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1. INTRODUCTION

In the shielding of high-energy accelerators, it is often necessary

to consider the transport of high-energy muons through matter. In sev

eral previous papers1-3), the results of muon shielding calculations

have "been presented. In these papers, the energy loss of muons due to

the ionization and excitation of atomic electrons, "bremsstrahlung pro

duction, pair production, and nonelastic nuclear interaction was treated

in the continuous slowing-down approximation, and it was assumed that

the angular deflection of the muons was due entirely to Coulomb scatter

ing from the nucleus. In this paper, shielding calculations similar to

those obtained previously but which include an estimate of the angular

deflection of the muons due to bremsstrahlung production, pair produc

tion, and nonelastic nuclear interaction are presented. The assumption

that the energy loss of muons may be treated in the continuous slowing-

down approximation is utilized in all of the calculations, and it is

assumed that the angular deflection of the muons due to all physical pro

cesses may be treated in the small-angle multiple-scattering approxima

tion of Eyges1*). Since neither the continuous slowing-down approximation

nor the small-angle multiple-scattering approximation is entirely valid

for all of the scattering processes being considered, the calculated re

sults must be considered to be very approximate5). At the very high

energies considered here, the muon differential scattering cross sections

that are needed in the calculations are only poorly known, and for this

reason also the results must be considered to be very approximate.

*) Research funded by the U. S. Atomic Energy Commission under contract §|
with Union Carbide Corporation. 1=
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**) Mathematics Division. §1

t) Present address: Soreq. Nuclear Research Center, Yavne, Israel. ||
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The calculated results presented here also differ from those pre

sented previously1-3) in that the case of shields composed of layers of
different materials is considered.

In Section 2 an approximate muon transport equation for a zero-

width beam of muons normally incident on a laminated slab shield is de

rived, and the solution to the equation is discussed. In Section 3 the

muon stopping powers and the differential cross-section data used in

the calculations are presented. In Section k numerical results for

200-GeV and 500-GeV muons normally incident on both homogeneous and

laminated slab shields are presented. In Section 5 the method used to

calculate muon isodose curves in a homogeneous shield around a high-

energy proton accelerator target is described. Results are given for a

soil shield when 200- and 500-GeV protons are incident on a beryllium

target and for an iron shield when 500-GeV protons are incident on a

beryllium target. In both Sections k and 5 calculated results with the

angular effects of bremsstrahlung production, pair production, and non-

elastic nuclear scattering both included and neglected are presented and

compared. In Section 6 the method used to calculate muon isodose curves

in a laminated shield around a high-energy proton accelerator target is

described. Results are presented for a shield containing an air gap and

for the same shield with the air gap omitted for the case of 500-GeV

protons incident on a beryllium target.

2. TRANSPORT EQUATION FOR A ZERO-WIDTH

MUON BEAM NORMALLY INCIDENT ON A

LAMINATED SLAB SHIELD

The approximate muon transport equation to be used is of the Fermi-

Eyges4'6) type and can be derived from the energy-integrated Boltzmann

equation assuming small-angle elastic and nonelastic scattering. The

zero-width beam of muons is assumed to be monoenergetic, with kinetic

energy E , and incident in the z direction on a series of laminated
M (-1

slabs of different materials. The particles are deflected laterally in

the x and y directions by small-angle multiple scattering, giving them

a spatial and angular distribution. A model of continuous slowing down

along a fictitious straight-line trajectory in the direction of the in

cident beam determines a slowing-down energy, E (E ,z ). This is used
S y y

as the average energy for all muons at any position, R"(x ,y ,z ), in a
y J y y
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given z plane. In effect, the cross sections for all collisions occur

ring in this plane are evaluated at the same initial energy, E .
D

For the particular case of a slab that is either a vacuum or a low-

density air gap in which slowing down and multiple scattering can be

neglected, the Boltzmann equation indicates the flux is a constant along

any straight-line trajectory in the direction of the momentum. (Muon

decay is neglected.) The Eyges approximate solution for the lateral and

angular flux distribution satisfies this condition. This means that the

coefficient for the "width" of the angular distribution is unchanged by

the streaming through a vacuum, and the coefficient for the "width" of

the lateral distribution correctly takes it into account.

The Boltzmann equation for the energy and angle-dependent muon flux

$(R,E,oj, neglecting decay, can be written in the form:

ft-V$(R,E,fi) = S ni(R,E,^) + S (E ,^ ) 6(fi-n ) 6(E-E ) 6(r) , (2.1)' ' coll » » ' oyy y y ^ / »

E

- E(E,R*) 0(R,E,^) ,

,-> -K ,-»- -k 9q(R,E,fi)scoll(R,E,n) =M(R,E,n) + ^ ^ ;

M(R,E,n) = I M (R,E,ft) ,
v=C,B,N,P V

q(R,E,n) = I q (R,E,fi) ,
v=I,B,N,P

Mv(R,E,fi) =/ydE' /diW$(R\E',^) -$(r\e',6)] V ^ — ,(2.6)
E

E E dE (E',E",R)
qv(R,E,fi) =/ydE' $(R,E',fi) / dE" V^ , (2.7)

E o

where

(2.2)

(2.3)

(2.It)

(2.5)



and

then

- h -

-y

R = the position vector of the muon, measured from the

point of incidence of the muon beam on the shield,

E = the kinetic energy of the muon,

E = the initial kinetic energy of the muon beam,

ft = a unit vector in the direction of the momentum,
->

^ = a unit vector in the incident beam direction,

0(R,E,Q) = the number of muons per unit kinetic energy and

solid angle per cm2 per sec in the direction ft;

the dependence on E and 9, is suppressed,

Sn^E1,'fi1,)dE,,dfi1, = the number of muons per sec in dE dft in theuyyyy *• li V
incident beam,

v = an index indicating the type of scattering process,

= I,C,B,N,P for atomic ionization and excitation

(assumed straightahead), Coulomb scattering

(assumed elastic), bremsstrahlung production,

nonelastic nuclear scattering, and electron pair

production, respectively.

If

n (R) = n (z ) = the number of atoms of type j per cm3 at R (or
j j y

z in slab geometry),

d2a. (E',E,cos0)
—dEdft ~ the differential scattering cross section per

unit kinetic energy and solid angle for scatter

ing by process v and atom of type j from E' to E

through angle 6,

cos6 = ft'.ft ,

d2Ev(E',E,ft'.fi,R) d2a. (E',E,cos6)
dEdft =W^ ^dEdft > <2-8>

J
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dE (E',E,R~) d2E (E*,E,ft' .ft\3~)
V -= / dft' —V

dE dEdft

E dE (E,E",R)
Ev(E,5)=/ dE"-^,

E(E,R) = I
v=I,C,B,N,P

Ev(E,R) ,

d2E(E', E,R*) y d2Ev(E», E,R)

dEdn v=I,C,B,N,P dMfi

(2.9)

(2.10)

(2.11)

(2.12)

In Eq. (2.3),

.-> -*,.

q(R,E,ft) = the muon slowing-down density past E in the

straightahead approximation for all processes;

it is zero for elastic collisions, so Coulomb

scattering is not included;

M(R,E,ft)dEdft = the difference in production rate in dE about E
->-

from muons scattered into, and out of, dft
->

about ft per unit time and volume.

