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PLASMA. HEATING BY ENERGETIC PARTICLES

* +D. J. Sigmar and Glenn Joyce

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

ABSTRACT

The interaction of a tenuous energetic test-particle

species with a multispecies high temperature plasma is calcu

lated. The Balescu-Lenard kinetic equation is used in order

to include collective effects through the dielectric constant.

Quantum corrections are made for close collisions. The theory

is first applied to the slowing down of fusion born a-particles

in a mirror-confined plasma and theory and numerical results

are compared to previous treatments and corrections are found.

In Tokamak-like plasmas most of the a-particle energy goes

into the electrons and the thermalization time is somewhat

larger than the plasma lifetime but heating can nevertheless

be substantial. Heating of a Tokamak-like plasma by injection

of energetic neutrals is shown to be effective at injection

energies £ 70 keY, possibly doubling the ion temperature when

the injected particle density reaches 1$ of the plasma density.

For analytic estimates, a simple binary collision model for

injection heating is given.
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I. INTRODUCTION

The question of plasma heating by energetic particles has recently

received renewed attention with respect to open-ended and closed confine-

ment schemes for nuclear fusion. ' ,J Although one can achieve high ion

temperatures in mirror machines, the energy drain through the loss cone

poses a threat to their economic feasibility. In toroidal reactors,

such as Tokamaks, ion heating is perhaps the most difficult question to

resolve. The additional heating effect of fusion generated a-particles

(born at 3.5 MeV in a d-t reaction) and/or heating by injection of energetic

neutrals (^ 100 keV) can help significantly to alleviate these problems.

Heating of a-particles in mirror-confined plasmas has been considered

in various degrees of approximation of the binary collision theory.^'5,6,7,8

Injection heating of Tokamak plasmas has recently been estimated.^ For

use m the crucial efficiency calculations of mirror reactors, it is

worthwhile to seek more rigor by including collective effects and quantum

corrections for large angle scattering. For injection heating, a more

exact treatment, including thermalization times, the fraction of energy

absorbed by the plasma ions and the optimal injection energy, is desirable.

We develop a test-particle formalism based on the Balescu-Lenard

kinetic equation and containing suitable quantum corrections for large

angle scattering to study these problems for a multispecies hot plasma

for arbitrary test-particle mass and energy. Numerical evaluation is

used where necessary for applications. In Sec. II, the kinetic equation

is given and the energy loss derived. In Sec. Ill, various analytic
Q

limits are shown to reduce to polarization- and binary collision-

10 4
energy loss theories. ' Also, injection heating is derived in the

binary collision approximation of Ref. 5- In Sec. IV, numerical results are



presented for a-particle slowdown in a mirror-confined fusion-like plasma

and in a Tokamak plasma and results are given for the energy loss rate,

the energy degradation vs. time and the relative fraction of total energy

absorbed by the ions and electrons, as a function of electron temperature.

For injection heating of a Tokamak plasma, thermalization times, relative

fractions of energy absorbed by the ions and electrons and total energy

absorbed by the ions are given as a function of injection energy. In

Sec. V, the small corrections due to the applied magnetic field are esti

mated and some physical limitations of the present model are discussed.

Results are summarized in the last section.

II. ENERGY LOSS MODEL

In the simplest possible model, one sums over all binary collisions

between the test particle and the electrons and ions of the plasma. A

further simplification is possible in a plasma with the ordering

T ^ T. « E (mirror machine)
e 1 ^ '

