDROELECTRIC
UNIT

AREA B

c)TWO HYDROELECTRIC

UNITS

AREA C

EQUIVALENT LOAD

Fig. 11. Calculational Procedure for Multiple Hydroelectric Units.
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generation of unit y if unit y is to be loaded after both hydroelectric

units, and the area (B - C) is proportional to the amount of energy being

generated by the second hydroelectric unit.

This procedure can be extended to include as many hydroelectric

units as desired, and is compatible with the two-block representation

of thermal units.

2.9 Simulation of Pumped-Storage Units

Pumped-storage units are simulated in a manner quite similar to

that used for simulating hydroelectric units; however, it is not neces

sary to specify an energy allocation in the case of pumped-storage units.

During periods of reduced load, energy of low incremental cost is employed

to pump water into the pumped-storage reservoir; this water is later used

during periods of high system load to replace high-cost thermal genera

tion. Hence the pumped-storage unit should be placed above the thermal

units in the loading order so that it is able to off-load the units below

it. Since hydroelectric energy is less expensive than pumped-storage

energy, the hydroelectric units would be used to off-load both the pumped-

storage and the thermal units. Therefore, the pumped-storage units are

placed in the loading order between the thermal units and the hydro

electric units.

The calculation for determining the amount of energy that a pumped-

storage unit could generate is the same as that described for hydroelectric

units (Fig. 12). Since the pumped-storage unit would not be used to

replace thermal energy unless there is sufficient pumping energy avail

able at an economic price, the expected generation of unit y is propor

tional to area B in Fig. 12(b). If the pumped-storage unit is operated,

the expected generation of unit y would be proportional to area C in

Fig. 12(c), and the area (B - C) would be proportional to the expected

generation of the pumped-storage unit. The information concerning

possible pumped-storage generation is retained until the expected pumping

energy has been calculated for each thermal unit.

When water is pumped continuously into the pumped-storage reservoir,

the capacity of the pumps will be added to the load at all times. Hence
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a) NO HYDROELECTRIC
OR PUMPED STORAGE

AREA A

b) HYDROELECTRIC

UNIT

AREA P

c) HYDROELECTRIC

AND PUMPED STORAGE

EQUIVALENT LOAD

Fig. 12. Calculational Procedure for Hydroelectric and Pumped Storage Units.
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the equivalent load curve will be shifted to the right by the pump

capacity, as shown by the curve Fp(x) in Fig. 12(b). The equivalent
load curve shown in Fig. 12(b) is applicable because this is the curve

used to calculate the expected generation of the thermal unit. Area P,

which is shown in Fig. 12(b), is proportional to the expected pumping

energy that could be obtained from the thermal unit. It would be calcu

lated by Eq. (20):

PUMPy - ayapT

where

.b rb
Fp(x) dx -

a n J
Fn(x) dx ,

a

(20)

a = availability of pumps.

After the expected pumping duty and the expected pumped-storage

generation have been calculated for each thermal unit, an economic check

is made to determine the action of the pumped-storage unit. In order

to utilize the pumped-storage energy to off-load a thermal plant,

sufficient pumping energy must be available to satisfy the following

constraint:

^£ < eff •eff , (21)
Xg P g

where

X = cost of pumping energy,

\ = cost of energy displaced by pumped storage,
o

eff = efficiency of pumps,
P

eff = pumped-storage generating efficiency.

Once the final action of the pumped-storage unit has been determined,

the expected energies of the thermal generating units must be adjusted

to reflect the energy displaced by the pumped-storage unit and additional

output required to supply the necessary pumping duty.