/•*• "*"\
The function M(R,E,ft) is zero if the scattering cross sections are all

straightahead; in particular, the atomic ionization and excitation cross

section is assumed not to contribute to M, although it makes the major

contribution to q.

The basic concept of what follows is, first, to expand the integrand

of M(R,E,ft) in the usual small-angle Taylor series, and second, to de

termine the average or mean energy of the muons by putting M = 0 and re-
-»•

placing 3q/3E by continuous slowing down along ft .

Following the usual methods for the small-angle multiple-scattering

approximation4'7), the flux $(R,E',ft') in M (R,E,ft), Eq. (2.6), can be

expanded about $(R,E',ft) in a Taylor series in the variables:

if

ft' = sin0 cosd>
x

ft' = sin0 sin*
y

(2.13)

0 = the scattering angle and the polar angle of ft' with respect to ft,

<J> = the azimuthal angle of ft' about ft.
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Let

0p = the polar angle of ft with respect to ft ,

<J>p = the azimuthal angle of ft about ft ,

then

u = tan0 cos<|> ; v = tan0 sin<f>

U) = ft'ft =cos0= —

M P /l+u2+v2

V2=^ 9 1 92

902 tan9P 88P sin20p 9*p

>2

9u2

2

9v2
-^{ (l+u2) ¥— +(1+v2) $— +2uv + 2u ——- + 2v -—•

9u9v 9u 9v

92 92
-> +

9u2 9v2

for small u and v.

The first nonvanishing terms in M (R,E,ft) are then

d2E.> + E 2tt tt
M (R,E,fi) = / MdE' / d<j) / d0 sin0

E o o

v £\ sm^(E',E,cos6,R) ^=£
dEdft

92$(R,E', '̂) | 92$(R,E', '̂)
9ft'2

x

E ^ dx2(E',E,R)
= V2 / y dE' *(R\E',ft) - V

E
dE

9ft'2
y

ft'=0
X

ft'=0
y

(2.H0

(2.15)

(2.16)

(2.17)

(2.18)

i-*- . -*-\where the term in square brackets in Eq. (2.17) equals V2 $(R,E',ft), and

dX2(E',E,R) 2tt tt s.n3e d2Ev(E' ,E,cos0 ,E]
= / d<f> / d0 —•£ •

o o
dE

dX2(E',E,R) _ y
dE ^

v=C,B,N,P

dEdft

dX2(E',E,R)

dE

[2.19)

(2.20)
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E dX2(E,E",R)
XJ(E^) =/ dE" -*— , (2.21)

dE"
o

X2(E,R) = I X^(E,R) . (2.22)
v=C,B,N,P V

= one-fourth the total mean-square

scattering angle per unit distance.

The Boltzmann equation for the energy-dependent muon flux is then

<U*(R\E,a) =M!^!L+ SQ(Ey,^) 6($Uy) 6(E-Ey) 6(5)

+ V2 X^(E,R) $(R,E,ft)

E, + + dx2(E',E,R)
+ V2 / y dE' $(R,E',ft) I —2— (2.23)

" E v=B,N,P ^

in the small-angle multiple-scattering approximation, where the 6(E'-E)

factor in the elastic Coulomb scattering cross section has been inte

grated over explicitly. Integrating over all energies,

E +e

^(R,ft) = / P dE $(R,E,ft) e < < 0 , (2.2U)
o

E +e

/y ^|= q(5,E +e,ft) -q(R",0,£) =0, (2.25)
o

ft-Vi(j(R,ft) = S (E ,ft ) 6(ft-ft ) 6(5)
oyy y

E +E

+ / y X2(E",R) V2$(5,E',ft) dE' , (2.26)
o

where the integrations over E and E' have been interchanged and Eqs. (2.20)

to (2.22) have been used. The function x2(E'sR) is removed from under

the integral sign by evaluating the initial energy E' at a mean value, E ;
m'

sE is a function of (R,ft,E ,ft ) in general, but a knowledge of thi



functional dependence would involve the solution of Eq. (2.23) and would

not lead to the Eyges equation anyway. Equation (2.26) becomes

ft.Vij,(R,ft) = S (E ,ft ) 6(ft-ft ) 6(5) + X2(E ,5) V2<j,(5,ft) (2.27)

For slab geometry,

X2(Em,5) =X2(Em,zp) .

Let z^, z2, z ,...z ...be the positions of successive interfaces in

the direction ft . In the straightahead continuous slowing-down approxi

mation, x2 = 0, and in Eq. (2.23),

9q(R,E,ft) / x ±_
9E PnUy; 9E Sn(E) $(5,E,ft)

in slab n,

p (z ) = the density in g/cm3 in slab n,

S (E) = I
v=I,B,N,P

S (E) ,
nv '

(2.28)

(2.29)

S (E) = the energy loss per unit distance in MeV/g/cm2 for

process v, in slab n. The energy-dependent flux is then

0(R,E,ft) = S (E ft ) 6(ft-ft ) 6(x )6(y )6[E-Eq(E ,z )] (2.30)

The slowing-down energy, Eg(E ,z ), is defined by the set of equations:

J SIE^T" / dz Pi(z }
El 1

E

I S(E')
E 2
2

/n-l

ES(Ep,zy) *

dE'

= / dz' p (z*)

dE1

S (E1)
—= /ydz' pn(z')

n-1

(2.31)
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if z is in slab n and is less than the range of the muon of initial
y

energy E . The energies E1, E„, E3,...E •> • • • are "the slowing-down

energies at each successive interface.

The Eyges equation is obtained from Eq. (2.27) if E is replaced by

E (E ,z ) and if small u and v; i.e., small angular deflections from the
& V V _^

direction ft , are assumed. Then
y

{97"+U 9x~ +V9v~- X2[Es(Eu,zJ.*j(—+~)}*(* ,* .7 ,u,v)L9z 9x 9yy S y y y | ^2 ^2jSy \i> v'*)!' > '

=SQ(Ey,fty) S(xl) 6(v) 6(x ) 6(yy) 6(z ) . (2.32)

Note that E„(E ,z ) is continuous across the interfaces, but x2 may be a
S y y

discontinuous function of z if the scattering cross sections and the
y

density change discontinuously from one material to another.