T± £ T « E (Tokamak)

where E is the test-particle energy. Then, if the test particle is heavy,

the ordering for the velocities becomes

a. < v < a (2.1)
1 e v '

where v is the test-particle speed and

=J2 T ./na . = J2 T ./m . . (2.2)
e,i N e,r e,i v '
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Thus, the test particle is fast compared to the ions but slow compared

to the electrons. This allows an asymptotic expansion of the ion term

and a power series expansion of the electron term, as we shall see. This

leads to very simple analytic formulae. However, it introduces an error

in the test-particle ion interaction term near thermalization, contains

two energy independent ad hoc cutoffs (log A), no collective effects (except

Debye shielding) and no quantum corrections for close collisions. On the

other hand, the most rigorous treatment consists of deriving a quantum

mechanical fully convergent kinetic equation for the test-particle distri

bution function. ' ' Depending on the application, the resultant gain

in accuracy in the so-called nondominant terms has to be weighed against

the enormous additional effort. As we shall see, for the fusion-like

plasmas of interest in this work, the plasma parameter (n^)"1 is so small

that we find it justified to use the intermediate level Balescu-Lenard

kinetic equation which differs from the fully convergent equation only

with respect to large angle scattering. We remove the corresponding diver

gence by introducing an energy dependent cutoff at the distance of closest

approach which is allowed to become quantum mechanical in the same fashion

as the fully convergent theory of Ref. 12 suggests. (With respect to a correct

treatment of large angle scattering, we note in passing that usually Coulomb

scattering in first Born approximation is used. For a-particles above

500 keV and large angle scattering, nuclear interactions dominate Coulomb

Ik
interactions and the use of the first Born approximation becomes question

able also. However, such errors are small compared to the dominant contri

butions from small angle scattering.) Beyond the dominant binary collisions,

the present theory contains collective effects (Cerenkov-emission) through



the plasma dielectric constant and requires no restriction on the ratio

of test-particle to plasma-particle velocity. The small effect of an

external magnetic field could be included rigorously in the dielectric

constant, but we have limited ourselves estimating the corrections.

The Balescu-Lenard equation for a tenuous beam of test particles

15
takes on the form

df 2
3t =" F" • ^(vx) ft(vx)] +*^-^ : [T(vl} f (vl}] (2.3)

where

and

et v 2 r d3k ^Fj'(£ • ^)^-s^rl'&S^r^t^ ^ ^k4 |D+(k , p = ik • vx)T

,2e, . ^ d^k k kF,(k • Vl)
—— ' ) ixr . m. \ a (2.M2nM^Sv1 ^ ^ ^k5 lD+(k, P=ik - Vl)|2 ( j

e^ ^ dak k k F.(k • vi)
jr2 ^ PD 0

T'(vi) = —— )u)2.m. \ 3 : . (2.5)

Here, j is the plasma species index, m. and u> . are the mass and plasma
U Ptj

frequency of the j-th species, e and M the test-particle charge and mass.

F (u) = \ d3v f (v) 6(u -k • v) = (m./2TT T.)s exp( - m. u2/2 T.)

is the one dimensional distribution function of the j-th species. The



plasma dielectric function is given by

+.- - -. -^ r Fi'(u) duJ
: n >D(k,p=ik.v)=l-^ V

k ^u + k-v-i
3 -00

where e is a positive infinitesimal. Note that the test particle will

interact strongly if its velocity equals the average plasma-particle speed.

Consequently, for the ordering given in Eq. (2.1), the test particle will

initially interact mostly with the electrons and near thermalization mostly

with the ions.

For a Maxwellian plasma the dielectric function becomes

,+ 1 V 4jD = 1 - ) _^_ z.*(k . v/a_) /2 6v

0 3

where Z** is the complex-conjugate of the derivative of the plasma dispersion

function and a is the thermal speed defined in (2.2). Equation (2.3)

has the form of a Fokker-Planck equation with coefficients given by (2.4)
, +|2 h

and (2.5)- For |D | = 1 it would reduce to the equation of Landau or

17Rosenbluth, MacDonald and Judd. The mean rate of energy change of a

test particle is

|f =-£ WV v? 9ft/St . (2.7)

From (2.3) and (2.7), after performing some integrations by parts and

assuming a monoenergetic beam of test particles,

f+(Vl) = 6(V! - v)



we obtain

BE
Mx

— = m v • F(v) + — trace T(v)

The task of determining the energy exchange rate is then reduced to the

straightforward, if tedious, evaluation of (2.8). The result is

9e _ 2v 2 v3 dkT , Fj'̂ v)Bt =2vetZ"pj \ ri^^jr
j o o ' '