The expected generations for each unit of the sample system described

in Table 7 are shown in Table 9. In this example, plant H is a hydro

electric unit, and the energy allocations specified for each case are

30.60, i+5.20, and 105.30 GWhr respectively. Plant PS is a pumped-storage



Table 9. Probabilistic Simulation of a Sample Utility System Containing
Thermal, Hydroelectric, and Pumped-Storage Generating Units

Type

Case! I Case II Case Ill

Expected Generation (GWhr)

Capacity
Factor

Expected Generation (GWhr)

Capacity
Factor

Expeicted Generation (;GWhr)

Capacity
Factor

Plant Base

Block

Load Following
Block

Total Base

Block

Load Following
Block

Total Base

Block

Load Following
Block

Total

BH Thermal 50.1*0 _ 50.1*0 1.000 50.1*0 _ 50.1*0 1.000 50.1*0 - 50.1+0 1.000

Nl Thermal U6.37 139-10 I85.U7 0.920 1+6.37 139-10 185.1*7 0.920 1*6.37 139-10 185.1+7 0.920

BA Thermal 51.1+1 91-39 11*2.80 O.850 51.1*1 91-39 11*2.80 0.850 51.1*1 91.39 11+2.80 0.850

Bl Thermal 3h. 1*3 96.77 151.20 0.900 51*.1*3 96.77 151.20 0.900 5U.1+3 96.77 151.20 0.900

BE Thermal 69.U8 151.55 221.03 0.9l*0 69.1*8 151.59 221.07 0.91*0 69.1*8 151.61 221.09 0.9U0

B3 Thermal 61.82 58.89 120.71 0.718 61.82 7l*.06 135.88 0.809 61.82 92.66 15l*. 1+8 0.920

BU Thermal 35.78 31*. 51* 70.32 0.523 1*1.31+ 1*9.05 90.39 0.673 1*1.1*9 77.1+3 118.92 O.885
UO

B5 Thermal 26.27 6.01* 32.31 0.320 28.71 21.51 50.22 O.U98 32.25 23.76 56.01 0.556 00

PK Thermal O.16 - 0.l6 0.002 0.1+2 -
0.1*2 0.001+ 1.73 -

1.73 0.017

PS Pumped-
storage

It. 1*1*
-

1*.1*1* 0.026 3.29 -
3.29 0.020 11.10

-

11.10 O.066

H Hydro

electric

30.60
-

30.60 O.lll* 1+5.20
-

1*5.20 0.168 • 105.30 -
105.30 0.3917

Unserved energy, GWhr 0.05

Total, GWhr 1009.1*9

Pumping requirements for 6.ll+
pumped-storage, GWhr

Net energy produced, GWhr 1003.31*

Peak load, MW 1872

Energy required, GWhr 1003.35

Loss-of-load probability 0.00079

0.16

1076.50

U.55

1071.95

2000

1071.95

O.OO208

0.83

1199-33

15.36

1183.97

2209

1183.97

0.01031*
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unit with a generating and pumping efficiency equal to 85%. The load

data used in this example are the same as those used in Tables 5> 6,

and 8.

3. CONCLUSIONS

The probabilistic simulation model is designed to incorporate the

effect of random events in estimating the operation of a series of

thermal generating units. The capacity, forced-outage rate, operating

cost, and position in the loading order must be specified for each unit

in the system. The capacity of any thermal unit may be divided into

blocks, which can be placed in nonadjacent positions in the loading

order. The amount of energy to be generated by the hydroelectric units,

the pumping capacity and efficiency of the pumped-storage facility, and

the load duration curve are additional items required as input informa

tion. The model will calculate an expected generation of each thermal

unit and the pumped-storage unit. The expected hours of operation for

each unit, the expected operating costs, the probability of loss of load,

and the expected unserved energy are also calculated.

The probabilistic simulation model is versatile and can be easily

modified to fit the user's needs. To date, the model has been used as

a costing subroutine in a variety of ways, for example, (l) in forming

the basis of a production costing model for estimating future operating

costs, fuel requirements, and interchange requirements; (2) in a hydro

electric optimization program for determining the optimal usage of

hydroelectric resources to minimize expected operating costs while

taking hydroelectric reservoir constraints into consideration; and

(3) in a program for developing an optimal maintenance schedule. A

system expansion program using the probabilistic simulation model to

evaluate future operating costs has been developed.

Computation times required have averaged between 0.001 and 0.01

sec/unit on an IBM 360/91 with a storage requirement of approximately

80 K bytes.
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