The Eyges solution is:

r N n
-». •* -> exp[~ 1Tr],f,(5,ft) = S (E .ft) ^_ , (2.33)

° y y (^)2 B

N(5,ft,E ,ft ) = A (u2 +v2) - 2A (ux + vy ) + A (x2+y2) , (2.3*0
' ' y' y 2 1 y y oyy

z

A = / y dz' x2[EQ(E ,z'),z'] , (2.35)
o J y A S y' y ' y '

o

Ai=/ydzy x2[Es(Ey,z;),Z;](zy-zy) , (2.36)

A = / y dz' x2[EQ(E ,z'),z'](z - z')2 , (2.37)
9 ' ll^-Rll'll'llll II

B = A A - A2 = B(E ,z ) . (2.38)
o 2 1 V V

Consider the case of a vacuum gap beginning at z and ending at

z . The quantity x2(E„,z ) is zero in the vacuum, and for
n+1 S y

z < z < z . .
n — y - n+l
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ES(Ey'Zy} = ES(Ey'Zn} = En •

A (E ,z ) = A (E ,z ) ,
o y y o y n

A (E ,z ) = A (E ,z ) + (z - z ) A (E ,z ) ,
1 y y 1 y n y n o y' n '

(2.39)

(2.U0)

(2.1*1)

A2(Ep,zy) =A2(Ey,zn) +2(zy- zn) A^E^) + (Zy- zj2 AQ(Ey,zn) .(2.1*2)

If R(xu>yu»zu) and Rn(xn'y 'O are Points on a straight-line trajectory
along ft, so that

->• -> ->

R = R + £ft ,
n

z = R-ft =z + &cu ,
y y n

x = x + £a)u = x + (z - z )u ,
y n n y n '

y = y + £(jqv = y + (z - z )v
J\i J n Jn y n

(2.^3)

it is easy to show by substitution into Eq. (2. 3*+), using Eqs. (2.1+0) to

(2.1+3), that

Then

,->--> -V

N(R,ft,E ,ft ) = N(R ,ft,E ,ft ) ,
]s \i n' ' y' y '

B(E ,z ) = B(E ,z )
]i V. y n

<Jj(5,ft) = ^(5 ,ft) ;

(2.1*1*;

(2.1*5)

(2.1*6!

i.e., the energy-integrated angular flux in the Eyges approximation is

constant along straight-line trajectories in a vacuum, as expected.

Integration of Eq. (2.33) over all x and y gives

S (E ,ft )
. i %\ o y y
*(VQ) =~m—exp

o

(u2+V2)'

O ~i

= ^(zn,ft) (2.1*7)

for the angular distribution at z ; ^ is unaffected by streaming through
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the vacuum because the coefficient A (E ,z ) is equal to A (E „z ) if z
oyy ^ oy'n y

lies in the vacuum. However, the coefficients A, and A„ are increased

by the streaming, as shown by Eqs. (2.1*1) and (2.1*2). The change in A

for E equal to 500 GeV and 200 GeV in an air gap of 70 m in width is

shown in Section 1*, Fig. 1*; multiple scattering and slowing down in air

are included in these computations of A .

ENERGY LOSS AND DIFFERENTIAL CROSS-

SECTION DATA

3.1 Energy loss per unit distance

The energy loss of charged particles due to the ionization and ex

citation of atomic electrons is well established and may be computed

from the Bethe-Block8) formula with the density-effect correction given

by Sternheimer9-12). For some materials that contain a mixture of ele

ments (soil in this paper), the density-effect correction is not avail

able and is computed using the asymptotic form of the correction13).

The energy loss of muons due to bremsstrahlung production, pair

production, and nonelastic nuclear collisions has been considered in de

tail by Hayman et al.5', by Kobayakawa-1 ^) , and, using the results of

Hayman et al.t by Thomas15). In the work reported here, the recommenda

tions of Hayman et at. have been used for the energy loss due to brems

strahlung and pair production, and the recommendations of Kobayakawa

have been used for the energy loss due to nonelastic nuclear interactions

Calculations have been carried out for shields of iron and of soil,

and of an iron-air-soil combination. The soil was assumed to be com

posed of 58.3% oxygen, 32.7% aluminum, 6.1% calcium, and 2.9% iron. The

density of iron was taken to be 7^8 g/cm3, that of soil, 2.0 g/cm3, and

that of air, 1.29 x 10"3 g/cm3.

The muon stopping power S, as well as the individual contributions

to the stopping power, S 's, is shown in Fig. 1 as a function of muon

energy for iron and soil. The values of S for iron and soil are the

same because of the assumptions made by Kobayakawa11*).

3.2 Muon-nucleus elastic Coulomb collisions

The differential cross section for the elastic Coulomb scattering

of a muon by a nucleus may be written6'16-19)



where

10'

> 10u
<v

<r
UJ

2

z

Q.
a.
p

10"'

- 12 -

hr-
—^^

^
-5^

^
S'

**£ • i: i!.__

/-"f1-y

# *- -/-

Fe

S(DIL

V *r ^
x1-

EE = *Fs^&--, r4$ T'i M~

/
r *

*

-2
10 10 10 10' 10

F(GeV)

Fig. 1 Stopping power of iron and soil for muons vs
muon energy. Also shown are the contributions from the
various physical processes considered in calculating
the total stopping power.

do

J£-
dft

eH [F.(k)]2
Z.(Z.+1) —2 1
J J P'2B2 [l-cose-^02]2

R(e',e) ,

)2 =
s

/ ph,(')
sin<r

Nj KT
rzdr

F.(k) =
J

/ PNj^r) r2dr

k2 = ft-2 2P'2(l-cos0) ,

_2

Z1/3 a m
-A e

0.885 1.13 + 3.76
P-^ i_

Z.a

(3.1)

!3.2)

(3.3)

(3.1*)

(3.5)
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Z. = the atomic number of the jth element,

e = the electronic charge,

P',e' = the momentum and total energy of the incident muon,

6 = the scattering angle,

0g = a correction to the cross section to take into

account the screening of the nucleus by the atomic

electrons6'18),

F.(k) = the nuclear form factor19 )5

PN.(r) = the charge distribution of the jth nucleus,

R(e',0) = the ratio of Mott-to-Rutherford scattering16'17),

h = Planck's constant divided by 2tt,

a = the fine structure constant,

m = the electronic mass.
e

To evaluate the form factor, a trapezoidal charge distribution of

the form19)

p.T.(r) = D . 0 < r < C. - D
Nj 3J - J 3

where

(C +D -r)
s _3_

)
3

=D3j J2D3 C. -D3 <r<C. +D3 (3.6]

= 0 r > C. + D
J 3

C. = 1.07 x 10-13 A1/3 cm

•13

A. = the number of nucleons in the jth nucleus ,
J

has been used. This charge distribution is in reasonable agreement with

the electron-scattering data and at the same time is sufficiently simple

that the form factor may be obtained analytically.
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With this cross section, the calculation of Xp from Eq. (3.1) is

straightforward, but since R(e,0) is given in the form of an infinite

series, the numerical computations are quite lengthy. On the other

hand, the quantity R(e,0) is not appreciably different from unity at the

energies of interest here, and therefore the approximation R(e,6) = 1 is

quite satisfactory.