't V+ 2 r-r ) ou2 . m. \ ^Mt L pj j x n-
j

*o;
dk Fj(^)
k .+ |2

D
|Jt=i

(2.8)

(2.9)

Here we have chosen a polar coordinate system such that k • v = v cos 9 = vu-

As can be seen from (2.6), the radial integration can be performed analyti

cally and shows a logarithmic divergence which is cut off at the distance

of closest approach between test particle and each species:

°J

r~ = m . v2 ./2 e, e. ... r A > 2tt
c rj rj' t j c'

X = m . v ./ft ... r A < 2tt ,
rj ry c1 '

where 11 is Planck's constant and the relative velocity and reduced mass

are given by

ia-<(v-s/>-^ +̂ ,

m . = M, m./(M, + m.)
rj t jM t y

(2.0O)
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and the angular brackets denote an ensemble average. Table I gives values

for the effective $/n A = Q/n (k /k_ ) for the three plasmas considered in

Sec. IV for the initial and final values of the test-particle energy.

The switch from the classical to the quantum mechanical cutoff is

significant and consistent in the dominant term with Ref. 12 describing

cutoff-free quantum mechanically correct transport coefficients.

For a Maxwellian plasma Eq. (2.9) may be rewritten using

|D+|-2 =tt"1 Im(l/D+) [^v/^ (kg./k2) F^v)] , (2.11)
J

where

]s-. = (4rr n. e2/T.)s

is the Debye wavenumber for the j-th species.

For convenience, a dimensionless form of (2.9) is given in the

appendix.

III. SOME LIMITS, INCLUDING A SIMPLE APPROXIMATION

FOR INJECTION HEATING

Since F.'(p,v) is negative, the first term in (2.9) is negative

definite and describes the energy loss of a fast test particle. It is

identical to the result obtained from the polorization drag theory,

valid for fast test particles if large angle collisions are eliminated

by a cutoff. The first term in (2.9) vanishes like v2 for v -» 0 and is

of 0[(a./v) 2m (k ./1l )] for v -» °° . The second term is positive definite

and describes the energy gain of a subthermal test particle. It vanishes



i I ^2

as e ' V for v- oo but approaches a constant value for v- 0 , see

appendix.

A useful approximation of the energy change rate (2.9) is found when

collective effects are ignored, by setting

-2+

D I = 1 - (3-1)

This necessitates another cutoff at small k which, when chosen as k^

leads to the binary collision theory. ' ' As follows from Eq. (2.6)

for D , approximation (3-1) tends to be worst for slow test particles

and then overestimates the energy change because of its crude way of

describing shielding solely through the cutoff, and it tends to under

estimate the energy loss for fast test particles due to the omission of

collective effects in that regime where the binary collision cross section

drops off.

The binary collision theory is useful for obtaining approximate

expressions for the energy loss. For convenience, we quote from Trubnikov's

k
very detailed review:

3E n„ f 1 rMt
at

2E ^-=-7 — (j,(x ) - ll'(x )
I a/e Lm ^ e' ^ K eJI a/
Tl /

e'J

e '

+_i ^MTi(ViLi5^<*i> ""'(W • C-2'

Here

•n Xm . E

x e,i-Mt^.^(x)=^Se'Vtdt
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and the relaxation times are given by

Tia/J =y^EVrr J2 (et e..)2 n. fc (k^/fc^) , (3-3)

where the species index j stands for e,i .

For the ordering (2.1) it becomes now apparent that an asymptotic

expansion can be taken for p,(x.) and a power series expansion for u.(x ) ,

as mentioned. This leads directly to Eq. (3) in Ref. 5.

From Eq. (3-2) the thermalization energy E , at which dE/dt vanishes,
x*n

can be computed. Furthermore, consistent with our remark about test-

particle plasma-particle resonance, it can be seen that initially, i.e.,

for

E/T » m./m
' i' e

the electrons are heated predominantly and later, near thermalization,

i.e., for

f « E/T « m./m ,

the ions are heated predominantly, and the crossover point E*/T can be

calculated.

Given dE/dt as a function of energy, such as in (3-2), the test-

particle energy as a function of time is determined by

E

t(E) =$ dE'/|| (E<) , (3.1+)
E

where Eq is the initial test-particle energy. Since the thermalization
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energy E^ is approached asymptotically in time, we will break off the

integration at E=2T^. in order to define acharacteristic thermalization
time:

*th = *(E =2Te,i) ' (3.5)

following Trubnikov. From (2.9) and (3-k), dE/dt can then be found as

a function of time and the total energy change during thermalization can

be calculated from

*th

AE=̂ (dE/dt) dt . (3.6)
o

By splitting up dE/dt into energy lost into electrons and energy lost into

ions, the relative amounts AEg and AE. can be determined. These quanti

ties are of particular interest for fusion feasibility since electron-ion

temperature relaxation is slow compared to test-particle plasma heating.

Before presenting quantitative results on a-particle slowdown and

injection heating, we proceed to an approximate analytic treatment of

injection heating. The relevant questions are: what is the thermalization

time as a function of injection energy, what fraction of the energy is

absorbed in the plasma ions and what is the optimal injection energy.

To get an estimate, we generalize the approximate binary collision

theory of Ref. 5 so as to allow for a variation of the initial test-particle
E

energy. Let E = — be the scaled injection energy,
e

2.5/t = 2 x 10"12 n./T 2
' s i7 e
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3

(where t is in seconds, n. in cm" and T in keV and Bm A = 20),
b i e '

3. i M, m.

r3 -3^M,VW m* and m.=,^- . (3-7)
t ' ri e ri M + m.

t i

Then, from Ref. 5, Eq. (3),

i--¥--¥^^ • (5-8)
S S

The first term on the RHS represents the test-particle energy going into

the electrons, the second the energy going into the ions.

Equation (3-8) has the solution

E=[(r3 +E*) e"X - r3]1 , (3-9)

where

E = E(t = 0) and x = 15t/4T
s

The thermalization time, taken between initial and final energies E ,

E , is then given by

W, E T + r3
s n °Bm.

th 15 I I + r3
th

^3 „™~3For example, for n. = 5 x 10^ cm , T =1 keV , T. ^ T , and a 50 keV
i e i e

proton slowing down in a hydrogen plasma, one finds r = ^.85 , k-7 /15 = 1/150
s

and t ~ 9 msec. (But recall that this approximate theory begins to

break down near thermalization, so that calculating the thermalization

time in this way gives only a rough estimate.)
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The total amount of energy absorbed by the plasma ions is

xth

A Ei-yj ^ e"*(x) ,

where x^ is the scaled thermalization time defined through E(x,J = E .

Using (3-9) one finds

" i

4E.= 2r3 ^ ds s/(r3 +s3)
x 1

Eth^

IE z

=y- {fln _7(s - |)2 +I r2 /(s +r) +̂ 3 arctan[(2s - r)/75 r } (3-10)
E^

th

where the substitution

s3 = (r3 +E *) e"X - r3
v o '

has been made.

This is a simple monotonic function of the injection energy E ,

saturating asymptotically as arctan E " for very large E . The saturation

value is

A E.m= r2 tt/3/3 - (3-11)

This saturation reflects the drop-off of the interaction as E -» » . The
o

value of r (determined by the particle masses, cf. (3-7), will determine

when saturation sets in.
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It is interesting to observe that, from (3.8), the power going into

the electrons over the power going into the ions scales as E* so that,

since ion heating is desired, low injection energies seem favorable. The

break even point for this power ratio occurs at E* = r2 . The evaluation

of (3-10) at this energy is very simple and a comparison with (3.11) shows
that

* . * /N

A Eioo/A Ei(E = E*) =2.H

independent of r (if Eth =0 is taken for this estimate).