In Table 1 the quantity x^» calculated with R(e,e) and calculated
in the approximation R(e,0) = 1, is shown as a function of energy for

iron and soil. It may be seen from the values in the table that the

approximation R(e,0) = 1 is very good over the energy range 0.01 to

500 GeV, and therefore this approximation will be used in the calcula

tions reported here.

Table 1

One-fourth the mean-square scattering angle per unit
distance from Coulomb scattering vs energy

Energy
(GeV)

Xp For Iron
(1/cm)

R 4 1 R = 1 Eq. (3.7)

0.01 1.57 X 10-1 1.55 X 10-1 1.71 X IO" !

0.05 8.71 X 10" 3 8.61 X 10" 3 8.89 X 10-3

0.1 2.70 X 10" 3 2.67 X 10" 3 2.73 X 10-3

0.5 1.79 X 10-1+ 1.78 X 10-u 1.82 X IO-1*

1.0 5.11+ X 10" 5 5-13 X 10-5 5.22 X 10-5

5.0 2.36 X 10-6 2.36 X 10-6 2.1*1 X 10-6

10.0 6.03 X 10-7 6.03 X IO"7 6.11+ X IO-7

50.0 2.1*5 X 10"8 2.1*5 X IO-8 2.50 X 10-8

100.0 6.H* X io-9 6.11* X IO"9 6.25 X 10~9

200.0 1-5U X 10-9 1.5fc X 10~9 1.56 X IO"9

300.0 6.81* X 10"10 6.81* X 10-10 6.96 X 10-10

1+00.0 3.81* X IO-10 3.81+ X 10"10 3.91 X 10-10

500.0 2.1*6 X IO"10 2.1*6 X 10"10 2.51 X IO-10
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Table 1 (cont'd.)

One-fourth the mean-square scattering angle per unit

distance from Coulomb scattering vs energy

Energy
(GeV)

X2 For Soil
°(l/cm)

R 4 1 R = 1 Eq. (3.7)

0.01 1.98 X IO-2 1.98 X IO-2 2.19 X IO-2

0.05 1.09 X 10"3 1.09 X 10" 3 l.ll* X IO"3

0.1 3.1+0 X 10— 3.39 X 10- 3.50 X 10-

0.5 2.27 X 10"5 2.26 X IO-5 2.33 X IO"5

1.0 6.52 X IO-6 6.51 X IO"6 6.68 X IO-6

5.0 3.00 X IO"7 3.00 X 10~7 3.08 X 10-7

10.0 7.65 X IO-8 7.65 X IO"8 7.86 X IO"8

50.0 3.11 X IO"9 3.11 X IO"9 3.20 X 10-9

100.0 7.80 X lo-10 7.80 X 10-10 8.00 X 10-10

200.0 1.95 X 10"10 1.95 X IO"1" 2.00 X IO-10

300.0 8.67 X IO" n 8.67 X IO-11 8.91 X IO-11

1+00.0 1+.88 X IO-n 1+.88 X 10" n 5.01 X IO-11

500.0 3.13 X IO-11 3.13 X IO-11 3.21 X IO-11

In the previous muon shielding calculations2'3), the approximate

expression

where

X§(E') =

E =
s

E

_2

23P1

1+TT

a
m

— = Mn. Z.(Z.+1) l*ar2 log(l83 ZT1/3)] ,xQ J J J J o j

r = the classical electron radius,

(3.7)
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has been used. In the last column of Table 1, this quantity is given as

a function of muon energy for iron and soil, respectively. It can be

seen that the values of x2, given by Eq. (3.7) are slightly larger than

those obtained with the cross section given by Eq. (3.1) with either

R = 1 or R 4 1.

3.3 Bremsstrahlung production from muon-nucleus collisions

The cross-section differential in final electron energy and angle

when an electron radiates in the field of a nucleus has been given by

McCormick et at.20'. This cross section, however, was derived for a

point nucleus and cannot be applied directly to the high-energy muons of

interest here because the corrections due to the nuclear charge distribu

tion are not negligible. A cross-section differential in photon energy

and in the angles of the final electron and photon when an electron radi

ates in the field of a nucleus with an arbitrary charge distribution has

been given by Biel and Burhop21). This cross section can be applied to
the muons of interest here, but because the nuclear form factor that

enters into the cross section depends on the angles of both the final

muon and the photon, the integrations to obtain the cross section that

is differential only in final muon energy and angle are problematic. To

avoid this complication, an approximate nuclear form-factor correction

has been made. To understand the approximation that is used, note that

the nuclear form factor that enters into the cross section given by Biel

and Burhop is the same as that given by Eq. (3.2) but with k2 given by

K2 = {fl)-2 |f._ J _ £|2
(3.8)

K = e'-e

where

P',e' = the momentum and total energy of the incident muon,

-y

P,e = the momentum and total energy of the final muon,

-y

K = the photon momentum.

The form factor depends on the emission angles of the photon through <2

which may be written

k2 = (fi)~2 [P'2- 2 5'-5 - 2 P'-lt + P2 + 2 P-K + K2] . (3.9)
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The approximation that is used here is to assume that the photon is emit

ted in the direction of the incident muon; i.e., it is assumed that the
->• -y

form factor may be evaluated by taking K to be parallel to P'. When this

is done,

k2 = (ft)"2 [P'2- 2 P' P cos0 -2P'K+P2+2PK cos6 + K2] , (3.10)

where

0 = the angle between the initial and final muon momentum.

In this approximation, the form factor is independent of the emission

angles of the photon, and the integration over these angles may be car

ried out as in the case of a point nucleus, so

where

d2a.
i = TF (k)12dEdft lV JJ

dza
A

dEdft

dza.
* = the cross section differential in final muon energy

and angle when a muon radiates in the field of a

nucleus of type j that has a charge distribution

of P]JJ(r),

= the cross-section differential in final muon energy

d2a
A

dEdft

P and angle when a muon radiates in the field of a

point nucleus of type j,

and it is to be understood that the approximate expression for k, Eq.

(3.10), is to be used.

The differential cross section from a point nucleus may be taken

from the work of McCormick et at.20). This cross section, however, was

obtained using the Born approximation and is therefore not accurate for

high-energy photon emission22'). To correct the cross section in the

high frequency limit, it has been multiplied by the factor

2tt Z. a £
J p

1 - exp[-2iT Z. a p-]

(3.11)

(3.12)

where the symbols have the same meaning as before. This factor assures
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that the differential cross section integrated over all angles of the

emitted muon has the correct limit as the muon energy loss approaches the

incident muon energy, but since it is not a function of the muon emission

angle, it does not give the correct limit as a function of angle, and is

therefore only a very approximate correction.

The cross section given by McCormick et al.2Q) is not corrected for

electron screening, and no attempt has been made here to introduce a cor

rection for this effect. The factor of Z2 in the cross section given by
J

McCormick et at. , however, has been replaced in the usual manner by

Z (Z + l) to account very approximately for the bremsstrahlung production
from atomic electrons23). The final form of the bremsstrahlung cross

section that is used is then

d2a 2tt Z. a f-
dEdf =zj<y i) tVK)] r J p eid J J 1 - exp[-2ir Z. a|

J P

, d2a.
1 1
„2 dEdft

. J

(3.13)

where the cross section for a point nucleus is taken from Ref. 20, and

the nuclear charge distribution given in Eq. (3.6) has been used to eval

uate the form factor.

The calculation of x2, is not straightforward because the differen

tial cross section for bremsstrahlung production diverges for small ener

gy losses of the muon, i.e., for the emission of soft photons. This well-

known infrared divergence is unphysical and is related to the fact that

very soft photon emission is not experimentally distinguishable from

elastic scattering21*). Here the divergence is removed by assuming that
the differential cross section may be set equal to zero when the energy

loss of a muon with kinetic energy E' is less than nnE' where tu is a
B B

parameter that is to be specified. With this provision, x2, may be
B

written

E'(i-nJ !
X2(E') = I 2tt n / dE / d(cos0)

j J o -1

d2c1B(E',E,cos0) sin20AK ,_,,,
dEdft 1* ' 13.14,
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For both iron and soil x2, is shown in Table 2 as a function of en-
is

ergy for r] = IO"1 and ru = 10—. For the range of nR values considered,
Xg is slowly varying over the energy range 10 to 500 GeV. Furthermore,

nB = 10— means that only 0.01% of the incident muon energy is being
neglected, so hopefully the error introduced is not large. In the re

mainder of the paper, n_ = 10— is used in all calculations.

Table 2

One-fourth the mean-square scattering angle per unit
distance from bremsstrahlung production vs energy

Energy

(GeV

X2 For
B (1/

Iron

cm)
X2 For Soil
B (1/cm)

nB = io- nfi = 10-1 nB = 10- nB = io-1

10 3.29 x IO"9 2.81 x 10-9 1*.59 x 10-10 3.95 x 10-10

50 5.74 x 10"10 5.54 x 10-10 8.21 x 10-11 7.95 x IO-11

100 2.77 x 10"10 2.72 x 10-1° 3.99 x 10-11 3.93 x IO-11

200 1.35 x IO-10 1.33 x io-10 1.94 x 10-11 1.93 x IO-11

300 8.81+ x io-11 8.79 x 10"11 1.28 x 10-11 1.27 x IO-11

1*00 6.57 x 10-11 6.54 x 10"11 9.1*9 x IO-12 9.45 x IO-12

500 5.23 x io-11 5.21 x 10-11 7.55 x IO-12 7.52 x IO-12

3.1+ Pair production from muon-nucleus collisions

An approximate cross-section differential in final muon energy and

angle when a muon produces an electron-positron pair in the field of a

nucleus has been given by Tannenbaum >. I This cross section may be

written

*)

d2a
J£=Z.(Z.+ l)2ir2[#log

TT 0 9dq2dK

nr

m2+q2 q2 /q2+K2

2K 218 -,

m " 27
e

_id+ k2
m

_ y
m2K2
y

1+e2 2e2 E2 q2E2

<±n * ^ ±Cx » (3'15;

We thank Dr. Tannenbaum for making this cross section available to us.
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where

q2 = (pi_ P)2 = 2[ee'- m2 - |5'||5| cos0]

2 2[ee._m2+ |5'||5|] ,
^ .ax

<in= 2[ee'-m2 - \$<\\t\] ,

K = £'- E

(3.16)

(3.17)

(3.18)

(3.19)

and the symbols have the same meanings as before. Because of the manner

in which it was derived, the cross section given in Eq. (3.15) is invalid

at small values of K and, in fact, becomes negative at sufficiently small

K. Here it is assumed that the cross section may be set equal to zero for

those K values for which the right-hand side of Eq. (3.15) is negative.

Then

\(V )=I n. / dK paX dq2 —& Sig^- ,
'P^ ' h"5 - *'2 ~" dq2dK T

(3.20)
KT

Tnin

K -!kexpr2l8(9)1
KL 2 6XPL27(28)J '

where sin20 is to be expressed in terms of q2 by means of Eq. (3.l6). In

calculating Xp(E'), the integration over q2 was carried out analytically
and the integration over K was carried out numerically.

3.5 Muon-nucleus nonelastic collisions

The differential cross section for muon-nucleus nonelastic colli

sions may be written as11+'26)

2d2a.
Jl - _2L

2m2K2 I A2 \

dq2dK 27T J K|5'|2
e'+(e'-K)2

„2
a + (l-a)

q2+A2/ _

where

q2. < q2 < q2 , 0 < K < K , (3.21)
Tain ^ Tiiax max

q2 = (P'-P)2

= 2[e'e -m2 - I?' I|5|cos0] ,

q2 = 2MK ,
Tnax

(3.22)

(3.23)
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q2.n =2[e'e -m2 - |5'||5|] , (3.24)

K = e' - e , (3.25)

™2
1 m

K = e' - i-M(l + -£•) , (3.26)max 2 m2^

a. = 0.72 x io-28 A. cm2 ,
J J

A2 = 0.365 GeV2 ,

a = 0.1 ,

M = the nucleon mass,

and the other symbols have the same meanings as before. It should be

noted that since a. is proportional to A., the cross section is inde-

pendent of atomic weight. The cross section diverges for small K, and

therefore, in order to calculate x£j a cutoff has been introduced in the

same manner as in the calculation of \2. The x'l is calculated from the

equation

E'(l-0 q2 d2a.„ . 2a
xJ(E') = I n J dE / dqz —^ ^— (3.27)

j J E . q2 dq2dK
0 min Tnin

m2
E . = - M(l + -rjr) - m ,

mm 2 M y

where sin26 must be expressed in terms of q2 from Eq. (3.22) and n^ is

the cutoff parameter.

Calculated values of xl for iron are given in Table 3 for various

values of E' and for r) = 10-5 and 10-11. The values of \2 are independent

of r\ for this wide range of r\ values. This result is also valid for

soil since the cross section is independent of atomic weight. In all

subsequent calculations for both iron and soil, rijr = 10-11 is used.