This suggests injection energies well above E* . The physical explana

tion is the following. With increasing injection energy the electrons

absorb a larger fraction than the ions, per unit time. But the time

integral over the thermalization process gets a large contribution from

the ions near thermalization such that the total amount of energy absorbed

by the ions can increase with injection energy until saturation is reached.

IV. QUANTITATIVE RESULTS

The formalism of Sec. II is applied to heating of a mirror-confined

plasma by fusion born a-particles, followed by a short discussion of the

same effect in a Tokamak-like plasma and heating of such a plasma by

injection of energetic neutrals. (We concentrate on the test particle

plasma interaction while Refs. 1, 2, and 3 deal more with global reactor

energetics.)

i) For the mirror confined plasma, we choose

n=101 cm-3 ,Td =Tt =100 keV
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and equal amounts of deuterium and tritium. Figure la shows the a-particle

energy loss rate as a function of energy for T = 20, ^0 and 80 keV. For

20 and 80 keV, we also show as dashed curves the fraction of the energy

lost into the electrons only. For small values of E, the ions become

increasingly important. With rising electron temperature the total loss

rate decreases as expected, cf., Eq. (3-2).

Figure lb shows the same function plus a comparison with the approxi

mate binary collision theory of Ref. 5, henceforth referred to as DJR.

The larger values for dE/dt can be explained by the inherent deficiency

of the binary collision theory with respect to slow test particles, since

the a-particle is slow compared to the electrons and energy loss to the

electrons is most important. The upturn for small energies is related

to the breakdown of the approximation v » a. , made in DJR. The deviation

between DJR and the present calculation at low a-energies lead to a corres

ponding underestimation of the thermalization times as shown in Fig. 2,

which displays the energy degradation vs. time. The dashed curves are

calculated from DJR, for Tg = 20 and 8o keV. The thermalization time

from 3.5 MeV to 200 keV is found to vary between .83 and 2.2 sec, depending

on Tg . Our results enhance the notion that substantial a-particle heating

requires large confinement times in mirror reactors. R. Mills' data are

generally similar. In that reference the energy decay is also indicated

for energies below 2T± . The shape given there can be understood qualita

tively from Eqs. (3-2) and (3-M- Also shown in Fig. 2 is the energy

dependent 90°-deflection time for a-particles on deuterons, derived from
o

Fowler and Rankin:



l6

•_10(E) =-IL- !"n e2 e2 Bm (k _/k_ )/J!TT<
90 /p~ L d a d v odx T)e//V a LR

, , m .

d

3 /md
v 3V m

a

(k.l)

where the upper line is for v > v, , the lower for v < v, . Here, d
ad ad'

stands for deuterons, a for a-particles and LR = 10 log R , where R
C .i- -i- V^.1- J~

is the effective mirror ratio. Note that it enters only logarithmically.1^

Thus, Fig. 2 shows the extent to which the a-energy can be deposited
Q

in the plasma. Fowler and Rankin estimate that in a steady state mirror

reactor, the a-particle density may reach 30$ of the ion density. With

each particle contributing ~ 3.3 MeV this would increase the plasma energy

by two orders of magnitude provided the plasma lifetime is sufficient.

Figure 3 shows the relative amounts of a-particle energy deposited

into the electrons and ions respectively, as a function of electron

temperature. The dashed curves are taken from DJR. The break even point

between electron- and ion-absorption lies at T = ^5 keV . (Since cooling

on electrons is a strong energy sink for the ions, increasing the electron

temperature above this point is desirable. The electron heating energy

might be recovered from the increased fusion energy output. (Cf. Ref. 2.)

ii) In a Tokamak, a-particles can relax to much lower ion tempera

tures (of the order of several keV) than in a mirror machine. Specifically,

we calculated the case

n = 1014 cm"3 , T = 6 keV , T. = k keV ,
e 1 '

and equal amounts of deuterium and tritium. (Contrary to the mirror-confined
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plasma just discussed, this is not quite a reactor-like plasma, but may

be realized in the next generation of experiments.) We found it takes an

a-particle 250 msec to drop from 3500 to 12 keV, where 87$ of the energy

goes into the electrons and 13$ into the ions. This value for the thermali

zation time exceeds present plasma lifetimes. Note that the ions still

receive an energy of ^00 keV, i.e., a hundred times their average energy. However,

conclusive assessment of a-particle heating for Tokamaks will have to be

postponed until reliable buildup and loss models have been provided.