3.6 The mean-square scattering angle per unit distance '

In Fig. 2, x2, as well as x2,, Xg> Xp, and xj> is shown as a function
of muon energy for iron and soil. Below approximately 10 GeV, x^j Xp»

*J Note that x2 is one-fourth the mean-square scattering angle per unitX

distance.
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Table 3

One-fourth the mean-square scattering angle per unit distance
from nonelastic nuclear collisions vs energy

Energy
(GeV)

X2XN For Iron

(1/cm)

nN == 10"5
nN == IO"11

10 8.30 x IO"9 8.30 x io-9

25 3.1+4 x 10"9 3.1+4 x 10"9

50 1.87 x 10-9 1.87 x io-9

100 1.04 x IO-9 1.04 x io-9

200 5.75 x IO-10 5-75 x IO-10

300 1+.07 x IO"10 1+.07 x 10-1°

1*00 3.18 x IO"10 3.18 x IO-10

500 2.59 x IO-10 2.59 x IO-10

and x^ become negligible compared to x£• At all energies the contribu
tion of Xp "to x2 is negligible. The contribution of x£ "to x2 is small
at all energies, but at the higher energies it is not completely negli

gible. At the highest energies considered, x2 becomes comparable to Xp-

It is to be noted that the units of x2 used in Fig. 2 is cm-1. An

appreciable part of the difference shown in the figure between x2 for

iron and soil is due to the difference in density between iron and soil.

THE LATERAL SPREAD OF A ZERO-WIDTH BEAM

OF MONOENERGETIC MUONS NORMALLY INCIDENT

ON HOMOGENEOUS AND LAMINATED SLAB SHIELDS

The solution to the muon transport equation for a narrow beam of

monoenergetic muons normally incident on a laminated slab shield was pre

sented in Section 2. If one integrates this solution over all angles,

the omnidirectional energy-integrated muon flux may be written

T t-2

ME ,z ,r ) = t—7—7= r- exp
u' y' y 4tt A (E ,z ) * 1+A (E ,z ,

2V y' y
(4.1)
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A (E,z ) = / y x2[Eq(Eii,z»),z'] (z - z')2 dz' , (4.2)

rEy dE'
I slE^Vl
El l

rEl dE' - ( \
E2 2 , (4.3)

rEn-l dE' , , »
I S-TETT=Pn(z;- Vl'Eg n

r = the polar radius vector in planes normal to the z axis,
y y

and, in writing the set of Eqs. (4.3), the density p has been assumed

constant in a subslab. In the case of a homogeneous shield, Eq. (l*.l) is

unchanged, x2 in Eq. (4.2) is a function of E only, and the set of Eqs.
o

(1+.3) reduces to a single equation.

The quantity p2A is shown in Fig. 3 as a function of shield depth

in g/cm2 for 200-GeV and 500-GeV muons normally incident on shields of

iron and soil. In the figure, the solid lines give the results when x2

is used in Eq. (4.2) and the dashed lines give the results when Xp is

used for x2 in Eq. (4.2), i.e., when only Coulomb scattering is consid

ered. The quantity A has been multiplied by p2 in the figure to remove

insofar as possible the density dependence of A . There is, nevertheless,

considerable difference between p2A (E ,z ) for iron and soil. Since in
2 v y

the approximation that is used here there is a unique relation between

particle energy and depth [see Eq. (4.3], the curves in Fig. 3 end at the

range of the incident particle. It is to be noted that even when measured

in g/cm2 there is a considerable difference between the range of a 500-GeV

muon in iron and in soil. The dashed curves in the figure were obtained

using Coulomb scattering only and therefore correspond to the approxima

tion used in the previous calculations1-3). As the figure indicates,

there is some difference for 200-GeV incident muons and considerable dif

ference for 500-GeV muons between the solid curves that include an estimate
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Fig. 3 The coefficient A2 [see Eq. (4.2)] multiplied by the
density squared vs depth in shield in g/cm2.

of the angular scattering from all processes and the dashed curves that

neglect the angular scattering effects of bremsstrahlung production,

pair production, and nonelastic nuclear interactions.

The quantity A , calculated with x2» is shown in Fig. 4 as a func

tion of shield depth in g/cm2 for 200-GeV and 500-GeV muons normally in

cident on shields of iron and soil and on a laminated slab shield com

posed of 6 m of iron, followed by 357 m of soil, followed by 70 m of air,
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(X104)

Fig. 1* The coefficient A [see Eq. (4.2)] vs depth in shield in g/cm2,
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and followed by an infinite extent of soil. The iron and soil curves in

Fig. 1+ are the same as those in Fig. 3 except that A is shown rather

than p2A .

For both 200- and 500-GeV incident muons, the value of A for the

laminated shield case (dashed curve) is the same as the value of A for

iron at a shield depth of 6 m of iron (1*680 g/cm2). This must be so

since the first 6 m of shield in the laminated case is iron. As the

shield depth increases beyong 6 m, the dashed curves very quickly ap

proach the soil curves and remain nearly the same as the soil curves un

til the air gap at 7.608 * 10^ g/cm2 is reached. The quantity A2 for the
laminated shield is larger than the A for soil at depths of the order of

2 x 10^ g/cm2 and beyond due to the fact that the incident muons lose

more energy in passing through 1*680 g/cm2 of iron than in passing through

this amount of soil; i.e., at a given depth in g/cm2 the muons in the

laminated shield case have less energy than in the soil case. The 70-m

air gap appears as a discontinuous change in A2 because the graph is

plotted against depth in g/cm2. This change in A£ in the air gap is due
to streaming, which is correctly given by the Eyges solution (see Sec

tion 2), and would not appear as a discontinuity if the graph were plot

ted against depth in meters. For the 500-GeV incident muons, the dashed

curve is above the soil curve at all depths beyond the air gap but be

comes very nearly the same as the solid curve at the largest depths, i.e.,

near the range of the 500-GeV particles . Thus at very large depths in

g/cm2 the effect of the air gap on A2, and consequently on the lateral

spread of the beam, is very small. The position of the air gap was cho

sen so that the incident 200-GeV muons would have very low energy (^ 500

MeV) when they entered the air. There is an appreciable lateral spread

of these particles as they pass through the air gap, but they are suf

ficiently low in energy that they stop very rapidly when they enter the

soil shield after leaving the air gap. (The extension of the curve into

the soil after the air gap in the 200-GeV case is not shown in the fig

ure. )
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SHIELDING AROUND A HIGH-ENERGY PROTON

ACCELERATOR TARGET - HOMOGENEOUS SHIELDS

5.1 Geometry and muon source

Consider a proton beam interacting with a target in a geometry such

as that shown in Fig. 5. It will be assumed that the target is suffi

ciently small that it may be approximated as a point. In this approxi

mation, the energy-angle distribution of the pions that emerge from the

target is the same as the differential production spectrum of pions,

d2N

dP d^
1\ TT

from a proton-nucleus collision. In the calculations presented here,

27 'l
this differential production spectrum is taken from the work of Trilling '.

as modified by Ranft and Borak ', and is obtained by adding the differ

ential production spectrum of positively and negatively charged pions.

VACUUM

PROTON

BEAM

Be TARGET

Fig. 5 Schematic diagram of target and shield,
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In traveling from the target to the shield the pions may decay into

;. The probability Pn(P , cos6 ) that a

fore it reaches the shield may be written as

muons. The probability Pn(P » cos6 ) that a pion decays into a muon be-

PT,(P ,cos6 ) = 1 - exp<-
D t\ tt *\

fm
B

TT (5.D

= 1 - exp/-
im

T COS0
TT TT

x sin0
T\ TT

tanQ < ,
it d.

tan6 > —
ir - d.

B

(5.2)

where

x = the lifetime of a pion at rest multiplied by the velocity

of light,

and r and d are shown in Fig. 5.
B B

When a high-energy pion decays into a muon, the angle of emission

of the muon with respect to the direction of motion of the pion is small

and will be neglected. That is, it is assumed that the muon from a pion

decay is emitted in the direction of the motion of the pion. Under this

assumption, the energy distribution of the muon F (E ,P ) from the de

6)cay of a pion with momentum P may be written

F (E ,P ) = -
yT y TT j, / 2 2\P (m -nrj

tt tt y'

nr
•n

E . (P ) < E < E (P ) , (5-3)
pm tt y ymax tt

where

E . (P ), E (P ) = the minimum and maximum energy, respectively,
ymm ir ymax tt

of muons that may be emitted from a pion of

momentum P . (Explicit expressions for these

energies are given in Ref. 6, p. 19l).

Combining Eqs. (5.1), (5-2), and (5.3) with the distribution of pions

leaving the target, the distribution of muons that are incident on the

shield may be written

P d2N
S (E ,cos6 ) = / ^mX AT> Jl P^(P ,cos9 ) F (E ,P ) dP
oy y i dPdfi DTr' y pit p i tt

P . tt tt
Trmin

(5-4)
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m2

y

2m
TT
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y
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tt y

2m m
tt y

>-nr (5.5)

>-m' (5.6)

S (E , cos6 ) = the number of muons per unit energy per unit solid

angle per interacting proton in the target that

are incident on the shield,

P . , P = the minimum and maximum pion momenta that may
Trmin Trmax

produce a muon with kinetic energy E .

The source S given by Eq. (5.4) and obtained with a proton target

of beryllium is used in all subsequent calculations. In addition to the

explicit assumptions made above in determining S , there are two implic

it assumptions which must be noted since neither may be entirely valid.

First, in addition to the muons from pion decay, there will be some mu

ons from kaon production and decay, and these have been neglected1'29).

Second, there will be some muons produced by the strongly interacting,

particles after they enter the shield, and these muons have been ne

glected1.29).

5.2 Flux and dose calculation

The solution to the muon transport equation given in Section 4 is,

strictly speaking, valid only for normally incident monoenergetic muons,

but it may also be assumed to be approximately valid in the case of non-

normal incidence provided that z and r are understood to be defined
y y

with respect to the direction of incidence. To use this solution in con

junction with the source S , it must be written in terms of the coordi

nates r, z, 0 , <f> - $ (see Fig. 1*) and averaged over the relative azi-

muthal angles <f> -(f). This integration cannot be carried out exactly,

but, using the approximations described in detail in Ref. 2, the omni

directional flux i> may be written
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iLi(E ,cos0 ,z,r) = t -.—r= r I
ry' y 4ttA(E,z) c

2 y y

2(z+d„)r sine cos9
B y y

1*A (E ,z )
2 y' y

with

Xexp<-T+A-lE-

z — —*"^"^™
y cos©

z+dT

cost

B

sin0

[r2 cos20 + (z+d^)2 sin26 ]

tan0 < —
y dT

tan0 > —
y " dB

(5-7)

(5.8)

(5.9)

where

iii(E ,cos0 ,z,r) = the omnidirectional flux at a point r,z in the
y y

shield due to a muon with kinetic energy E and

momentum direction defined by the polar angles

0 ,<}> . (In obtaining Eq. (5.6), an average over

the azimuthal source angle <(> has been carried

out so Eq. (5.6) can be used only with an azi-

muthally symmetric source.)

I = the modified Bessel function of order zero,
o

The omnidirectional flux of muons, ^g, at a point r,z in the shield from

the source S may be written
o

S

where

E 1
i|iH(z,r) = 2tt / max dE / d(cos0i|) S(E),cos0]|) ip(E ^cosQ^.z.r) , (5-10)

E . y o
mm

y y y y •

E = the maximum muon energy that can arise from a proton non-
max

elastic collision in the target,

E . (z) = the value of E from Eq. (4.3) when E = 0 and 0=0.
min y by

In practice, the contribution to the integral in Eq. (5.10) at large

values of cos0 is very small, and the upper limit on the cos0 integra-
y y

tion may be taken to be much less than unity.

Since only the energy-integrated flux has been calculated, in

principle it is not possible to calculate the dose that is dependent on

the flux per unit energy. However, because the continuous slowing-down
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approximation is used and because it was previously assumed that the

energy loss is dependent only on z , an estimate of the energy E that a
y s

muon with initial energy E and momentum direction cosO will have at a
y y

point r,z may be obtained (for a homogeneous shield) from the equation

JE S(E') cos0 y dB

= P
Z+dB rB
cos8 sin0

y y

tan0 > —- . (5-12)y - dB

With this estimate of the energy, the absorbed dose may be calculated as

E 1
D(z,r) = 2tt / max dE / d(cos0 ) S (E ,cos0 )

L y i y ov y' y'
E o
mm

x ^(E^cosB^z.r) PTST(ES) (5.13)

where

ST(EC,) = the stopping power of tissue (in MeV-g 1 cm2) for
muon of kinetic energy E ,

b

p = the density of tissue (g/cm3),

and E0 is to be determined in terms of E and cos0 from Eqs. (5.1l) and

(5.12). The stopping power of tissue for muons was obtained in the same

manner as was the stopping power of iron and soil (see Section 3.l).

When D(z,r) has been calculated, contours of constant dose in the

shield are determined from the equation

D(z,r) = constant . (5.14)

5.3 Results and discussion

In the geometry shown in Fig. 55 with r^ = 15 cm and d_, = 600 cm,
±5 is

calculated results have been obtained for 200- and 500-GeV protons with

a soil shield and for 500-GeV protons with an iron shield. Isodose con

tours in the iron and soil shields, respectively, for 500-GeV incident

protons are shown in Figs. 6 and J, and isodose contours in the soil
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PROTON ENERGY = 500 GeV

TARGET=Be

SHIELD MATERIAL=Fe

THE NUMBERS ON THE CURVES SPECIFY THE DOSE
IN MeV cm-3 (interacting proton)-1
CALCULATED USING x2

. CALCULATED USING x2 -12

10

DEPTH (m)

15 (xio1)

Fig. 6 Muon isodose contours in an iron shield for
500-GeV protons incident on a beryllium target.
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Fig. 7 Muon isodose contours in a soil shield for 500-GeV
protons incident on a beryllium target.
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shield for 200-GeV incident protons are shown in Fig. 8. In all of these

figures, the solid curves represent the results when all angular scatter

ing processes, Coulomb elastic scattering, bremsstrahlung production,

pair production, and nonelastic nuclear interactions are considered, and

the dashed curves represent the results when only the angular effects of

Coulomb scattering are included. The dashed curves then correspond to

the approximation made in Refs. 1, 2, and 3.