iii) With respect to Tokamak heating by injection of energetic neutral

particles, we have calculated the slowing down of a proton (generated by

charge exchange inside the plasma) with injection energy varying between

20 and 8o keV, in an electron-proton plasma characterized by

n = 5 x 1013 cm"3 , T = 1 keV , T. = .5 keV
e i

Figure h shows the thermalization time required for the injected

particle to drop to an energy of 2T =2 keV, as a function of injection

energy. It ranges from 8 msec to 22 msec, a time shorter than the plasma

lifetime. Figure 5 shows the relative fractions of injection energy going

into the electrons and ions respectively, and the total amount of energy

going into the ions. The break even point between electron- and ion-

absorption is at kh keV. As explained in Sec. Ill, for larger injection

energies, although the fraction going into the ions decreases, the abso

lute amount of energy going into the ions increases until it asymptotes

around 70 keV, thus indicating an optimum injection energy. For the

plasma parameters assumed above, an addition of 1$ of 70 keV protons

would thus double the ion energy.
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V. MAGNETIC CORRECTIONS AND DISCUSSION OF MODEL

An external magnetic field changes the plasma dielectric constant

and leads to a helical test-particle orbit. In the cases of interest one

has for the test-particle-electron interaction the ordering

r « X- < a « a,
oe De e t

where r is the distance of closest approach, \ is the Debye-length

and ag t the electron- or test-particle gyroradius. One concludes that

the test-particle orbit curvature is negligible and the binary collision

orbit dynamics remain unchanged. The ordering X > a or equivalently

u>ce > u) (where <u is the electron gyrofrequency) can however modify

the collective contributions to the energy transfer. This is a non-

dominant effect leading only to a modification of Bm A • From an elementary

point of view, one can argue

k2 k2 a2 k2 a2
,2 _ oe _ o e _^ o e

so that

^e 2 u)2 2(u)2 + a)2 )
pe v pe ce'

2

ce

pe

More rigorous estimates are contained in Refs. 20, 21 and 22. Basically,

the dominant collective effect is now a hybrid- instead of a plasma-

oscillation. An extensive discussion, including magnitude and direction

of the test-particle velocity and numerical results can be found in
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23R. May and N. Cramer. In practice, for very high magnetic fields and

typical densities (120 kGauss, 1014 cm"3) oo2 A)2 ^ 10 , leading to a
ce' pe

correction of ^ 0(1) in Eq. (5.1). This compared to the effective values

of Bm A of Table I implies corrections of less than 7$. Since ou2./u)2. « 1 ,
' ci' pi

the test-particle-ion interaction remains unchanged by the magnetic field.

In order to facilitate further improvement of the plasma heating

problem, we enumerate some physical limitations of the present model.

Initially, the very energetic test particle will exchange energy with the

plasma particles on a much faster time scale than that for relaxation

between species. We have therefore assumed the plasma parameters constant

in time. The shape of the ion-distribution does not matter as long as

v » a^^ . In a mirror-machine, the electrons are confined by the plasma

potential rather than the mirror effect and are therefore Maxwellian.

There is no loss-cone-effect in Tokamaks except for the loss mechanism
2k

through trapped particles which experience enhanced outward diffusion.

We have assumed Maxwellian distributions for the ions and electrons. The

a-particles are born isotropically. In a Tokamak, those born parallel

to the magnetic field will be untrapped and able to give up most of their

energy before they are lost by classical diffusion. Those with mainly

perpendicular velocities will belong to the trapped particle group and

will undergo a random walk out of the system whose step size is not the

gyroradius but the much larger "banana-width". Although the collision

frequency is very small for the energetic a-particles, plasma turbulence

can introduce effective collisions and increase friction and diffusion.2^
of.