In all of the figures, the solid and dashed curves are the same at

small shield depths, i.e., at small values of z, because the source muons

that contribute appreciably to the dose at these depths are at energies

such that x2 ~ X2. (see Fig. 2). At intermediate depths in Figs. 6 and 7,

the differences between the solid and dashed curves are quite small at

the large dose values, i.e., at relatively small radii, but become more

pronounced at the lower dose values, i.e., at the larger radii. In

Fig. 8 the differences between the solid and dashed curves are small at

all depths because at nearly all muon energies that can be produced by

200-GeV protons x2 ~ Xn• In all of the isodose contours, zero radius

for a given dose occurs at a larger depth for the dashed curves than

for the solid curves. This is because the portion of the curves in the

vicinity of zero radius is determined by the source muons with very high

energies, and these muons are scattered to larger radii when all angular

scatterings are considered than when only Coulomb scattering is con

sidered.

SHIELDING AROUND A HIGH-ENERGY PROTON

ACCELERATOR TARGET - LAMINATED SHIELDS

In this section, isodose curves for a shield composed of layers of

6 m of iron, 357 m of soil, and 70 m of air, followed by an infinite

layer of soil, are compared with those for a similar shield with the air

gap omitted. Slowing down and multiple scattering from all processes

are included in the computation of the lateral distribution for a given

muon direction of incidence. The "width" coefficient, A?(E ,z ), for
^ \i V '

the shield with the air gap included was shown in Fig. 4 for initial muon

energies of 500 GeV and 200 GeV.

The pion source spectrum is the same as that used in Section 5, for

500-GeV protons incident on a beryllium target, but is restricted to a

narrow cone of angles (see Fig. 5) such that
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1 1 1—

PROTON ENERGY = 200 GeV

TARGET = Be

SHIELD MATERIAL = SOIL

THE NUMBERS ON THE CURVES_ SPECIFY THE DOSE
-IN MeV cm-3 (interacting proton) 1 1 1—

CALCULATED WITH x2
CALCULATED WITH v2

(X10*
DEPTH (m)

Fig. 8 Muon isodose contours in a soil shield for 200-GeV
protons incident on a beryllium target.

tan0p <rB/dB ,

where d^ is the length of the pion decay space following the target and
B

r_ its radius. For this case, 0,,„QV is approximately 25 mr.

The pion decay distance in direction 0 is taken to be d^/cos© , so
•^ y a y

the decay probability is that given by Eq. (5«l). This, with the source

spectrum, determines the function S (E ,cos0 ), which is the muon in-
\J yX yX

tensity incident on the first interface of the shield for each value of

6 . The first interface is a flat plane normal to the proton beam di-
y

rection.

Thereafter, the muon slowing down is computed along paths in which

the sequence of materials and the layer widths are taken to be the same

for each value of 0 < 25 mr. The reason for this is simply computa

tional convenience. Hence, from the point of view of slowing down along

the incident muon direction, the shield geometry is roughly that of

spherical shells with radii passing through the target for 6 < 25 mr.

For the special cases computed here, the interface positions in each

direction 0 are:
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z = 0 = the first air-iron interface,
y

z = z = 6 m = the iron-soil interface
y 1

z = z = 363 m = the soil-air interface, if air gap is present,

z = z = 433 m = the air-soil interface, if air gap is present.

The distance z - z is a distance in soil, for the comparison case.

The slowing-down energies are computed from Eq. (2.31) or Eq. (4.3).

The coefficient A (E ,z ) was computed by Eq. (4.2) and is also the same

for each value of 0 .
y

The Eyges solution for the muon flux is used in each direction 0 .
y

The lateral distribution is computed assuming that each layer of material

is a slab of a given width, taken normal to the z axis; i.e., that the

mean-square scattering angle per unit distance depends only on z and E .

A superposition of such solutions is used in integrating over the source

distribution, as was done in Section 5 for a homogeneous shield. The

error in the case of a layered shield will not be large unless the lat

eral deflections are large near the interfaces. This happens only in

the case of air gaps in which slowing down is negligible, so the muons

which might have been stopped in soil continue streaming in the direction

of entry into the air gap until the next soil interface is reached. The

slant streaming distances in air for large angles and the resulting lateral

deflections may be different for different geometric descriptions. For

the large distances used here (z = 1+33 m), the error should be small.

The azimuthally averaged muon flux in a fixed plane normal to the

z axis (proton direction) is given by Eq. (5-7), with Eq. (5.8),

z = z/cos0 ,
y y

used as the approximation for z (r,z,0 ) in the coefficient A . The

same approximation for z is used to compute the energy E (E ,z ) of the

muons in this plane, according to Eq. (4.3), when the energy-dependence

of the muon stopping power in tissue is taken into account in computing

the dose. The dose D(z,r) is given by Eq. (5.13).

Isodose contours are shown in Fig. 9 with the radius given in meters

and the depth given in g/cm2. The solid curves show the results for the

iron-soil shield with no air gap and the dashed curves show the results

when the 70-m air gap beginning at a depth of 363 m is included. The
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air gap appears as a discontinuity in the isodose curves because the

width of the gap in g/cm2 is very small. At depths before the air gap

the two shields are identical and thus the isodose curves are identical.

16
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5 8
Q
<
or

PROTON ENERGY

TARGET = Be

0,Timax 25 mr

I
500 GeV

SHIELD MATERIAL

(DASHED CURVES) = 6 no Fe, 357 m SOIL,
70 m AIR, INFINITE SOIL

(SOLID CURVES) = 6 m Fe, INFINITE SOIL

THE NUMBERS ON THE

CURVES SPECIFY THE DOSE

MeV cm-3 (interacting proton)

^
\
-X

v
\.

-1

6 8

DEPTH (g/cm2)
(x104)

Fig. 9 Muon isodose contours in laminated shields for 500-GeV protons
incident on a beryllium target.
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The presence of the air gap does not greatly change the length of

the shield for a given dose level since the slowing-down distance along

the beam direction is unchanged. However, the streaming of the muons in

the air gap greatly increases the radial extent of the soil shield neces

sary just beyond the air gap for a fixed dose level of IO"13 MeV cm-3 (in

teracting proton)-1. For larger dose levels, the effect of the air gap

on the radial extent of the shield is not nearly as great. The contour

for a dose level of IO"10 MeV cm-3 (interacting proton)-1 reaches zero

radius in the soil just before the air gap, and thus for this dose level,

in the case considered, the air gap has no effect on the shield.
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