Heavy-test-particle radiative energy loss has been neglected. For the

large beam intensities required for substantial injection heating, one
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may have to take beam-plasma interactions into account.15 (The literature

deals mostly with electron beams. The situation here resembles a narrow

bump on the tail of the ion-distribution, however.)

VI. CONCLUSIONS

The Balescu-Lenard kinetic equation for a tenuous beam of test

particles can be used practically to calculate the energy loss of energetic

particles in a multispecies plasma, thereby including Debye-shielding and

Cerenkov-emission automatically. Inclusion of energy dependence- and

quantum-effects for close collisions can lead to somewhat higher values

of the effective value for 2m A than often assumed. (Cf. Table I.) An

external magnetic field affects the test-particle-electron interaction

by less than 7$ and has a negligible effect on the ions. For a-particle

slowdown in mirror-confined fusion plasmas, we find the energy loss rate

to be somewhat smaller, the thermalization time accordingly larger and

the fraction of a-particle energy going into the ions somewhat smaller

than given before (by 20$, 30$ and 10-20$ respectively). For a-particles

in a Tokamak-like plasma, we find a thermalization time of ~ 250 msec,

where 87$ of the energy goes into the plasma electrons. Plasma heating

by neutral injection can be estimated in terms of elementary functions

in the binary collision model. Numerical results for Tokamak-like plasmas

of the more rigorous theory appear to be promising. For injection energies

of 20-80 keV the thermalization times range from 8 to 22 msec, where the

ions absorb 75$ to 35$ of the energy and the break even point is at k-k keV.

The absolute amount of energy absorbed by the ions asymptotes around

70 keV injection energy, being ~ 30 keV per injected proton.
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APPENDIX

We normalize the energy change rate to the electron species and define

P =
%he dE

T cju dt
e pe

V = v/a , A. = k ./]£_
1 e 3 o,r T>
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Using the identity (2.11) one finds
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P(0) = -
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TABLE I

Test particle
energy E(keV) Bm A,

tp-e
2m A, .

tp-i

a-particle slowdown in

mirror-confined electron-

deuteron plasma: T. = 100 keV,

T = 50 keV, n = 10l4 cm"3
e

3500

19-1 (quantum)

24.6 (quantum)

200 23-5 (quantum)

a-particle slowdown in Tokamak

electron-deuteron plasma:

T. = 4 keV, T = 6 keV,

n = 101* cm

3500

17•0 (quantum)

23.5 (quantum)

12 19.4 (classical)

(injected) proton slowdown in

Tokamak electron-proton plasma:

T. = .5 keV, T = 1 keV,
i e

n = 5 x 1013 cm-3

20

15•5 (quantum)

20.0 (classical)

1 17.4 (classical)

ro
ON
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FIGURE CAPTIONS

Fig. la a-particle energy loss rate vs. energy for three different

electron temperatures. The dashed curves show the fraction of

the energy loss going into the electrons in the presence of the

ions.

Fig. lb The curves for T = 20 keV and 80 keV of Fig. la are repeated

and compared to the corresponding approximate ones from Ref. 5 (DJR)

Fig. 2 a-particle energy vs. time, for three different electron tempera

tures. For T = 20 keV and 8o keV, the corresponding curves from

Ref. 5 (DJR) are shown dashed. The curve labeled t o shows the
90

"a-particle lifetime" given in Eq. (4.1).

Fig. 3 Relative amounts of a-particle energy deposited into electrons

and ions, vs. electron temperature. The dashed curves are taken

from Ref. 5 (DJR).

Fig. 4 Thermalization time vs. injection energy in a Tokamak-like plasma.

Fig. 5 The two light curves show the relative amounts of injected ion

energy deposited into electrons and ions of a Tokamak-like plasma,

vs. injection energy. (Apply left scale.) The heavy curve shows

the absolute value of the energy deposited into the ions. The

dashed curve shows the approximation, Eq. (3-10). (Apply right

scale.)
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